JP4062118B2 - High-tensile hot-rolled steel sheet with excellent stretch characteristics and stretch flange characteristics and manufacturing method thereof - Google Patents

High-tensile hot-rolled steel sheet with excellent stretch characteristics and stretch flange characteristics and manufacturing method thereof Download PDF

Info

Publication number
JP4062118B2
JP4062118B2 JP2003039099A JP2003039099A JP4062118B2 JP 4062118 B2 JP4062118 B2 JP 4062118B2 JP 2003039099 A JP2003039099 A JP 2003039099A JP 2003039099 A JP2003039099 A JP 2003039099A JP 4062118 B2 JP4062118 B2 JP 4062118B2
Authority
JP
Japan
Prior art keywords
mass
hot
rolled steel
steel sheet
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003039099A
Other languages
Japanese (ja)
Other versions
JP2004002969A (en
Inventor
哲也 妻鹿
坂田  敬
一洋 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003039099A priority Critical patent/JP4062118B2/en
Priority to DE60300242T priority patent/DE60300242T2/en
Priority to EP03006195A priority patent/EP1350859B1/en
Priority to KR1020030017697A priority patent/KR100778264B1/en
Priority to CNB031074499A priority patent/CN1296507C/en
Publication of JP2004002969A publication Critical patent/JP2004002969A/en
Application granted granted Critical
Publication of JP4062118B2 publication Critical patent/JP4062118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Description

【0001】
【発明の属する技術分野】
本発明は、優れた伸び特性を有するとともに、優れた伸びフランジ特性も具備した高張力熱延鋼板とその製造方法に関する。
【0002】
【従来の技術】
自動車用熱延鋼板のうち、車体の構造部材,足周り部材(たとえばホイール,リム,シャーシ等)や強度部材(たとえばバンパー,ドアガードバー等)には、引張強さが780MPa級〜980MPa級の高張力熱延鋼板が使用される。なかでも車体に用いられる熱延鋼板は、自動車の低燃費化と衝突安全性向上を達成するために、高強度と高加工性とを満足することが求められている。
【0003】
このような観点から開発された熱延鋼板としては、フェライトとマルテンサイトを主体とする組織を有する複合組織鋼(いわゆるDP鋼)や、フェライト,ベイナイトおよび残留オーステナイトからなる組織を有する残留オーステナイト鋼が知られている。
ところが近年、安全性および環境を考慮した装備が装着されるようになり、車体重量が増加する傾向にある。そこで引張強さが780MPa以上の熱延鋼板を積極的に活用して、熱延鋼板のゲージダウンによる車体の軽量化を図ることの必要性が一層高まっている。
【0004】
たとえば特許文献1には、C,Si,Mnを基本成分とする鋼を、圧下率80%以上,圧延温度 780〜900 ℃で熱間仕上げ圧延し、 圧延が終了した後、40℃/秒未満の冷却速度で冷却を開始して所定の温度で冷却を終了し、次いで40℃/秒以上の冷却速度で冷却して 350〜500 ℃で巻取ることにより、ポリゴナルフェライトの占積率61%以下,ポリゴナルフェライトの占積率と粒径の比が18以上で、しかもベイナイトと残留オーステナイトからなる第2相を有し、 かつこの第2相中の残留オーステナイトが5%以上である組織を有する熱延鋼板の製造方法が開示されている。
【0005】
この技術では、引張強さTS(MPa )と伸びEL(%)で算出されるTS×EL値が20000MPa%を達成することが可能であり、伸び特性に優れた熱延鋼板が得られる。 しかし自動車用高張力鋼板に要求される重要な特性である伸びフランジ性は何ら考慮されていない。伸びフランジ特性は、一般に穴広げ試験で得られる穴広げ率を指標として評価されるものであり、伸び特性とは相関のない特性である。したがって特許文献1に開示された技術を用いても、優れた伸びフランジ特性と優れた伸び特性とを具備する高張力熱延鋼板を製造するのは困難である。
【0006】
また特許文献2には、伸びフランジ特性の優れた高強度鋼板が開示されている。これは、C,Si,Mn,Bを基本成分として、S含有量を0.02%以下に限定して、ポリゴナルフェライト,ベイナイトおよびマルテンサイトの3相からなる組織とすることを特徴としている。
この技術では、引張強さ 66kgf/mm2 (=647MPa)の熱延鋼板で穴広げ率λ 150%(すなわちTS×λ=97050MPa%)の穴広げ率を達成している。しかし伸び特性は24%(すなわちTS×EL=15528MPa%)にすぎず、伸び特性が要求されることの多い足周り部材への適用は限定されるという問題があった。しかも特許文献2では、引張強さ780MPa以上の高張力熱延鋼板(いわゆるTS780MPa級熱延鋼板)に関する記述はなく、引張強さ780MPa級の高張力熱延鋼板に適用するのは困難であった。
【0007】
また特許文献3には、伸びフランジ特性の優れた高強度熱延鋼板が開示されている。これは、C,Si,Mn,Ti,Nbを基本成分として、平均粒径25μm以下のフェライトが面積率70〜95%であり、残部がマルテンサイトあるいはさらに残留オーステナイトからなる組織とすることを特徴としている。この技術は、組織中にマルテンサイトを含むので、引張強さは 99kgf/mm2 (=970MPa)を達成している。しかしこの技術では、TS 80kgf/mm2 (=784MPa)でも穴広げ率λは48%であり、伸びフランジ特性は十分ではない。
【0008】
また特許文献4には、バーリング特性の優れた高張力鋼板が開示されている。これは、C,Si,Mn,Tiを基本成分として、平均粒径5μm以下の主相(すなわちフェライト)と平均粒径 3.5μm以下の第2相とからなる組織とすることを特徴としている。この技術は、TS−ELバランスおよびTS−λバランスが良好な、特にバーリング特性(すなわち穴広げ加工性)に優れた高張力鋼板を製造しようとするものである。しかし、第2相にパーライトが含まれるので、開示されている引張強さは最大でも740MPaであり、780MPaに達していない。
【0009】
【特許文献1】
特開平3-10049 号公報
【特許文献2】
特開昭58-167750 号公報
【特許文献3】
特開平9-125194号公報
【特許文献4】
特開2000-192191 号公報
【0010】
【発明が解決しようとする課題】
車体の軽量化を達成するために、 引張強さTSが780MPa以上あるいはさらに980MPa以上の高張力熱延鋼板であって、TS×EL≧20000MPa%を達成する伸び特性を有するとともに、TS×λ≧82000MPa%を達成する伸びフランジ特性も併せ持つ、すなわち例えばTS780MPaの場合、EL≧25.5%,λ≧ 105%の特性を有する高張力熱延鋼板への要求があったが、上記のように従来これを達成できる技術はなかった。
【0011】
本発明は上記のような問題を解消し、TSが780MPa以上あるいはさらに980MPa以上であって、伸び特性が良好すなわちTS×EL≧20000MPa%を満足し、かつ伸びフランジ特性が良好すなわちTS×λ≧82000MPa%を満足する高張力熱延鋼板とその製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者らは、上記の目的を達成するため鋭意研究した結果、 Tiを必須の成分として、熱間圧延後に生成するフェライトを細粒化するとともに、未変態のオーステナイトから生成するベイナイトおよび残留オーステナイトの分率を所定の範囲に調整することによって、引張強さ780MPa以上あるいはさらに980MPa以上の高張力熱延鋼板の伸び特性と伸びフランジ特性を著しく向上できることを見出した。
【0013】
さらにCとSiの添加量を所定の範囲内にすることによって、そのような高張力熱延鋼板を安定して製造できることを見出した。
本発明は、Cを0.04〜0.25質量%、Siを 0.4〜2.0 質量%、Mnを 3.0質量%以下、Alを 0.2質量%以下、Sを 0.007質量%以下、Tiを0.08〜0.3 質量%含有し、残部がFeおよび不可避的不純物からなり、かつ前記C,前記Siおよび前記Tiの含有量が下記の (1)式を満足する組成と、フェライトとベイナイトと残留オーステナイトとを含み、前記フェライトの分率が組織全体に対して40%以上であり、かつ前記フェライトの平均粒径が5μm以下であり、前記ベイナイトの分率が組織全体に対して20〜48%であり、前記残留オーステナイトの分率が組織全体に対して2〜7%である組織とを有することを特徴とする高張力熱延鋼板である。
【0014】
また本発明は、Cを0.04〜0.25質量%、Siを 0.4〜2.0 質量%、Mnを 3.0質量%以下、Alを 0.2質量%以下、Sを 0.007質量%以下、Tiを0.08〜0.3 質量%含有し、残部がFeおよび不可避的不純物からなり、かつ前記C,前記Siおよび前記Tiの含有量が下記の (1)式を満足する組成を有する鋼スラブを1150℃以下に加熱した後、 (Ar3変態点+20℃)以上かつ(Ar3変態点+100 ℃)以下の仕上げ圧延温度で熱間圧延し、 得られた熱延鋼板を30℃/秒以上の冷却速度で冷却して 600〜750 ℃の温度範囲で2〜20秒間滞留させ、次いで15℃/秒以上の冷却速度で冷却して 380〜520 ℃の温度範囲で前記熱延鋼板を巻取ることを特徴とする高張力熱延鋼板の製造方法である。
【0015】
(〔%C〕/12−〔%Ti〕/48)/(〔%Si〕/28)≦ 0.4 ・・・ (1)
〔%C〕:C含有量(質量%)
〔%Ti〕:Ti含有量(質量%)
〔%Si〕:Si含有量(質量%)
【0016】
【発明の実施の形態】
まず本発明の高張力熱延鋼板の組成について説明する。
C:0.04〜0.25質量%
Cは、熱延鋼板の強度を向上し、後述するTiと結合してTiCを生成し、熱延鋼板の組織を微細化するとともに、ベイナイト,残留オーステナイトを後述する分率の範囲内で生成するのに必要な元素である。780MPa以上の引張強さを得るためには、Cを0.04質量%以上含有する必要がある。 一方、 0.25質量%を超えると、熱延鋼板の溶接性が著しく劣化する。したがって、Cは0.04〜0.25質量%の範囲内を満足する必要がある。 なお溶接性の劣化を一層防止するためには、C量は0.20質量%以下にすることが好ましい。また、より好ましくは0.08〜0.16質量%である。
【0017】
Si: 0.4〜2.0 質量%
Siは、製鋼工程における脱酸元素として作用する元素である。また熱延鋼板に含有されるSiは、固溶強化によって、降伏比や強度−伸びバランス(伸び特性)を損なうことなく熱延鋼板の強度を向上するとともに、オーステナイトからフェライトへの変態を活性化して未変態オーステナイト相へのC濃化を促進する元素である。また Fe3C等の炭化物の生成を抑制して、フェライト,ベイナイトおよび残留オーステナイトからなる組織を形成するために必須の元素である。これらの効果を得るためには、Siを 0.4質量%以上含有する必要がある。 一方、 2.0質量%を超えると、これらの効果が飽和し、しかも熱延鋼板表面に剥離し難いスケールが生成してスケール傷が発生し、外観を要求される用途への適用が困難になる。したがって、Siは 0.4〜2.0 質量%の範囲内を満足する必要がある。 なお、好ましくは 0.7〜1.5 質量%である。
【0018】
Mn: 3.0質量%以下
Mnは、熱延鋼板の強度を向上するとともに、焼入れ性を改善する元素である。また、後述するSをMnSとして析出させることによって、Sに起因する種々の特性の劣化を抑制する効果も有する。 Mnの含有量が 3.0質量%を超えると、熱延鋼板の巻取り後のベイナイト変態を抑制し、残留オーステナイトを著しく減少させる。したがって、Mnは 3.0質量%以下とした。なお上記した効果を得るためには、Mnは 0.5質量%以上含有するのが好ましい。 さらに 1.0〜2.5 質量%とするのが一層好ましい。
【0019】
Al: 0.2質量%以下
Alは、製鋼工程で脱酸剤として作用する。Alの含有量が 0.2質量%を超えると、脱酸効果が飽和し、しかも熱延鋼板の靭性や伸びフランジ性が劣化する。したがって、Alは 0.2質量%以下とした。なお上記した効果を得るためには、Alは0.01質量%以上含有するのが好ましい。 さらに0.02〜0.05質量%とするのが一層好ましい。
【0020】
S: 0.007質量%以下
Sは、熱延鋼板の靭性や伸びフランジ性を劣化させる元素であるから、できる限り低減する必要がある。Sの含有量が 0.007質量%を超えると、熱延鋼板の靭性や伸びフランジ性が著しく劣化する。したがって、Sは 0.007質量%以下とした。より好ましくは 0.005質量%以下であり、さらに好ましくは0.0025質量%以下とする。なお現状の精錬技術では、Sを 0.001質量%未満に低減するためには多大な精錬時間や種々の添加剤を要するのでコストの上昇を招く。そのため、現状の製造技術でのS量の下限値は 0.001質量%程度である。
【0021】
Ti:0.08〜0.3 質量%
Tiは、熱間圧延に先立つ鋼スラブの加熱処理によってCと結合してTiCを生成する。その結果、 加熱処理におけるオーステナイトの粒径が概ね50μm以下となり、熱延鋼板のフェライト粒の粗大化が防止される。つまり粒径が概ね50μm以下のオーステナイト粒を有する鋼スラブを熱間圧延することによってオーステナイト粒の再結晶が進行し、一層微細なオーステナイト粒が生成する。 さらに熱延鋼板の冷却時には、フェライト変態が促進され、微細なフェライト粒が生成するとともに、未変態のオーステナイトも微細化する。 その後の冷却過程において、 低温領域で生成されるベイナイトやオーステナイトも微細となり、均一かつ微細な組織を有する熱延鋼板が得られる。
【0022】
こうして得られた熱延鋼板は、優れた伸び特性と伸びフランジ性を有する。このような効果を得るためには、Tiを0.08質量%以上含有する必要がある。 一方、 0.3質量%を超えると、オーステナイトの再結晶が著しく阻害されて、熱延鋼板の組織が粗大化するのみならず、伸び特性,伸びフランジ特性が劣化する。したがって、Tiは0.08〜0.3 質量%の範囲内を満足する必要がある。 なお、好ましくは0.12〜0.25質量%である。
【0023】
さらにC含有量,Ti含有量およびSi含有量は、後述するようなフェライトとベイナイトと残留オーステナイトとを含む混合組織を形成するために、下記の (1)式を満足する必要がある。
(〔%C〕/12−〔%Ti〕/48)/(〔%Si〕/28)≦ 0.4 ・・・ (1)
〔%C〕:C含有量(質量%)
〔%Ti〕:Ti含有量(質量%)
〔%Si〕:Si含有量(質量%)
ベイナイトと残留オーステナイトは、熱間圧延後の冷却過程で未変態のオーステナイトから生成する。熱延鋼板が冷却される際に、高温領域ではCの拡散が促進され、低温領域ではCの拡散が抑制される。このようなCの拡散が促進されるほどフェライトが増加し、 ベイナイトと残留オーステナイトの分率が減少する。 つまりCの拡散挙動は、フェライトとベイナイトと残留オーステナイトの生成に多大な影響を及ぼす。
【0024】
またSiは、熱延鋼板中のセメンタイトの生成を抑制し、フェライトから未変態オーステナイトへのCの拡散を促進する。その結果、フェライトおよびベイナイト,残留オーステナイトのC含有量は短時間で飽和状態に到達するので、冷却条件(たとえば冷却速度等)が変動しても、フェライト,ベイナイト,残留オーステナイトの生成に及ぼす影響は抑えられる。 つまりSiは、Cの拡散挙動に多大な影響を及ぼす。
【0025】
さらにTiは、TiCとしてCを固定するので、Cの拡散挙動に多大な影響を及ぼす。
したがってCの拡散挙動は、C,SiおよびTiの相互作用によって変化する。これらの元素の相互作用は、各々の原子数で算出される指標で評価できる。つまり (1)式を満足する範囲内であればCの拡散が促進され、後述するようなフェライトとベイナイトと残留オーステナイトとを含む混合組織を有する熱延鋼板が安定して得られる。 しかも、熱間圧延後の冷却条件の変動による影響を受けることなく、フェライトとベイナイトと残留オーステナイトとからなる熱延鋼板が得られる。
【0026】
次に本発明の高張力熱延鋼板の組織について説明する。
本発明の高張力熱延鋼板は、フェライトの分率を、組織全体に対して40%以上とする。 その理由は、フェライトの分率が40%以上であれば伸び特性が向上するからである。なお、引張強さを780MPa級として伸び特性を良好にする場合には、フェライトを主相とする(すなわちフェライトの分率を組織全体に対して50%以上とする)ことが好ましい。
【0027】
さらにフェライト粒の平均粒径は5μm以下とする必要がある。 平均粒径が5μmを超えると、伸びフランジ性が著しく劣化する。平均粒径5μm以下のフェライト粒を生成することによって、合金元素の添加量を削減できるので、熱延鋼板の伸び特性,伸びフランジ特性等の機械的性質の劣化を招くことなく、780MPa級あるいはさらに980MPa級の引張強さが得られる。 なお、好ましくは平均粒径4μm以下である。
【0028】
フェライト以外の相は、ベイナイトと残留オーステナイトを含む混合相とする。ベイナイトは、残留オーステナイトやマルテンサイトに比べて軟質であるので、フェライトとの硬度差は少ない。一般に、伸びフランジ加工におけるクラックは、硬度差の大きい相の界面(たとえばフェライトとマルテンサイトとの界面)で生じる。したがって軟質なベイナイトが多いほど伸びフランジ性は向上する。
【0029】
このような効果は、ベイナイトの分率が組織全体に対して20%以上で得られる。 一方、 ベイナイトの分率が48%を超えると、フェライトの分率が減少して、伸び特性が劣化する。しかも未変態オーステナイト中のC含有量が著しく低下して、残留オーステナイトが減少することも、伸び特性劣化の原因になる。 したがって、ベイナイトの分率は組織全体に対して20〜48%とする必要がある。なお、引張強さを780MPa級として伸び特性を良好とする場合には、ベイナイトの分率は40%以下とすることが好ましく、より好ましくは25〜35%である。
【0030】
残留オーステナイトは、加工誘起マルテンサイトの生成により、 均一かつ高い伸び特性を発揮する。 このような効果は、残留オーステナイトの分率が組織全体に対して2%以上で得られる。 一方、 残留オーステナイトの分率が7%を超えると、伸びフランジ加工を受けることによって残留オーステナイトが硬質化し、フェライトとの硬度差が大きくなる。その結果、 伸びフランジ加工によって、フェライトと残留オーステナイトとの界面にクラックが発生しやすくなる。したがって、残留オーステナイトの分率は組織全体に対して2〜7%とする必要がある。なお、好ましくは4〜6%である。
【0031】
なお熱延鋼板の製造工程において、フェライト,ベイナイト,残留オーステナイトの他に、マルテンサイトも生成する場合がある。マルテンサイトは、熱延鋼板の組織中で最も硬質な相である。そのため伸びフランジ加工によって、フェライトとマルテンサイトとの界面にクラックが発生しやすくなる。したがってマルテンサイトの分率は小さいほど良く、 組織全体に対して5%以下が好ましい。
【0032】
このようにして、伸び特性を向上させるフェライトおよび残留オーステナイト,伸びフランジ特性を向上させるベイナイトを、それぞれ適正な分率で生成させることによって、優れた伸び特性を有するとともに、優れた伸びフランジ特性も具備した高張力熱延鋼板が得られる。
次に本発明の高張力熱延鋼板の製造方法について説明する。
【0033】
上記した組成の溶鋼を溶製し、連続鋳造法あるいは造塊法等の従来から知られている方法で鋼スラブを製造する。 次いで鋼スラブを加熱炉に装入して、1150℃以下に加熱する。鋼スラブの加熱温度が1150℃を超えると、TiCが溶解してオーステナイト粒の微細化が達成できない。その結果、 フェライトが粗大化して、伸び特性および伸びフランジ特性が劣化する。
【0034】
鋼スラブの加熱温度の下限値は、後述する仕上げ圧延温度を確保するために、1050℃以上が好ましい。 なお、鋼スラブの加熱温度のより好ましい範囲は1050〜1100℃である。
こうして加熱された鋼スラブに熱間圧延を施す。 熱間圧延の仕上げ圧延温度は、Ar3変態点を超えて、(Ar3変態点+20℃)以上かつ(Ar3変態点+100 ℃)以下の範囲内とする。この範囲の仕上げ圧延温度で熱間圧延を行なうことによって、ベイナイトの分率を組織全体に対して20〜48%の範囲内に維持できる。仕上げ圧延温度が(Ar3変態点+20℃)未満では、ベイナイトの分率が20%に到達せず、フェライトの分率と残留オーステナイトの分率が増加する。 一方、 (Ar3変態点+100 ℃)を超えると、オーステナイト粒が成長して、組織が粗大化して、伸び特性および伸びフランジ特性が劣化する。
【0035】
熱間圧延によって得られた熱延鋼板を、30℃/秒以上の冷却速度で 600〜750 ℃まで第1段階の冷却を行なう。冷却速度を30℃/秒以上とすることによって、組織の粗大化を抑制できる。また第1段階の冷却を停止する温度が 600〜750 ℃の範囲を外れると、後述する第2段階の冷却でフェライト変態が遅延する。 その結果、 フェライト,ベイナイト,残留オーステナイトの分率を適正に維持できなくなる。なお第1段階の冷却の停止温度は、好ましくは 650〜700 ℃である。
【0036】
こうして 600〜750 ℃で第1段階の冷却を停止した熱延鋼板を、 600〜750 ℃の温度範囲で2〜20秒間滞留させる。熱延鋼板を 600〜750 ℃で保持することによって、ベイナイト,残留オーステナイトへのCの濃化を促進できる。滞留時間が2秒未満では、オーステナイトへのCの濃化が不十分で、フェライト,ベイナイト,残留オーステナイトの分率を適正に維持できない。一方、20秒を超えると、フェライト変態が過剰に進行してパーライトが生成し、伸び特性と伸びフランジ特性が劣化する。なお滞留時間は、好ましくは4〜10秒間である。なお、上記の温度範囲で2〜20秒滞留させるには、第1段の冷却を停止して空冷(放冷)すれば良く、また加熱装置を用い保温しても良い。
【0037】
次いで、熱延鋼板を15℃/秒以上の冷却速度で 380〜520 ℃まで第2段階の冷却を行なった後、熱延鋼板を巻取る。冷却速度を15℃/秒以上とすることによって、組織の粗大化を抑制できる。また第2段階の冷却を 380〜520 ℃で停止して熱延鋼板を巻取ることによって、マルテンサイトの生成を抑制してベイナイトを生成させるとともに、ベイナイト変態によって残留オーステナイトを生成させることができる。第2段階の冷却の停止温度(すなわち巻取り温度)が 380℃未満では、巻取り温度の低下に起因して、熱延鋼板が波打つようになる。しかも残留オーステナイトやマルテンサイトが過剰に生成して、伸びフランジ特性が劣化する。一方、 520℃を超えると、パーライトが生成して、ベイナイトや残留オーステナイトの生成が抑制され、伸び特性と伸びフランジ特性が劣化する。なお第2段階の冷却の停止温度(すなわち巻取り温度)は、好ましくは 400〜500 ℃である。
【0038】
【実施例】
表1に示す組成の鋼スラブを製造し、それぞれの鋼スラブから試験片を採取してAr3変態点(℃)を測定した。すなわち、試験片を1250℃で30分加熱保持した後、冷却速度1℃/sec で冷却し、示差熱膨張計でAr3変態点を測定した。Ar3変態点の測定値を表1に併せて示す。
【0039】
【表1】

Figure 0004062118
【0040】
鋼スラブA〜Dは、本発明の成分範囲を満足する例である。一方、 鋼スラブEはS含有量が本発明の範囲を外れる例,鋼スラブFは (1)式を満足せずSiとTiの含有量が本発明の範囲を外れる例,鋼スラブGはCとMnの含有量が本発明の範囲を外れる例,鋼スラブHはSiとAlの含有量が本発明の範囲を外れる例,鋼スラブIは (1)式を満足せずC含有量が本発明の範囲を外れる例,鋼スラブJは (1)式を満足しない例である。
【0041】
これらの鋼スラブを種々の条件で熱間圧延して、厚さ2.9mm の熱延鋼板を製造した。熱間圧延の条件は表2,3に示す通りである。
【0042】
【表2】
Figure 0004062118
【0043】
【表3】
Figure 0004062118
【0044】
こうして得られた熱延鋼板から試験片を採取して、フェライトの粒径と分率を測定した。粒径の測定は、圧延方向断面について電子顕微鏡で写真撮影した後、 JIS規格 G0552に規定されるフェライト結晶粒度試験方法の中の切断法に準拠して測定した。分率は、電子顕微鏡で撮影した写真を画像解析して面積率を求め、これを分率とした。その結果を表2,3に示す。
【0045】
さらに熱延鋼板から採取した試験片を用いて、フェライト以外の相の組織の種類,ベイナイトの分率,残留オーステナイトの分率,マルテンサイトの分率を調査した。なお、第2相の組織は、電子顕微鏡で調査した。ベイナイトの分率は、電子顕微鏡写真を画像解析することにより調査した。残留オーステナイトの分率は、X線回析装置でCoのKα線を用いて、オーステナイト相の(200),(220)面とフェライト相の(200),(211)面の積分強度より算出した。 マルテンサイトの分率は、電子顕微鏡写真を画像解析することにより調査した。その結果を表2,3に示す。
【0046】
次に熱延鋼板の圧延幅方向(すなわち圧延方向と直交する方向)からJIS5号引張試験片を採取して引張試験を行なった。その結果を表2,3に示す。
また日本鉄鋼連盟規格 JFS-T1001-1996 に準拠して穴広げ試験を行なった。 すなわち、熱延鋼板に穴径d0 =10mmをクリアランス12.5%で打ち抜いて初期穴を設け、初期穴のバリをダイ側(すなわち円錐パンチの反対側)として円錐パンチ(頂角60°)を初期穴に挿入して穴を広げ、亀裂が熱延鋼板を貫通する時点での穴径dを求めた。これらのd0 ,d値を用いて下記の (2)式から穴広げ率λ(%)を算出した。その結果を表2,3に示す。
【0047】
λ= 100×(d−d0 )/d0 ・・・ (2)
また熱延鋼板の表面を目視で観察し、スケール傷や亀裂の有無を調査した。そして、スケール傷や亀裂が観察されない場合を良(○)、スケール傷や亀裂が観察された場合を不良(×)として評価した。その結果を表2,3に示す。
表2,3から明らかなように、発明例の熱延鋼板は、いずれも引張強780MPa以上を満足するとともに、TS×EL≧20000MPa%およびTS×λ≧82000MPa%を満足した。しかも外観の評価も良好であった。
【0048】
【発明の効果】
本発明によれば、引張強さTSが780MPa級あるいはさらに980MPa級を満足するとともに、TS×EL≧20000MPa%およびTS×λ≧82000MPa%を満足する熱延鋼板、すなわち伸び特性および伸びフランジ特性に優れた高張力熱延鋼板が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-tensile hot-rolled steel sheet having excellent elongation characteristics and also having excellent elongation flange characteristics, and a method for producing the same.
[0002]
[Prior art]
Among hot-rolled steel sheets for automobiles, structural strength, body parts (for example, wheels, rims, chassis, etc.) and strength members (for example, bumpers, door guard bars, etc.) for vehicle bodies have high tensile strengths of 780 MPa to 980 MPa. Tensile hot rolled steel sheets are used. Among these, hot-rolled steel sheets used for vehicle bodies are required to satisfy high strength and high workability in order to achieve low fuel consumption and improved collision safety of automobiles.
[0003]
As hot-rolled steel sheets developed from such a viewpoint, there are composite steels having a structure mainly composed of ferrite and martensite (so-called DP steels) and residual austenitic steels having a structure composed of ferrite, bainite and retained austenite. Are known.
However, in recent years, equipment considering safety and the environment has been installed, and the weight of the vehicle body tends to increase. Therefore, there is a growing need to reduce the weight of the vehicle body by actively using hot-rolled steel sheets with a tensile strength of 780 MPa or more to reduce the gauge of the hot-rolled steel sheets.
[0004]
For example, in Patent Document 1, steel having C, Si, and Mn as basic components is hot finish-rolled at a rolling reduction of 80% or more and a rolling temperature of 780 to 900 ° C, and after rolling is finished, the temperature is less than 40 ° C / second. The cooling rate starts at a predetermined temperature, finishes cooling at a predetermined temperature, and then cools at a cooling rate of 40 ° C / second or more and winds at 350 to 500 ° C, so that the polygonal ferrite space factor is 61%. In the following, a structure in which the ratio of the space factor and the grain size of polygonal ferrite is 18 or more, the second phase is composed of bainite and retained austenite, and the retained austenite in the second phase is 5% or more. The manufacturing method of the hot-rolled steel plate which has is disclosed.
[0005]
With this technique, the TS × EL value calculated by the tensile strength TS (MPa) and the elongation EL (%) can achieve 20000 MPa%, and a hot-rolled steel sheet having excellent elongation characteristics can be obtained. However, no consideration is given to stretch flangeability, which is an important characteristic required for high-tensile steel sheets for automobiles. The stretch flange characteristic is generally evaluated using the hole expansion rate obtained in the hole expansion test as an index, and has no correlation with the elongation characteristic. Therefore, even if the technique disclosed in Patent Document 1 is used, it is difficult to produce a high-tensile hot-rolled steel sheet having excellent stretch flange characteristics and excellent stretch characteristics.
[0006]
Patent Document 2 discloses a high-strength steel sheet having excellent stretch flange characteristics. This is characterized in that C, Si, Mn, and B are basic components, and the S content is limited to 0.02% or less to form a structure composed of three phases of polygonal ferrite, bainite, and martensite.
With this technology, a hole expansion rate of λ 150% (that is, TS × λ = 97050 MPa%) is achieved with a hot rolled steel sheet having a tensile strength of 66 kgf / mm 2 (= 647 MPa). However, the elongation characteristic is only 24% (that is, TS × EL = 155028 MPa%), and there has been a problem that application to leg members in which elongation characteristics are often required is limited. Moreover, in Patent Document 2, there is no description about a high-tensile hot-rolled steel sheet having a tensile strength of 780 MPa or more (so-called TS780 MPa-class hot-rolled steel sheet), and it was difficult to apply to a high-tensile hot-rolled steel sheet having a tensile strength of 780 MPa. .
[0007]
Patent Document 3 discloses a high-strength hot-rolled steel sheet having excellent stretch flange characteristics. This is characterized in that C, Si, Mn, Ti, Nb as basic components, ferrite with an average grain size of 25 μm or less has an area ratio of 70 to 95%, and the balance is martensite or further composed of residual austenite. It is said. Since this technology contains martensite in the structure, the tensile strength is 99 kgf / mm 2 (= 970 MPa). However, with this technology, even with TS 80 kgf / mm 2 (= 784 MPa), the hole expansion ratio λ is 48%, and the stretch flange characteristics are not sufficient.
[0008]
Patent Document 4 discloses a high-tensile steel plate having excellent burring characteristics. This is characterized by having a structure composed of C, Si, Mn, Ti as a basic component and a main phase (that is, ferrite) having an average particle diameter of 5 μm or less and a second phase having an average particle diameter of 3.5 μm or less. This technique is intended to produce a high-tensile steel sheet having a good TS-EL balance and TS-λ balance, and particularly excellent burring characteristics (that is, hole expansion workability). However, since pearlite is contained in the second phase, the disclosed tensile strength is 740 MPa at the maximum and does not reach 780 MPa.
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 3-10049 [Patent Document 2]
JP 58-167750 A [Patent Document 3]
Japanese Patent Laid-Open No. 9-125194 [Patent Document 4]
JP 2000-192191 A [0010]
[Problems to be solved by the invention]
In order to reduce the weight of the vehicle body, it is a high-tensile hot-rolled steel sheet with a tensile strength TS of 780 MPa or more, or even 980 MPa or more, and has an elongation characteristic that achieves TS × EL ≧ 20,000 MPa%, and TS × λ ≧ There is also a stretch flange characteristic that achieves 82000MPa%, that is, in the case of TS780MPa, for example, there has been a demand for a high-tensile hot-rolled steel sheet having EL ≧ 25.5% and λ ≧ 105%. There was no technology that could be achieved.
[0011]
The present invention solves the above problems, TS is 780 MPa or more, or even 980 MPa or more, the elongation characteristics are good, ie, TS × EL ≧ 20,000 MPa%, and the stretch flange properties are good, ie, TS × λ ≧ An object of the present invention is to provide a high-tensile hot-rolled steel sheet satisfying 82000 MPa% and a manufacturing method thereof.
[0012]
[Means for Solving the Problems]
As a result of diligent research to achieve the above object, the present inventors refined ferrite produced after hot rolling with Ti as an essential component, and also produced bainite and residual austenite formed from untransformed austenite. It has been found that by adjusting the fraction of the steel sheet to a predetermined range, the elongation characteristics and stretch flange characteristics of a high-tensile hot-rolled steel sheet having a tensile strength of 780 MPa or more or even 980 MPa or more can be remarkably improved.
[0013]
Furthermore, it has been found that such a high-tensile hot-rolled steel sheet can be stably produced by making the addition amounts of C and Si within a predetermined range.
The present invention contains 0.04 to 0.25 mass% of C, 0.4 to 2.0 mass% of Si, 3.0 mass% or less of Mn, 0.2 mass% or less of Al, 0.007 mass% or less of S, and 0.08 to 0.3 mass% of Ti. The balance of Fe, unavoidable impurities, and the content of the C, Si and Ti satisfying the following formula (1), ferrite, bainite and retained austenite, The ratio is 40% or more with respect to the whole structure, the average grain size of the ferrite is 5 μm or less, the fraction of the bainite is 20 to 48% with respect to the whole structure, and the fraction of the retained austenite Is a high-tensile hot-rolled steel sheet characterized by having a structure of 2 to 7% with respect to the entire structure.
[0014]
In the present invention, C is 0.04 to 0.25 mass%, Si is 0.4 to 2.0 mass%, Mn is 3.0 mass% or less, Al is 0.2 mass% or less, S is 0.007 mass% or less, and Ti is 0.08 to 0.3 mass%. Then, after heating a steel slab having a composition in which the balance is Fe and inevitable impurities and the contents of C, Si and Ti satisfy the following formula (1) to 1150 ° C. or less, (Ar (3 transformation point + 20 ° C) and hot rolling at a finishing rolling temperature of (Ar 3 transformation point + 100 ° C) or less, and the obtained hot-rolled steel sheet is cooled at a cooling rate of 30 ° C / second or more to 600 to 750 ° C. In a high-tensile hot-rolled steel sheet, wherein the hot-rolled steel sheet is wound at a temperature range of 380-520 ° C. It is a manufacturing method.
[0015]
([% C] / 12-[% Ti] / 48) / ([% Si] / 28) ≦ 0.4 (1)
[% C]: C content (% by mass)
[% Ti]: Ti content (% by mass)
[% Si]: Si content (% by mass)
[0016]
DETAILED DESCRIPTION OF THE INVENTION
First, the composition of the high-tensile hot-rolled steel sheet of the present invention will be described.
C: 0.04-0.25 mass%
C improves the strength of the hot-rolled steel sheet, combines with Ti described later to generate TiC, refines the structure of the hot-rolled steel sheet, and generates bainite and retained austenite within the range of fractions described later. It is an element necessary for this. In order to obtain a tensile strength of 780 MPa or more, it is necessary to contain 0.04% by mass or more of C. On the other hand, if it exceeds 0.25% by mass, the weldability of the hot-rolled steel sheet is significantly deteriorated. Therefore, C needs to satisfy the range of 0.04-0.25 mass%. In order to further prevent deterioration of weldability, the C content is preferably 0.20% by mass or less. Further, it is more preferably 0.08 to 0.16% by mass.
[0017]
Si: 0.4-2.0 mass%
Si is an element that acts as a deoxidizing element in the steel making process. In addition, Si contained in the hot-rolled steel sheet enhances the strength of the hot-rolled steel sheet without damaging the yield ratio or strength-elongation balance (elongation characteristics) by solid solution strengthening and activates the transformation from austenite to ferrite. It is an element that promotes C concentration to the untransformed austenite phase. Further, it is an essential element for suppressing the formation of carbides such as Fe 3 C and forming a structure composed of ferrite, bainite and retained austenite. In order to acquire these effects, it is necessary to contain 0.4 mass% or more of Si. On the other hand, if it exceeds 2.0% by mass, these effects are saturated, and a scale that is difficult to peel off is generated on the surface of the hot-rolled steel sheet, resulting in scale scratches, making it difficult to apply to applications that require appearance. Therefore, Si needs to satisfy the range of 0.4 to 2.0 mass%. In addition, Preferably it is 0.7-1.5 mass%.
[0018]
Mn: 3.0 mass% or less
Mn is an element that improves the strength of the hot-rolled steel sheet and improves the hardenability. In addition, by precipitating S, which will be described later, as MnS, it also has an effect of suppressing deterioration of various characteristics caused by S. If the Mn content exceeds 3.0% by mass, the bainite transformation after winding of the hot-rolled steel sheet is suppressed, and the retained austenite is remarkably reduced. Therefore, Mn is set to 3.0% by mass or less. In order to obtain the effects described above, it is preferable to contain 0.5% by mass or more of Mn. Furthermore, it is more preferable to set it as 1.0-2.5 mass%.
[0019]
Al: 0.2% by mass or less
Al acts as a deoxidizer in the steel making process. If the Al content exceeds 0.2% by mass, the deoxidation effect is saturated, and the toughness and stretch flangeability of the hot-rolled steel sheet deteriorate. Therefore, Al was made 0.2 mass% or less. In addition, in order to acquire the above-mentioned effect, it is preferable to contain Al 0.01 mass% or more. Furthermore, it is more preferable to set it as 0.02-0.05 mass%.
[0020]
S: 0.007 mass% or less S is an element that deteriorates the toughness and stretch flangeability of the hot-rolled steel sheet, so it needs to be reduced as much as possible. If the S content exceeds 0.007% by mass, the toughness and stretch flangeability of the hot-rolled steel sheet will deteriorate significantly. Therefore, S is set to 0.007% by mass or less. More preferably, it is 0.005 mass% or less, More preferably, it is 0.0025 mass% or less. In the current refining technology, in order to reduce S to less than 0.001% by mass, a large amount of refining time and various additives are required, resulting in an increase in cost. Therefore, the lower limit of the amount of S in the current manufacturing technology is about 0.001% by mass.
[0021]
Ti: 0.08 to 0.3 mass%
Ti combines with C by heat treatment of the steel slab prior to hot rolling to produce TiC. As a result, the grain size of austenite in the heat treatment is approximately 50 μm or less, and the ferrite grains of the hot-rolled steel sheet are prevented from becoming coarse. That is, by re-crystallizing austenite grains by hot rolling a steel slab having austenite grains with a grain size of approximately 50 μm or less, finer austenite grains are generated. Further, when the hot-rolled steel sheet is cooled, ferrite transformation is promoted, fine ferrite grains are generated, and untransformed austenite is also refined. In the subsequent cooling process, bainite and austenite generated in a low temperature region also become fine, and a hot rolled steel sheet having a uniform and fine structure can be obtained.
[0022]
The hot-rolled steel sheet thus obtained has excellent elongation characteristics and stretch flangeability. In order to acquire such an effect, it is necessary to contain Ti 0.08 mass% or more. On the other hand, if it exceeds 0.3% by mass, recrystallization of austenite is remarkably inhibited, and not only the structure of the hot-rolled steel sheet becomes coarse, but also the elongation characteristics and the stretch flange characteristics deteriorate. Therefore, Ti needs to satisfy the range of 0.08-0.3 mass%. In addition, Preferably it is 0.12-0.25 mass%.
[0023]
Further, the C content, Ti content, and Si content must satisfy the following formula (1) in order to form a mixed structure containing ferrite, bainite, and retained austenite as described later.
([% C] / 12-[% Ti] / 48) / ([% Si] / 28) ≦ 0.4 (1)
[% C]: C content (% by mass)
[% Ti]: Ti content (% by mass)
[% Si]: Si content (% by mass)
Bainite and retained austenite are produced from untransformed austenite in the cooling process after hot rolling. When the hot-rolled steel sheet is cooled, C diffusion is promoted in the high temperature region, and C diffusion is suppressed in the low temperature region. As the diffusion of C is promoted, ferrite increases and the fraction of bainite and retained austenite decreases. That is, the diffusion behavior of C has a great influence on the formation of ferrite, bainite and retained austenite.
[0024]
Si also suppresses the formation of cementite in the hot-rolled steel sheet and promotes the diffusion of C from ferrite to untransformed austenite. As a result, since the C content of ferrite, bainite, and retained austenite reaches a saturated state in a short time, even if the cooling conditions (such as cooling rate) fluctuate, the effect on the formation of ferrite, bainite, and retained austenite is It can be suppressed. That is, Si has a great influence on the diffusion behavior of C.
[0025]
Furthermore, since Ti fixes C as TiC, it greatly affects the diffusion behavior of C.
Therefore, the diffusion behavior of C is changed by the interaction of C, Si and Ti. The interaction between these elements can be evaluated by an index calculated by the number of atoms. That is, if it is within the range satisfying the formula (1), the diffusion of C is promoted, and a hot-rolled steel sheet having a mixed structure containing ferrite, bainite and retained austenite as described later can be stably obtained. In addition, a hot-rolled steel sheet made of ferrite, bainite, and retained austenite can be obtained without being affected by fluctuations in cooling conditions after hot rolling.
[0026]
Next, the structure of the high-tensile hot-rolled steel sheet of the present invention will be described.
The high-tensile hot-rolled steel sheet of the present invention has a ferrite fraction of 40% or more with respect to the entire structure. The reason is that if the ferrite fraction is 40% or more, the elongation characteristics are improved. When the tensile strength is set to 780 MPa and the elongation characteristics are improved, it is preferable to use ferrite as the main phase (that is, the ferrite fraction is 50% or more of the entire structure).
[0027]
Furthermore, the average grain size of the ferrite grains needs to be 5 μm or less. When the average particle diameter exceeds 5 μm, stretch flangeability is significantly deteriorated. By generating ferrite grains with an average grain size of 5 μm or less, the amount of alloying elements can be reduced, so that the mechanical properties such as elongation characteristics and stretch flange characteristics of hot-rolled steel sheets are not degraded, and the 780 MPa class or further A tensile strength of 980 MPa class can be obtained. The average particle size is preferably 4 μm or less.
[0028]
The phase other than ferrite is a mixed phase containing bainite and retained austenite. Since bainite is softer than retained austenite and martensite, there is little difference in hardness from ferrite. In general, cracks in stretch flange processing occur at an interface of a phase having a large hardness difference (for example, an interface between ferrite and martensite). Therefore, the more the soft bainite, the better the stretch flangeability.
[0029]
Such an effect is obtained when the fraction of bainite is 20% or more with respect to the entire structure. On the other hand, when the bainite fraction exceeds 48%, the ferrite fraction decreases and the elongation characteristics deteriorate. In addition, the C content in the untransformed austenite is remarkably lowered and the retained austenite is reduced, which causes deterioration of elongation characteristics. Therefore, the fraction of bainite needs to be 20 to 48% with respect to the entire structure. In addition, when making tensile strength into 780 MPa class and making elongation characteristics favorable, it is preferable that the fraction of bainite shall be 40% or less, More preferably, it is 25 to 35%.
[0030]
Residual austenite exhibits uniform and high elongation properties due to the formation of work-induced martensite. Such an effect is obtained when the fraction of retained austenite is 2% or more with respect to the entire structure. On the other hand, when the fraction of retained austenite exceeds 7%, the retained austenite is hardened by undergoing stretch flange processing, and the hardness difference from ferrite increases. As a result, elongation flange processing tends to cause cracks at the interface between ferrite and retained austenite. Therefore, the fraction of retained austenite needs to be 2 to 7% with respect to the entire structure. In addition, Preferably it is 4 to 6%.
[0031]
In addition, in the manufacturing process of a hot-rolled steel sheet, martensite may be generated in addition to ferrite, bainite, and retained austenite. Martensite is the hardest phase in the structure of a hot-rolled steel sheet. Therefore, cracks are likely to occur at the interface between ferrite and martensite due to stretch flange processing. Therefore, the smaller the martensite fraction, the better, and it is preferably 5% or less with respect to the entire structure.
[0032]
In this way, ferrite and residual austenite that improve the elongation characteristics, and bainite that improves the elongation flange characteristics are produced at appropriate fractions, respectively, thereby having excellent elongation characteristics and also having excellent elongation flange characteristics. A high-tensile hot-rolled steel sheet is obtained.
Next, the manufacturing method of the high-tensile hot-rolled steel sheet of the present invention will be described.
[0033]
Molten steel having the above composition is melted and a steel slab is produced by a conventionally known method such as a continuous casting method or an ingot casting method. Next, the steel slab is charged into a heating furnace and heated to 1150 ° C. or lower. When the heating temperature of the steel slab exceeds 1150 ° C., TiC dissolves and austenite grain refinement cannot be achieved. As a result, the ferrite becomes coarse and the elongation characteristics and stretch flange characteristics deteriorate.
[0034]
The lower limit of the heating temperature of the steel slab is preferably 1050 ° C. or higher in order to ensure the finish rolling temperature described later. In addition, the more preferable range of the heating temperature of a steel slab is 1050-1100 degreeC.
The steel slab thus heated is hot-rolled. Finish rolling temperature of hot rolling, it exceeds the Ar 3 transformation point, in the range of less than (Ar 3 transformation point + 20 ° C.) or higher and (Ar 3 transformation point +100 ° C.). By performing hot rolling at a finish rolling temperature in this range, the fraction of bainite can be maintained within a range of 20 to 48% with respect to the entire structure. When the finish rolling temperature is less than (Ar 3 transformation point + 20 ° C.), the fraction of bainite does not reach 20%, and the fraction of ferrite and the fraction of retained austenite increase. On the other hand, if it exceeds (Ar 3 transformation point + 100 ° C.), austenite grains grow, the structure becomes coarse, and the elongation characteristics and the stretch flange characteristics deteriorate.
[0035]
The hot-rolled steel sheet obtained by hot rolling is cooled in the first stage to 600-750 ° C. at a cooling rate of 30 ° C./second or more. By making the cooling rate 30 ° C./second or more, the coarsening of the structure can be suppressed. Further, if the temperature at which the first stage cooling is stopped falls outside the range of 600 to 750 ° C., the ferrite transformation is delayed by the second stage cooling described later. As a result, the ferrite, bainite, and retained austenite fractions cannot be maintained properly. The first stage cooling stop temperature is preferably 650 to 700 ° C.
[0036]
The hot-rolled steel sheet whose cooling at the first stage is stopped at 600 to 750 ° C. is retained for 2 to 20 seconds at a temperature range of 600 to 750 ° C. By holding the hot-rolled steel sheet at 600 to 750 ° C., concentration of C to bainite and retained austenite can be promoted. If the residence time is less than 2 seconds, the concentration of C to austenite is insufficient, and the fraction of ferrite, bainite, and retained austenite cannot be maintained properly. On the other hand, if it exceeds 20 seconds, the ferrite transformation proceeds excessively to produce pearlite, and the elongation characteristics and the stretch flange characteristics deteriorate. The residence time is preferably 4 to 10 seconds. In addition, in order to retain for 2 to 20 seconds in the above temperature range, the first-stage cooling may be stopped and air-cooled (cooled), or the temperature may be kept using a heating device.
[0037]
Next, the hot-rolled steel sheet is wound up in the second stage from 380 to 520 ° C. at a cooling rate of 15 ° C./second or more, and then the hot-rolled steel sheet is wound. By making the cooling rate 15 ° C./second or more, the coarsening of the structure can be suppressed. Further, by stopping the second stage cooling at 380 to 520 ° C. and winding the hot-rolled steel sheet, it is possible to suppress the generation of martensite and generate bainite and to generate residual austenite by bainite transformation. When the second stage cooling stop temperature (that is, the coiling temperature) is less than 380 ° C., the hot-rolled steel sheet becomes undulated due to a decrease in the coiling temperature. In addition, retained austenite and martensite are excessively generated, and the stretch flange characteristics deteriorate. On the other hand, when the temperature exceeds 520 ° C., pearlite is generated, the formation of bainite and retained austenite is suppressed, and the elongation characteristics and the stretch flange characteristics deteriorate. The second stage cooling stop temperature (that is, the winding temperature) is preferably 400 to 500 ° C.
[0038]
【Example】
Steel slabs having the compositions shown in Table 1 were produced, specimens were collected from the respective steel slabs, and the Ar 3 transformation point (° C.) was measured. Specifically, the test piece was heated and held at 1250 ° C. for 30 minutes, then cooled at a cooling rate of 1 ° C./sec, and the Ar 3 transformation point was measured with a differential thermal dilatometer. The measured values of the Ar 3 transformation point are also shown in Table 1.
[0039]
[Table 1]
Figure 0004062118
[0040]
Steel slabs A to D are examples that satisfy the component ranges of the present invention. On the other hand, steel slab E is an example in which the S content is outside the scope of the present invention, steel slab F is an example in which the contents of Si and Ti are outside the scope of the present invention without satisfying formula (1), and the steel slab G is C An example in which the content of Mn and Mn is outside the scope of the present invention, steel slab H is an example in which the content of Si and Al is outside the scope of the present invention, and steel slab I does not satisfy Eq. An example outside the scope of the invention, steel slab J, is an example that does not satisfy equation (1).
[0041]
These steel slabs were hot rolled under various conditions to produce hot rolled steel sheets with a thickness of 2.9 mm. The conditions for hot rolling are as shown in Tables 2 and 3.
[0042]
[Table 2]
Figure 0004062118
[0043]
[Table 3]
Figure 0004062118
[0044]
Test pieces were collected from the hot-rolled steel sheet thus obtained, and the particle size and fraction of ferrite were measured. The particle size was measured in accordance with the cutting method in the ferrite grain size test method defined in JIS standard G0552 after taking a photograph of the cross section in the rolling direction with an electron microscope. As for the fraction, an area ratio was determined by image analysis of a photograph taken with an electron microscope, and this was defined as a fraction. The results are shown in Tables 2 and 3.
[0045]
Furthermore, the types of phases other than ferrite, the fraction of bainite, the fraction of retained austenite, and the fraction of martensite were investigated using specimens taken from hot-rolled steel sheets. The structure of the second phase was examined with an electron microscope. The bainite fraction was investigated by image analysis of electron micrographs. The fraction of retained austenite was calculated from the integrated intensities of the (200) and (220) faces of the austenite phase and the (200) and (211) faces of the ferrite phase using Co Kα rays with an X-ray diffractometer. . The martensite fraction was investigated by image analysis of electron micrographs. The results are shown in Tables 2 and 3.
[0046]
Next, a JIS No. 5 tensile test piece was taken from the rolling width direction of the hot-rolled steel sheet (that is, the direction orthogonal to the rolling direction) and subjected to a tensile test. The results are shown in Tables 2 and 3.
In addition, a hole expansion test was conducted in accordance with the Japan Iron and Steel Federation Standard JFS-T1001-1996. That is, an initial hole is formed by punching a hot-rolled steel sheet with a hole diameter d 0 = 10 mm with a clearance of 12.5%, and a conical punch (vertical angle 60 °) is initially set with a burr of the initial hole as the die side (that is, opposite to the conical punch). The hole was expanded by inserting into the hole, and the hole diameter d at the time when the crack penetrated the hot-rolled steel sheet was determined. Using these d 0 and d values, the hole expansion ratio λ (%) was calculated from the following equation (2). The results are shown in Tables 2 and 3.
[0047]
λ = 100 × (d−d 0 ) / d 0 (2)
Further, the surface of the hot-rolled steel sheet was visually observed to investigate the presence or absence of scale scratches and cracks. And the case where a scale crack and a crack were not observed was evaluated as good ((circle)), and the case where a scale crack and a crack were observed was evaluated as bad (x). The results are shown in Tables 2 and 3.
As is clear from Tables 2 and 3, all of the hot-rolled steel sheets of the inventive examples satisfied a tensile strength of 780 MPa or more, and also satisfied TS × EL ≧ 20000 MPa% and TS × λ ≧ 82000 MPa%. Moreover, the appearance was also evaluated well.
[0048]
【The invention's effect】
According to the present invention, a hot-rolled steel sheet having a tensile strength TS satisfying 780 MPa class or further 980 MPa class and satisfying TS × EL ≧ 20000 MPa% and TS × λ ≧ 82000 MPa%, that is, stretch properties and stretch flange properties. An excellent high-tensile hot-rolled steel sheet can be obtained.

Claims (2)

Cを0.04〜0.25質量%、Siを 0.4〜2.0 質量%、Mnを 3.0質量%以下、Alを 0.2質量%以下、Sを 0.007質量%以下、Tiを0.08〜0.3 質量%含有し、残部がFeおよび不可避的不純物からなり、かつ前記C、前記Siおよび前記Tiの含有量が下記の (1)式を満足する組成と、フェライトとベイナイトと残留オーステナイトとを含み前記フェライトの分率が組織全体に対して40%以上であり、かつ前記フェライトの平均粒径が5μm以下であり、前記ベイナイトの分率が組織全体に対して20〜48%であり、前記残留オーステナイトの分率が組織全体に対して2〜7%である組織とを有することを特徴とする高張力熱延鋼板。
(〔%C〕/12−〔%Ti〕/48)/(〔%Si〕/28)≦ 0.4 ・・・ (1)
〔%C〕:C含有量(質量%)
〔%Ti〕:Ti含有量(質量%)
〔%Si〕:Si含有量(質量%)
Contains 0.04 to 0.25% by mass of C, 0.4 to 2.0% by mass of Si, 3.0% by mass or less of Mn, 0.2% by mass or less of Al, 0.007% by mass or less of S, 0.08 to 0.3% by mass of Ti, and the balance is Fe And a composition in which the contents of C, Si and Ti satisfy the following formula (1): ferrite, bainite, and retained austenite, and the ferrite fraction is included in the entire structure. And the average grain size of the ferrite is 5 μm or less, the fraction of the bainite is 20 to 48% with respect to the whole structure, and the fraction of the retained austenite is with respect to the whole structure A high-tensile hot-rolled steel sheet characterized by having a structure of 2 to 7%.
([% C] / 12-[% Ti] / 48) / ([% Si] / 28) ≦ 0.4 (1)
[% C]: C content (% by mass)
[% Ti]: Ti content (% by mass)
[% Si]: Si content (% by mass)
Cを0.04〜0.25質量%、Siを 0.4〜2.0 質量%、Mnを 3.0質量%以下、Alを 0.2質量%以下、Sを 0.007質量%以下、Tiを0.08〜0.3 質量%含有し、残部がFeおよび不可避的不純物からなり、かつ前記C、前記Siおよび前記Tiの含有量が下記の (1)式を満足する組成を有する鋼スラブを1150℃以下に加熱した後、 (Ar3変態点+20℃)以上かつ(Ar3変態点+100 ℃)以下の仕上げ圧延温度で熱間圧延し、 得られた熱延鋼板を30℃/秒以上の冷却速度で冷却して 600〜750 ℃の温度範囲で2〜20秒間滞留させ、次いで15℃/秒以上の冷却速度で冷却して 380〜520 ℃の温度範囲で前記熱延鋼板を巻取ることを特徴とする高張力熱延鋼板の製造方法。
(〔%C〕/12−〔%Ti〕/48)/(〔%Si〕/28)≦ 0.4 ・・・ (1)
〔%C〕:C含有量(質量%)
〔%Ti〕:Ti含有量(質量%)
〔%Si〕:Si含有量(質量%)
Contains 0.04 to 0.25% by mass of C, 0.4 to 2.0% by mass of Si, 3.0% by mass or less of Mn, 0.2% by mass or less of Al, 0.007% by mass or less of S, 0.08 to 0.3% by mass of Ti, and the balance is Fe And a steel slab composed of inevitable impurities and having a composition in which the contents of C, Si, and Ti satisfy the following formula (1) are heated to 1150 ° C. or lower, (Ar 3 transformation point + 20 ° C.) ) Hot rolling at a finish rolling temperature of not less than (Ar 3 transformation point + 100 ° C.) and below, and cooling the obtained hot-rolled steel sheet at a cooling rate of 30 ° C./second or more in a temperature range of 600 to 750 ° C. A method for producing a high-strength hot-rolled steel sheet, characterized in that the hot-rolled steel sheet is retained for ˜20 seconds and then cooled at a cooling rate of 15 ° C./second or more and wound up in the temperature range of 380-520 ° C.
([% C] / 12-[% Ti] / 48) / ([% Si] / 28) ≦ 0.4 (1)
[% C]: C content (% by mass)
[% Ti]: Ti content (% by mass)
[% Si]: Si content (% by mass)
JP2003039099A 2002-03-22 2003-02-18 High-tensile hot-rolled steel sheet with excellent stretch characteristics and stretch flange characteristics and manufacturing method thereof Expired - Fee Related JP4062118B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003039099A JP4062118B2 (en) 2002-03-22 2003-02-18 High-tensile hot-rolled steel sheet with excellent stretch characteristics and stretch flange characteristics and manufacturing method thereof
DE60300242T DE60300242T2 (en) 2002-03-22 2003-03-19 Tensile hot rolled steel sheet having excellent elongation at break and stretch flanging ductility and its manufacturing process
EP03006195A EP1350859B1 (en) 2002-03-22 2003-03-19 High-tensile strength hot-rolled steel sheet excellent in elongation properties and stretch flangeability, and producing method thereof
KR1020030017697A KR100778264B1 (en) 2002-03-22 2003-03-21 High tensile hot rolled steel sheet excellent in elongation property and elongation flanging property, and method for producing the same
CNB031074499A CN1296507C (en) 2002-03-22 2003-03-21 High-tensile strength hot-rolled steel sheet excellent in elongation properties and stretch flangeability and producing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002081451 2002-03-22
JP2003039099A JP4062118B2 (en) 2002-03-22 2003-02-18 High-tensile hot-rolled steel sheet with excellent stretch characteristics and stretch flange characteristics and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004002969A JP2004002969A (en) 2004-01-08
JP4062118B2 true JP4062118B2 (en) 2008-03-19

Family

ID=28043820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039099A Expired - Fee Related JP4062118B2 (en) 2002-03-22 2003-02-18 High-tensile hot-rolled steel sheet with excellent stretch characteristics and stretch flange characteristics and manufacturing method thereof

Country Status (5)

Country Link
EP (1) EP1350859B1 (en)
JP (1) JP4062118B2 (en)
KR (1) KR100778264B1 (en)
CN (1) CN1296507C (en)
DE (1) DE60300242T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100410050C (en) * 2001-07-10 2008-08-13 辛普瑞斯注气有限公司 Process and apparatus for injection moulding

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050199322A1 (en) * 2004-03-10 2005-09-15 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same
JP4692015B2 (en) * 2004-03-30 2011-06-01 Jfeスチール株式会社 High ductility hot-rolled steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the same
KR100979854B1 (en) * 2005-08-03 2010-09-02 수미도모 메탈 인더스트리즈, 리미티드 Hot rolled steel sheet, cold rolled steel sheet, and process for producing the same
JP4819489B2 (en) * 2005-11-25 2011-11-24 Jfeスチール株式会社 High strength steel plate with excellent uniform elongation characteristics and method for producing the same
US8197616B2 (en) 2005-12-26 2012-06-12 Posco Manufacturing method of carbon steel sheet superior in formability
JP5194857B2 (en) * 2008-02-08 2013-05-08 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
DE102008038865A1 (en) * 2008-08-08 2010-02-11 Sms Siemag Aktiengesellschaft Process for the production of semi-finished products, in particular steel strip, with dual-phase structure
US8128762B2 (en) 2008-08-12 2012-03-06 Kobe Steel, Ltd. High-strength steel sheet superior in formability
KR100969259B1 (en) * 2009-12-16 2010-07-13 윤지웅 Windows and doors using type of automatic action- opening and shutting
KR101015303B1 (en) * 2010-05-25 2011-02-18 윤지웅 Windows and doors using type of automatic action- opening and shutting
JP5590244B2 (en) * 2012-02-22 2014-09-17 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
BR112015000178B1 (en) * 2012-08-03 2020-03-17 Tata Steel Ijmuiden Bv PROCESS TO PRODUCE HOT-LAMINATED STEEL STRIP AND HOT-LAMINATED STEEL STRIP
WO2016132549A1 (en) 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
US11401571B2 (en) * 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet
KR101981876B1 (en) * 2015-02-20 2019-05-23 닛폰세이테츠 가부시키가이샤 Hot-rolled steel sheet
WO2016135896A1 (en) 2015-02-25 2016-09-01 新日鐵住金株式会社 Hot-rolled steel sheet or plate
WO2016135898A1 (en) * 2015-02-25 2016-09-01 新日鐵住金株式会社 Hot-rolled steel sheet or plate
CN104694824B (en) * 2015-03-26 2017-05-31 攀钢集团攀枝花钢铁研究院有限公司 Inexpensive automotive frame hot rolled steel plate and production method
US10689724B2 (en) 2015-07-31 2020-06-23 Nippon Steel Corporation Steel sheet with strain induced transformation type composite structure and method of manufacturing same
JP6179584B2 (en) * 2015-12-22 2017-08-16 Jfeスチール株式会社 High strength steel plate with excellent bendability and method for producing the same
MX2019000576A (en) * 2016-08-05 2019-09-02 Nippon Steel Corp Steel sheet and plated steel sheet.
WO2018026013A1 (en) 2016-08-05 2018-02-08 新日鐵住金株式会社 Steel sheet and plated steel sheet
BR112019000306B1 (en) * 2016-08-05 2023-02-14 Nippon Steel Corporation STEEL PLATE AND GALVANIZED STEEL PLATE
TWI629367B (en) * 2016-08-05 2018-07-11 日商新日鐵住金股份有限公司 Steel plate and plated steel
KR101917448B1 (en) * 2016-12-20 2018-11-09 주식회사 포스코 High strength hot-rolled steel sheet having excellent weldability and ductility, and mathod for manufacturing same
DE102017130237A1 (en) * 2017-12-15 2019-06-19 Salzgitter Flachstahl Gmbh High strength hot rolled flat steel product with high edge crack resistance and high bake hardening potential, a process for producing such a flat steel product
DE102021212902A1 (en) * 2021-11-17 2023-05-17 Sms Group Gmbh Process for producing a hot strip from a fine-grain steel material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2952624B2 (en) * 1991-05-30 1999-09-27 新日本製鐵株式会社 High yield ratio type hot rolled high strength steel sheet excellent in formability and spot weldability and its manufacturing method and high yield ratio type hot rolled high strength steel sheet excellent in formability and its manufacturing method
JP3477955B2 (en) * 1995-11-17 2003-12-10 Jfeスチール株式会社 Method for producing high-strength hot-rolled steel sheet having ultrafine structure
US6221179B1 (en) * 1997-09-11 2001-04-24 Kawasaki Steel Corporation Hot rolled steel plate to be processed having hyper fine particles, method of manufacturing the same, and method of manufacturing cold rolled steel plate
JPH11172372A (en) * 1997-12-12 1999-06-29 Nkk Corp High tensile strength hot rolled steel plate excellent in ductility and stretch-flanging property and its production
JP3039862B1 (en) * 1998-11-10 2000-05-08 川崎製鉄株式会社 Hot-rolled steel sheet for processing with ultra-fine grains
JP4306076B2 (en) * 2000-02-02 2009-07-29 Jfeスチール株式会社 Highly ductile hot-rolled steel sheet with excellent stretch flangeability and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100410050C (en) * 2001-07-10 2008-08-13 辛普瑞斯注气有限公司 Process and apparatus for injection moulding

Also Published As

Publication number Publication date
EP1350859B1 (en) 2004-12-29
KR100778264B1 (en) 2007-11-22
CN1450191A (en) 2003-10-22
KR20030076430A (en) 2003-09-26
EP1350859A1 (en) 2003-10-08
CN1296507C (en) 2007-01-24
JP2004002969A (en) 2004-01-08
DE60300242T2 (en) 2005-06-02
DE60300242D1 (en) 2005-02-03

Similar Documents

Publication Publication Date Title
JP4062118B2 (en) High-tensile hot-rolled steel sheet with excellent stretch characteristics and stretch flange characteristics and manufacturing method thereof
US10077486B2 (en) High-strength cold-rolled steel sheet and method of manufacturing the same
US10156005B2 (en) High-yield-ratio, high-strength cold rolled steel sheet and production method therefor
US10435762B2 (en) High-yield-ratio high-strength cold-rolled steel sheet and method of producing the same
KR101912512B1 (en) High-strength cold-rolled steel sheet and method for manufacturing the same
JP5780086B2 (en) High strength steel plate and manufacturing method thereof
JP5858174B2 (en) Low yield ratio high strength cold-rolled steel sheet and method for producing the same
KR101569977B1 (en) High-strength cold-rolled steel sheet with high yield ratio having excellent formability and method for producing the same
CN114015933A (en) High strength and high formability cold rolled and heat treated steel sheet and method of manufacturing the same
JP4484070B2 (en) High-tensile hot-rolled steel sheet and manufacturing method thereof
JP5798740B2 (en) High-strength cold-rolled steel sheet with excellent formability and manufacturing method
JP4304473B2 (en) Manufacturing method of ultra fine grain hot rolled steel sheet
KR20170107057A (en) High-strength cold-rolled steel plate and method for producing same
JP5521444B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP2007154283A (en) High strength steel sheet having excellent formability and shape fixability
JP6628682B2 (en) High-strength stainless steel sheet excellent in workability and method for producing the same
JP2005314798A (en) High ductility hot rolled steel sheet having excellent stretch flange property and fatigue property and its production method
JP2013227603A (en) High-strength hot-rolled steel sheet excellent in stretchability, hole expansibility and low-temperature toughness and manufacturing method therefor
JP2009084687A (en) High-strength steel sheet for can manufacturing and method for manufacturing the same
WO2021089851A1 (en) Medium manganese steel product and method of manufacturing the same
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
US9920391B2 (en) High-strength hot-rolled steel strip or sheet with excellent formability and fatigue performance and a method of manufacturing said steel strip or sheet
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP2007138189A (en) High-strength steel sheet having superior workability, and manufacturing method therefor
JP5655436B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees