JPH09176782A - Building use high tensile strength steel excellent in fracture resistance and its production - Google Patents

Building use high tensile strength steel excellent in fracture resistance and its production

Info

Publication number
JPH09176782A
JPH09176782A JP33662295A JP33662295A JPH09176782A JP H09176782 A JPH09176782 A JP H09176782A JP 33662295 A JP33662295 A JP 33662295A JP 33662295 A JP33662295 A JP 33662295A JP H09176782 A JPH09176782 A JP H09176782A
Authority
JP
Japan
Prior art keywords
steel material
steel
surface layer
construction
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33662295A
Other languages
Japanese (ja)
Inventor
Toshinaga Hasegawa
俊永 長谷川
Hidesato Mabuchi
秀里 間渕
Yukio Tomita
幸男 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33662295A priority Critical patent/JPH09176782A/en
Publication of JPH09176782A publication Critical patent/JPH09176782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce the objective steel by forming a specified compsn. in which the contents of P, S and 0 are reduced and elements such as Al, Ti or the like forming nitrides and having effect of fixing N are incorporated to reduce the content of solid solution N and imparting an ultrafine-grained structure on the surface layer. SOLUTION: This steel has a compsn. contg., by weight, 0.01 to 0.15% C, 0.01 to 1.0% Si, 0.1 to 2.0% Mn, 0.003 to 0.1% Al and 0.001 to 0.005% N, in which the contents of P, S and O as impurities are regulated to <=0.01% P, <=0.01% S and <=0.006% O, and, also, N(%)-Al(%)/3.0<=0 is satisfied, and the balance iron. Then, at least two outer surfaces among the outer surfaces thereof has an ultrafine-grained structure in which the average ferrite grain size in the range from the surface layer to 10 to 33% of the total thickness is regulated to <=3μ. Moreover, prescribed amounts of one or more kinds among Ti, Zr, Nb, Ta, V and B may be used instead of Al, and, furthermore, the above steel may be incorporated with one or more kinds among Cr, Mo, Ni, Cu and W or one or more kinds among Mg, Ca and rare earth metals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は使用中に大地震等に
よる大きくかつ繰り返しの塑性歪を受けるような構造物
に使用される強度部材用の鋼材及びその製造方法に関す
るものである。例えば、この方法で製造した鋼材は海洋
構造物、圧力容器、造船、橋梁、建築物、ラインパイプ
等の溶接鋼構造物一般に用いることができるが、特に耐
震性を必要とする建築、橋梁等の構造物用鋼材として有
用である。また、鋼材の形態としては特に問わないが、
構造部材として用いられ、低温靭性が要求される鋼板、
特に厚板、鋼管素材あるいは形鋼に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material for a strength member used for a structure which is subjected to a large and repeated plastic strain due to a large earthquake or the like during use and a method for manufacturing the same. For example, steel materials manufactured by this method can be used for general welded steel structures such as marine structures, pressure vessels, shipbuilding, bridges, buildings, line pipes, etc., but especially for buildings requiring earthquake resistance, bridges, etc. It is useful as a steel material for structures. The form of the steel material is not particularly limited,
Steel plate used as a structural member and requiring low temperature toughness,
It is especially useful for thick plates, steel pipe materials or shaped steel.

【0002】[0002]

【従来の技術】近年、建築物の高層化、橋梁の大スパン
化等に見られるように構造物は大型化の傾向にあり、該
用途に使用される鋼材には、地震、台風等による構造物
の崩壊防止のための性能確保が重要な課題となってい
る。特に、阪神大震災の経験から、設計、施工上の特段
の配慮なしに構造物の安全性を鋼材の性能によって確保
しようとすると、延性破壊、脆性破壊の両面で安全性の
高い鋼材が必要であることが認識されつつある。
2. Description of the Related Art In recent years, structures have been increasing in size as seen in higher-rise buildings and larger spans of bridges. Steel materials used in such applications include structures caused by earthquakes, typhoons, and the like. Securing performance to prevent material collapse is an important issue. In particular, from the experience of the Great Hanshin Earthquake, if the safety of a structure is to be ensured by the performance of steel materials without special consideration in design and construction, steel materials with high safety in both ductile fracture and brittle fracture are required. It is being recognized.

【0003】最近、高層建築用鋼材に延性破壊性能に配
慮した低降伏比鋼(低YR鋼)や高一様伸び鋼の使用が
検討されつつある。地震による構造物の崩壊が材料の延
性破壊のみによって引き起こされるのであれば、このよ
うな鋼材の使用は構造物の安全性向上につながる。
Recently, the use of low yield ratio steel (low YR steel) or high uniform elongation steel in consideration of ductile fracture performance has been studied for high-rise building steel. If the collapse of a structure due to an earthquake is caused only by ductile fracture of the material, the use of such steel materials will improve the safety of the structure.

【0004】しかし、阪神大震災のような巨大地震にお
いては鋼材は必ずしも延性破壊で終局的な崩壊に至って
いるわけではなく、延性破壊の後に引き続いて脆性破壊
を生じ、脆性き裂が全体に伝播することによって最終的
な構造物の崩壊を引き起こす場合があることが震災後の
様々な調査によって示された。
However, in a huge earthquake such as the Great Hanshin Earthquake, the steel material is not necessarily ductile fracture and finally collapses. The ductile fracture is followed by brittle fracture, and the brittle crack propagates throughout. Various post-earthquake studies have shown that this may cause the ultimate collapse of structures.

【0005】また、地震による変形は単純ではなく、特
に巨大地震の場合にはその巨大かつ継続的な振動によっ
て、鋼材に塑性変形が生じるようなレベルの大きな力が
繰り返しかかると考えることが妥当である。
[0005] In addition, deformation due to an earthquake is not simple, and it is reasonable to think that a large and continuous vibration, especially in the case of a huge earthquake, repeatedly applies a large force at such a level as to cause plastic deformation of the steel material. is there.

【0006】以上の観点から、数十年〜数百年に1回と
いうような巨大地震や巨大台風によっても構造物が崩壊
しないためには、鋼材が追加的に具備すべき特性のう
ち、特に下記の〜の特性を追加することが重要とな
る。
From the above viewpoint, in order to prevent the structure from collapsing due to a huge earthquake or huge typhoon such as once every several decades to hundreds of years, among the additional characteristics of the steel material, It is important to add the following characteristics of.

【0007】延性特性の向上により、地震のエネルギ
ーを吸収し得る延性破壊能に優れるとともに、延性き裂
の発生、伝播抵抗が大きい。 繰り返し塑性変形による靭性劣化が小さい。 一旦脆性き裂が発生しても、途中で停止して部材及び
構造物全体の破壊、崩壊につながらない。 従来から、上記特性の確保に対しては種々の分野におい
て、個々の特性に関しては一部その向上技術が開発され
てきた。
[0007] Due to the improvement of the ductility characteristics, the ductile cracking ability capable of absorbing the energy of the earthquake is excellent, and the generation and propagation resistance of the ductile crack is large. Little deterioration in toughness due to repeated plastic deformation. Even if a brittle crack occurs, it stops halfway and does not lead to destruction or collapse of the member or the entire structure. Conventionally, techniques for improving the above characteristics have been developed in various fields in some fields.

【0008】延性破壊能については、低降伏比化の手段
については数多く提案されており、さらに、焼入停止温
度の制御によりセメンタイトを安定化させて、直接的に
延性特性(一様伸び)を向上させて延性破壊能を確保す
る技術も特開平6−25737号公報に開示されてい
る。
Regarding the ductile fracture capacity, many means for lowering the yield ratio have been proposed, and further, the cementite is stabilized by controlling the quenching stop temperature to directly obtain the ductility characteristic (uniform elongation). A technique for improving the ductile fracture capability is also disclosed in JP-A-6-25737.

【0009】脆性き裂の停止に対しては従来からNiの
含有が有効であることが知られている。また、最近では
特開平4−141517号公報に示されるような表層部
に超細粒組織を付与することによりNi量を高めること
なく、脆性き裂の伝播停止特性を向上させる技術が開発
されている。
It has been conventionally known that the inclusion of Ni is effective for stopping brittle cracks. Further, recently, a technique has been developed to improve the propagation stopping property of a brittle crack without increasing the amount of Ni by imparting an ultrafine grain structure to the surface layer portion as disclosed in JP-A-4-141517. There is.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、阪神大
震災を経験する以前には、必要な鋼材特性としては想像
もしなかった前記〜の特性、特に,については
必ずしも十分認識されておらず、そのため、〜の特
性を同時に満足して、設計、施工上の特段の配慮なしに
数十年〜数百年に1回というような巨大地震や巨大台風
に遭遇しても、構造物を崩壊させずにすむような耐破壊
性能に優れた鋼材及びその製造技術は現段階で完全に確
立されているとは言い得ない。
However, before the experience of the Great Hanshin Earthquake, the above-mentioned characteristics (1), which had not been imagined as necessary steel material characteristics, in particular, were not fully recognized, and therefore, Satisfying the above characteristics at the same time, without damaging the structure, even if a huge earthquake or huge typhoon such as once every several decades to hundreds of years is encountered without any special consideration in design and construction. It cannot be said that the steel material excellent in fracture resistance and its manufacturing technology have been completely established at this stage.

【0011】構造物としての安全性確保の観点からは当
然のことながら脆性破壊の発生の抑制を考慮することが
第一である。しかし、稀に見る巨大地震時の安全性確保
の観点から見るとさらに、脆性破壊の発生を容易にする
延性き裂の発生・進展の抑制を図ること、及び延性き裂
進展後のき裂先端で生じる塑性域での大きな靭性劣化
や、繰り返しの塑性変形後での大きな靭性の劣化が生じ
ないことまでもが鋼板に課せられた新たな課題となる。
From the viewpoint of ensuring safety as a structure, it is of course the first consideration to suppress the occurrence of brittle fracture. However, from the viewpoint of ensuring safety in the event of a huge earthquake, which is rarely seen, it is necessary to further suppress the initiation and growth of ductile cracks that facilitate the initiation of brittle fracture, and to prevent crack tip growth after ductile crack growth. A new problem imposed on the steel sheet is that the large deterioration of toughness in the plastic region and the large deterioration of toughness after repeated plastic deformation do not occur.

【0012】ただし、構造物は特性の劣化した溶接部を
有し、また脆性破壊の起点となるような欠陥の存在を皆
無にすることは不可能であり、溶接部及び欠陥の存在を
前提とした場合には、脆性破壊の発生自体を完全に抑制
することは非常に困難であり、経済的にも非常に不利で
ある。
However, the structure has a welded portion with deteriorated properties, and it is impossible to completely eliminate the existence of a defect which becomes a starting point of brittle fracture. In that case, it is extremely difficult to completely suppress the occurrence of brittle fracture itself, and it is also extremely economically disadvantageous.

【0013】従って、万が一の脆性破壊を許容した上
で、そのき裂の伝播を阻止できる脆性き裂の伝播停止特
性を延性破壊特性、塑性変形後の靭性確保と両立させる
ことが課題となる。
Therefore, it is necessary to allow the brittle fracture in the unlikely event and make the propagation stopping characteristic of the brittle crack capable of inhibiting the propagation of the crack compatible with the ductile fracture characteristic and the toughness after plastic deformation.

【0014】表層部に超細粒組織を形成せしめて脆性き
裂の伝播停止特性を向上する技術は、特開平4−141
517号公報等で開示されているが、本発明が目的とし
ているような大地震等により大きな塑性変形を受けるよ
うな場合には、表層部に超細粒塑性を形成させただけで
は靭性、延性、脆性き裂伝播停止特性等、破壊に対する
抵抗を確保することは困難であり、以下に述べるよう
に、さらに不純物元素の厳密な制御、Nの固定のための
成分の工夫によって初めて達成される。
A technique for forming a superfine grain structure in the surface layer to improve the propagation stopping property of a brittle crack is disclosed in Japanese Patent Application Laid-Open No. 4-141.
As disclosed in Japanese Laid-Open Patent Publication No. 517, etc., in the case where the present invention is subject to large plastic deformation due to a large earthquake or the like, toughness and ductility can be obtained only by forming ultrafine grain plasticity in the surface layer portion. However, it is difficult to secure resistance to fracture such as brittle crack propagation stopping characteristics, and as will be described below, it is achieved only by strict control of the impurity element and devising a component for fixing N.

【0015】[0015]

【課題を解決するための手段】本発明は、延性破壊の発
生特性及びき裂の伝播停止特性の向上には不純物として
のP,SさらにOを極力低減する必要があり、繰り返し
塑性変形後もその特性を維持するためには固溶Nの低減
が重要であること、さらに繰り返し塑性変形等の塑性歪
による靭性劣化を抑制するためにも鋼中の固溶Nを低減
する必要があり、そのためには窒化物を形成してNを固
定する効果のあるAl,Ti,Zr,Nb,Ta,V,
Bを適切に含有させることが重要であることを詳細な実
験解析により知見した。
According to the present invention, it is necessary to reduce P, S and O as impurities as much as possible in order to improve the characteristics of ductile fracture initiation and crack propagation arrest characteristics, and even after repeated plastic deformation. It is important to reduce the amount of solute N in order to maintain the characteristics, and it is necessary to reduce the amount of solute N in the steel in order to suppress deterioration of toughness due to plastic strain such as repeated plastic deformation. Al, Ti, Zr, Nb, Ta, V, which has the effect of forming a nitride to fix N,
It was discovered by detailed experimental analysis that it is important to properly contain B.

【0016】さらに、鋼種、成分範囲によらず延性破壊
特性、脆性破壊発生特性(靭性)と脆性き裂の伝播停止
特性を両立させ得る手段としては、表層に超細粒組織を
付与することにより、脆性き裂の伝播停止特性向上を図
ることが最も好ましいことを見出した。
Further, as a means for making ductile fracture characteristics, brittle fracture initiation characteristics (toughness) and brittle crack propagation arresting characteristics compatible with each other regardless of steel type and composition range, by imparting an ultrafine grain structure to the surface layer. It was found that it is most preferable to improve the propagation stopping property of brittle cracks.

【0017】また、特にその平均フェライト粒径が3μ
m以下となるような超細粒組織では、塑性歪が10%を
超えるような厳しい塑性変形を受けた場合においても、
シャルピー衝撃特性や脆性き裂の伝播停止特性の劣化が
フェライト粒径が5μm以上の通常の組織に比べて顕著
に小さくなることを明らかにした。
In particular, the average ferrite grain size is 3 μm.
m or less, even when subjected to severe plastic deformation such that the plastic strain exceeds 10%,
It has been clarified that the deterioration of the Charpy impact property and the propagation arrest property of brittle cracks is significantly smaller than that of a normal structure having a ferrite grain size of 5 μm or more.

【0018】さらに、N量の低減、窒化物形成元素によ
るNの固定、表層部への超細粒層の付与は溶接継手の靭
性や延性向上にも有効であることが実験的に確かめられ
た。本発明は、以上の知見を総合的に解析することによ
って化学成分の限定により、延性の向上や塑性変形によ
る靭性の劣化を図った鋼において、該表層超細粒組織が
存在することにより一層の耐破壊性能の向上が図れる技
術を確立し、発明するに至ったものであり、その要旨と
する所は以下の通りである。
Further, it has been experimentally confirmed that the reduction of the amount of N, the fixing of N by the nitride forming element, and the addition of the ultrafine grain layer to the surface layer portion are also effective for improving the toughness and ductility of the welded joint. . The present invention, by comprehensively analyzing the above findings, due to the limitation of chemical components, in the steel for which the ductility is improved and the toughness is deteriorated due to plastic deformation, the presence of the surface ultrafine grain structure further improves The present invention has established and invented a technique capable of improving the fracture resistance, and the gist thereof is as follows.

【0019】(1)重量%で、C:0.01〜0.15
%、Si:0.01〜1.0%、Mn:0.1〜2.0
%、Al:0.003〜0.1%、N:0.001〜
0.005%を含有し、不純物としてのP,S,Oの含
有量がP:0.01%以下、S:0.01%以下、O:
0.006%以下で、かつ、N(%)−Al(%)/
3.0≦0で、残部鉄及び不可避不純物からなる鋼材で
あって、該鋼材を構成する外表面のうち少なくとも2つ
の外表面に関して、表層から全厚みの10〜33%の範
囲の平均フェライト粒径が3μm以下の超細粒組織であ
ることを特徴とする耐破壊性能に優れた建築用高張力鋼
材。
(1)% by weight, C: 0.01 to 0.15
%, Si: 0.01 to 1.0%, Mn: 0.1 to 2.0
%, Al: 0.003 to 0.1%, N: 0.001 to
0.005% is contained, and the content of P, S, O as impurities is P: 0.01% or less, S: 0.01% or less, O:
0.006% or less and N (%)-Al (%) /
A steel material having 3.0 ≦ 0 and a balance of iron and unavoidable impurities, and an average ferrite grain in a range of 10 to 33% of the total thickness from the surface layer with respect to at least two outer surfaces of the outer surfaces constituting the steel material. A high-strength steel material for construction with excellent fracture resistance, which has an ultrafine grain structure with a diameter of 3 μm or less.

【0020】(2)重量%で、Ti:0.003〜0.
020%、Zr:0.003〜0.10%、Nb:0.
002〜0.050%、Ta:0.005〜0.20
%、V:0.005〜0.20%、B:0.0002〜
0.003%の1種または2種以上を含有し、N(%)
−Al(%)/3.0−Ti(%)/3.4−Zr
(%)/6.5−Nb(%)/13.2−Ta(%)/
25.8−V(%)/10.9−B(%)/2.0≦0
であることを特徴とする前記(1)記載の耐破壊性能に
優れた建築用高張力鋼材。
(2) Ti: 0.003 to 0.
020%, Zr: 0.003 to 0.10%, Nb: 0.
002 to 0.050%, Ta: 0.005 to 0.20
%, V: 0.005 to 0.20%, B: 0.0002 to
Contains 0.003% of 1 or 2 or more, N (%)
-Al (%) / 3.0-Ti (%) / 3.4-Zr
(%) / 6.5-Nb (%) / 13.2-Ta (%) /
25.8-V (%) / 10.9-B (%) / 2.0 ≦ 0
The high-strength steel material for construction having excellent fracture resistance as described in (1) above.

【0021】(3)重量%で、Cr:0.01〜2.0
%、Mo:0.01〜2.0%、Ni:0.01〜4.
0%、Cu:0.01〜2.0%、W:0.01〜2.
0%の1種または2種以上を含有することを特徴とする
前記(1)または(2)記載の耐破壊性能に優れた建築
用高張力鋼材。
(3) Cr: 0.01-2.0 by weight%
%, Mo: 0.01-2.0%, Ni: 0.01-4.
0%, Cu: 0.01 to 2.0%, W: 0.01 to 2.
The high-strength steel material for construction having excellent fracture resistance as described in (1) or (2) above, which contains 0% of one or more kinds.

【0022】(4)重量%で、Mg:0.0005〜
0.01%、Ca:0.0005〜0.01%、RE
M:0.005〜0.10%のうち1種または2種以上
を合計で0.0005〜0.10%を含有することを特
徴とする前記(1)〜(3)のいずれか1項に記載の耐
破壊性能に優れた建築用高張力鋼材。
(4) Mg: 0.0005% by weight
0.01%, Ca: 0.0005-0.01%, RE
M: 0.0005 to 0.10%, and one or more of them is contained in a total amount of 0.0005 to 0.10%. (1) to (3) High-strength steel materials for construction with excellent fracture resistance described in.

【0023】(5)鋼片をAc3 変態点以上、1250
℃以下の温度に加熱し、950℃以下でのオーステナイ
ト域での累積圧下率が10〜50%の粗圧延を行った
後、その段階での鋼片全厚みの10%〜33%に対応す
る少なくとも2つの外表面の表層部の領域を、Ar3
態点以上の温度から2〜40℃/sの冷却速度で冷却を
開始し、Ar3 変態点以下で冷却を停止して復熱させる
ことを1回以上経由させる過程で、最後の冷却後の復熱
が終了するまでの間に累積圧下率が20〜90%の仕上
げ圧延を完了させ、該圧延完了後の鋼材の前記表層域を
(Ac1 変態点−50℃)〜(Ac3 変態点+50℃)
の範囲に復熱させて前記(1)〜(4)のいずれかに記
載の鋼材を製造することを特徴とする耐破壊性能に優れ
た建築用高張力鋼材の製造方法。
(5) The steel slab is made to have an Ac 3 transformation point or higher and 1250
After heating to a temperature of ℃ ℃ or less, and rough rolling with a cumulative reduction of 10 to 50% in the austenite region at 950 ° C or less, it corresponds to 10% to 33% of the total thickness of the billet at that stage. To start cooling at least two surface layer regions of the outer surface from a temperature not lower than the Ar 3 transformation point at a cooling rate of 2 to 40 ° C./s and stop cooling at a temperature not higher than the Ar 3 transformation point to reheat. In the process of passing through one or more times, finish rolling with a cumulative rolling reduction of 20 to 90% is completed until the recuperation after the last cooling is completed, and the surface layer area of the steel material after completion of the rolling (( Ac 1 transformation point −50 ° C.) to (Ac 3 transformation point + 50 ° C.)
The steel material according to any one of (1) to (4) above is reheated to a temperature range to produce a high tensile strength steel material for construction having excellent fracture resistance.

【0024】(6)復熱終了後の鋼板を5〜40℃/s
の冷却速度で20℃〜650℃まで冷却することを特徴
とする前記(5)記載の耐破壊性能に優れた建築用高張
力鋼材の製造方法。 (7)450℃〜650℃で焼戻しを行うことを特徴と
する前記(5)または(6)記載の耐破壊性能に優れた
建築用高張力鋼材の製造方法。 なおここで言う高張力鋼材とは高張力鋼板(厚板)のみ
ならず、形鋼、管材をも含む鋼材を指すものである。
(6) 5-40 ° C./s
The method for producing a high-strength steel material for construction according to (5) above, wherein the high-strength steel material is excellent in fracture resistance, characterized in that it is cooled to 20 ° C to 650 ° C at a cooling rate of. (7) The method for producing a high-tensile steel material for construction according to the above (5) or (6), characterized by performing tempering at 450 ° C to 650 ° C. The high-strength steel material referred to here means not only high-tensile steel plate (thick plate) but also steel material including shaped steel and pipe material.

【0025】[0025]

【発明の実施の形態】本発明における化学成分に関して
の要件は、延性特性の向上のための不純物としてのP,
S,O量の制限、及び、塑性変形による靭性劣化の抑制
のためのNの固定のための化学成分の限定にある。以
下、先ずこれらの要件について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The requirements for chemical components in the present invention include P as an impurity for improving ductility characteristics.
This is due to the limitation of the amounts of S and O, and the limitation of the chemical composition for fixing N for suppressing the toughness deterioration due to plastic deformation. Hereinafter, first, these requirements will be described in detail.

【0026】塑性変形能の向上、延性き裂の発生、進展
の抑制のためには、鋼のフェライト母地の延性を高める
必要があり、そのためには固溶P,C,Nを低減するこ
とが好ましい。Cに関してはフェライト中の固溶限が小
さく、析出物を形成しやすいため、実用鋼ではその延性
特性に対する悪影響は無視できる。また、Cは強度確保
の上で必須の元素であるため、完全に除くことは好まし
くない。
In order to improve the plastic deformability, suppress the initiation and growth of ductile cracks, it is necessary to increase the ductility of the ferrite matrix of the steel. To that end, the solid solution P, C and N should be reduced. Is preferred. As for C, since the solid solubility limit in ferrite is small and precipitates are easily formed, the adverse effect on ductility characteristics of practical steels can be ignored. In addition, since C is an essential element for securing the strength, it is not preferable to completely remove C.

【0027】Nは窒化物による加熱オーステナイト粒径
の微細化に有効であり、また不純物としてその含有は避
けられないが、Cと異なり、実用鋼でも一定量フェライ
ト母地中に固溶し、延性特性に悪影響を及ぼす。さら
に、固溶Nが存在する状態で塑性変形後あるいは延性き
裂進展後、鋼が塑性変形を受けると、塑性変形で生じた
転位との相互作用や転位線上への微細析出により靭性が
顕著に劣化するため、固溶Nは極限まで低減すべきであ
る。
N is effective for refining the heated austenite grain size by the nitride, and its inclusion as an impurity is unavoidable, but unlike C, practical steel also forms a solid solution in the ferrite matrix in a certain amount and becomes ductile. It adversely affects the characteristics. Furthermore, when the steel undergoes plastic deformation after plastic deformation or ductile crack growth in the presence of solute N, the toughness becomes remarkable due to interaction with dislocations caused by plastic deformation and fine precipitation on dislocation lines. Since it deteriorates, the solid solution N should be reduced to the limit.

【0028】そのためには窒化物形成元素によりNを固
定する必要がある。窒化物形成元素としては、他の特性
への影響が最も小さい点でAlが好ましく、脆性き裂の
伝播停止特性に最も重要な表層部の超細粒組織に10%
の塑性歪を付与したことによる靭性の劣化が、シャルピ
ー試験の破面遷移温度の上昇で20℃以下となるために
必要なAl量を実験的に求めると、(1)式のような関
係が得られた。 N(%)−Al(%)/3.0≦0 …(1)
For that purpose, it is necessary to fix N by a nitride forming element. As a nitride-forming element, Al is preferable because it has the least influence on other characteristics, and 10% is added to the ultrafine grain structure in the surface layer, which is most important for brittle crack propagation stopping characteristics.
When the Al amount necessary for the deterioration of toughness due to the addition of the plastic strain of 20 ° C. or less due to the increase of the fracture transition temperature in the Charpy test to be experimentally obtained, the relationship as shown in the equation (1) is obtained. Was obtained. N (%)-Al (%) / 3.0 ≦ 0 (1)

【0029】従って、本発明においては、後述する理由
により限定した範囲内のAl,Nの含有量を前提とした
上で、NとAl量を(1)式の関係に限定する。また、
窒化物形成元素として、Alに加えて、Ti,Zr,N
b,Ta,V,Bの1種または2種以上を選択的に用い
ることもできる。
Therefore, in the present invention, the amount of N and Al is limited to the relationship of the formula (1) on the premise of the contents of Al and N within the limited range for the reason described later. Also,
As a nitride forming element, in addition to Al, Ti, Zr, N
One or two or more of b, Ta, V and B may be selectively used.

【0030】その場合、Al,Ti,Zr,Nb,T
a,V,Bの含有量は(1)式と同様の判定基準のもと
に塑性変形による靭性劣化が抑制されるために必要なN
量との関係式((2)式)が成立するようにその含有量
を調整する必要があるため、N量との関係でTi,Z
r,Nb,Ta,V,Bは(2)式の関係が成立するよ
うに限定する。 N(%)−Al(%)/3.0−Ti(%)/3.4−Zr(%)/ 6.5−Nb(%)/13.2−Ta(%)/25.8−V(%)/ 10.9−B(%)/2.0≦0 …(2)
In that case, Al, Ti, Zr, Nb, T
The contents of a, V, and B are N necessary for suppressing the deterioration of toughness due to plastic deformation based on the same criteria as in formula (1).
Since it is necessary to adjust the content so that the relational expression with the amount (equation (2)) holds, Ti, Z
r, Nb, Ta, V, and B are limited so that the relationship of the expression (2) is established. N (%)-Al (%) / 3.0-Ti (%) / 3.4-Zr (%) / 6.5-Nb (%) / 13.2-Ta (%) / 25.8- V (%) / 10.9-B (%) / 2.0 ≦ 0 (2)

【0031】不純物としてのP量を限定することも重要
である。即ち、Pはフェライト母地の延性を劣化させる
ため、塑性変形能、延性き裂の発生、進展特性向上のた
めにその含有量を限定する必要がある。P量は少ないほ
ど好ましいが、P量を低減することは精錬工程へ負荷を
かけて生産性の低下、コストの上昇を招くため、延性特
性劣化に対して許容できるPの下限量を実験結果に基づ
いて0.01%以下とする。
It is also important to limit the amount of P as an impurity. That is, since P deteriorates the ductility of the base material of ferrite, its content needs to be limited in order to improve plastic deformability, generation of ductile cracks, and propagation characteristics. The smaller the amount of P is, the more preferable it is. However, reducing the amount of P puts a load on the refining process, resulting in a decrease in productivity and an increase in cost. Based on this, the content is made 0.01% or less.

【0032】即ち、P量の増加にともなう延性特性の劣
化の度合いは0.01%を超えるとその程度が顕著にな
る。P量が0.01%以下ではPの悪影響の程度は小さ
くなる。
That is, the degree of deterioration of the ductility characteristics with the increase of the amount of P becomes remarkable when it exceeds 0.01%. When the amount of P is 0.01% or less, the degree of the adverse effect of P decreases.

【0033】従って、本発明においては不純物としての
P量を0.01%以下に限定する。ただし、偏析部での
局所的な塑性変形や延性破壊特性の劣化が影響を及ぼす
ような構造物に使用される場合には、精錬の問題を度外
視すれば、P量は0.007%以下に限定する方がより
好ましい。
Therefore, in the present invention, the amount of P as an impurity is limited to 0.01% or less. However, when it is used in a structure where local plastic deformation in the segregation part or deterioration of ductile fracture characteristics affects, if the problem of refining is neglected, the P content is 0.007% or less. It is more preferable to limit it.

【0034】SはMnSを形成するため延性破壊特性を
劣化させる。特に延性き裂の伝播特性を劣化させる。固
溶P,Nが多い条件のもとでは延性破壊の発生特性が低
下しているため、Sによる延性き裂の伝播特性の劣化は
鋼材全体の塑性変形能や延性破壊特性に大きく影響を及
ぼし、Sを10ppm 以下程度まで極端に低減する必要が
生じる。
Since S forms MnS, it deteriorates the ductile fracture characteristics. In particular, it deteriorates the propagation characteristics of ductile cracks. Since the characteristic of ductile fracture is deteriorated under the condition of a large amount of solid solution P and N, deterioration of the ductile crack propagation characteristic due to S has a great influence on the plastic deformability and the ductile fracture characteristic of the entire steel material. , S must be extremely reduced to about 10 ppm or less.

【0035】ただし、本発明のようにP,N量の低減や
固溶Nの窒化物形成元素による固定が図られていれば、
延性破壊の発生までの抵抗が大となるため、Sの許容量
は広がることから、本発明では実験結果に基づいて不純
物としてのSを0.01%以下に限定する。
However, if the amount of P and N is reduced and the solid solution N is fixed by a nitride forming element as in the present invention,
Since the resistance until the occurrence of ductile fracture becomes large, the allowable amount of S widens, so in the present invention, S as an impurity is limited to 0.01% or less based on the experimental results.

【0036】さらに、Oも延性に有害な介在物を形成す
るために極力低減することが好ましいが、Sと同様、固
溶P,Nが低減されていれば母地の延性がある程度確保
されるため、固溶P,Nの低減が図られていない場合に
比べて許容量は高く、実験結果に基づけば、0.006
%以下に限定する必要がある。
Further, O is also preferably reduced as much as possible in order to form inclusions harmful to ductility, but like S, ductility of the base material is secured to some extent if the solute P and N are reduced. Therefore, the allowable amount is higher than that in the case where the solid solution P and N are not reduced, and it is 0.006 based on the experimental result.
%.

【0037】上記が本発明の要件である塑性変形能及び
延性破壊特性の向上、さらに塑性変形後の靭性劣化抑制
のための成分限定範囲であるが、本発明のもう一つの重
要な要件である脆性き裂の伝播停止特性向上のために
は、前記成分の限定に加えて後述するその他の成分限定
を前提とした上で、鋼材の少なくとも2つの面の表層部
において、平均フェライト粒径が3μm以下の超細粒組
織を表層から板厚の10〜33%の厚さにわたって存在
させることが必要となる。
The above is the component limiting range for improving the plastic deformability and the ductile fracture property, which are the requirements of the present invention, and for suppressing the toughness deterioration after the plastic deformation, but it is another important requirement of the present invention. In order to improve the propagation stopping property of brittle cracks, the average ferrite grain size is 3 μm in the surface layer portion of at least two surfaces of the steel material on the premise that the other components will be described in addition to the above-mentioned components. It is necessary to allow the following ultrafine grain structure to exist from the surface layer to a thickness of 10 to 33% of the plate thickness.

【0038】表層部に超細粒組織を形成させることによ
って、脆性き裂の進展中に、表層部に延性破壊であるシ
アリップが形成され、脆性き裂伝播停止特性が向上す
る。本方法によれば、Ni添加等、合金成分の添加、調
整によらずに脆性き裂伝播停止特性が向上できる点で有
利である。
By forming an ultrafine grain structure in the surface layer portion, a shear lip which is a ductile fracture is formed in the surface layer portion during the development of the brittle crack, and the brittle crack propagation stopping property is improved. This method is advantageous in that the brittle crack propagation stopping characteristics can be improved without adding or adjusting alloy components such as Ni addition.

【0039】高速で進展中している脆性き裂に抵抗して
シアリップを確実に生成させるためには、表層部の脆性
破壊の発生及び伝播停止特性を鋼板の要求靭性よりも顕
著に向上させる必要があり、そのためには該表層部のフ
ェライト粒径を顕著に微細化させることが必須条件とな
る。
In order to reliably generate a shear lip by resisting a brittle crack growing at a high speed, it is necessary to significantly improve the occurrence of brittle fracture in the surface layer and the propagation stoppage property to the required toughness of the steel sheet. Therefore, for that purpose, it is an essential condition that the ferrite grain size of the surface layer portion is remarkably reduced.

【0040】該表層部のフェライト粒径は当然微細であ
るほど好ましいが、シアリップの形成が確実で、製造工
程に過大な負荷をかけない範囲として、本発明において
は、該表層部の平均フェライト粒径を3μm以下に限定
する。
The ferrite grain size in the surface layer is preferably finer as a matter of course. However, in the present invention, the average ferrite grain in the surface layer is defined as a range in which the formation of the shear lip is sure and the manufacturing process is not overloaded. The diameter is limited to 3 μm or less.

【0041】なお、該表層部のフェライト粒組織は結晶
粒径にばらつきの少ない整粒であることが好ましいが、
平均粒径の2倍超の粗大粒が存在しても、その存在割合
が該表層部全体に対して10%以内であれば、表層部の
脆性破壊特性に対して実質的に悪影響を及ぼさないた
め、許容される。
The ferrite grain structure in the surface layer is preferably a grain size with less variation in crystal grain size.
Even if coarse particles having a size of more than twice the average particle size are present, if the existing ratio is within 10% with respect to the entire surface layer portion, there is substantially no adverse effect on the brittle fracture characteristics of the surface layer portion. Therefore, it is acceptable.

【0042】万一、欠陥部や溶接部等から脆性破壊が発
生し、伝播に至っても、表層部が確実に延性破壊してシ
アリップとなるためには、上記フェライト粒径の限定が
必須条件となるが、脆性き裂の伝播停止特性の向上に対
してはさらに該表層超細粒層の厚みも重要な要件とな
る。
Even if brittle fracture occurs from a defective portion or a welded portion and propagates, the surface layer portion surely undergoes ductile fracture to form a shear lip, and the limitation of the ferrite grain size is an essential condition. However, in order to improve the propagation stopping property of brittle cracks, the thickness of the surface ultrafine grain layer is also an important requirement.

【0043】即ち、鋼板内部の通常組織の脆性き裂を停
止させるためには、シリアップ部でその伝播エネルギー
を吸収する必要があるが、シアリップの厚みが不十分で
あると、たとえシアリップが形成されても脆性き裂の停
止に至らない場合が生じる。脆性き裂の伝播を確実に停
止するには、シアリップはある程度の厚みが必要とな
る。
That is, in order to stop the brittle crack of the normal structure inside the steel sheet, it is necessary to absorb the propagation energy at the serial-up portion, but if the thickness of the shear lip is insufficient, the shear lip is formed. However, the brittle crack may not stop. The shear lip requires a certain thickness to reliably stop the propagation of the brittle crack.

【0044】当然シアリップの厚みは厚ければ厚いほど
き裂の停止効果が大となるが、必要以上の超細粒層の厚
みを確保しようとすると、製造工程に過大な負荷をかけ
たり、製造条件によっては母材の延性や鋼板の形状、表
面性状等の劣化につながる。
Naturally, the larger the thickness of the shear lip, the greater the effect of stopping the cracks. However, if an attempt is made to secure an unnecessarily large thickness of the ultrafine grain layer, an excessive load is applied to the manufacturing process, Depending on the conditions, the ductility of the base material, the shape of the steel plate, the surface properties, etc. may be deteriorated.

【0045】これらの問題を生じない範囲として、本発
明においては平均フェライト粒径が3μm以下の表層超
細粒組織の厚みを表裏面各々について、下限を表層から
板厚の10%、上限を表層から板厚の33%と限定す
る。
In the present invention, the thickness of the superfine grain structure of the surface layer having an average ferrite grain size of 3 μm or less is defined as a range not causing these problems, the lower limit is from the surface layer to 10% of the plate thickness, and the upper limit is the surface layer. To 33% of the plate thickness.

【0046】該表層超細粒層は鋼材の全ての表面に付与
することが好ましいが、上記条件を満足すれば、最低限
2つの表面に該超細粒層を付与すれば脆性き裂の停止に
は有効である。
The surface ultrafine grain layer is preferably applied to all the surfaces of the steel material, but if the above conditions are satisfied, brittle cracks can be stopped if the ultrafine grain layers are applied to at least two surfaces. Is effective for.

【0047】なお、塑性変形後の靭性、脆性き裂伝播停
止特性、延性の確保に有効な、N量の低減、窒化物形成
元素によるNの固定、表層部への超細粒層の付与は溶接
継手の靭性や延性を向上させる付加的な効果も有してい
ることが有効であることが実験的に確かめられた。
It should be noted that reduction of the amount of N, fixation of N by a nitride-forming element, and addition of an ultrafine grain layer to the surface layer, which are effective in securing toughness after plastic deformation, brittle crack propagation arresting property, and ductility, It was experimentally confirmed that it is effective to have an additional effect of improving the toughness and ductility of the welded joint.

【0048】即ち、大入熱溶接における溶接熱影響部の
靭性に対しては固溶Nの悪影響が大きいが、本発明のよ
うにN量や固溶N量を厳密に制御しておけば固溶Nの溶
接熱影響部靭性への悪影響は極小化される。
That is, the solute N has a large adverse effect on the toughness of the heat-affected zone in high heat input welding, but if the N content and the solute N content are strictly controlled as in the present invention, the solid solution N is solid. The adverse effect of molten N on the toughness of the weld heat affected zone is minimized.

【0049】また、表層部に形成された超細粒層は溶接
熱影響部の内で溶接ビード直近の1300℃以上に再加
熱されるような領域では完全に消滅するが、より低温に
加熱されている熱影響部では超細粒組織は消滅するもの
の、変態前の超細粒組織の影響が残存して、該溶接熱影
響部の組織を微細化する効果があるため、溶接熱影響部
の靭性向上に対しても効果がある。
The ultra-fine grain layer formed on the surface layer completely disappears in the region of the heat affected zone of the welding which is reheated to 1300 ° C. or higher in the vicinity of the weld bead, but is heated to a lower temperature. Although the ultra-fine grain structure disappears in the heat-affected zone, the effect of the ultra-fine grain structure before transformation remains and has the effect of refining the structure of the weld heat-affected zone. It is also effective in improving toughness.

【0050】以上が本発明の耐破壊性能に優れた建築用
高張力鋼材の要件であるが、個々の化学成分についても
下記に述べる理由により、各々限定する必要がある。即
ち、Cは鋼の強度を向上させる有効な成分として含有す
るもので、0.01%未満では構造用鋼に必要な強度の
確保が困難であるが、0.15%を超える過剰の含有は
延性破壊特性の劣化により本発明が目的としている耐破
壊性能の低下を招く。また、靭性や耐溶接割れ性等も低
下させるので、0.01〜0.15%の範囲とした。
The above are the requirements for the high-strength steel material for construction which is excellent in fracture resistance of the present invention, but it is necessary to limit the individual chemical components for the reasons described below. That is, C is contained as an effective component for improving the strength of steel, and if it is less than 0.01%, it is difficult to secure the strength required for structural steel, but if it exceeds 0.15%, it is excessive. The deterioration of the ductile fracture characteristics leads to a reduction in the fracture resistance targeted by the present invention. Further, since toughness, weld cracking resistance and the like are also reduced, the range is set to 0.01 to 0.15%.

【0051】次に、Siは脱酸元素として、また、母材
の強度確保に有効な元素であるが、0.01%未満の含
有では脱酸が不十分となり、また強度確保に不利であ
る。逆に1.0%を超える過剰の含有は粗大な酸化物を
形成して延性や靭性の劣化を招く。そこで、Siの範囲
は0.01〜1.0%とした。
Next, Si is an element effective as a deoxidizing element and for securing the strength of the base material. However, if the content of Si is less than 0.01%, deoxidation is insufficient and it is disadvantageous for securing the strength. . On the contrary, if the content exceeds 1.0%, a coarse oxide is formed and ductility and toughness are deteriorated. Therefore, the range of Si is set to 0.01 to 1.0%.

【0052】また、Mnは母材の強度、靭性の確保に必
要な元素であり、最低限0.1%以上含有する必要があ
るが、溶接部の靭性、割れ性等材質上許容できる範囲で
上限を2.0%とした。
Further, Mn is an element necessary for securing the strength and toughness of the base metal, and it is necessary to contain at least 0.1% or more, but within a range which is allowable in terms of material such as toughness and cracking of the welded portion. The upper limit was 2.0%.

【0053】Alは本発明の要件の一つであるNの固定
に有効な元素であり、かつ、脱酸、γ粒径の細粒化等に
有効な元素であるが、効果を発揮するためには0.00
3%以上含有する必要がある。一方、0.1%を超えて
過剰に含有すると、粗大な酸化物を形成して延性を極端
に劣化させるため、0.003%〜0.1%の範囲に限
定する必要がある。
Al is an element effective in fixing N, which is one of the requirements of the present invention, and an element effective in deoxidizing, refining the γ grain size, etc., but exerts an effect. Is 0.00
It is necessary to contain 3% or more. On the other hand, if it is contained in excess of 0.1%, a coarse oxide is formed and ductility is extremely deteriorated. Therefore, it is necessary to limit the content to 0.003% to 0.1%.

【0054】Nは、固溶Nが存在すると、前述したよう
に延性破壊特性の劣化や塑性変形後の靭性劣化が生じる
ため、(1)式あるいは(2)式に従って、Al,T
i,Zr,Nb,Ta,V,Bを適正量含有させる必要
がある。ただし、全含有量としても下記の理由により限
定する必要がある。
When solid solution N is present, the ductile fracture characteristics deteriorate and the toughness deteriorates after plastic deformation as described above. Therefore, according to the formula (1) or (2), Al, T
It is necessary to contain i, Zr, Nb, Ta, V, and B in appropriate amounts. However, it is necessary to limit the total content for the following reasons.

【0055】即ち、NはAlやTiと結びついてγ粒微
細化に有効に働くため、微量であれば機械的特性に有効
に働く。また、工業的に鋼中のNを完全に除去すること
は不可能であり、必要以上に低減することは製造工程に
過大な負荷をかけるため好ましくない。
That is, N works effectively for γ grain refinement in combination with Al and Ti, so that a small amount works effectively for mechanical properties. Further, it is impossible to industrially completely remove N in steel, and it is not preferable to reduce N more than necessary because it puts an excessive load on the manufacturing process.

【0056】そのため、工業的に制御が可能で、製造工
程への負荷が許容できる範囲として下限を0.001%
とする。過剰に含有すると、(1)式あるいは(2)式
を満足しても、製造履歴によっては延性破壊特性や塑性
変形後の靭性に悪影響を及ぼす可能性があるため、許容
できる範囲として上限を0.005%とする。
Therefore, the lower limit is 0.001% as a range in which industrial control is possible and the load on the manufacturing process is allowable.
And If it is contained excessively, even if the formula (1) or (2) is satisfied, the ductile fracture characteristics and the toughness after plastic deformation may be adversely affected depending on the manufacturing history. Therefore, the upper limit of the allowable range is 0. 0.005%.

【0057】Pについては、前述したように、フェライ
ト母地の延性を劣化させるため、塑性変形能、延性き裂
の発生、進展特性向上のためにその含有量を限定する必
要がある。P量は少ないほど好ましいが、P量を低減す
ることは精錬工程へ負荷をかけて生産性の低下、コスト
の上昇を招くため、延性特性劣化に対して許容できるP
の下限量を実験結果に基づいて0.01%以下とする。
As described above, since P deteriorates the ductility of the ferrite matrix, it is necessary to limit the content of P in order to improve the plastic deformability, the occurrence of ductile cracks, and the growth characteristics. The smaller the P content is, the more preferable. However, the reduction of the P content imposes a load on the refining process and lowers the productivity and raises the cost.
Is set to 0.01% or less based on experimental results.

【0058】即ち、P量の増加にともなって延性特性は
劣化するが、0.01を超えるとその程度が顕著にな
る。P量が0.01%以下ではPの悪影響の程度は小さ
くなる。従って、本発明においては不純物としてのP量
を0.01%以下に限定する。
That is, the ductility characteristic deteriorates as the amount of P increases, but when it exceeds 0.01, the degree becomes remarkable. When the amount of P is 0.01% or less, the degree of the adverse effect of P decreases. Therefore, in the present invention, the amount of P as an impurity is limited to 0.01% or less.

【0059】ただし、偏析部での局所的な塑性変形や延
性破壊特性の劣化が影響を及ぼすような構造物に使用さ
れる場合には、精錬の問題を度外視すれば、P量は0.
007%以下に限定する方がより好ましい。
However, when used in a structure in which local plastic deformation in the segregation portion or deterioration of ductile fracture characteristics has an effect, the P content is 0.
It is more preferable to limit the content to 007% or less.

【0060】Sについても、前述したように、MnSを
形成するため延性破壊特性を劣化させる。特に延性き裂
の伝播特性を劣化させる。固溶P,Nが多い条件のもと
では延性破壊の発生特性が低下しているため、Sによる
延性き裂の伝播特性の劣化は鋼材全体の塑性変形能や延
性破壊特性に大きく影響を及ぼし、Sを0.001%以
下程度まで極端に低減する必要が生じる。
As for S, as described above, MnS is formed, so that the ductile fracture characteristic is deteriorated. In particular, it deteriorates the propagation characteristics of ductile cracks. Under the condition of a large amount of solute P and N, the ductile fracture initiation characteristic is deteriorated. Therefore, the deterioration of ductile crack propagation characteristic by S greatly affects the plastic deformation ability and ductile fracture characteristic of the entire steel material. , S need to be extremely reduced to about 0.001% or less.

【0061】ただし、本発明のようにP,N量の低減や
固溶Nの窒化物形成元素による固定が図られていれば、
延性破壊の発生までの抵抗が大となるため、Sの許容量
は広がることから、本発明では実験結果に基づいて不純
物としてのSを0.01%以下に限定する。
However, if the amount of P and N is reduced and the solid solution N is fixed by a nitride forming element as in the present invention,
Since the resistance until the occurrence of ductile fracture becomes large, the allowable amount of S widens, so in the present invention, S as an impurity is limited to 0.01% or less based on the experimental results.

【0062】さらに、Oについても前述したように、O
は延性に有害な介在物を形成するために極力低減するこ
とが好ましいが、Sと同様、固溶P,Nが低減されてい
れば母地の延性がある程度確保されるため、固溶P,N
の低減が図られていない場合に比べて許容量は高く、実
験結果に基づけば、0.006%以下に限定する必要が
ある。
As for O, as described above,
Is preferably reduced as much as possible in order to form inclusions harmful to ductility. However, similar to S, if the solid solution P and N are reduced, the ductility of the base is secured to some extent. N
The permissible amount is higher than that in the case where no reduction is achieved, and based on the experimental results, it is necessary to limit the amount to 0.006% or less.

【0063】Ti,Zr,Nb,Ta,V,BはN固定
を主目的として、必要に応じて1種または2種以上を選
択的に含有するが、個々の元素についても下記に示す理
由によりその成分量を限定する必要がある。
Ti, Zr, Nb, Ta, V, and B are mainly used for N-fixing, and optionally one or more of them are selectively contained, but the individual elements are also described for the following reasons. It is necessary to limit the amount of the components.

【0064】TiはN固定に有効な元素であり、さら
に、析出強化により母材強度向上に寄与するとともに、
TiNの形成によりγ粒微細化にも有効な元素である
が、効果を発揮するためには0.003%以上の含有が
必要である。一方、0.02%を超えると、粗大な析出
物、介在物を形成して靭性や延性を劣化させるため、上
限を0.02%とする。
Ti is an element effective in fixing N, and contributes to the improvement of the strength of the base material by precipitation strengthening.
Although it is an element effective for the refinement of γ grains by forming TiN, it is necessary to contain 0.003% or more in order to exhibit the effect. On the other hand, if it exceeds 0.02%, coarse precipitates and inclusions are formed to deteriorate toughness and ductility, so the upper limit is made 0.02%.

【0065】Zrも窒化物を形成する元素であり、Nの
固定に有効であるが、その効果を発揮するためには0.
003%以上の含有が必要である。一方、0.10%を
超えると、Tiと同様、粗大な析出物、介在物を形成し
て靭性や延性を劣化させるため、0.003〜0.10
%の範囲に限定する。
Zr is also an element that forms a nitride and is effective for fixing N. However, in order to exert its effect, Zr.
It is necessary to contain 003% or more. On the other hand, if it exceeds 0.10%, as with Ti, coarse precipitates and inclusions are formed to deteriorate toughness and ductility, so 0.003 to 0.10.
%.

【0066】NbもNの固定に有効な元素であるが、過
剰の含有では析出脆化により靭性が劣化する。従って、
靭性の劣化を招かずに、効果を発揮できる範囲として、
0.002〜0.05%の範囲に限定する。
Nb is also an element effective in fixing N, but if contained in excess, the toughness deteriorates due to precipitation embrittlement. Therefore,
As a range where the effect can be exhibited without causing deterioration of toughness,
It is limited to the range of 0.002 to 0.05%.

【0067】TaもNの固定に有効な元素であるが、効
果を発揮するためには0.005%以上の含有が必要で
ある。一方、0.02%を超えると、析出脆化や粗大な
析出物、介在物による靭性劣化を生じるため、上限を
0.20%とする。
Ta is also an element effective in fixing N, but in order to exert the effect, it is necessary to contain 0.005% or more. On the other hand, if it exceeds 0.02%, precipitation embrittlement, coarse precipitates and toughness deterioration due to inclusions occur, so the upper limit is made 0.20%.

【0068】VもVNを形成してNの固定に有効な元素
であるが、Nbと同様、過剰の含有では析出脆化により
靭性が劣化する。従って、靭性の劣化を招かずに、効果
を発揮できる範囲として、0.005〜0.20%の範
囲に限定する。
V is also an element effective in forming VN and fixing N. However, like Nb, if contained in excess, the toughness deteriorates due to precipitation embrittlement. Therefore, the range in which the effect can be exhibited without causing deterioration of toughness is limited to the range of 0.005 to 0.20%.

【0069】Bは微量で確実にNと結びつくため、N固
定に有効な元素であり、効果を発揮するためには0.0
002%以上必要である。一方、0.003%を超えて
過剰に含有するとBNが粗大となり、延性や靭性に悪影
響を及ぼす。また溶接性も劣化させるため、上限を0.
003%とする。
Since B is a trace amount and is surely bound to N, it is an element effective for N fixing, and 0.0 is necessary for exerting the effect.
002% or more is required. On the other hand, if the content exceeds 0.003% and is excessive, the BN becomes coarse, and the ductility and toughness are adversely affected. In addition, the upper limit is set to 0.
003%.

【0070】以上に加えて、所望の強度レベルに応じて
母材強度の上昇、靭性確保の目的で、必要に応じてC
r,Ni,Mo,Cu,Wの1種または2種以上を含有
することができる。先ず、Cr及びMoはいずれも母材
の強度向上に有効な元素であるが、明瞭な効果を生じる
ためには0.01%以上必要であり、一方、2.0%を
超えて添加すると、靭性及び溶接性が劣化する傾向を有
するため、0.01〜2.0%の範囲とする。
In addition to the above, in order to increase the strength of the base metal and to secure the toughness in accordance with the desired strength level, C is added as necessary.
One, two or more of r, Ni, Mo, Cu, and W can be contained. First, Cr and Mo are both effective elements for improving the strength of the base material, but 0.01% or more is necessary for producing a clear effect, while if added in excess of 2.0%, Since the toughness and weldability tend to deteriorate, the range is 0.01 to 2.0%.

【0071】また、Niは母材の強度と靭性を同時に向
上でき、非常に有効な元素であるが、効果を発揮させる
ためには0.01%以上含有させる必要がある。含有量
が多くなると強度、靭性は向上するが4.0%を超えて
添加しても効果が飽和する一方で、溶接性が劣化するた
め、上限を4.0%とする。
Ni is a very effective element because it can improve the strength and toughness of the base material at the same time, but it is necessary to contain Ni in an amount of 0.01% or more in order to exert the effect. When the content is increased, the strength and toughness are improved. However, if the content exceeds 4.0%, the effect is saturated, but the weldability is deteriorated. Therefore, the upper limit is set to 4.0%.

【0072】次に、CuもほぼNiと同様の効果を有す
るが、2.0%超では熱間加工性に問題を生じるため、
0.01〜2.0%の範囲に限定する。Wは固溶強化及
び析出強化により母材強度の上昇に有効であるが、効果
を発揮するためには0.01%以上必要である。一方、
2.0%を超えて過剰に含有すると、靭性劣化が顕著と
なるため、上限を2.0%とする。
Next, Cu has almost the same effect as Ni, but if it exceeds 2.0%, a problem occurs in hot workability.
The range is limited to 0.01 to 2.0%. W is effective for increasing the strength of the base material by solid solution strengthening and precipitation strengthening, but is required to be 0.01% or more in order to exhibit the effect. on the other hand,
If it is contained in excess of 2.0%, the toughness is significantly deteriorated, so the upper limit is made 2.0%.

【0073】さらに、延性の向上、継手靭性の向上のた
めに、必要に応じて、Mg,Ca,REMの1種または
2種以上を含有することができる。Mg,Ca,REM
はいずれも硫化物の熱間圧延中の展伸を抑制して延性特
性向上に有効である。酸化物を微細化させて継手靭性の
向上にも有効に働く。その効果を発揮するための下限の
含有量は、Mg及びCaは0.0005%、REMは
0.005%である。一方、過剰に含有すると、硫化物
や酸化物の粗大化を生じ、延性、靭性の劣化を招くた
め、上限を各々、Mg,Caは0.01%、REMは
0.10%とする。
Further, in order to improve ductility and joint toughness, one or more of Mg, Ca and REM may be contained, if necessary. Mg, Ca, REM
Are effective in improving ductility by suppressing the elongation of sulfide during hot rolling. It also works effectively to improve joint toughness by refining the oxide. The lower limit contents for exhibiting the effect are 0.0005% for Mg and Ca and 0.005% for REM. On the other hand, if it is contained excessively, coarsening of sulfides and oxides occurs, leading to deterioration of ductility and toughness, so the upper limits are set to 0.01% for Mg and Ca, and 0.10% for REM.

【0074】次に、本発明の耐破壊性能に優れた建築用
高張力鋼板の製造に際しての限定理由を述べる。上記理
由により限定した化学成分を有する鋼において、脆性き
裂伝播停止特性の向上のために、鋼材の少なくとも2つ
の面の表層部において、平均フェライト粒径が3μm以
下の超細粒組織を表層から板厚の10〜33%の厚さに
わたって存在させる必要がある。本発明で限定する特徴
を有する表層超細粒層は以下に示すように製造条件を限
定することによって形成させることができる。
Next, the reasons for limitation in the production of the high-strength steel sheet for construction excellent in fracture resistance of the present invention will be described. In the steel having a limited chemical composition for the above reasons, in order to improve the brittle crack propagation arresting property, in the surface layer portions of at least two surfaces of the steel material, an ultrafine grain structure having an average ferrite grain size of 3 μm or less is formed from the surface layer. It must be present over a thickness of 10-33% of the plate thickness. The surface ultrafine grain layer having the characteristics limited in the present invention can be formed by limiting the manufacturing conditions as described below.

【0075】鋼片を熱間圧延するに際し、熱間圧延中あ
るいは熱間圧延途中で表層部の適当な厚みの領域を水冷
等の手段により、Ar3 変態点よりも低い温度まで一旦
冷却して内部と温度差をつけた後、温度差のついたまま
の状態からさらに熱間圧延を行うと、Ar3 変態点より
も低い温度まで一旦冷却された領域は、復熱及びその過
程の加工によりフェライト主体組織となるため、該フェ
ライト主体組織を有する表層部は内部の顕熱により復熱
されながら加工を受けることになり、この復熱中の加工
条件を適正化することにより、表層部のフェライト結晶
粒が顕著に細粒化する。
During hot rolling of a steel slab, a region of an appropriate thickness of the surface layer portion is once cooled to a temperature lower than the Ar 3 transformation point during hot rolling or during hot rolling by means such as water cooling. After making a temperature difference from the inside, when hot rolling is further performed from the state where the temperature difference remains, the region once cooled to a temperature lower than the Ar 3 transformation point is reheated and processed in that process. Since it has a ferrite main structure, the surface layer part having the ferrite main structure undergoes processing while being reheated by sensible heat inside, and by optimizing the processing conditions during this reheating, the ferrite crystal of the surface layer part The grains are noticeably finer.

【0076】従って、最終的な鋼材における表層超細粒
層の割合は、表層を一旦冷却した際にAr3 変態点まで
低下した領域の割合とほぼ一致することになる。
Therefore, the ratio of the surface ultrafine grain layer in the final steel material is almost the same as the ratio of the region where the surface layer is cooled to the Ar 3 transformation point when the surface layer is once cooled.

【0077】上記熱間圧延工程において、以下に示すよ
うな条件を満足することによって超細粒化が達成され
る。先ず、鋼片をオーステナイト域に再加熱するが、こ
の場合の温度としてはAc3 変態点以上、1250℃以
下が好ましい。即ち、Ac3 変態点未満ではオーステナ
イト単相にならず、フェライト相が残存し、該フェライ
ト相が残存すると後の工程の如何によらず、表層に均一
な超細粒組織を形成することができない。
In the hot rolling step, ultrafine graining is achieved by satisfying the following conditions. First, the steel slab is reheated to the austenite region. The temperature in this case is preferably from the Ac 3 transformation point to 1250 ° C. That is, when the Ac 3 transformation point is less than the austenite single phase, the ferrite phase remains, and when the ferrite phase remains, a uniform ultrafine grain structure cannot be formed on the surface layer regardless of the subsequent steps. .

【0078】一方、1250℃超では加熱オーステナイ
ト粒径が極端に粗大となるため、後の圧延によっても粒
径の微細化ができず、板厚中心部の靭性確保ができな
い。従って、本発明では鋼片の加熱温度をAc3 変態点
〜1250℃に限定する。
On the other hand, if the temperature exceeds 1250 ° C., the grain size of the heated austenite becomes extremely coarse, so that the grain size cannot be refined even by the subsequent rolling, and the toughness at the central portion of the sheet thickness cannot be secured. Therefore, in the present invention, the heating temperature of the steel slab is limited to the Ac 3 transformation point to 1250 ° C.

【0079】鋼片を加熱後、950℃以下のオーステナ
イト域で累積圧下率が10〜50%の圧延を行う。これ
は変態前のオーステナイト粒径を実質的に微細化して、
後の工程で表層を超細粒組織とするためと、内部の通常
組織の靭性を確保するためである。なお、オーステナイ
ト粒の実質的な微細化とは、再結晶オーステナイトの微
細化とともに未再結晶圧延によるオーステナイト粒の展
伸化も指す。
After the steel slab is heated, it is rolled in the austenite region at 950 ° C. or lower at a cumulative reduction of 10 to 50%. This substantially refines the austenite grain size before transformation,
This is to make the surface layer an ultrafine grain structure in a later step and to secure the toughness of the internal normal structure. Note that the substantial refinement of austenite grains refers to the refinement of recrystallized austenite as well as the expansion of austenite grains by non-recrystallization rolling.

【0080】低温のオーステナイト域での圧下がオース
テナイトの実質的な微細化に有効であるが、950℃超
の圧下はオーステナイトの微細化に有効でないため、本
発明においては950℃以下の温度での圧下率を限定す
る。950℃以下の圧下率は10%未満では加工の効果
が不足するため、オーステナイトの微細化に効果がな
い。
The reduction in the austenite region at a low temperature is effective in substantially refining austenite, but the reduction above 950 ° C. is not effective in refining austenite. Therefore, in the present invention, reduction at a temperature of 950 ° C. or lower is used. Limit the rolling reduction. If the rolling reduction at 950 ° C. or less is less than 10%, the effect of processing is insufficient, and therefore there is no effect on the refinement of austenite.

【0081】950℃以下のオーステナイト域での圧下
率は大きければ大きいほどオーステナイトの微細化に有
効であるが、その効果は50%超では飽和傾向にあるこ
とと、該圧下率が50%超と大きくなると、オーステナ
イトの細粒化には有効であるものの、後のフェライトを
超細粒化する上で必須である復熱過程での圧下率が確保
できなくなるため、本発明では950℃以下での圧下率
の上限を50%とする。
The larger the rolling reduction in the austenite region of 950 ° C. or lower, the more effective the refinement of austenite is, but the effect is that if it exceeds 50%, the tendency tends to be saturated, and that the rolling reduction exceeds 50%. When it becomes large, it is effective for austenite grain refinement, but it becomes impossible to secure the reduction rate in the recuperation process, which is essential for later grain refinement of ferrite. The upper limit of the rolling reduction is 50%.

【0082】なお、950℃超の温度での圧下はオース
テナイトの微細化に対する効果が小さいが、後の復熱工
程での必要圧下率を確保できる範囲であれば、材質に悪
影響を及ぼすものではないので、初期スラブ厚みが大き
い場合等、必要に応じて950℃超の温度での加工を行
ってもかまわない。
Note that the reduction at a temperature higher than 950 ° C. has a small effect on the refinement of austenite, but does not adversely affect the material as long as the required reduction rate in the subsequent reheating step can be secured. Therefore, when the initial slab thickness is large, the processing may be performed at a temperature higher than 950 ° C. as necessary.

【0083】上記の条件で十分オーステナイト粒の微細
化、未再結晶域圧延を施した上で、該鋼材の超細粒層と
すべき表層部を水冷等の手段により冷却し、該鋼材の水
冷前の熱間圧延時点での板厚の10〜33%に対応する
各表層部の領域をAr3 変態点以下まで冷却するととも
に、表層部と内部に温度差をつけるが、その際、該鋼材
の水冷前の熱間圧延時点での板厚の10〜33%に対応
する各表層部の領域の冷却速度は2℃/s以上にする必
要がある。
Under the above conditions, the austenite grains were sufficiently refined and unrecrystallized region rolling was performed, and then the surface layer portion of the steel material to be an ultrafine grain layer was cooled by means of water cooling or the like, and the steel material was water-cooled. The area of each surface layer portion corresponding to 10 to 33% of the sheet thickness at the time of the previous hot rolling is cooled to the Ar 3 transformation point or lower, and a temperature difference is made between the surface layer portion and the inside. The cooling rate in the region of each surface layer portion corresponding to 10 to 33% of the plate thickness at the time of hot rolling before water cooling of is required to be 2 ° C./s or more.

【0084】これは冷却速度が2℃/s未満では冷却前
の熱間圧延により、オーステナイトを微細化しておいて
も冷却後の変態組織が粗大となり、その後の復熱中の圧
延で均一な超微細フェライト組織を得ることが困難とな
るためである。冷却速度は大きい方が組織微細化の観点
からは好ましいが、40℃/sを超えて急冷しても効果
が飽和する上に、不必要に急冷することは鋼板の形状維
持のためには好ましくないため、上限を40℃/sとす
る。
When the cooling rate is less than 2 ° C./s, hot rolling before cooling causes coarse transformation structure after cooling even if austenite is refined. This is because it becomes difficult to obtain a ferrite structure. A higher cooling rate is preferable from the viewpoint of micronization of the structure, but the effect is saturated even if it is rapidly cooled above 40 ° C / s, and unnecessary cooling is preferable for maintaining the shape of the steel sheet. Therefore, the upper limit is 40 ° C./s.

【0085】また、上記の950℃以下での圧延を行っ
た後の冷却はAr3 変態点以上から開始する。これは、
単相オーステナイトから冷却することで表層超細粒層を
均一に形成させるためである。即ち、該表層部が強制冷
却前にAr3 変態点未満となると、フェライトが一部粗
大に生成し、その部分での超細粒化が阻害されるためで
ある。
The cooling after the rolling at 950 ° C. or lower is started from the Ar 3 transformation point or higher. this is,
This is because a surface layer of ultrafine grains is formed uniformly by cooling from single-phase austenite. That is, if the surface layer portion becomes lower than the Ar 3 transformation point before forced cooling, ferrite is partially coarsely formed, and ultrafine graining in that portion is hindered.

【0086】以上の理由により、該鋼材の冷却前の熱間
圧延時点での板厚の10〜33%に対応する各表層部の
領域を2℃/s〜40℃/sの冷却速度でAr3 変態点
以下まで冷却し、その後仕上げ圧延を行う際、内部の顕
熱によるか、及び/または外部からの加熱を利用して、
板厚の10〜33%に対応する各表層部の領域を昇温中
に圧延を施すことにより、該領域の組織が超微細化し、
脆性き裂伝播停止特性向上に寄与できるようになる。
For the above reasons, the area of each surface layer portion corresponding to 10 to 33% of the plate thickness at the time of hot rolling before cooling the steel material is Ar at a cooling rate of 2 ° C./s to 40 ° C./s. When cooling to 3 transformation points or less and then performing finish rolling, by using sensible heat inside and / or utilizing heating from outside,
By rolling the region of each surface layer portion corresponding to 10 to 33% of the plate thickness during temperature increase, the structure of the region becomes ultrafine,
It becomes possible to contribute to the improvement of brittle crack propagation stopping property.

【0087】後述するように、上記復熱過程の加工は1
回もしくは2回以上繰り返してもよいが、最後の冷却後
の復熱過程での圧延後の復熱温度は(Ac1 変態点−5
0℃)〜(Ac3 変態点+50℃)の範囲にする必要が
ある。
As will be described later, the processing in the recuperation process is 1
Although it may be repeated once or twice or more, the recuperation temperature after rolling in the recuperation process after the last cooling is (Ac 1 transformation point −5
It is necessary to be in the range of (0 ° C.) to (Ac 3 transformation point + 50 ° C.).

【0088】即ち、該最終復熱温度が(Ac1 変態点−
50℃)よりも低いと、加工後の加工フェライトの回復
・再結晶が十分でないため、超細粒化が不十分で、脆性
き裂伝播停止特性が向上しない。
That is, the final recuperation temperature is (Ac 1 transformation point-
If it is lower than 50 ° C., the recovery and recrystallization of the worked ferrite after working is not sufficient, so that the ultrafine graining is insufficient and the brittle crack propagation arresting property is not improved.

【0089】一方、該最終復熱温度が(Ac1 変態点+
50℃)よりも高いと、加工により超細粒化したフェラ
イトの一部が再度オーステナイトに逆変態することによ
って消失してしまい、その割合が無視できないほど多く
なって靭性及び脆性き裂伝播停止特性を損なう。従っ
て、本発明においては、最後の冷却後の復熱過程での圧
延後の復熱温度は(Ac1 変態点−50℃)〜(Ac3
変態点+50℃)の範囲に限定する。
On the other hand, the final recuperation temperature is (Ac 1 transformation point +
If the temperature is higher than 50 ° C, a part of the ferrite that has been made into a fine grain by processing will be lost by retransforming to austenite again, and the ratio will increase to a non-negligible toughness and brittle crack propagation arresting property. Spoil. Therefore, in the present invention, the recuperation temperature after rolling in the recuperation process after the last cooling is (Ac 1 transformation point −50 ° C.) to (Ac 3
It is limited to the range of transformation point + 50 ° C).

【0090】以上のAr3 変態点以下への冷却と復熱中
の加工工程は1回でもよいが、複数回繰り返すことによ
り効果が重畳するため、2回以上繰り返しても所望の微
細組織を得ることが可能である。
The above-described processing steps during cooling to below the Ar 3 transformation point and during the reheating may be carried out once, but the effect is superposed by repeating it a plurality of times, so the desired fine structure can be obtained even if it is repeated two or more times. Is possible.

【0091】その場合、各復熱段階の最高温度あるいは
最低温度は任意であっても本発明の温度条件に従えば、
超細粒化する。ただし、好ましくは途中の復熱温度の上
限は(Ac3 変態点+100℃)以下とする方が細粒化
の効果が確実に重畳する点で好ましい。
In this case, even if the maximum temperature or the minimum temperature of each recuperation stage is arbitrary, according to the temperature condition of the present invention,
Make it ultra-fine. However, it is preferable that the upper limit of the recuperation temperature in the middle is (Ac 3 transformation point + 100 ° C.) or less, because the effect of grain refining is surely superimposed.

【0092】最初の冷却後から最後の復熱に至るまでの
圧延としての仕上げ圧延の累積圧下率は大きい方が均一
かつ安定に超細粒組織を得られる。そのためには、仕上
げ圧延の累積圧下率は最低限20%必要である。圧下率
は大きいほど超細粒化には有利であるが、圧下率が90
%を超えるような圧延は効果が飽和し、生産性を極端に
阻害するため好ましくない。従って、本発明では仕上げ
圧延の累積圧下率は20〜90%に限定する。
If the cumulative rolling reduction of the finish rolling as the rolling from the first cooling to the final recuperation is large, an ultrafine grain structure can be uniformly and stably obtained. For that purpose, the cumulative rolling reduction of the finish rolling needs to be at least 20%. The larger the rolling reduction, the more advantageous it is for ultrafine graining, but the rolling reduction is 90
%, The effect is saturated and productivity is extremely hindered, which is not preferable. Therefore, in the present invention, the cumulative rolling reduction of the finish rolling is limited to 20 to 90%.

【0093】以上が、本発明の製造方法に関する要件で
あり、圧延、復熱が終了した段階で所望の組織を得るこ
とができる。最終的な復熱終了後の冷却は放冷あるいは
強制冷却等手段によらず目的の脆性き裂伝播停止特性と
靭性を得ることはできるが、強度の向上等、用途によっ
ては復熱終了後の鋼板を5〜40℃/sの冷却速度で2
0〜650℃まで冷却したり、復熱終了後の鋼板を放冷
後あるいは5〜40℃/sの冷却速度で20〜650℃
まで冷却後、450℃〜650℃で焼戻しすることもで
きる。
The above are the requirements concerning the manufacturing method of the present invention, and a desired microstructure can be obtained at the stage when rolling and reheating are completed. Cooling after the final recuperation can obtain the target brittle crack propagation stopping characteristics and toughness without any means such as cooling by cooling or forced cooling, but depending on the application such as improved strength, after the end of recuperation, 2 at a cooling rate of 5-40 ° C / s
20 to 650 ° C after cooling to 0 to 650 ° C or after allowing the steel plate after the recuperation to cool or at a cooling rate of 5 to 40 ° C / s
After cooling down to 450 ° C. to 650 ° C., tempering can be performed.

【0094】最終的な復熱後に強制冷却する場合、冷却
速度が5℃/s未満では強制冷却による材質改善効果が
顕著でなく、40℃/s超では効果が飽和する上、鋼板
形状を損なう恐れがある。また、強制冷却の停止温度は
20℃以下では冷却停止による材質向上が期待できない
上、冷却に時間を要するので好ましくなく、冷却停止温
度が650℃超ではまだ変態を完了しない場合があり、
強度の極端な低下や靭性劣化を招く恐れがある。
In the case of forced cooling after the final recuperation, if the cooling rate is less than 5 ° C./s, the effect of material improvement due to forced cooling is not remarkable, and if it exceeds 40 ° C./s, the effect is saturated and the shape of the steel sheet is impaired. There is a fear. Further, if the stop temperature of the forced cooling is 20 ° C. or less, the material improvement due to the cooling stop cannot be expected, and it takes time for cooling, which is not preferable, and if the cooling stop temperature exceeds 650 ° C., transformation may not be completed yet,
There is a risk of extreme reduction in strength and deterioration of toughness.

【0095】焼戻し温度が450℃未満であると、硬化
相の焼戻しや残留応力の解放が不十分となるため、靭性
劣化や形状劣化が生じる可能性が大きい。一方、焼戻し
温度が650℃超では表層に形成された超細粒フェライ
トの成長が生じて混粒組織となる懸念があるため、強制
冷却後の焼戻し温度を450℃〜650℃に限定する。
If the tempering temperature is lower than 450 ° C., tempering of the hardened phase and release of residual stress will be insufficient, and there is a high possibility of deterioration of toughness and shape. On the other hand, if the tempering temperature exceeds 650 ° C, there is a concern that ultrafine grained ferrite formed in the surface layer may grow to form a mixed grain structure, so the tempering temperature after forced cooling is limited to 450 ° C to 650 ° C.

【0096】[0096]

【実施例】表1に示す化学成分の供試鋼を用いて、表2
に示す製造条件で製造した板厚25mmあるいは50mmの
厚鋼板について、製造まま及び歪を10%付与した後の
母材の強度及びシャルピー試験による靭性(破面遷移温
度vTrs)、ESSO試験による脆性き裂伝播停止特
性(Kca値が400 kgf・mm-3/2となる温度)、延性
破壊発生の限界CTOD値(δi )、及び溶接継手特性
(溶接ままでのシャルピー特性(−20℃での吸収エネ
ルギーの平均値)、溶接まま及び10%歪付与後の
δi )を表3に示す。
EXAMPLES Using test steels having the chemical compositions shown in Table 1, Table 2
For a thick steel plate having a plate thickness of 25 mm or 50 mm manufactured under the manufacturing conditions shown in 1), the strength of the base metal as manufactured and after 10% strain and the toughness by the Charpy test (fracture transition temperature vTrs), the brittleness by the ESSO test crack propagation stop characteristics (the temperature at which Kca value is 400 kgf · mm -3/2), limit CTOD value ductile fracture ([delta] i), and welded joint properties (Charpy properties of the remains welded (at -20 ° C. Table 3 shows the average value of absorbed energy), as-welded and δ i ) after applying 10% strain.

【0097】[0097]

【表1】 [Table 1]

【0098】[0098]

【表2】 [Table 2]

【0099】[0099]

【表3】 [Table 3]

【0100】[0100]

【表4】 [Table 4]

【0101】[0101]

【表5】 [Table 5]

【0102】[0102]

【表6】 [Table 6]

【0103】[0103]

【表7】 [Table 7]

【0104】[0104]

【表8】 [Table 8]

【0105】[0105]

【表9】 [Table 9]

【0106】[0106]

【表10】 [Table 10]

【0107】[0107]

【表11】 [Table 11]

【0108】[0108]

【表12】 [Table 12]

【0109】母材の引張特性は板厚のt/4部から試験
方向が圧延方向と直角となるようにして採取した平行部
直径が6mmで評点間距離が25mmの丸棒試験片により実
施した。母材のシャルピー衝撃特性も引張試験と同一の
位置、方法で採取し、破面遷移温度(vTrs)を求め
た。延性破壊発生の限界CTOD値(δi )は板厚中心
部から試験片の長手方向が圧延方向と直角となるように
採取した疲労ノッチ付き3点曲げ試験片により実施し
た。
The tensile properties of the base material were measured by using a round bar test piece having a parallel part diameter of 6 mm and a distance between scores of 25 mm, which was taken from t / 4 part of the plate thickness so that the test direction was perpendicular to the rolling direction. . The Charpy impact properties of the base material were also sampled at the same position and method as in the tensile test, and the fracture surface transition temperature (vTrs) was determined. The critical CTOD value (δ i ) for the occurrence of ductile fracture was measured using a fatigue notched three-point bending test piece that was taken from the center of the plate thickness so that the longitudinal direction of the test piece was perpendicular to the rolling direction.

【0110】溶接条件は、板厚が25mmの鋼板について
は片面1層のサブマージアーク溶接、板厚が50mmの鋼
板については両面1層溶接とした。いずれも溶接入熱は
約190〜200kJ/cmの範囲に入るように調整して溶
接を実施した。
Regarding the welding conditions, for a steel plate having a plate thickness of 25 mm, single-sided single layer submerged arc welding was used, and for a steel plate having a plate thickness of 50 mm, double-sided single layer welding was performed. In each case, the welding heat input was adjusted so as to fall within the range of about 190 to 200 kJ / cm and welding was performed.

【0111】継手の2mmV ノッチシャルピー衝撃試験片
及びδi 測定用の試験片は表面下7mmの位置が試験片の
中心部となるようにして、溶接金属とHAZの境界(融
合部:FL)からHAZ側に1mm入った位置がノッチ位
置となるよう採取した。なお、引張特性及び母材、継手
のδi の測定は全て室温で求めた。
The 2 mm V notch Charpy impact test piece and the test piece for measuring δ i of the joint were set so that the position of 7 mm below the surface was the center of the test piece, and the weld metal and the HAZ were separated from each other (fusion part: FL). It was sampled so that the position 1 mm on the HAZ side would be the notch position. The tensile properties and the measurements of the base material and the joint δ i were all performed at room temperature.

【0112】表1に示すように、鋼番A1〜A16の鋼
板は本発明の範囲内の化学成分及び表層超細粒組織を有
するため、脆性き裂の伝播停止特性の指標であるES
SO試験により求められたKca値が400 kgf・mm
-3/2となる温度が非常に良好であるばかりでなく、10
%の大きな歪を付与した後にもその劣化が非常に小さ
い、通常の丸棒引張試験で求められる伸びに加えてき
裂が存在する場合の延性破壊の発生特性を示すδi も歪
付与有無にかかわらず良好な値を維持する、溶接継手
のシャルピー特性も建築、橋梁等の構造物に安全に用い
るために必要な特性を有しており、継手のδi も母材と
同様、歪付与後でも十分高い値が得られている。
As shown in Table 1, since the steel sheets of steel numbers A1 to A16 have the chemical composition and the superfine grain structure of the surface layer within the scope of the present invention, they are an index of the propagation stopping property of brittle cracks, ES.
Kca value obtained by SO test is 400 kgf · mm
-3/2 temperature is not only very good, but also 10
%, The deterioration is very small even after a large strain is applied. In addition to the elongation required in the usual round bar tensile test, the ductile fracture occurrence characteristic in the presence of cracks is also δ i regardless of the presence or absence of strain. The welded joint has the Charpy characteristics that are required to be safely used for structures such as construction and bridges, and maintains the δ i of the joint even after strain is applied, like the base metal. A sufficiently high value is obtained.

【0113】即ち本発明により製造された鋼材は、使用
中に大地震等による大きくかつ繰り返しの塑性歪を受け
るような構造物に使用された場合にも従来にない高い安
全性を有していることが明白である。
That is, the steel material produced according to the present invention has an unprecedentedly high level of safety even when used in a structure which undergoes large and repeated plastic strain due to a large earthquake during use. It is clear.

【0114】一方、鋼番B1〜B10は比較例であり、
本発明の要件を満足していないために、表3に示した特
性のいずれかが本発明の鋼に比べて劣っている。即ち、
鋼番B1は全N量が過剰であるため、歪付与前のESS
O特性も本発明の鋼に比べて劣るが、特に歪付与後のE
SSO特性及びδi が顕著に劣る。
On the other hand, steel numbers B1 to B10 are comparative examples,
Any of the properties shown in Table 3 are inferior to the steels of the present invention because they do not meet the requirements of the present invention. That is,
Since steel number B1 has an excessive amount of all N, ESS before strain application
O characteristics are also inferior to those of the steel of the present invention.
SSO characteristics and δ i are remarkably inferior.

【0115】鋼番B2は全N量が過剰な上、固溶N固定
のためのAl等の量が不十分であるため、歪付与後の脆
性き裂伝播停止特性やδi の値が本発明鋼に比べて劣化
している。鋼番B3は全N量としては本発明の化学成分
範囲であるが、Nの固定が不十分であるため、即ち、
(1)式の値が正の値となるため、歪付与による材質劣
化が大きい。
Steel No. B2 has an excessive amount of total N and an insufficient amount of Al and the like for fixing the solid solution N. Therefore, the brittle crack propagation arresting property after straining and the value of δ i are It is deteriorated compared to the invention steel. Steel No. B3 is within the chemical composition range of the present invention as the total amount of N, but because fixation of N is insufficient, that is,
Since the value of the equation (1) is a positive value, the material deterioration due to the strain application is large.

【0116】鋼番B4は固溶Nの固定に最も有効なAl
の含有量が不十分であるため、Nの固定が十分でなく、
歪付与によるESSO特性及びδi の劣化が顕著であ
る。鋼番B5はPが過剰であるため、延性破壊特性及び
ESSO特性が歪付与前でも低めであり、さらに、歪付
与後の延性破壊特性及びESSO特性は大きく低下す
る。
Steel No. B4 is Al most effective for fixing solid solution N.
Is insufficient, the N fixation is not sufficient,
Degradation of ESSO characteristics and δ i due to strain application is remarkable. In steel number B5, since P is excessive, ductile fracture characteristics and ESSO characteristics are low even before strain is applied, and further, ductile fracture characteristics and ESSO characteristics after strain are significantly reduced.

【0117】鋼番B6はSが過剰であるため、特に延性
特性(絞り値,δi )が歪付与前、付与後とも本発明鋼
に比べて大幅に劣る。鋼番B7はCが過剰であるため、
歪付与前後における延性破壊特性及びESSO特性は低
めである上に、溶接継手の靭性が顕著に劣る。
Since the steel No. B6 has an excessive amount of S, the ductility characteristics (drawing value, δ i ) are significantly inferior to those of the steel of the present invention both before and after applying strain. Steel No. B7 has excessive C, so
The ductile fracture characteristics and ESSO characteristics before and after applying strain are relatively low, and the toughness of the welded joint is remarkably poor.

【0118】鋼番B8は化学成分としては本発明鋼の範
囲内であるが、表層部の超細粒組織を有していないた
め、ESSO特性が歪付与前、歪付与後とも顕著に劣化
している。鋼番B9は表層部に中心部に比較して細粒の
組織を有しているが、その粒径が本発明の要件を満足せ
ず、粗大であるため、十分な脆性き裂伝播停止特性が歪
付与前後とも得られない。
Steel No. B8 is within the range of the steel of the present invention as a chemical composition, but since it does not have a superfine grain structure in the surface layer portion, the ESSO characteristics are remarkably deteriorated before and after strain application. ing. Steel No. B9 has a fine-grained structure in the surface layer portion as compared with the central portion, but its grain size does not satisfy the requirements of the present invention and is coarse, so that sufficient brittle crack propagation arresting characteristics are obtained. Cannot be obtained before and after applying strain.

【0119】鋼番B10は表層超細粒層の厚さが不十分
であるため、十分な脆性き裂伝播停止特性が歪付与前後
とも得られない。鋼番B11はO量が過剰であるため、
特に延性破壊特性が劣る。鋼番B12は延性特性に有害
なSとOとがともに過剰であるため、伸びやδi が塑性
変形前においても顕著に劣る。
Steel No. B10 does not have sufficient brittle crack propagation arresting properties before and after strain application because the surface ultrafine grain layer has an insufficient thickness. Steel No. B11 has an excessive amount of O, so
In particular, ductile fracture characteristics are poor. Steel No. B12 has an excessive amount of S and O, both of which are harmful to the ductility characteristics, so that the elongation and δ i are significantly inferior even before plastic deformation.

【0120】以上の実施例から、本発明によれば、予歪
を付与する前はもちろん、及び大地震等で大きな変形を
受けた場合を想定した10%の予歪付与後においてもシ
ャルピー特性、脆性き裂伝播停止特性及び延性破壊特性
(絞り値,δi )が非常に良好な鋼材を得ることが可能
であることが明白である。
From the above examples, according to the present invention, the Charpy characteristics are obtained not only before applying the prestrain but also after applying the prestrain of 10% assuming a large deformation such as a large earthquake. It is clear that it is possible to obtain a steel material with very good brittle crack propagation arresting properties and ductile fracture properties (drawing value, δ i ).

【0121】[0121]

【発明の効果】本発明は使用中に大地震等による大きく
かつ繰り返しの塑性歪を受けるような場合にも塑性歪に
よる材質の劣化が非常に小さく、塑性変形後においても
脆性き裂を容易にする延性き裂の発生や進展を抑制し、
かつ万一破壊が発生した場合でもその脆性き裂を停止で
きる安全性の非常に大きな構造物用鋼材を特殊な合金成
分を用いることなく、通常の鋼材の製造プロセスにおい
て可能にしたものであり、その産業上の効果は極めて大
きい。
INDUSTRIAL APPLICABILITY The present invention has very little deterioration of the material due to plastic strain even when it is subjected to large and repeated plastic strain due to a large earthquake during use, and easily causes brittle cracks even after plastic deformation. Suppresses the initiation and propagation of ductile cracks
And, even if a fracture should occur, it is possible to stop the brittle crack in a very safe steel material for structures without using a special alloy component in the normal steel material manufacturing process, Its industrial effect is extremely large.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.01〜0.15%、 Si:0.01〜1.0%、 Mn:0.1〜2.0%、 Al:0.003〜0.1%、 N :0.001〜0.005%を含有し、 不純物としてのP,S,Oの含有量が P :0.01%以下、 S :0.01%以下、 O :0.006%以下で、かつ、 N(%)−Al(%)/3.0≦0で、 残部鉄及び不可避不純物からなる鋼材であって、該鋼材
を構成する外表面のうち少なくとも2つの外表面に関し
て、表層から全厚みの10〜33%の範囲内の平均フェ
ライト粒径が3μm以下の超細粒組織であることを特徴
とする耐破壊性能に優れた建築用高張力鋼材。
1. By weight%, C: 0.01 to 0.15%, Si: 0.01 to 1.0%, Mn: 0.1 to 2.0%, Al: 0.003 to 0. 1%, N: 0.001 to 0.005% is contained, and the content of P, S, O as impurities is P: 0.01% or less, S: 0.01% or less, O: 0.006. % Or less and N (%)-Al (%) / 3.0 ≦ 0, which is a steel material composed of balance iron and unavoidable impurities, and at least two outer surfaces of the outer surfaces constituting the steel material A high-strength steel material for construction having excellent fracture resistance, characterized by having an ultrafine grain structure having an average ferrite grain size of 3 μm or less within a range of 10 to 33% of the total thickness from the surface layer.
【請求項2】 重量%で、 Ti:0.003〜0.020%、 Zr:0.003〜0.10%、 Nb:0.002〜0.050%、 Ta:0.005〜0.20%、 V :0.005〜0.20%、 B :0.0002〜0.003% の1種または2種以上を含有し、 N(%)−Al(%)/3.0−Ti(%)/3.4−
Zr(%)/6.5−Nb(%)/13.2−Ta
(%)/25.8−V(%)/10.9−B(%)/
2.0≦0 であることを特徴とする請求項1記載の耐破壊性能に優
れた建築用高張力鋼材。
2. Ti: 0.003 to 0.020%, Zr: 0.003 to 0.10%, Nb: 0.002 to 0.050%, Ta: 0.005 to 0. 20%, V: 0.005 to 0.20%, B: 0.0002 to 0.003%, one or more kinds are contained, and N (%)-Al (%) / 3.0-Ti. (%) / 3.4-
Zr (%) / 6.5-Nb (%) / 13.2-Ta
(%) / 25.8-V (%) / 10.9-B (%) /
2.0 ≦ 0, The high-strength steel material for construction having excellent fracture resistance according to claim 1.
【請求項3】 重量%で、 Cr:0.01〜2.0%、 Mo:0.01〜2.0%、 Ni:0.01〜4.0%、 Cu:0.01〜2.0%、 W :0.01〜2.0% の1種または2種以上を含有することを特徴とする請求
項1または2記載の耐破壊性能に優れた建築用高張力鋼
材。
3. By weight%, Cr: 0.01-2.0%, Mo: 0.01-2.0%, Ni: 0.01-4.0%, Cu: 0.01-2. 0%, W: 0.01-2.0% 1 type (s) or 2 or more types are contained, The high tensile steel material for construction excellent in the fracture resistance of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 重量%で、 Mg:0.0005〜0.01%、 Ca:0.0005〜0.01%、 REM:0.005〜0.10% のうち1種または2種以上を含有することを特徴とする
請求項1〜3のいずれかに記載の耐破壊性能に優れた建
築用高張力鋼材。
4. One or more of Mg: 0.0005 to 0.01%, Ca: 0.0005 to 0.01%, and REM: 0.005 to 0.10% by weight. The high-strength steel material for construction according to any one of claims 1 to 3, which is excellent in fracture resistance.
【請求項5】 鋼片をAc3 変態点以上、1250℃以
下の温度に加熱し、950℃以下でのオーステナイト域
での累積圧下率が10〜50%の粗圧延を行った後、そ
の段階での鋼片全厚みの10%〜33%に対応する少な
くとも2つの外表面の表層部の領域を、Ar3 変態点以
上の温度から2〜40℃/sの冷却速度で冷却を開始
し、Ar3 変態点以下で冷却を停止して復熱させること
を1回以上経由させる過程で、最後の冷却後の復熱が終
了するまでの間に累積圧下率が20〜90%の仕上げ圧
延を完了させ、該圧延完了後の鋼材の前記表層域を(A
1 変態点−50℃)〜(Ac3 変態点+50℃)の範
囲に復熱させて請求項1〜4のいずれかに記載の鋼材を
製造することを特徴とする耐破壊性能に優れた建築用高
張力鋼材の製造方法。
5. A steel slab is heated to a temperature not lower than the Ac 3 transformation point and not higher than 1250 ° C., and rough rolling is performed at a temperature of 950 ° C. or lower so that the cumulative rolling reduction in the austenite region is 10 to 50%. Of at least two outer surface layer portions corresponding to 10% to 33% of the total thickness of the steel billet in the above step, cooling is started at a cooling rate of 2 to 40 ° C./s from the temperature of the Ar 3 transformation point or higher, In the process of stopping the cooling at the Ar 3 transformation point or lower and returning the heat through one or more times, finish rolling with a cumulative rolling reduction of 20 to 90% until the end of the recuperation after the last cooling. The surface layer of the steel material after completion of the rolling (A
c 1 transformation point -50 ° C.) ~ (excellent fracture properties, characterized by producing the steel material according to any one Ac 3 by recuperation in the range of transformation point + 50 ° C.) of claim 1 Manufacturing method of high strength steel for construction.
【請求項6】 復熱終了後の鋼材を5〜40℃/sの冷
却速度で20℃〜650℃まで冷却することを特徴とす
る請求項5記載の耐破壊性能に優れた建築用高張力鋼材
の製造方法。
6. The high tensile strength for construction according to claim 5, wherein the steel material after the end of the recuperating heat is cooled to 20 ° C. to 650 ° C. at a cooling rate of 5 to 40 ° C./s. Steel material manufacturing method.
【請求項7】 450℃〜650℃で焼戻しを行うこと
を特徴とする請求項5または6記載の耐破壊性能に優れ
た建築用高張力鋼材の製造方法。
7. The method for producing a high-strength steel material for construction having excellent fracture resistance according to claim 5, wherein tempering is performed at 450 ° C. to 650 ° C.
JP33662295A 1995-12-25 1995-12-25 Building use high tensile strength steel excellent in fracture resistance and its production Pending JPH09176782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33662295A JPH09176782A (en) 1995-12-25 1995-12-25 Building use high tensile strength steel excellent in fracture resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33662295A JPH09176782A (en) 1995-12-25 1995-12-25 Building use high tensile strength steel excellent in fracture resistance and its production

Publications (1)

Publication Number Publication Date
JPH09176782A true JPH09176782A (en) 1997-07-08

Family

ID=18301063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33662295A Pending JPH09176782A (en) 1995-12-25 1995-12-25 Building use high tensile strength steel excellent in fracture resistance and its production

Country Status (1)

Country Link
JP (1) JPH09176782A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317242A (en) * 2001-04-19 2002-10-31 Nkk Corp High tensile strength steel for welding structure used under low temperature having excellent weld heat affected zone toughness
WO2007015541A1 (en) * 2005-08-03 2007-02-08 Sumitomo Metal Industries, Ltd. Hot rolled steel sheet, cold rolled steel sheet and process for producing the same
CN102002630A (en) * 2010-11-29 2011-04-06 南阳汉冶特钢有限公司 Q345R-Z35 super-thick steel plate resisting HIC (hydrogen induced crack) pressure vessel and production method thereof
CN102041447A (en) * 2010-12-21 2011-05-04 南阳汉冶特钢有限公司 Q345C steel plate and production method thereof
CN102041436A (en) * 2010-12-21 2011-05-04 南阳汉冶特钢有限公司 Steel plate for low-alloy high-strength structured steel Q460C and production method thereof
CN102041433A (en) * 2010-12-21 2011-05-04 南阳汉冶特钢有限公司 X70 steel plate for low-cost pipe fittings and production method thereof
CN102041431A (en) * 2010-12-21 2011-05-04 南阳汉冶特钢有限公司 Q345B protected flaw detection steel plate and production method thereof
CN102041434A (en) * 2010-12-21 2011-05-04 南阳汉冶特钢有限公司 Steel plate for low-alloy high-strength structured steel Q460E-Z35 and production method thereof
CN102041432A (en) * 2010-12-21 2011-05-04 南阳汉冶特钢有限公司 Q420GJD-Z35 steel plate with thickness of less than or equal to 60 millimeters for high-rise building and production method thereof
CN102080185A (en) * 2010-12-21 2011-06-01 南阳汉冶特钢有限公司 High-tensile quenched and tempered steel plate for large-thickness structures and production method thereof
CN102191430A (en) * 2010-03-19 2011-09-21 宝山钢铁股份有限公司 Easy welding steel plate with yield strength of 550MPa and high toughness and manufacturing method thereof
CN102199720A (en) * 2010-03-23 2011-09-28 宝山钢铁股份有限公司 Low carbon steel sheet with yield strength over 400MPa and manufacturing method thereof
JP2012102393A (en) * 2010-10-12 2012-05-31 Jfe Steel Corp Non-heat-treated, low-yield-ratio, high-tensile thick steel plate and method for producing the same
JP2012107310A (en) * 2010-10-28 2012-06-07 Jfe Steel Corp Non-tempered low-yield-ratio high-tensile-strength steel plate and method for manufacturing the same
KR20160079166A (en) * 2014-12-25 2016-07-06 주식회사 포스코 High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
CN108754314A (en) * 2018-06-01 2018-11-06 张家港保税区恒隆钢管有限公司 A kind of automobile steering device connecting rod seamless steel pipe and preparation method thereof
CN114318159A (en) * 2021-12-02 2022-04-12 首钢集团有限公司 345 MPa-grade container steel plate with hydrogen induced cracking resistance and preparation method thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317242A (en) * 2001-04-19 2002-10-31 Nkk Corp High tensile strength steel for welding structure used under low temperature having excellent weld heat affected zone toughness
WO2007015541A1 (en) * 2005-08-03 2007-02-08 Sumitomo Metal Industries, Ltd. Hot rolled steel sheet, cold rolled steel sheet and process for producing the same
US7731808B2 (en) 2005-08-03 2010-06-08 Sumitomo Metal Industries, Ltd. Hot-rolled steel sheet and cold-rolled steel sheet and manufacturing method thereof
US7879164B2 (en) 2005-08-03 2011-02-01 Sumitomo Metal Industries, Ltd. Method of producing hot-rolled steel sheet
JP5029361B2 (en) * 2005-08-03 2012-09-19 住友金属工業株式会社 Hot-rolled steel sheet, cold-rolled steel sheet and methods for producing them
US7927433B2 (en) 2005-08-03 2011-04-19 Sumitomo Metal Industries, Ltd. Cold-rolled steel sheet
US8257517B2 (en) 2005-08-03 2012-09-04 Sumitomo Metal Industries, Ltd. Method of producing cold-rolled steel sheet
CN102191430A (en) * 2010-03-19 2011-09-21 宝山钢铁股份有限公司 Easy welding steel plate with yield strength of 550MPa and high toughness and manufacturing method thereof
CN102199720A (en) * 2010-03-23 2011-09-28 宝山钢铁股份有限公司 Low carbon steel sheet with yield strength over 400MPa and manufacturing method thereof
JP2012102393A (en) * 2010-10-12 2012-05-31 Jfe Steel Corp Non-heat-treated, low-yield-ratio, high-tensile thick steel plate and method for producing the same
JP2012107310A (en) * 2010-10-28 2012-06-07 Jfe Steel Corp Non-tempered low-yield-ratio high-tensile-strength steel plate and method for manufacturing the same
CN102002630A (en) * 2010-11-29 2011-04-06 南阳汉冶特钢有限公司 Q345R-Z35 super-thick steel plate resisting HIC (hydrogen induced crack) pressure vessel and production method thereof
CN102041431A (en) * 2010-12-21 2011-05-04 南阳汉冶特钢有限公司 Q345B protected flaw detection steel plate and production method thereof
CN102041434A (en) * 2010-12-21 2011-05-04 南阳汉冶特钢有限公司 Steel plate for low-alloy high-strength structured steel Q460E-Z35 and production method thereof
CN102041433A (en) * 2010-12-21 2011-05-04 南阳汉冶特钢有限公司 X70 steel plate for low-cost pipe fittings and production method thereof
CN102041436A (en) * 2010-12-21 2011-05-04 南阳汉冶特钢有限公司 Steel plate for low-alloy high-strength structured steel Q460C and production method thereof
CN102080185A (en) * 2010-12-21 2011-06-01 南阳汉冶特钢有限公司 High-tensile quenched and tempered steel plate for large-thickness structures and production method thereof
CN102041447A (en) * 2010-12-21 2011-05-04 南阳汉冶特钢有限公司 Q345C steel plate and production method thereof
CN102041432A (en) * 2010-12-21 2011-05-04 南阳汉冶特钢有限公司 Q420GJD-Z35 steel plate with thickness of less than or equal to 60 millimeters for high-rise building and production method thereof
KR20160079166A (en) * 2014-12-25 2016-07-06 주식회사 포스코 High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
CN108754314A (en) * 2018-06-01 2018-11-06 张家港保税区恒隆钢管有限公司 A kind of automobile steering device connecting rod seamless steel pipe and preparation method thereof
CN114318159A (en) * 2021-12-02 2022-04-12 首钢集团有限公司 345 MPa-grade container steel plate with hydrogen induced cracking resistance and preparation method thereof
CN114318159B (en) * 2021-12-02 2022-12-16 首钢集团有限公司 345 MPa-grade container steel plate with hydrogen induced cracking resistance and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3848465B2 (en) Method for producing thick high-tensile steel with excellent low-temperature toughness
US4521258A (en) Method of making wrought high tension steel having superior low temperature toughness
KR101139605B1 (en) Steel material having excellent high temperature properties and excellent toughness, and method for production thereof
KR100799421B1 (en) Cold-formed steel pipe and tube having excellent in weldability with 490MPa-class of low yield ratio, and manufacturing process thereof
JP4897127B2 (en) Manufacturing method of high strength steel sheet for welded structure
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JPH09176782A (en) Building use high tensile strength steel excellent in fracture resistance and its production
JP3499084B2 (en) Low yield ratio high tensile strength steel for construction with excellent brittle crack arrestability and method of manufacturing the same
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP2019502018A (en) High-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of welds and method for producing the same
KR20090122371A (en) Steel material having excellent high-temperature strength and toughness, and method for production thereof
JP3499085B2 (en) Low Yield Ratio High Tensile Steel for Construction Excellent in Fracture Resistance and Manufacturing Method Thereof
JP2019501281A (en) High-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of welds and method for producing the same
JP5082667B2 (en) High-strength thick steel plate with excellent arrest properties and method for producing the same
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JPH0949026A (en) Production of high strength hot rolled steel plate excellent in balance between strength and elongation and in stretch-flange formability
JP3922805B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JP2001123222A (en) Manufacturing method of high-toughness and high-tensile steel
JP2006241510A (en) Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
JPH1171615A (en) Production of thick steel plate excellent in low temperature toughness
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JPH093591A (en) Extremely thick high tensile strength steel plate and its production

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030708