JPH09202919A - Production of high tensile strength steel material excellent in toughness at low temperature - Google Patents

Production of high tensile strength steel material excellent in toughness at low temperature

Info

Publication number
JPH09202919A
JPH09202919A JP1046096A JP1046096A JPH09202919A JP H09202919 A JPH09202919 A JP H09202919A JP 1046096 A JP1046096 A JP 1046096A JP 1046096 A JP1046096 A JP 1046096A JP H09202919 A JPH09202919 A JP H09202919A
Authority
JP
Japan
Prior art keywords
rolling
toughness
strength steel
steel material
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1046096A
Other languages
Japanese (ja)
Other versions
JP3842836B2 (en
Inventor
Toshinaga Hasegawa
俊永 長谷川
Hidesato Mabuchi
秀里 間渕
Yukio Tomita
幸男 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP01046096A priority Critical patent/JP3842836B2/en
Publication of JPH09202919A publication Critical patent/JPH09202919A/en
Application granted granted Critical
Publication of JP3842836B2 publication Critical patent/JP3842836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high tensile strength steel material excellent in toughness at low temp. by successively applying heating, roughing, cooling, and finish rolling under respectively specified conditions to a slab of a steel in which composition and oxide grain content are respectively specified. SOLUTION: A slab of a steel, having a composition which consists of, excluding oxide grains, 0.01-0.20%, by weight, C, 0.03-1.0% Si, 0.30-2.0% Mn, 0.001-0.1% Al, 0.001-0.01% N, and the balance Fe with inevitable impurities and in which the contents of P and S as impurities are limited to <=0.015% and <=0.010%, respectively, and further containing oxide grains of 0.1-1μm grain size by 0.02-0.5 pieces per μm<2> of area of base material, is heated to a temp. between the Ac3 transformation point and 1250 deg.C. After roughing in the austenitic region at 10-70% cumulative draft, cooling is performed at a rate of (0.1 to 10) deg.C/sec until finish rolling is started. Then, from the state of 50-90% ferrite proportion, finish rolling of 30-90% cumulative draft is finished at 650-750 deg.C. By this method, the high tensile strength steel material, having <= about 3μm average α-grain size and also having ultra-fine grained α-structure, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低温靱性が必要と
される構造部材に用いられる高張力鋼材の製造方法に関
するものである。この方法で製造した鋼材は、例えば海
洋構造物、圧力容器、造船、橋梁、建築物、ラインパイ
プなどの溶接鋼構造物一般に用いることができるが、特
に低温靱性を必要とする海洋構造物、造船等の構造物用
鋼材として有用である。また、鋼材の形態としては特に
問わないが、構造部材として用いられ、低温靱性が要求
される鋼板、特に厚板、鋼管素材、あるいは形鋼で特に
有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength steel material used for a structural member that requires low temperature toughness. The steel material manufactured by this method can be generally used for welded steel structures such as marine structures, pressure vessels, shipbuilding, bridges, buildings, line pipes, etc., but particularly marine structures requiring low temperature toughness, shipbuilding It is useful as a structural steel material. Although the form of the steel material is not particularly limited, it is particularly useful as a steel plate used as a structural member and requiring low temperature toughness, particularly a thick plate, a steel pipe material, or a shaped steel.

【0002】[0002]

【従来の技術】高張力鋼材は構造物用鋼として用いられ
ることが多いため、構造物の安全性確保の観点から低温
靱性を要求される。高張力鋼材において、低温靱性を向
上させる方法は種々提案されているが、Niのような高
価な合金元素を用いずに他の特性劣化を生じることなく
低温靱性を向上させる方法としては、フェライト(以下
αと称す)粒径の微細化が代表的である。
2. Description of the Related Art Since high-strength steel materials are often used as structural steels, low temperature toughness is required from the viewpoint of ensuring the safety of structures. Although various methods for improving low temperature toughness have been proposed for high-strength steel materials, as a method for improving low temperature toughness without causing deterioration of other characteristics without using an expensive alloying element such as Ni, ferrite ( The particle size is typically reduced.

【0003】α粒径の微細化方法として、従来から種々
の方法が提案されている。代表的な方法としては、例え
ば特公昭49−7291号公報、特公昭57−2100
7号公報、特公昭59−14535号公報等に示されて
いるように、オーステナイト(以下γと称す)の未再結
晶温度域において制御圧延を行い、引き続いて加速冷却
を行うことによるγからαへの変態時にαを微細化する
方法がある。
Various methods have heretofore been proposed as a method for reducing the α particle size. Typical methods include, for example, Japanese Patent Publication No. 49-7291 and Japanese Patent Publication No. 57-2100.
As disclosed in Japanese Patent Publication No. 7 and Japanese Patent Publication No. 59-14535, etc., controlled rolling is performed in the unrecrystallized temperature range of austenite (hereinafter referred to as γ), and then γ to α by performing accelerated cooling. There is a method of refining α during the transformation into.

【0004】これらのようなγからαへの変態を利用す
る方法では、γが粗大な場合は、未再結晶域圧延の有効
活用によりγ/α変換比(変態前γ粒径/変態後α粒
径)を高めてαを微細化することが可能であるが、γ粒
径が微細な場合は、γ/α変換比は1に近づくため、α
の微細化は飽和してしまう。従って、γからαへの変態
を介したαの微細化による方法では、その程度はγの微
細化の程度に規制されるため、α粒径の飛躍的な微細化
は望めない。
In the methods utilizing the transformation from γ to α as described above, when γ is coarse, the γ / α conversion ratio (γ grain size before transformation / α grain after transformation) is effectively utilized by effectively utilizing the non-recrystallization zone rolling. It is possible to make α smaller by increasing the (particle size), but when the γ particle size is small, the γ / α conversion ratio approaches 1, so α
The miniaturization of is saturated. Therefore, in the method of refining α through the transformation from γ to α, the degree thereof is regulated by the degree of refining of γ, and thus the drastic miniaturization of the α particle size cannot be expected.

【0005】これを解決するために、制御圧延の温度域
をγ/α二相域にまで拡大した、いわゆる二相域圧延に
よる強度・靱性改善技術も提案されている。例えば、特
公昭58−5967号公報に示されるように、成分や圧
下条件の工夫等により、二相域圧延により靱性向上を図
る技術が提案されている。しかし、これら従来の二相域
圧延技術ではα粒径は制御圧延で得られるα粒径と同程
度であり、実質的には、セパレーションと呼ばれる主と
して集合組織に起因して破壊時に鋼板表面に平行に生じ
る層状割れの発生による3軸応力の低減効果を用いて靱
性向上が図られている。しかし、セパレーションはシャ
ルピー試験の破面遷移温度の低下には有効ではあるが、
吸収エネルギーの低下を招くため、その利用には限界が
ある。
In order to solve this problem, there has been proposed a technique for improving strength and toughness by so-called two-phase region rolling in which the temperature range of controlled rolling is expanded to the γ / α two-phase region. For example, as disclosed in Japanese Patent Publication No. 58-5967, there has been proposed a technique for improving toughness by rolling in a two-phase region by devising the composition and rolling conditions. However, in these conventional two-phase rolling techniques, the α grain size is comparable to the α grain size obtained by controlled rolling, and it is essentially parallel to the steel plate surface at the time of fracture due to the texture called separation, which is mainly due to the texture. The toughness is improved by using the effect of reducing the triaxial stress due to the occurrence of the layered cracks that occur in the. However, although separation is effective in reducing the fracture transition temperature in the Charpy test,
There is a limit to its use because it causes a decrease in absorbed energy.

【0006】また、圧延等の熱間加工によらずに熱処理
によってα粒径の微細化を図る方法も示されている。例
えば、〔鉄と鋼、第77年、第1号、1991、171
〜178頁〕に示されているように、V、Nを通常より
も多量に添加することによりγの微細化を図るととも
に、変態時のγ/α変換比を増大させて、焼ならし処理
で微細なα組織とする方法が開発されている。しかし、
この方法で微細なα組織を得るためには、Vを0.1%
以上、Nも0.01%以上添加する必要があり、到達で
きるα粒径も5μm程度である。
There is also disclosed a method of reducing the α grain size by heat treatment without using hot working such as rolling. For example, [Iron and Steel, 1977, No. 1, 1991, 171
, Pp. 178], V and N are added in a larger amount than usual to make γ finer and the γ / α conversion ratio at the time of transformation is increased to perform normalizing treatment. A method of making a fine α-structure has been developed. But,
To obtain a fine α-structure by this method, V is 0.1%.
As described above, it is necessary to add N by 0.01% or more, and the attainable α particle size is about 5 μm.

【0007】さらに、〔材料とプロセス、第3年、第6
号、1990、1796頁〕においては、γ/α変態の
繰り返しを含む複雑な加工熱処理により、粒径が3μm
以下の超細粒鋼を得る方法が示されている。この方法
は、制御圧延後、加速冷却を行い、500℃程度で加速
冷却を停止した後、室温まで冷却することなく900℃
に再加熱し、所定の温度で熱間圧延を行うことにより超
細粒鋼を得るというものである。しかしながら、α粒径
は冷却停止温度の影響を強く受け、冷却停止温度が50
0℃のごく近傍以外では粒径が3μm以下の超細粒αは
得られておらず、工業的に安定して製造することは困難
であると考えられる。
Furthermore, [Materials and Processes, Third Year, Sixth Year]
No., 1990, p. 1796], the grain size was 3 μm due to complicated thermomechanical treatment including repeated γ / α transformation.
The following methods for obtaining ultra-fine grain steel are shown. In this method, after controlled rolling, accelerated cooling is performed, accelerated cooling is stopped at about 500 ° C, and then 900 ° C without cooling to room temperature.
It is reheated to, and hot-rolled at a predetermined temperature to obtain ultra-fine grain steel. However, the α particle size is strongly affected by the cooling stop temperature, and the cooling stop temperature is 50
Ultrafine particles α having a particle size of 3 μm or less have not been obtained except in the very vicinity of 0 ° C., and it is considered difficult to industrially stably manufacture them.

【0008】従って、上記従来方法では、何れも生産性
の劣化や熱処理工程の増加、さらには合金元素の増加
等、コスト高が避けられない。また、安定して得られる
α粒径は、一部の実験的手法を除けば10μm程度、厳
密に制御された複雑な工程によっても5μm程度が限界
であり、5μm未満のαの微細化は工業的に実現されて
いない。
Therefore, in all of the above-mentioned conventional methods, high cost is inevitable due to deterioration of productivity, increase of heat treatment steps, and increase of alloy elements. Further, the α particle size that can be stably obtained is about 10 μm except for some experimental methods, and the limit is about 5 μm even by a complicated process that is strictly controlled. Has not been realized.

【0009】[0009]

【発明が解決しようとする課題】本発明は、高価な合金
元素の添加や、生産性の劣る複雑な熱間加工あるいは熱
処理工程を必要とせずに、平均α粒径が3μm以下で、
かつ混粒度が小さい整粒の超細粒α組織を有する低温靱
性の優れた高張力鋼材を製造する方法を提供するもので
ある。
SUMMARY OF THE INVENTION The present invention has an average α particle diameter of 3 μm or less, without adding expensive alloying elements or complicated hot working or heat treatment step with poor productivity.
Further, the present invention provides a method for producing a high-strength steel material having excellent low-temperature toughness, which has an ultrafine-grained α-structure having a uniform mixed grain size.

【0010】[0010]

【課題を解決するための手段】従来の代表的細粒化方法
であるγ/α変態では限界があることから、熱間加工に
よるαの回復・再結晶を利用する方法に注目し、αの熱
間加工挙動を詳細に調査することによりαの超細粒化の
ための手段を見出し、本発明に至ったものである。
Since the γ / α transformation, which is a conventional typical grain refining method, has limitations, attention is paid to a method utilizing the recovery / recrystallization of α by hot working. The present invention has been completed by finding out means for ultra-fine graining of α through detailed investigation of hot working behavior.

【0011】すなわち、本発明の要旨とするところは下
記のとおりである。 (1)酸化物粒子を除いた成分として、重量%で(以下
同じ)、C:0.01〜0.20%、Si:0.03〜
1.0%、Mn:0.30〜2.0%、Al:0.00
1〜0.1%、N:0.001〜0.01%を含有し、
不純物としてのP、Sを、P≦0.015%、S≦0.
010%に制限し、さらに粒子径が0.1〜1μmの酸
化物粒子を母材面積1μm2 当たり0.02〜0.5個
含有し、残部Feおよび不可避不純物からなる鋼片をA
3 変態点〜1250℃に加熱し、オーステナイト域で
累積圧下率が10〜70%の粗圧延の後、仕上圧延開始
まで0.1〜10℃/秒で冷却し、フェライトの割合が
50〜90%である状態から累積圧下率が30〜90%
である仕上圧延を650〜750℃の温度で終了するこ
とを特徴とする低温靱性に優れた高張力鋼材の製造方
法。
That is, the gist of the present invention is as follows.
It is as described. (1) As a component excluding oxide particles, in weight% (hereinafter
Same), C: 0.01 to 0.20%, Si: 0.03 to
1.0%, Mn: 0.30 to 2.0%, Al: 0.00
1-0.1%, containing N: 0.001-0.01%,
P and S as impurities are P ≦ 0.015%, S ≦ 0.
Acid with a particle size of 0.1 to 1 μm.
Base material area of 1 μmTwo0.02-0.5 per
A steel slab containing the balance Fe and unavoidable impurities
c ThreeIn the austenite range, heated to the transformation point to 1250 ° C
After rough rolling with cumulative reduction of 10 to 70%, start finish rolling
To 0.1-10 ° C / sec until the ferrite content is
From the state of 50 to 90%, the cumulative rolling reduction is 30 to 90%
Finishing rolling is finished at a temperature of 650 to 750 ° C.
Of high strength steel with excellent low temperature toughness
Law.

【0012】(2)さらに、重量%で、Cr:0.01
〜0.50%、Ni:0.01〜3.0%、Mo:0.
01〜0.50%、Cu:0.01〜1.5%、Ti:
0.003〜0.10%、V:0.005〜0.20
%、Nb:0.003〜0.05%、B:0.0003
〜0.0020%、Ta:0.01〜1.0%、W:
0.01〜1.0%の1種または2種以上を含有するこ
とを特徴とする前記(1)記載の低温靱性に優れた高張
力鋼材の製造方法。
(2) Further, Cr: 0.01 by weight%
.About.0.50%, Ni: 0.01 to 3.0%, Mo: 0.
01 to 0.50%, Cu: 0.01 to 1.5%, Ti:
0.003-0.10%, V: 0.005-0.20
%, Nb: 0.003 to 0.05%, B: 0.0003
~ 0.0020%, Ta: 0.01-1.0%, W:
0.01-1.0% of 1 type (s) or 2 or more types are contained, The manufacturing method of the high-strength steel material excellent in the low temperature toughness of the said (1) description characterized by the above-mentioned.

【0013】(3)さらに、重量%で、Ca:0.00
05〜0.005%、REM:0.0005〜0.02
%の1種または2種を含有することを特徴とする前記
(1)または(2)記載の低温靱性に優れた高張力鋼材
の製造方法。
(3) Further, in weight%, Ca: 0.00
05-0.005%, REM: 0.0005-0.02
% Of 1 type or 2 types, The manufacturing method of the high strength steel material excellent in the low temperature toughness as described in said (1) or (2) characterized by the above-mentioned.

【0014】(4)仕上圧延終了後、引き続いて5〜5
0℃/秒で550〜20℃まで加速冷却することを特徴
とする前記(1)〜(3)の何れか1項に記載の低温靱
性に優れた高張力鋼材の製造方法。 (5)加速冷却した後、400〜650℃で焼戻すこと
を特徴とする前記(4)記載の低温靱性に優れた高張力
鋼材の製造方法。
(4) After finishing rolling, 5 to 5
The method for producing a high-tensile steel material excellent in low-temperature toughness according to any one of (1) to (3) above, which comprises accelerating cooling to 550 to 20 ° C at 0 ° C / sec. (5) The method for producing a high-strength steel material excellent in low-temperature toughness as described in (4) above, which comprises performing accelerated cooling and then tempering at 400 to 650 ° C.

【0015】ここで、酸化物粒子とは、加工温度域でα
相よりも硬く、熱的に安定な酸化物粒子を指す。酸化物
粒子の種類は問わないが、均一かつ多量の微細分散が容
易な酸化物が好ましい。実験により検討した結果、分散
状態の観点から好ましい酸化物としては、酸化Ta、酸
化Nb、酸化Ti、酸化Mg、および前記酸化物形成元
素を1種または2種以上含む複合酸化物、さらにTiと
Alの複合酸化物、Ti、Al、Mgからなる複合酸化
物、Tiを主体としてAl、Ca、La、Ce、Yを1
種または2種以上含む複合酸化物がある。さらに、以上
に掲げた酸化物に微量のSi、Mn、Feを含む酸化物
も同様の効果を有する。
Here, the oxide particles mean α in the processing temperature range.
Refers to thermally stable oxide particles that are harder than the phases. The type of the oxide particles is not limited, but an oxide that is uniform and easily dispersed in a large amount is preferable. As a result of examination by experiments, preferable oxides from the viewpoint of the dispersed state are Ta oxide, Nb oxide, Ti oxide, Mg oxide, and a composite oxide containing one or more of the above oxide-forming elements, and Ti. Al complex oxide, complex oxide consisting of Ti, Al and Mg, Ti as the main component, and Al, Ca, La, Ce and Y as 1
There are complex oxides containing one or more species. Furthermore, oxides containing a small amount of Si, Mn, and Fe in the above-mentioned oxides also have the same effect.

【0016】[0016]

【発明の実施の形態】以下に、本発明について詳細に説
明する。本発明は、従来達成レベルを凌駕するαの細粒
化の手段として、加工αの回復・再結晶による方法を用
いている点に特徴を有する。すなわち、従来の二相域圧
延技術では、二相域圧延によりαに導入された歪は集合
組織の発達および強化に働いているが、αの細粒化に対
しては積極的には用いられていなかったのに対して、本
発明では、γ/α二相域圧延で導入される加工歪により
加工αの回復・再結晶を極限的に図り、これによりαの
超細粒化を達成するものである。生産性を阻害せず、か
つ均一な整細粒とするという観点から、加工後のαの回
復・再結晶は従来の再加熱熱処理のような方法ではな
く、圧延後の冷却中、好ましくは圧延中あるいは圧延直
後に生じさせる方が有利となる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The present invention is characterized in that a method by recovery / recrystallization of processed α is used as a means for making α finer than the level achieved conventionally. That is, in the conventional two-phase region rolling technology, the strain introduced into α by the two-phase region rolling works for the development and strengthening of the texture, but it is positively used for the refinement of α. On the other hand, in the present invention, the processing strain introduced in the γ / α two-phase rolling allows the processing α to be recovered and recrystallized to the utmost, thereby achieving the ultrafine graining of α. It is a thing. From the viewpoint of producing uniform fine grains without impairing productivity, recovery and recrystallization of α after processing is not a method like conventional reheating heat treatment, but is preferably performed during cooling after rolling, preferably during rolling. It is more advantageous to generate it during or immediately after rolling.

【0017】本発明者らは、圧延によるαの超細粒化条
件を検討し、変態前のγ粒径を50μm以下とした上
で、二相域圧延時のαの割合を50%以上確保すること
により、平均粒径が3μm以下の超細粒組織が達成でき
ることを知見した(特願平6−198829号)。ただ
し、γ粒径の微細化のためにγ域での累積圧下率を大き
くし、未再結晶域圧延を施す必要が生じ、板厚や生産性
に若干の制約が生じることがあった。そこで、αの超細
粒化の別の新たな手段を検討した結果、αを直接加工
し、回復・再結晶により超細粒化させる場合、α単相で
加工するよりもγ相がわずかに存在する方が均一に細粒
化されることを知見した。これは、硬質のγ相が分散す
ることによって加工時にαへの転位の導入がより均一と
なるためである。ただし、変態においてγ相を十分均一
に分散させることは困難であり、またγ相はα相に比べ
て硬質であるにしても、圧延温度域では変形し得るた
め、αへの転位の均一導入に対する効果は飽和する。従
って、γの分散を極力利用するとしても、それには限界
がある。そこで、本発明者らは、γ相の分散に加えて別
の硬質相をγ相以上に微細分散できればαへの転位の導
入がより均一化できて超細粒化が容易になるのではない
かと考え、種々検討した結果、微細な酸化物粒子を適切
に分散することにより、二相域加工によるαの超細粒化
がより一層容易に達成できることを見出した。
The present inventors examined the conditions for making α into ultra-fine grains by rolling, set the γ grain size before transformation to 50 μm or less, and ensured the ratio of α in the two-phase region rolling to 50% or more. By doing so, it was found that an ultrafine grain structure having an average grain size of 3 μm or less can be achieved (Japanese Patent Application No. 6-198829). However, in order to reduce the γ grain size, it was necessary to increase the cumulative reduction ratio in the γ region and perform rolling in the non-recrystallized region, which sometimes caused some restrictions on the plate thickness and productivity. Therefore, as a result of investigating another new method of ultra-fine-graining of α, when α is directly processed and ultra-fine-grained by recovery / recrystallization, the γ-phase is slightly smaller than that of α-single phase processing. It was found that the existing particles are uniformly finely divided. This is because the dispersal of the hard γ phase makes the introduction of dislocations into α more uniform during processing. However, it is difficult to disperse the γ phase in the transformation sufficiently uniformly, and even if the γ phase is harder than the α phase, it can be deformed in the rolling temperature range, so that the uniform introduction of dislocations into α is introduced. The effect on is saturated. Therefore, even if the variance of γ is used as much as possible, it has a limit. Therefore, if the present inventors can finely disperse another hard phase more than the γ phase in addition to the dispersion of the γ phase, the introduction of dislocations into α can be made more uniform and ultrafine graining cannot be facilitated. Therefore, as a result of various studies, it was found that by appropriately dispersing fine oxide particles, ultrafine graining of α by the two-phase region processing can be achieved more easily.

【0018】酸化物粒子としては、加工温度域でα相よ
りも硬ければ種類は問わない。ただし、均一かつ多量の
微細分散が容易な酸化物が好ましい。実験により検討し
た結果、分散状態の観点から好ましい酸化物としては、
酸化Ta、酸化Nb、酸化Ti、酸化Mg、および前記
酸化物形成元素を1種または2種以上含む複合酸化物、
さらにTiとAlの複合酸化物、Ti、Al、Mgから
なる複合酸化物、Tiを主体としてAl、Ca、La、
Ce、Yを1種または2種以上含む複合酸化物がある。
さらに、以上に掲げた酸化物に微量のSi、Mn、Fe
を含む酸化物も同様の効果を有する。
The oxide particles may be of any type as long as they are harder than the α phase in the processing temperature range. However, an oxide that is uniform and easily dispersed in a large amount is preferable. As a result of examination by experiments, as a preferable oxide from the viewpoint of the dispersed state,
Ta oxide, Nb oxide, Ti oxide, Mg oxide, and a composite oxide containing one or more of the above oxide-forming elements,
Further, a complex oxide of Ti and Al, a complex oxide of Ti, Al and Mg, and Al, Ca and La mainly containing Ti,
There are complex oxides containing one or more of Ce and Y.
In addition, trace amounts of Si, Mn, and Fe are added to the oxides listed above.
Oxides containing are also effective.

【0019】酸化物粒子の粒子径は0.1μm以上が必
要である。粒子径が0.1μm未満であるとα相の変形
を均一化するための障害物としての働きが小さく、むし
ろ回復・再結晶を遅延させてしまう場合もある。粒子径
は大きいほどαの変形均一化には有効であるが、1μm
超では効果が飽和してしまう。従って、酸化物粒子はそ
の径が0.1〜1μmの範囲のものがαの変形均一化を
通したαの超細粒化に有効である。
The particle size of the oxide particles is required to be 0.1 μm or more. If the particle size is less than 0.1 μm, the function as an obstacle for uniforming the deformation of the α phase is small, and rather the recovery / recrystallization may be delayed in some cases. The larger the particle size is, the more effective it is in homogenizing α, but 1 μm
If it is over, the effect will be saturated. Therefore, the oxide particles having a diameter in the range of 0.1 to 1 μm are effective for ultrafine graining of α through uniform deformation of α.

【0020】粒子径が0.1〜1μmの範囲の酸化物粒
子がαの超細粒化に実質的に有効となるためには、その
個数も一定以上必要である。詳細な実験に基づいた知見
から、必要な粒子個数は最低限1μm2 当たり0.02
個である。粒子個数の上限としては、同様に実験から1
μm2 当たり0.5個が適当である。これは、αの変形
均一化の観点からは粒子個数をむやみに増やしても効果
は飽和し、かつ特に延性および靱性などの材質特性を劣
化させることから導かれた結論である。延性、靱性を阻
害せずにαの超細粒化を最大限もたらす観点から、本発
明では粒子径が0.1〜1μmの範囲の酸化物粒子の個
数の上限を1μm2 当たり0.5個とする。
In order that the oxide particles having a particle size in the range of 0.1 to 1 μm are substantially effective for the ultrafine graining of α, the number of oxide particles must be a certain number or more. Based on the findings based on detailed experiments, the required number of particles is at least 0.02 per 1 μm 2.
Individual. Similarly, the upper limit of the number of particles is 1 from the experiment.
0.5 is suitable per μm 2 . This is a conclusion derived from the viewpoint that even if the number of particles is increased unnecessarily, the effect is saturated and the material properties such as ductility and toughness are particularly deteriorated from the viewpoint of uniform deformation of α. In the present invention, the upper limit of the number of oxide particles having a particle diameter of 0.1 to 1 μm is 0.5 per 1 μm 2 from the viewpoint of maximizing the ultrafine graining of α without inhibiting ductility and toughness. And

【0021】本発明の粒子径範囲を逸脱する粒子につい
ては少ない方が好ましいが、αの細粒化や材質に対する
悪影響を実質的に示さない範囲として、粒子径0.1μ
m未満の粒子については1μm2 当たり0.5個未満、
粒子径1μm超の粒子については1μm2 当たり0.0
005個未満含んでいてもかまわない。なお、本発明に
おける酸化物粒子径および個数は、当該鋼材の抽出レプ
リカを電子顕微鏡観察し、写真から直接測定する。この
とき、1000〜50000倍で適当な倍率を選び、3
視野以上で粒子100個以上を測定する。粒子の形状が
円でないときは粒子の面積から求めた円相当径を粒径と
する。
Although it is preferable that the number of particles deviating from the particle diameter range of the present invention is small, the particle diameter is 0.1 μm as a range which does not substantially show the adverse effect on the refinement of α and the material.
less than 0.5 per 1 μm 2 for particles less than m,
0.0 per 1 μm 2 for particles with a diameter of more than 1 μm
It may contain less than 005 pieces. The oxide particle size and number in the present invention are measured directly from a photograph by observing an extracted replica of the steel material with an electron microscope. At this time, select an appropriate magnification from 1000 to 50000 times and 3
100 or more particles are measured in the field of view or more. When the shape of the particle is not a circle, the equivalent circle diameter obtained from the area of the particle is the particle size.

【0022】酸化物粒子の種類としては、αへの加工を
加える温度域においてα相とγ相との強度差以上にαと
の強度差があれば効果が生じる。十分安定して効果を生
じさせる観点から、加工温度域においてαに比べて3倍
以上硬ければ好ましい。本発明においては、該酸化物粒
子の鋼中への分散の方法は任意であるが、具体的な方法
としては、酸化物形成元素を溶鋼中へ添加することによ
り溶鋼中の酸素と結合させ、1次脱酸生成物あるいは2
次脱酸生成物として分散させる方法、あるいは分散させ
る酸化物粒子の融点が溶鋼よりも十分高い場合であれ
ば、酸化物粒子微粉末の溶鋼中への直接添加が、板厚お
よび素材サイズを大きくする必要のある構造用高張力鋼
材に対しては工業的に好ましい方法である。
With respect to the type of oxide particles, an effect is produced if the strength difference between α and γ phase is larger than the strength difference between α phase and γ phase in the temperature range where processing to α is performed. From the viewpoint of producing a sufficiently stable effect, it is preferable that the hardness is 3 times or more harder than α in the working temperature range. In the present invention, the method of dispersing the oxide particles in the steel is arbitrary, as a specific method, by adding an oxide-forming element to the molten steel to bond with oxygen in the molten steel, Primary deoxidation product or 2
The method of dispersing as the next deoxidation product, or if the melting point of the oxide particles to be dispersed is sufficiently higher than that of the molten steel, direct addition of fine powder of oxide particles into the molten steel increases the plate thickness and material size. It is an industrially preferable method for structural high-strength steel materials that need to be processed.

【0023】以上が、本発明において最も重要である酸
化物粒子の必要条件である。本発明においては、本発明
に規定する酸化物粒子が分散していることを前提とし
て、製造条件、化学成分を以下の理由により定める。先
ず、本発明においては、鋼片の加熱温度をAc3 変態点
以上、1250℃以下の範囲とした。これは加熱温度が
Ac3 変態点未満では溶体化が十分行われず、また12
50℃を超える高い加熱温度は加熱γ粒径が極端に粗大
になって、その後の圧延によって二相域圧延開始前のα
粒を微細化することが困難になるおそれがあるためであ
る。
The above are the most important requirements for oxide particles in the present invention. In the present invention, the production conditions and chemical components are determined for the following reasons, assuming that the oxide particles specified in the present invention are dispersed. First, in the present invention, the heating temperature of the steel slab is set in a range from the Ac 3 transformation point to 1250 ° C. If the heating temperature is lower than the Ac 3 transformation point, solution treatment is not sufficiently carried out.
If the heating temperature is higher than 50 ° C., the heating γ grain size becomes extremely coarse, and subsequent rolling causes α before the start of the two-phase rolling.
This is because it may be difficult to reduce the grain size.

【0024】二相域圧延を施す時点で加工前のα粒径を
微細化する必要から二相域圧延に先立ってγ域での粗圧
延を行うが、本発明においては、酸化物粒子の存在によ
りその圧下条件は従来に比べて大幅に緩和でき、粗圧延
における累積圧下率は10〜70%の範囲にあればよ
い。ただし、酸化物粒子が必要量分散していても、γ域
での累積圧下率が10%未満では最終組織の微細化を十
分に図ることができない。また、γ域での累積圧下率は
多いほど二相域圧延に入る前のα粒径の微細化には有利
であるが、70%超ではその効果が飽和するのと、γ域
での累積圧下率を過大にとると、仕上圧延としての二相
域圧延の圧下率が十分にとれず、超細粒化に不利であ
り、また製造できる板厚範囲が制約されるため、上限を
70%に制限する。
Since it is necessary to refine the α grain size before processing at the time of performing the two-phase region rolling, rough rolling is performed in the γ region prior to the two-phase region rolling. In the present invention, the presence of oxide particles is present. As a result, the reduction condition can be greatly relaxed compared to the conventional one, and the cumulative reduction ratio in rough rolling may be in the range of 10 to 70%. However, even if the required amount of oxide particles are dispersed, if the cumulative rolling reduction in the γ region is less than 10%, it is not possible to sufficiently miniaturize the final structure. Also, the larger the cumulative rolling reduction in the γ region, the more advantageous it is to refine the α grain size before entering the two-phase region rolling. However, if it exceeds 70%, the effect saturates, and the cumulative rolling reduction in the γ region If the reduction ratio is too large, the reduction ratio of the two-phase region rolling as finish rolling cannot be sufficiently obtained, which is disadvantageous for ultra-fine graining, and the plate thickness range that can be manufactured is restricted. Therefore, the upper limit is 70%. Restricted to.

【0025】γ域圧延の後、二相域での仕上圧延に至る
までの間に、微細なαを必要量生成させるために冷却速
度を規定する必要がある。すなわち、この間の冷却速度
が0.1℃/秒未満であると、αの生成は容易となる
が、生成するαが粗大となり、二相域圧延後の最終組織
の微細化が困難となる。一方、この間の冷却速度が10
℃/秒を超えると、αの生成が抑制され、必要なα量を
確保しようとすると、仕上圧延の温度が不可避的に低下
するため、加工後の回復・再結晶が不十分となり、超細
粒化およびマトリクスの転位密度の低減が十分達成され
ず、材質の向上が望めない。従って、仕上圧延としての
二相域圧延開始までの冷却速度は0.1〜10℃/秒の
範囲とする必要がある。
After rolling in the γ region and before finishing rolling in the two-phase region, it is necessary to regulate the cooling rate in order to generate a required amount of fine α. That is, if the cooling rate during this period is less than 0.1 ° C./second, α is easily generated, but α that is generated becomes coarse, and it becomes difficult to refine the final structure after the two-phase region rolling. On the other hand, the cooling rate during this period is 10
If the temperature exceeds ℃ / sec, α formation will be suppressed, and if an attempt is made to secure the required α amount, the temperature of finish rolling will inevitably decrease, and recovery and recrystallization after processing will be insufficient, resulting in ultra-fine grain formation. Graining and reduction of dislocation density of matrix are not sufficiently achieved, and improvement of material cannot be expected. Therefore, the cooling rate until the start of the two-phase region rolling as finish rolling needs to be in the range of 0.1 to 10 ° C./sec.

【0026】また、二相域での仕上圧延に入る段階での
α分率も重要で、二相域圧延中での誘起変態も考慮する
と、圧延開始前のα分率として50%以上確保できれ
ば、最終組織においてαが均一に超細粒化し得る。α分
率の上限は90%に規定するが、これはわずかに残存し
ている硬質のγ相がαの加工を均一化して整細粒化する
上で有効であり、その効果を発揮するためにはγは10
%以上ある方が好ましいためである。また、付随的には
αが90%以上になるまで冷却すると、実質的にはαが
回復・再結晶できる下限温度以下となってしまう。従っ
て、二相域圧延に入る時点でのα分率は50〜90%と
する。
Further, the α fraction at the stage of entering finish rolling in the two-phase region is also important. Considering the induced transformation during the two-phase region rolling, if the α fraction before the start of rolling can be secured at 50% or more. In the final structure, α can be uniformly fine-grained. The upper limit of the α fraction is specified to 90%, but this is because the slightly remaining hard γ phase is effective in uniformizing the α processing and finely sizing, and exerts its effect. Γ is 10
This is because it is preferable that the content is at least%. Further, incidentally, when cooling is performed until α becomes 90% or more, the temperature becomes substantially lower than the lower limit temperature at which α can be recovered and recrystallized. Therefore, the α fraction at the time of entering the two-phase region rolling is 50 to 90%.

【0027】二相域圧延の累積圧下率については、二相
域圧延の累積圧下率の増加に伴ってαは細粒化するが、
回復・再結晶が圧延後の短時間で起こり、その後の超細
粒化が十分達成されるためには、二相域圧延の累積圧下
率を一定以上にする必要がある。本発明においては、酸
化物粒子を分散させることによってαへの転位の導入の
均一化を図っているため、従来技術によるよりも必要な
二相域圧延の圧下率は小さくてよい。実験によれば、必
要な二相域圧延の累積圧下率は30%以上である。二相
域圧延の場合、圧延温度は必然的に低く、圧延中の短時
間での再結晶は生じないため累積圧下率のみを規定すれ
ばよく、各圧延パスの量や組み合わせの仕方、パス間時
間等は問わない。一方、二相域圧延の累積圧下率は大き
いほど細粒化に有効ではあるが、90%を超える圧下を
しても効果が飽和するのと、圧延時間が長くなり、仕上
温度確保が実質的に困難となるため、経済性を考慮し
て、上限は90%とする。
Regarding the cumulative rolling reduction of the two-phase rolling, α becomes finer as the cumulative rolling reduction of the two-phase rolling increases.
In order for recovery / recrystallization to take place in a short time after rolling, and for subsequent ultrafine graining to be sufficiently achieved, it is necessary to keep the cumulative rolling reduction of the two-phase region rolling above a certain level. In the present invention, since the introduction of dislocations into α is made uniform by dispersing the oxide particles, the required reduction ratio of the two-phase region rolling may be smaller than that in the conventional technique. According to the experiment, the required cumulative rolling reduction in the two-phase region rolling is 30% or more. In the case of two-phase rolling, the rolling temperature is inevitably low and recrystallization does not occur in a short time during rolling, so it suffices to specify only the cumulative reduction ratio. Time does not matter. On the other hand, the larger the cumulative rolling reduction of the two-phase rolling, the more effective it is for grain refinement. However, even if the rolling reduction exceeds 90%, the effect saturates, and the rolling time becomes long and the finishing temperature is substantially secured. Therefore, the upper limit is 90% in consideration of economic efficiency.

【0028】ただし、二相域圧延の終了温度が低過ぎる
と、如何に二相域圧延前のα粒径を微細化しても、圧延
後のαの回復・再結晶が十分進行せず、超細粒化やαマ
トリクス中の転位の低減が不十分となるため、二相域圧
延の累積圧下率が30%以上という条件下で回復・再結
晶が進行する下限温度として、実験結果に基づいて、二
相域圧延終了温度は650℃以上とする。また、二相域
圧延の終了温度の上限は750℃とする。二相域圧延で
は加工発熱により圧延開始よりも終了温度が上昇する場
合がある。この場合、温度が上昇し過ぎると得られた超
細粒αが成長して粗大かつ混粒となるため、これを防ぐ
のに十分な終了温度として、実験結果に基づいて、終了
温度の上限は750℃とする。
However, if the end temperature of the two-phase region rolling is too low, no matter how the α grain size before the two-phase region rolling is refined, the α recovery and recrystallization after the rolling will not proceed sufficiently, and thus the ultra-fine grain size will be too high. Since the grain refinement and the reduction of dislocations in the α matrix are insufficient, the lower limit temperature at which recovery / recrystallization proceeds under the condition that the cumulative rolling reduction of the two-phase region rolling is 30% or more is determined based on the experimental results. The two-phase region rolling end temperature is 650 ° C. or higher. The upper limit of the end temperature of the two-phase region rolling is 750 ° C. In the two-phase rolling, the end temperature may be higher than the start of rolling due to heat generated during processing. In this case, if the temperature rises excessively, the obtained ultrafine particles α grow and become coarse and mixed particles, so as an end temperature sufficient to prevent this, based on the experimental results, the upper limit of the end temperature is 750 ° C.

【0029】また、以下に述べるように、二相域圧延後
の冷却条件としては、所望の特性に応じて加速冷却する
ことも可能であるが、その際に、二相域圧延終了後から
加速冷却開始までの時間が極端に短いと、回復・再結晶
が十分進行しないことが懸念される。実際の製造結果に
よれば、実際の鋼板製造における圧延終了から加速冷却
のための冷却設備までの搬送時間内に十分に回復・再結
晶は進行する。この回復・再結晶のための時間は20秒
以上確保することが好ましい。
Further, as described below, as the cooling condition after the two-phase region rolling, it is possible to perform accelerated cooling according to the desired characteristics. If the time until the start of cooling is extremely short, there is concern that recovery and recrystallization will not proceed sufficiently. According to the actual manufacturing results, recovery and recrystallization sufficiently proceed within the transportation time from the end of rolling in the actual steel plate manufacturing to the cooling equipment for accelerated cooling. It is preferable to secure a time for this recovery / recrystallization of 20 seconds or more.

【0030】二相域圧延終了後の鋼板の熱履歴として
は、圧延終了時に生成した組織が保存される範囲内で
は、所望の機械的性質を得るために、さまざまな熱履歴
を受けることが可能である。すなわち、圧延後、そのま
ま放冷しても、あるいは圧延後、加速冷却しても、ある
いは加速冷却後、焼戻し処理を施してもよい。ただし、
加速冷却する場合は、加速冷却の効果を発揮させるため
に、冷却速度は5℃/秒以上が必要である。しかし、冷
却速度が50℃/秒を超えても、組織制御、機械的性質
の改善効果は飽和するため、加速冷却における冷却速度
の範囲は5〜50℃/秒とする。また、同様の理由か
ら、加速冷却は550℃以下まで行う必要があるが、機
械的性質に影響を及ぼす冶金因子が変化するのは実質的
には室温付近であるので、冷却停止温度の下限は20℃
とする。
As for the heat history of the steel sheet after the completion of the two-phase rolling, various heat histories can be received in order to obtain desired mechanical properties within the range in which the structure produced at the end of rolling is preserved. Is. That is, after rolling, it may be allowed to cool as it is, or after rolling, it may be subjected to accelerated cooling, or after accelerated cooling, it may be subjected to tempering treatment. However,
In the case of accelerated cooling, the cooling rate needs to be 5 ° C./second or more in order to exert the effect of accelerated cooling. However, even if the cooling rate exceeds 50 ° C./sec, the effect of improving the structure control and mechanical properties is saturated, so the cooling rate range in accelerated cooling is set to 5 to 50 ° C./sec. Further, for the same reason, accelerated cooling needs to be performed up to 550 ° C. or lower, but the metallurgical factor affecting mechanical properties changes substantially at room temperature, so the lower limit of the cooling stop temperature is 20 ° C
And

【0031】また、加速冷却後、強度の調整、靱性の改
善等のために焼戻しを施す場合は、圧延によって得られ
た超細粒組織を保存する必要性から、焼戻温度は650
℃以下に限定する必要がある。ただし、本発明の成分、
組織範囲においては、焼戻しによる機械的性質の改善は
400℃以上から期待されるため、焼戻温度の範囲は4
00〜650℃とする。
When tempering is performed after the accelerated cooling to adjust the strength, improve the toughness, etc., the tempering temperature is 650 because the ultrafine grain structure obtained by rolling needs to be preserved.
It must be limited to below ℃. However, the components of the present invention,
In the structural range, tempering is expected to improve mechanical properties from 400 ° C or higher, so the tempering temperature range is 4
The temperature is set to 00 to 650 ° C.

【0032】以上が、製造条件に関する本発明の限定理
由であるが、所望の強度および低温靱性を確保するため
には、製造方法だけでなく、化学成分も適正範囲内とす
る必要がある。以下に、本発明における化学成分の限定
理由を述べる。Cは鋼の強度を向上させる有効な成分と
して添加するもので、0.01%未満では構造用鋼に必
要な強度の確保が困難であり、また0.20%を超える
過剰の添加は靱性や耐溶接割れ性などを著しく低下させ
るので、0.01〜0.20%の範囲とした。
The above are the reasons for limiting the present invention with respect to the production conditions. In order to secure desired strength and low temperature toughness, not only the production method but also the chemical composition must be within an appropriate range. The reasons for limiting the chemical components in the present invention are described below. C is added as an effective component for improving the strength of steel. If it is less than 0.01%, it is difficult to secure the strength required for structural steel, and if it is added in excess of 0.20%, the toughness and The range of 0.01 to 0.20% is set because the weld crack resistance and the like are significantly reduced.

【0033】Siは脱酸元素として、また母材の強度確
保に有効な元素である。0.03%未満の添加では脱酸
が不十分となり、また強度確保に不利である。逆に1.
0%を超える過剰の添加は、粗大な酸化物を形成して延
性や靱性の劣化を招く。従って、Siの範囲は0.03
〜1.0%とした。Mnは母材の強度、靱性の確保に必
要な元素であり、最低限0.30%添加する必要がある
が、溶接部の靱性、割れ性など材質上許容できる範囲で
上限を2.0%とした。
Si is an element effective as a deoxidizing element and for ensuring the strength of the base material. Addition of less than 0.03% results in insufficient deoxidation and is disadvantageous in securing strength. Conversely, 1.
Excessive addition of more than 0% forms a coarse oxide and causes deterioration of ductility and toughness. Therefore, the range of Si is 0.03
.About.1.0%. Mn is an element necessary to secure the strength and toughness of the base metal, and it is necessary to add at least 0.30%, but the upper limit is 2.0% within the allowable range of the material such as the toughness and crackability of the weld. And

【0034】Alは脱酸元素としての役割以外に、Al
Nを形成してγ粒径の細粒化等に有効な元素であり、そ
の効果を発揮するためには、酸化物以外の含有量として
0.001%以上とする必要があるが、0.1%を超え
て過剰に添加すると、粗大な析出物を形成して延性を極
端に劣化させるため、0.001〜0.1%の範囲に限
定する必要がある。
In addition to its role as a deoxidizing element, Al is Al
It is an element effective in forming N and making the γ grain size finer, and in order to exert its effect, the content of elements other than oxides must be 0.001% or more. If added in excess of 1%, coarse precipitates are formed and ductility is extremely deteriorated, so it is necessary to limit the content to 0.001 to 0.1%.

【0035】NはAlやTiと結びついてγ粒微細化に
有効に働くが、その効果が明確になるためには0.00
1%以上含有させる必要がある一方、過剰に添加すると
固溶Nが増加して靱性に悪影響を及ぼす。許容できる範
囲として、Nの上限を0.01%とする。以上が本発明
対象鋼の基本成分であるが、所望の強度レベルに応じ
て、母材強度の上昇、靱性確保の目的で、必要に応じ
て、Cr、Ni、Mo、Cu、Ti、V、Nb、B、T
a、W、Ca、REMの1種または2種以上を含有する
ことができる。
N combines with Al and Ti and works effectively for γ grain refinement, but in order to clarify the effect, N is 0.00
While it is necessary to contain 1% or more, if added in excess, the amount of solute N increases and the toughness is adversely affected. As an allowable range, the upper limit of N is 0.01%. The above are the basic components of the steel of the present invention, but depending on the desired strength level, Cr, Ni, Mo, Cu, Ti, V, if necessary, for the purpose of increasing the base metal strength and ensuring toughness, Nb, B, T
One, two or more of a, W, Ca and REM can be contained.

【0036】CrおよびMoは、何れも母材の強度向上
に有効な元素であるが、明瞭な効果を生じさせるために
は、それぞれ0.01%以上の添加が必要であり、一
方、それぞれ0.50%を超えて添加すると靱性が劣化
する傾向を示すため、これらの添加量範囲をそれぞれ
0.01〜0.50%とする。Niは母材の強度と靱性
を同時に向上でき、非常に有効な元素であるが、効果を
発揮させるためには0.01%以上含有させる必要があ
る。含有量が多くなると強度、靱性は向上するが、3.
0%を超えて添加しても効果が飽和するためと、Ar3
変態点が極端に低下して、本発明の条件である二相域圧
延前のα量50%以上と、二相域圧延終了温度650℃
以上を同時に満足することができなくなるため、経済性
も考慮して、上限を3.0%とする。
Cr and Mo are both effective elements for improving the strength of the base material, but in order to produce a clear effect, 0.01% or more of each must be added, while each of them is 0%. If added in excess of 0.50%, the toughness tends to deteriorate, so the addition amount range of each of them is set to 0.01 to 0.50%. Ni is a very effective element because it can improve the strength and toughness of the base material at the same time, but it is necessary to contain Ni in an amount of 0.01% or more in order to exert the effect. When the content is high, the strength and toughness are improved, but 3.
And the effect is saturated even if added over 0%, Ar 3
The transformation point is extremely lowered, the α amount before the two-phase region rolling which is the condition of the present invention is 50% or more, and the two-phase region rolling end temperature is 650 ° C.
Since the above cannot be satisfied at the same time, the upper limit is set to 3.0% in consideration of economic efficiency.

【0037】Cuも0.01%以上の添加により、ほぼ
Niと同様の効果を有するが、1.5%超の添加では熱
間加工性に問題を生じるため、0.01〜1.5%の範
囲に限定する。Tiは析出強化により母材強度向上に寄
与するとともに、TiNの形成によりγ粒微細化にも有
効な元素であるが、効果を発揮させるためには0.00
3%以上の添加が必要である。一方、0.10%を超え
ると、Alと同様に、粗大な酸化物を形成して靱性や延
性を劣化させるため、上限を0.10%とする。
If Cu is added in an amount of 0.01% or more, it has almost the same effect as Ni. However, if it exceeds 1.5%, a problem occurs in hot workability. It is limited to the range of. Ti contributes to the improvement of the strength of the base material by precipitation strengthening, and is an element effective for γ grain refinement due to the formation of TiN.
It is necessary to add 3% or more. On the other hand, if it exceeds 0.10%, similarly to Al, a coarse oxide is formed to deteriorate toughness and ductility, so the upper limit is made 0.10%.

【0038】VおよびNbは、何れも主として析出強化
により母材の強度向上に寄与するが、過剰に添加すると
靱性が劣化する。従って、靱性の劣化を招かずに、効果
を発揮させる範囲として、Vは0.005〜0.20
%、Nbは0.003〜0.05%とする。Bは0.0
003%以上のごく微量添加で鋼材の焼入れ性を高めて
強度上昇に非常に有効であるが、過剰に添加するとBN
を形成して逆に焼入れ性を落としたり、靱性を大きく劣
化させるため、上限を0.0020%とする。
Both V and Nb mainly contribute to improving the strength of the base material by precipitation strengthening, but if added excessively, the toughness deteriorates. Therefore, V is 0.005 to 0.20 as a range in which the effect is exhibited without deteriorating the toughness.
% And Nb are 0.003 to 0.05%. B is 0.0
Addition of a very small amount of 003% or more is very effective in increasing the hardenability of steel materials and increasing the strength, but if added in excess, BN
Therefore, the upper limit is set to 0.0020% in order to reduce the hardenability and significantly deteriorate the toughness.

【0039】Taは主として析出強化により母材の強度
向上に有効である。その効果を発揮するためには0.0
1%以上含有させる必要がある。ただし、1.0%を超
えると靱性を著しく劣化させるため、0.01〜1.0
%の範囲に限定する。Wは強度、靱性に対してMoと類
似の効果を有し、その効果を確実に発揮するためには
0.01%以上の含有が必要である。一方、1.0%を
超えて含有すると靱性を損なうため、Wの上限を1.0
%とする。
Ta is effective for improving the strength of the base material mainly by precipitation strengthening. 0.0 to exert its effect
It is necessary to contain 1% or more. However, if it exceeds 1.0%, the toughness is significantly deteriorated, so 0.01 to 1.0
%. W has an effect similar to that of Mo on strength and toughness, and it is necessary to contain W in an amount of 0.01% or more in order to surely exhibit the effect. On the other hand, if the content exceeds 1.0%, the toughness is impaired, so the upper limit of W is 1.0
%.

【0040】CaおよびREMは、何れも機械的性質の
異方性改善や耐ラメラティア特性改善に有効な元素であ
る。Caの場合は、0.0005%未満では効果が明確
でなく、0.005%超では介在物が粗大となって靱
性、延性に悪影響を及ぼすおそれがあるため、0.00
05〜0.005%の範囲とする。REMの場合は、
0.0005%未満では効果が明確でなく、0.02%
超ではCaと同様に介在物が粗大となって靱性、延性に
悪影響を及ぼすおそれがあるため、0.0005〜0.
02%の範囲とする。
Both Ca and REM are effective elements for improving the anisotropy of mechanical properties and improving the lamella tear resistance. In the case of Ca, if the content is less than 0.0005%, the effect is not clear, and if it exceeds 0.005%, inclusions become coarse and the toughness and ductility may be adversely affected.
The range is from 05 to 0.005%. In the case of REM,
If less than 0.0005%, the effect is not clear and 0.02%
If it is over 0.00, inclusions may become coarse and adversely affect toughness and ductility as in the case of Ca, so 0.0005 to 0.
The range is 02%.

【0041】不純物元素としてのP、Sは、靱性や延性
を著しく低下させるため、極力低減することが好ましい
が、P、Sの低減は原料の精選、製鋼上の工夫、管理の
厳格化等、製造工程への負荷、製造コストの上昇につな
がるため、靱性、延性の低下が許容できる量として、上
限値を、Pは0.015%、Sは0.010%に限定す
る。
Since P and S as impurity elements significantly reduce toughness and ductility, it is preferable to reduce them as much as possible, but the reduction of P and S is due to careful selection of raw materials, ingenuity in steel making, strict management, etc. Since the load on the manufacturing process and the manufacturing cost are increased, the upper limit values of P are 0.015% and S are 0.010% as the tolerable amounts of the toughness and ductility.

【0042】次に、本発明の効果を実施例によってさら
に具体的に述べる。
Next, the effects of the present invention will be described more specifically by way of examples.

【0043】[0043]

【実施例】実施例に用いた供試鋼の化学成分および酸化
物粒子の状態とを表1、表2(表1のつづき−1)、表
3(表1のつづき−2)、表4(表1のつづき−3)に
示す。各供試鋼は造塊後、分塊圧延により、あるいは連
続鋳造により鋼片としたものである。表1〜表4のう
ち、鋼番1〜15は本発明の化学組成範囲および酸化物
粒子の分散状態を満足しており、鋼番16〜21は本発
明の化学組成範囲、酸化物粒子の分散状態の両者あるい
は何れかを満足していない。
[Examples] Table 1, Table 2 (Continued-1 of Table 1), Table 3 (Continued-2 of Table 1) and Table 4 show the chemical composition and the state of oxide particles of the sample steel used in the Examples. (Continued from Table 1-3). Each of the test steels is made into a slab by ingot rolling, slab rolling, or continuous casting. In Tables 1 to 4, Steel Nos. 1 to 15 satisfy the chemical composition range of the present invention and the dispersed state of oxide particles, and Steel Nos. 16 to 21 are the chemical composition range of the present invention and oxide particles. Either or both of the dispersed states are not satisfied.

【0044】表1〜表4の化学成分の鋼片を表5、表6
(表5のつづき−1)、表7(表5のつづき−2)、表
8(表5のつづき−3)に示す条件により鋼板に製造
し、強度、シャルピー衝撃特性、DWTT特性を調査し
た。試験片は全て板厚中心部から圧延方向に直角(C方
向)に採取した。シャルピー衝撃特性は50%破面遷移
温度(vTrs)で、またDWTT特性は85%延性破
面遷移温度(85%FATT)でそれぞれ評価した。強
度、靱性の試験結果も表5〜表8に示す。
Steel pieces having the chemical composition shown in Tables 1 to 4 are shown in Tables 5 and 6.
Steel plates were manufactured under the conditions shown in Table 1 (continued-1), Table 7 (table-2 continued-2), and Table 8 (table-5 continued-3), and the strength, Charpy impact characteristics, and DWTT characteristics were investigated. . All the test pieces were taken from the center of the sheet thickness at a right angle to the rolling direction (C direction). The Charpy impact property was evaluated at 50% fracture transition temperature (vTrs), and the DWTT property was evaluated at 85% ductile fracture transition temperature (85% FATT). The test results of strength and toughness are also shown in Tables 5 to 8.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【表4】 [Table 4]

【0049】[0049]

【表5】 [Table 5]

【0050】[0050]

【表6】 [Table 6]

【0051】[0051]

【表7】 [Table 7]

【0052】[0052]

【表8】 [Table 8]

【0053】表5〜表8において、試験No.A1〜A
20は何れも本発明の化学組成の鋼片を本発明の条件に
従って製造した鋼板であり、最終的に得られたα組織は
全て整粒でかつ平均粒径は2.2μm以下となってお
り、安定して平均粒径3μm以下の超細粒組織が得られ
ている。また、靱性値はvTrsで−120℃以下、D
WTT試験の80%FATTで−90℃以下が達成され
ている。
In Tables 5 to 8, the test No. A1-A
No. 20 is a steel sheet produced by producing a steel slab having the chemical composition of the present invention according to the conditions of the present invention, and all α structures finally obtained are sized and the average grain size is 2.2 μm or less. A stable ultrafine grain structure having an average grain size of 3 μm or less is obtained. Further, the toughness value is vTrs of −120 ° C. or lower, D
A temperature of −90 ° C. or lower is achieved by 80% FATT in the WTT test.

【0054】一方、試験No.B1〜B9は比較例であ
り、何れかの条件が本発明の限定範囲を外れているた
め、本発明例に比べてシャルピー衝撃特性、DWTT特
性ともにはるかに劣る。すなわち、試験No.B1はC
が過剰なため、シャルピー特性、DWTT特性がともに
劣る。試験No.B2はMn量が過剰なため、良好なシ
ャルピー特性、DWTT特性が得られていない。試験N
o.B3はCr、Mo、Niが過剰なために変態点が低
くなりすぎており、仕上圧延開始温度は710℃と低い
にもかかわらず仕上圧延開始時には未だα変態が生じて
おらず、従って達成されるα粒径も粗大であり、靱性向
上が図られていない。
On the other hand, the test No. B1 to B9 are comparative examples, and since any of the conditions is out of the limited range of the present invention, both Charpy impact characteristics and DWTT characteristics are far inferior to those of the present invention. That is, the test No. B1 is C
Therefore, both the Charpy characteristic and the DWTT characteristic are inferior. Test No. Since B2 has an excessive amount of Mn, good Charpy characteristics and DWTT characteristics are not obtained. Test N
o. B3 has an excessively low transformation point because Cr, Mo, and Ni are excessive, and although the finish rolling start temperature is as low as 710 ° C., the α transformation has not yet occurred at the start of finish rolling, and is therefore achieved. The α particle size is also coarse, and toughness has not been improved.

【0055】試験No.B4〜B6は本発明の要件であ
る酸化物粒子の状態が本発明の範囲を満足していないた
め、本発明により製造された鋼に比べてαの超細粒化が
十分でなく、シャルピー特性、DWTT特性が劣る。す
なわち、試験No.B4、B5は、その径が0.1〜1
μmの酸化物粒子の個数が過少であるため、平均α粒径
は3μm以下ではるものの混粒度が大きく、得られるシ
ャルピー特性、DWTT特性のレベルが本発明により製
造された鋼に比べて若干劣る。一方、試験No.B6は
酸化物粒子の個数が過大であるため、αの回復・再結晶
が抑制され、シャルピー特性、DWTT特性の向上が図
られていない。
Test No. In B4 to B6, the state of the oxide particles, which is a requirement of the present invention, does not satisfy the range of the present invention, so that the ultrafine graining of α is not sufficient as compared with the steel produced by the present invention, and the Charpy property is , DWTT characteristics are inferior. That is, the test No. The diameter of B4 and B5 is 0.1 to 1
Since the number of oxide particles of μm is too small, the average α particle size is 3 μm or less, but the mixed particle size is large, and the obtained Charpy property and DWTT property level are slightly inferior to the steel manufactured by the present invention. . On the other hand, Test No. Since the number of oxide particles of B6 is excessive, the recovery and recrystallization of α are suppressed, and the Charpy characteristic and DWTT characteristic are not improved.

【0056】試験No.B7〜B9は、本発明の化学組
成、酸化物粒子の分散状態を満足しているものの、製造
条件が本発明に従っていないために、良好なシャルピー
特性、DWTT特性が得られていないものである。すな
わち、試験No.B7は仕上圧延の開始温度が高すぎる
ために仕上圧延開始時にαが存在せず、その結果最終組
織の超細粒化が図られておらず、従ってシャルピー特
性、DWTT特性も劣る。試験No.B8は、粗圧延後
から仕上圧延に入るまでの冷却速度が過大であるために
仕上圧延開始時にαが存在せず、超細粒化が達成されて
いない。また、試験No.B9は仕上圧延の終了温度が
高すぎるため、一旦細粒化したαの粒成長が生じて混粒
度が大となり、平均粒径も3μm超で、シャルピー特
性、DWTT特性が劣る。
Test No. B7 to B9 satisfy the chemical composition and the dispersion state of the oxide particles of the present invention, but the good Charpy characteristics and DWTT characteristics are not obtained because the manufacturing conditions do not comply with the present invention. That is, the test No. In B7, since the starting temperature of finish rolling is too high, α does not exist at the start of finish rolling, and as a result, ultrafine graining of the final structure is not achieved, and therefore Charpy characteristics and DWTT characteristics are inferior. Test No. In B8, since the cooling rate from the rough rolling to the finish rolling is too high, α does not exist at the start of the finish rolling, and thus ultrafine graining is not achieved. Test No. Since the finishing temperature of finish rolling of B9 is too high, grain growth of α once refined occurs, the mixed grain size becomes large, the average grain size exceeds 3 μm, and the Charpy property and DWTT property are poor.

【0057】以上の実施例からも、本発明により安定し
て超細粒組織が達成され、これにより非常に良好な低温
靱性が得られることが明白である。
From the above examples, it is clear that the present invention stably achieves an ultrafine grain structure, and thereby very good low temperature toughness is obtained.

【0058】[0058]

【発明の効果】本発明は、高価な合金元素の添加や、生
産性の劣る複雑な熱間加工あるいは熱処理工程を必要と
せずに、平均α粒径が3μm以下で、かつ混粒度が小さ
い整粒の超細粒α組織を得ることにより、低温靱性の良
好な厚鋼板を製造できる画期的な発明であり、製造コス
トの低減、構造物としての安全性の向上等、産業上の効
果は極めて大きい。
INDUSTRIAL APPLICABILITY The present invention has an average α particle size of 3 μm or less and a small mixed particle size without requiring the addition of expensive alloying elements and complicated hot working or heat treatment step with poor productivity. It is an epoch-making invention that can produce thick steel plate with good low temperature toughness by obtaining ultra-fine grain α structure, and has industrial advantages such as reduction of production cost and improvement of safety as a structure. Extremely large.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 酸化物粒子を除いた成分として、重量%
で(以下同じ)、 C:0.01〜0.20%、 Si:0.03〜1.0%、 Mn:0.30〜2.0%、 Al:0.001〜0.1%、 N:0.001〜0.01%を含有し、不純物としての
P、Sを、 P≦0.015%、 S≦0.010%に制限し、さらに粒子径が0.1〜1
μmの酸化物粒子を母材面積1μm2 当たり0.02〜
0.5個含有し、残部Feおよび不可避不純物からなる
鋼片をAc 3 変態点〜1250℃に加熱し、オーステナ
イト域で累積圧下率が10〜70%の粗圧延の後、仕上
圧延開始まで0.1〜10℃/秒で冷却し、フェライト
の割合が50〜90%である状態から累積圧下率が30
〜90%である仕上圧延を650〜750℃の温度で終
了することを特徴とする低温靱性に優れた高張力鋼材の
製造方法。
1. As a component excluding oxide particles, weight%
(Same below), C: 0.01 to 0.20%, Si: 0.03 to 1.0%, Mn: 0.30 to 2.0%, Al: 0.001 to 0.1%, N: 0.001-0.01% is contained, and as an impurity
P and S are limited to P ≦ 0.015% and S ≦ 0.010%, and the particle size is 0.1 to 1
A base material area of 1 μm for oxide particles of μmTwoPer 0.02
0.5 contained, balance Fe and unavoidable impurities
Steel billet Ac ThreeAustena by heating to transformation point ~ 1250 ℃
Finish after rough rolling with cumulative reduction of 10 to 70%
Ferrite cooled to 0.1-10 ° C / sec until the start of rolling
Is 50 to 90%, the cumulative rolling reduction is 30
~ 90% finish rolling at a temperature of 650-750 ° C
Of high-strength steel with excellent low temperature toughness
Production method.
【請求項2】 さらに、重量%で、 Cr:0.01〜0.50%、 Ni:0.01〜3.0%、 Mo:0.01〜0.50%、 Cu:0.01〜1.5%、 Ti:0.003〜0.10%、 V:0.005〜0.20%、 Nb:0.003〜0.05%、 B:0.0003〜0.0020%、 Ta:0.01〜1.0%、 W:0.01〜1.0%の1種または2種以上を含有す
ることを特徴とする請求項1記載の低温靱性に優れた高
張力鋼材の製造方法。
2. Further, by weight%, Cr: 0.01 to 0.50%, Ni: 0.01 to 3.0%, Mo: 0.01 to 0.50%, Cu: 0.01 to 1.5%, Ti: 0.003 to 0.10%, V: 0.005 to 0.20%, Nb: 0.003 to 0.05%, B: 0.0003 to 0.0020%, Ta : 0.01 to 1.0%, W: 0.01 to 1.0%, or a combination of two or more thereof. The production of a high-strength steel material having excellent low temperature toughness according to claim 1. Method.
【請求項3】 さらに、重量%で、 Ca:0.0005〜0.005%、 REM:0.0005〜0.02%の1種または2種を
含有することを特徴とする請求項1または2記載の低温
靱性に優れた高張力鋼材の製造方法。
3. The composition according to claim 1, further comprising one or two of Ca: 0.0005 to 0.005% and REM: 0.0005 to 0.02% by weight. 2. A method for producing a high-strength steel material having excellent low temperature toughness as described in 2.
【請求項4】 仕上圧延終了後、引き続いて5〜50℃
/秒で550〜20℃まで加速冷却することを特徴とす
る請求項1〜3の何れか1項に記載の低温靱性に優れた
高張力鋼材の製造方法。
4. After finishing rolling, 5 to 50 ° C. continuously.
The method for producing a high-strength steel material having excellent low-temperature toughness according to any one of claims 1 to 3, wherein accelerated cooling is performed at 550 to 20 ° C per second.
【請求項5】 加速冷却した後、400〜650℃で焼
戻すことを特徴とする請求項4記載の低温靱性に優れた
高張力鋼材の製造方法。
5. The method for producing a high-strength steel material excellent in low-temperature toughness according to claim 4, wherein the material is tempered at 400 to 650 ° C. after accelerated cooling.
JP01046096A 1996-01-24 1996-01-24 Method for producing high-tensile steel with excellent low-temperature toughness Expired - Fee Related JP3842836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01046096A JP3842836B2 (en) 1996-01-24 1996-01-24 Method for producing high-tensile steel with excellent low-temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01046096A JP3842836B2 (en) 1996-01-24 1996-01-24 Method for producing high-tensile steel with excellent low-temperature toughness

Publications (2)

Publication Number Publication Date
JPH09202919A true JPH09202919A (en) 1997-08-05
JP3842836B2 JP3842836B2 (en) 2006-11-08

Family

ID=11750756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01046096A Expired - Fee Related JP3842836B2 (en) 1996-01-24 1996-01-24 Method for producing high-tensile steel with excellent low-temperature toughness

Country Status (1)

Country Link
JP (1) JP3842836B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069198A1 (en) * 1999-01-28 2001-01-17 Sumitomo Metal Industries, Ltd. Machine structural steel product
JP2003328070A (en) * 2002-05-14 2003-11-19 Sumitomo Metal Ind Ltd Ultra thick steel material and manufacturing method therefor
EP1559804A1 (en) * 2002-10-17 2005-08-03 National Institute for Materials Science Formed product and method for production thereof
JP2008214646A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk Thick steel plate for welded structure having superior resistance to fatigue crack propagation in plate thickness direction, and its manufacturing method
CN102828116A (en) * 2011-06-14 2012-12-19 鞍钢股份有限公司 TMCP (thermal mechanical control processing) process-based surface-layer ultrafine-grain high-strength steel plate and manufacturing method thereof
WO2020116538A1 (en) * 2018-12-07 2020-06-11 Jfeスチール株式会社 Steel sheet and production method therefor
CN111455273A (en) * 2020-04-07 2020-07-28 新余钢铁股份有限公司 Base plate for compressor shell and production method thereof
CN113046637A (en) * 2021-03-05 2021-06-29 宝钢湛江钢铁有限公司 High-temperature-resistant low-alloy steel plate and manufacturing method thereof
EP3835448A4 (en) * 2018-08-07 2021-07-07 Posco Steel for pressure vessel having excellent surface quality and impact toughness, and method for manufacturing same
CN114737130A (en) * 2022-04-29 2022-07-12 鞍钢股份有限公司 355 MPa-grade low-temperature steel and manufacturing method thereof
CN115135787A (en) * 2020-03-30 2022-09-30 杰富意钢铁株式会社 Steel sheet and method for producing same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069198A1 (en) * 1999-01-28 2001-01-17 Sumitomo Metal Industries, Ltd. Machine structural steel product
EP1069198A4 (en) * 1999-01-28 2002-02-06 Sumitomo Metal Ind Machine structural steel product
US6475305B1 (en) 1999-01-28 2002-11-05 Sumitomo Metal Industries, Ltd. Machine structural steel product
JP2003328070A (en) * 2002-05-14 2003-11-19 Sumitomo Metal Ind Ltd Ultra thick steel material and manufacturing method therefor
EP1559804A1 (en) * 2002-10-17 2005-08-03 National Institute for Materials Science Formed product and method for production thereof
EP1559804A4 (en) * 2002-10-17 2006-01-25 Nat Inst For Materials Science Formed product and method for production thereof
JP2008214646A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk Thick steel plate for welded structure having superior resistance to fatigue crack propagation in plate thickness direction, and its manufacturing method
CN102828116A (en) * 2011-06-14 2012-12-19 鞍钢股份有限公司 TMCP (thermal mechanical control processing) process-based surface-layer ultrafine-grain high-strength steel plate and manufacturing method thereof
EP3835448A4 (en) * 2018-08-07 2021-07-07 Posco Steel for pressure vessel having excellent surface quality and impact toughness, and method for manufacturing same
US11624101B2 (en) 2018-08-07 2023-04-11 Posco Co., Ltd Steel for pressure vessel having excellent surface quality and impact toughness, and method for manufacturing same
JPWO2020116538A1 (en) * 2018-12-07 2021-02-15 Jfeスチール株式会社 Steel plate and its manufacturing method
WO2020116538A1 (en) * 2018-12-07 2020-06-11 Jfeスチール株式会社 Steel sheet and production method therefor
CN115135787A (en) * 2020-03-30 2022-09-30 杰富意钢铁株式会社 Steel sheet and method for producing same
CN111455273A (en) * 2020-04-07 2020-07-28 新余钢铁股份有限公司 Base plate for compressor shell and production method thereof
CN113046637A (en) * 2021-03-05 2021-06-29 宝钢湛江钢铁有限公司 High-temperature-resistant low-alloy steel plate and manufacturing method thereof
CN114737130A (en) * 2022-04-29 2022-07-12 鞍钢股份有限公司 355 MPa-grade low-temperature steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP3842836B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
JP3848465B2 (en) Method for producing thick high-tensile steel with excellent low-temperature toughness
US9394579B2 (en) High-strength steel material having outstanding ultra-low-temperature toughness and a production method therefor
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
WO2011142356A1 (en) High-strength steel sheet and method for producing same
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP2001220641A (en) High strength thin steel sheet and high strength gavlanized thin steel sheet excellent in ductility and low in yield ratio and producing method therefor
JP2024500851A (en) Extra-thick steel material with excellent low-temperature impact toughness and its manufacturing method
JPH09176782A (en) Building use high tensile strength steel excellent in fracture resistance and its production
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JP3922805B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JP3369435B2 (en) Manufacturing method of non-heat treated high strength steel excellent in low temperature toughness
JPH1171615A (en) Production of thick steel plate excellent in low temperature toughness
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP3261515B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH07258788A (en) Production of thick steel plate excellent in brittle fracture propagation stop characteristic and low temperature toughness
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH0629480B2 (en) Hot-rolled high-strength steel sheet excellent in strength, ductility, toughness, and fatigue characteristics, and method for producing the same
JP2953919B2 (en) Slab for high toughness and high strength steel and method for producing rolled section steel using the slab
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
JP3485737B2 (en) Manufacturing method of thick steel plate with excellent low temperature toughness
JP2807592B2 (en) Method for producing structural steel sheet with good brittle fracture resistance
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JP3348359B2 (en) Structural steel with excellent arrest performance and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060811

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees