JP3901039B2 - Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same - Google Patents

Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same Download PDF

Info

Publication number
JP3901039B2
JP3901039B2 JP2002190427A JP2002190427A JP3901039B2 JP 3901039 B2 JP3901039 B2 JP 3901039B2 JP 2002190427 A JP2002190427 A JP 2002190427A JP 2002190427 A JP2002190427 A JP 2002190427A JP 3901039 B2 JP3901039 B2 JP 3901039B2
Authority
JP
Japan
Prior art keywords
mass
steel sheet
ultra
rolled steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002190427A
Other languages
Japanese (ja)
Other versions
JP2004035905A (en
Inventor
英尚 川辺
哲也 妻鹿
敬 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002190427A priority Critical patent/JP3901039B2/en
Publication of JP2004035905A publication Critical patent/JP2004035905A/en
Application granted granted Critical
Publication of JP3901039B2 publication Critical patent/JP3901039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、主としてシートフレーム等のシート部品やバンパー、インパクトビーム等の自動車部品に用いて好適な、板厚が 0.8〜2.5 mm程度、引張強さTSが980 MPa 以上で、しかも曲げ性や伸びフランジ性等の加工性に優れる超高強度冷延鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
鋼の強化機構としては、加工強化、組織強化および析出強化等が従来から広く知られている。しかしながら、これらの強化策では、材料強度の向上は達成できるものの、一方で加工性の低下を余儀なくされていた。
【0003】
また、従来の高強度鋼板では、組織的不均一や硬質相と軟質相の局所的混在などのために、伸びフランジ性を評価するために行う穴拡げ試験時に亀裂の起点となる箇所が多数存在することになり、これが穴拡げ性すなわち伸びフランジ性の低下を招くと言われている。しかも、このような加工性は、高強度鋼板になればなるほど、大きく低下するのが一般的であった。
このため、従来の鋼板製造技術では、高強度化と引き換えに、延性や曲げ性、伸びフランジ性等の加工特性を犠牲にしなければならないのが実情であった。
【0004】
高強度冷延鋼板の技術として、例えば特開平3−277742号公報および特開平4−236741号公報には、引張強さが 980 MPa以上の鋼板が開示されているが、かような鋼板は十分な加工性を有するものとは言い難かった。
また、特開昭61−19733 号公報には、伸びフランジ性に優れた熱延鋼板が開示されているが、この鋼板は強度−延性バランスが低いという問題があった。
さらに、特開平4−350 号公報には、伸びフランジ性に優れた鋼板が開示されているが、この鋼板は引張強さが 780 MPaに満たないレベルのものでしかなかった。
【0005】
【発明が解決しようとする課題】
強度と加工性は相反する傾向を示すのが一般的であり、現状では曲げ性および伸びフランジ性をはじめとする良好な加工性をそなえ、しかも引張強さが 980 MPa以上であるような、成形性に優れる超高強度冷延鋼板は知られていない。
本発明は、上記の現状に鑑み開発されたもので、980 MPa 以上の引張強さTSを有し、良好なプレス成形性を得るために必要な曲げ性に優れ、かつ打ち抜き加工等の際のクリアランス依存性が小さく、さらには伸びフランジ性にも優れた加工用の超高強度冷延鋼板を、その有利な製造方法と共に提案することを目的とする。
【0006】
【課題を解決するための手段】
さて、発明者らは、上記の目的を達成すべく、鋼成分、製造条件および金属組織などの面から数多くの実験を行い、鋭意検討を重ねた結果、以下に述べる知見を得た。
すなわち、成分と製造条件を適正範囲に制御して、冷間圧延前の組織を均一微細化すると共に、冷延焼鈍条件を制御することによって、フェライト相以外の生成物を一定量、一定間隔内に分数させた組織とすることにより、局所的な変形能の差が有利に解消されてマクロ的な均一変形が可能となり、その結果、強度レベルを低下させることなしに、従来にない優れた曲げ性および伸びフランジ性と高い強度−延性バランスとを併せて確保することができ、かくしてプレス成形の有利な改善が図られるとの知見を得たのである。
【0007】
本発明は、上記の知見に基づいて完成されたものであり、その要旨とするところは次のとおりである。
1.C:0.05〜0.10mass%、
Si:0.01〜1.00mass%、
Mn:2.0 〜3.5 mass%、
Ti:0.001 〜0.030 mass%、
Nb:0.001 〜0.050 mass%、
Al:0.05mass%以下、
P:0.02mass%以下および
S:0.0030mass%以下
を含有し、残部はFeおよび不可避的不純物の組成になり、フェライト相の体積分率が40%以上、60%以下で、しかも鋼中に生成したマルテンサイト相、ベイナイト相、残留オーステナイト相およびセメンタイトの単位面積当たりの総個数が25個/100μm2以上で、かつこれら生成物の最近接間距離が最長でも4μm 以下であることを特徴とする成形性に優れる超高強度冷延鋼板。
【0008】
2.上記1において、鋼板が、さらに
Cu:0.01〜0.50mass%、
Ni:0.01〜0.50mass%、
Mo:0.01〜0.50mass%および
Cr:0.01〜0.50mass%
のうちから選んだ一種または二種以上を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板。
【0009】
3.上記1または2において、鋼板が、さらに
V:0.001 〜0.300 mass%、
Zr:0.001 〜0.300 mass%および
B:0.0001〜0.0050mass%
のうちから選んだ一種または二種以上を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板。
【0010】
4.上記1,2または3において、鋼板が、さらに
Ca:0.0001〜0.0050mass%および
REM:0.0001〜0.0050mass%
のうちから選んだ少なくとも一種を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板。
【0011】
5.C:0.05〜0.10mass%、
Si:0.01〜1.00mass%、
Mn:2.0 〜3.5 mass%、
Ti:0.001 〜0.030 mass%、
Nb:0.001 〜0.050 mass%、
Al:0.05mass%以下、
P:0.02mass%以下および
S:0.0030mass%以下
を含有し、残部は Fe および不可避的不純物の組成になる鋼スラブを、鋳造後、直ちにまたは一旦冷却し1050〜1250℃に加熱したのち、仕上げ圧延終了温度:850 〜950 ℃にて熱間圧延し、圧延終了後 450〜650 ℃で巻取って熱延鋼板とし、ついで冷間圧延を施したのち、連続焼鈍を施すに際し、 750℃以上、 900℃以下の温度域に加熱し、その後の冷却過程において 200℃以上、 400℃以下の温度域まで、冷却速度(X)が下記式の範囲を満足する条件下で冷却し、引き続き 200℃以上、 400℃以下の温度域で60秒以上、 240秒以下の時間保温することを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。

−4×t+0.14×t2 + 30 ≦X≦−4×t+0.14×t2 +120
ここで、X:冷却速度(℃/s)
t:冷却時間(s)
【0012】
6.上記5において、鋼スラブが、さらに
Cu:0.01〜0.50mass%、
Ni:0.01〜0.50mass%、
Mo:0.01〜0.50mass%および
Cr:0.01〜0.50mass%
のうちから選んだ一種または二種以上を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。
7.上記5または6において、鋼スラブが、さらに
V:0.001 〜0.300 mass%、
Zr:0.001 〜0.300 mass%および
B:0.0001〜0.0050mass%
のうちから選んだ一種または二種以上を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。
8.上記5,6または7において、鋼スラブが、さらに
Ca:0.0001〜0.0050mass%および
REM:0.0001〜0.0050mass%
のうちから選んだ少なくとも一種を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。
【0013】
【発明の実施の形態】
以下、本発明を具体的に説明する。
まず、本発明において鋼板の成分組成を上記の範囲に限定した理由について説明する。
C:0.05〜0.10mass%
Cは、低温変態相を利用して鋼を強化するために必須の元素である。本発明で目標とする 980 MPa以上の引張強さを得るには0.05mass%以上のC含有が必要であるが、0.10mass%を超えると溶接性が著しく劣化するので、C量は0.05〜0.10mass%とした。
【0014】
Si:0.01〜1.00mass%
Siは、強度向上に寄与する元素であるが、0.01mass%未満ではその添加効果に乏しく、一方1.00mass%を超えて含有させると、フェライト変態が促進され、低温変態相による強化が不十分となるので、Si量は0.01〜1.00mass%の範囲に限定した。
【0015】
Mn:2.0 〜3.5 mass%
Mnは、ベイナイト組織を得るために重要な役割を担っている元素である。また、有害な固溶SをMnSとして無害化させると共に、Ar3変態点を低下させる作用を通じて結晶粒の微細化に寄与し、強度−延性バランスの向上にも有効に寄与する。冷延後の加熱焼鈍工程中の冷却過程において、フェライト相の生成を抑制し、TS確保の観点から安定して低温変態相を得るには、 2.0mass%以上のMn量が必要であるが、3.5 mass%を超えて含有させるとフェライト相の生成を抑制しすぎて、必要な量のフェライト相が確保できなくなるので、Mn量は 2.0〜3.5 mass%の範囲に限定した。
【0016】
Ti:0.001 〜0.030 mass%
Tiは、後述するNbと同様に、析出物の存在形態、再結晶温度に影響して、組織の微細均一化をもたらし、伸びおよび穴拡げ性を向上させるのに有効な元素である。すなわち、Tiは、スラブ加熱段階でTiCとして存在して、初期オーステナイト粒を微細化し、それ以降の熱間圧延過程での動的再結晶を誘起させる。また、このTiを、Nbと併用して添加すると、フェライト変態が起きない最小冷却速度が小さくなり、焼入れ性が向上するという効果ももたらされる。
上記の効果を得るには、0.001 mass%以上のTi添加が必要であるが、0.030 mass%を超えると硬質な炭化物などを形成し、伸びフランジ性の低下を招くので、Ti量は 0.001〜0.030 mass%の範囲に限定した。より好ましくは 0.005〜0.015mass%の範囲である。
【0017】
Nb:0.001 〜0.050 mass%
Nbは、NbCなどの析出物の存在形態、再結晶温度に影響を及ぼす元素である。特に本発明では、Nbは、組織の微細均一化に有効に作用するほか、フェライト−パーライトの生成を抑制し、低温変態相であるベイナイト主体となる組織とすることにより、高強度にもかかわらず高い伸び性、穴拡げ性をもたらすという効果を有している。このような効果は 0.001mass%以上の添加で発現するが、0.050mass%を超えて含有させると鋼中に硬質な析出物が多量に形成され,伸びフランジ性が低下する。従って、Nb量は 0.001〜0.050 mass%の範囲に限定した。より好ましくは 0.005〜0.020 mass%の範囲である。
【0018】
Al:0.05mass%以下
Alは、脱酸剤として寄与し、炭化物形成元素の歩留りを向上させるのに有効な元素なので、0.015 mass%以上含有させることが好ましい。しかしながら、0.05mass%を超えて添加しても効果は飽和に達し、むしろ加工性や表面性状の劣化が生じるので、Al量は0.05mass%以下に制限するものとした。
【0019】
P:0.02mass%以下
Pは、強度の向上に寄与するだけでなく、鋼中に蓄積された水素に起因する水素脆性および遅れ破壊を防止する上で有効な元素なので、0.005 mass%以上含有させることが好ましい。しかしながら、過剰に含有されると、組織の不均一を招くだけでなく、鋳造時の凝固偏析が顕著になり、内部割れや加工性の劣化を招くことになるので、P量は0.02mass%以下に制限するものとした。
【0020】
S:0.0030mass%以下
Sは、鋼中で非金属介在物として存在し、伸びフランジ成形時の応力集中源となるため、その含有量は極力低減することが望ましい。とはいえ、S量が0.0030mass%以下では、穴拡げ性にさほどの悪影響を及ぼさないので0.0030mass%を上限として許容できる。より好ましくは0.0010mass%以下である。
【0021】
以上、基本成分について説明したが、本発明ではその他にも、以下に述べる元素を適宜含有させることができる。
Cu:0.01〜0.50mass%、Ni:0.01〜0.50mass%、Mo:0.01〜0.50mass%およびCr:0.01〜0.50mass%のうちから選んだ一種または二種以上
Cu,Ni,MoおよびCrはいずれも、伸びを大きく低下させることなしに強度を向上させることができる有用元素であるが、含有量がそれぞれ0.01mass%未満ではその効果は小さく、一方0.50mass%を超えて多量に含有させてもさらなる効果はなく、むしろ経済的に不利になる。従って、Cu,Ni,Mo,Cr量はそれぞれ0.01〜0.50mass%の範囲に限定した。より好ましくは0.01〜0.20mass%の範囲であり、いづれの元素とも単独添加でも複合添加でも同様の挙動を示す。
【0022】
V:0.001 〜0.300 mass%、Zr:0.001 〜0.300 mass%およびB:0.0001〜0.0050mass%のうちから選んだ一種または二種以上
これらの元素はいずれも、鋼板の強度を上昇させるのに有効な元素である。さらにVおよびZrは、上記の効果に加えて、局部伸びを向上させる元素でもある。またBは、熱延終了後の急冷時において、軟質相の生成を抑制し低温変態相の形成を促進する作用がある。これらの効果を得るためには、V,Zrは各々 0.001mass%以上、Bは0.0001mass%以上の含有が必要である。一方、V,Zrは各々0.300 mass%、Bは0.0050mass%を超えて添加してもさらなる効果は得られないので、それぞれV:0.001 〜0.300 mass%、Zr:0.001 〜0.300 mass%、B:0.0001〜0.0050mass%の範囲で含有させるものとした。なお、いずれの元素とも、単独添加でも複合添加でも同様の挙動を示す。
【0023】
Ca:0.0001〜0.0050mass%および REM:0.0001〜0.0050mass%のうちから選んだ少なくとも一種
CaおよびREM はいずれも、硫化物などの析出物を球状化して鋭角的な析出物を減少させ、応力集中を減少させることによって、伸びフランジ性の低下を抑制する効果を有している。しかしながら、いずれも含有量が0.0001mass%未満ではその添加効果に乏しく、一方0.0050mass%を超えると添加効果は飽和に達する。従って、Ca, REM とも0.0001〜0.0050mass%の範囲で含有させるものとした。
本発明の鋼板において、上記した成分以外の残部はFeおよび不可避的不純物である。
【0024】
以上、各成分の適正範囲について説明したが、本発明では各成分を上記の範囲に調整するだけでは不十分で、鋼組織も重要である。
・フェライト相体積分率:40〜60%
フェライト相の比率は延性を確保する上で重要な因子であり、体積分率で40%未満では延性の確保が難しく、一方60%を超えるとTS≧980 MPa を確保するのが困難となるため、フェライト相の体積分率は40〜60%の範囲に限定した。
【0025】
・フェライト以外の生成物であるマルテンサイト相、ベイナイト相、残留オーステナイト相およびセメンタイトの単位面積当たりの総個数:25個/100μm2以上
微細な生成物を緻密かつ均一に生成させることにより、フェライト相が第2相に完全には囲まれず、孤立した状態をとらずに連なった形の組織となる。かくして、成形時のひずみによる変形を、連なった軟質なフェライト相が受け持つことにより、高加工性と共に、低クリアランス依存性が達成される。クリアランスが変動すると、ダレが生じたり、剪断面や破断面などの比率が変化するが、本発明では、変形能の高いフェライトが変形を受け持つのでクリアランスの影響を受け難い。なお、フェライト相の粒径が微細である必要はなく、かようなフェライト母相に対して第2相を微細均一に存在させることが、高加工性を達成する上で重要である。
ここに、フェライト相以外の生成物、すなわちマルテンサイト相、オーステナイト相、残留オーステナイト相およびセメンタイトの単位面積当たりの総個数が25個/100μm2を下回ると、少ない第2相が強度確保のためブロック状に存在してフェライトの変形を阻害する因子となり、加工性が低下する。
【0026】
フェライト以外の生成物の最近接間最長間隔:4μm 以下
また、上記したフェライト以外の生成物の最近接間最長間隔が4μm より大きいと、均一な組織ではなく軟質相中に硬質な部分が局所的に存在することになり、ひずみ導入時に変形能の差異に起因して不均一な変形となるため、成形性が低下する。
【0027】
従って、980 MPa 以上の引張強さを有した上で、伸びフランジ性や延性に優れた総合的な材質バランスを有し、さらにはクリアランス依存性の少ない伸びフランジ特性を示す、良好なプレス成形を発揮するには、フェライト以外の生成物すなわちマルテンサイト相、ベイナイト相、残留オーステナイト相およびセメンタイトの単位面積当たりの総個数を25個/100μm2以上にすると共に、前記フェライト相以外の生成物の最近接間距離は最長でも4μm 以下とすることが重要である。
【0028】
次に、本発明の製造条件について説明する。
本発明では、上記した鋼板組成と同様の成分組成を好適成分組成とする鋼スラブを、鋳造後直ちにまたは一旦冷却し後述するスラブ温度に加熱したのち、熱間圧延を行い、巻き取って熱延鋼板とする。
以下、熱延鋼板とする際の製造条件について述べる。
【0029】
・スラブ加熱温度(SRT):1050〜1250℃
結晶粒の均一微細化を図るためには、スラブ加熱温度は1250℃以下で、できるかぎり低温とすることが好ましいが、仕上げ圧延温度を確保する必要もあるので、1050〜1250℃の範囲とした。好ましくは1200℃以下である。
【0030】
・仕上げ圧延終了温度:850 〜950 ℃
仕上げ圧延終了温度が 850℃未満では、熱間圧延時の変形抵抗が大きく、また組織の不均一化が生じて層状組織となり、加工性が低下する。一方、950 ℃より高温では均一微細な組織が得られなくなる。よって仕上げ圧延終了温度は 850〜950 ℃の範囲とした。
【0031】
・巻取り温度:450 〜650 ℃
巻取り温度が 450℃を下回ると、硬質なマルテンサイト相が生成し、冷間圧延時の圧延負荷が増大して、圧延性が低下する。一方、650 ℃を上回ると添加したTiの析出物であるTiCが粗大化し、これに起因して均一な組織が得られなくなり、冷延焼鈍後の特性が不十分となる。
【0032】
上記のように熱延鋼板とし、ついで冷間圧延を施したのち、連続焼鈍に供する。この冷間圧延は、通常どおりの条件で行えば良いが、引き続き行う連続焼鈍での昇温過程における回復、再結晶を促進し、より均一な組織を得るためには、冷間圧延における圧下率は35〜65%程度とすることが好ましい。
【0033】
連続焼鈍における焼鈍温度:750 〜900 ℃
焼鈍温度が 750℃より低いと、冷間圧延ままの組織の影響を受けてバンド状組織となり、目的とする特性が得られなくなる。一方、焼鈍温度が 900℃より高くなると、炭化物が粗大化し、結晶粒径が急激に粗大化して、微細均一な組織が得られなくなり、機械特性が劣化する。
【0034】
・焼鈍後の冷却過程における急冷停止温度:200 〜400 ℃
急冷停止温度が 200℃より低いと、硬質なマルテンサイト相が生成し、加工性が劣化する。また、低温変態相とフェライト相との強度差が大きくなり、伸びフランジ性が劣化する。一方、冷却停止温度が 400℃より高いと、パーライト相などの軟質相が生成し、強度レベルが低下してTS≧980 MPa の確保が困難となる。
【0035】
・焼鈍温度から急冷停止温度までの冷却速度X(℃/s)
−4×t+0.14×t2 + 30 ≦X≦−4×t+0.14×t2 +120
ここで、t:冷却時間(s)
冷却速度Xが、−4×t+0.14×t2 + 30 を下回ると、結晶粒径が粗大化するだけでなく、軟質なフェライト相が生成し、低温変態相との強度差が大きくなって、伸びフランジ性が劣化する。一方、冷却速度Xが、−4×t+0.14×t2+120 を上回ると、ベイナイト相が硬質化するため、加工性、延性が劣化する。冷却速度は、冷却初期には高冷却速度として、冷却前半でのフェライトの過剰な生成を抑制し、冷却後半の低温度域では低冷却速度として、フェライトとの硬度差の少ない低温変態相を生成させることが重要である。従って、冷却速度Xは上掲式を満足させるものとした。
より好ましくは、
−4×t+0.14×t2 + 50 ≦X≦−4×t+0.14×t2 +100
の範囲である。
【0036】
なお、上掲式において、冷却時間とは、冷却開始からの経過時間であり、冷却速度とは、上記経過時間時における冷却速度である。
本発明では、図1に例示するように、冷却開始から1秒単位で鋼板の温度を求め、この間の鋼板の温度差から、冷却速度を求めている。ここで、冷却開始からn秒後とn+1秒後との間の冷却速度は、冷却開始からn+0.5 秒後の冷却速度とする。
【0037】
・保温処理温度:200 〜400 ℃
急冷停止後の保温処理温度が 200℃を下回ると、硬質なマルテンサイト相が生成し、加工性が劣化する。一方、400 ℃より高いと低温変態相が軟質化するためTS≧980 MPa を確保するのが困難となる。
【0038】
・保温処理時間:60〜240 秒
保温処理時間が60秒より短いと硬質なマルテンサイト相が生成し、加工性が劣化する。一方、240 秒より長くしても低温変態相の分率はそれ以上増加せず飽和する傾向にあるので、保温処理時間は60〜240 秒とした。
【0039】
図2は、冷却速度と冷却時間の関係を、本発明範囲内と範囲外のものとで比較して示したものである。
質量%で、C:0.085 %、Si:0.14%、Mn:2.98%、Ti:0.012 %、Nb:0.018 %、Al:0.031 %、P:0.013 %およびS:0.0008%を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、1215℃に加熱後、 896℃で仕上げ圧延を終了し、 476℃で巻取り、圧下率:50%の冷間圧延を施してから、焼鈍温度:820 ℃で連続焼鈍を施したのち、引き続く冷却に際し、発明例については、図2に示すように、冷却速度が本発明の適正範囲を満足する条件下で冷却停止温度:246 ℃まで冷却し、この温度に 130秒間保持した。また、比較例1,2については、同図に示したとおり、この冷却過程において冷却速度が一部適正範囲から逸脱する条件下で冷却停止温度:246 ℃まで冷却し、同じく 130秒間保持した。なお、発明例および比較例1,2とも、冷延鋼板の板厚は 1.2mmとした。
【0040】
上記の各冷却条件下で得られた冷延板の、フェライト相の体積分率、フェライト相以外の生成物およびその体積分率、フェライト相以外の生成物の単位面積当たりの総個数およびこれら生成物の最近接間最長間隔ならびに降伏点(YP)、引張強さ(TS)、伸び(El)、穴拡げ率(λ)および圧延方向(L方向)最小曲げ半径についても調べた結果を表1に示す。
なお、ここで穴拡げ率は、後述するように、日本鉄鋼連盟規格 JFST l00lに基づいて穴拡げ試験を実施し、この際、初期穴を打ち抜き時のクリアランスを、板厚の12.5%および板厚の30.0%として求めたものである。また、L方向最小曲げ半径は、後述するようにJIS Z 2248に準拠した押し曲げ法による密着曲げ試験により求めたものである。
【0041】
【表1】

Figure 0003901039
【0042】
同表に示したとおり、本発明の適正範囲を満足する冷却速度で冷却した発明例は、TS≧980 MPa で、かつλ=52%(クリアランス:12.5%),50%(クリアランス:30.0%)という良好な穴拡げ性を得ることができた。
これに対し、比較例1は、TSは良好であったものの、λが41%(クリアランス:12.5%),32%(クリアランス:30.0%)と穴拡げ性に劣っていた。また、比較例2は、λは良好であったものの、TS=656 MPa 程度の引張り強さしか得られなかった。
【0043】
次に、フェライト以外の生成物すなわちマルテンサイト相、ベイナイト相、残留オーステナイト相およびセメンタイトの単位面積当たりの総個数と穴拡げ率との関係について調べた結果を説明する。
質量%で、C:0.085 %、Si:0.11〜0.65%、Mn:2.6 〜3.2 %、Ti:0.009%、Nb:0.015 %、Al:0.031 %、P:0.012 %およびS:0.0009%を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、1050〜1300℃に加熱後、 850〜900 ℃で仕上げ圧延を終了し、 350〜650 ℃で巻取り、圧下率:50%の冷間圧延を施してから、焼鈍温度:700 〜800 ℃で連続焼鈍を施したのち、引き続く冷却に際し、冷却開始 0.5秒後の冷却速度:10〜200 ℃/s、冷却開始 4.5秒後の冷却速度:10〜200 ℃/sの条件下で、冷却停止温度:200 〜450 ℃まで冷却し、この温度に 145秒間保持して板厚:1.2 mmの冷延鋼板を製造した。
【0044】
かくして得られた冷延板について、フェライト以外の生成物すなわちマルテンサイト相、ベイナイト相、残留オーステナイト相およびセメンタイトの単位面積:100 μm2当たりの総個数と穴拡げ率λ(クリアランス:12.5%)との関係について調べた結果を図3に示す。
同図に示したとおり、上記した生成物の単位面積当たりの総個数を25個/100μm2以上とすることにより、λ≧50%の高い穴拡げ率が得られることが分かる。
【0045】
次に、上記したフェライト以外の生成物の最近接間距離と穴拡げ率との関係について調べた結果を説明する。
質量%で、C:0.085 %、Si:0.15〜0.55%、Mn:2.6 〜3.4 %、Ti:0.012%、Nb:0.015 %、Al:0.041 %、P:0.008 %およびS:0.0007%を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、1100〜1300℃に加熱後、 850〜1000℃で仕上げ圧延を終了し、 400〜650 ℃で巻取り、圧下率:50%の冷間圧延を施してから、焼鈍温度:700 〜920 ℃で連続焼鈍を施したのち、引き続く冷却に際し、冷却開始 0.5秒後の冷却速度:10〜200 ℃/s、冷却開始 4.5秒後の冷却速度:10〜200 ℃/sの条件下で、冷却停止温度:200 〜450 ℃まで冷却し、この温度に 180秒間保持して板厚:1.2 mmの冷延鋼板を製造した。
【0046】
かくして得られた冷延板について、フェライト以外の生成物の最近接間最長間隔と穴拡げ率λ(クリアランス:12.5%)との関係について調べた結果を図4に示す。
同図に示したとおり、フェライト以外の生成物の最近接間最長間隔を4μm 以下とすることにより、λ≧50%の高い穴拡げ率が得られることが分かる。
【0047】
次に、打ち抜きダイス内径を種々に変化させることによってクリアランスを変化させた場合の、クリアランスと穴拡げ率との関係について調べた結果を説明する。
質量%で、C:0.080 %、Si:0.08〜0.56%、Mn:2.7 〜3.3 %、Ti:0.008%、Nb:0.018 %、Al:0.038 %、P:0.016 %およびS:0.0008%を含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、1215℃に加熱後、 896℃で仕上げ圧延を終了し、 476℃で巻取り、圧下率:50%の冷間圧延を施してから、焼鈍温度:840 ℃で連続焼鈍を施したのち、引き続く冷却に際し、冷却開始0.5 秒後の冷却速度:60℃/s、冷却開始 4.5秒後の冷却速度:40℃/sの条件下で、本発明鋼の場合には冷却停止温度:346 ℃まで冷却し、一方比較鋼の場合には冷却停止温度:150 ℃まで冷却して、それぞれの冷却停止温度に 135秒間保持して板厚:1.2 mmの冷延鋼板を製造した。
【0048】
かくして得られた冷延板について、打ち抜きダイス内径を種々に変化させることによって、穴拡げ率試験における初期穴打ち抜き時のクリアランスを変化させた場合の、クリアランスと穴拡げ率λとの関係について調べた結果を図5に示す。
同図に示したとおり、本発明に従う冷延鋼板は、標準条件であるクリアランス:12.5%の場合にはλ≧50%を確保でき、また、リアランスの如何にかかわらずλが50%前後の良好な穴拡げ率が得られている。
【0049】
【実施例】
表2に示す成分組成になる鋼スラブを、表3に示す各条件で処理して、板厚:1.2 〜1.6 mmの冷延鋼板を製造した。なお、今回用いた板厚範囲であれば、曲げ特性等の鋼板特性評価値に板厚の影響はないことを確認している。
得られた冷延鋼板のフェライト相の体積分率、フェライト相以外の生成物の種類およびその体積分率、フェライト相以外の生成物の単位面積当たりの総個数およびこれら生成物の最近接間最長間隔について調べた結果を、表4に示す。
また、得られた冷延鋼板の降伏点(YP)、引張強さ(TS)、伸び(El)、穴拡げ率(λ)およびL方向最小曲げ半径についても調べ、その結果を表4に併記する。
【0050】
なお、各特性は次のようにして評価した。
・引張り特性:圧延方向と直交する方向を長手方向(引張り方向)とするJlS Z2201の5号試験片を用い、JIS Z 2241に準拠した引張り試験を行って、評価した。
・曲げ特性:圧延方向を長手方向とする40mm幅×200 mm長さの試験片を用い、JIS Z 2248に準拠した押し曲げ法による密着曲げ試験を行って、評価した。
・穴拡げ率:日本鉄鋼連盟規格 JFST l00lに基づき実施した。初期直径d0 =10mmの穴を、クリアランスを板厚の12.5%あるいは30.0%として打ち抜き、60°の円錐ポンチを上昇させて穴を拡げた際に、亀裂が板厚貫通したところでポンチ上昇を止め、亀裂貫通後の打抜き穴径dを測定し、次式により、穴拡げ率λを求めた。
λ=((d−d0 )/d0 )× 100(%)
【0051】
・フェライト以外の生成物の単位面積 100μm2当たりの総個数:板厚1/4 面近傍の倍率:5000倍の SEM像を基に画像解析にて2階調化し、フェライト相以外をカウントし、3視野のカウント数を単純平均した。
・フェライト以外の生成物の最近接間最長間隔:板厚1/4 面近傍の倍率:5000倍の SEM像を基に 100μm2内に存在する任意形状の各相の重心間距離を測定して求めた。
【0052】
【表2】
Figure 0003901039
【0053】
【表3】
Figure 0003901039
【0054】
【表4】
Figure 0003901039
【0055】
表4に示したとおり、発明例はいずれも、TS≧980 MPa という高い引張り強さと共に、λが50%前後の優れた穴拡げ性およびL方向最小曲げ半径が0mmという優れた曲げ性が併せて得られている。
【0056】
【発明の効果】
かくして、本発明によれば、引張強さTSが 980 MPa以上で、しかも曲げ性や伸びフランジ性等の加工性に優れる超高強度冷延鋼板を安定して得ることができる。
【図面の簡単な説明】
【図1】 本発明に従う冷却速度の算出要領を示した図である。
【図2】 冷却速度と冷却時間の関係を、本発明範囲内と範囲外のものとで比較して示した図である。
【図3】 フェライト以外の生成物の単位面積:100 μm2当たりの総個数と穴拡げ率λとの関係を示したグラフである。
【図4】 フェライト以外の生成物の最近接間最長間隔と穴拡げ率λとの関係を示したグラフである。
【図5】 打ち抜き時におけるクリアランスと穴拡げ率λとの関係を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention is mainly suitable for use in seat parts such as seat frames and automobile parts such as bumpers and impact beams, and has a plate thickness of about 0.8 to 2.5 mm, a tensile strength TS of 980 MPa or more, and bendability and elongation. The present invention relates to an ultra-high-strength cold-rolled steel sheet excellent in workability such as flangeability and a method for producing the same.
[0002]
[Prior art]
As a strengthening mechanism of steel, processing strengthening, structure strengthening, precipitation strengthening and the like have been widely known. However, although these strengthening measures can achieve improvement in material strength, on the other hand, workability has been reduced.
[0003]
In addition, in conventional high-strength steel sheets, there are a number of locations where cracks can originate during hole expansion tests to evaluate stretch flangeability due to structural inhomogeneities and local mixing of hard and soft phases. It is said that this leads to a decrease in hole expandability, that is, stretch flangeability. In addition, such workability generally decreases greatly as the strength of the steel plate increases.
For this reason, in the conventional steel sheet manufacturing technology, in reality, processing characteristics such as ductility, bendability and stretch flangeability must be sacrificed in exchange for higher strength.
[0004]
As technologies for high-strength cold-rolled steel sheets, for example, JP-A-3-277742 and JP-A-4-236741 disclose steel sheets having a tensile strength of 980 MPa or more. It was difficult to say that it has a good workability.
Japanese Patent Application Laid-Open No. 61-19733 discloses a hot-rolled steel sheet excellent in stretch flangeability, but this steel sheet has a problem of low strength-ductility balance.
Further, JP-A-4-350 discloses a steel plate excellent in stretch flangeability, but this steel plate has a tensile strength less than 780 MPa.
[0005]
[Problems to be solved by the invention]
Generally, strength and workability tend to contradict each other, and at present there are good workability such as bendability and stretch flangeability, and the molding has a tensile strength of 980 MPa or more. An ultra-high strength cold-rolled steel sheet having excellent properties is not known.
The present invention has been developed in view of the above situation, has a tensile strength TS of 980 MPa or more, has excellent bendability necessary for obtaining good press formability, and is suitable for punching and the like. The object is to propose an ultra-high-strength cold-rolled steel sheet for machining that has a small clearance dependency and also has excellent stretch flangeability, together with its advantageous manufacturing method.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the inventors conducted numerous experiments from the aspects of steel composition, production conditions, metal structure, and the like, and as a result of intensive studies, the following knowledge was obtained.
That is, by controlling the components and manufacturing conditions to an appropriate range, and uniformly refining the structure before cold rolling, and by controlling the cold rolling annealing conditions, a certain amount of products other than the ferrite phase are within a certain interval. By subdividing the structure into fractions, the difference in local deformability is advantageously eliminated, and macro uniform deformation is possible. As a result, superior bending is achieved without reducing the strength level. And the stretch flangeability and high strength-ductility balance can be ensured together, thus obtaining the knowledge that advantageous improvement of press molding can be achieved.
[0007]
The present invention has been completed based on the above findings, and the gist of the present invention is as follows.
1. C: 0.05-0.10 mass%,
Si: 0.01-1.00mass%,
Mn: 2.0-3.5 mass%
Ti: 0.001 to 0.030 mass%,
Nb: 0.001 to 0.050 mass%,
Al: 0.05 mass% or less,
P: 0.02 mass% or less and
S: 0.0030 mass% or less
The balance is Fe and inevitable impurities, and the volume fraction of the ferrite phase is 40% or more and 60% or less, and the martensite phase, bainite phase, residual austenite phase and cementite formed in the steel. Total number per unit area of 25 / 100μm2An ultra-high-strength cold-rolled steel sheet having excellent formability, characterized in that the closest distance between these products is 4 μm or less at the longest.
[0008]
2. In the above 1, the steel plate is further
Cu: 0.01-0.50mass%,
Ni: 0.01-0.50mass%,
Mo: 0.01-0.50mass% and
Cr: 0.01 ~ 0.50mass%
An ultra-high-strength cold-rolled steel sheet having excellent formability, characterized by having a composition containing one or more selected from among the above.
[0009]
3. In the above 1 or 2, the steel plate is further
V: 0.001 to 0.300 mass%,
Zr: 0.001 to 0.300 mass% and
B: 0.0001 to 0.0050 mass%
An ultra-high-strength cold-rolled steel sheet having excellent formability, characterized by having a composition containing one or more selected from among the above.
[0010]
4). In the above 1, 2 or 3, the steel plate is further
Ca: 0.0001 to 0.0050 mass% and
REM: 0.0001 ~ 0.0050mass%
An ultra-high-strength cold-rolled steel sheet having excellent formability, characterized in that it has a composition containing at least one selected from the above.
[0011]
5. C: 0.05-0.10 mass%,
    Si: 0.01-1.00mass%,
    Mn: 2.0-3.5 mass%
    Ti: 0.001 to 0.030 mass%,
    Nb: 0.001 to 0.050 mass%,
    Al: 0.05 mass% or less,
    P: 0.02 mass% or less and
    S: 0.0030 mass% or less
ContainsAnd the rest Fe And inevitable impuritiesThe steel slab having the composition is immediately or once cooled after casting and heated to 1050 to 1250 ° C, and then hot-rolled at a finish rolling end temperature of 850 to 950 ° C and wound at 450 to 650 ° C after the end of rolling. After hot rolling and then cold rolling, when performing continuous annealing, it is heated to a temperature range of 750 ° C to 900 ° C, and in the subsequent cooling process, a temperature range of 200 ° C to 400 ° C Until the cooling rate (X) satisfies the range of the following formula, and then the temperature is maintained at 200 ° C or higher and 400 ° C or lower for 60 to 240 seconds. A method for producing ultra-high-strength cold-rolled steel sheets with excellent properties.
                                Record
    -4xt + 0.14xt2 +30 ≦ X ≦ −4 × t + 0.14 × t2 +120
          Where X: cooling rate (° C / s)
                  t: Cooling time (s)
[0012]
6). In 5 above, the steel slab further
    Cu: 0.01-0.50mass%,
    Ni: 0.01-0.50mass%,
    Mo: 0.01-0.50mass% and
    Cr: 0.01 ~ 0.50mass%
A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, wherein the composition contains one or more selected from the above.
7). In 5 or 6 above, the steel slab is further
    V: 0.001 to 0.300 mass%,
    Zr: 0.001 to 0.300 mass% and
    B: 0.0001 to 0.0050 mass%
A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, wherein the composition contains one or more selected from the above.
8). In the above-mentioned 5, 6 or 7, the steel slab is further
    Ca: 0.0001 to 0.0050 mass% and
   REM: 0.0001 ~ 0.0050mass%
A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, characterized in that it comprises a composition containing at least one selected from the above.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
First, the reason why the component composition of the steel sheet is limited to the above range in the present invention will be described.
C: 0.05-0.10mass%
C is an essential element for strengthening steel using a low-temperature transformation phase. In order to obtain the target tensile strength of 980 MPa or more, it is necessary to contain 0.05 mass% or more of C. However, if it exceeds 0.10 mass%, the weldability is remarkably deteriorated. mass%.
[0014]
Si: 0.01-1.00mass%
Si is an element that contributes to strength improvement, but if it is less than 0.01 mass%, the effect of addition is poor. On the other hand, if it exceeds 1.00 mass%, ferrite transformation is promoted and strengthening by the low-temperature transformation phase is insufficient. Therefore, the amount of Si was limited to the range of 0.01 to 1.00 mass%.
[0015]
Mn: 2.0 to 3.5 mass%
Mn is an element that plays an important role in obtaining a bainite structure. In addition, harmful solid solution S is detoxified as MnS, and ArThreeIt contributes to refinement of crystal grains through the action of lowering the transformation point and effectively contributes to the improvement of the strength-ductility balance. In the cooling process during the heat annealing process after cold rolling, in order to suppress the formation of the ferrite phase and stably obtain a low temperature transformation phase from the viewpoint of securing TS, an amount of Mn of 2.0 mass% or more is necessary. If the content exceeds 3.5 mass%, the formation of the ferrite phase is excessively suppressed, and a necessary amount of ferrite phase cannot be secured. Therefore, the Mn content is limited to the range of 2.0 to 3.5 mass%.
[0016]
Ti: 0.001 to 0.030 mass%
Ti, like Nb described later, is an element that is effective for affecting the form of precipitates and the recrystallization temperature, resulting in finer and more uniform structure, and improving elongation and hole expansibility. That is, Ti exists as TiC in the slab heating stage, refines the initial austenite grains, and induces dynamic recrystallization in the subsequent hot rolling process. Further, when this Ti is added in combination with Nb, the minimum cooling rate at which ferrite transformation does not occur is reduced, and the effect of improving the hardenability is brought about.
In order to obtain the above effect, 0.001 mass% or more of Ti is necessary. However, if it exceeds 0.030 mass%, a hard carbide is formed and the stretch flangeability is deteriorated, so the Ti amount is 0.001 to 0.030. Limited to the mass% range. More preferably, it is the range of 0.005-0.015 mass%.
[0017]
Nb: 0.001 to 0.050 mass%
Nb is an element that affects the existence form of precipitates such as NbC and the recrystallization temperature. In particular, in the present invention, Nb effectively works to make the structure fine and uniform, suppresses the formation of ferrite-pearlite, and makes the structure mainly composed of bainite, which is a low-temperature transformation phase. It has the effect of providing high extensibility and hole expandability. Such an effect is manifested by adding 0.001 mass% or more, but if it exceeds 0.050 mass%, a large amount of hard precipitates are formed in the steel, and the stretch flangeability deteriorates. Therefore, the amount of Nb was limited to the range of 0.001 to 0.050 mass%. More preferably, it is 0.005 to 0.020 mass%.
[0018]
Al: 0.05 mass% or less
Since Al contributes as a deoxidizer and is an effective element for improving the yield of carbide forming elements, it is preferably contained in an amount of 0.015 mass% or more. However, even if added in excess of 0.05 mass%, the effect reaches saturation and rather deterioration of workability and surface properties occurs. Therefore, the Al content is limited to 0.05 mass% or less.
[0019]
P: 0.02 mass% or less
P is an element that not only contributes to the improvement of strength but also is effective in preventing hydrogen embrittlement and delayed fracture due to hydrogen accumulated in the steel, so it is preferably contained in an amount of 0.005 mass% or more. However, if contained excessively, not only will the structure be uneven, but solidification segregation during casting will become prominent, leading to internal cracks and deterioration of workability, so the P content is 0.02 mass% or less. It was supposed to be limited to.
[0020]
S: 0.0030 mass% or less
Since S exists as non-metallic inclusions in steel and becomes a stress concentration source during stretch flange forming, it is desirable to reduce the content thereof as much as possible. However, if the amount of S is 0.0030 mass% or less, the hole expandability is not so badly affected, so 0.0030 mass% is acceptable as the upper limit. More preferably, it is 0.0010 mass% or less.
[0021]
The basic components have been described above. However, in the present invention, other elements described below can be appropriately contained.
Cu: 0.01 to 0.50 mass%, Ni: 0.01 to 0.50 mass%, Mo: 0.01 to 0.50 mass%, and Cr: 0.01 to 0.50 mass%
Cu, Ni, Mo and Cr are all useful elements that can improve the strength without greatly reducing the elongation, but the effect is small when the content is less than 0.01 mass%, respectively, while 0.50 mass% Even if it is contained in a large amount exceeding the range, there is no further effect, but it is disadvantageous economically. Accordingly, the amounts of Cu, Ni, Mo, and Cr are limited to the range of 0.01 to 0.50 mass%, respectively. More preferably, it is in the range of 0.01 to 0.20 mass%, and any element exhibits the same behavior when added alone or in combination.
[0022]
V: 0.001 to 0.300 mass%, Zr: 0.001 to 0.300 mass% and B: 0.0001 to 0.0050 mass%, one or more selected from
All of these elements are effective elements for increasing the strength of the steel sheet. Furthermore, V and Zr are elements that improve local elongation in addition to the above effects. B also has an effect of suppressing the formation of a soft phase and promoting the formation of a low temperature transformation phase during rapid cooling after the end of hot rolling. In order to obtain these effects, it is necessary that V and Zr each contain 0.001 mass% or more, and B contain 0.0001 mass% or more. On the other hand, if V and Zr are added in amounts of 0.300 mass% and B exceeds 0.0050 mass%, further effects cannot be obtained, so V: 0.001 to 0.300 mass%, Zr: 0.001 to 0.300 mass%, and B: It was made to contain in 0.0001-0.0050 mass%. In addition, with any element, the same behavior is exhibited whether it is added alone or in combination.
[0023]
Ca: at least one selected from 0.0001 to 0.0050 mass% and REM: 0.0001 to 0.0050 mass%
Both Ca and REM have the effect of suppressing deterioration in stretch flangeability by spheroidizing precipitates such as sulfides to reduce sharp precipitates and reducing stress concentration. However, when the content is less than 0.0001 mass%, the effect of addition is poor, while when it exceeds 0.0050 mass%, the effect of addition reaches saturation. Therefore, both Ca and REM are included in the range of 0.0001 to 0.0050 mass%.
In the steel sheet of the present invention, the balance other than the above components is Fe and inevitable impurities.
[0024]
As mentioned above, although the appropriate range of each component was demonstrated, in this invention, it is not enough to adjust each component to said range, and steel structure is also important.
-Ferrite phase volume fraction: 40-60%
The ratio of the ferrite phase is an important factor for ensuring ductility. If the volume fraction is less than 40%, it is difficult to ensure ductility, while if it exceeds 60%, it is difficult to ensure TS ≧ 980 MPa. The volume fraction of the ferrite phase was limited to the range of 40-60%.
[0025]
-Total number of martensite phase, bainite phase, residual austenite phase and cementite per unit area other than ferrite: 25 / 100μm2more than
By finely and finely producing a fine product, the ferrite phase is not completely surrounded by the second phase, and a continuous structure is formed without taking an isolated state. Thus, the deformation due to strain at the time of molding is handled by the continuous soft ferrite phase, thereby achieving high workability and low clearance dependency. When the clearance fluctuates, sagging occurs and the ratio of shear plane and fractured surface changes. However, in the present invention, ferrite with high deformability takes charge of deformation and is not easily affected by the clearance. In addition, it is not necessary for the particle diameter of the ferrite phase to be fine, and it is important to achieve a high workability by allowing the second phase to exist finely and uniformly with respect to such a ferrite matrix phase.
Here, the total number of products per unit area of products other than the ferrite phase, that is, martensite phase, austenite phase, residual austenite phase and cementite is 25/100 μm.2If it is less than 2, the small second phase exists in the form of a block for securing the strength and becomes a factor inhibiting the deformation of the ferrite, and the workability is lowered.
[0026]
Maximum distance between nearest neighbors of products other than ferrite: 4 μm or less
In addition, if the longest distance between the nearest neighbors of products other than the above ferrite is larger than 4 μm, a hard part is locally present in the soft phase rather than a uniform structure, and there is a difference in deformability when strain is introduced. Due to this, the deformation becomes non-uniform, so that the moldability is lowered.
[0027]
Therefore, a good press forming with a tensile strength of 980 MPa or more, a comprehensive material balance excellent in stretch flangeability and ductility, and exhibiting stretch flange characteristics with little clearance dependency. To achieve this, the total number of products per unit area of products other than ferrite, that is, martensite phase, bainite phase, residual austenite phase and cementite is 25 / 100μm.2In addition to the above, it is important that the closest distance between products other than the ferrite phase is 4 μm or less at the longest.
[0028]
Next, the manufacturing conditions of the present invention will be described.
In the present invention, a steel slab having a component composition similar to the steel sheet composition described above as a suitable component composition is cooled immediately after casting or once cooled and heated to the slab temperature described below, and then hot rolled, wound up and hot rolled. A steel plate is used.
Hereinafter, the manufacturing conditions for producing a hot-rolled steel sheet will be described.
[0029]
・ Slab heating temperature (SRT): 1050 to 1250 ° C
In order to achieve uniform refinement of crystal grains, the slab heating temperature is 1250 ° C. or lower, preferably as low as possible, but it is also necessary to ensure the finish rolling temperature, so the range is 1050 to 1250 ° C. . Preferably it is 1200 degrees C or less.
[0030]
・ Finish rolling finish temperature: 850-950 ℃
When the finish rolling finish temperature is less than 850 ° C., the deformation resistance during hot rolling is large, and the structure becomes non-uniform, resulting in a lamellar structure, and the workability deteriorates. On the other hand, when the temperature is higher than 950 ° C., a uniform fine structure cannot be obtained. Therefore, the finish rolling end temperature was set to a range of 850 to 950 ° C.
[0031]
-Winding temperature: 450-650 ° C
When the coiling temperature is lower than 450 ° C., a hard martensite phase is generated, the rolling load during cold rolling is increased, and the rollability is lowered. On the other hand, when the temperature exceeds 650 ° C., TiC, which is a precipitate of added Ti, becomes coarse, and as a result, a uniform structure cannot be obtained, and the properties after cold rolling annealing become insufficient.
[0032]
As described above, a hot-rolled steel sheet is used, and after cold rolling, it is subjected to continuous annealing. This cold rolling may be performed under normal conditions, but in order to promote recovery and recrystallization in the temperature rising process in the subsequent continuous annealing, and to obtain a more uniform structure, the reduction ratio in cold rolling Is preferably about 35 to 65%.
[0033]
Annealing temperature in continuous annealing: 750-900 ° C
When the annealing temperature is lower than 750 ° C., it becomes a band-like structure under the influence of the structure as it is cold-rolled, and the desired characteristics cannot be obtained. On the other hand, when the annealing temperature is higher than 900 ° C., the carbides are coarsened, the crystal grain size is rapidly coarsened, a fine and uniform structure cannot be obtained, and the mechanical properties are deteriorated.
[0034]
・ Quenching stop temperature in the cooling process after annealing: 200 to 400 ℃
When the quenching stop temperature is lower than 200 ° C., a hard martensite phase is formed and workability is deteriorated. In addition, the strength difference between the low-temperature transformation phase and the ferrite phase increases, and the stretch flangeability deteriorates. On the other hand, when the cooling stop temperature is higher than 400 ° C., a soft phase such as a pearlite phase is generated, the strength level is lowered, and it is difficult to secure TS ≧ 980 MPa.
[0035]
・ Cooling rate X (℃ / s) from annealing temperature to quenching stop temperature
-4xt + 0.14xt2 +30 ≦ X ≦ −4 × t + 0.14 × t2 +120
Where t: cooling time (s)
Cooling rate X is -4xt + 0.14xt2 If it is less than +30, not only the crystal grain size becomes coarse, but also a soft ferrite phase is formed, the strength difference from the low temperature transformation phase becomes large, and the stretch flangeability deteriorates. On the other hand, the cooling rate X is −4 × t + 0.14 × t2If it exceeds +120, the bainite phase becomes hard, so the workability and ductility deteriorate. The cooling rate is a high cooling rate at the beginning of cooling, suppressing excessive formation of ferrite in the first half of cooling, and a low cooling rate in the low temperature range in the second half of cooling, producing a low-temperature transformation phase with little hardness difference from ferrite. It is important to let Accordingly, the cooling rate X satisfies the above formula.
More preferably,
-4xt + 0.14xt2 +50 ≦ X ≦ −4 × t + 0.14 × t2 +100
Range.
[0036]
In the above formula, the cooling time is the elapsed time from the start of cooling, and the cooling rate is the cooling rate at the elapsed time.
In the present invention, as illustrated in FIG. 1, the temperature of the steel plate is obtained in units of 1 second from the start of cooling, and the cooling rate is obtained from the temperature difference of the steel plate during this time. Here, the cooling rate between n seconds and n + 1 seconds after the start of cooling is the cooling rate after n + 0.5 seconds from the start of cooling.
[0037]
・ Insulation temperature: 200 to 400 ° C
When the temperature of the heat treatment after the rapid cooling stop is below 200 ° C, a hard martensite phase is generated and workability deteriorates. On the other hand, when the temperature is higher than 400 ° C., the low temperature transformation phase becomes soft, and it becomes difficult to ensure TS ≧ 980 MPa.
[0038]
・ Insulation time: 60-240 seconds
When the heat treatment time is shorter than 60 seconds, a hard martensite phase is generated and the workability deteriorates. On the other hand, even if the time is longer than 240 seconds, the fraction of the low temperature transformation phase does not increase any more and tends to saturate, so the heat treatment time was set to 60 to 240 seconds.
[0039]
FIG. 2 shows the relationship between the cooling rate and the cooling time by comparing the range of the present invention with that outside the range of the present invention.
In mass%, C: 0.085%, Si: 0.14%, Mn: 2.98%, Ti: 0.012%, Nb: 0.018%, Al: 0.031%, P: 0.013% and S: 0.0008%, the balance being Fe The steel slab, which has an inevitable impurity composition, is heated to 1215 ° C, finish-rolled at 896 ° C, wound at 476 ° C, cold-rolled at a reduction ratio of 50%, and then annealed at: After the continuous annealing at 820 ° C., during the subsequent cooling, as shown in FIG. 2, the invention example is cooled to a cooling stop temperature of 246 ° C. under the condition that the cooling rate satisfies the proper range of the present invention, This temperature was maintained for 130 seconds. In Comparative Examples 1 and 2, as shown in the figure, the cooling rate was cooled to a cooling stop temperature of 246 ° C. under the condition that the cooling rate partially deviated from the appropriate range in this cooling process, and held for 130 seconds. In both the inventive example and the comparative examples 1 and 2, the thickness of the cold-rolled steel sheet was 1.2 mm.
[0040]
Of the cold-rolled sheets obtained under the above cooling conditions, the volume fraction of the ferrite phase, the product other than the ferrite phase and the volume fraction thereof, the total number of the products other than the ferrite phase per unit area and their production Table 1 shows the results of examining the longest distance between the closest points of the objects, the yield point (YP), the tensile strength (TS), the elongation (El), the hole expansion ratio (λ), and the minimum bending radius in the rolling direction (L direction). Shown in
As will be described later, the hole expansion rate was determined by conducting a hole expansion test based on the Japan Iron and Steel Federation standard JFST l00l. At this time, the clearance when punching the initial hole was 12.5% of the plate thickness and the plate thickness. It is calculated as 30.0%. Further, the minimum bending radius in the L direction is obtained by an adhesion bending test by a push bending method based on JIS Z 2248 as described later.
[0041]
[Table 1]
Figure 0003901039
[0042]
As shown in the table, invention examples cooled at a cooling rate that satisfies the appropriate range of the present invention are TS ≧ 980 MPa, λ = 52% (clearance: 12.5%), 50% (clearance: 30.0%) It was possible to obtain a good hole expansibility.
On the other hand, in Comparative Example 1, although TS was good, λ was 41% (clearance: 12.5%) and 32% (clearance: 30.0%), and the hole expandability was inferior. In Comparative Example 2, although λ was good, only a tensile strength of about TS = 656 MPa was obtained.
[0043]
Next, the results of examining the relationship between the number of products other than ferrite, that is, the martensite phase, the bainite phase, the retained austenite phase, and the total number of cementite per unit area and the hole expansion ratio will be described.
In mass%, C: 0.085%, Si: 0.11-0.65%, Mn: 2.6-3.2%, Ti: 0.009%, Nb: 0.015%, Al: 0.031%, P: 0.012% and S: 0.0009% The remainder is a steel slab with a composition of Fe and inevitable impurities. After heating to 1050-1300 ° C, finish rolling is finished at 850-900 ° C, winding is performed at 350-650 ° C, and the reduction rate is 50%. After performing cold rolling, after performing continuous annealing at an annealing temperature of 700 to 800 ° C, the cooling rate after the start of cooling is 0.5 to 10 ° C / s, and the cooling rate is 4.5 seconds after the start of cooling. : Cooling stop temperature: 200-450 ° C. under the condition of 10-200 ° C./s, and kept at this temperature for 145 seconds to produce a cold-rolled steel sheet having a thickness of 1.2 mm.
[0044]
About the cold-rolled sheet thus obtained, the product area other than ferrite, that is, the unit area of martensite phase, bainite phase, residual austenite phase and cementite: 100 μm2FIG. 3 shows the results of examining the relationship between the total number of holes and the hole expansion rate λ (clearance: 12.5%).
As shown in the figure, the total number of the above products per unit area is 25 / 100μm2It can be seen that a high hole expansion rate of λ ≧ 50% can be obtained by the above.
[0045]
Next, the results of examining the relationship between the closest distance of products other than the ferrite described above and the hole expansion rate will be described.
In mass%, C: 0.085%, Si: 0.15-0.55%, Mn: 2.6-3.4%, Ti: 0.012%, Nb: 0.015%, Al: 0.041%, P: 0.008% and S: 0.0007% The remainder of the steel slab with the composition of Fe and inevitable impurities is heated to 1100-1300 ° C, finish-rolling is completed at 850-1000 ° C, wound at 400-650 ° C, and the reduction rate is 50%. After performing cold rolling, after performing continuous annealing at an annealing temperature of 700 to 920 ° C, the cooling rate at the start of cooling 0.5 seconds after cooling starts: 10 to 200 ° C / s, the cooling rate at 4.5 seconds after starting cooling : Cooling stop temperature: 200-450 ° C. under the condition of 10-200 ° C./s, and kept at this temperature for 180 seconds to produce a cold-rolled steel plate having a thickness of 1.2 mm.
[0046]
FIG. 4 shows the result of examining the relationship between the longest distance between the closest points of products other than ferrite and the hole expansion ratio λ (clearance: 12.5%) of the cold-rolled sheet thus obtained.
As shown in the figure, it can be seen that a high hole expansion ratio of λ ≧ 50% can be obtained by setting the longest distance between the closest points of products other than ferrite to 4 μm or less.
[0047]
Next, the results of examining the relationship between the clearance and the hole expansion rate when the clearance is changed by variously changing the inner diameter of the punching die will be described.
In mass%, C: 0.080%, Si: 0.08-0.56%, Mn: 2.7-3.3%, Ti: 0.008%, Nb: 0.018%, Al: 0.038%, P: 0.016% and S: 0.0008% The remainder is a steel slab with a composition of Fe and inevitable impurities. After heating to 1215 ° C, finish rolling is completed at 896 ° C, winding at 476 ° C, and cold rolling with a reduction ratio of 50% is performed. After the continuous annealing at 840 ° C, the cooling rate is 60 ° C / s after the start of cooling: 60 ° C / s, and the cooling rate after 4.5 seconds: 40 ° C / s. In the case of the steel of the present invention, the cooling stop temperature is cooled to 346 ° C, while in the case of the comparative steel, it is cooled to the cooling stop temperature: 150 ° C and held at each cooling stop temperature for 135 seconds. mm cold-rolled steel sheets were produced.
[0048]
With respect to the cold-rolled sheet thus obtained, the relationship between the clearance and the hole expansion ratio λ when the initial hole punching clearance in the hole expansion ratio test was changed by variously changing the inner diameter of the punching die was examined. The results are shown in FIG.
As shown in the figure, the cold-rolled steel sheet according to the present invention can secure λ ≧ 50% when the clearance is 12.5%, which is a standard condition, and λ is around 50% regardless of the rearance. A large hole expansion rate is obtained.
[0049]
【Example】
Steel slabs having the composition shown in Table 2 were processed under the conditions shown in Table 3 to produce cold-rolled steel sheets having a plate thickness of 1.2 to 1.6 mm. It has been confirmed that there is no influence of the plate thickness on the evaluation value of the steel plate characteristics such as the bending property within the range of the plate thickness used this time.
The volume fraction of the ferrite phase of the cold-rolled steel sheet obtained, the type of product other than the ferrite phase and its volume fraction, the total number of products other than the ferrite phase per unit area, and the longest distance between these products The results of examining the intervals are shown in Table 4.
In addition, the yield point (YP), tensile strength (TS), elongation (El), hole expansion ratio (λ), and minimum bending radius in the L direction of the obtained cold-rolled steel sheet were also examined, and the results are also shown in Table 4. To do.
[0050]
Each characteristic was evaluated as follows.
-Tensile properties: Evaluation was performed by using a No. 5 test piece of JlS Z2201 whose longitudinal direction (tensile direction) is perpendicular to the rolling direction, and performing a tensile test based on JIS Z 2241.
-Bending characteristics: Using a test piece of 40 mm width x 200 mm length with the rolling direction as the longitudinal direction, an adhesion bending test by a push bending method based on JIS Z 2248 was performed and evaluated.
-Hole expansion rate: Implemented in accordance with the Japan Iron and Steel Federation standard JFST l00l. Initial diameter d0 = When a hole of 10mm is punched with a clearance of 12.5% or 30.0% of the plate thickness and the hole is widened by raising the 60 ° conical punch, the punch stops rising when the crack penetrates the plate thickness, and after the crack penetrates Was measured, and the hole expansion ratio λ was determined by the following equation.
λ = ((d−d0 ) / D0 ) X 100 (%)
[0051]
・ Unit area of products other than ferrite 100μm2Total number of hits: Magnification in the vicinity of 1/4 thickness of the plate thickness: Two gradations were obtained by image analysis based on SEM images of 5000 times, counts other than the ferrite phase were counted, and the count numbers of the three fields were simply averaged.
・ Maximum distance between nearest neighbors of products other than ferrite: Magnification in the vicinity of 1/4 thickness of plate: 100 μm based on SEM image of 5000 times2It was obtained by measuring the distance between the centers of gravity of each phase of an arbitrary shape existing in the inside.
[0052]
[Table 2]
Figure 0003901039
[0053]
[Table 3]
Figure 0003901039
[0054]
[Table 4]
Figure 0003901039
[0055]
As shown in Table 4, all the inventive examples have a high tensile strength of TS ≧ 980 MPa, an excellent hole expansibility with λ of around 50%, and an excellent bendability with a minimum bending radius in the L direction of 0 mm. It has been obtained.
[0056]
【The invention's effect】
Thus, according to the present invention, an ultra-high strength cold-rolled steel sheet having a tensile strength TS of 980 MPa or more and excellent workability such as bendability and stretch flangeability can be stably obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a calculation procedure of a cooling rate according to the present invention.
FIG. 2 is a diagram showing the relationship between the cooling rate and the cooling time in the range of the present invention and that outside the range of the present invention.
[Figure 3] Unit area of products other than ferrite: 100 μm26 is a graph showing the relationship between the total number of hits and the hole expansion rate λ.
FIG. 4 is a graph showing the relationship between the longest distance between closest points of products other than ferrite and the hole expansion ratio λ.
FIG. 5 is a graph showing the relationship between the clearance and the hole expansion rate λ at the time of punching.

Claims (8)

C:0.05〜0.10mass%、
Si:0.01〜1.00mass%、
Mn:2.0 〜3.5 mass%、
Ti:0.001 〜0.030 mass%、
Nb:0.001 〜0.050 mass%、
Al:0.05mass%以下、
P:0.02mass%以下および
S:0.0030mass%以下
を含有し、残部はFeおよび不可避的不純物の組成になり、フェライト相の体積分率が40%以上、60%以下で、しかも鋼中に生成したマルテンサイト相、ベイナイト相、残留オーステナイト相およびセメンタイトの単位面積当たりの総個数が25個/100μm2以上で、かつこれら生成物の最近接間距離が最長でも4μm 以下であることを特徴とする成形性に優れる超高強度冷延鋼板。
C: 0.05-0.10 mass%,
Si: 0.01-1.00mass%,
Mn: 2.0-3.5 mass%
Ti: 0.001 to 0.030 mass%,
Nb: 0.001 to 0.050 mass%,
Al: 0.05 mass% or less,
Contains P: 0.02 mass% or less and S: 0.0030 mass% or less, with the balance being the composition of Fe and inevitable impurities, and a volume fraction of the ferrite phase of 40% or more and 60% or less, and formed in steel The total number of martensite phase, bainite phase, retained austenite phase and cementite per unit area is 25 / 100μm 2 or more, and the distance between the closest points of these products is 4μm or less at the longest Super high strength cold-rolled steel sheet with excellent formability.
請求項1において、鋼板が、さらに
Cu:0.01〜0.50mass%、
Ni:0.01〜0.50mass%、
Mo:0.01〜0.50mass%および
Cr:0.01〜0.50mass%
のうちから選んだ一種または二種以上を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板。
In Claim 1, the steel plate further
Cu: 0.01-0.50mass%,
Ni: 0.01-0.50mass%,
Mo: 0.01-0.50mass% and
Cr: 0.01 ~ 0.50mass%
An ultra-high-strength cold-rolled steel sheet having excellent formability, characterized by having a composition containing one or more selected from among the above.
請求項1または2において、鋼板が、さらに
V:0.001 〜0.300 mass%、
Zr:0.001 〜0.300 mass%および
B:0.0001〜0.0050mass%
のうちから選んだ一種または二種以上を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板。
In Claim 1 or 2, a steel plate is further V: 0.001-0.300 mass%,
Zr: 0.001 to 0.300 mass% and B: 0.0001 to 0.0050 mass%
An ultra-high-strength cold-rolled steel sheet having excellent formability, characterized by having a composition containing one or more selected from among the above.
請求項1,2または3において、鋼板が、さらに
Ca:0.0001〜0.0050mass%および
REM:0.0001〜0.0050mass%
のうちから選んだ少なくとも一種を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板。
The steel plate according to claim 1, 2 or 3, further
Ca: 0.0001 to 0.0050 mass% and
REM: 0.0001 ~ 0.0050mass%
An ultra-high-strength cold-rolled steel sheet having excellent formability, characterized in that the composition contains at least one selected from the above.
C:0.05〜0.10mass%、
Si:0.01〜1.00mass%、
Mn:2.0 〜3.5 mass%、
Ti:0.001 〜0.030 mass%、
Nb:0.001 〜0.050 mass%、
Al:0.05mass%以下、
P:0.02mass%以下および
S:0.0030mass%以下
を含有し、残部は Fe および不可避的不純物の組成になる鋼スラブを、鋳造後、直ちにまたは一旦冷却し1050〜1250℃に加熱したのち、仕上げ圧延終了温度:850〜950 ℃にて熱間圧延し、圧延終了後 450〜650 ℃で巻取って熱延鋼板とし、ついで冷間圧延を施したのち、連続焼鈍を施すに際し、 750℃以上、 900℃以下の温度域に加熱し、その後の冷却過程において 200℃以上、 400℃以下の温度域まで、冷却速度(X)が下記式の範囲を満足する条件下で冷却し、引き続き 200℃以上、 400℃以下の温度域で60秒以上、 240秒以下の時間保温することを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。

−4×t+0.14×t2 + 30 ≦X≦−4×t+0.14×t2 +120
ここで、X:冷却速度(℃/s)
t:冷却時間(s)
C: 0.05-0.10 mass%,
Si: 0.01-1.00mass%,
Mn: 2.0-3.5 mass%
Ti: 0.001 to 0.030 mass%,
Nb: 0.001 to 0.050 mass%,
Al: 0.05 mass% or less,
A steel slab containing P: 0.02 mass% or less and S: 0.0030 mass% or less, with the balance being Fe and inevitable impurities , immediately after casting or once cooled and heated to 1050-1250 ° C. and then finished Rolling end temperature: Hot rolled at 850 to 950 ° C, rolled up at 450 to 650 ° C after rolling to make a hot rolled steel sheet, then cold rolled and then subjected to continuous annealing, 750 ° C or higher, Heat to a temperature range of 900 ° C or lower, and then cool to a temperature range of 200 ° C or higher and 400 ° C or lower in the cooling process under the condition that the cooling rate (X) satisfies the range of the following formula. A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, characterized by maintaining the temperature in a temperature range of 400 ° C. or lower for 60 seconds to 240 seconds.
-4 × t + 0.14 × t 2 + 30 ≦ X ≦ −4 × t + 0.14 × t 2 +120
Where X: cooling rate (° C / s)
t: Cooling time (s)
請求項5において、鋼スラブが、さらに6. The steel slab according to claim 5, further comprising:
CuCu : 0.010.01 ~ 0.50mass0.50mass %、%,
NiNi : 0.010.01 ~ 0.50mass0.50mass %、%,
MoMo : 0.010.01 ~ 0.50mass0.50mass %および%and
CrCr : 0.010.01 ~ 0.50mass0.50mass %
のうちから選んだ一種または二種以上を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, wherein the composition contains one or more selected from the above.
請求項5または6において、鋼スラブが、さらにThe steel slab according to claim 5 or 6, further comprising:
V:V: 0.001 0.001 ~ 0.300 mass0.300 mass %、%,
ZrZr : 0.001 0.001 ~ 0.300 mass0.300 mass %および%and
B:B: 0.00010.0001 ~ 0.0050mass0.0050mass %
のうちから選んだ一種または二種以上を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, wherein the composition contains one or more selected from the above.
請求項5,6または7において、鋼スラブが、さらに
Ca 0.0001 0.0050mass %およ
REM 0.0001 0.0050mass
のうちから選んだ少なくとも一種を含有する組成になることを特徴とする成形性に優れる超高強度冷延鋼板の製造方法。
The steel slab according to claim 5, 6 or 7, further comprising:
Ca: 0.0001 ~ 0.0050mass% and
REM : 0.0001 to 0.0050 mass %
A method for producing an ultra-high-strength cold-rolled steel sheet having excellent formability, characterized in that it comprises a composition containing at least one selected from the above.
JP2002190427A 2002-06-28 2002-06-28 Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same Expired - Lifetime JP3901039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190427A JP3901039B2 (en) 2002-06-28 2002-06-28 Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190427A JP3901039B2 (en) 2002-06-28 2002-06-28 Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004035905A JP2004035905A (en) 2004-02-05
JP3901039B2 true JP3901039B2 (en) 2007-04-04

Family

ID=31700346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190427A Expired - Lifetime JP3901039B2 (en) 2002-06-28 2002-06-28 Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3901039B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8460800B2 (en) 2009-03-31 2013-06-11 Kobe Steel, Ltd. High-strength cold-rolled steel sheet excellent in bending workability
JP5533145B2 (en) * 2010-03-31 2014-06-25 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5533143B2 (en) * 2010-03-31 2014-06-25 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5533146B2 (en) * 2010-03-31 2014-06-25 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5533144B2 (en) * 2010-03-31 2014-06-25 新日鐵住金株式会社 Hot-dip cold-rolled steel sheet and manufacturing method thereof
JP5533729B2 (en) * 2011-02-22 2014-06-25 新日鐵住金株式会社 High-strength hot-rolled steel sheet with excellent local deformability and excellent ductility with less orientation dependency of formability and method for producing the same
EP2692895B1 (en) 2011-03-28 2018-02-28 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet and production method thereof
EP2716783B1 (en) 2011-05-25 2018-08-15 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and process for producing same
JP5776761B2 (en) * 2013-12-27 2015-09-09 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5776764B2 (en) * 2013-12-27 2015-09-09 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5776763B2 (en) * 2013-12-27 2015-09-09 新日鐵住金株式会社 Hot-dip cold-rolled steel sheet and manufacturing method thereof
JP5776762B2 (en) * 2013-12-27 2015-09-09 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
CN113926892A (en) * 2020-06-29 2022-01-14 宝山钢铁股份有限公司 Stamping forming process and application of hot-rolled ultrahigh-strength dual-phase steel part with tensile strength of more than or equal to 980MPa
CN116219284A (en) * 2022-12-30 2023-06-06 鞍钢蒂森克虏伯汽车钢有限公司 780 MPa-grade dual-phase steel with high local formability and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3458416B2 (en) * 1993-09-21 2003-10-20 Jfeスチール株式会社 Cold rolled thin steel sheet excellent in impact resistance and method for producing the same
JP2000290748A (en) * 1999-04-08 2000-10-17 Kawasaki Steel Corp Hot rolled steel sheet for working excellent in notch fatigue resistance and its production
JP3424619B2 (en) * 1999-09-16 2003-07-07 住友金属工業株式会社 High tensile cold rolled steel sheet and method for producing the same
JP3698046B2 (en) * 1999-10-22 2005-09-21 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and plating property and method for producing the same
JP3508657B2 (en) * 1999-11-17 2004-03-22 Jfeスチール株式会社 High strength cold rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
JP2001226741A (en) * 2000-02-15 2001-08-21 Kawasaki Steel Corp High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor

Also Published As

Publication number Publication date
JP2004035905A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP5862051B2 (en) High-strength cold-rolled steel sheet excellent in workability and manufacturing method thereof
JP4291860B2 (en) High-strength steel sheet and manufacturing method thereof
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
JP2007138262A (en) High strength cold rolled steel sheet reduced in dispersion in mechanical characteristic, and its manufacturing method
JP5321605B2 (en) High strength cold-rolled steel sheet having excellent ductility and method for producing the same
JP4304473B2 (en) Manufacturing method of ultra fine grain hot rolled steel sheet
JP5521444B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP6047983B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability
WO2001023625A1 (en) Sheet steel and method for producing sheet steel
JP5862052B2 (en) High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP3901039B2 (en) Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same
JP5878829B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP4539484B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
JP4311049B2 (en) Cold-rolled steel sheet having an ultrafine grain structure and excellent shock absorption characteristics and method for producing the same
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP5821810B2 (en) Manufacturing method of fine-grained steel sheet
JP5811725B2 (en) High-tensile cold-rolled steel sheet excellent in surface distortion resistance, bake hardenability and stretch flangeability, and method for producing the same
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP2009001909A (en) Manufacturing method of high-strength cold-rolled steel sheet
JP4085809B2 (en) Hot-dip galvanized cold-rolled steel sheet having an ultrafine grain structure and excellent stretch flangeability and method for producing the same
JP6098537B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP2004250774A (en) Cold rolled steel sheet having superfine particle tissue, and production method therefor
JP5071125B2 (en) High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3901039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term