JP3945367B2 - Hot-rolled steel sheet and manufacturing method thereof - Google Patents

Hot-rolled steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP3945367B2
JP3945367B2 JP2002303891A JP2002303891A JP3945367B2 JP 3945367 B2 JP3945367 B2 JP 3945367B2 JP 2002303891 A JP2002303891 A JP 2002303891A JP 2002303891 A JP2002303891 A JP 2002303891A JP 3945367 B2 JP3945367 B2 JP 3945367B2
Authority
JP
Japan
Prior art keywords
temperature
less
rolling
point
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002303891A
Other languages
Japanese (ja)
Other versions
JP2004137565A (en
Inventor
充 吉田
俊郎 富田
規雄 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002303891A priority Critical patent/JP3945367B2/en
Publication of JP2004137565A publication Critical patent/JP2004137565A/en
Application granted granted Critical
Publication of JP3945367B2 publication Critical patent/JP3945367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱延鋼板及びその製造方法に関し、詳しくは、面内異方性が小さく加工性に優れ、タンデムミルによって製造可能な熱延鋼板及びその製造方法に関する。
【0002】
【従来の技術】
近年、地球環境保護の観点から、自動車のCO 排出量を低減するために車体の軽量化が求められ、鋼板を高強度化して板厚を低減して上記要求に応えることが進められている。
【0003】
鋼板の高強度化手段のうちでも結晶粒微細化技術が大いに注目されている。これは、結晶粒微細化による高強度化が、環境保護という観点から排除することが望ましい合金元素の添加を必要としないため、或いはその添加量を削減できるためである。しかし、結晶粒の微細化を進めていくと、降伏点が極端に大きくなるとともに伸びが低くなって、加工性が低下してしまう。
【0004】
高強度化に伴う加工性の低下を抑える目的で高強度鋼における組織の微細化及び第二相組織を制御する手法が、例えば、特許文献1に開示されている。すなわち、特許文献1には、NbやTiを含有させた鋼を制御圧延して高強度化と組織微細化を同時に達成する技術が開示されている。しかし、この特許文献で提案された高強度鋼板は降伏比(すなわち、「降伏強度/引張強度」)が高く、このためプレス加工などで成形加工した後のスプリングバックが大きく形状凍結性に劣るものであり、しかも、機械的特性の異方性も大きいものである。
【0005】
同様に、結晶粒の微細化を図る手段として高圧下率の熱間圧延を行う場合には、一般に、板面内における特性の異方性が大きくなってしまう。
【0006】
自動車用高強度鋼板としては、高い強度を有することは勿論のこと、多様な部品形状に加工するために、高い成形性が要求され、又、こうした特性の板面内方向による差異(つまり、面内異方性)を低減することも強度の確保や良好な成形性を得るために重要である。しかし、従来の技術はいずれも上記の要求を確実に満たすものではなかった。
【0007】
【特許文献1】
特開2000−328186公報
【0008】
【発明が解決しようとする課題】
本発明は、上記現状に鑑みてなされたもので、その目的は、タンデムミルによって製造可能な、面内異方性が小さく加工性に優れた板厚が5mm以下の熱延鋼板及びその製造方法を提供することである。
【0009】
【課題を解決するための手段】
本発明の要旨は、下記(1)〜(3)に示す熱延鋼板、並びに(4)及び(5)に示す熱延鋼板の製造方法にある。
【0010】
(1)化学組成が、質量%で、C:0.001%を超えて0.3%まで、Si:0.01〜3.0%、Mn:0.01〜1.50%、P:0.005〜0.5%及びS:0.05%以下を含み、残部はFe及び不純物からなる、体積割合で75%以上のフェライトを含む板厚が5mm以下の熱延鋼板であって、板厚全体にわたるフェライトの平均粒径が1.1μm以上4μm未満、表面から板厚の1/8の深さの部位におけるフェライトの平均粒径dsの板厚中心部におけるフェライトの平均粒径dcに対する比率ds/dcが0.4以上0.8未満、表面から板厚の1/8の深さの部位における圧延方向の<111>極密度が集合組織をもたないものの1.5倍以上及び、板厚中心部における板幅方向の<111>極密度が集合組織を持たないものの1.5倍以上である熱延鋼板。
【0011】
(2)化学組成が、Feの一部に代えて、下記(a)群から選ばれる少なくとも1種以上の成分を含む上記(1)に記載の熱延鋼板。
(a)質量%で、Nb:0.3%以下、Ti:0.3%以下、V:0.3%以下、Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下、Mo:1.0%以下及びB:0.005%以下。
【0012】
(3)化学組成が、Feの一部に代えて、下記(b)群から選ばれる少なくとも1種以上の成分を、質量%で、合計で0.005%以下含む上記(1)又は(2)に記載の熱延鋼板。
(b)Ca、REM(希土類元素)及びMg。
【0013】
(4)上記(1)から(3)までのいずれかに記載の化学組成を有する鋼塊若しくは鋼片をAc3点以上の温度に加熱した後に、又は上記(1)から(3)までのいずれかに記載の化学組成を有する鋳造後の鋼塊若しくは熱間加工後の鋼片をAr3点以下の温度域まで温度低下させることなしに、Ar3点以上の温度域で粗圧延を行い、次いで、仕上げ圧延における合計圧下量を70%以上、仕上げ温度をAr3点〜「Ar3点+100℃」の温度域の温度として仕上げ圧延を行い、前記仕上げ圧延を終了した後0.5秒以内に冷却を開始して、仕上げ温度から「Ar3点−100℃」までを400℃/秒以上の平均冷却速度で冷却し、その後600℃以下の温度で巻き取ることを特徴とする上記(1)から(3)までのいずれかに記載の熱延鋼板の製造方法。
【0014】
(5)上記(1)から(3)までのいずれかに記載の化学組成を有する鋼塊若しくは鋼片をAc3点以上の温度に加熱した後に、又は上記(1)から(3)までのいずれかに記載の化学組成を有する鋳造後の鋼塊若しくは熱間加工後の鋼片をAr3点以下の温度域まで温度低下させることなしに、Ar3点以上の温度域で粗圧延を行い、次いで、仕上げ圧延において最終の一段前のスタンドまでの仕上げ圧延の合計圧下量を70%以上、最終の一段前のスタンド出側温度をAr3点〜「Ar3点+100℃」の温度域の温度として圧延し、最終の一段前のスタンドでの圧延を終了した後0.5秒以内に冷却を開始して、最終の一段前のスタンド出側温度から「Ar3 点−100℃」までを400℃/秒以上の平均冷却速度で冷却し、次いで、最終スタンドで圧下量10%以下の圧延を施し、その後600℃以下の温度で巻き取ることを特徴とする上記(1)から(3)までのいずれかに記載の熱延鋼板の製造方法。
【0015】
ここで、或る相の体積割合は面積割合に等しいことが知られており、したがって、上記フェライトが組織に占める体積割合は、例えば、通常の2次元的な評価方法によって求めたフェライトの面積割合から決定することができる。このため、本発明においては、光学顕微鏡で表面から板厚の1/4の深さの部位における任意の10視野以上についていわゆる「メッシュ法」によってフェライトの面積割合を求め、それを平均した値を体積割合とする。
【0016】
なお、本発明の熱延鋼板におけるフェライト以外の「相」は、パーライト、ベイナイト、マルテンサイトやオーステナイト(オーステナイトが変態せずに残ったいわゆる「残留オーステナイト」)などどんな相であってもよい。
【0017】
「板厚全体にわたるフェライトの平均粒径」は、表面から板厚の1/8の深さの部位、1/4の深さの部位及び1/2の深さの部位(つまり、中心部)におけるそれぞれのフェライトの平均粒径を平均したものをいう。なお、上記の表面から板厚の1/8の深さの部位、1/4の深さの部位及び1/2の深さの部位におけるフェライトの平均粒径は、それぞれの部位で任意の10視野以上について、いわゆる「切片法」で求めた平均切片長さを1.12倍して得たものをいう。
【0018】
「REM(希土類元素)」は、Sc、Y及びランタノイドの合計17元素の総称であり、REMの含有量は上記元素の合計含有量を指す。
【0019】
1パス当たりの圧下量(%)とは、nパス目の圧延前の被圧延材厚みをtni、圧延後の被圧延材厚みをtnoとしたとき{(tni−tno)/tni}×100で求められるものをいう。又、nを2以上の整数として、nパスからなる圧延の合計圧下量(%)とは、当該圧延の1パス目の圧延前の被圧延材厚みをt1I、nパス目の圧延後の被圧延材厚みをtnfとしたとき{(t1i−tno)/t1i}×100で求められるものをいう。
【0020】
本発明でいう温度は鋼板表面における温度をいい、「平均冷却速度」とは冷却前後の温度差を冷却時間で除したものをいう。
【0021】
なお、本発明でいう「鋼板」とはコイル状に巻かれた「鋼帯」を含むものである。
【0022】
以下、上記(1)〜(3)の熱延鋼板に係る発明、並びに(4)及び(5)のその製造方法に係る発明をそれぞれ(1)〜(5)の発明という。
【0023】
本発明者らは、前記した目的を達成するために板厚全体にわたるフェライトの平均粒径、板厚方向の平均粒径の変化量や板厚方向の集合組織の変化と各種特性との関係及び鋼板の製造条件との関係などについて種々検討を行った。その結果、下記(a)〜(d)の知見を得た。
【0024】
(a)板厚方向における結晶粒組織の大きな変化が、加工性低下の原因の一つであり、大きな異方性を生じる原因でもある。
【0025】
(b)微細組織による高強度特性を維持しながら、加工性の低下や異方性が生じることを低減するには、板厚方向の組織変化を解消するよりも、これを制御して利用すればよい。
【0026】
(c)板厚方向の組織変化に関して制御すべき内容は、板厚全体にわたるフェライトの平均粒径、板厚方向のフェライトの平均粒径の変化量及び集合組織である。
【0027】
(d)熱間での仕上げ圧延条件及び仕上げ圧延直後の冷却条件を適正化することで、面内異方性が小さく加工性に優れた熱延鋼板が得られる。
【0028】
前記(1)〜(5)の本発明は、上記の知見に基づいて完成されたものである。
【0029】
【発明の実施の形態】
以下、本発明の各要件について詳しく説明する。
(A)熱延鋼板の組織
本発明に係る熱延鋼板は、先ず第一に「体積割合で75%以上のフェライトを含む板厚が5mm以下の熱延鋼板」とする。
【0030】
本発明に係る異方性が小さく良好な加工性を有する熱延鋼板は、微細組織を有する熱延鋼板の製造時に生じる板表面近傍と内部の組織の違いを制御するだけではなく、積極的に利用して所望の特性を与えるものである。熱延鋼板の板厚が5mmを超えると、所望の微細組織及び板表面近傍と内部の組織の違いを制御できなくなるので、熱延鋼板の板厚は5mm以下に限定する。
【0031】
フェライトの体積割合は十分に大きく、しかもフェライト以外の他の相の合計割合よりも大きく75%以上でなければならない。これは、フェライトの体積割合が75%未満の場合には、延性が低下して良好な加工性が得られないためである。したがって、フェライトの体積割合を75%以上とした。なお、フェライト以外の相(以下、このフェライト以外の相をまとめて第二相という)は、パーライト、ベイナイト、マルテンサイトやオーステナイトが変態せずに残ったいわゆる「残留オーステナイト」などどんな相であってもよい。第二相の種類と体積割合を調整することにより、用いられる分野や部品に一層適した、強度と加工性とのバランスを有する熱延鋼板を得ることができる。
【0032】
なお、既に述べたように、或る相の体積割合は面積割合に等しいことが知られているので、本発明においては、光学顕微鏡で表面から板厚の1/4の深さの部位における任意の10視野以上についていわゆる「メッシュ法」によってフェライトの面積割合を求め、それを平均した値を体積割合とする。
【0033】
フェライト結晶粒を微細化することで、鋼板の強度を高めることができ、この効果は特に、板厚全体にわたるフェライトの平均粒径が4μm未満の場合に大きい。しかし、フェライト粒径が過度に小さくなると、降伏点と引張強度とがほぼ等しくなって降伏比が1に近づくので伸びが極端に低下してしまう。特に、上記板厚全体にわたるフェライトの平均粒径が1.1μmを下回ると、伸びの低下が著しい。したがって、板厚全体にわたるフェライトの平均粒径を1.1μm以上4μm未満とした。なお、板厚全体にわたるフェライトの好ましい平均粒径は1.5μm以上、より好ましくは1.8μm以上である。
【0034】
ここで、「板厚全体にわたるフェライトの平均粒径」は、表面から板厚の1/8の深さの部位、1/4の深さの部位及び1/2の深さの部位(つまり、中心部)におけるそれぞれのフェライトの平均粒径を平均したものをいい、上記の表面から板厚の1/8の深さの部位、1/4の深さの部位及び1/2の深さの部位におけるフェライトの平均粒径は、それぞれの部位で任意の10視野以上について、いわゆる「切片法」で求めた平均切片長さを1.12倍して得たものをいうことは既に述べたとおりである。
【0035】
板厚方向におけるフェライトの平均粒径の変動は熱延鋼板の強度及び、強度と延性のバランスに影響し、この熱延鋼板の特性に及ぼす板厚方向におけるフェライトの平均粒径の変動の影響は、表面から板厚の1/8の深さの部位におけるフェライトの平均粒径dsと表面から板厚の1/2の深さの部位(つまり、中心部)におけるフェライトの平均粒径dcとの比である「ds/dc」の値によって整理できる。すなわち、ds/dcの値が0.4未満の場合には、板厚表面近傍の降伏比が高くなって鋼板そのものの伸びが特に低下するとともに、伸びフランジ性の低下をきたす。一方、ds/dcの値が0.8以上になると強度上昇の程度が小さい。したがって、ds/dcを0.4以上0.8未満とした。
【0036】
フェライトの<111>方向は原子が稠密に配列し、最もヤング率の高い方向であり、他の種々の機械特性にも影響を与える。そして、表面から板厚の1/8の深さの部位における圧延方向の<111>極密度(以下、<111>rsと表記する)が集合組織をもたないものの1.5倍未満になるか、板厚中心部における板幅方向の<111>極密度(以下、<111>tcと表記する)が集合組織を持たないものの1.5倍未満になれば、延性及び伸びフランジ性が低下するとともにに、強度の面内異方性が大きくなってしまう。したがって、<111>rs及び<111>tcを、いずれも集合組織をもたないものの1.5倍以上と規定した。
【0037】
以上述べたことから、(1)〜(3)の発明においては、体積割合で75%以上のフェライトを含む板厚が5mm以下の熱延鋼板で、板厚全体にわたるフェライトの平均粒径が1.1μm以上4μm未満、前記ds/dcが0.4以上0.8未満、<111>rs及び<111>tcがいずれも集合組織をもたないものの1.5倍以上である熱延鋼板と規定した。
(B)熱延鋼板の化学組成
前記(1)の発明に係る熱延鋼板は、その化学組成に関しては次のとおり規定する。なお、前項(A)で述べた組織を安定且つ確実に確保するとともに内面異方性が小さく加工性に優れた熱延鋼板を得るために、熱延鋼板の化学組成を(2)及び(3)の発明で規定するものとするのがよい。なお、以下の説明における各元素の含有量の「%」表示は「質量%」を意味する。
【0038】
C:
Cは、鋼板の強度を高める好ましい成分であり、0.001%を超える含有量とする必要がある。しかし、その含有量が0.3%を超えると加工性の低下や溶接性の劣化を招くことがある。したがって、Cの含有量は0.001を超えて0.3%以下とする。
【0039】
Si:
Siは、固溶強化によって鋼板の強度を向上させる好ましい成分である。この効果を得るためにはSiの含有量0.01%以上が必要である。しかし、Siを3.0%を超えて含有させると鋼表面に酸化スケールが多量に生成され、製造上の困難を伴うことがある。したがって、Siの含有量は0.01〜3.0%とする。
【0040】
Mn:
Mnは、鋼の強度を上昇させるのに有効な元素である。この効果を確実に得るには、Mnは0.01%以上の含有量が必要である。しかし、Mnの含有量が1.50%を超えると鋼塊に中心偏析を生じて熱間での圧延後にバンド組織を形成し伸びフランジ加工性の著しい低下を招くことがある。したがって、Mnの含有量は0.01〜1.50%とする。
【0041】
P:
Pは、固溶強化によって鋼板の強度を高める作用を有する。この効果を確実に得るには、Pは0.005%以上の含有量が必要である。しかし、Pを0.5%を超えて含有させると粒界偏析による脆化をきたし、鋳造の際に鋼塊に割れを起こしやすく、製造上の困難を伴うことがある。したがって、Pの含有量は0.005〜0.5%とする。
【0042】
S:
Sは、Fe又はMnと結合して硫化物を形成し、加工条件が厳しい部位においてはボイド発生の起点となりやすく、加工性を低下させるため、その含有量は0.05%以下に抑える必要がある。
【0043】
前記(1)の発明に係る熱延鋼板は、上記のCからSまでの元素と、残部がFe及び不純物からなる化学組成を有するものである。
【0044】
前記(2)の発明に係る熱延鋼板は、前記(1)の発明に記載の成分中のFeの一部に代えて、下記(a)群から選ばれる少なくとも1種以上の成分を含む化学組成を有するものである。また、前記(3)の発明に係る熱延鋼板は、前記(1)又は(2)の発明に記載の成分中のFeの一部に代えて、下記(b)群から選ばれる少なくとも1種以上の成分を合計で0.005%以下含む化学組成を有するものである。
【0045】
(a)Nb:0.3%以下、Ti:0.3%以下、V:0.3%以下、Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下、Mo:1.0%以下及びB:0.005%以下、
(b)Ca、REM(希土類元素)及びMg。
【0046】
ここで、上記(a)群に記載のNbからBまでのいずれの元素も鋼の強度を一層高める作用を有するので、NbからBまでの元素は、以下に述べる範囲内でそれぞれを単独で含有させてもよいし、2種以上を複合して含有させてもよい。
【0047】
又、上記(b)群に記載のCaからMgまでのいずれの元素もMnSの形態を制御して熱延時に展伸しにくい介在物を形成し、加工性の低下を防止する作用を有するので、CaからMgまでの元素は、以下に述べる範囲内でそれぞれを単独で含有させてもよいし、2種以上を複合して含有させてもよい。
【0048】
なお、REMは、前述のとおりSc、Y及びランタノイドの合計17元素を指し、ランタノイドの場合、工業的にはミッシュメタルの形で添加される。本発明でいうREMの含有量が上記元素の合計含有量を指すことは既に述べたとおりである。
【0049】
(a)群(Nb、Ti、V、Cu、Ni、Cr、Mo及びB):
Nb、Ti、V、Cu、Ni、Cr、Mo及びBは、いずれも鋼の強度を一層高める作用を有する元素である。これらの元素のうちでNb、Ti及びVは、組織を微細化する作用も有する。前記の効果を確実に得るには、Nb、Ti、V、Cu、Ni、Cr、Mo及びBはそれぞれ0.01%以上、0.01%以上、0.01%以上、0.05%以上、0.05%以上、0.05%以上、0.05%以上及び0.0001%以上の含有量とすることが好ましい。しかし、Nb、Ti及びVはいずれも0.3%を超えて超えて含有すると異方性を大きくし、延性も低下させてしまう。Cu、Ni、Cr及びMoはいずれも1.0%を超えて、Bは0.005%を超えてそれぞれ含有すると、延性の低下をきたす。したがって、Nb、Ti、V、Cu、Ni、Cr、Mo及びBを添加する場合には、Nb、Ti及びVの含有量はいずれも0.3%以下、Cu、Ni、Cr及びMoの含有量はいずれも1.0%以下、Bの含有量は0.005%以下とするのがよい。
【0050】
なお、Cuを約0.3%を超えて含有させると熱間加工時に表面割れを起こすことがあるので、Cuを約0.3%を超えて含有させる場合には、Cuの半量以上のNiを同時に含有させることが望ましい。
【0051】
(b)群(Ca、REM及びMg):
Ca、REM及びMgは、いずれもMnSの形態を制御して熱延時に展伸しにくい介在物を形成し、加工性の低下を防止する作用を有する元素である。この効果を確実に得るには、Caは0.0002%以上、REMは0.0002%以上、Mgは0.0002%以上の含有量とすることが好ましい。しかし、Ca、REM及びMgのうちの1種又は2種以上の合計で0.005%を超えて含有させても前記の効果が飽和してコストが嵩むばかりである。したがって、Ca、REM及びMgを添加する場合には、Ca、REM及びMgのうちの1種又は2種以上の合計で0.005%以下の含有量とするのがよい。
(C)熱延鋼板の製造条件
これまでに述べた(1)〜(3)の発明に係る前記(A)項で述べた組織及び(B)項で述べた化学組成を有する熱延鋼板は、例えば、「鋼塊若しくは鋼片をAc3点以上の温度に加熱した後に、又は鋳造後の鋼塊若しくは熱間加工後の鋼片をAr3点以下の温度域まで温度低下させることなしに、Ar3点以上の温度域で粗圧延を行い、次いで、仕上げ圧延における合計圧下量を70%以上、仕上げ温度をAr3点〜「Ar3点+100℃」の温度域の温度として仕上げ圧延を行い、前記仕上げ圧延を終了した後0.5秒以内に冷却を開始して、仕上げ温度から「Ar3点−100℃」までを400℃/秒以上の平均冷却速度で冷却し、その後600℃以下の温度で巻き取る」前記(4)の発明によって比較的容易に製造することができる。
【0052】
すなわち、鋼塊又は鋼片をAc 点以上の温度に再加熱することにより、合金元素をオーステナイト中に固溶させることができる。ここで、加熱炉や均熱炉など再加熱処理のための炉への装入は、鋳造後や熱間加工後の高温のままの状態で行ってもよいし、一旦室温近傍まで冷却した状態から行ってもよい。
【0053】
上記のようにしてAc 点以上の温度に再加熱した鋼塊若しくは鋼片、又はAr 点以下の温度域まで温度低下していない鋳造後の鋼塊若しくは熱間加工後の鋼片に、タンデムミルによる圧延を施すのであるが、この際の粗圧延はオーステナイト領域であるAr 点以上の温度で行うのがよい。粗圧延した後、仕上げ圧延はその合計圧下量を70%以上、仕上げ温度をAr 点〜「Ar 点+100℃」の温度域の温度として行うのがよい。
【0054】
仕上げ圧延の合計圧下量が70%を下回ると、フェライト結晶粒が粗大化して、機械的性質が低下するし、異方性も大きくなる。なお、仕上げ圧延の合計圧下量は90%以上とすることが一層よい。
【0055】
仕上げ圧延における仕上げ温度が「Ar 点+100℃」を超える場合も、フェライト結晶粒が粗大化して、機械的性質が低下するし、異方性も大きくなる。一方、前記仕上げ温度がAr 点を下回ると加工フェライト粒が残存しやすくなって異方性が極めて強くなることがある。
【0056】
前記仕上げ圧延を終了した後は、空冷の時間をほとんど与えることなく強冷却を行うことにより、フェライト粒が極めて細粒化するとともに、<111>rs及び<111>tcが発達し、容易に前記(A)項で述べた集合組織が形成されるとともに組織の微細化が促進される。なお、前記方位の発達は、平均冷却速度が速いほど、且つ、仕上げ圧延を終了してから冷却開始までの時間が短いほど大きい。このため、仕上げ圧延を終了した後は0.5秒以内に冷却を開始するのがよい。冷却開始までの時間は0.1秒以内とすることが一層好ましい。又、冷却する際の平均冷却速度は400℃/秒以上とするのがよい。この平均冷却速度は600℃/秒以上であれば一層好ましい。なお、上記の平均冷却速度で冷却するのは仕上げ温度から少なくとも「Ar 点−100℃」までである。これは「Ar 点−100℃」を超える温度までしか冷却しない場合には、フェライト粒が粗大化するとともに、所望の集合組織が得られない場合があるからである。「Ar 点−100℃」未満の温度まで冷却することを妨げないが、鋼によってはフェライトの体積割合が減少することがある。
【0057】
前記条件で冷却した後は600℃以下の温度で巻き取るのがよい。巻き取り温度が600℃を超えると、上記の熱延及び冷却をすることにより得られた微細なフェライトが成長して粗大化するためである。
【0058】
したがって、(4)の発明においては、上記(1)から(3)までのいずれかの発明に係る化学組成を有する鋼塊若しくは鋼片をAc3点以上の温度に加熱した後に、又は上記(1)から(3)までのいずれかの発明に係る化学組成を有する鋳造後の鋼塊若しくは熱間加工後の鋼片をAr3点以下の温度域まで温度低下させることなしに、Ar3点以上の温度域で粗圧延を行い、次いで、仕上げ圧延における合計圧下量を70%以上、仕上げ温度をAr3点〜「Ar3点+100℃」の温度域の温度として仕上げ圧延を行い、前記仕上げ圧延を終了した後0.5秒以内に冷却を開始して、仕上げ温度から「Ar3点−100℃」までを400℃/秒以上の平均冷却速度で冷却し、その後600℃以下の温度で巻き取ることとした。
【0059】
(A)項で述べた組織は、「鋼塊若しくは鋼片をAc3点以上の温度に加熱した後に、又は鋳造後の鋼塊若しくは熱間加工後の鋼片をAr3点以下の温度域まで温度低下させることなしに、Ar3点以上の温度域で粗圧延を行い、次いで、仕上げ圧延において最終の一段前のスタンドまでの仕上げ圧延の合計圧下量を70%以上、最終の一段前のスタンド出側温度をAr3点〜「Ar3点+100℃」の温度域の温度として圧延し、最終の一段前のスタンドでの圧延を終了した後0.5秒以内に冷却を開始して、最終の一段前のスタンド出側温度から「Ar3点−100℃」までを400℃/秒以上の平均冷却速度で冷却し、次いで、最終スタンドで圧下量10%以下の圧延を施し、その後600℃以下の温度で巻き取る」ことによっても比較的容易に得られる。この方法は、最終スタンドでは被圧延材の表面に乗っている冷却水を除去し、且つ、冷却後に析出したフェライトに歪をほとんど与えない程度の軽い圧延を施すことにより、板厚方向の温度分布を緩和してds/dcが過度に小さくなるのを防ぐものである。なお、最終スタンドにおける10%を超える圧下は、加工フェライトを生成させるので最終スタンドの圧下量は10以下とするのがよい。一層好ましくは5%以下である。冷却水を除去するだけで圧下量は0%としてもよい。
【0060】
したがって、(5)の発明においては、上記(1)から(3)までのいずれかの発明に係る化学組成を有する鋼塊若しくは鋼片をAc3点以上の温度に加熱した後に、又は上記(1)から(3)までのいずれかの発明に係る化学組成を有する鋳造後の鋼塊若しくは熱間加工後の鋼片をAr3点以下の温度域まで温度低下させることなしに、Ar3点以上の温度域で粗圧延を行い、次いで、仕上げ圧延において最終の一段前のスタンドまでの仕上げ圧延の合計圧下量を70%以上、最終の一段前のスタンド出側温度をAr3点〜「Ar3点+100℃」の温度域の温度として圧延し、最終の一段前のスタンドでの圧延を終了した後0.5秒以内に冷却を開始して、最終の一段前のスタンド出側温度から「Ar3点−100℃」までを400℃/秒以上の平均冷却速度で冷却し、次いで、最終スタンドで圧下量10%以下の圧延を施し、その後600℃以下の温度で巻き取ることとした。
【0061】
1パス当たりの圧下量(%)とは、nパス目の圧延前の被圧延材厚みをtni、圧延後の被圧延材厚みをtnoとしたとき{(tni−tno)/tni}×100で求められるものをいい、又、nを2以上の整数として、nパスからなる圧延の合計圧下量(%)とは、当該圧延の1パス目の圧延前の被圧延材厚みをt1I、nパス目の圧延後の被圧延材厚みをtnfとしたとき{(t1i−tno)/t1i}×100で求められるものをいうこと、「平均冷却速度」が冷却前後の温度差を冷却時間で除したものを指し、本発明でいう温度が鋼板表面における温度をいうことは既に述べたとおりである。
【0062】
以下、実施例により本発明を更に詳しく説明する。
【0063】
【実施例】
(実施例1)
表1に示す化学組成を有するスラブを連続鋳造により製造し、連続鋳造終了後に室温まで空冷した。その後、上記のスラブを1200〜1300℃の温度域に再加熱した後、試験用小型タンデムミルを使用して、表2に示す条件で仕上圧延、冷却及び巻き取りして、板厚が1.8〜5.5mmの鋼板を得た。なお、スラブ加熱温度は1250℃で粗圧延は通常の方法で行った。
【0064】
【表1】

Figure 0003945367
【0065】
【表2】
Figure 0003945367
【0066】
得られた鋼板から試験片を採取し、組織、常温での引張特性及び伸びフランジ加工性を調査した。
【0067】
組織は、光学顕微鏡と走査型電子顕微鏡を用いて、鋼板板厚の断面組織を観察し、又、<111>極密度は通常のX線測定方法により求めた。
【0068】
常温での引張特性は、JIS5号試験片を用いて調査した。なお、試験片は圧延方向を0゜として、0゜、45゜及び90゜の3方向から採取した。
【0069】
伸びフランジ加工性は、縦横それぞれ100mmの正方形の試験片を採取し、その中央にポンチで直径が10mmの打ち抜き穴をあけ、先端角60゜の円錐ポンチでこの穴を拡げて、穴の縁にクラックが貫通する限界の穴直径から計算される限界穴拡げ率によって評価した。
【0070】
表3〜5に、前記の各調査結果をまとめて示す。この表において平均r値はr0、r45及びr90をそれぞれ試験片採取方向が0゜、45゜及び90゜の場合のr値として、「(r0+2r45+r90)/4」の式で計算した値を指す。
【0071】
【表3】
Figure 0003945367
【0072】
【表4】
Figure 0003945367
【0073】
【表5】
Figure 0003945367
【0074】
表3〜5から明らかなように、本発明の組織と化学組成の規定を満たす試験番号1〜3、11、13、15、16及び18〜20の熱延鋼板は異方性が小さく優れた加工性を有している。
【0075】
これに対して、本発明の組織と化学組成の少なくともいずれかの規定から外れる試験番号4〜7、9、10、12、14、17及び22の熱延鋼板は、延性、伸びフランジ加工性、面内異方性が劣り、加工性に劣るものである。
【0076】
(実施例2)
連続鋳造により製造し、連続鋳造終了後に室温まで空冷した前記実施例1に示した鋼Aのスラブを1200〜1300℃の温度域に再加熱した後、試験用小型タンデムミルを使用して、表6に示す条件で仕上圧延、冷却及び巻き取りして、板厚が1.9及び2.0mmの鋼板を得た。なお、スラブ加熱温度は1250℃で粗圧延は通常の方法で行った。
【0077】
【表6】
Figure 0003945367
【0078】
得られた鋼板から試験片を採取し、実施例1と同様にして組織、常温での引張特性及び伸びフランジ加工性を調査した。
【0079】
表7及び表8に、前記の各調査結果をまとめて示す。なお表7における平均r値も前記の「(r0+2r45+r90)/4」の式で計算した値を指す。
【0080】
【表7】
Figure 0003945367
【0081】
【表8】
Figure 0003945367
【0082】
表7及び表8から明らかなように、本発明の組織と化学組成の規定を満たす試験番号24及び25の熱延鋼板は異方性が小さく優れた加工性を有している。一方、本発明の化学組成の規定を満たす場合であっても、組織規定から外れる試験番号26の熱延鋼板は加工性が低く異方性も極めて大きい。
【0083】
【発明の効果】
本発明の熱延鋼板は、面内異方性が小さく加工性に優れるので、自動車に用いられる高強度構造部材の素材として利用することができる。本発明の熱延鋼板は本発明の方法によって比較的容易に製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot-rolled steel sheet and a method for producing the same, and more particularly to a hot-rolled steel sheet having a small in-plane anisotropy and excellent workability and capable of being produced by a tandem mill and a method for producing the same.
[0002]
[Prior art]
In recent years, from the viewpoint of protecting the global environment, automobile CO2 In order to reduce the amount of discharge, a reduction in weight of the vehicle body is required, and efforts are being made to meet the above requirements by increasing the strength of the steel plate to reduce the plate thickness.
[0003]
Of the means for increasing the strength of steel sheets, the crystal grain refinement technique has received much attention. This is because the increase in strength due to the refinement of crystal grains does not require the addition of an alloy element that is desirably excluded from the viewpoint of environmental protection, or the amount added can be reduced. However, as the grain refinement proceeds, the yield point becomes extremely large and the elongation becomes low, so that the workability deteriorates.
[0004]
For example, Patent Document 1 discloses a technique for miniaturizing a structure and controlling a second phase structure in high-strength steel for the purpose of suppressing a decrease in workability associated with an increase in strength. That is, Patent Document 1 discloses a technique for simultaneously achieving high strength and fine structure by controlled rolling of steel containing Nb and Ti. However, the high-strength steel plate proposed in this patent document has a high yield ratio (ie, “yield strength / tensile strength”), and therefore, the spring back after forming by pressing or the like is large and the shape freezeability is inferior. In addition, the anisotropy of mechanical properties is also large.
[0005]
Similarly, when hot rolling at a high pressure reduction is performed as a means for refining crystal grains, generally anisotropy of characteristics in the plate surface is increased.
[0006]
High-strength steel sheets for automobiles not only have high strength, but also require high formability in order to be processed into a variety of component shapes. It is also important to reduce the inner anisotropy) in order to ensure strength and obtain good moldability. However, none of the conventional techniques reliably satisfy the above requirements.
[0007]
[Patent Document 1]
JP 2000-328186 A
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described present situation, and an object thereof is a hot-rolled steel sheet having a thickness of 5 mm or less, which has a small in-plane anisotropy and excellent workability, and can be produced by a tandem mill. Is to provide.
[0009]
[Means for Solving the Problems]
The gist of the present invention resides in the hot-rolled steel sheets shown in the following (1) to (3), and the hot-rolled steel sheets shown in (4) and (5).
[0010]
  (1)Chemical composition is mass%, C: more than 0.001% to 0.3%, Si: 0.01-3.0%, Mn: 0.01-1.50%, P: 0.005 -0.5% and S: 0.05% or less, the balance consists of Fe and impurities,By volume ratio75% In a hot rolled steel sheet having a thickness of 5 mm or less, wherein the ferrite has an average grain size of 1.1 μm or more and less than 4 μm and a depth of 1/8 of the thickness from the surface. The ratio ds / dc of the average grain diameter ds of ferrite to the average grain diameter dc of ferrite in the center part of the sheet thickness is 0.4 or more and less than 0.8, and in the rolling direction at a depth of 1/8 of the sheet thickness from the surface. Hot rolling with <111> pole density not less than 1.5 times that without texture, and <111> pole density in the plate width direction at the center of the plate thickness being not less than 1.5 times that without texture steel sheet.
[0011]
  (2) The hot rolled steel sheet according to (1), wherein the chemical composition includes at least one component selected from the following group (a) instead of a part of Fe.
  (A)% By massNb: 0.3% or less, Ti: 0.3% or less, V: 0.3% or less, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, Mo: 1.0% or less and B: 0.005% or less.
[0012]
  (3) Instead of a part of Fe, the chemical composition is at least one component selected from the following group (b)In mass%The hot rolled steel sheet according to the above (1) or (2), which contains 0.005% or less in total.
  (B) Ca, REM (rare earth element) and Mg.
[0013]
  (4)The chemical composition according to any one of (1) to (3) aboveSteel ingot or steel slab is AcThreeAfter heating to a temperature above the point, orThe chemical composition according to any one of (1) to (3) aboveA steel ingot after casting or a steel piece after hot workingThreeWithout reducing the temperature to a temperature range below the point, ArThreeRough rolling is performed in the temperature range above the point, then the total rolling reduction in the finish rolling is 70% or more, and the finishing temperature is ArThreePoint ~ "ArThreeThe finish rolling is performed at a temperature in the temperature range of “point + 100 ° C.”, and cooling is started within 0.5 seconds after finishing the finish rolling.ThreeThe heat according to any one of (1) to (3) above, wherein the point is cooled to “−100 ° C.” at an average cooling rate of 400 ° C./second or more and then wound up at a temperature of 600 ° C. or less. A method for producing rolled steel sheets.
[0014]
  (5)The chemical composition according to any one of (1) to (3) aboveSteel ingot or steel slab is AcThreeAfter heating to a temperature above the point, orThe chemical composition according to any one of (1) to (3) aboveA steel ingot after casting or a steel piece after hot workingThreeWithout reducing the temperature to a temperature range below the point, ArThreeThe rough rolling is performed in a temperature range above the point, and then the total rolling reduction amount of the final rolling up to the last one stage in the final rolling is 70% or more, and the stand outlet temperature in the last one stage is ArThreePoint ~ "ArThreeRolling is performed at a temperature in the temperature range of “point + 100 ° C.”, cooling is started within 0.5 seconds after the rolling in the last stage stand is completed, and “Ar” is determined from the stand outlet temperature in the last previous stage.Three It is cooled to an average cooling rate of 400 ° C./second or higher until “point−100 ° C.”, then subjected to rolling at a reduction of 10% or less at the final stand, and then wound up at a temperature of 600 ° C. or lower. (1) The manufacturing method of the hot rolled sheet steel in any one of (3).
[0015]
Here, it is known that the volume ratio of a certain phase is equal to the area ratio. Therefore, the volume ratio of the ferrite in the structure is, for example, the area ratio of ferrite obtained by a normal two-dimensional evaluation method. Can be determined from For this reason, in the present invention, the area ratio of the ferrite is obtained by the so-called “mesh method” with respect to an arbitrary 10 fields of view or more in a region having a depth of ¼ of the plate thickness from the surface by an optical microscope, and an average value thereof is obtained. The volume ratio.
[0016]
The “phase” other than ferrite in the hot-rolled steel sheet of the present invention may be any phase such as pearlite, bainite, martensite, and austenite (so-called “residual austenite” in which austenite remains without transformation).
[0017]
“The average grain diameter of ferrite over the entire plate thickness” is a portion having a depth of 8, ¼ depth and ½ depth of the plate thickness from the surface (that is, the central portion). Means the average of the average grain size of each ferrite. Note that the average grain size of ferrite in the portion having a depth of 8, ¼ depth, and ½ depth from the surface is arbitrary 10 at each portion. For the field of view or more, the average section length obtained by the so-called “section method” is multiplied by 1.12.
[0018]
“REM (rare earth element)” is a general term for a total of 17 elements of Sc, Y, and lanthanoid, and the content of REM indicates the total content of the above elements.
[0019]
The amount of reduction (%) per pass is the thickness of the material to be rolled before rolling the n-th pass.niThe thickness of the rolled material after rolling is tno{(Tni-Tno) / Tni} It means what is required by x100. The total reduction amount (%) of rolling consisting of n passes, where n is an integer of 2 or more, is the thickness of the material to be rolled before rolling in the first pass of the rolling.1I, The thickness of the material to be rolled after rolling of the nth pass is tnf{(T1i-Tno) / T1i} It means what is required by x100.
[0020]
The temperature referred to in the present invention refers to the temperature on the steel sheet surface, and the “average cooling rate” refers to the temperature difference before and after cooling divided by the cooling time.
[0021]
The “steel plate” in the present invention includes a “steel strip” wound in a coil shape.
[0022]
Hereinafter, the inventions related to the hot-rolled steel sheets (1) to (3) and the inventions related to the manufacturing methods (4) and (5) are referred to as inventions (1) to (5), respectively.
[0023]
In order to achieve the above-described object, the present inventors have found that the average grain size of ferrite over the entire thickness, the amount of change in the average grain size in the thickness direction, the change in texture in the thickness direction, and the relationship between various properties and Various studies were made on the relationship with the manufacturing conditions of the steel sheet. As a result, the following findings (a) to (d) were obtained.
[0024]
(A) A large change in the crystal grain structure in the plate thickness direction is one of the causes of workability deterioration and also a cause of large anisotropy.
[0025]
(B) In order to reduce the deterioration of workability and the occurrence of anisotropy while maintaining the high strength characteristics due to the fine structure, this can be used by controlling this rather than eliminating the structural change in the thickness direction. That's fine.
[0026]
(C) The contents to be controlled regarding the structural change in the plate thickness direction are the average grain size of ferrite over the entire plate thickness, the amount of change in the average grain size of ferrite in the plate thickness direction, and the texture.
[0027]
(D) A hot-rolled steel sheet having small in-plane anisotropy and excellent workability can be obtained by optimizing hot finish rolling conditions and cooling conditions immediately after finish rolling.
[0028]
The present inventions (1) to (5) have been completed based on the above findings.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, each requirement of the present invention will be described in detail.
  (A) Structure of hot-rolled steel sheet
  The hot-rolled steel sheet according to the present invention is firstly "by volume ratio.75% Is a hot rolled steel sheet having a thickness of 5 mm or less.
[0030]
The hot-rolled steel sheet with small anisotropy and good workability according to the present invention not only controls the difference between the structure near and inside the sheet surface that occurs during the production of a hot-rolled steel sheet having a fine structure, but also actively It is used to give desired characteristics. If the thickness of the hot-rolled steel sheet exceeds 5 mm, the desired fine structure and the difference between the vicinity of the plate surface and the internal structure cannot be controlled, so the thickness of the hot-rolled steel sheet is limited to 5 mm or less.
[0031]
  The volume ratio of ferrite is sufficiently large, and is larger than the total ratio of other phases other than ferrite.Over 75%There must be. This is because the volume fraction of ferrite is75If it is less than%, the ductility is lowered and good workability cannot be obtained. Therefore, the volume fraction of ferrite75% Or moreIt was. NaThe phase other than ferrite (hereinafter, the phases other than ferrite are collectively referred to as the second phase) is any phase such as so-called “residual austenite” in which pearlite, bainite, martensite and austenite remain without transformation. Also good. By adjusting the type and volume ratio of the second phase, it is possible to obtain a hot-rolled steel sheet having a balance between strength and workability, which is more suitable for the field and parts used.
[0032]
As already described, it is known that the volume ratio of a certain phase is equal to the area ratio. Therefore, in the present invention, an optical microscope is used in an arbitrary part at a depth of 1/4 of the plate thickness from the surface. The area ratio of the ferrite is obtained by the so-called “mesh method” for 10 or more fields of view, and the average value is defined as the volume ratio.
[0033]
By refining the ferrite crystal grains, the strength of the steel sheet can be increased, and this effect is particularly great when the average grain diameter of ferrite over the entire plate thickness is less than 4 μm. However, if the ferrite grain size becomes excessively small, the yield point and the tensile strength are almost equal, and the yield ratio approaches 1, so the elongation is extremely lowered. In particular, when the average particle diameter of ferrite over the entire plate thickness is less than 1.1 μm, the decrease in elongation is remarkable. Therefore, the average particle diameter of ferrite over the entire plate thickness is set to 1.1 μm or more and less than 4 μm. In addition, the preferable average particle diameter of the ferrite over the whole plate thickness is 1.5 μm or more, more preferably 1.8 μm or more.
[0034]
Here, “the average grain diameter of ferrite over the entire plate thickness” means a portion having a depth of 1/8, a portion having a depth of 1/4, and a portion having a depth of 1/2 (that is, a portion having a depth of 1/2 from the surface (that is, The average grain size of each ferrite in the center part) is the average, and the above-mentioned surface is a portion having a depth of 1/8, a portion having a depth of 1/4, and a depth having a depth of 1/2. As described above, the average grain size of ferrite in each part is obtained by multiplying the average intercept length obtained by the so-called “intercept method” by 1.12 for any 10 or more visual fields in each part. It is.
[0035]
Variation in the average grain size of ferrite in the thickness direction affects the strength of the hot-rolled steel sheet and the balance between strength and ductility, and the effect of variation in the average grain size of ferrite in the thickness direction on the properties of this hot-rolled steel sheet is The average particle diameter ds of ferrite in a portion having a depth of 1/8 of the plate thickness from the surface and the average particle size dc of ferrite in a portion having a depth of 1/2 of the plate thickness from the surface (that is, the central portion) It can be arranged by the value of the ratio “ds / dc”. That is, when the value of ds / dc is less than 0.4, the yield ratio in the vicinity of the surface of the plate thickness is increased, and the elongation of the steel plate itself is particularly lowered and the stretch flangeability is lowered. On the other hand, when the value of ds / dc is 0.8 or more, the degree of strength increase is small. Therefore, ds / dc was set to 0.4 or more and less than 0.8.
[0036]
The <111> direction of ferrite is a direction in which atoms are densely arranged and has the highest Young's modulus, and affects other various mechanical properties. And, the <111> pole density in the rolling direction (hereinafter referred to as <111> rs) at a site having a depth of 1/8 of the plate thickness from the surface is less than 1.5 times that without the texture. Or, if the <111> pole density in the plate width direction at the center of the plate thickness (hereinafter referred to as <111> tc) is less than 1.5 times that of no texture, ductility and stretch flangeability are reduced. In addition, the in-plane anisotropy of strength increases. Therefore, <111> rs and <111> tc were both defined as 1.5 times or more of those having no texture.
[0037]
  From the above, (1)~ (3)InventionInIs by volume ratio75% Of a ferrite sheet containing 5% or more of ferrite and having an average particle diameter of ferrite of 1.1 μm or more and less than 4 μm, and the ds / dc is 0.4 or more and less than 0.8, <111 > Rs and <111> tc were defined as hot-rolled steel sheets that were 1.5 times or more of those having no texture.
  (B) Chemical composition of hot-rolled steel sheet
  The hot-rolled steel sheet according to the invention of (1) is related to its chemical composition.It is defined as follows. In addition,Secure the organization described in (A) above in a stable and reliable mannerAs well asTo obtain hot-rolled steel sheets with small internal anisotropy and excellent workabilityIn addition,It is good to prescribe | regulate the chemical composition of a hot-rolled steel plate by invention of (2) and (3). In the following description, “%” of the content of each element means “mass%”.
[0038]
  C:
  C is a preferable component for increasing the strength of the steel sheet, and the content exceeds 0.001%.It is necessary toHowever, if its content exceeds 0.3%, workability and weldability may be deteriorated. Therefore, the C content exceeds 0.001 and is 0.3% or less.The
[0039]
  Si:
  Si is a preferred component that improves the strength of the steel sheet by solid solution strengthening. This effectTo getSi contentIs0.01% or moreIs necessaryThe However, if Si is contained in an amount exceeding 3.0%, a large amount of oxide scale is generated on the steel surface, which may be difficult to manufacture. Therefore, the Si content is 0.01-3.0%.The
[0040]
  Mn:
  Mn is an element effective for increasing the strength of steel. In order to reliably obtain this effect, the Mn content is 0.01% or more.is required.However, the Mn content is1.50If the content exceeds 50%, center segregation occurs in the steel ingot, and a band structure may be formed after hot rolling to cause a significant decrease in stretch flangeability. Therefore, the Mn content is 0.01 to1.50%The
[0041]
  P:
  P has the effect of increasing the strength of the steel sheet by solid solution strengthening. To obtain this effect with certainty, the P content is 0.005% or more.is required.However, when P is contained in excess of 0.5%, embrittlement occurs due to grain boundary segregation, and the steel ingot is easily cracked during casting, which may be accompanied by manufacturing difficulties. Therefore, the P content is 0.005 to 0.5%.The
[0042]
  S:
  S forms a sulfide by combining with Fe or Mn, and tends to be the starting point of void generation at sites where the processing conditions are severe, and reduces the workability, so the content is suppressed to 0.05% or less.There is a need.
[0043]
  Said(1)The hot-rolled steel sheet according to the invention has a chemical composition consisting of the above-described elements from C to S, with the balance being Fe and impurities.
[0044]
  Said(2)The hot-rolled steel sheet according to the invention is(1)In place of a part of Fe in the component described in the invention of (a)FlockIt has a chemical composition containing at least one component selected from the above.Moreover, the hot-rolled steel sheet according to the invention of (3) is at least one selected from the following group (b) instead of a part of Fe in the component described in the invention of (1) or (2). It has a chemical composition containing 0.005% or less of the above components in total.
[0045]
  (A) Nb: 0.3% or less, Ti: 0.3% or less, V: 0.3% or less, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less Mo: 1.0% or less and B: 0.005% or less,
  (B) Ca, REM (rare earth element) andMg.
[0046]
Here, since any element from Nb to B described in the group (a) has an effect of further increasing the strength of the steel, each element from Nb to B contains each independently within the range described below. You may make it contain, and may contain 2 or more types in combination.
[0047]
In addition, since any element from Ca to Mg described in the group (b) controls the form of MnS to form inclusions that are difficult to expand during hot rolling, and has the effect of preventing deterioration of workability. The elements from Ca to Mg may be contained alone within the range described below, or two or more elements may be combined and contained.
[0048]
Note that REM refers to a total of 17 elements of Sc, Y, and lanthanoid as described above. In the case of lanthanoid, it is added industrially in the form of misch metal. As described above, the REM content in the present invention indicates the total content of the above elements.
[0049]
(A) Group (Nb, Ti, V, Cu, Ni, Cr, Mo and B):
Nb, Ti, V, Cu, Ni, Cr, Mo, and B are all elements that have an action of further increasing the strength of steel. Among these elements, Nb, Ti, and V also have an effect of refining the structure. In order to reliably obtain the above effects, Nb, Ti, V, Cu, Ni, Cr, Mo, and B are 0.01% or more, 0.01% or more, 0.01% or more, 0.05% or more, respectively. , 0.05% or more, 0.05% or more, 0.05% or more, and 0.0001% or more is preferable. However, if Nb, Ti and V are contained in excess of 0.3%, anisotropy is increased and ductility is also lowered. If Cu, Ni, Cr and Mo all exceed 1.0% and B exceeds 0.005%, the ductility is lowered. Therefore, when Nb, Ti, V, Cu, Ni, Cr, Mo and B are added, the contents of Nb, Ti and V are all 0.3% or less, and the contents of Cu, Ni, Cr and Mo are contained. The amount is preferably 1.0% or less, and the B content is preferably 0.005% or less.
[0050]
When Cu is contained in excess of about 0.3%, surface cracking may occur during hot working. Therefore, when Cu is contained in excess of about 0.3%, Ni is more than half of Cu. It is desirable to contain at the same time.
[0051]
  (B) Group (Ca, REM and Mg):
  Ca, REM, and Mg are all elements that have the effect of controlling the form of MnS to form inclusions that are difficult to expand during hot rolling, and prevent deterioration of workability. In order to reliably obtain this effect, it is preferable that the Ca content is 0.0002% or more, the REM content is 0.0002% or more, and the Mg content is 0.0002% or more. However, even if the total content of one or more of Ca, REM, and Mg exceeds 0.005%, the above effects are saturated and the cost is increased. Therefore, when adding Ca, REM, and Mg, it is good to set it as content of 0.005% or less in total of 1 type, or 2 or more types of Ca, REM, and Mg.
  (C) Manufacturing conditions for hot-rolled steel sheet
  The organization described in the item (A) according to the inventions (1) to (3) described aboveAnd the chemical composition described in (B)For example, a hot-rolled steel sheet having “ThreeAfter heating to a temperature equal to or higher than the point, or steel ingot after casting or steel slab after hot working, ArThreeWithout reducing the temperature to a temperature range below the point, ArThreeRough rolling is performed in the temperature range above the point, then the total rolling reduction in the finish rolling is 70% or more, and the finishing temperature is ArThreePoint ~ "ArThreeThe finish rolling is performed at a temperature in the temperature range of “point + 100 ° C.”, and cooling is started within 0.5 seconds after finishing the finish rolling.ThreeIt can be manufactured relatively easily according to the invention of the above (4), which is cooled to “point−100 ° C.” at an average cooling rate of 400 ° C./second or more and then wound at a temperature of 600 ° C. or less.
[0052]
That is, the steel ingot or steel piece is3 By reheating to a temperature above the point, the alloy element can be dissolved in austenite. Here, charging into a furnace for reheating treatment such as a heating furnace or a soaking furnace may be performed in a state of high temperature after casting or hot working, or once cooled to near room temperature You may go from.
[0053]
Ac as above3 Steel ingot or billet reheated to a temperature above the point, or Ar3 The steel ingot after casting or the slab after hot working which has not been lowered to a temperature range below the point is subjected to rolling by a tandem mill. In this case, rough rolling is performed in Ar which is an austenite region.3 It is better to perform at a temperature above the point. After rough rolling, finish rolling has a total rolling reduction of 70% or more and finishing temperature of Ar.3 Point ~ "Ar3 The temperature is preferably in the temperature range of “point + 100 ° C.”.
[0054]
When the total rolling reduction of the finish rolling is less than 70%, the ferrite crystal grains are coarsened, the mechanical properties are lowered, and the anisotropy is also increased. Note that the total rolling reduction of finish rolling is more preferably 90% or more.
[0055]
The finishing temperature in finish rolling is “Ar3 When the temperature exceeds the point + 100 ° C., the ferrite crystal grains are coarsened, the mechanical properties are lowered, and the anisotropy is also increased. On the other hand, the finishing temperature is Ar3 Below the point, the processed ferrite grains tend to remain and the anisotropy may become extremely strong.
[0056]
After finishing the finish rolling, by performing strong cooling with almost no air cooling time, the ferrite grains become extremely fine, and <111> rs and <111> tc develop,easilyThe texture described in the item (A) is formed and the refinement of the structure is promoted. In addition, the development of the azimuth increases as the average cooling rate increases and the time from finishing finish rolling to starting cooling decreases. For this reason, it is preferable to start cooling within 0.5 seconds after finishing rolling. More preferably, the time to start cooling is within 0.1 seconds. The average cooling rate during cooling is preferably 400 ° C./second or more. This average cooling rate is more preferably 600 ° C./second or more. Note that cooling at the above average cooling rate is at least “Ar from the finishing temperature.3 It is up to "point-100 ° C". This is "Ar3 This is because when the cooling is performed only to a temperature exceeding “point−100 ° C.”, the ferrite grains become coarse and a desired texture may not be obtained. "Ar3 Although it does not prevent cooling to the temperature below "point-100 degreeC", the volume fraction of a ferrite may reduce depending on steel.
[0057]
After cooling under the above conditions, it is preferable to wind up at a temperature of 600 ° C. or lower. This is because when the coiling temperature exceeds 600 ° C., fine ferrite obtained by the above hot rolling and cooling grows and becomes coarse.
[0058]
  Therefore, in the invention of (4),It has a chemical composition according to any of the inventions (1) to (3) aboveSteel ingot or steel slab is AcThreeAfter heating to a temperature above the point, orIt has a chemical composition according to any of the inventions (1) to (3) aboveA steel ingot after casting or a steel piece after hot workingThreeWithout reducing the temperature to a temperature range below the point, ArThreeRough rolling is performed in the temperature range above the point, then the total rolling reduction in the finish rolling is 70% or more, and the finishing temperature is ArThreePoint ~ "ArThreeThe finish rolling is performed at a temperature in the temperature range of “point + 100 ° C.”, and cooling is started within 0.5 seconds after finishing the finish rolling.Three“Point to −100 ° C.” was cooled at an average cooling rate of 400 ° C./second or higher, and then wound at a temperature of 600 ° C. or lower.
[0059]
  The structure described in the section (A) is “steel ingot or steel slab is Ac.ThreeAfter heating to a temperature equal to or higher than the point, or steel ingot after casting or steel slab after hot working, ArThreeWithout reducing the temperature to a temperature range below the point, ArThreeThe rough rolling is performed in a temperature range above the point, and then the total rolling reduction amount of the final rolling up to the last one stage in the final rolling is 70% or more, and the stand outlet temperature in the last one stage is ArThreePoint ~ "ArThreeRolling is performed at a temperature in the temperature range of “point + 100 ° C.”, cooling is started within 0.5 seconds after the rolling in the last stage stand is completed, and “Ar” is determined from the stand outlet temperature in the last previous stage.ThreeIt is comparatively also possible to “cool to a point of −100 ° C.” at an average cooling rate of 400 ° C./second or higher, then rolling at a final stand with a reduction amount of 10% or less, and then winding at a temperature of 600 ° C. or less. Easy to get. This method removes the cooling water on the surface of the material to be rolled in the final stand, and performs a light rolling that does not give any distortion to the ferrite deposited after cooling, thereby providing a temperature distribution in the thickness direction. To prevent ds / dc from becoming excessively small. In addition, since the reduction exceeding 10% in the final stand generates processed ferrite, the reduction amount of the final stand is 10%The following is recommended. More preferably, it is 5% or less. The reduction amount may be 0% simply by removing the cooling water.
[0060]
  Therefore, in the invention of (5),It has a chemical composition according to any of the inventions (1) to (3) aboveSteel ingot or steel slab is AcThreeAfter heating to a temperature above the point, orIt has a chemical composition according to any of the inventions (1) to (3) aboveA steel ingot after casting or a steel piece after hot workingThreeWithout reducing the temperature to a temperature range below the point, ArThreeThe rough rolling is performed in a temperature range above the point, and then the total rolling reduction amount of the final rolling up to the last one stage in the final rolling is 70% or more, and the stand outlet temperature in the last one stage is ArThreePoint ~ "ArThreeRolling is performed at a temperature in the temperature range of “point + 100 ° C.”, cooling is started within 0.5 seconds after the rolling in the last stage stand is completed, and “Ar” is determined from the stand outlet temperature in the last previous stage.Three“Point to −100 ° C.” was cooled at an average cooling rate of 400 ° C./second or higher, and then rolled with a reduction amount of 10% or less at the final stand, and then wound at a temperature of 600 ° C. or lower.
[0061]
The amount of reduction (%) per pass is the thickness of the material to be rolled before rolling the n-th pass.niThe thickness of the rolled material after rolling is tno{(Tni-Tno) / Tni} X100 is calculated, and n is an integer of 2 or more, and the total rolling reduction (%) of n passes is the thickness of the rolled material before rolling in the first pass of the rolling. t1I, The thickness of the material to be rolled after rolling of the nth pass is tnf{(T1i-Tno) / T1i} Means what is obtained by × 100, “average cooling rate” refers to the difference between the temperature difference before and after cooling divided by the cooling time, and the temperature in the present invention refers to the temperature on the surface of the steel sheet as already described It is.
[0062]
Hereinafter, the present invention will be described in more detail with reference to examples.
[0063]
【Example】
Example 1
A slab having the chemical composition shown in Table 1 was produced by continuous casting, and air-cooled to room temperature after completion of continuous casting. Thereafter, the above slab was reheated to a temperature range of 1200 to 1300 ° C., and then subjected to finish rolling, cooling and winding under the conditions shown in Table 2 using a small test tandem mill. A steel plate of 8 to 5.5 mm was obtained. In addition, the slab heating temperature was 1250 degreeC and rough rolling was performed by the normal method.
[0064]
[Table 1]
Figure 0003945367
[0065]
[Table 2]
Figure 0003945367
[0066]
Test pieces were collected from the obtained steel plates and examined for the structure, tensile properties at room temperature, and stretch flangeability.
[0067]
As for the structure, the cross-sectional structure of the steel plate thickness was observed using an optical microscope and a scanning electron microscope, and the <111> pole density was determined by a normal X-ray measurement method.
[0068]
The tensile properties at room temperature were investigated using JIS No. 5 test pieces. The test specimens were collected from three directions of 0 °, 45 °, and 90 °, with the rolling direction being 0 °.
[0069]
Stretch flange workability is to take a square test piece of 100 mm in length and width, punch a hole with a diameter of 10 mm with a punch in the center, widen this hole with a conical punch with a tip angle of 60 °, and place it on the edge of the hole. The critical hole expansion rate calculated from the critical hole diameter through which the crack penetrates was evaluated.
[0070]
Tables 3 to 5 collectively show the results of the above investigations. In this table, the average r value refers to a value calculated by the formula “(r0 + 2r45 + r90) / 4”, where r0, r45, and r90 are r values when the specimen collection directions are 0 °, 45 °, and 90 °, respectively.
[0071]
[Table 3]
Figure 0003945367
[0072]
[Table 4]
Figure 0003945367
[0073]
[Table 5]
Figure 0003945367
[0074]
  As is apparent from Tables 3 to 5, the structure of the present inventionAnd chemical compositionTest number 1 to meet the regulations3, 11, 13, 15, 16as well as18 ~20The hot-rolled steel sheet has small anisotropy and excellent workability.
[0075]
  In contrast, the organization of the present inventionAnd / or chemical compositionThe hot-rolled steel sheets with test numbers 4 to 7, 9, 10, 12, 14, 17 and 22 that deviate from the specifications are inferior in ductility, stretch flange workability and in-plane anisotropy, and inferior in workability.
[0076]
(Example 2)
The steel A slab shown in Example 1 manufactured by continuous casting and air-cooled to room temperature after completion of continuous casting was reheated to a temperature range of 1200 to 1300 ° C., and then a small tandem mill for testing was used. Finishing rolling, cooling and winding were performed under the conditions shown in Fig. 6 to obtain steel plates having thicknesses of 1.9 and 2.0 mm. In addition, the slab heating temperature was 1250 degreeC and rough rolling was performed by the normal method.
[0077]
[Table 6]
Figure 0003945367
[0078]
Test pieces were collected from the obtained steel plates, and the structure, tensile properties at room temperature and stretch flange workability were investigated in the same manner as in Example 1.
[0079]
Tables 7 and 8 collectively show the results of the above investigations. It should be noted that the average r value in Table 7 also indicates the value calculated by the above-mentioned formula “(r0 + 2r45 + r90) / 4”.
[0080]
[Table 7]
Figure 0003945367
[0081]
[Table 8]
Figure 0003945367
[0082]
  As is clear from Tables 7 and 8, the structure of the present inventionAnd chemical compositionThe hot-rolled steel sheets with test numbers 24 and 25 that satisfy the regulations have small anisotropy and excellent workability. On the other hand, the present inventionEven if it meets the chemical composition regulations,The hot-rolled steel sheet of test number 26 that deviates from the structure regulations has low workability and extremely large anisotropy.
[0083]
【The invention's effect】
Since the hot-rolled steel sheet of the present invention has small in-plane anisotropy and excellent workability, it can be used as a material for high-strength structural members used in automobiles. The hot-rolled steel sheet of the present invention can be produced relatively easily by the method of the present invention.

Claims (5)

化学組成が、質量%で、C:0.001%を超えて0.3%まで、Si:0.01〜3.0%、Mn:0.01〜1.50%、P:0.005〜0.5%及びS:0.05%以下を含み、残部はFe及び不純物からなる、体積割合で75%以上のフェライトを含む板厚が5mm以下の熱延鋼板であって、板厚全体にわたるフェライトの平均粒径が1.1μm以上4μm未満、表面から板厚の1/8の深さの部位におけるフェライトの平均粒径dsの板厚中心部におけるフェライトの平均粒径dcに対する比率ds/dcが0.4以上0.8未満、表面から板厚の1/8の深さの部位における圧延方向の<111>極密度が集合組織をもたないものの1.5倍以上及び、板厚中心部における板幅方向の<111>極密度が集合組織を持たないものの1.5倍以上である熱延鋼板。  Chemical composition is mass%, C: more than 0.001% to 0.3%, Si: 0.01-3.0%, Mn: 0.01-1.50%, P: 0.005 ~ 0.5% and S: 0.05% or less, the balance is Fe and impurities, and the hot rolled steel sheet with a thickness of 5% or less containing 75% or more ferrite by volume, The ratio of the average particle diameter ds of ferrite in the region of the depth of 1/8 of the plate thickness from the surface to the average particle diameter dc of ferrite in the central portion of the plate thickness ds / The dc is 0.4 or more and less than 0.8, and the <111> pole density in the rolling direction at a site having a depth of 1/8 of the plate thickness from the surface is 1.5 times or more that of no texture, and the plate thickness <111> pole density in the plate width direction at the center does not have a texture A hot-rolled steel sheet that is 1.5 times or more. 化学組成が、Feの一部に代えて、下記(a)群から選ばれる少なくとも1種以上の成分を含む請求項1に記載の熱延鋼板。
(a)質量%で、Nb:0.3%以下、Ti:0.3%以下、V:0.3%以下、Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下、Mo:1.0%以下及びB:0.005%以下
The hot rolled steel sheet according to claim 1, wherein the chemical composition includes at least one component selected from the following group (a) instead of a part of Fe.
(A) By mass%, Nb: 0.3% or less, Ti: 0.3% or less, V: 0.3% or less, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1 0.0% or less, Mo: 1.0% or less, and B: 0.005% or less
化学組成が、Feの一部に代えて、下記(b)群から選ばれる少なくとも1種以上の成分を、質量%で、合計で0.005%以下含む請求項1又は2に記載の熱延鋼板。
(b)Ca、REM(希土類元素)及びMg
3. The hot rolling according to claim 1, wherein the chemical composition contains at least one component selected from the following group (b) in mass% in total of 0.005% or less in place of part of Fe. steel sheet.
(B) Ca, REM (rare earth element) and Mg
請求項1から3までのいずれかに記載の化学組成を有する鋼塊若しくは鋼片をAc3点以上の温度に加熱した後に、又は請求項1から3までのいずれかに記載の化学組成を有する鋳造後の鋼塊若しくは熱間加工後の鋼片をAr3点以下の温度域まで温度低下させることなしに、Ar3点以上の温度域で粗圧延を行い、次いで、仕上げ圧延における合計圧下量を70%以上、仕上げ温度をAr3点〜「Ar3点+100℃」の温度域の温度として仕上げ圧延を行い、前記仕上げ圧延を終了した後0.5秒以内に冷却を開始して、仕上げ温度から「Ar3点−100℃」までを400℃/秒以上の平均冷却速度で冷却し、その後600℃以下の温度で巻き取ることを特徴とする請求項1から3までのいずれかに記載の熱延鋼板の製造方法。The steel ingot or billet having the chemical composition according to any one of claims 1 to 3 is heated to a temperature of Ac 3 point or higher, or has the chemical composition according to any one of claims 1 to 3. Rough rolling is performed at a temperature range of Ar 3 or higher without lowering the temperature of the steel ingot after casting or hot-worked steel slab to a temperature range of 3 or lower Ar, and then the total rolling reduction in finish rolling 70% or more, the finish temperature is set to a temperature in the temperature range of Ar 3 point to “Ar 3 point + 100 ° C.”, and cooling is started within 0.5 seconds after finishing the finish rolling. The temperature to "Ar 3 point-100 ° C" is cooled at an average cooling rate of 400 ° C / second or more, and then wound up at a temperature of 600 ° C or less. Manufacturing method for hot-rolled steel sheets. 請求項1から3までのいずれかに記載の化学組成を有する鋼塊若しくは鋼片をAc3点以上の温度に加熱した後に、又は請求項1から3までのいずれかに記載の化学組成を有する鋳造後の鋼塊若しくは熱間加工後の鋼片をAr3点以下の温度域まで温度低下させることなしに、Ar3点以上の温度域で粗圧延を行い、次いで、仕上げ圧延において最終の一段前のスタンドまでの仕上げ圧延の合計圧下量を70%以上、最終の一段前のスタンド出側温度をAr3点〜「Ar3点+100℃」の温度域の温度として圧延し、最終の一段前のスタンドでの圧延を終了した後0.5秒以内に冷却を開始して、最終の一段前のスタンド出側温度から「Ar3 点−100℃」までを400℃/秒以上の平均冷却速度で冷却し、次いで、最終スタンドで圧下量10%以下の圧延を施し、その後600℃以下の温度で巻き取ることを特徴とする請求項1から3までのいずれかに記載の熱延鋼板の製造方法。The steel ingot or billet having the chemical composition according to any one of claims 1 to 3 is heated to a temperature of Ac 3 point or higher, or has the chemical composition according to any one of claims 1 to 3. The steel ingot after casting or the slab after hot working is subjected to rough rolling in the temperature range of Ar 3 point or higher without lowering the temperature to the temperature range of Ar 3 point or lower, and then the final stage in finish rolling. Rolling with the total rolling reduction of the final rolling up to the previous stand being 70% or more and the stand outlet temperature one stage before the final stage being a temperature in the temperature range of Ar 3 point to “Ar 3 point + 100 ° C.” The cooling is started within 0.5 seconds after finishing the rolling of the stand, and the average cooling rate of 400 ° C./second or more from the stand exit side temperature of the last previous stage to “Ar 3 point−100 ° C.” Then cool down at the last stand % Subjected to the following rolling method for producing a hot rolled steel sheet according to any one of claims 1 to 3, which then is characterized by winding at 600 ° C. or lower.
JP2002303891A 2002-10-18 2002-10-18 Hot-rolled steel sheet and manufacturing method thereof Expired - Fee Related JP3945367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002303891A JP3945367B2 (en) 2002-10-18 2002-10-18 Hot-rolled steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002303891A JP3945367B2 (en) 2002-10-18 2002-10-18 Hot-rolled steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004137565A JP2004137565A (en) 2004-05-13
JP3945367B2 true JP3945367B2 (en) 2007-07-18

Family

ID=32451489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002303891A Expired - Fee Related JP3945367B2 (en) 2002-10-18 2002-10-18 Hot-rolled steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3945367B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088104A1 (en) 2017-10-30 2019-05-09 新日鐵住金株式会社 Hot-rolled steel sheet and manufacturing method therefor

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011503A1 (en) 2004-07-27 2006-02-02 Nippon Steel Corporation High young’s modulus steel plate, zinc hot dip galvanized steel sheet using the same, alloyed zinc hot dip galvanized steel sheet, high young’s modulus steel pipe, and method for production thereof
JP4581665B2 (en) * 2004-12-08 2010-11-17 住友金属工業株式会社 High-strength hot-rolled steel sheet and its manufacturing method
JP4670538B2 (en) * 2005-08-05 2011-04-13 住友金属工業株式会社 Method for producing hot-rolled steel sheet having fine ferrite structure
JP4867257B2 (en) * 2005-09-29 2012-02-01 Jfeスチール株式会社 High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
JP5228447B2 (en) * 2006-11-07 2013-07-03 新日鐵住金株式会社 High Young's modulus steel plate and method for producing the same
US8404060B2 (en) 2007-02-02 2013-03-26 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot-rolled sheet having fine-grained ferrite, and hot-rolled sheet
KR101344645B1 (en) 2011-10-28 2013-12-26 현대제철 주식회사 Method of manufacturing oil tubular country goods
US9903004B2 (en) 2012-12-19 2018-02-27 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method for manufacturing the same
JP5765411B2 (en) * 2013-12-12 2015-08-19 新日鐵住金株式会社 Cold rolled steel sheet manufacturing method
JP5708775B2 (en) * 2013-12-12 2015-04-30 新日鐵住金株式会社 Structural member
WO2017168991A1 (en) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Thin steel sheet, plated steel sheet, hot-rolled steel sheet manufacturing method, cold-rolled full hard steel sheet manufacturing method, thin steel sheet manufacturing method, and plated steel sheet manufacturing method
KR101797367B1 (en) 2016-06-21 2017-11-13 현대제철 주식회사 High carbon hot-rolled steel sheet and method of manufacturing the same
KR102237488B1 (en) * 2019-12-16 2021-04-08 주식회사 포스코 High hardness steel sheet having excellent punching formability and manufacturing method for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088104A1 (en) 2017-10-30 2019-05-09 新日鐵住金株式会社 Hot-rolled steel sheet and manufacturing method therefor
KR20200019966A (en) 2017-10-30 2020-02-25 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet and its manufacturing method
US11198929B2 (en) 2017-10-30 2021-12-14 Nippon Steel Corporation Hot rolled steel sheet and method for producing same

Also Published As

Publication number Publication date
JP2004137565A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
KR101492753B1 (en) High strength hot rolled steel sheet having excellent fatigue resistance and method for manufacturing the same
JP5233142B2 (en) High-stiffness and high-strength steel sheet excellent in hole expansibility and method for producing the same
JP5858174B2 (en) Low yield ratio high strength cold-rolled steel sheet and method for producing the same
JP4062118B2 (en) High-tensile hot-rolled steel sheet with excellent stretch characteristics and stretch flange characteristics and manufacturing method thereof
KR101569977B1 (en) High-strength cold-rolled steel sheet with high yield ratio having excellent formability and method for producing the same
WO2013154071A1 (en) Steel sheet suitable as impact absorbing member, and method for manufacturing same
US20090277547A1 (en) High-strength steel sheets and processes for production of the same
JP4304473B2 (en) Manufacturing method of ultra fine grain hot rolled steel sheet
JP4161935B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP2007162078A (en) High strength steel sheet and production method
JP5860343B2 (en) High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same
JP3945367B2 (en) Hot-rolled steel sheet and manufacturing method thereof
WO2013073136A1 (en) Thin steel sheet and process for producing same
JP4424185B2 (en) Hot rolled steel sheet and its manufacturing method
JP5878829B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP3725367B2 (en) Ultra-fine ferrite structure high-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JP4205853B2 (en) Hot-rolled steel sheet with excellent burring workability and fatigue characteristics and method for producing the same
JPWO2019088104A1 (en) Hot rolled steel sheet and method of manufacturing the same
WO2011152328A1 (en) Hot-rolled high-strength steel sheet and process for production thereof
JP3901039B2 (en) Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same
JP6264861B2 (en) High Young&#39;s modulus cold-rolled steel sheet excellent in workability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP2011080106A (en) High strength cold-rolled steel sheet excellent in balance of extension and formability for extending flange
JP2009001909A (en) Manufacturing method of high-strength cold-rolled steel sheet
JP5845837B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R150 Certificate of patent or registration of utility model

Ref document number: 3945367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees