JP5521444B2 - High-strength cold-rolled steel sheet with excellent workability and method for producing the same - Google Patents

High-strength cold-rolled steel sheet with excellent workability and method for producing the same Download PDF

Info

Publication number
JP5521444B2
JP5521444B2 JP2009201921A JP2009201921A JP5521444B2 JP 5521444 B2 JP5521444 B2 JP 5521444B2 JP 2009201921 A JP2009201921 A JP 2009201921A JP 2009201921 A JP2009201921 A JP 2009201921A JP 5521444 B2 JP5521444 B2 JP 5521444B2
Authority
JP
Japan
Prior art keywords
less
phase
steel sheet
cold
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009201921A
Other languages
Japanese (ja)
Other versions
JP2011052271A (en
Inventor
英尚 川邉
一洋 瀬戸
玲子 杉原
将憲 西澤
重行 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009201921A priority Critical patent/JP5521444B2/en
Publication of JP2011052271A publication Critical patent/JP2011052271A/en
Application granted granted Critical
Publication of JP5521444B2 publication Critical patent/JP5521444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、厳しい形状にプレス成形される自動車部品などに供して好適な高強度冷延鋼板およびその製造方法に関し、加工性や溶接性を阻害するCの含有量を少なくし、Cu、Ni、Cr、Moなど高価な元素を積極的に含有させることなしに、降伏比:0.50以上0.80以下かつ引張強度(TS):1180MPa以上という優れた加工性と高強度を併せて実現しようとするものである。   The present invention relates to a high-strength cold-rolled steel sheet suitable for use in automobile parts and the like that are press-formed into a strict shape and a method for producing the same, reducing the content of C that hinders workability and weldability, Cu, Ni, Without actively containing expensive elements such as Cr and Mo, it is intended to achieve both excellent workability and high strength such as yield ratio: 0.50 or more and 0.80 or less and tensile strength (TS): 1180 MPa or more. is there.

近年、車体軽量化による燃費向上および衝突安全性確保の観点から、自動車部品において高強度鋼板の適用が拡大しつつある。しかしながら、自動車部品の多くはプレス成形、バーリング加工等の加工工程を経て製造されるところ、鋼板はその高強度化に伴い伸び(延性)や伸びフランジ性が低下する傾向にある。そのため、高強度鋼板を、複雑なプレス成形やバーリング加工が必要となる部品に適用した場合、加工時の割れ発生が問題となる。また、鋼板の高強度化に伴い降伏点が高まると、プレス成形後の形状凍結性が低下する問題も生じる。更に、1180MPa級以上の鋼板においては、通常、C等の添加元素量を高めることにより高強度化が図られるが、C等の添加量が高まるにつれて溶接性が低下するため、自動車部品同士を溶接により一体化する際に問題となる。したがって、高強度鋼板を自動車部品に適用する上では、所望の強度を有することに加え、伸び、伸びフランジ性、低降伏比および溶接性を兼ね備えた高強度鋼板の開発が必須となる。   In recent years, the application of high-strength steel sheets in automobile parts has been expanding from the viewpoint of improving fuel efficiency and ensuring collision safety by reducing the weight of the vehicle body. However, many automobile parts are manufactured through processing steps such as press molding and burring, and steel sheets tend to have low elongation (ductility) and stretch flangeability as their strength increases. Therefore, when a high-strength steel plate is applied to a part that requires complicated press forming or burring, cracking during processing becomes a problem. Further, when the yield point increases with the increase in strength of the steel sheet, there arises a problem that the shape freezing property after press forming is lowered. Furthermore, in steel plates of 1180 MPa class or higher, it is usually possible to increase the strength by increasing the amount of additive elements such as C. However, as the amount of added elements such as C increases, the weldability decreases, so automobile parts are welded together. It becomes a problem when integrating. Therefore, in order to apply a high-strength steel sheet to automobile parts, it is essential to develop a high-strength steel sheet having not only desired strength but also elongation, stretch flangeability, low yield ratio, and weldability.

加工性に優れた高強度鋼板に関する従来技術としては、例えば、特許文献1〜5に、鋼成分や組織の限定、熱延条件、焼鈍条件の最適化により、伸びと伸びフランジ性に優れた高強度冷延鋼板を得る技術が開示されている。   For example, Patent Documents 1 to 5 describe, as conventional technologies related to high-strength steel sheets with excellent workability, high elongation and stretch flangeability by limiting steel components and structures, optimizing hot rolling conditions, and annealing conditions. A technique for obtaining a strength cold-rolled steel sheet is disclosed.

特開2003−193193号公報JP 2003-193193 A 特開2004−332099号公報JP 2004-332099 A 特開2005−163055号公報JP 2005-163055 A 特開2007−9269号公報JP 2007-9269 A 特開2008−297592号公報JP 2008-297592 A

しかしながら、特許文献1に記載の鋼板は、ベイナイトまたはベイニティックフェライトを主相とする組織を有するため、1180MPa級以上の引張強度を達成するには、多量のCやMo、Nb等の高価な合金元素を含有させる必要がある。また、特許文献2に記載の鋼板も、ベイナイトまたはベイニティックフェライトを主相とする組織を有するため、高強度化を図る上でNi、Cu、Cr、Mo等の高価な合金元素を必須とする。特許文献3、特許文献4および特許文献5に記載の鋼板は、高価な合金添加元素を要しないが、焼戻し工程を必須とするため、焼戻し処理に時間と手間がかかり、製造コスト高となる。   However, since the steel sheet described in Patent Document 1 has a structure having bainite or bainitic ferrite as a main phase, in order to achieve a tensile strength of 1180 MPa class or more, a large amount of expensive C, Mo, Nb, etc. It is necessary to contain alloying elements. Moreover, since the steel sheet described in Patent Document 2 also has a structure having bainite or bainitic ferrite as a main phase, expensive alloy elements such as Ni, Cu, Cr, and Mo are essential for achieving high strength. To do. The steel sheets described in Patent Document 3, Patent Document 4 and Patent Document 5 do not require an expensive alloy additive element, but require a tempering process, so that the tempering process takes time and labor, and the manufacturing cost increases.

本発明は、従来技術に見られた上記の問題を有利に解決するものであり、溶接性を阻害するCの含有量を少なくし、しかもCu、Ni、Cr、Mo等の高価な合金元素を積極的に含有させなくても、降伏比:0.50以上0.80以下、引張強度(TS):1180MPa以上という低降伏比と高強度が得られ、しかも伸びや伸びフランジ性にも優れた高強度冷延鋼板を、その有利な製造方法と共に提供することを目的とする。
なお、本発明において、伸びおよび伸びフランジ性に優れるとは、TS×El≧16000MPa・%、TS×λ≧25000MPa・%を満足することを意味する。
The present invention advantageously solves the above-mentioned problems found in the prior art, reduces the content of C that impairs weldability, and eliminates expensive alloy elements such as Cu, Ni, Cr, and Mo. High strength cold rolling with low yield ratio and high strength of yield ratio: 0.50 or more and 0.80 or less, tensile strength (TS): 1180 MPa or more, and excellent elongation and stretch flangeability The object is to provide a steel sheet together with its advantageous production method.
In the present invention, “excellent in elongation and stretch flangeability” means that TS × El ≧ 16000 MPa ·% and TS × λ ≧ 25000 MPa ·% are satisfied.

本発明者らは、上記の課題を解決すべく、鋭意検討した。その結果、加工性および溶接性の観点からC含有量を低減し、且つNi、Cu、Cr、Mo等の高価な合金元素を積極的に添加しない成分組成を有する鋼板であっても、組織の最適化を図ることにより1180MPa以上の引張強度をはじめとして所望の特性が得られることを見出した。   The present inventors diligently studied to solve the above problems. As a result, even if the steel sheet has a component composition that reduces the C content from the viewpoint of workability and weldability and does not actively add expensive alloy elements such as Ni, Cu, Cr, Mo, etc. It was found that by optimizing, desired properties including tensile strength of 1180 MPa or more can be obtained.

本発明は、上記知見に基づきなされたもので、その要旨は以下のとおりである。
(1)質量%で、
C:0.10%以上0.15%以下、
Si:1.0%以上2.0%以下、
Mn:2.0%以上3.0%以下、
P:0.030%以下、
S:0.0050%以下、
Al:0.005%以上0.1%以下、
N:0.01%以下、
Ti:0.005%以上0.050%以下 および
B:0.0001%以上0.0050%以下
を含有し、残部がFe及び不可避的不純物からなる成分組成を有し、体積分率:35%以上65%以下かつ平均結晶粒径:1μm以上10μm以下のフェライト相、体積分率:15%以上45%以下かつ平均結晶粒径:1μm以上10μm以下のベイナイト相および体積分率:5%以上25%以下かつ平均結晶粒径:0.5μm以上5μm以下のマルテンサイト相からなる組織を有し、降伏比:0.50以上0.80以下かつ引張強度:1180MPa以上であることを特徴とする、加工性に優れた高強度冷延鋼板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) By mass%,
C: 0.10% to 0.15%,
Si: 1.0% to 2.0%,
Mn: 2.0% to 3.0%,
P: 0.030% or less,
S: 0.0050% or less,
Al: 0.005% to 0.1%,
N: 0.01% or less,
Ti: 0.005% to 0.050% and
B: Ferrite phase containing 0.0001% or more and 0.0050% or less, with the balance being composed of Fe and inevitable impurities, volume fraction: 35% or more and 65% or less, and average grain size: 1 μm or more and 10 μm or less Volume fraction: 15% to 45% and average crystal grain size: 1 to 10 μm bainite phase and volume fraction: 5% to 25% and average crystal grain size: 0.5 to 5 μm martensite phase A high-strength cold-rolled steel sheet excellent in workability, characterized in that it has a structure consisting of : Yield ratio: 0.50 or more and 0.80 or less and Tensile strength: 1180 MPa or more.

(2)上記(1)に記載の高強度冷延鋼板の製造方法であって、上記(1)に記載の成分組成を有する鋼スラブを、熱間圧延し、酸洗後、圧延率:20%以上50%以下の冷間圧延を施して冷延鋼板とし、該冷延鋼板に780℃以上AC3点未満の温度域で焼鈍処理を施したのち、冷却速度:10℃/秒以上80℃/秒以下でMs点超550℃以下の冷却停止温度域まで冷却し、該冷却停止温度からの温度降下量が0〜100℃の温度範囲に100秒以上1000秒以下滞留させることを特徴とする、加工性に優れた高強度冷延鋼板の製造方法。 (2) A method for producing a high-strength cold-rolled steel sheet according to (1) above, wherein a steel slab having the component composition described in (1) above is hot-rolled, pickled, and rolling rate: 20 The steel sheet is cold-rolled by cold rolling at a rate of not less than 50% and not more than 50%. The cold-rolled steel sheet is annealed in a temperature range of 780 ° C. or more and less than AC3 point, and then a cooling rate: 10 ° C./second or more and 80 ° C. It is cooled to a cooling stop temperature range of Ms point above 550 ° C or less at / second or less, and the temperature drop from the cooling stop temperature is kept in the temperature range of 0 to 100 ° C for 100 seconds or more and 1000 seconds or less. The manufacturing method of the high-strength cold-rolled steel plate excellent in workability.

本発明によれば、溶接性を阻害することなく、伸びおよび伸びフランジ性に優れた、降伏比0.50以上0.80以下で引張強度が1180MPa以上の高強度冷延鋼板を、コスト高を招くことなく製造することができる。そのため、本発明により得られる高強度冷延鋼板は、特に厳しい形状にプレス成形され、溶接施工される自動車部品として好適であり、自動車車体の軽量化に対して極めて有用である。   According to the present invention, a high-strength cold-rolled steel sheet having a yield ratio of 0.50 or more and 0.80 or less and a tensile strength of 1180 MPa or more, which is excellent in elongation and stretch flangeability without impairing weldability, is manufactured without incurring high costs. can do. Therefore, the high-strength cold-rolled steel sheet obtained by the present invention is suitable as an automobile part that is press-formed and welded to a particularly severe shape, and is extremely useful for reducing the weight of an automobile body.

以下に本発明の成分組成および組織の限定理由について説明する。なお、鋼板中の元素の含有量の単位は何れも「質量%」であるが、以下、特に断らない限り、単に「%」で示す。  The reasons for limiting the component composition and structure of the present invention will be described below. The unit of the element content in the steel sheet is “% by mass”, but hereinafter, it is simply indicated by “%” unless otherwise specified.

まず、本発明における鋼の化学成分(組成)の適正範囲およびその限定理由は以下の通りである。
C:0.10%以上0.15%以下
Cは、低温変態相であるベイナイト相およびマルテンサイト相を生成する上で必須の元素であり、鋼板の高強度化に寄与するが、本発明では加工性および溶接性の観点から、このC量を従来よりも少なくする。すなわち、C量が0.15%を超えると鋼板が過度に硬質化するため、優れた伸びおよび伸びフランジ性を達成することが困難となる。またC量が多い鋼板に溶接を施すと、溶接部や溶接熱影響部が過度に硬質化し、溶接割れ等の支障をきたす。とはいえ、C量が0.10%未満では強度を確保することが困難となる。そのため、C量は0.10%以上0.15%以下の範囲とする。好ましくは、0.11%以上0.14%以下の範囲である。
First, the appropriate range of the chemical component (composition) of steel in the present invention and the reasons for its limitation are as follows.
C: 0.10% to 0.15%
C is an essential element for forming the bainite phase and the martensite phase, which are low-temperature transformation phases, and contributes to increasing the strength of the steel sheet.In the present invention, this C amount is from the viewpoint of workability and weldability. Less than before. That is, if the C content exceeds 0.15%, the steel sheet becomes excessively hard, and it becomes difficult to achieve excellent elongation and stretch flangeability. Moreover, if welding is performed on a steel plate with a large amount of C, the welded part and the weld heat-affected zone become excessively hard, causing problems such as weld cracking. However, if the C content is less than 0.10%, it is difficult to ensure the strength. Therefore, the C content is in the range of 0.10% to 0.15%. Preferably, it is 0.11% or more and 0.14% or less of range.

Si:1.0%以上2.0%以下
Siは、フェライト生成元素であり、所望のフェライト量を生成する上で必須の元素である。また、Siは、フェライト相中の固溶Cを低減し、伸びの向上に寄与する元素である。更に、Siは、フェライト相の固溶強化能を有し、フェライトと低温変態相との硬度差を低減するため、伸びフランジ性の向上を図る上でも有効な元素である。これらの効果を得るためには、Si量は1.0%以上とする必要がある。一方、Si量が2.0%を超えると鋼板が脆くなるため、鋼板を所望の形状に成形して部材を製造する際、成形時の割れを招来する。そのため、Si量は1.0%以上2.0%以下の範囲とする。好ましくは、1.1%以上1.6%以下の範囲である。
Si: 1.0% to 2.0%
Si is a ferrite forming element and is an essential element for generating a desired amount of ferrite. Si is an element that reduces the solid solution C in the ferrite phase and contributes to the improvement of elongation. Further, Si is an element effective in improving stretch flangeability because it has a solid solution strengthening ability of the ferrite phase and reduces the difference in hardness between the ferrite and the low temperature transformation phase. In order to obtain these effects, the Si content needs to be 1.0% or more. On the other hand, when the Si content exceeds 2.0%, the steel sheet becomes brittle. Therefore, when a member is manufactured by forming the steel sheet into a desired shape, a crack at the time of forming is caused. For this reason, the Si content is in the range of 1.0% to 2.0%. Preferably, it is 1.1% or more and 1.6% or less of range.

Mn:2.0%以上3.0%以下
Mnは、焼入れ性を高め、鋼板の高強度化に寄与する元素であり、かかる作用はMn量を2.0%以上とすることで認められる。一方、Mn量が3.0%を超えると、過度に焼入れ性が高まり、所望のフェライト相の確保が困難となり、伸びが低下する。したがって、Mn量は2.0%以上3.0%以下の範囲とする。好ましくは2.4%以上2.9%以下の範囲である。
Mn: 2.0% to 3.0%
Mn is an element that enhances hardenability and contributes to increasing the strength of the steel sheet, and this effect is recognized when the Mn content is 2.0% or more. On the other hand, if the amount of Mn exceeds 3.0%, the hardenability is excessively increased, it becomes difficult to secure a desired ferrite phase, and the elongation decreases. Therefore, the Mn content is in the range of 2.0% to 3.0%. Preferably it is 2.4 to 2.9% of range.

P:0.030%以下
Pは、溶接性に悪影響をおよぼすため、本発明においては極力低減することが好ましいが、0.030%までは許容できる。好ましくは0.015%未満である。なお、P量を過度に低減することは溶製コストの高騰につながり、経済的に不利となるので、P量の下限は0.001%程度とすることが好ましい。
P: 0.030% or less
P adversely affects weldability, so it is preferable to reduce it as much as possible in the present invention, but up to 0.030% is acceptable. Preferably it is less than 0.015%. In addition, excessively reducing the amount of P leads to an increase in melting cost, which is economically disadvantageous. Therefore, the lower limit of the amount of P is preferably about 0.001%.

S:0.0050%以下
Sは、鋼中でMnSを形成して板状介在物となり、伸びフランジ性を低下させる。そのため、本発明においてS量は極力低減することが好ましいが、S量が0.0050%以下であれば上記問題が顕在化することはない。好ましくは0.0030%以下である。なお、S量の過度の低減は、製鋼工程における脱硫コストの増加を招くので、S量の下限は0.0001%程度とすることが好ましい。
S: 0.0050% or less
S forms MnS in steel to form plate-like inclusions, and reduces stretch flangeability. Therefore, in the present invention, it is preferable to reduce the amount of S as much as possible. However, the above problem does not become apparent if the amount of S is 0.0050% or less. Preferably it is 0.0030% or less. In addition, excessive reduction of the amount of S causes an increase in desulfurization cost in the steel making process, so the lower limit of the amount of S is preferably about 0.0001%.

Al:0.005%以上0.1%以下
Alは、脱酸剤として使用される。脱酸作用を得るためにはAl量を0.005%以上とすることが必要となるが、Al量が0.1%超となると、成分コストの上昇を招く。したがって、Al量は0.005%以上0.1%以下の範囲とする。好ましくは0.02%以上0.06%以下の範囲である。
Al: 0.005% to 0.1%
Al is used as a deoxidizer. In order to obtain a deoxidizing action, the Al amount needs to be 0.005% or more. However, if the Al amount exceeds 0.1%, the component cost increases. Therefore, the Al content is in the range of 0.005% to 0.1%. Preferably it is 0.02% or more and 0.06% or less of range.

N:0.01%以下
本発明において、Nは不純物であり、極力低減することが好ましいが、0.01%までは許容できる。好ましくは0.0050%以下である。なお、N量を過度に低減すると、溶製コストの高騰につながり、経済的に不利となるので、N量の下限は0.0001%程度とすることが好ましい。
N: 0.01% or less In the present invention, N is an impurity and is preferably reduced as much as possible, but it is acceptable up to 0.01%. Preferably it is 0.0050% or less. Note that, if the N amount is excessively reduced, the melting cost increases, which is economically disadvantageous. Therefore, the lower limit of the N amount is preferably about 0.0001%.

Ti:0.005%以上0.050%以下
Tiは、鋼中でCやNと結合して微細炭化物や微細窒化物、微細炭窒化物を形成することにより、加熱時の結晶粒の粗大化を抑制し、熱延板組織ならびに焼鈍後の鋼板組織の細粒均一化に有効に作用する。また窒化物形成によりB窒化物の形成を抑制し、後述するB添加による焼入れ性を確保する上でも有効である。これらの効果を発現すべくTi量は0.005%以上とすることを要するが、Ti量が0.050%を超えるとこれらの効果は飽和する傾向にある。また、Tiを過度に含有すると、フェライト相中に析出物が過剰に生成し、フェライト相の延性低下、更には、鋼板の硬質化により熱間圧延時および冷間圧延時の圧延荷重が増大する。したがって、Ti量は0.005%以上0.050%以下の範囲とする。好ましくは0.010%以上0.040%以下の範囲である。
Ti: 0.005% to 0.050%
Ti combines with C and N in steel to form fine carbides, fine nitrides, and fine carbonitrides, thereby suppressing coarsening of crystal grains during heating. It works effectively for uniformizing the fine grain of the steel sheet structure. It is also effective in suppressing the formation of B nitride by forming nitride and ensuring the hardenability by adding B described later. In order to exhibit these effects, the Ti content needs to be 0.005% or more. However, when the Ti content exceeds 0.050%, these effects tend to be saturated. Moreover, when Ti is contained excessively, precipitates are generated excessively in the ferrite phase, the ductility of the ferrite phase is lowered, and further, the rolling load at the time of hot rolling and cold rolling increases due to the hardening of the steel sheet. . Therefore, the Ti content is in the range of 0.005% to 0.050%. Preferably it is 0.010% or more and 0.040% or less of range.

B:0.0001%以上0.0050%以下
Bは、焼入れ性を高め、焼鈍後の冷却過程におけるフェライト相の過剰生成を抑制し、所望のベイナイト量、およびマルテンサイト量を得るのに寄与する。かかる効果の発現には、B量を0.0001%以上とする必要がある。一方、B量が0.0050%を超えると上記効果は飽和する。したがって、B量は0.0001%以上0.0050%以下の範囲とする。好ましくは0.0005%以上0.0020%以下の範囲である。
なお、本発明の鋼板において、上記以外の成分はFeおよび不可避的不純物である。ただし、本発明の効果を損なわない範囲内であれば、上記以外の成分の含有を拒むものではない。
B: 0.0001% or more and 0.0050% or less
B enhances hardenability, suppresses excessive formation of a ferrite phase in the cooling process after annealing, and contributes to obtaining a desired amount of bainite and martensite. In order to exhibit such an effect, the B amount needs to be 0.0001% or more. On the other hand, when the amount of B exceeds 0.0050%, the above effect is saturated. Therefore, the B content is in the range of 0.0001% to 0.0050%. Preferably it is 0.0005% or more and 0.0020% or less of range.
In the steel sheet of the present invention, components other than those described above are Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected.

次に、本発明にとって重要な要件の一つである鋼の組織およびその限定理由について説明する。
フェライト相の体積分率:35%以上65%以下
軟質なフェライト相は鋼板の伸び向上に寄与するため、本発明では、フェライト相を体積分率で35%以上含有させるものとした。一方、フェライト相が体積分率で65%を超えると、低温変態相の種類との組み合わせにもよるが引張強度1180MPaの確保が困難となる場合がある。したがって、フェライト相は体積分率で35%以上65%以下とする。好ましくは40%以上60%以下である。
Next, the steel structure, which is one of the important requirements for the present invention, and the reason for the limitation will be described.
Volume fraction of ferrite phase: 35% or more and 65% or less Since the soft ferrite phase contributes to the improvement of the elongation of the steel sheet, in the present invention, the ferrite phase is contained in a volume fraction of 35% or more. On the other hand, if the ferrite phase exceeds 65% in volume fraction, it may be difficult to ensure a tensile strength of 1180 MPa, depending on the combination with the type of low-temperature transformation phase. Therefore, the ferrite phase is 35% or more and 65% or less in volume fraction. Preferably they are 40% or more and 60% or less.

フェライト相の平均結晶粒径:1μm以上10μm以下
フェライト相の平均結晶粒径が1μmに満たない場合、硬質な低温変態相(ベイナイト相およびマルテンサイト相)が近接して存在し、鋼板を所望の形状に成形する際、成形時(加工時)の変形能におよぼす低温変態相の寄与が大きくなるため、優れた成形性(加工性)を確保することが困難となる。一方、フェライト相の平均結晶粒径が10μmを超えて過度に粗大化すると不均一な組織となるため、成形時(加工時)に不均一な変形が生じ、優れた成形性を確保することが困難となる。したがって、フェライト相の平均結晶粒径は1μm以上10μm以下とする。
Average grain size of ferrite phase: 1 μm or more and 10 μm or less When the average grain size of ferrite phase is less than 1 μm, hard low-temperature transformation phases (bainite phase and martensite phase) exist in close proximity, and the desired steel plate When forming into a shape, the contribution of the low-temperature transformation phase to the deformability at the time of molding (during processing) increases, so it becomes difficult to ensure excellent moldability (workability). On the other hand, if the average grain size of the ferrite phase exceeds 10 μm and becomes too coarse, a non-uniform structure is formed, resulting in non-uniform deformation during molding (processing) and ensuring excellent moldability. It becomes difficult. Therefore, the average crystal grain size of the ferrite phase is 1 μm or more and 10 μm or less.

ベイナイト相の体積分率:15%以上45%以下
オーステナイト相からの低温変態相であるベイナイト相およびマルテンサイト相は、強度確保のために所定量を含有させる必要があるが、これらの量が過剰になると、過度に高強度化して加工性(伸び、伸びフランジ性)が低下する。また、伸びおよび伸びフランジ性と引張強度とのバランスを図る上では、過度にマルテンサイト相を含有させず、低温変態相をベイナイト相主体とすること、すなわち、ベイナイト相の体積分率をマルテンサイト相の体積分率よりも大きくすることが好ましい。
オーステナイト相からの低温変態相であるベイナイト相は、同じく低温変態相であるマルテンサイト相よりも軟質であり、フェライト相との硬度差の観点ではマルテンサイト相より小さい。そのため、ベイナイト相を積極的に利用すると、鋼板を所望の形状に成形するに際し、成形時(加工時)に鋼板全体が均一に伸び、また、伸びフランジ性にも有利である。これらの効果を発現すべく、本発明においてはベイナイト相を体積分率で15%以上含有させるものとした。一方、ベイナイト相が体積分率で45%を超えると、鋼板が過度に硬質化し、伸びの確保が困難となる。したがって、ベイナイト相は体積分率で15%以上45%以下とする。好ましくは20%以上40%以下である。
The volume fraction of the bainite phase: 15% or more and 45% or less The bainite phase and martensite phase, which are low-temperature transformation phases from the austenite phase, need to contain predetermined amounts to ensure strength, but these amounts are excessive. When it becomes, it will become high strength too much and workability (elongation, stretch flangeability) will fall. In addition, in order to balance the elongation and stretch flangeability with the tensile strength, the martensite phase should not be excessively contained, and the low-temperature transformation phase should be mainly composed of the bainite phase, that is, the volume fraction of the bainite phase should be martensite. It is preferable to make it larger than the volume fraction of the phase.
The bainite phase, which is a low temperature transformation phase from the austenite phase, is softer than the martensite phase, which is also a low temperature transformation phase, and is smaller than the martensite phase in terms of the hardness difference from the ferrite phase. Therefore, when the bainite phase is positively used, when the steel sheet is formed into a desired shape, the whole steel sheet is uniformly stretched during forming (during processing), and it is advantageous for stretch flangeability. In order to express these effects, in the present invention, the bainite phase is contained in a volume fraction of 15% or more. On the other hand, if the bainite phase exceeds 45% in volume fraction, the steel sheet becomes excessively hard and it becomes difficult to ensure elongation. Therefore, the bainite phase is 15% to 45% in terms of volume fraction. Preferably, it is 20% or more and 40% or less.

ベイナイト相の平均結晶粒径:1μm以上10μm以下
ベイナイト相の平均結晶粒径が1μmに満たない場合、フェライト相より硬質なベイナイト相が微細に分散して存在するため、加工時の変形能におよぼすベイナイト相の寄与が大きくなり、また、細粒化に起因して過度に高強度化し、優れた成形性(加工性)を確保することが困難となる。一方、ベイナイト相の平均結晶粒径が10μmを超えて過度に粗大化すると不均一な組織となり、成形時の均一な変形を阻害する要因となり優れた成形性を確保することが困難となる。したがって、ベイナイト相の平均結晶粒径は1μm以上10μm以下とする。
Average crystal grain size of bainite phase: 1μm or more and 10μm or less When the average crystal grain size of bainite phase is less than 1μm, the harder bainite phase is finely dispersed than the ferrite phase, which affects the deformability during processing. The contribution of the bainite phase is increased, the strength is excessively increased due to the fine graining, and it becomes difficult to ensure excellent moldability (workability). On the other hand, when the average crystal grain size of the bainite phase exceeds 10 μm and becomes excessively coarse, a non-uniform structure is formed, and it becomes a factor that inhibits uniform deformation during molding, so that it is difficult to ensure excellent moldability. Therefore, the average crystal grain size of the bainite phase is 1 μm or more and 10 μm or less.

マルテンサイト相の体積分率:5%以上25%以下
マルテンサイト相を体積分率:5%以上25%以下の範囲内で含有する組織とすることで、強度と加工性(伸び、伸びフランジ性)との良好な材質バランスが得られる。マルテンサイト相が体積分率で5%未満の場合、引張強度(TS):1180MPaの確保が困難となる。一方、マルテンサイト相が体積分率で25%超の場合、鋼板が過度に高強度化し、伸びが著しく低下し、またフェライト相との硬度差に起因して優れた伸びフランジ性の確保が困難となる。したがって、マルテンサイト相は体積分率で5%以上25%以下とする。好ましくは10%以上20%以下である。
Martensite volume fraction: 5% or more and 25% or less Strength and workability (elongation, stretch flangeability) by making the structure containing martensite phase within the range of volume fraction: 5% or more and 25% or less ) And a good material balance. When the martensite phase is less than 5% in volume fraction, it becomes difficult to secure a tensile strength (TS) of 1180 MPa. On the other hand, when the martensite phase is more than 25% in volume fraction, the steel sheet becomes excessively strong, the elongation is remarkably reduced, and it is difficult to ensure excellent stretch flangeability due to the hardness difference from the ferrite phase. It becomes. Therefore, the martensite phase is 5% to 25% in terms of volume fraction. Preferably, it is 10% or more and 20% or less.

マルテンサイト相の平均結晶粒径:0.5μm以上5μm以下
マルテンサイト相の平均結晶粒径が0.5μmより小さい場合、硬質なマルテンサイト相がフェライト母相中に微細に分散、またはベイナイト相に隣接するため、成形時にフェライト相またはベイナイト相とマルテンサイト相の界面におけるボイドの発生が多くなり、伸びおよび伸びフランジ性が低下する。また、細粒化に起因して過度に高強度化し、優れた成形性を確保することが困難となる。
一方、マルテンサイト相の平均結晶粒径が5μmを超えて過度に粗大化すると、不均一な組織となり、成形時の均一な変形を阻害する要因となり優れた成形性を確保することが困難となる。したがって、マルテンサイト相の平均結晶粒径は0.5μm以上5μm以下とする。好ましくは1μm以上3μm以下である。
なお、フェライト相、ベイナイト相およびマルテンサイト相以外の残部組織に関しては、不可避的に生成する残留オーステナイト相やセメンタイト等が合計体積分率で3%以下であれば、本発明の効果を損ねるものではない。
Average grain size of martensite phase: 0.5 μm or more and 5 μm or less When the average grain size of the martensite phase is less than 0.5 μm, the hard martensite phase is finely dispersed in the ferrite matrix or adjacent to the bainite phase For this reason, voids are frequently generated at the interface between the ferrite phase or bainite phase and the martensite phase during molding, and elongation and stretch flangeability are deteriorated. In addition, it becomes difficult to secure an excellent moldability by excessively increasing the strength due to the finer particles.
On the other hand, if the average crystal grain size of the martensite phase is excessively coarsened exceeding 5 μm, it becomes a non-uniform structure, and it becomes difficult to ensure excellent formability as a factor that inhibits uniform deformation during molding. . Therefore, the average crystal grain size of the martensite phase is 0.5 μm or more and 5 μm or less. Preferably they are 1 micrometer or more and 3 micrometers or less.
As for the remaining structure other than the ferrite phase, bainite phase, and martensite phase, if the residual austenite phase and cementite that are inevitably generated are 3% or less in total volume fraction, the effect of the present invention is not impaired. Absent.

次に本発明の高強度冷延鋼板の製造方法について説明する。
上記の成分組成を有する鋼スラブを、熱間圧延し、酸洗後、圧延率:20%以上50%以下の冷間圧延を施して冷延鋼板とし、該冷延鋼板に780℃以上AC3点未満の温度域で焼鈍処理を施したのち、冷却速度:10℃/秒以上80℃/秒以下でMs点超550℃以下の冷却停止温度域まで冷却し、該冷却停止温度からの温度降下量が0〜100℃の温度範囲に100秒以上1000秒以下滞留させる。かかる製造方法により本発明の目的とする高強度冷延鋼板が得られるが、鋼板にスキンパス圧延を施しても良い。
以下、製造条件の適正範囲およびその限定理由について説明する。
Next, the manufacturing method of the high-strength cold-rolled steel sheet of this invention is demonstrated.
The steel slab having the above component composition, hot rolling, pickling, rolling rate: 20% to 50% of the subjected to cold rolling and cold-rolled steel sheet, the cold-rolled steel sheet 780 ° C. or higher A C3 After annealing in a temperature range below the point, the cooling rate is 10 ° C / second to 80 ° C / second, cooling to the cooling stop temperature range above the Ms point and below 550 ° C, and the temperature drop from the cooling stop temperature The amount is kept in the temperature range of 0 to 100 ° C. for not less than 100 seconds and not more than 1000 seconds. Although the high-strength cold-rolled steel sheet that is the object of the present invention is obtained by such a manufacturing method, the steel sheet may be subjected to skin pass rolling.
Hereinafter, the appropriate range of manufacturing conditions and the reason for limitation will be described.

本発明において、冷間圧延前の工程に関しては常法に従って行えばよく、例えば、上記の成分組成範囲に調製した鋼を溶製、鋳造して得られた鋼スラブを、鋳造まま、または再加熱した後、850℃以上950℃以下の温度域で仕上げ圧延を行い、その後450℃以上650℃以下の温度域で巻き取り熱延鋼板とする。なお、上記再加熱温度は特に規定する必要はないが、仕上げ圧延温度を確保できる条件で再加熱する必要があり、一般には1100℃以上1300℃以下である。次いで、熱延鋼板を酸洗後、冷間圧延に供する。   In the present invention, the process before cold rolling may be carried out in accordance with a conventional method. For example, a steel slab obtained by melting and casting steel prepared in the above component composition range is cast or reheated. After that, finish rolling is performed in a temperature range of 850 ° C. or higher and 950 ° C. or lower, and then rolled into a hot rolled steel sheet in a temperature range of 450 ° C. or higher and 650 ° C. or lower. The reheating temperature need not be specified, but it must be reheated under conditions that can secure the finish rolling temperature, and is generally 1100 ° C. or higher and 1300 ° C. or lower. Next, the hot-rolled steel sheet is pickled and then subjected to cold rolling.

冷間圧延率:20%以上50%以下
冷間圧延の圧延率は、低温変態相(ベイナイト相およびマルテンサイト相)を制御するとともに、結晶粒径を制御する上で重要である。圧延率が20%未満である場合、鋼板中に歪が均一に導入されないため、鋼板中で再結晶の進み具合にバラツキが生じ、粗大な粒と微細な粒が存在する混粒組織となり、平均結晶粒径が粗大化する。一方、圧延率が50%を超えると、再結晶が急速に進み、粒成長が促進されるため、結晶粒径が粗大化する。よって冷間圧延率は20%以上50%以下の範囲とする。
Cold rolling rate: 20% or more and 50% or less The rolling rate of cold rolling is important for controlling the low temperature transformation phase (bainite phase and martensite phase) and controlling the crystal grain size. When the rolling rate is less than 20%, strain is not uniformly introduced into the steel sheet, resulting in variations in the progress of recrystallization in the steel sheet, resulting in a mixed grain structure in which coarse grains and fine grains are present. The crystal grain size becomes coarse. On the other hand, when the rolling rate exceeds 50%, recrystallization proceeds rapidly and grain growth is promoted, so that the crystal grain size becomes coarse. Therefore, the cold rolling rate is in the range of 20% to 50%.

焼鈍温度:780℃以上AC3点未満
焼鈍温度が780℃未満である場合、焼鈍中のフェライト分率が高まることに起因して、焼鈍後に最終的に得られるフェライト相が過剰になり、引張強度:1180MPa以上の確保が困難となる。また、最終的に得られる鋼板に、冷間加工により導入された歪が未回復のまま存在し、または、未再結晶フェライトが存在し、鋼板の加工性(伸び、伸びフランジ性)が劣化する傾向を示す。一方、AC3点以上のオーステナイト単相の温度域まで加熱すると、オーステナイト粒径が過度に粗大化し、その後の冷却過程で生成するフェライト相の量が減少し、伸びが低下する。また、フェライト相や低温変態相(ベイナイト相およびマルテンサイト相)の結晶粒径が粗大化し、伸びフランジ性が劣化する。したがって、焼鈍温度は780℃以上AC3点未満の範囲とする。また、焼鈍処理時間は20秒以上200秒以下程度とすることが好ましい。
なお、AC3点は、実測してもよいが、下記(1)式を用いて算出してもよい。なお、(1)式中の元素記号は各元素の含有量(mass%)である。
AC3(℃) = 910-203√C+44.7Si-30Mn+700P+400Al+400Ti … (1)
Annealing Temperature: If the annealing temperature lower than 780 ° C. or higher A C3 point is lower than 780 ° C., due to the ferrite fraction during annealing increases, finally obtained ferrite phase becomes excessive after annealing, the tensile strength : It is difficult to secure 1180MPa or more. Moreover, in the steel plate finally obtained, the strain introduced by cold working is present without being recovered, or non-recrystallized ferrite is present, and the workability (elongation, stretch flangeability) of the steel plate is deteriorated. Show the trend. On the other hand, when heated to a temperature range of A C3 point or more austenite single phase, and austenite grain size is too coarse, the amount of ferrite phase formed in the subsequent cooling process is reduced, elongation decreases. Further, the crystal grain size of the ferrite phase and the low-temperature transformation phase (bainite phase and martensite phase) becomes coarse, and the stretch flangeability deteriorates. Therefore, the annealing temperature is in the range of 780 ° C. or more and less than AC 3 point. The annealing treatment time is preferably about 20 seconds to 200 seconds.
The AC3 point may be actually measured, but may be calculated using the following equation (1). The element symbol in the formula (1) is the content (mass%) of each element.
A C3 (℃) = 910-203√C + 44.7Si-30Mn + 700P + 400Al + 400Ti… (1)

冷却速度:10℃/秒以上80℃/秒以下
焼鈍処理後の冷却速度は、軟質なフェライト相と硬質な低温変態相の体積分率を制御し、1180MPa級以上の引張強度と加工性を確保する上で重要である。平均冷却速度が80℃/秒を超えると、冷却中のフェライト生成が抑制され、低温変態相であるベイナイト相およびマルテンサイト相の体積分率が増加するため、1180MPa級以上の引張強度の確保は容易となるが成形性(加工性)が劣化する。一方、10℃/秒未満であると、冷却過程中に生成するフェライト相の量が過剰となり、引張強度の確保が困難となる。したがって、焼鈍処理後の冷却速度は10℃/秒以上80℃/秒以下とする。好ましくは10℃/秒以上40℃/秒以下である。なお、上記冷却速度に制御すべく、焼鈍処理後の鋼板の冷却はガス冷却とすることが好ましいが、炉冷、ミスト冷却、ロール冷却、水冷などを用いて組み合わせて冷却することも可能である。
Cooling rate: 10 ° C / second or more and 80 ° C / second or less The cooling rate after annealing controls the volume fraction of the soft ferrite phase and the hard low-temperature transformation phase, ensuring a tensile strength and workability of 1180 MPa class or higher. It is important to do. If the average cooling rate exceeds 80 ° C / second, ferrite formation during cooling is suppressed, and the volume fraction of the low-temperature transformation phase, the bainite phase and the martensite phase, increases. Although easy, moldability (workability) is deteriorated. On the other hand, if it is less than 10 ° C./second, the amount of the ferrite phase generated during the cooling process becomes excessive, and it becomes difficult to ensure the tensile strength. Therefore, the cooling rate after annealing is set to 10 ° C./second or more and 80 ° C./second or less. Preferably, it is 10 ° C./second or more and 40 ° C./second or less. In order to control the cooling rate, it is preferable to cool the steel plate after the annealing treatment by gas cooling, but it is also possible to cool by combining furnace cooling, mist cooling, roll cooling, water cooling, etc. .

冷却停止温度:Ms点超550℃以下
本発明鋼では、フェライト安定元素であるSiを多量に添加しているため、前記冷却速度制御下における冷却中にフェライト相が生成し易い。ここで、冷却停止温度をMs点以下とすると、前記冷却速度制御下における冷却時間がMs点超で冷却を停止する場合に比べ長くなり、フェライト相の生成量は増加傾向を示す。また、冷却停止温度をMs点以下とすると、オーステナイト相からの低温変態相はマルテンサイト相が主体となる。このため、冷却停止温度をMs点以下とすると、フェライト相の生成量が増加することに起因して強度不足となり易く、また、フェライト相とマルテンサイト相との硬度差に起因して伸びフランジ性が低下する。一方、冷却停止温度が550℃を超えると、前記冷却速度制御下における冷却時間が相対的に短くなり、フェライト相の生成量が少なくなるとともに、ベイナイト相の生成量が多くなり易い。このため、過度に高強度化し、伸びの確保が困難となる。
以上の理由により、本発明においては、ベイナイト相およびマルテンサイト相の体積分率を制御し、1180MPa級以上の引張強度を確保するとともに優れた加工性を達成すべく、冷却停止温度をMs点超550℃以下の範囲とする。
なお、Ms点の値は、例えば0.3〜100℃/秒の冷却速度でオーステナイト状態から連続冷却してくる過程で起こる変態の状況を示した連続冷却変態図(CCT図)を作成して求めてもよいが、経験式である下記(2)式により求めてもよい。なお、(2)式中の元素記号は、各元素の含有量(mass%)である。
Ms(℃) = 550-360C-40Mn … (2)
Cooling stop temperature: Ms point above 550 ° C. or less In the present invention steel, a large amount of Si, which is a ferrite stable element, is added, so that a ferrite phase is easily generated during cooling under the cooling rate control. Here, when the cooling stop temperature is equal to or lower than the Ms point, the cooling time under the cooling rate control is longer than that in the case where the cooling is stopped after the Ms point is exceeded, and the amount of ferrite phase generated tends to increase. Further, when the cooling stop temperature is equal to or lower than the Ms point, the low temperature transformation phase from the austenite phase is mainly the martensite phase. For this reason, if the cooling stop temperature is below the Ms point, the strength tends to be insufficient due to an increase in the amount of ferrite phase produced, and stretch flangeability due to the hardness difference between the ferrite phase and the martensite phase. Decreases. On the other hand, when the cooling stop temperature exceeds 550 ° C., the cooling time under the cooling rate control is relatively short, the amount of ferrite phase generated is decreased, and the amount of bainite phase generated is likely to be increased. For this reason, it becomes too strong and it becomes difficult to ensure elongation.
For the above reasons, in the present invention, the volume fraction of the bainite phase and the martensite phase is controlled to ensure a tensile strength of 1180 MPa class or higher and to achieve excellent workability, so that the cooling stop temperature exceeds the Ms point. The range is 550 ° C or less.
The value of Ms point is obtained by creating a continuous cooling transformation diagram (CCT diagram) showing the state of transformation that occurs in the process of continuous cooling from the austenite state at a cooling rate of 0.3 to 100 ° C./second, for example. However, it may be obtained by the following equation (2) which is an empirical equation. The element symbol in the formula (2) is the content (mass%) of each element.
Ms (℃) = 550-360C-40Mn (2)

鋼板滞留温度:冷却停止温度からの温度降下量0〜100℃の温度範囲
冷却停止後の鋼板の滞留温度は、ベイナイト相およびマルテンサイト相の体積分率を制御する上で重要である。冷却停止後の鋼板を所定時間滞留させると、未変態オーステナイト相が低温変態相であるベイナイト相とマルテンサイト相に変態するが、滞留中の鋼板温度が100℃を超えて降下すると、マルテンサイト相が過剰に生成するおそれがある。また、冷却停止後の鋼板の滞留温度は、ベイナイト相の均質性を確保する上でも重要である。滞留温度が大幅に変動すると、生成するベイナイト相の硬さにバラツキが生じ、鋼板を所望の形状に成形する際、不均一な変形を招来するおそれがある。更に、ベイナイト相の一部が過度に硬化し、加工性が劣化することも懸念される。したがって、鋼板滞留温度は、冷却停止温度からの温度降下量0〜100℃の温度範囲とする。
Steel plate residence temperature: Temperature range of 0 to 100 ° C. temperature drop from cooling stop temperature The residence temperature of the steel plate after cooling stop is important in controlling the volume fraction of the bainite phase and martensite phase. When the steel sheet after cooling stop is retained for a predetermined time, the untransformed austenite phase transforms into a bainite phase and a martensite phase, which are low temperature transformation phases, but when the steel sheet temperature during retention falls below 100 ° C, the martensite phase May form excessively. Moreover, the residence temperature of the steel plate after cooling is stopped is important for ensuring the homogeneity of the bainite phase. When the residence temperature fluctuates significantly, the hardness of the bainite phase to be generated varies, and when the steel sheet is formed into a desired shape, there is a risk of causing non-uniform deformation. Further, there is a concern that part of the bainite phase is excessively cured and the workability is deteriorated. Therefore, the steel plate residence temperature is set to a temperature range of 0 to 100 ° C. from the cooling stop temperature.

鋼板滞留時間:100秒以上1000秒以下
冷却停止後の滞留時間は、ベイナイト相およびマルテンサイト相の分率を制御する上で重要である。滞留時間が100秒に満たない場合、滞留中のベイナイト変態が不十分となる。そのため、滞留後に未変態オーステナイト相がマルテンサイト相となり、マルテンサイト相が過剰となる結果、鋼板が過度に高強度化して成形性が低下する。一方、滞留時間が1000秒を超えると、ベイナイト相が過剰となりマルテンサイト相の生成量が不十分となる結果、鋼板は軟質化し、引張強度の確保が困難となる。1180MPa級以上の引張強度を確保するとともに優れた加工性を達成するには、滞留時間は100秒以上1000秒以下の範囲とする必要がある。好ましくは150秒以上750秒以下である。
Steel plate residence time: 100 seconds or more and 1000 seconds or less The residence time after stopping cooling is important in controlling the fraction of the bainite phase and the martensite phase. When the residence time is less than 100 seconds, the bainite transformation during residence becomes insufficient. For this reason, the untransformed austenite phase becomes a martensite phase after retention and the martensite phase becomes excessive. As a result, the steel sheet becomes excessively strong and the formability is lowered. On the other hand, if the residence time exceeds 1000 seconds, the bainite phase becomes excessive and the amount of martensite phase produced becomes insufficient. As a result, the steel sheet becomes soft and it becomes difficult to ensure the tensile strength. In order to secure a tensile strength of 1180 MPa or higher and achieve excellent workability, the residence time needs to be in the range of 100 seconds to 1000 seconds. Preferably, it is 150 seconds or more and 750 seconds or less.

冷却停止後の鋼板を上記滞留温度に保持する手段としては、例えば、焼鈍後の冷却設備の下工程に保温装置等を設けて鋼板の温度を上記滞留温度に調整する手段等が挙げられる。ただし、冷却停止後の鋼板を上記滞留時間放冷しても冷却停止温度からの鋼板温度降下量が0〜100℃の温度範囲に収まる場合には、上記保温装置等の特別な手段を設けなくてもよい。なお、滞留後の鋼板は、任意の方法により所望の温度に冷却される。   Examples of the means for holding the steel plate after stopping the cooling at the above residence temperature include a means for adjusting the temperature of the steel plate to the above residence temperature by providing a heat retaining device or the like in the lower process of the cooling equipment after annealing. However, if the steel plate temperature drop from the cooling stop temperature falls within the temperature range of 0 to 100 ° C even if the steel plate after the cooling stop is allowed to cool, the special means such as the heat retaining device is not provided. May be. In addition, the steel plate after residence is cooled to desired temperature by arbitrary methods.

上記の焼鈍後、最終的に得られた冷延鋼板に、形状矯正や表面粗度調整の目的から調質圧延(スキンパス圧延)を行ってもかまわないが、過度にスキンパス圧延をすると歪が導入され結晶粒が展伸され圧延加工組織となり、延性が低下するため、スキンパス圧延の圧下率は0.05%以上0.5%以下程度とすることが好ましい。   After the above annealing, the cold-rolled steel sheet finally obtained may be subjected to temper rolling (skin pass rolling) for the purpose of shape correction or surface roughness adjustment. However, excessive skin pass rolling introduces strain. Since the crystal grains are stretched to form a rolled structure and the ductility is lowered, the reduction rate of the skin pass rolling is preferably about 0.05% to 0.5%.

本発明に従えば、引張強度:1180MPa以上という高強度にも拘らず、0.50以上0.80以下という低い降伏比を得ることができる。その理由は定かではないが、ベイナイト相およびマルテンサイト相の体積分率の最適化によるものと推測される。フェライト相とマルテンサイト相から構成される組織の場合、オーステナイト相からマルテンサイト相に変態する際、フェライト相中に転位が導入され易く、可動転位が多くなる結果、降伏比が低下する傾向を示す。一方、フェライト相とベイナイト相から構成される組織の場合、オーステナイト相からベイナイト相に変態する際、フェライト相中に転位が導入され難く、可動転位が少なくなる結果、降伏比が大きくなる傾向を示す。本発明では、ベイナイト相とマルテンサイト相の体積分率を適正範囲に制御することにより、所望の降伏比が達成されるものと推測される。なお、より好ましくは、降伏比:0.55以上0.70以下の範囲である。   According to the present invention, a low yield ratio of 0.50 or more and 0.80 or less can be obtained despite the high tensile strength of 1180 MPa or more. The reason is not clear, but is presumed to be due to the optimization of the volume fraction of the bainite phase and the martensite phase. In the case of a structure composed of a ferrite phase and a martensite phase, when transforming from the austenite phase to the martensite phase, dislocations are easily introduced into the ferrite phase, and as a result of increasing the number of movable dislocations, the yield ratio tends to decrease. . On the other hand, in the case of a structure composed of a ferrite phase and a bainite phase, when transforming from an austenite phase to a bainite phase, it is difficult for dislocations to be introduced into the ferrite phase, and as a result of less mobile dislocations, the yield ratio tends to increase. . In the present invention, it is presumed that a desired yield ratio is achieved by controlling the volume fractions of the bainite phase and the martensite phase within an appropriate range. More preferably, the yield ratio is in the range of 0.55 to 0.70.

(実施例1)
表1に示す成分組成を有する鋼を溶製してスラブとし、スラブ加熱温度:1200℃、仕上げ圧延温度:900℃、巻き取り温度:550℃で熱間圧延を施し、引き続き塩酸酸洗後、表2に示す条件で冷間圧延、焼鈍処理を行い板厚1.6mmの冷延鋼板を製造した。得られた冷延鋼板について、下記に示す材料試験により材料特性を調査した。なお、表1に示すAC3点およびMs点は各々、前記(1)式および(2)式により求めた。
得られた結果を表3に示す。
Example 1
A steel having the composition shown in Table 1 is melted to form a slab, which is subjected to hot rolling at a slab heating temperature of 1200 ° C., a finish rolling temperature of 900 ° C. and a winding temperature of 550 ° C., and subsequently pickled with hydrochloric acid. Cold rolling and annealing were performed under the conditions shown in Table 2 to produce a cold rolled steel sheet having a thickness of 1.6 mm. About the obtained cold-rolled steel plate, the material characteristic was investigated by the material test shown below. The AC3 point and Ms point shown in Table 1 were obtained from the above formulas (1) and (2), respectively.
The results obtained are shown in Table 3.

Figure 0005521444
Figure 0005521444

Figure 0005521444
Figure 0005521444

(1)鋼板の組織:圧延方向断面、板厚1/4面位置を光学顕微鏡または走査型電子顕微鏡(SEM)で観察することにより調査した。観察は1000〜3000倍の倍率で、N=5(観察視野5箇所)で実施した。フェライト相の結晶粒径は、JIS G 0552(1998)に規定の方法(切断法)に準拠して結晶粒度を求め、平均粒径に換算した。ベイナイト相、マルテンサイト相についても同様に測定した。フェライト相、ベイナイト相、およびマルテンサイト相の体積分率は倍率1000倍の断面組織写真を用いて、画像解析により任意に設定した100mm×100mm四方の正方形領域内に存在する各相の占有面積を求め、これを各相の体積分率とした。ベイナイト相とマルテンサイト相の区別は倍率3000倍の断面組織写真を用いて、フェライト相以外の低温変態相において炭化物の観察されるものをベイナイト相、炭化物の観察されない平滑な表面として観察されるものをマルテンサイト相と判定した。 (1) Structure of steel sheet: Investigation was made by observing the cross section in the rolling direction and the position of the 1/4 thickness with an optical microscope or a scanning electron microscope (SEM). Observation was performed at a magnification of 1000 to 3000 times and N = 5 (5 observation fields). The crystal grain size of the ferrite phase was calculated according to the method (cutting method) defined in JIS G 0552 (1998) and converted to an average grain size. It measured similarly about the bainite phase and the martensite phase. The volume fraction of the ferrite phase, bainite phase, and martensite phase is the area occupied by each phase existing in a 100 mm x 100 mm square area arbitrarily set by image analysis using a cross-sectional structure photograph at a magnification of 1000 times. The volume fraction of each phase was determined. The distinction between the bainite phase and the martensite phase is made using a cross-sectional structure photograph at a magnification of 3000 times. Was determined to be a martensitic phase.

(2)引張特性:圧延方向と90°の方向を長手方向(引張方向)とするJIS Z 2201に記載の5号試験片を用い、JIS Z 2241に準拠した引張試験を行い評価した。なお、引張特性の評価基準はTS×El≧16000MPa・%以上(TS:引張強度(MPa)、El:全伸び(%))を良好とした。 (2) Tensile properties: Using No. 5 test piece described in JIS Z 2201, with the rolling direction and 90 ° as the longitudinal direction (tensile direction), a tensile test based on JIS Z 2241 was performed and evaluated. The evaluation criteria for tensile properties were TS × El ≧ 16000 MPa ·% or more (TS: tensile strength (MPa), El: total elongation (%)).

(3)伸びフランジ性(穴拡げ率):日本鉄鋼連盟規格JFS T 1001に基づき実施した。初期直径d0=10mmの穴を打抜き、60°の円錐ポンチを上昇させ穴を拡げた際に、亀裂が板厚貫通したところでポンチ上昇を止め、亀裂貫通後の打抜き穴径dを測定し、穴拡げ率:((d- d0)/ d0)×100(%)として算出した。同一番号の鋼板について3回試験を実施し、穴拡げ率の平均値(λ)を求めた。なお、伸びフランジ性(穴拡げ率)の評価基準はTS×λ≧25000MPa・%以上を良好とした。 (3) Stretch flangeability (hole expansion rate): Executed based on the Japan Iron and Steel Federation standard JFS T 1001. When a hole with an initial diameter d 0 = 10 mm was punched and the 60 ° conical punch was raised to widen the hole, the punch was stopped when the crack penetrated the plate thickness, and the punched hole diameter d after crack penetration was measured, hole expansion ratio: ((d- d 0) / d 0) was calculated as × 100 (%). The same number of steel sheets was tested three times, and the average value (λ) of the hole expansion rate was obtained. The evaluation criteria for stretch flangeability (hole expansion rate) was TS × λ ≧ 25000 MPa ·% or more.

Figure 0005521444
Figure 0005521444

表3より、本発明例では、TS×El≧16000MPa・%以上、TS×λ≧25000MPa・%以上を満足する、加工性に優れる高強度冷延鋼板が得られていることがわかる。
一方、鋼成分が本発明範囲外であるJ、K、Lは所望の組織を制御することができず加工性(伸び)に劣っていた。冷間圧延率が本発明範囲外であるM、Nは平均結晶粒径が粗大なため、伸び(延性)および伸びフランジ性に劣っていた。焼鈍温度が本発明に満たないO、冷却速度が本発明に満たないQ、冷却停止温度が本発明の下限を下回るSはフェライト相の体積分率が高く、また、滞留時間が本発明を超えるWはマルテンサイト相の体積分率が低く、いずれも引張強度:1180MPaを満足していなかった。
焼鈍温度が本発明を超えるP、冷却速度が本発明を超えるR、冷却停止温度が本発明を超えるT、冷却停止温度からの温度降下量が本発明を超えるU、滞留時間が本発明に満たないVはベイナイト相またはマルテンサイト相の体積分率が高く、引張強度は良好な値を示すものの、加工性(伸び、伸びフランジ性)に劣っていた。
From Table 3, it can be seen that in the present invention example, a high-strength cold-rolled steel sheet excellent in workability that satisfies TS × El ≧ 16000 MPa ·% and TS × λ ≧ 25000 MPa ·% or more is obtained.
On the other hand, J, K, and L whose steel components are outside the scope of the present invention cannot control the desired structure, and are inferior in workability (elongation). M and N, which have a cold rolling rate outside the range of the present invention, were inferior in elongation (ductility) and stretch flangeability due to the coarse average crystal grain size. The annealing temperature is less than O of the present invention, the cooling rate is less than Q of the present invention, the cooling stop temperature is lower than the lower limit of the present invention, and the volume fraction of the ferrite phase is high, and the residence time exceeds the present invention. W had a low volume fraction of martensite phase, and none of them satisfied the tensile strength of 1180 MPa.
The annealing temperature exceeds the present invention P, the cooling rate exceeds the present invention R, the cooling stop temperature exceeds the present invention T, the temperature drop from the cooling stop temperature exceeds the present invention U, the residence time satisfies the present invention. No V had a high volume fraction of the bainite phase or martensite phase and a good tensile strength, but was inferior in workability (elongation and stretch flangeability).

本発明に従い、鋼板中のC量を低減し、Cu、Ni、Cr、Moなど高価な元素を積極的に含有させずとも、フェライト相、ベイナイト相、マルテンサイト相各々の体積分率と平均結晶粒径を規定することにより、安価で且つ優れた溶接性の下で、降伏比:0.50以上0.80以下、引張強度(TS):1180MPa以上の加工性に優れた高強度冷延鋼板を得ることができる。また、本発明の高強度冷延鋼板は、特に厳しい形状にプレス成形され溶接施工される自動車部品に好適であるが、自動車部品以外にも、建築および家電分野など厳しい寸法精度、加工性が必要とされる用途にも好適である。   According to the present invention, the volume fraction and average crystal of each of the ferrite phase, the bainite phase, and the martensite phase are reduced without actively containing expensive elements such as Cu, Ni, Cr, and Mo in the steel sheet. By specifying the grain size, it is possible to obtain a high-strength cold-rolled steel sheet with excellent workability at a yield ratio of 0.50 or more and 0.80 or less, and a tensile strength (TS) of 1180 MPa or more under low cost and excellent weldability. it can. The high-strength cold-rolled steel sheet according to the present invention is particularly suitable for automobile parts that are press-formed into a severe shape and welded. However, in addition to automobile parts, severe dimensional accuracy and workability are required in the fields of architecture and home appliances. It is also suitable for the intended use.

Claims (2)

質量%で、
C:0.10%以上0.15%以下、
Si:1.0%以上2.0%以下、
Mn:2.0%以上3.0%以下、
P:0.030%以下、
S:0.0050%以下、
Al:0.005%以上0.1%以下、
N:0.01%以下、
Ti:0.005%以上0.050%以下 および
B:0.0001%以上0.0050%以下
を含有し、残部がFe及び不可避的不純物からなる成分組成を有し、体積分率:35%以上65%以下かつ平均結晶粒径:1μm以上10μm以下のフェライト相、体積分率:15%以上45%以下かつ平均結晶粒径:1μm以上10μm以下のベイナイト相および体積分率:5%以上25%以下かつ平均結晶粒径:0.5μm以上5μm以下のマルテンサイト相からなる組織を有し、降伏比:0.50以上0.80以下かつ引張強度:1180MPa以上であることを特徴とする、加工性に優れた高強度冷延鋼板。
% By mass
C: 0.10% to 0.15%,
Si: 1.0% to 2.0%,
Mn: 2.0% to 3.0%,
P: 0.030% or less,
S: 0.0050% or less,
Al: 0.005% to 0.1%,
N: 0.01% or less,
Ti: 0.005% to 0.050% and
B: Ferrite phase containing 0.0001% or more and 0.0050% or less, with the balance being composed of Fe and inevitable impurities, volume fraction: 35% or more and 65% or less, and average grain size: 1 μm or more and 10 μm or less Volume fraction: 15% to 45% and average crystal grain size: 1 to 10 μm bainite phase and volume fraction: 5% to 25% and average crystal grain size: 0.5 to 5 μm martensite phase A high-strength cold-rolled steel sheet excellent in workability, characterized in that it has a structure consisting of : Yield ratio: 0.50 or more and 0.80 or less and Tensile strength: 1180 MPa or more.
請求項1に記載の高強度冷延鋼板の製造方法であって、請求項1に記載の成分組成を有する鋼スラブを、熱間圧延し、酸洗後、圧延率:20%以上50%以下の冷間圧延を施して冷延鋼板とし、該冷延鋼板に780℃以上AC3点未満の温度域で焼鈍処理を施したのち、冷却速度:10℃/秒以上80℃/秒以下でMs点超550℃以下の冷却停止温度域まで冷却し、該冷却停止温度からの温度降下量が0〜100℃の温度範囲に100秒以上1000秒以下滞留させることを特徴とする、加工性に優れた高強度冷延鋼板の製造方法。 A method for producing a high-strength cold-rolled steel sheet according to claim 1, wherein the steel slab having the component composition according to claim 1 is hot-rolled, pickled, and rolling rate: 20% to 50% After cold-rolling to obtain a cold-rolled steel sheet, the cold-rolled steel sheet was annealed at a temperature range of 780 ° C or higher and less than AC3 point, and then cooled at a cooling rate of 10 ° C / second or higher and 80 ° C / second or lower. Cooling to a cooling stop temperature range of over 550 ° C or less above the point, and the temperature drop from the cooling stop temperature is retained in the temperature range of 0 to 100 ° C for 100 seconds or more and 1000 seconds or less, and excellent workability A method for producing high strength cold-rolled steel sheets.
JP2009201921A 2009-09-01 2009-09-01 High-strength cold-rolled steel sheet with excellent workability and method for producing the same Active JP5521444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009201921A JP5521444B2 (en) 2009-09-01 2009-09-01 High-strength cold-rolled steel sheet with excellent workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009201921A JP5521444B2 (en) 2009-09-01 2009-09-01 High-strength cold-rolled steel sheet with excellent workability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011052271A JP2011052271A (en) 2011-03-17
JP5521444B2 true JP5521444B2 (en) 2014-06-11

Family

ID=43941569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009201921A Active JP5521444B2 (en) 2009-09-01 2009-09-01 High-strength cold-rolled steel sheet with excellent workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5521444B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5487984B2 (en) * 2010-01-12 2014-05-14 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP5862052B2 (en) * 2011-05-12 2016-02-16 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP5348268B2 (en) 2012-03-07 2013-11-20 Jfeスチール株式会社 High-strength cold-rolled steel sheet having excellent formability and method for producing the same
JP5807624B2 (en) * 2012-07-30 2015-11-10 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5983895B2 (en) * 2014-08-07 2016-09-06 Jfeスチール株式会社 High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
EP3178955B1 (en) 2014-08-07 2020-07-15 JFE Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
MX2017001720A (en) * 2014-08-07 2017-04-27 Jfe Steel Corp High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet.
WO2016021197A1 (en) 2014-08-07 2016-02-11 Jfeスチール株式会社 High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
CN109689910B (en) * 2016-09-13 2021-08-27 日本制铁株式会社 Steel plate
KR102222760B1 (en) * 2017-01-25 2021-03-05 닛폰세이테츠 가부시키가이샤 Grater

Also Published As

Publication number Publication date
JP2011052271A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP5521444B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
TWI412605B (en) High strength steel sheet and method for manufacturing the same
JP5348268B2 (en) High-strength cold-rolled steel sheet having excellent formability and method for producing the same
EP2157203B1 (en) High-strength steel sheet superior in formability
JP5780086B2 (en) High strength steel plate and manufacturing method thereof
KR102119332B1 (en) High-strength steel sheet and its manufacturing method
JP4692259B2 (en) High-strength steel sheet with excellent formability and shape freezeability
JP5487984B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP5862051B2 (en) High-strength cold-rolled steel sheet excellent in workability and manufacturing method thereof
JP5126399B2 (en) High-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
KR20160114660A (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP5321605B2 (en) High strength cold-rolled steel sheet having excellent ductility and method for producing the same
KR101626233B1 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
JP5662903B2 (en) High-strength steel sheet with excellent formability, warm working method, and warm-worked automotive parts
JP6047983B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability
JP2007138262A (en) High strength cold rolled steel sheet reduced in dispersion in mechanical characteristic, and its manufacturing method
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
KR20150048885A (en) High-strength cold-rolled steel sheet and method for manufacturing same
KR20130121940A (en) High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same
JP5239562B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5862052B2 (en) High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP2018188675A (en) High strength hot-rolled steel sheet and production method thereof
JP2020020033A (en) Steel and method for producing the same
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP2004035905A (en) Ultrahigh strength cold rolled steel sheet with excellent formability, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5521444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250