JP3725367B2 - Ultra-fine ferrite structure high-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof - Google Patents

Ultra-fine ferrite structure high-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof Download PDF

Info

Publication number
JP3725367B2
JP3725367B2 JP13223799A JP13223799A JP3725367B2 JP 3725367 B2 JP3725367 B2 JP 3725367B2 JP 13223799 A JP13223799 A JP 13223799A JP 13223799 A JP13223799 A JP 13223799A JP 3725367 B2 JP3725367 B2 JP 3725367B2
Authority
JP
Japan
Prior art keywords
steel sheet
ferrite
rolled steel
stretch flangeability
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13223799A
Other languages
Japanese (ja)
Other versions
JP2000328186A (en
Inventor
俊一 橋本
高弘 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13223799A priority Critical patent/JP3725367B2/en
Publication of JP2000328186A publication Critical patent/JP2000328186A/en
Application granted granted Critical
Publication of JP3725367B2 publication Critical patent/JP3725367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明が属する技術分野】
本発明は、熱延したままで超微細フェライト組織を有する疲労強度、特に伸びフランジ性に優れた、引張強度が490MPa以上の高強度熱延鋼板およびその製造方法に関し、この熱延鋼板は自動車用鋼板、構造用鋼板として好適なものである。
【0002】
【従来の技術】
自動車用、構造用などに用いられる鋼板の疲労強度、特に伸びフランジ性を高めるには、その鋼板の結晶組織を超微細化することが有効と考えられ、超微細組織を得る技術の開発が従来より数多く模索されてきた。特に、近年では、板厚を薄くして、軽量化、低コスト化を図るために高強度鋼板が多く使用されるようになり、その高強度化に伴う加工性の劣化を抑える目的で、高強度鋼板におけるミクロ組織の微細化が重要な課題となっている。また、この組織微細化は、特に伸びフランジ性の向上に有効な手段と考えられている。
【0003】
組織微細化の方法としては、▲1▼例えば特開昭58−123823号公報、特開昭58−174523号公報に提案されている大圧下圧延法、▲2▼制御圧延法、制御冷却法、▲3▼例えば特開平10−8138号公報に提案されている低温巻取法などが従来より知られている。
【0004】
【発明が解決しようとする課題】
前記大圧下圧延法による組織微細化方法における超微細化の要点は、オーステナイト粒に大圧下を加えることでγ(オーステナイト)からα(フェライト)への歪み誘起変態を促進することにある。しかしながら、圧延条件として1パスあたりの圧下率を50%以上にする必要があるなど、一般的なホット・ストリップ・ミルでは実施し難いという難点がある。
【0005】
また、制御圧延法、制御冷却法については、加工フェライトもしくは回復段階のフェライトが残留し、加工性の著しい劣化を伴い、勒性を最優先特性とする厚板では有効であるが、加工性を最優先特性とする薄板では目的を達し得ない。
【0006】
また、前記公報に記載された低温巻取法では伸びフランジ性に悪影響を及ぼす残留オーステナイトが5〜20%程度混入し、高い伸びフランジ性を得ることはできない。
【0007】
本発明は、上記の問題に鑑みてなされたもので、一般のホット・ストリップ・ミルを使用して容易に製造することができ、従来に比して疲労強度、特に伸びフランジ性が優れた高強度熱延鋼板およびその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
従来のフェライト結晶粒の微細化手段は、上記のように、通常の圧延設備での実施が極めて困難であったり、加工性の確保が困難であったりする。本発明者らは、C−Mn系鋼もしくはこれらの元素に微量のTiやNbを添加した成分系の鋼では、上記のような問題を解消することはできないと考え、新たな結晶粒の微細化方法、加えて伸びフランジ性の改善方法を探究した。
その結果、フェライト結晶粒を超微細化するには、オーステナイト粒の微細化及び高い転位密度の導入が重要であり、本発明者らが鋭意研究したところ、TiやNbを固溶状態で鋼中に存在させることにより、スラブ加熱時のオーステナイト結晶粒径の粗大化が抑制され、それに続く熱間圧延において微細化が容易になること、及びこれらの元素によって、熱間圧延の際に転位の解放が抑制され、転位密度の高い未再結晶オーステナイト粒を得ることが可能となり、このオーステナイト粒によってフェライト核生成頻度を高めて超微細フェライト結晶粒を得ることが可能となることを知見し、以下の発明を完成するに至った。
【0009】
請求項1に記載した本発明の超微細フェライト組織高強度熱延鋼板は、フェライト量が面積率で95%以上であり、かつフェライトの平均結晶粒径が2.0〜10.0μm であり、組織中にマルテンサイトおよび残留オーステナイトを含まず、引張強さが490MPa 以上である熱延鋼板である。
【0010】
この発明の高強度熱延鋼板によると、組織がフェライトを主体とし、しかもその平均結晶粒径を2.0〜10.0μm とし、さらに組織中にマルテンサイト、残留オーステナイトを含まないため、後述の実施例から明らかなとおり、490MPa 以上の高強度であるにもかかわらず、疲労強度が300MPa 以上と高く、しかも伸びフランジ性が120%以上であり、高強度の下で極めて良好な伸びフランジ性が得られる。
【0011】
本発明の熱延鋼板は、基本的にはフェライト量が多いほどよく、面積率で好ましくは98%以上、より好ましくはフェライト単相組織(フェライト量100%)であることが望ましいが、本発明熱延鋼板の特性を妨げない範囲として、第2相として、5%以下のパーライト、セメンタイト、ベイナイトの1種以上を含んでもよい。もっとも、マルテンサイトおよび残留オーステナイトは含まない組織とする。第2相の存在は伸びフランジ性を劣化させるが、その劣化の程度は母相との硬度差が大きいほど著しい。このため、高硬度のマルテンサイトは排除される。また、残留オーステナイトは、変形過程でマルテンサイトに変態し、しかもC濃度が高いことから極めて硬いマルテンサイトに変態するため、残留オーステナイトも極力排除する必要がある。このため、本発明では、第2相として、マルテンサイトおよび残留オーステナイトは含まないようにする。
【0012】
また、フェライト結晶粒径は、細粒化に伴い、強度を一定としたとき、伸びフランジ性および疲労強度が向上するが、フェライト平均結晶粒径が10.0μm 超のものは従来鋼板においても存在するレベルであり、伸びフランジ性、疲労強度の飛躍的な向上は望めない。このため、本発明ではフェライト平均結晶粒径を10.0μm 以下、好ましくは8.0μm 以下、より好ましくは6.0μm 以下とする。また、2.0μm 未満では降伏点と引張強さとがほぼ等しくなり、n値の低下、均一伸びの低下が著しくなる。プレス成形部品用途ではある程度の均一伸びを確保することが必要であるため、本発明ではフェライト平均結晶粒径の下限を2.0μm 、好ましくは3.0μm とする。
【0013】
本発明の超微細フェライト組織高強度熱延鋼板は、上記組織を得るのに適した下記化学成分を有する。すなわち、化学成分がwt%で、
C :0.01〜0.10%、
Si:1.5%以下、
Mn:1.0%超〜2.5%、
P :0.15%以下、
S :0.008%以下、
Al:0.01〜0.08%、
Ti,Nbの1種又は2種の合計:0.32〜0.60%、
残部Feおよび不可避的不純物からなる。
【0014】
以下、上記化学成分(単位wt%)の成分限定理由について説明する。
C:0.01〜0.10%
Cは必要な強度を得るために0.01%以上が必要である。しかし、その量が0.10%を越えると、Ti、Nb添加量の少ない鋼種においてはパーライト、ベイナイト、マルテンサイト等の第2相の比率が多くなり、伸びフランジ性が劣化するようになる。このため、C量の下限を0.01%、好ましくは0.02%とし、その上限を0.10%、好ましくは0.09%とする。
【0015】
Si:1.5%以下
Siは固溶強化により、強度−伸びバランス、強度−伸びフランジ性バランスを改善しつつ強度を高める上で有効な元素であるが、Siの多量添加は極めて表面性状に悪影響を及ぼしたり、酸洗時間の増加、酸洗ロスの増加を来たすので、上限を1.5%、好ましくは1.0%とする。なお、0.2%超の添加では赤スケールが発生しやすくなり、部品によっては商品価値を損なう場合もあるため、このような場合はSi量を0.2%以下に止めるのがよい。
【0016】
Mn:1.0超〜2.5%(1.0<Mn%≦2.5)
Mnは、強度の向上に有効であり、またフェライト変態を抑制し、フェライト粒の微細化に有効な元素である。すなわち、Mn量が少ないと、熱延後の冷却過程で高温域からフェライト変態が始まり、短時間に粗大粒に成長するため、目的とする微細フェライト粒が得られないようになる。1.0%以下ではそれらの効果が過小であり、目的とする強度、微細粒が得られない。一方、2.5%を超えると、フェライト変態が著しく遅延し、パーライト、ベイナイト、マルテンサイトの変態相が生成しやすくなり、伸びフランジ性が劣化する。このため、Mn量を1.0%超、好ましくは1.1%以上含有させ、その上限を2.5%、好ましくは2.0%とする。
【0017】
P:0.15%以下
Pは固溶強化能があり、高強度化達成に有効な元素であるが、0.15%を超えると偏析による延性劣化、粒界強度の低下を招く。このため、P量の上限を0.15%、好ましくは0.12%とする。
【0018】
S :0.008%以下
SはMnS等の硫化物の量を増大させ伸びフランジ性を劣化させるため、少ない程よく、その上限を0.008%とする。
【0019】
Al:0.01〜0.08%
Alは、溶鋼段階で脱酸に極めて有効な元素であるが、0.01%未満ではその効果が過小であり、0.08%を超えると、結晶粒の粗大化及び介在物による内部欠陥をもたらすようになる。したがって、Al量の下限を0.01%、その上限を0.08%とする。
【0020】
Ti,Nbの1種又は2種の合計:0.32〜0.60%
Ti、Nbは、スラブ加熱段階での初期オーステナイト粒を微細化させ、かつ熱延過程での再結晶を抑制し、フェライト核生成頻度を高めるのに好適な転位密度の高い微細未再結晶オーステナイト粒を得るために必須の元素である。さらにこのようにして得られた微細初期フェライトが巻き取り過程で成長し、粗大化することを防止し、目的の微細フェライト組織を得るために必須の元素である。この作用を有効に発揮させるためには、Ti,Nbの1種又は2種の合計で0.32%以上が必要である。一方、Ti、Nbの増加とともに微細化効果は大きくなっていくが、Ti,Nbの1種又は2種の合計が0.60%を超えるようになるとその効果も飽和するようになる。このため、Ti,Nbの1種又は2種の合計で0.32〜0.60%、好ましくは0.32〜0.50%含有させる。
【0021】
さらに、これらの元素は巻き取り過程で、Cと強固な炭化物を形成し、固溶C量をほぼ0に低減することができる。固溶Cは局部伸び(伸びフランジ性)を低下させる動的歪み時効の原因となるものであり、伸びフランジ性に極めて悪作用が強く、その低減により伸びフランジ性の更なる向上を図ることができる。この効果を発揮させるためにはTiNやTiSとして消費されるTiを添加Ti量から引いた有効Ti量(下記のTi*)およびNb量の総和と、C量との原子当量比が1以上になるよう添加することが好ましいが、0.7以上であればかなり大きな効果が期待できる。一方、前記原子当量比が3を超えるとその効果も飽和するようになる。このため、請求項3に記載したように、前記原子当量比の下限を0.7、好ましくは1.0とし、その上限を3.0、好ましくは2.5とする。
Ti*=全Ti−(48S/32+48N/14)
原子当量比=(Ti*/48+Nb/93)/(C/12)
但し、上記式中の元素記号はその元素の含有量wt%を示す。
【0022】
本発明の熱延鋼板の鋼成分は以上の基本成分および残部Feおよび不可避的不純物からなる場合のほか、下記のCa、Bの1種以上を含有することができる。
Ca:0.0005〜0.0030%
CaはMnS等の展伸した介在物を球状化させることで、伸びフランジ割れの起点となる介在物の形態を制御し、より伸びフランジ性を向上させることができる。この効果を有効に発揮させるためには0.0005%の添加が必要であり、一方、上限は現実的に添加できる最大量の0.0030%とする。
【0023】
B:0.0005〜0.0030%
固溶Cが0ないし極微量となると、粒界強度が弱くなり、延性が劣化することが知られている。一般にフェライト粒を微細化することにより、この問題点は改善されるため、実質的な問題には至らないが、Bは粒界を強化する作用があり、Bの添加はこの問題の改善にさらに有効である。この効果を有効に発揮させるためには0.0005%以上の添加が必要であり、一方0.0030%を超えて添加してもその効果は飽和するため、上限を0.0030%とする。
【0024】
また、本発明の製造方法は、上記超微細フェライト組織の高強度熱延鋼板の好適な製造方法であって、上記化学成分を有する連続鋳造スラブを1100℃超の温度に加熱した後、仕上圧延温度をAr3点以上として熱間圧延した後、10〜150℃/sの冷却速度にて冷却し、巻取温度を500〜700℃として巻き取るものである。
【0025】
以下、本発明の熱延条件について説明する。
本発明では、まず、固溶Ti、固溶Nbによる初期オーステナイト粒の微細化効果を最大限に発揮させることが技術上の重要なポイントであり、鋼片加熱温度が1100℃以下となると、TiCやNbCの析出量の増加し、言い換えると固溶Ti量、固溶Nb量が減少し、初期オーステナイト粒の微細化、熱延終了時の微細未再結晶粒の確保が困難となる。このため、鋼片加熱温度(SRT)を1100℃超(SRT>1100℃)、好ましくは1150℃以上とする。上限温度は特に規定しないが、現実的には1300℃を越えると加熱炉の損傷、エネルギーコストの増大を招き好ましくない。最も好ましい鋼片加熱温度は、本発明者らが実験的に調査した結果、1220±50℃(1170〜1270℃)である。
【0026】
本発明では熱間圧延の際の圧下率は規定されないため、実際に使用する圧延機の能力の範囲において、好ましくは1回当たりの圧下率を高く設定すればよい。一般的には1回あたりの圧下率が高いほど好ましい結果が得られるが、現実的には圧延機の圧下能力によって圧下率に限界が生じ、圧延温度、鋼の化学成分及び圧延寸法などによって異なるものの、20〜40%の圧下を施すことが可能な圧延機が一般的である。従って、その範囲でできるだけ大きな圧下率で熱間圧延を行えばよい。
【0027】
熱間圧延の際の仕上温度をAr3点以上とするのは、Ar3点未満ではフェライト+オーステナイト域での加工となり、加工フェライト粒が残存し、延性を著しく低下させるようになるからである。得られるフェライト粒を超微細化させるためには、オーステナイト粒の微細化、転位密度残留を最大限に発揮させるように仕上温度をAr3点直上(Ar3点〜Ar3点+50℃の範囲)にすることが望ましい。なお、仕上温度を高くなるほどオーステナイト粒微細化効果、あるいは転位密度の残留の程度が低下するようになるため、あえて上限を決めるとすれば、Ar3点+150℃とすることが望ましい。
【0028】
仕上圧延を終えた段階でオーステナイト粒はほぼ微細未再結晶組織となっており、そのままフェライト変態させれば粒界、粒内両者からの核生成により微細なフェライト粒が生成しはじめる。ただし、10℃/s未満の冷却速度では、高温域で生じるフェライト粒の粒成長によってフェライト変態が進行し、フェライト変態促進効果及び微細化効果が減ずるので、冷却速度の下限を10℃/s、好ましくは30℃/s、より好ましくは50℃/sとする。一方、冷却速度が150℃/sを超えるとフェライト粒の粒径が微細になり過ぎて、均一伸びが劣化するようになり、また鋼板の平坦度も悪化するようになるので、冷却速度の上限を150℃/s、好ましくは80℃/sとする。
【0029】
巻取温度については、700℃を超えると、フェライト粒の粗大化が著しく、目的とする組織、特性が得られないようになり、一方500℃未満では、TiC、NbCの微細析出物の増加により伸びフランジ性の劣化を招き、さらに400℃未満ではベイナイトやマルテンサイトが生成し、より伸びフランジ性の劣化を招く。従って巻取温度の下限を500℃、好ましくは550℃し、その上限を700℃、好ましくは650℃とする。
【0030】
【実施例】
表1に示す化学成分の鋼を溶製し、表2に示す熱間圧延条件で3.5mm厚さの熱延鋼板を製造した。各試料鋼板を両面研削により2.5mm厚さに研削して、圧延方向にJIS5号試験片を採取し、下記の要領にてフェライト平均結晶粒径、組織の種類とその量(面積%)を測定した。前記フェライト平均結晶粒径は、1000倍の光学顕微鏡写真により切断法にて圧延方向、板厚方向の50個の平均結晶粒径の平均値として求めた。また、組織の種類と量は、ナイタール腐食した組織の400倍の光学顕微鏡写真を用いて、組織の種類を判定し、またその量を面積率にて測定した。
【0031】
また、各試料鋼板から試験片を採取し、引張特性、鉄連規格(JFST1001)による穴拡げ試験、両振り平面曲げ試験法による疲労特性を調査した。前記穴拡げ試験は、試験片に10mmφの打抜き穴(初期穴:穴径d0=10mm)を開け、バリを上にして頂角60度の円錐ポンチで板厚を貫通する割れが発生するまで初期穴を押し拡げ、割れ発生時の穴径d1mmを測定し、下記式にて限界穴拡げ率λ(%)を求めるものである。これらの結果を表2に併せて示す。なお、表2に記載したフェライト、ベイナイト以外の残部組織は、パーライト、セメンタイトである。
λ=(d1−d0)/d0×100
【0032】
【表1】

Figure 0003725367
【0033】
【表2】
Figure 0003725367
【0034】
表2より、発明例にかかる熱延鋼板は、いずれも強度−伸びバランスに優れ、かつ伸びフランジ性、疲労強度にも優れていることがわかる。
一方、本発明の鋼成分範囲を満足しない鋼(表1鋼種A,H,I,J)を用いた試料No. 1,16〜18は伸びフランジ性(λ)または/および疲労強度が劣化しており、また発明成分を有する鋼を用いていても、製造条件が発明条件を満足しない試料No. 3、4では、所定の組織、フェライト粒径が得られておらず、伸びフランジ性または疲労強度が劣化している。また、熱延後の冷却速度が150℃/s超の試料No. 15では、フェライト粒径が2.0μm 未満と微細になり過ぎて伸びの劣化が著しい。
【0035】
【発明の効果】
以上述べたように、本発明の熱延鋼板は、所定成分の下、平均粒径2.0〜10.0μm の超微細フェライト組織を主体とし、特にマルテンサイトや残留オーステナイトを含まない組織としたので、490MPa 以上の高強度であっても優れた伸びフランジ性および疲労強度を具備することができる。また、本発明の製造方法によれば、一般的なホット・ストリップ・ミルを用いて、容易に超微細フェライト組織が得られ、延性、伸びフランジ性、疲労強度に優れた高強度鋼板を容易に製造することができる。[0001]
[Technical field to which the invention belongs]
The present invention relates to a high-strength hot-rolled steel sheet having a tensile strength of 490 MPa or more, excellent in fatigue strength having an ultrafine ferrite structure while being hot-rolled, in particular stretch flangeability, and a method for producing the same. It is suitable as a steel plate or structural steel plate.
[0002]
[Prior art]
In order to increase the fatigue strength, especially the stretch flangeability, of steel sheets used for automobiles and structures, it is considered effective to make the crystal structure of the steel sheets ultrafine, and the development of technology for obtaining ultrafine structures has been heretofore Many more have been sought. In particular, in recent years, high strength steel plates are often used to reduce the thickness, reduce weight, and reduce costs. In order to suppress deterioration of workability associated with the increase in strength, The refinement of the microstructure in high-strength steel sheets is an important issue. Moreover, this structure refinement is considered to be an effective means for improving stretch flangeability.
[0003]
As a method for refining the structure, (1) a large rolling reduction method proposed in, for example, JP-A-58-123823, JP-A-58-174523, (2) a controlled rolling method, a controlled cooling method, {Circle around (3)} For example, a low-temperature winding method proposed in Japanese Patent Laid-Open No. 10-8138 has been known.
[0004]
[Problems to be solved by the invention]
The essential point of ultrafine refinement in the microstructure refinement method by the large rolling reduction method is to promote strain-induced transformation from γ (austenite) to α (ferrite) by applying large rolling to austenite grains. However, there is a problem that it is difficult to carry out with a general hot strip mill, for example, it is necessary to set the rolling reduction per pass to 50% or more as rolling conditions.
[0005]
In addition, the controlled rolling method and controlled cooling method are effective for thick plates that have processed ferrite or ferrite at the recovery stage, with significant deterioration in workability, and have the highest priority on the toughness. A thin plate with the highest priority cannot achieve its purpose.
[0006]
Further, in the low temperature winding method described in the above publication, about 5 to 20% of retained austenite which adversely affects stretch flangeability is mixed, and high stretch flangeability cannot be obtained.
[0007]
The present invention has been made in view of the above problems, and can be easily manufactured using a general hot strip mill, and has high fatigue strength, in particular, stretch flangeability, as compared with the prior art. An object is to provide a high-strength hot-rolled steel sheet and a method for producing the same.
[0008]
[Means for Solving the Problems]
As described above, the conventional means for refining ferrite crystal grains is extremely difficult to implement in ordinary rolling equipment, and it is difficult to ensure workability. The present inventors consider that the above-mentioned problems cannot be solved with C-Mn steel or component steel obtained by adding a small amount of Ti or Nb to these elements, and thus the fineness of new crystal grains Investigated ways to improve the stretch flangeability.
As a result, in order to make the ferrite crystal grains ultrafine, it is important to make the austenite grains fine and introduce a high dislocation density. As a result of extensive research by the present inventors, Ti and Nb are dissolved in steel in a solid solution state. Therefore, coarsening of the austenite grain size during slab heating is suppressed, and subsequent refinement in hot rolling is facilitated, and these elements release dislocations during hot rolling. It is possible to obtain non-recrystallized austenite grains having a high dislocation density, and it is possible to obtain ultrafine ferrite grains by increasing the frequency of ferrite nucleation with this austenite grains. The invention has been completed.
[0009]
The ultrafine ferrite structure high-strength hot-rolled steel sheet according to the present invention described in claim 1 has a ferrite content of 95% or more in terms of area ratio and an average crystal grain size of ferrite of 2.0 to 10.0 μm. It is a hot-rolled steel sheet that does not contain martensite and retained austenite in the structure and has a tensile strength of 490 MPa or more.
[0010]
According to the high-strength hot-rolled steel sheet of the present invention, the structure is mainly composed of ferrite, and the average crystal grain size is 2.0 to 10.0 μm. Further, the structure does not contain martensite and retained austenite. As is clear from the examples, despite the high strength of 490 MPa or more, the fatigue strength is as high as 300 MPa or more, and the stretch flangeability is 120% or more. can get.
[0011]
The hot-rolled steel sheet of the present invention is basically better as the amount of ferrite is larger, and the area ratio is preferably 98% or more, more preferably a ferrite single phase structure (ferrite amount 100%). As a range that does not hinder the properties of the hot-rolled steel sheet, the second phase may contain 5% or less of pearlite, cementite, or bainite. However, the structure does not include martensite and retained austenite. The presence of the second phase deteriorates the stretch flangeability, but the degree of the deterioration is more remarkable as the hardness difference from the parent phase is larger. For this reason, hard martensite is eliminated. Further, the retained austenite is transformed into martensite during the deformation process, and further transformed into extremely hard martensite because of the high C concentration. Therefore, it is necessary to eliminate the retained austenite as much as possible. For this reason, in the present invention, martensite and retained austenite are not included as the second phase.
[0012]
In addition, the ferrite crystal grain size is improved along with the refinement, when the strength is constant, the stretch flangeability and fatigue strength are improved, but those with an average ferrite grain size of more than 10.0 μm also exist in conventional steel sheets. Therefore, dramatic improvement in stretch flangeability and fatigue strength cannot be expected. Therefore, in the present invention, the ferrite average crystal grain size is 10.0 μm or less, preferably 8.0 μm or less, more preferably 6.0 μm or less. On the other hand, if it is less than 2.0 μm, the yield point and the tensile strength are almost equal, and the decrease in n value and the decrease in uniform elongation become significant. Since it is necessary to ensure a certain degree of uniform elongation for press-molded parts, the lower limit of the ferrite average crystal grain size is set to 2.0 μm, preferably 3.0 μm in the present invention.
[0013]
The ultrafine ferrite structure high-strength hot-rolled steel sheet of the present invention has the following chemical components suitable for obtaining the above structure. That is, the chemical composition is wt%,
C: 0.01 to 0.10%,
Si: 1.5% or less,
Mn: more than 1.0% to 2.5%,
P: 0.15% or less,
S: 0.008% or less,
Al: 0.01 to 0.08%,
Total of one or two of Ti and Nb: 0.32 to 0.60%,
It consists of the balance Fe and inevitable impurities.
[0014]
Hereinafter, the reason for limiting the components of the chemical component (unit: wt%) will be described.
C: 0.01 to 0.10%
C needs to be 0.01% or more in order to obtain the required strength. However, if the amount exceeds 0.10%, the ratio of the second phase such as pearlite, bainite, martensite, etc. increases in the steel type with a small amount of Ti and Nb added, and stretch flangeability deteriorates. For this reason, the lower limit of the C amount is 0.01%, preferably 0.02%, and the upper limit is 0.10%, preferably 0.09%.
[0015]
Si: 1.5% or less Si is an effective element for enhancing strength while improving strength-elongation balance and strength-elongation flangeability balance by solid solution strengthening. The upper limit is set to 1.5%, preferably 1.0%, because it has an adverse effect and increases pickling time and pickling loss. In addition, if added over 0.2%, red scale tends to occur, and depending on the part, the commercial value may be impaired. In such a case, it is preferable to keep the Si amount to 0.2% or less.
[0016]
Mn: more than 1.0 to 2.5% (1.0 <Mn% ≦ 2.5)
Mn is an element effective for improving the strength, suppressing ferrite transformation, and effective for refining ferrite grains. That is, when the amount of Mn is small, ferrite transformation starts from a high temperature region in the cooling process after hot rolling and grows into coarse grains in a short time, so that desired fine ferrite grains cannot be obtained. If it is 1.0% or less, those effects are too small, and the intended strength and fine particles cannot be obtained. On the other hand, if it exceeds 2.5%, ferrite transformation is significantly delayed, pearlite, bainite and martensite transformation phases are likely to be generated, and stretch flangeability deteriorates. Therefore, the Mn content is more than 1.0%, preferably 1.1% or more, and the upper limit is 2.5%, preferably 2.0%.
[0017]
P: 0.15% or less P has a solid solution strengthening ability and is an element effective for achieving high strength. However, if it exceeds 0.15%, ductility deterioration due to segregation and grain boundary strength are reduced. For this reason, the upper limit of the amount of P is made 0.15%, preferably 0.12%.
[0018]
S: 0.008% or less Since S increases the amount of sulfides such as MnS and degrades stretch flangeability, the lower the better, the upper limit is made 0.008%.
[0019]
Al: 0.01 to 0.08%
Al is an element that is extremely effective for deoxidation at the molten steel stage. However, if it is less than 0.01%, its effect is too small, and if it exceeds 0.08%, coarsening of crystal grains and internal defects due to inclusions are caused. Come to bring. Therefore, the lower limit of the Al amount is 0.01%, and the upper limit is 0.08%.
[0020]
Total of one or two of Ti and Nb: 0.32 to 0.60%
Ti, Nb is a fine unrecrystallized austenite grain with high dislocation density suitable for refining the initial austenite grain in the slab heating stage, suppressing recrystallization in the hot rolling process, and increasing the frequency of ferrite nucleation. It is an essential element for obtaining. Further, the fine initial ferrite obtained in this way is an essential element for preventing the growth and coarsening during the winding process and obtaining the desired fine ferrite structure. In order to effectively exhibit this action, 0.32% or more in total of one or two of Ti and Nb is necessary. On the other hand, the refinement effect increases with the increase of Ti and Nb. However, when the total of one or two of Ti and Nb exceeds 0.60%, the effect becomes saturated. Therefore, the total content of one or two of Ti and Nb is 0.32 to 0.60%, preferably 0.32 to 0.50%.
[0021]
Furthermore, these elements form a strong carbide with C in the winding process, and the amount of dissolved C can be reduced to almost zero. Solid solution C causes dynamic strain aging that lowers local elongation (stretch flangeability), and has a strong adverse effect on stretch flangeability, which can further improve stretch flangeability. it can. In order to exert this effect, the atomic equivalent ratio of the sum of the effective Ti amount (Ti *) and Nb amount obtained by subtracting the Ti consumed as TiN or TiS from the added Ti amount and the C amount to 1 or more However, if it is 0.7 or more, a considerably large effect can be expected. On the other hand, when the atomic equivalent ratio exceeds 3, the effect is saturated. For this reason, as described in claim 3, the lower limit of the atomic equivalent ratio is set to 0.7, preferably 1.0, and the upper limit is set to 3.0, preferably 2.5.
Ti * = total Ti− (48S / 32 + 48N / 14)
Atomic equivalent ratio = (Ti * / 48 + Nb / 93) / (C / 12)
However, the element symbol in the above formula indicates the wt% of the element.
[0022]
The steel component of the hot-rolled steel sheet of the present invention can contain one or more of the following Ca and B, in addition to the above basic components, the balance Fe and unavoidable impurities.
Ca: 0.0005 to 0.0030%
Ca spheroidizes the expanded inclusions such as MnS, thereby controlling the form of the inclusions that are the starting point of the stretch flange cracks, thereby further improving the stretch flangeability. In order to exert this effect effectively, 0.0005% of addition is necessary, while the upper limit is set to 0.0030% of the maximum amount that can be practically added.
[0023]
B: 0.0005 to 0.0030%
It is known that when the solid solution C is 0 to a very small amount, the grain boundary strength becomes weak and the ductility deteriorates. Generally, this problem is improved by making ferrite grains finer, so that it does not lead to a substantial problem. However, B has an action of strengthening grain boundaries, and addition of B further improves this problem. It is valid. In order to exhibit this effect effectively, 0.0005% or more must be added. On the other hand, even if added over 0.0030%, the effect is saturated, so the upper limit is made 0.0030%.
[0024]
The production method of the present invention is a suitable production method for the high strength hot-rolled steel sheet having the ultrafine ferrite structure, and after heating the continuous cast slab having the above chemical components to a temperature exceeding 1100 ° C., finish rolling After hot rolling at a temperature of Ar 3 or higher, cooling is performed at a cooling rate of 10 to 150 ° C./s, and winding is performed at a winding temperature of 500 to 700 ° C.
[0025]
Hereinafter, the hot rolling conditions of the present invention will be described.
In the present invention, first of all, it is an important technical point to maximize the effect of refining initial austenite grains by solute Ti and solute Nb. When the billet heating temperature is 1100 ° C. or less, TiC In other words, the amount of precipitation of NbC increases, in other words, the amount of solid solution Ti and the amount of solid solution Nb decrease, making it difficult to refine the initial austenite grains and secure fine unrecrystallized grains at the end of hot rolling. For this reason, the billet heating temperature (SRT) is over 1100 ° C. (SRT> 1100 ° C.), preferably 1150 ° C. or higher. Although the upper limit temperature is not particularly defined, in reality, if it exceeds 1300 ° C., the heating furnace is damaged and the energy cost is increased, which is not preferable. The most preferable billet heating temperature is 1220 ± 50 ° C. (1170 to 1270 ° C.) as a result of experimental investigation by the inventors.
[0026]
In the present invention, since the rolling reduction during the hot rolling is not defined, the rolling reduction per run is preferably set high within the range of the capability of the rolling mill actually used. In general, the higher the rolling reduction per one, the better results can be obtained, but in reality, there is a limit on the rolling reduction due to the rolling ability of the rolling mill, and it varies depending on the rolling temperature, the chemical composition of the steel and the rolling dimensions, etc. However, a rolling mill capable of performing 20-40% reduction is common. Therefore, hot rolling may be performed at a reduction rate as large as possible within the range.
[0027]
The reason why the finishing temperature at the time of hot rolling is set to Ar 3 points or more is that if it is less than Ar 3 points, the processing is performed in the ferrite + austenite region, the processed ferrite grains remain, and the ductility is significantly reduced. . In order to make the obtained ferrite grains ultrafine, the finishing temperature is just above the Ar 3 point (range of Ar 3 point to Ar 3 point + 50 ° C.) so as to maximize the austenite grain refining and the residual dislocation density. It is desirable to make it. As the finishing temperature increases, the effect of refining austenite grains or the degree of residual dislocation density decreases. Therefore, if the upper limit is decided, it is desirable to set Ar 3 point + 150 ° C.
[0028]
At the stage when finish rolling is finished, the austenite grains have an almost fine non-recrystallized structure. If ferrite transformation is performed as it is, fine ferrite grains begin to be formed by nucleation from both the grain boundaries and the grains. However, at a cooling rate of less than 10 ° C./s, ferrite transformation proceeds due to the growth of ferrite grains occurring in a high temperature region, and the ferrite transformation promoting effect and refining effect are reduced, so the lower limit of the cooling rate is 10 ° C./s, The temperature is preferably 30 ° C./s, more preferably 50 ° C./s. On the other hand, if the cooling rate exceeds 150 ° C./s, the ferrite grain size becomes too fine, the uniform elongation deteriorates, and the flatness of the steel sheet also deteriorates. Is 150 ° C./s, preferably 80 ° C./s.
[0029]
As for the coiling temperature, if the temperature exceeds 700 ° C., the ferrite grains become extremely coarse, and the desired structure and characteristics cannot be obtained. Deterioration of stretch flangeability is caused, and if it is less than 400 ° C., bainite and martensite are generated, and the stretch flangeability is further degraded. Therefore, the lower limit of the coiling temperature is 500 ° C., preferably 550 ° C., and the upper limit is 700 ° C., preferably 650 ° C.
[0030]
【Example】
Steels having chemical components shown in Table 1 were melted, and hot rolled steel sheets having a thickness of 3.5 mm were manufactured under the hot rolling conditions shown in Table 2. Each sample steel plate is ground to 2.5mm thickness by double-side grinding, JIS No. 5 specimen is taken in the rolling direction, and the ferrite average crystal grain size, structure type and amount (area%) are obtained as follows. It was measured. The ferrite average crystal grain size was determined as an average value of 50 average crystal grain sizes in the rolling direction and the plate thickness direction by a cutting method using a 1000 times optical microscope photograph. In addition, the type and amount of the tissue were determined by using a 400-fold optical microscope photograph of the nital-corroded tissue, and the amount was measured by area ratio.
[0031]
In addition, specimens were collected from each of the sample steel plates, and the tensile properties, the hole expansion test according to the iron standard (JFST1001), and the fatigue properties by the double swing plane bending test method were investigated. The hole expansion test was performed until a 10 mmφ punched hole (initial hole: hole diameter d0 = 10 mm) was drilled in the test piece, and a crack penetrating the plate thickness with a conical punch with an apex angle of 60 degrees occurred with the burr up. A hole is expanded and a hole diameter d1 mm at the time of occurrence of a crack is measured, and a critical hole expansion rate λ (%) is obtained by the following formula. These results are also shown in Table 2. The remaining structures other than ferrite and bainite described in Table 2 are pearlite and cementite.
λ = (d1−d0) / d0 × 100
[0032]
[Table 1]
Figure 0003725367
[0033]
[Table 2]
Figure 0003725367
[0034]
From Table 2, it can be seen that all of the hot-rolled steel sheets according to the invention examples are excellent in strength-elongation balance, and are excellent in stretch flangeability and fatigue strength.
On the other hand, Sample Nos. 1 and 16 to 18 using steels that do not satisfy the steel component range of the present invention (Table 1 steel types A, H, I, and J) have deteriorated stretch flangeability (λ) and / or fatigue strength. In Sample Nos. 3 and 4 where the manufacturing conditions do not satisfy the invention conditions even when steel having the invention components is used, a predetermined structure and ferrite grain size are not obtained, and stretch flangeability or fatigue The strength has deteriorated. Further, in sample No. 15 where the cooling rate after hot rolling exceeds 150 ° C./s, the ferrite grain size becomes too small as less than 2.0 μm, and the elongation is remarkably deteriorated.
[0035]
【The invention's effect】
As described above, the hot-rolled steel sheet of the present invention is mainly composed of an ultrafine ferrite structure having an average grain size of 2.0 to 10.0 μm under a predetermined component , and particularly has a structure that does not contain martensite or retained austenite. Therefore, even with a high strength of 490 MPa or more, excellent stretch flangeability and fatigue strength can be provided. Further, according to the production method of the present invention, an ultrafine ferrite structure can be easily obtained using a general hot strip mill, and a high-strength steel sheet excellent in ductility, stretch flangeability and fatigue strength can be easily obtained. Can be manufactured.

Claims (5)

フェライト量が面積率で95%以上であり、かつフェライトの平均結晶粒径が2.0〜10.0μm であり、組織中にマルテンサイトおよび残留オーステナイトを含まず、化学成分が wt %で、
C :0.01〜0.10%、
Si:1.5%以下、
Mn:1.0%超〜2.5%、
P :0.15%以下、
S :0.008%以下、
Al:0.01〜0.08%、
Ti,Nbの1種又は2種の合計:0.32〜0.60%、
残部Feおよび不可避的不純物からなり、引張強さが490MPa 以上である伸びフランジ性に優れた超微細フェライト組織高強度熱延鋼板。
The ferrite content is 95% or more by area ratio, the average crystal grain size of ferrite is 2.0 to 10.0 μm, the structure does not contain martensite and residual austenite , the chemical composition is wt %,
C: 0.01 to 0.10%,
Si: 1.5% or less,
Mn: more than 1.0% to 2.5%,
P: 0.15% or less,
S: 0.008% or less,
Al: 0.01 to 0.08%,
Total of one or two of Ti and Nb: 0.32 to 0.60%,
A high-strength hot-rolled steel sheet with an ultrafine ferrite structure excellent in stretch flangeability, which is composed of the remaining Fe and inevitable impurities and has a tensile strength of 490 MPa or more.
Ti、Nbの添加量が下記条件を満足する請求項1に記載した超微細フェライト組織高強度熱延鋼板。
(Ti*/48+Nb/93)/(C/12):0.7〜3.0
Ti*=全Ti−(48S/32+48N/14)
但し、各式中の元素記号はその元素の含有量(wt%)を示す。
The ultrafine ferrite structure high-strength hot-rolled steel sheet according to claim 1 , wherein the addition amounts of Ti and Nb satisfy the following conditions.
(Ti * / 48 + Nb / 93) / (C / 12): 0.7 to 3.0
Ti * = total Ti− (48S / 32 + 48N / 14)
However, the element symbol in each formula shows the content (wt%) of the element.
化学成分がさらに
Ca:0.0005〜0.0030%
を含有する請求項1または2に記載した超微細フェライト組織高強度熱延鋼板。
Chemical component is further Ca: 0.0005 to 0.0030%
The ultra-fine ferrite structure high-strength hot-rolled steel sheet according to claim 1 or 2 , comprising:
化学成分がさらに
B :0.0005〜0.0030%
を含有する請求項1、2または3に記載した超微細フェライト組織高強度熱延鋼板。
Chemical component is further B: 0.0005 to 0.0030%
The ultrafine ferrite structure high-strength hot-rolled steel sheet according to claim 1, 2 or 3 .
請求項1〜4のいずれか1項に記載した化学成分を有する連続鋳造スラブを1100℃超の温度に加熱した後、仕上圧延温度をAr3点以上として熱間圧延した後、10〜150℃/sの冷却速度にて冷却し、巻取温度を500〜700℃として巻き取る伸びフランジ性に優れた超微細フェライト組織高強度熱延鋼板の製造方法。After heating the continuous cast slab having the chemical component according to any one of claims 1 to 4 to a temperature of more than 1100 ° C, hot rolling at a finish rolling temperature of 3 points or more, then 10 to 150 ° C. A method for producing a high-strength hot-rolled steel sheet with an ultrafine ferrite structure excellent in stretch flangeability that is cooled at a cooling rate of / s and wound at a coiling temperature of 500 to 700 ° C.
JP13223799A 1999-05-13 1999-05-13 Ultra-fine ferrite structure high-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof Expired - Fee Related JP3725367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13223799A JP3725367B2 (en) 1999-05-13 1999-05-13 Ultra-fine ferrite structure high-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13223799A JP3725367B2 (en) 1999-05-13 1999-05-13 Ultra-fine ferrite structure high-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000328186A JP2000328186A (en) 2000-11-28
JP3725367B2 true JP3725367B2 (en) 2005-12-07

Family

ID=15076584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13223799A Expired - Fee Related JP3725367B2 (en) 1999-05-13 1999-05-13 Ultra-fine ferrite structure high-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3725367B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103998638A (en) * 2011-12-12 2014-08-20 杰富意钢铁株式会社 Steel sheet with excellent aging resistance, and method for producing same
CN107532263A (en) * 2015-04-22 2018-01-02 新日铁住金株式会社 The manufacture method of hot rolled steel plate, steel and hot rolled steel plate
WO2019103121A1 (en) 2017-11-24 2019-05-31 日本製鉄株式会社 Hot-rolled steel sheet and manufacturing method therefor

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649868B2 (en) * 2003-04-21 2011-03-16 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
JP4853075B2 (en) * 2006-03-28 2012-01-11 住友金属工業株式会社 Hot-rolled steel sheet for hydroforming and its manufacturing method, and electric resistance welded steel pipe for hydroforming
JP4901623B2 (en) * 2007-07-20 2012-03-21 新日本製鐵株式会社 High-strength steel sheet with excellent punching hole expandability and manufacturing method thereof
JP4955497B2 (en) * 2007-09-28 2012-06-20 株式会社神戸製鋼所 Hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability balance
MX2010010386A (en) * 2008-03-26 2010-10-15 Nippon Steel Corp Hot rolled steel sheet possessing excellent fatigue properties and stretch-flange ability and process for producing the hot rolled steel sheet.
JP5338525B2 (en) * 2009-07-02 2013-11-13 新日鐵住金株式会社 High yield ratio hot-rolled steel sheet excellent in burring and method for producing the same
JP5609223B2 (en) * 2010-04-09 2014-10-22 Jfeスチール株式会社 High-strength steel sheet with excellent warm workability and manufacturing method thereof
JP5765080B2 (en) 2010-06-25 2015-08-19 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JP5609786B2 (en) 2010-06-25 2014-10-22 Jfeスチール株式会社 High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP5541263B2 (en) 2011-11-04 2014-07-09 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
CN104060067B (en) * 2013-06-07 2016-07-27 攀钢集团攀枝花钢铁研究院有限公司 A kind of cold-rolled steel sheet and preparation method thereof
CN104060066A (en) * 2013-06-07 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel plate and preparation method thereof
CN108998729B (en) * 2018-08-06 2020-11-10 北京科技大学 High-strength and high-toughness steel and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103998638A (en) * 2011-12-12 2014-08-20 杰富意钢铁株式会社 Steel sheet with excellent aging resistance, and method for producing same
CN103998638B (en) * 2011-12-12 2016-05-18 杰富意钢铁株式会社 The steel plate that ageing resistance is good and manufacture method thereof
CN107532263A (en) * 2015-04-22 2018-01-02 新日铁住金株式会社 The manufacture method of hot rolled steel plate, steel and hot rolled steel plate
CN107532263B (en) * 2015-04-22 2019-11-22 日本制铁株式会社 The manufacturing method of hot rolled steel plate, steel and hot rolled steel plate
WO2019103121A1 (en) 2017-11-24 2019-05-31 日本製鉄株式会社 Hot-rolled steel sheet and manufacturing method therefor
KR20200047625A (en) 2017-11-24 2020-05-07 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet and its manufacturing method
US11512359B2 (en) 2017-11-24 2022-11-29 Nippon Steel Corporation Hot rolled steel sheet and method for producing same

Also Published As

Publication number Publication date
JP2000328186A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
JP5093422B2 (en) High strength steel plate and manufacturing method thereof
CA2941202C (en) Method for producing a high-strength flat steel product
JP3725367B2 (en) Ultra-fine ferrite structure high-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JP4304473B2 (en) Manufacturing method of ultra fine grain hot rolled steel sheet
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP3433687B2 (en) High-strength hot-rolled steel sheet excellent in workability and method for producing the same
JP3301348B2 (en) Manufacturing method of hot-rolled high-tensile steel sheet
JP3231204B2 (en) Composite structure steel sheet excellent in fatigue characteristics and method for producing the same
JP3790135B2 (en) High-strength hot-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JP2007070648A (en) High strength thin steel sheet having excellent hole expandability, and method for producing the same
WO2019088104A1 (en) Hot-rolled steel sheet and manufacturing method therefor
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP3945367B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP3845554B2 (en) Super high strength cold-rolled steel sheet with excellent bending workability
JP5483562B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP3922805B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JP4405026B2 (en) Method for producing high-tensile strength steel with fine grain
JP4525299B2 (en) High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
JPH09202919A (en) Production of high tensile strength steel material excellent in toughness at low temperature
JP3536412B2 (en) High strength hot rolled steel sheet excellent in workability and method for producing the same
JPH05112831A (en) Manufacture of cold rolled steel sheet for deep drawing excellent in workability
JP4179486B2 (en) Steel sheet having fine grain structure and method for producing the same
JP4116708B2 (en) Manufacturing method of fine grain structure steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees