JP5029361B2 - Hot-rolled steel sheet, cold-rolled steel sheet and methods for producing them - Google Patents

Hot-rolled steel sheet, cold-rolled steel sheet and methods for producing them Download PDF

Info

Publication number
JP5029361B2
JP5029361B2 JP2007529525A JP2007529525A JP5029361B2 JP 5029361 B2 JP5029361 B2 JP 5029361B2 JP 2007529525 A JP2007529525 A JP 2007529525A JP 2007529525 A JP2007529525 A JP 2007529525A JP 5029361 B2 JP5029361 B2 JP 5029361B2
Authority
JP
Japan
Prior art keywords
steel sheet
ferrite
hot
less
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007529525A
Other languages
Japanese (ja)
Other versions
JPWO2007015541A1 (en
Inventor
俊郎 富田
規雄 今井
充 吉田
佳織 河野
昌幸 脇田
保 土岐
正則 泰山
ひとみ 西畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007529525A priority Critical patent/JP5029361B2/en
Publication of JPWO2007015541A1 publication Critical patent/JPWO2007015541A1/en
Application granted granted Critical
Publication of JP5029361B2 publication Critical patent/JP5029361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Description

本発明は、超微細な結晶粒を有する熱延鋼板及び冷延鋼板並びにそれらの製造方法に関する。詳しくは、自動車用、家電用、機械構造用、建築用等の用途に用いられる素材として好適な機械的強度、加工性及び熱的安定性に優れた熱延鋼板及び冷延鋼板並びにそれらの製造方法に関する。   The present invention relates to a hot-rolled steel sheet and a cold-rolled steel sheet having ultrafine crystal grains, and methods for producing them. Specifically, hot-rolled steel sheets and cold-rolled steel sheets excellent in mechanical strength, workability and thermal stability suitable for materials used for automobiles, home appliances, machine structures, constructions, etc., and their production Regarding the method.

自動車をはじめとする輸送用機械や各種産業機械の構造用部材等の素材として供される鋼板には、強度、加工性、靱性などに優れた機械的特性のみならず、部品組み立て時の溶接性や、使用時の耐食性が求められる場合がある。鋼板の機械特性を総合的に高めるには、鋼板の組織を微細化することが有効である。そのため、鋼板の組織を微細するための方法が数多く提案されてきている。   Steel sheets used as materials for automobiles and other transport machinery and various industrial machinery structural members not only have excellent mechanical properties such as strength, workability, and toughness, but also weldability during assembly. In some cases, corrosion resistance during use is required. In order to comprehensively improve the mechanical properties of the steel sheet, it is effective to refine the structure of the steel sheet. Therefore, many methods for refining the structure of the steel sheet have been proposed.

従来技術における組織微細化の手段を総括すると、(i)大圧下圧延法、(ii)制御圧延法、(iii)合金元素添加法、もしくはこれらの組み合わせである。   Summarizing the means for refining the structure in the prior art, it is (i) a large rolling reduction method, (ii) a controlled rolling method, (iii) an alloy element addition method, or a combination thereof.

(i)大圧下圧延法は、圧下率を50%程度以上と大きくして、1パスの圧延で大きな歪みを蓄積させ、その後オーステナイトから微細フェライトへと変態させるか、もしくは大歪みを利用して比較的粗大なフェライトを微細フェライトへ再結晶させる手法である。かかる手法によれば、1000℃近傍以下の温度に加熱した後、700℃近傍の低温域で大圧下圧延を行うことによって、1〜3μmの超微細フェライト組織が得られる。しかし、この方法は、工業的に実現し難いばかりか、微細フェライト組織が熱処理によって粒成長し易いので、溶接を行うと溶接部が軟化する、あるいは溶融Znめっきを施すと所期の機械特性を失うなどの問題を有している。   (I) The large rolling reduction method increases the rolling reduction to about 50% or more, accumulates large strain by one-pass rolling, and then transforms from austenite to fine ferrite, or uses large strain. This is a technique for recrystallizing relatively coarse ferrite into fine ferrite. According to such a method, after heating to a temperature of about 1000 ° C. or lower and then rolling under a large pressure in a low temperature region of about 700 ° C., an ultrafine ferrite structure of 1 to 3 μm can be obtained. However, this method is difficult to realize industrially, and since the fine ferrite structure easily grows by heat treatment, the welded part softens when welded, or the expected mechanical properties are obtained when hot-dip Zn plating is applied. Has problems such as losing.

(ii)制御圧延法は、一般的に800℃近傍以上の温度で、圧延1パス当たりの圧下率を20〜40%以下として、多パスの圧延を施した後、冷却する方法である。圧延温度をAr点近傍の狭い温度域にする方法、圧延のパス間の時間を短縮する方法、また、歪み速度と温度を制御してオーステナイトを動的再結晶させる方法などの多くの方法が開示されている。しかし、圧延後の冷却に関する検討は十分には行われていない。圧延の直後から水冷するほうが好ましいとされているが、直後冷却といっても圧延後0.2秒以上経過してからの冷却開始であり、冷却速度もせいぜい250℃/秒程度である。このような方法では、単純組成の低炭素鋼のフェライト結晶粒径は5μm程度にしかならない。したがって、機械特性を十分に高めることができない。(Ii) The controlled rolling method is generally a method of cooling after performing multi-pass rolling at a temperature of about 800 ° C. or higher and a rolling reduction per rolling of 20 to 40% or less. There are many methods such as a method in which the rolling temperature is set to a narrow temperature range near the Ar 3 point, a method of shortening the time between rolling passes, and a method of dynamically recrystallizing austenite by controlling the strain rate and temperature. It is disclosed. However, studies on cooling after rolling have not been sufficiently conducted. It is said that it is preferable to perform water cooling immediately after rolling, but cooling immediately after the rolling starts 0.2 seconds or more after rolling, and the cooling rate is at most about 250 ° C./second. In such a method, the ferrite crystal grain size of a low-carbon steel having a simple composition is only about 5 μm. Therefore, the mechanical properties cannot be sufficiently improved.

(iii)合金元素添加法は、オーステナイトの再結晶化や回復を抑制する合金元素の微量の添加によってフェライト結晶粒の微細化を促進するものである。Nb、Ti等の合金元素は、炭化物を形成したり、粒界に偏析したりして、オーステナイトの回復と再結晶を抑制するため、熱間圧延後のオーステナイト粒が微細化して、オーステナイトからの変態で得られるフェライト結晶粒も微細化する。この(iii)の合金元素添加法は、上記の(i)の大圧下圧延法や(ii)の制御圧延法と組み合わせて用いる場合が多い。この(iii)の合金元素添加法は、熱処理の際にもフェライトの粒成長を抑制する効果も持っている。しかし、フェライトの結晶粒径を小さくはするもののフェライトの体積率を低下させるという問題があり、また、超微細フェライト結晶粒の溶接や溶融Znめっき工程での粒成長を抑制するには不十分である。したがって、適用できる鋼種が限定される。また、添加する合金元素の分だけ、原料コストが嵩む。   (Iii) The alloy element addition method promotes refinement of ferrite crystal grains by adding a small amount of an alloy element that suppresses recrystallization and recovery of austenite. Alloy elements such as Nb and Ti form carbides or segregate at grain boundaries to suppress austenite recovery and recrystallization, so that austenite grains after hot rolling are refined, The ferrite crystal grains obtained by transformation are also refined. The alloy element addition method (iii) is often used in combination with the above-described large rolling method (i) or the controlled rolling method (ii). This alloy element addition method (iii) also has the effect of suppressing ferrite grain growth during heat treatment. However, although the crystal grain size of ferrite is reduced, there is a problem that the volume fraction of ferrite is reduced, and it is not sufficient to suppress grain growth in the welding of ultrafine ferrite grains and hot-dip Zn plating process. is there. Therefore, applicable steel types are limited. Further, the raw material cost increases by the amount of the alloy element to be added.

これらの(i)大圧下圧延法、(ii)制御圧延法及び(iii)合金元素を添加する方法に言及した先行文献として、特許文献1がある。ここでは、Ar+50℃からAr+100℃の温度域で1秒以内に一回もしくは二回以上の合計圧下率が50%以上の加工を加え、加工終了後の600℃以上の温度域で20℃/秒以上の冷却速度の強制冷却を行う方法が開示されている。There is Patent Document 1 as a prior art document that refers to these (i) large rolling rolling methods, (ii) controlled rolling methods, and (iii) methods of adding alloy elements. Here, processing with a total rolling reduction of 50% or more is performed once or twice within one second in a temperature range of Ar 1 + 50 ° C. to Ar 3 + 100 ° C., and in a temperature range of 600 ° C. or more after completion of processing. A method of performing forced cooling at a cooling rate of 20 ° C./second or more is disclosed.

また、特許文献2には、動的再結晶温度域での圧下を5スタンド以上の圧下パスにて行い、かつ、この動的再結晶温度域で圧下を加える最初のスタンド入り側と最後のスタンド出側の温度差を60℃以下にする方法が開示されている。   Patent Document 2 discloses that the first stand entry side and the last stand where the reduction in the dynamic recrystallization temperature range is performed in a reduction pass of five or more stands and the reduction is applied in the dynamic recrystallization temperature range. A method of setting the temperature difference on the outlet side to 60 ° C. or less is disclosed.

特開昭59−205447号公報JP 59-205447 A 特開平11−152544号公報Japanese Patent Laid-Open No. 11-152544

しかし、これらの方法で微細な結晶組織の鋼板を得ても、その組織の熱的安定性は低い。したがって、せっかく組織を微細化して機械特性を高めたとしても、その後に鋼板を溶接したり鋼板に溶融めっきを施したりすると、溶接時に加えられる熱や溶融めっき工程で加えられる熱によって結晶粒が容易に粗大化してしまい、その機械特性が極端に損なわれてしまうという問題があった。また、これらの熱延鋼板に冷間圧延と熱処理を施し薄鋼板とした場合も、熱処理によって結晶粒は容易に粗大化してしまい、微細組織の冷延鋼板を得ることもできないという問題があった。   However, even if a steel sheet having a fine crystal structure is obtained by these methods, the thermal stability of the structure is low. Therefore, even if the structure is refined and mechanical properties are improved, if the steel sheet is subsequently welded or hot-plated on the steel sheet, the crystal grains are easily formed by the heat applied during welding or the heat applied during the hot-dipping process. There is a problem that the mechanical properties are extremely deteriorated. In addition, even when these hot-rolled steel sheets are subjected to cold rolling and heat treatment to form thin steel sheets, there is a problem that the crystal grains are easily coarsened by the heat treatment and it is not possible to obtain a cold-rolled steel sheet having a fine structure. .

本発明は、超微細な結晶粒を有し、溶接や溶融めっき工程の熱に耐えることができる熱的安定性と機械特性に優れた熱延鋼板及び冷延鋼板並びにそれらの製造方法を提供することを目的とする。   The present invention provides a hot-rolled steel sheet and a cold-rolled steel sheet that have ultrafine crystal grains and are excellent in thermal stability and mechanical properties that can withstand the heat of welding and hot dipping processes, and methods for producing the same. For the purpose.

本発明者らは、微細フェライト結晶粒組織の機械特性と熱的安定性に対して種々の検討と実験を行った結果、機械特性と熱的安定性がともに優れたものとするためには、(a)フェライトの平均結晶粒径を一定の範囲にとどめることと、(b)A点直下の700℃近傍の温度におけるフェライトの平均結晶粒径D(μm)の増加速度X(μm/min)と、この平均結晶粒径D(μm)の積D・X(μm/min)に上限を設けることが、最も重要であることを見出した。また、より良好な熱的安定性を得るためには、(c)フェライトの結晶粒径の分布を一定の範囲にとどめることや、フェライト結晶粒内に圧延による歪みを残さないようにすることが好ましいことを見出した。また、このような鋼板は冷間圧延した後に熱処理すると、再度、上記と同様に熱的に安定で微細なフェライト結晶粒組織を持つようになることも見出した。そして、(d)このような組織と特性を有する熱延鋼板と冷延鋼板を製造するための新しい方法についても種々の検討と実験を行った。さらに、溶接部材に関しては、(e)溶融溶接においては溶接部の硬度バランスを規定することが好ましいこと、そして、(f)抵抗溶接においては溶接部の硬度バランスと脆化抑制を図ることが好ましいことを、見出した。As a result of various studies and experiments on the mechanical properties and thermal stability of the fine ferrite grain structure, the present inventors have found that both mechanical properties and thermal stability are excellent. (a) keeping the average crystal grain size of ferrite within a certain range; and (b) increasing rate X (μm / min) of the average crystal grain size D (μm) of ferrite at a temperature in the vicinity of 700 ° C. just below one point of A. And the upper limit of the product D · X (μm 2 / min) of the average crystal grain size D (μm) was found to be most important. In addition, in order to obtain better thermal stability, (c) it is necessary to keep the ferrite crystal grain size distribution within a certain range or to leave no strain due to rolling in the ferrite crystal grains. I found it preferable. It has also been found that when such a steel sheet is heat-treated after cold rolling, it again has a thermally stable and fine ferrite crystal grain structure as described above. Various studies and experiments were also conducted on (d) a new method for producing hot-rolled steel sheets and cold-rolled steel sheets having such a structure and characteristics. Further, regarding the welded member, it is preferable to define the hardness balance of the welded part in (e) fusion welding, and (f) it is preferable to aim at the hardness balance and suppression of embrittlement in resistance welding. I found out.

以下、(a)〜(f)において、本発明に係る知見と検討・実験結果を詳述する。   Hereinafter, in (a) to (f), the knowledge and examination / experimental results according to the present invention will be described in detail.

(a)フェライトの平均結晶粒径を一定の範囲にとどめることについて

フェライトの結晶粒径は小さくなるほど強度が増加するが、結晶粒径が小さくなりすぎると粒界エネルギーによる粒成長の駆動力が増加するため、高温における粒成長が促進されてしまうことが分かった。具体的には、平均結晶粒径が1.2μmを下回るようになると、高温での粒成長を抑止することが困難になり、逆に、平均結晶粒径が熱延鋼板については2.7+5000/(5+350・C+40・Mn)μm及び7μmのいずれかの値を上回ると、また冷延鋼板については5.0−2.0・Cr+5000/(5+350・C+40・Mn)μm及び9.3μmのいずれかの値を上回ると、微細化による機械特性の向上が十分に期待できなくなることが、判明した。したがって、機械特性と熱的安定性を両立するためには、フェライトの平均結晶粒径の下限として1.2μmを採用し、そして、上限として、熱延鋼板については2.7+5000/(5+350・C+40・Mn)μm及び7μmのうちの小さい方の値、冷延鋼板については5.0−2.0・Cr+5000/(5+350・C+40・Mn)μm及び9.3μmのうちの小さい方の値を採用する必要がある。
(a) To keep the average grain size of ferrite within a certain range

The strength increases as the crystal grain size of ferrite decreases, but it has been found that if the crystal grain size becomes too small, the driving force of grain growth by grain boundary energy increases, which promotes grain growth at high temperatures. Specifically, when the average crystal grain size is less than 1.2 μm, it becomes difficult to suppress grain growth at high temperature, and conversely, the average crystal grain size is 2.7 + 5000 / (5 + 350 · C + 40 · Mn) When the value exceeds 2 μm or 7 μm, and for cold-rolled steel sheet, 5.0−2.0 · Cr + 5000 / (5 + 350 · C + 40 · Mn) 2 μm and 9.3 μm It has been found that if any value is exceeded, improvement in mechanical properties due to miniaturization cannot be sufficiently expected. Therefore, in order to achieve both mechanical properties and thermal stability, 1.2 μm is adopted as the lower limit of the average crystal grain size of ferrite, and 2.7 + 5000 / (5 + 350 · C + 40) is used as the upper limit for hot-rolled steel sheets.・ Mn) The smaller value of 2 μm and 7 μm. For cold-rolled steel sheet, the smaller value of 5.0−2.0 · Cr + 5000 / (5 + 350 · C + 40 · Mn) 2 μm and 9.3 μm It is necessary to adopt.

(b)A点直下の700℃近傍の温度におけるフェライトの平均結晶粒径Dの増加速度Xと平均結晶粒径Dの積D・Xの上限規定について
高温におけるフェライト結晶粒の粒成長速度は、温度の上昇と共に増加する。一般に、溶接や溶融めっき工程でフェライトの粒成長という問題が生じる温度域はA点(730℃近傍)直下からA点近傍までの温度域であり、この温度範囲でフェライトの粒成長速度は大きく変化する。しかし、フェライトの平均結晶粒径が上記(a)の範囲内にある鋼板の粒成長速度の温度特性は700℃近傍の温度におけるフェライトの粒成長速度によって決定されることが分かったので、700℃近傍の温度におけるフェライトの粒成長速度、すなわち、フェライトの平均結晶粒径の増加速度X(μm/min)と平均結晶粒径D(μm)の積D・X(μm/min)に、上限を設ければ、溶接や溶融めっき工程でより高い温度に加熱された場合においても、問題が発生しないことを見出した。そして、実験の結果、積D・Xを0.1μm/min以下に設定することが必要であることも判明した。なお、積D・Xは0.07μm/min以下が好ましく、0.05μm/min以下がさらに好ましい。
(b) A Regarding the upper limit of the product D · X of the average grain size D of ferrite and the average grain size D of ferrite at a temperature near 700 ° C just below one point, the grain growth rate of ferrite grains at high temperature is Increases with increasing temperature. In general, a temperature range where problem grain growth of ferrite occurs by welding or hot-dip plating process is the temperature range from just under 1 point A (730 ° C. vicinity) to the vicinity of A 3 points, grain growth rate of the ferrite in the temperature range It changes a lot. However, since it was found that the temperature characteristic of the grain growth rate of the steel sheet having the average crystal grain size of ferrite in the range of (a) is determined by the ferrite grain growth rate at a temperature in the vicinity of 700 ° C., 700 ° C. The upper limit is the grain growth rate of ferrite at a nearby temperature, that is, the product D · X (μm 2 / min) of the average crystal grain size increase rate X (μm / min) and the average crystal grain size D (μm). It was found that no problem occurs even when heated to a higher temperature in the welding or hot dipping process. As a result of the experiment, it was also found that the product D · X needs to be set to 0.1 μm 2 / min or less. Incidentally, the product D · X is preferably from 0.07 .mu.m 2 / min, more preferably 0.05 .mu.m 2 / min or less.

(c1)フェライトの結晶粒径の分布を一定の範囲にとどめることとフェライト結晶粒内に圧延による歪みを残さないようにすることについて
フェライトの結晶粒径の分布とフェライト結晶粒内の歪みは高温での粒成長に密接に関係する。高温での粒成長は粒界のエネルギーと粒内の歪みを駆動力として生じる。したがって、微細なフェライト組織の中に比較的大きなフェライト結晶粒が混在していると、大きなフェライト結晶粒が粒界を駆動力として周囲の微細なフェライト結晶粒と容易に一体化する。また、フェライト結晶粒内に歪みが存在していると、粒内の歪みを駆動力として隣接するフェライト結晶粒同士が容易に一体化する。このようにして、粒成長が急速に進展する。このため、粒成長の急速の進展を防止するためには、フェライト結晶粒の微細化に加えて、フェライトの結晶粒径分布として平均結晶粒径の1/3から3倍の範囲に80%以上の粒が収まるようにすることが好ましい。この結晶粒径分布は板表面から所定の深さもしくはその深さから100μm以内の範囲で測定する。これは後述のように本発明の方法による鋼板の結晶粒径は板厚の方向に変化するが、このような板厚の方向への緩やかな結晶粒径の変化は粒の成長性に影響を与えないためである。また、フェライト結晶粒内の歪みを示す粒内転位密度を10/cm以下とすることが好ましく、10/cm以下とすることがより好ましい。さらに、フェライト粒の形状は等軸であることが好ましい。
(c1) Keeping the ferrite grain size distribution within a certain range and keeping the ferrite grains free from strain due to rolling The ferrite grain size distribution and the strain inside the ferrite grains are high. It is closely related to grain growth. Grain growth at high temperatures is caused by the grain boundary energy and intra-granular distortion as driving forces. Therefore, when relatively large ferrite crystal grains are mixed in a fine ferrite structure, the large ferrite crystal grains are easily integrated with the surrounding fine ferrite crystal grains using the grain boundary as a driving force. Further, if there is strain in the ferrite crystal grains, adjacent ferrite crystal grains are easily integrated with each other using the strain in the grains as a driving force. In this way, grain growth proceeds rapidly. For this reason, in order to prevent rapid progress of grain growth, in addition to the refinement of ferrite crystal grains, the crystal grain size distribution of ferrite is 80% or more in the range of 1/3 to 3 times the average grain size. It is preferable to keep the grains of the particles. This crystal grain size distribution is measured within a predetermined depth from the plate surface or within a range of 100 μm from the depth. As will be described later, the crystal grain size of the steel sheet according to the method of the present invention changes in the direction of the plate thickness, but such a gradual change in the crystal grain size in the direction of the plate thickness affects the grain growth. It is because it does not give. Further, the intragranular dislocation density showing the strain in the ferrite crystal grains is preferably 10 9 / cm 2 or less, and more preferably 10 8 / cm 2 or less. Further, the shape of the ferrite grains is preferably equiaxed.

(c2) フェライト粒径の板厚方向分布について
鋼板の中心部から鋼板の表層部へ向かってより微細化する緩やかなフェライト粒径の板厚方向分布は穴拡げ性や曲げ性などの鋼板の加工性を改善するうえで好ましい。また、表層部でより微細化したフェライト組織は鋼板の化成処理性やメッキ性などの表面処理性も改善する。したがって、熱延鋼板については鋼板表面から板厚の1/16の深さ位置における平均結晶粒径Ds(μm)、鋼板表面から板厚の1/4の深さ位置における平均結晶粒径D(μm)、板厚の中心部分における平均結晶粒径Dc(μm)の間に、Ds≦0.75DcおよびD≦0.9Dcなる関係を満足することが好ましく、冷延鋼板についてはDs≦0.9Dcなる関係を満足することが好ましい。
(c2) About the distribution of ferrite grain size in the plate thickness direction The mild ferrite grain size distribution in the plate thickness direction, which becomes finer from the center of the steel plate to the surface layer of the steel plate, is the processing of the steel plate such as hole expandability and bendability. It is preferable for improving the property. In addition, the finer ferrite structure in the surface layer part improves the surface treatment properties such as chemical conversion treatment and plating properties of the steel sheet. Therefore, for the hot-rolled steel sheet, the average crystal grain size Ds (μm) at a depth position of 1/16 of the sheet thickness from the steel sheet surface, and the average crystal grain diameter D (at a depth position of 1/4 of the sheet thickness from the steel sheet surface). [mu] m) and the average grain size Dc ([mu] m) in the central portion of the plate thickness preferably satisfy the relationship of Ds≤0.75Dc and D≤0.9Dc, and Ds≤0. It is preferable to satisfy the relationship of 9Dc.

(d)上記(a)〜(c)の組織と特性を有する熱延鋼板を製造するための新しい方法について
次のとおり、高温域での圧延を採用することで、圧延が容易かつ高生産性の工業的方法を提供することができる。
(d) A new method for producing a hot-rolled steel sheet having the structure and characteristics of (a) to (c) above. By adopting rolling in a high temperature range as follows, rolling is easy and high productivity The industrial method can be provided.

まず、オーステナイト温度域から、多パス熱間圧延を開始し、最終の圧延パスをAr点以上かつ780℃以上の高温度で終了する。このとき、オーステナイト結晶粒内に歪みが蓄積される。First, multi-pass hot rolling is started from the austenite temperature range, and the final rolling pass is finished at a high temperature of Ar 3 points or higher and 780 ° C. or higher. At this time, strain is accumulated in the austenite crystal grains.

そして、熱間圧延終了直後の0.4秒以内に、720℃以下の温度までの冷却を完了する。このとき、冷却途中においてはこの歪みの解放が抑制されるので、歪みはオーステナイト粒内に蓄積された状態であり、720℃以下の温度になってはじめて、オーステナイトからフェライトへの変態が活発化し、蓄積された歪みを核としてフェライト結晶粒が多数発生し、微細なフェライト組織を形成する。この方法では、鋼板表面と圧延ロール表面の間の摩擦によって熱間圧延時に鋼板に導入される剪断歪みの解放をも抑制することができるため、板厚中心部よりも表面に近い部分でより多くのフェライト核が発生する。   And cooling to the temperature of 720 degrees C or less is completed within 0.4 second immediately after completion | finish of hot rolling. At this time, since the release of this strain is suppressed during cooling, the strain is accumulated in the austenite grains, and the transformation from austenite to ferrite is activated only when the temperature reaches 720 ° C. or less. A large number of ferrite crystal grains are generated using the accumulated strain as a nucleus to form a fine ferrite structure. In this method, it is possible to suppress the release of shear strain introduced into the steel plate during hot rolling by friction between the steel plate surface and the rolling roll surface, so that it is more in the portion closer to the surface than the center of the plate thickness. Ferrite nuclei are generated.

さらにその後、600〜720℃の温度域で2秒以上保持する。これによって、微細かつ結晶粒径が狭い範囲に分布する所望のフェライト組織を得ることができるとともに、変態後の微細フェライト組織中に歪みが残存することも抑制される。また、上述の板厚方向へのフェライト核生成量変化によって、板厚中心から表面に向けて緩やかな粒径の勾配を持つ組織が生成する。   Furthermore, after that, the temperature is maintained at 600 to 720 ° C. for 2 seconds or more. As a result, a desired ferrite structure that is fine and distributed in a narrow range of the crystal grain size can be obtained, and strain can be prevented from remaining in the fine ferrite structure after transformation. In addition, due to the change in the amount of ferrite nucleation in the plate thickness direction described above, a structure having a gentle grain size gradient from the plate thickness center to the surface is generated.

なお、熱間圧延終了直後の冷却条件は、上述のとおり、0.4秒以内に720℃以下の温度までの冷却を完了することが必要である。従来は、最も速いものでも、圧延終了直後から0.2秒以上経過してから冷却が開始され、その冷却速度もせいぜい250℃/秒程度であった。Ar点が800℃の低炭素鋼を例にとると、低炭素鋼の熱間圧延をAr点で終了したとしても、800℃以上から720℃以下の温度まで冷却する間に、従来は0.52秒以上経過していたから、0.4秒以内に720℃以下の温度までの冷却を完了することは困難であった。In addition, the cooling conditions immediately after completion | finish of hot rolling need to complete the cooling to the temperature of 720 degrees C or less within 0.4 second as above-mentioned. Conventionally, even the fastest one started cooling after 0.2 seconds or more immediately after the end of rolling, and the cooling rate was about 250 ° C./second at most. Taking a low carbon steel with an Ar 3 point of 800 ° C. as an example, even if the hot rolling of the low carbon steel is terminated at the Ar 3 point, while the cooling is performed from 800 ° C. to 720 ° C., Since 0.52 seconds or more had elapsed, it was difficult to complete the cooling to a temperature of 720 ° C. or less within 0.4 seconds.

上記の(a)〜(c)の組織を持つ熱延鋼板を冷間圧延した後、オーステナイト単相になる温度(Ac)以下で熱処理すると、再度、上記の特徴を持つ微細粒フェライト組織となる。これは、(1)冷間圧延後の熱処理中に加工フェライトが再結晶する際、その核が多量に存在する熱延時のフェライト粒界上で発生して、そのため多数のフェライト核が発生すること、(2)同時にオーステナイトも熱延時のフェライト粒界上で多数発生して、これがフェライト核の成長を抑制すること、によると考えられる。その結果、熱処理後のフェライト粒径は熱延時のフェライト粒径とほぼ同じか、1〜3μm大きくなるだけで、熱間圧延時の特性を引き継いだ組織が得られる。したがって、本発明のように熱延鋼板の段階でフェライト粒径の板厚方向分布が存在すれば、冷間圧延および熱処理を施した後も同様なフェライト結晶粒径の板厚方向分布が現れる。熱処理温度はAc以下の温度でも良いが、加工フェライトの再結晶に長時間を要する。Ac点以上のオーステナイト単相になる温度では、組織が容易に粗大化する。After cold rolling the hot-rolled steel sheet having the above structures (a) to (c) and then heat-treating it at a temperature lower than the temperature at which it becomes an austenite single phase (Ac 3 ), the fine-grained ferrite structure having the above characteristics is obtained again. Become. This is because (1) when the processed ferrite is recrystallized during the heat treatment after cold rolling, it occurs on the ferrite grain boundary during hot rolling where a large amount of its nuclei exist, and thus a large number of ferrite nuclei are generated. (2) At the same time, a large number of austenite is also generated on the ferrite grain boundary during hot rolling, and this is considered to be due to the suppression of the growth of ferrite nuclei. As a result, the ferrite grain size after heat treatment is almost the same as the ferrite grain size at the time of hot rolling, or only 1 to 3 μm larger, and a structure that inherits the characteristics at the time of hot rolling can be obtained. Therefore, if there is a distribution in the thickness direction of the ferrite grain size at the stage of the hot rolled steel sheet as in the present invention, a similar distribution in the thickness direction of the ferrite crystal grain size appears even after cold rolling and heat treatment. The heat treatment temperature may be Ac 1 or lower, but it takes a long time to recrystallize the processed ferrite. At a temperature at which Ac becomes an austenite single phase of 3 points or more, the structure is easily coarsened.

(e)溶融溶接において溶接部の硬度バランスを規定することについて
溶接時の入熱が大きいアーク溶接においては、HAZ(熱影響部)の軟化防止の観点からも、溶接中の粒成長を起こし難い熱安定性の高い組織を作ることが好ましいことはいうまでもない。さらに、溶接後の部材の加工性を確保するためには、溶接部の硬度バランスを規定して、溶融溶接性の向上を図ることが好ましい。すなわち、化学組成に関して、Ceq(I)=C+Mn/6+Si/24+Cr/5+Mo/4+Ni/40+V/14で定義される炭素当量Ceq(I)を0.06〜0.6%と規定することによって、溶融溶接性に優れた溶接部を得ることができる。なお、溶融溶接性とは、アーク溶接やレーザ溶接などのように、溶融池を連続的に形成・凝固しながら進行する溶接法を用いて得られた溶接部の最高硬さと母材の硬さの差あるいは溶接部の最軟化部硬さの差が小さくなること、かつ、溶接部の脆化を抑制し、溶接後の部材の加工性を確保することができる特性を意味する。
(e) Defining the hardness balance of welds in fusion welding In arc welding, where heat input during welding is large, it is difficult to cause grain growth during welding from the viewpoint of preventing softening of HAZ (heat affected zone). Needless to say, it is preferable to create a structure having high thermal stability. Furthermore, in order to ensure the workability of the member after welding, it is preferable to improve the melt weldability by defining the hardness balance of the welded portion. That is, with respect to chemical composition, Ceq (I) = C + Mn / 6 + Si / 24 + Cr / 5 + Mo / 4 + Ni / 40 + V / 14 is defined as 0.06 to 0.6% by defining the carbon equivalent Ceq (I) as 0.06 to 0.6%. A weld zone having excellent weldability can be obtained. Melt weldability refers to the maximum hardness of the weld and the hardness of the base metal obtained by using a welding method that proceeds while forming and solidifying the molten pool continuously, such as arc welding and laser welding. Or the difference in hardness of the softest part of the welded portion becomes small, and embrittlement of the welded portion is suppressed, and the workability of the member after welding can be secured.

(f)抵抗溶接において溶接部の硬度バランスと脆化抑制を図ることについて
母材への通電加熱により溶接が為される抵抗溶接においても、溶接中の粒成長を起こし難い熱安定性の高い組織を作ることが好ましいことはいうまでもない。さらに、溶接部の硬度バランス及び脆化抑制を図ることが好ましい。すなわち、化学組成に関して、C≦0.17%、かつCeq(II)=C+Mn/100+Si/90+Cr/100で定義される炭素当量Ceq(II)を0.03〜0.20%と規定し、さらに、継手強度を確保するための十分なナゲット(溶融接合部)を広い溶接条件範囲にて得るため、Rsp=13.5×(Si+Al+0.4Mn+0.4Cr)+12.2で定義される母材抵抗の指標Rspを45以下とすることで、抵抗溶接性に優れた溶接部を得ることができる。なお、抵抗溶接性とは、広い溶接条件範囲において、十分な継手強度(所謂、ボタン破断時の最大破断荷重)を確保することができる特性を意味する。
(f) About resistance hardness balance and resistance to embrittlement in resistance welding Even in resistance welding where welding is performed by energization heating to the base metal, a highly thermally stable structure that does not easily cause grain growth during welding. It goes without saying that it is preferable to make Furthermore, it is preferable to achieve a hardness balance and suppression of embrittlement of the weld. That is, regarding the chemical composition, the carbon equivalent Ceq (II) defined by C ≦ 0.17% and Ceq (II) = C + Mn / 100 + Si / 90 + Cr / 100 is defined as 0.03 to 0.20%, In order to obtain a sufficient nugget (molten joint) for securing the joint strength in a wide range of welding conditions, Rsp = 13.5 × (Si + Al + 0.4Mn + 0.4Cr) +12.2 By setting the index Rsp to 45 or less, a welded portion having excellent resistance weldability can be obtained. In addition, resistance weldability means the characteristic which can ensure sufficient joint intensity | strength (what is called the maximum breaking load at the time of a button fracture) in a wide range of welding conditions.

本発明は、このような知見と検討・実験結果に基づいて完成したものである。本発明の要旨とするところは、次の(1)、(2)、(4)〜(7)及び(9)〜(11)の熱延鋼板並びに(3)〜(6)及び(8)〜(11)の冷延鋼板、さらに(12)及び(14)の熱延鋼板の製造方法並びに(13)及び(14)の冷延鋼板の製造方法である。以下、それぞれ、本発明(1)〜(14)という。本発明(1)〜(14)を総称して、本発明ということがある。   The present invention has been completed on the basis of such findings and examination / experimental results. The gist of the present invention is the hot rolled steel sheet of the following (1), (2), (4) to (7) and (9) to (11), and (3) to (6) and (8). To (11) cold-rolled steel sheet, (12) and (14) hot-rolled steel sheet manufacturing method, and (13) and (14) cold-rolled steel sheet manufacturing method. Hereinafter, these are referred to as the present inventions (1) to (14), respectively. The present inventions (1) to (14) may be collectively referred to as the present invention.

なお、本発明に用いる炭素鋼又は低合金鋼は、C:0.01〜0.25%を含有するものが好ましく、さらに、Si、Mn、Al、P、Ti、Nb、V、Cr、Cu、Mo、Ni、Ca、REM、Bのうちの1種又は2種以上を含有してもよい。   The carbon steel or low alloy steel used in the present invention preferably contains C: 0.01 to 0.25%, and further Si, Mn, Al, P, Ti, Nb, V, Cr, Cu , Mo, Ni, Ca, REM, or B may be included.

(1)質量%で、C:0.01〜0.25%、Si:3%以下、Mn:3%以下、Al:3%以下、P:0.5%以下、Ti:0〜0.3%、Nb:0〜0.1%、V:0〜1%、Cr:0〜1%、Cu:0〜3%、Ni:0〜1%、Mo:0〜1%およびCa+REM+B:0〜0.005%並びに残部Feおよび不純物からなる化学組成を有し、フェライトを50体積%以上含有する炭素鋼または低合金鋼からなる鋼板であって、鋼板表面から板厚の1/4の深さ位置におけるフェライトの平均結晶粒径D(μm)が下記の(1)式及び(2)式を満足するとともに、鋼板表面から板厚の1/4の深さ位置におけるフェライトの平均結晶粒径の700℃における増加速度X(μm/min)と前記平均結晶粒径D(μm)が下記の(3)式を満足することを特徴とする熱延鋼板。
1.2≦D≦7・・・・・・・・・・・・・・・・・・・・・・(1)式
D≦2.7+5000/(5+350・C+40・Mn)・・・(2)式
D・X≦0.1・・・・・・・・・・・・・・・・・・・・・・(3)式
ここで、CおよびMnは鋼中の各元素の含有量(単位:質量%)を示す。
(1) By mass%, C: 0.01 to 0.25%, Si: 3% or less, Mn: 3% or less, Al: 3% or less, P: 0.5% or less, Ti: 0 to 0. 3%, Nb: 0 to 0.1%, V: 0 to 1%, Cr: 0 to 1%, Cu: 0 to 3 %, Ni: 0 to 1%, Mo: 0 to 1%, and Ca + REM + B: 0 It has a chemical composition consisting of 0.005% and the balance Fe and impurities, a steel sheet composed of ferrite carbon steel or low alloy steel containing not less than 50 vol%, a depth from the surface of the steel sheet thickness 1/4 of The average crystal grain size D (μm) of ferrite at the vertical position satisfies the following formulas (1) and (2), and the average crystal grain size of ferrite at a depth of 1/4 of the plate thickness from the steel sheet surface The increase rate X at 700 ° C. (μm / min) and the average crystal grain size D (μm) satisfy the following formula (3): Hot-rolled steel sheet, wherein the door.
1.2 ≦ D ≦ 7 (1) Formula D ≦ 2.7 + 5000 / (5 + 350 · C + 40 · Mn) 2 (2) Formula D · X ≦ 0.1 (3) Formula where C and Mn are the elements of steel The content (unit: mass%) is shown.

1.2≦D≦7・・・・・・・・・・・・・・・・・・・・・・(1)式
D≦2.7+5000/(5+350・C+40・Mn)・・・(2)式
D・X≦0.1・・・・・・・・・・・・・・・・・・・・・・(3)式
ここで、CおよびMnは鋼中の各元素の含有量(単位:質量%)を示す。
1.2 ≦ D ≦ 7 (1) Formula D ≦ 2.7 + 5000 / (5 + 350 · C + 40 · Mn) 2 (2) Formula D · X ≦ 0.1 (3) Formula where C and Mn are the elements of steel The content (unit: mass%) is shown.

(2)鋼板表面から板厚の1/4の深さ位置において、結晶粒径d(μm)が下記の(4)式を満足するフェライト結晶粒の前記位置におけるフェライトの占める面積割合が80%以上であることを特徴とする請求項1に記載の熱延鋼板。   (2) The area ratio of the ferrite crystal grains at the position where the crystal grain diameter d (μm) satisfies the following formula (4) at the depth position of ¼ of the sheet thickness from the steel sheet surface is 80%. It is the above, The hot-rolled steel plate of Claim 1 characterized by the above-mentioned.

D/3≦d≦3D・・・・・・・・・・・・・・・・(4)式
ここで、Dは鋼板表面から板厚の1/4の深さ位置におけるフェライトの平均結晶粒径(μm)を示す。
D / 3 ≦ d ≦ 3D (4) where D is the average ferrite crystal at a depth of 1/4 of the plate thickness from the steel plate surface. The particle size (μm) is shown.

(3)質量%で、C:0.01〜0.25%、Si:3%以下、Mn:3%以下、Al:3%以下、P:0.5%以下、Ti:0〜0.3%、Nb:0〜0.1%、V:0〜1%、Cr:0〜1%、Cu:0〜3%、Ni:0〜1%、Mo:0〜1%およびCa+REM+B:0〜0.005%並びに残部Feおよび不純物からなる化学組成を有し、フェライトを50体積%以上含有する炭素鋼または低合金鋼からなる鋼板であって、鋼板表面から板厚の1/4の深さにおけるフェライトの平均結晶粒径D(μm)が下記の(5)式及び(6)式を満足するとともに、鋼板表面から板厚の1/4の深さ位置におけるフェライトの平均結晶粒径の700℃における増加速度X(μm/min)と前記平均結晶粒径D(μm)が下記の(3)式を満足し、
1.2≦D≦9.3・・・・・・・・・・・・・・・・・・・・・・(5)式
D≦5.0−2.0・Cr+5000/(5+350・C+40・Mn)・・(6)式
D・X≦0.1・・・・・・・・・・・・・・・・・・・・・・(3)式
かつ、鋼板表面から板厚の1/4の深さ位置において、結晶粒径d(μm)が下記の(4)式を満足するフェライト結晶粒の前記位置におけるフェライトの占める面積割合が80%以上であることを特徴とする冷延鋼板。
D/3≦d≦3D・・・・・・・・・・・・・・・・(4)式
ここで、C、CrおよびMnは鋼中の各元素の含有量(単位:質量%)を示す。
(3) By mass%, C: 0.01 to 0.25%, Si: 3% or less, Mn: 3% or less, Al: 3% or less, P: 0.5% or less, Ti: 0 to 0. 3%, Nb: 0 to 0.1%, V: 0 to 1%, Cr: 0 to 1%, Cu: 0 to 3 %, Ni: 0 to 1%, Mo: 0 to 1%, and Ca + REM + B: 0 It has a chemical composition consisting of 0.005% and the balance Fe and impurities, a steel sheet composed of ferrite carbon steel or low alloy steel containing not less than 50 vol%, a depth from the surface of the steel sheet thickness 1/4 of The average crystal grain size D (μm) of ferrite at the thickness satisfies the following formulas (5) and (6), and the average crystal grain size of ferrite at a depth of 1/4 of the plate thickness from the steel sheet surface The increase rate X (μm / min) at 700 ° C. and the average crystal grain size D (μm) satisfy the following formula (3):
1.2 ≦ D ≦ 9.3 (5) Formula D ≦ 5.0−2.0 · Cr + 5000 / (5 + 350 · C + 40 · Mn) 2・ ・ (6) Formula D ・ X ≦ 0.1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (3) The ratio of the area occupied by ferrite at the position of the ferrite crystal grains having a crystal grain size d (μm) satisfying the following formula (4) at a depth of 1/4 of the thickness is 80% or more. Cold rolled steel sheet.
D / 3 ≦ d ≦ 3D (4) where C, Cr and Mn are the contents of each element in the steel (unit: mass%) Indicates.

D/3≦d≦3D・・・・・・・・・・・・・・・・(4)式
ここで、C、CrおよびMnは鋼中の各元素の含有量(単位:質量%)を示す。
D / 3 ≦ d ≦ 3D (4) where C, Cr and Mn are the contents of each element in the steel (unit: mass%) Indicates.

(4)上記(1)〜(3)のいずれかの鋼板において、フェライト以外の第2相として、体積率で、50%未満のベイナイト、30%未満のパーライト、5%未満の粒状セメンタイト、5%未満のマルテンサイトおよび3%未満の残留オーステナイトからなる群から選ばれた1種または2種以上を合計で50%未満含有するとともに、降伏比が0.75以上であることを特徴とする熱延鋼板又は冷延鋼板。   (4) In the steel sheet of any of (1) to (3) above, as a second phase other than ferrite, the volume ratio is less than 50% bainite, less than 30% pearlite, less than 5% granular cementite, 5 1 or 2 or more types selected from the group consisting of less than 3% martensite and less than 3% retained austenite, and a yield ratio of 0.75 or more. Rolled steel sheet or cold rolled steel sheet.

(5)上記(1)〜(3)のいずれかの鋼板において、フェライト以外の第2相として、体積率で、5〜40%のマルテンサイトを含有するとともに、降伏比が0.75未満であることを特徴とする熱延鋼板又は冷延鋼板。   (5) In the steel sheet of any of the above (1) to (3), the second phase other than ferrite contains 5 to 40% martensite by volume ratio, and the yield ratio is less than 0.75. A hot-rolled steel plate or a cold-rolled steel plate characterized by being.

(6)上記(1)〜(3)のいずれかの鋼板において、フェライト以外の第2相として、体積率で、3〜30%の残留オーステナイトを含有するとともに、引張強度TS(MPa)と全伸びEl(%)との積TS×Elが18000(MPa・%)以上であることを特徴とする熱延鋼板又は冷延鋼板。   (6) In the steel sheet of any one of the above (1) to (3), the second phase other than ferrite contains 3 to 30% residual austenite by volume ratio, and has a tensile strength TS (MPa) and the total strength. A hot-rolled steel sheet or a cold-rolled steel sheet characterized in that the product TS × El with the elongation El (%) is 18000 (MPa ·%) or more.

(7)鋼板表面から板厚の1/16の深さ位置における平均結晶粒径Ds(μm)、鋼板表面から板厚の1/4の深さ位置における平均結晶粒径D(μm)、板厚の中心部分における平均結晶粒径Dc(μm)の間に、Ds≦0.75DcおよびD≦0.9Dcなる関係を満足することを特徴とする、上記(1)、(2)、(4)、(5)及び(6)のいずれかに記載の熱延鋼板。   (7) Average crystal grain size Ds (μm) at a depth position of 1/16 of the plate thickness from the steel plate surface, Average crystal grain size D (μm) at a depth position of 1/4 of the plate thickness from the steel plate surface, (1), (2), (4) characterized by satisfying the relationship of Ds ≦ 0.75 Dc and D ≦ 0.9 Dc between the average crystal grain diameters Dc (μm) in the central portion of the thickness ), (5) and (6).

(8)鋼板表面から板厚の1/16の深さ位置における平均結晶粒径Ds(μm)、板厚の中心部分における平均結晶粒径Dc(μm)の間に、D≦0.9Dcなる関係を満足することを特徴とする、上記(3)〜(6)のいずれかの冷延鋼板。   (8) Between the average crystal grain size Ds (μm) at a depth position of 1/16 of the plate thickness from the steel sheet surface and the average crystal grain size Dc (μm) at the center of the plate thickness, D ≦ 0.9 Dc The cold-rolled steel sheet according to any one of (3) to (6), wherein the relationship is satisfied.

(9)下記の(7)式で定義される炭素当量Ceq(I)が0.06〜0.6%であることを特徴とする、上記(1)〜(8)のいずれかの熱延鋼板又は冷延鋼板。   (9) The hot rolling according to any one of (1) to (8) above, wherein the carbon equivalent Ceq (I) defined by the following formula (7) is 0.06 to 0.6%: Steel plate or cold rolled steel plate.

Ceq(I)=C+Mn/6+Si/24+Cr/5
+Mo/4+Ni/40+V/14・・・・・・・(7)式
ここで、式中の元素記号は各元素の鋼中の含有量(単位:質量%)を示す。
Ceq (I) = C + Mn / 6 + Si / 24 + Cr / 5
+ Mo / 4 + Ni / 40 + V / 14 (7) Formula Here, the element symbol in the formula indicates the content (unit: mass%) of each element in the steel.

(10)C含有量が0.17質量%以下であり、かつ下記の(8)式で定義される炭素当量Ceq(II)が0.03〜0.20%であり、さらに、下記の(9)式で定義される母材抵抗の指標Rspが45以下であることを特徴とする、上記(1)〜(8)のいずれかの熱延鋼板又は冷延鋼板。   (10) The C content is 0.17% by mass or less, the carbon equivalent Ceq (II) defined by the following formula (8) is 0.03 to 0.20%, and the following ( 9) The hot-rolled steel sheet or cold-rolled steel sheet according to any one of (1) to (8) above, wherein the index Rsp of the base material resistance defined by the formula is 45 or less.

Ceq(II)=C+Mn/100+Si/90+Cr/100・・・(8)式
Rsp=13.5×(Si+Al+0.4Mn+0.4Cr)+12.2・・・(9)式
ここで、式中の元素記号は各元素の鋼中の含有量(単位:質量%)を示す。
Ceq (II) = C + Mn / 100 + Si / 90 + Cr / 100 (8) Formula Rsp = 13.5 × (Si + Al + 0.4Mn + 0.4Cr) +12.2 (9) where the element symbol in the formula Indicates the content of each element in steel (unit: mass%).

(11)上記(1)〜(10)のいずれかの熱延鋼板の表面に、Zn、Al、Zn−Al合金またはFe−Zn合金の被覆層を備えることを特徴とする溶融めっき熱延鋼板又は冷延鋼板。   (11) A hot-rolled hot-rolled steel sheet comprising a coating layer of Zn, Al, Zn-Al alloy or Fe-Zn alloy on the surface of the hot-rolled steel sheet according to any one of (1) to (10). Or cold rolled steel sheet.

(12)炭素鋼又は低合金鋼からなるスラブを多パス熱間圧延して熱延鋼板を製造する方法であって、最終の圧延パスをAr点以上かつ780℃以上の温度で終了し、その後400℃/秒以上の冷却速度で0.4秒以内に720℃以下まで冷却した後、600〜720℃の温度域で2秒以上保持することを特徴とする、上記(1)、(2)、(4)、(5)、(6)、(7)、(9)、(10)および(11)のいずれかの熱延鋼板の製造方法。(12) A method of producing a hot-rolled steel sheet by multi-pass hot rolling a slab made of carbon steel or low alloy steel, and ending the final rolling pass at a temperature of Ar 3 points or higher and 780 ° C. or higher, Then, after cooling to 720 ° C. or less within 0.4 seconds at a cooling rate of 400 ° C./second or more, the temperature is maintained at 600 to 720 ° C. for 2 seconds or more, (1), (2 ), (4), (5), (6), (7), (9), (10) and (11).

(13)上記(12)の方法により得られた熱延鋼板を酸洗後、40〜90%の圧延率で冷間圧延した後、900℃以下の温度で熱処理することを特徴とする、上記(3)、(4)、(5)、(6)、(8)、(9)および(10)のいずれかの冷延鋼板の製造方法。   (13) The hot-rolled steel sheet obtained by the method of (12) is pickled, cold-rolled at a rolling rate of 40 to 90%, and then heat-treated at a temperature of 900 ° C. or lower. (3), (4), (5), (6), (8), (9) and the manufacturing method of the cold-rolled steel plate in any one of (10).

(14)上記(12)の方法により得られた熱延鋼板を酸洗後、もしくは酸洗後さらに40〜90%の圧延率で冷間圧延した後、連続溶融めっきラインにて溶融めっきを施すことを特徴とする、上記(11)の溶融めっき熱延鋼板または溶融めっき冷延鋼板の製造方法。   (14) The hot-rolled steel sheet obtained by the above method (12) is pickled or cold-rolled at a rolling rate of 40 to 90% after pickling and then hot-plated in a continuous hot dipping line. The method for producing a hot-rolled hot-rolled steel sheet or hot-rolled cold-rolled steel sheet as described in (11) above.

本発明によれば、超微細な結晶粒を有し、溶接や溶融めっき工程の熱に耐えることができる熱的安定性と機械特性に優れた熱延鋼板及び冷延鋼板並びにそれらの製造方法を提供することができる。   According to the present invention, a hot-rolled steel sheet and a cold-rolled steel sheet having ultrafine crystal grains, excellent in thermal stability and mechanical properties capable of withstanding the heat of welding and hot dipping processes, and methods for producing them. Can be provided.

以下に、本発明に係る超微細結晶粒熱延鋼板について説明する。以下、各化学成分の含有量の「%」表示は、「質量%」を意味する。   Below, the ultra-fine grain hot-rolled steel sheet according to the present invention will be described. Hereinafter, “%” display of the content of each chemical component means “mass%”.

(A)化学組成について
C:
Cは、オーステナイトからフェライトへの変態温度を低下させて、熱延の仕上げ温度を低下させることができるので、フェライト結晶粒の微細化を促進するのに有用な元素である。また、強度を確保するための元素である。このため、0.01%以上含有させることが好ましい。また、フェライト結晶粒の微細化をより促進するためには、0.03%以上含有させるのが好ましい。ただし、過度に含有させると、熱延後のフェライト変態が遅延し、フェライトの体積率が低下するため、また溶接性が劣化するため0.25%以下とすることが好ましい。溶接部の加工性を向上させるためには、C含有量を0.17%以下にするのが好ましく、0.15%以下とするのがより好ましい。
(A) About chemical composition C:
C is an element useful for promoting the refinement of ferrite crystal grains because it can lower the transformation temperature from austenite to ferrite and lower the finishing temperature of hot rolling. Moreover, it is an element for ensuring strength. For this reason, it is preferable to make it contain 0.01% or more. Moreover, in order to further promote the refinement of ferrite crystal grains, the content is preferably 0.03% or more. However, if it is contained excessively, ferrite transformation after hot rolling is delayed, the volume fraction of ferrite is lowered, and weldability is deteriorated, so it is preferably made 0.25% or less. In order to improve the workability of the weld zone, the C content is preferably 0.17% or less, and more preferably 0.15% or less.

Si:
Siは、強度向上を目的として含有させることが好ましい。ただし、過剰に添加すると、延性の劣化が著しくなるうえに、熱間圧延時の表面酸化の問題が生じるので、含有量を3%以下とすることが好ましい。好ましくは2%以下、より好ましくは1.8%以下である。下限は不純物レベルでもよいが、フェライト組織中に残留オーステナイトを生成させる場合には、Si+Alの総量で1%以上含有させることが好ましい。
Si:
Si is preferably contained for the purpose of improving the strength. However, if excessively added, the ductility is remarkably deteriorated and the problem of surface oxidation during hot rolling occurs. Therefore, the content is preferably 3% or less. Preferably it is 2% or less, More preferably, it is 1.8% or less. The lower limit may be an impurity level, but when residual austenite is generated in the ferrite structure, it is preferable to contain 1% or more in terms of the total amount of Si + Al.

Mn:
Mnは、強度確保のため、含有させることが好ましい。また、オーステナイトからフェライトへの変態温度を低下させて、熱間圧延における仕上温度を低下させることを可能にするので、フェライト結晶粒の微細化を促進するため、含有させることが好ましい。ただし、過度に含有させると、熱間圧延後のフェライト変態が遅延し、フェライトの体積率が低下するため、含有量を3%以下とすることが好ましい。より好ましくは2.7%以下である。下限は不純物レベルでもよいが、強度向上を目的として添加する場合には、0.5%以上含有させることが好ましい。また、フェライト組織中に残留オーステナイトを生成させる場合には、0.5%以上含有させることが好ましく、0.8%以上含有させることがより好ましい。また、フェライト組織中にマルテンサイトを生成させる場合には、Si+Mnの総量で1%以上含有させることが好ましく、1.5%以上含有させることがより好ましい。
Mn:
Mn is preferably contained to ensure strength. Moreover, since the transformation temperature from austenite to ferrite can be lowered and the finishing temperature in hot rolling can be lowered, it is preferably contained in order to promote refinement of ferrite crystal grains. However, if it is contained excessively, ferrite transformation after hot rolling is delayed and the volume fraction of ferrite is lowered, so the content is preferably made 3% or less. More preferably, it is 2.7% or less. The lower limit may be an impurity level, but when added for the purpose of improving the strength, it is preferable to contain 0.5% or more. Moreover, when producing | generating a retained austenite in a ferrite structure, it is preferable to contain 0.5% or more, and it is more preferable to contain 0.8% or more. Further, when martensite is generated in the ferrite structure, the total amount of Si + Mn is preferably 1% or more, and more preferably 1.5% or more.

Al:
Alは、延性を向上させるため添加してもよい。しかし、過度に含有させると、高温でのオーステナイトが不安定化し熱間圧延における仕上温度を過度に上昇させる必要が生じること、また、安定した連続鋳造を困難にすることから、含有量を3%以下とすることが好ましい。下限は不純物レベルでもよいが、フェライト組織中に残留オーステナイトを生成させる場合には、Si+Alの総量で1%以上含有させることが好ましい。
Al:
Al may be added to improve ductility. However, if excessively contained, the austenite at high temperature becomes unstable, and it is necessary to excessively increase the finishing temperature in hot rolling, and it becomes difficult to achieve stable continuous casting. The following is preferable. The lower limit may be an impurity level, but when residual austenite is generated in the ferrite structure, it is preferable to contain 1% or more in terms of the total amount of Si + Al.

P:
Pは、強度を増加させるため、添加しても良い。しかし、過度に含有させると、粒界偏析による脆化が生じるので、添加する場合には、含有量を0.5%以下とすることが好ましい。より好ましくは0.2%以下、さらに好ましくは、0.1%以下である。下限は不純物レベルでもよい。通常、製鋼段階で0.01%程度混入してくる。
P:
P may be added to increase the strength. However, if excessively contained, embrittlement due to grain boundary segregation occurs. Therefore, when added, the content is preferably 0.5% or less. More preferably, it is 0.2% or less, More preferably, it is 0.1% or less. The lower limit may be an impurity level. Usually, about 0.01% is mixed in the steelmaking stage.

Ti:
Tiは、炭化物又は窒化物として析出し強度を増加させるため、また、この析出物がオーステナイトやフェライトの粗大化を抑制して、熱延時の結晶粒の微細化を促進し、熱処理の際には粒成長を抑制するため、添加しても良い。ただし、過度に含有させると、熱延以前の加熱時に粗大なTi炭化物又は窒化物が多量に発生して、延性や加工性を阻害するので、含有量を0.3%以下とすることが好ましい。フェライトの生成を容易にするため、好ましくはTi+Nbの総量で0.1%以下、より好ましくは0.03%以下、よりより好ましくは0.01%以下である。なお、下限は不純物レベルでもよい。製鋼上、一般に0.001%程度は混入する。
Ti:
Ti precipitates as carbide or nitride to increase the strength, and this precipitate suppresses the coarsening of austenite and ferrite to promote the refinement of crystal grains during hot rolling, and during the heat treatment In order to suppress grain growth, it may be added. However, if excessively contained, a large amount of coarse Ti carbide or nitride is generated at the time of heating before hot rolling to inhibit ductility and workability, so the content is preferably 0.3% or less. . In order to facilitate the formation of ferrite, the total amount of Ti + Nb is preferably 0.1% or less, more preferably 0.03% or less, and even more preferably 0.01% or less. The lower limit may be an impurity level. Generally about 0.001% is mixed on steelmaking.

Nb:
Nbは、炭化物又は窒化物として析出し強度を増加させるため、また、この析出物がオーステナイトやフェライトの粗大化を抑制して、熱延時の結晶粒の微細化を促進し、熱処理の際には粒成長を抑制するため、添加しても良い。ただし、過度に含有させると、熱延以前の加熱時に粗大なNbCが多量に発生して、延性や加工性を阻害するので、含有量を0.1%以下とすることが好ましい。フェライトの生成を容易にするため、好ましくはTi+Nbの総量で0.1%以下、より好ましくは0.03%以下、さらに好ましくは0.01%である。なお、下限は不純物レベルでもよい。製鋼上、一般に0.001%程度は混入する。
Nb:
Nb precipitates as carbide or nitride to increase the strength, and this precipitate suppresses the coarsening of austenite and ferrite to promote the refinement of crystal grains during hot rolling, and during the heat treatment In order to suppress grain growth, it may be added. However, if excessively contained, a large amount of coarse NbC is generated at the time of heating before hot rolling to inhibit ductility and workability, so the content is preferably 0.1% or less. In order to facilitate the formation of ferrite, the total amount of Ti + Nb is preferably 0.1% or less, more preferably 0.03% or less, and still more preferably 0.01%. The lower limit may be an impurity level. Generally about 0.001% is mixed on steelmaking.

V:
Vは炭化物として析出し強度を増加させるため、また、この析出物がフェライトの粗大化を抑制して、結晶粒の微細化を促進するため、添加しても良い。ただし、Ti、Nbと同様な理由で、延性や加工性を阻害するので、含有量を1%以下とすることが好ましい。より好ましくは0.5%以下であり、さらに好ましくは0.3%以下である。なお、下限は不純物レベルでもよい。製鋼上、一般に0.001%程度は混入する。
V:
V precipitates as a carbide to increase the strength, and this precipitate may be added to suppress the coarsening of ferrite and promote the refinement of crystal grains. However, for the same reason as Ti and Nb, the ductility and workability are inhibited, so the content is preferably 1% or less. More preferably, it is 0.5% or less, More preferably, it is 0.3% or less. The lower limit may be an impurity level. Generally about 0.001% is mixed on steelmaking.

Cr:
Crは、焼き入れ性を増加させ、フェライト組織中にマルテンサイトやベイナイトを生成させる作用を有するため、これらの作用を目的として添加しても良い。ただし、多量に含有させるとフェライトの生成が抑制されるため、含有量を1%以下とすることが好ましい。なお、下限は不純物レベルでもよい。製鋼上、一般に0.02%程度は混入する。
Cr:
Since Cr has the effect of increasing hardenability and generating martensite and bainite in the ferrite structure, it may be added for these purposes. However, since the production | generation of a ferrite will be suppressed when it contains abundantly, it is preferable to make content 1% or less. The lower limit may be an impurity level. Generally about 0.02% is mixed in steelmaking.

Cu:
Cuは、低温で析出して強度を増加させる作用を有するため、これらの作用を目的として添加しても良い。ただし、スラブの粒界割れなどを引き起こすおそれがあるため、含有量を3%以下とすることが好ましい。より好ましくは2%以下である。なお、添加する場合は、含有量0.1%以上とすることが好ましい。なお、下限は不純物レベルでもよい。製鋼上、一般に0.02%程度は混入する。
Cu:
Since Cu has an action of precipitating at a low temperature to increase the strength, Cu may be added for the purpose of these actions. However, since there is a risk of causing grain boundary cracking of the slab, the content is preferably 3% or less. More preferably, it is 2% or less. In addition, when adding, it is preferable to make it content 0.1% or more. The lower limit may be an impurity level. Generally about 0.02% is mixed in steelmaking.

Ni:
Niは、高温でのオーステナイトの安定度を増加する目的で添加しても良い。また、Cuを含有させる場合はスラブの粒界脆化を防止するために添加しても良い。ただし、過度に含有させると、フェライトの生成が抑制されるため、含有量を1%以下とすることが好ましい。なお、下限は不純物レベルでもよい。製鋼上、一般に0.02%程度は混入する。
Ni:
Ni may be added for the purpose of increasing the stability of austenite at high temperatures. Further, when Cu is contained, it may be added in order to prevent grain boundary embrittlement of the slab. However, since the production | generation of a ferrite will be suppressed when it contains excessively, it is preferable to make content 1% or less. The lower limit may be an impurity level. Generally about 0.02% is mixed in steelmaking.

Mo:
Moは、MoCを析出し強度を増加させるため、また、この析出物がフェライトの粗大化を抑制して、結晶粒の微細化を促進するため、添加しても良い。ただし、Ti、Nbと同様な理由で、延性や加工性を阻害するので、含有量を1%以下とすることが好ましい。より好ましくは0.5%以下であり、さらに好ましくは0.3%以下である。なお、下限は不純物レベルでもよい。製鋼上、一般に0.001%程度は混入する。
Mo:
Mo may be added to increase the strength by precipitating MoC, and because this precipitate suppresses the coarsening of ferrite and promotes the refinement of crystal grains. However, for the same reason as Ti and Nb, the ductility and workability are inhibited, so the content is preferably 1% or less. More preferably, it is 0.5% or less, More preferably, it is 0.3% or less. The lower limit may be an impurity level. Generally about 0.001% is mixed on steelmaking.

Ca、REM、B:
Ca、希土類元素(REM)やBは凝固中に析出する酸化物や窒化物を微細化して、鋳片の健全性を保つため、その1種又は2種以上を添加しても良い。ただし、高価であるため、総含有量で0.005%以下とすることが好ましい。下限は不純物レベルでもよい。
Ca, REM, B:
Ca, rare earth elements (REM), and B may be added alone or in combination to refine oxides and nitrides precipitated during solidification and maintain the soundness of the slab. However, since it is expensive, the total content is preferably 0.005% or less. The lower limit may be an impurity level.

なお、鋼中に混入する「不純物」としてはS、N、Sn等が挙げられる。S、Nについては、できればその含有量を以下のように規制するのが望ましい。   In addition, S, N, Sn etc. are mentioned as an "impurity" mixed in steel. About S and N, if possible, it is desirable to regulate the content thereof as follows.

S:
Sは硫化物系介在物を形成して加工性を低下させる不純物元素であるため、その含有量は0.05%以下に抑えるのが望ましい。そして、一段と優れた加工性を確保したい場合には、0.008%以下とすることが好ましい。より好ましくは0.003%以下である。
S:
Since S is an impurity element that forms sulfide inclusions and degrades workability, the content is preferably suppressed to 0.05% or less. And when securing the further outstanding workability, it is preferable to set it as 0.008% or less. More preferably, it is 0.003% or less.

N:
Nは加工性を低下させる不純物元素であり、その含有量は0.01%以下に抑えることが望ましい。より好ましくは、0.006%以下である。
N:
N is an impurity element that lowers workability, and its content is preferably suppressed to 0.01% or less. More preferably, it is 0.006% or less.

(B)本発明に係る鋼板の組織について
本発明に係る鋼板は、フェライトを主相とし、主相とフェライト以外の第2相とからなる組織を有する鋼板である。ここで「主相」とは組織を構成する相のうち該組織に占める割合が最大となる相であるという意味である。主相のフェライトは、体積率で少なくとも50%以上であることが好ましく、より好ましくは60%以上である。フェライトの体積率が50%未満では、鋼板の延性や加工性が損なわれる場合がある。
(B) About the structure of the steel sheet according to the present invention The steel sheet according to the present invention is a steel sheet having a structure in which the main phase is ferrite and the main phase is a second phase other than ferrite. Here, the “main phase” means that the phase occupying the maximum proportion of the phase constituting the organization is the phase. The main phase ferrite is preferably at least 50% or more by volume, more preferably 60% or more. If the ferrite volume fraction is less than 50%, the ductility and workability of the steel sheet may be impaired.

フェライトの結晶粒径(直径)は、鋼板の機械特性と熱的安定性、さらには加工性に大きく影響する。   The crystal grain size (diameter) of ferrite greatly affects the mechanical properties and thermal stability of the steel sheet, and further the workability.

したがって、本発明に係る熱延鋼板に十分な強度と延性や熱的安定性さらには加工性を確保するために、鋼板表面から板厚の1/4の深さにおけるフェライトの平均結晶粒径D(μm)を、下記の(1)式及び(2)式を満足する一定の範囲にとどめる必要がある。
1.2≦D≦7・・・・・・・・・・・・・・・・・・・・・・(1)式
D≦2.7+5000/(5+350・C+40・Mn)・・・(2)式
すなわち、その一定の範囲とは、1.2μmを下限とし、そして、2.7+5000/(5+350・C+40・Mn)μm及び7μmのうちの小さい方の値を上限とする範囲のことである。
Therefore, in order to ensure sufficient strength, ductility, thermal stability and workability for the hot-rolled steel sheet according to the present invention, the average crystal grain size D of ferrite at a depth of 1/4 of the sheet thickness from the steel sheet surface. (Μm) must be kept within a certain range that satisfies the following formulas (1) and (2).
1.2 ≦ D ≦ 7 (1) Formula D ≦ 2.7 + 5000 / (5 + 350 · C + 40 · Mn) 2 (2) Formula That is, the certain range is a range in which 1.2 μm is the lower limit and 2.7 + 5000 / (5 + 350 · C + 40 · Mn) 2 μm and 7 μm is the upper limit. That is.

そして、本発明に係る冷延鋼板に十分な強度と延性や熱的安定性さらには加工性を確保するために、鋼板表面から板厚の1/4の深さにおけるフェライトの平均結晶粒径D(μm)を、下記の(5)式及び(6)式を満足する一定の範囲にとどめる必要がある。   And in order to ensure sufficient strength, ductility, thermal stability and workability for the cold-rolled steel sheet according to the present invention, the average crystal grain diameter D of ferrite at a depth of 1/4 of the sheet thickness from the steel sheet surface. (Μm) needs to be kept within a certain range that satisfies the following formulas (5) and (6).

1.2≦D≦9.3・・・・・・・・・・・・・・・・・・・・・・(5)式
D≦5.0−2.0・Cr+5000/(5+350・C+40・Mn)・・(6)式
すなわち、その一定の範囲とは、1.2μmを下限とし、そして、5.0−2.0・Cr+5000/(5+350・C+40・Mn)μm及び9.3μmのうちの小さい方の値を上限とする範囲のことである。
1.2 ≦ D ≦ 9.3 (5) Formula D ≦ 5.0−2.0 · Cr + 5000 / (5 + 350 · C + 40 · Mn) 2 ·· (6) That is, the fixed range is 1.2 μm as the lower limit, and 5.0−2.0 · Cr + 5000 / (5 + 350 · C + 40 · Mn) 2 μm and 9 It is a range with the smaller value of 3 μm as the upper limit.

ここで、フェライトの平均結晶粒径Dの下限を1.2μmとするのは、1.2μm未満では、加工硬化係数が極端に減少して延性や加工性が劣化するだけでなく、微細フェライト組織の熱的安定性も劣化して、高温下で容易に粒成長するからである。より優れた延性や加工性や熱的安定性を得るためには、フェライトの平均結晶粒径Dの下限を1.5μmとするのが好ましい。一方、フェライトの平均結晶粒径Dの上限を、熱延鋼板については2.7+5000/(5+350・C+40・Mn)μm及び7μmのうちの小さい方の値、冷延鋼板については5.0−2.0・Cr+5000/(5+350・C+40・Mn)μm及び9.3μmのうちの小さい方の値、とするのは、これらのいずれかの値を超えると、十分な強度が得られなくなるからである。より優れた強度を得るためには、フェライトの平均結晶粒径Dの上限を、熱延鋼板については2.4+5000/(5+350・C+40・Mn)μm及び5.5μmのうちの小さい方の値、冷延鋼板については4.5+5000/(5+350・C+40・Mn)μm及び8.5μmのうちの小さい方の値を上限とするのが好ましい。なお、ここでは、15°以上の結晶方位差を持つ大角の粒界で囲まれた領域を1つの結晶粒と定義し、15°未満の小角の粒界は無視する。Here, the lower limit of the average grain size D of the ferrite is 1.2 μm. If the average grain size D is less than 1.2 μm, not only the work hardening coefficient is extremely reduced and the ductility and workability deteriorate, but also the fine ferrite structure This is because the thermal stability of the material deteriorates and the grains grow easily at a high temperature. In order to obtain more excellent ductility, workability and thermal stability, the lower limit of the average crystal grain size D of ferrite is preferably 1.5 μm. On the other hand, the upper limit of the average crystal grain size D of ferrite is 2.7 + 5000 / (5 + 350 · C + 40 · Mn) 2 μm or 7 μm for hot-rolled steel plates, and 5.0− for cold-rolled steel plates. 2.0 · Cr + 5000 / (5 + 350 · C + 40 · Mn) The smaller value of 2 μm and 9.3 μm, because if any of these values is exceeded, sufficient strength cannot be obtained. It is. In order to obtain better strength, the upper limit of the average grain size D of ferrite is set to the smaller value of 2.4 + 5000 / (5 + 350 · C + 40 · Mn) 2 μm and 5.5 μm for hot-rolled steel sheets. For the cold-rolled steel sheet, it is preferable that the lower value of 4.5 + 5000 / (5 + 350 · C + 40 · Mn) 2 μm and 8.5 μm be the upper limit. Here, a region surrounded by a large-angle grain boundary having a crystal orientation difference of 15 ° or more is defined as one crystal grain, and a small-angle grain boundary less than 15 ° is ignored.

さらに鋼板の熱的安定性を高めるためには、フェライトの結晶粒径の分布を一定の範囲にとどめるのが好ましい。高温での粒成長が生じる一因は、粒界のエネルギーに基づく駆動力であり、微細なフェライト組織の中に比較的大きなフェライト結晶粒が混在していると、大きなフェライト結晶粒が粒界を駆動力として周囲の微細なフェライト結晶粒と容易に一体化し、粒成長が急速に進展する。このため、高温でのフェライト結晶粒の粒成長速度を抑制するためには、フェライト結晶粒を微細化してその平均結晶粒径D(μm)を上記の(1)式及び(2)式を満足する一定の範囲にとどめることに加えて、鋼板表面から板厚の1/4の深さ位置におけるフェライトのうち、結晶粒径d(μm)が下記の(4)式を満足する結晶粒の占める面積割合が80%以上であることが好ましい。
D/3≦d≦3D・・・・・・・・・・・・・・・・(4)式
すなわち、面積割合でフェライト結晶粒の80%以上が、平均結晶粒径D(μm)の1/3から3倍の範囲に収まるような粒径分布となることが好ましい。好ましくは85%以上のフェライト結晶粒が平均結晶粒径D(μm)の1/3から3倍の範囲に収まるような粒径分布となることであり、より好ましくは90%以上のフェライト結晶粒が平均結晶粒径D(μm)の1/3から3倍の範囲に収まるような粒径分布となることである。
In order to further improve the thermal stability of the steel sheet, it is preferable to keep the distribution of the crystal grain size of ferrite within a certain range. One factor that causes grain growth at high temperatures is the driving force based on the energy of the grain boundaries.If relatively large ferrite crystal grains are mixed in a fine ferrite structure, the large ferrite crystal grains As a driving force, it easily integrates with the surrounding fine ferrite crystal grains, and the grain growth proceeds rapidly. Therefore, to suppress the growth rate of ferrite crystal grains at high temperature, the ferrite crystal grains are refined and the average crystal grain size D (μm) satisfies the above formulas (1) and (2). In addition to staying within a certain range, the crystal grain size d (μm) occupies the crystal grains satisfying the following formula (4) among the ferrite at a depth of 1/4 of the plate thickness from the steel sheet surface. The area ratio is preferably 80% or more.
D / 3 ≦ d ≦ 3D (4) In other words, 80% or more of the ferrite crystal grains in terms of area ratio have an average crystal grain diameter D (μm). It is preferable that the particle size distribution be within a range of 1/3 to 3 times. Preferably, the grain size distribution is such that 85% or more of the ferrite crystal grains fall within a range of 1/3 to 3 times the average crystal grain diameter D (μm), more preferably 90% or more of the ferrite crystal grains. Is a particle size distribution that falls within a range of 1/3 to 3 times the average crystal grain size D (μm).

フェライトの結晶粒径とその分布を表面から板厚の1/4の深さで定義する理由は、本発明に係る熱延鋼板のフェライト結晶粒径は板厚方向に変化するためである。本発明に係る鋼板は、この深さのフェライト結晶粒組織を上記の範囲にすることで、所望の機械特性と熱的安定性を確保することができる。特に粒径の熱的安定性は、板の表面から内部に渡る広い範囲で統計を取ったときの粒径分布で決まるのではなく、特定の深さで統計を取ったときの粒径分布で決まる。従って、板厚の1/4の深さで表面に平行な断面で組織観察を行うか、もしくは、表面に垂直な断面で観察するのであれば、板厚の1/4の深さから100μm以内の領域で観察を行い、統計を取る。   The reason why the ferrite crystal grain size and its distribution are defined by a depth of 1/4 of the sheet thickness from the surface is that the ferrite crystal grain size of the hot-rolled steel sheet according to the present invention changes in the sheet thickness direction. The steel sheet according to the present invention can ensure desired mechanical properties and thermal stability by setting the ferrite crystal grain structure of this depth in the above range. In particular, the thermal stability of the particle size is not determined by the particle size distribution when taking statistics over a wide range from the surface of the plate to the inside, but by the particle size distribution when taking statistics at a specific depth. Determined. Therefore, if the structure is observed in a cross section parallel to the surface at a depth of 1/4 of the plate thickness, or if it is observed in a cross section perpendicular to the surface, it is within 100 μm from the depth of 1/4 of the plate thickness. Make observations and take statistics.

フェライト以外の第2相は、パーライト、セメンタイト、ベイナイト、マルテンサイト、残留オーステナイトやFe以外の元素の炭窒化物など、一般に低炭素鉄鋼材料中に生成することが知られる相であれば良い。   The second phase other than ferrite may be a phase generally known to be produced in a low carbon steel material such as pearlite, cementite, bainite, martensite, retained austenite, carbonitride of elements other than Fe.

降伏比が0.75以上の機械特性と熱的安定性に優れる鋼板を効率的に製造するには、第2相として、体積率で50%未満のベイナイト、30%未満のパーライト、5%未満の粒状セメンタイト、5%未満のマルテンサイト及び3%未満の残留オーステナイトからなる群から選ばれた1種又は2種以上を総量で50%未満含有させることが好ましい。より好ましくは総量で40%未満である。ベイナイト、パーライト、粒状セメンタイトの各体積率が上記の値を超えると、加工性が阻害される。また、マルテンサイトと残留オーステナイトの体積率が上記の値を超えると、降伏比を0.75以上とすることが困難となる。   In order to efficiently produce a steel plate with a yield ratio of 0.75 or more and excellent mechanical properties and thermal stability, as a second phase, bainite with a volume ratio of less than 50%, pearlite with less than 30%, less than 5% It is preferable to contain one or two or more selected from the group consisting of granular cementite, less than 5% martensite and less than 3% retained austenite in a total amount of less than 50%. More preferably, the total amount is less than 40%. When the volume fractions of bainite, pearlite, and granular cementite exceed the above values, workability is hindered. Moreover, when the volume ratio of martensite and retained austenite exceeds the above value, it becomes difficult to set the yield ratio to 0.75 or more.

次に、降伏比が0.75未満の機械特性と熱的安定性に優れる鋼板を効率的に製造するには、第2相として、体積率で5〜40%のマルテンサイトを含有させることが好ましい。この場合、ベイナイト、パーライト及び粒状セメンタイトの体積率はできる限り減少させる方が好ましい。残留オーステナイトは存在しても良いが、降伏比をより低下させ易くするには体積率で3%以下とするのが好ましい。   Next, in order to efficiently produce a steel sheet having a yield ratio of less than 0.75 and excellent mechanical properties and thermal stability, the second phase may contain 5-40% martensite by volume. preferable. In this case, it is preferable to reduce the volume ratio of bainite, pearlite, and granular cementite as much as possible. Residual austenite may be present, but in order to make it easier to lower the yield ratio, the volume ratio is preferably 3% or less.

また、引張強度TSと全伸びElの積が18000以上の伸び特性に特に優れ、かつ熱的安定性にも優れる鋼板を効率的に製造するには、第2相として残留オーステナイトを体積率で3〜30%含有させる。残留オーステナイトの体積率が3%を下回ると伸び特性が阻害されるおそれがあり、30%を超えると熱的安定性が阻害されるおそれがある。第2相として含有させる残留オーステナイトの体積率は、5〜25%とするのが好ましい。   Further, in order to efficiently produce a steel sheet that is particularly excellent in elongation characteristics in which the product of the tensile strength TS and the total elongation El is 18000 or more and that is also excellent in thermal stability, residual austenite is used as the second phase in a volume ratio of 3 Include 30%. If the volume fraction of retained austenite is less than 3%, the elongation characteristics may be inhibited, and if it exceeds 30%, the thermal stability may be inhibited. The volume fraction of retained austenite contained as the second phase is preferably 5 to 25%.

なお、フェライト以外の第2相としては、上記したものの外に、体積率で1%以下の微量の炭化物、窒化物、酸化物を含有させることもできる。これらには、Ti、Nb、V、Moの炭窒化物等がある。   As the second phase other than ferrite, a trace amount of carbide, nitride, or oxide having a volume ratio of 1% or less can be contained in addition to the above-described one. These include Ti, Nb, V, Mo carbonitrides and the like.

(C)高温での粒成長速度について
フェライトの平均結晶粒径が上記の(1)式及び(2)式を満足する一定の範囲内にある鋼板の粒成長速度の温度特性は、700℃近傍の温度におけるフェライトの粒成長速度によって決定される。したがって、鋼板表面から板厚の1/4の深さ位置におけるフェライトの平均結晶粒径の700℃における増加速度X(μm/min)と前記平均結晶粒径D(μm)が下記の(3)式を満足することが必要となる。
D・X≦0.1・・・・・・・・・・・・・・・・・・・・・・(3)式
すなわち、フェライトの平均結晶粒径の増加速度X(μm/min)と平均結晶粒径D(μm)の積D・X(μm/min)を、0.1μm/min以下に保つことで、溶接や溶融めっき工程における主要な熱履歴に対して安定となり、良好な熱的安定性が得られる。より優れた熱安定性を得るためには、積D・Xを0.07μm/min以下にするのが好ましく、0.05μm/min以下にするのがさらに好ましい。
(C) Grain growth rate at high temperature The temperature characteristics of the grain growth rate of a steel sheet in which the average crystal grain size of ferrite is within a certain range satisfying the above equations (1) and (2) is around 700 ° C. It is determined by the grain growth rate of ferrite at the following temperature. Therefore, the rate of increase X (μm / min) at 700 ° C. of the average crystal grain size of ferrite at a depth position of ¼ of the plate thickness from the steel sheet surface and the average crystal grain size D (μm) are the following (3) It is necessary to satisfy the equation.
D · X ≦ 0.1 ········································································································································ By maintaining the product D · X (μm 2 / min) of the average grain size D (μm) at 0.1 μm 2 / min or less, it becomes stable against the main thermal history in the welding or hot dipping process, Good thermal stability is obtained. In order to obtain better thermal stability, the product D · X is preferably 0.07 μm 2 / min or less, and more preferably 0.05 μm 2 / min or less.

なお、後掲する実施例2及び3に示すように、フェライトの平均結晶粒径の増加速度X(μm/min)と平均結晶粒径D(μm)の積D・X(μm/min)が、0.1μm/min以下である鋼板のフェライト結晶粒組織は、850℃で数十秒熱処理しても、殆ど粒径の変化を示さない。本発明に係る鋼板のフェライトの結晶粒径(直径)は、時間の平方根に比例する通常の粒成長とは異なり、700℃ではほぼ時間に比例して増加する。したがって、フェライトの平均結晶粒径の増加速度X(μm/min)は、700℃で1時間程度の間の粒径変化を測定して、その変化率を平均することによって、求めることとする。In addition, as shown in Examples 2 and 3 to be described later, the product D · X (μm 2 / min) of the increase rate X (μm / min) of the average crystal grain size of ferrite and the average crystal grain size D (μm) However, the ferrite crystal grain structure of the steel sheet of 0.1 μm 2 / min or less shows almost no change in grain size even when heat-treated at 850 ° C. for several tens of seconds. Unlike normal grain growth, which is proportional to the square root of time, the crystal grain size (diameter) of ferrite in the steel sheet according to the present invention increases at approximately 700 ° C. in proportion to time. Therefore, the increase rate X (μm / min) of the average crystal grain size of ferrite is obtained by measuring the grain size change at about 700 ° C. for about 1 hour and averaging the rate of change.

また、さらに粒成長速度を低下させるため、フェライト結晶粒内の転位密度を10/cm以下、より好ましくは10/cm以下とすることが好ましい。In order to further reduce the grain growth rate, the dislocation density in the ferrite crystal grains is preferably 10 9 / cm 2 or less, more preferably 10 8 / cm 2 or less.

(D)Znめっきについて
上述の組織とその熱的安定性を具備した微細粒熱延鋼板は、溶融めっきラインを用いてZn、Zn−Al合金、Al−Si合金、Fe−Zn合金等の被覆を鋼板表面に施すことが可能である。
(D) About Zn plating Fine grain hot rolled steel sheet having the above-mentioned structure and its thermal stability is coated with Zn, Zn-Al alloy, Al-Si alloy, Fe-Zn alloy, etc. using a hot dipping line. Can be applied to the steel sheet surface.

Zn−Al合金のめっき浴の組成としては、Zn−(0.1〜60)%Al浴、更にSi及び/又はMgを複合添加した浴などを用いる。また、Al−Si合金のめっき浴の組成としては、Al−(7〜13)%Si浴などを用いる。めっき浴中にはその他、Fe、V、Mn、Ti、Nb、Ca、Cr、Ni、W、Cu、Pb、Sn、Cd、Sbが0.1%以下含まれていても特に支障はない。めっき後冷却された鋼板表面上の皮膜の組成は、浸漬並びに冷却時に鋼材と溶融金属の間で元素の相互拡散が起こるため、一般にめっき浴組成よりは若干Fe濃度の高い組成となる。合金化溶融亜鉛めっきは、この相互拡散を積極的に利用したものであり、皮膜中のFe濃度は7〜15%となる。めっき付着量は特に限定するものではないが、片面当たり30〜200g/mとするのが好ましく、そして、合金化溶融亜鉛めっきの場合は、パウダリングが懸念されるため、25〜60g/mとするのが好ましい。As a composition of the plating bath of the Zn—Al alloy, a Zn— (0.1-60)% Al bath, a bath in which Si and / or Mg are added in combination, and the like are used. Moreover, as a composition of the plating bath of the Al—Si alloy, an Al— (7-13)% Si bath or the like is used. There is no particular problem even if the plating bath contains 0.1% or less of Fe, V, Mn, Ti, Nb, Ca, Cr, Ni, W, Cu, Pb, Sn, Cd, and Sb. The composition of the film on the surface of the steel sheet cooled after the plating generally has a slightly higher Fe concentration than the plating bath composition, because interdiffusion of elements occurs between the steel material and the molten metal during immersion and cooling. The alloyed hot dip galvanizing positively utilizes this mutual diffusion, and the Fe concentration in the film is 7 to 15%. Although the amount of plating is not particularly limited, it is preferably 30 to 200 g / m 2 per side, and in the case of alloyed hot dip galvanizing, there is a concern about powdering, so 25 to 60 g / m. 2 is preferable.

溶融めっきラインによるめっき法は、以下のとおりである。   The plating method using the hot dipping line is as follows.

微細粒組織を達成した熱延鋼板は、酸洗工程を経て表層のスケールを除去した後、連続溶融亜鉛めっきラインに通板される。入り側から、アルカリ脱脂、水洗を経た後、予熱後水素を含有する雰囲気中で550〜900℃の温度に加熱し、鋼板表面のFe酸化物を還元して、この後のめっき処理に好適な表面を形成する。550℃未満の温度では還元が十分ではなく、900℃を超える温度まで加熱するとフェライト組織が粗大化する。めっき後にフェライト+パーライト組織もしくはフェライト+セメンタイト組織とするには、550℃から730℃近傍までの温度とすることが好ましい。一方、第2相としてベイナイト、マルテンサイト、残留γ等を生成させるには、A点から900℃までのフェライトとオーステナイトの二相共存温度域まで昇温する方が好ましい。雰囲気中の水素含有量は5〜40%が好ましい。水素含有量が5%未満では還元が十分に行われない。40%を超えると雰囲気ガスのコストが過度に増加する。水素以外の成分は還元を阻害しないガスであれば良い。好ましくはコストの点から窒素である。均熱の時間は、還元が十分に行われる時間であれば良く、特に指定しないが、一般に10秒以上である。上限は、フェライトを粗大化させないために5分以内、より好ましくは2分以内である。この還元のための加熱・均熱帯を経た後、鋼板温度はめっき浴温近傍まで冷却され、めっき浴に浸漬後、所定の付着量に調整され、室温まで冷却される。合金化溶融亜鉛めっきの場合は、上記のように溶融亜鉛めっきの後、470〜600℃に再加熱して地鉄とめっき膜の間の反応を生じさせ、鋼板表面にFe−Zn合金膜を形成する。The hot-rolled steel sheet that has achieved a fine grain structure is passed through a continuous hot-dip galvanizing line after removing the surface scale through the pickling process. From the entry side, after alkali degreasing and washing with water, after preheating, it is heated to a temperature of 550 to 900 ° C. in an atmosphere containing hydrogen, and the Fe oxide on the steel sheet surface is reduced, which is suitable for the subsequent plating treatment. Forming a surface. When the temperature is lower than 550 ° C., the reduction is not sufficient, and when heated to a temperature exceeding 900 ° C., the ferrite structure becomes coarse. In order to obtain a ferrite + pearlite structure or a ferrite + cementite structure after plating, the temperature is preferably from 550 ° C. to around 730 ° C. On the other hand, bainite as a second phase, martensite, to thereby produce a residual γ, etc., who are heated from point A to a two-phase coexisting temperature region of ferrite and austenite to 900 ° C. are preferred. The hydrogen content in the atmosphere is preferably 5 to 40%. If the hydrogen content is less than 5%, the reduction is not sufficiently performed. If it exceeds 40%, the cost of the atmospheric gas increases excessively. Components other than hydrogen may be any gas that does not inhibit reduction. Nitrogen is preferred from the viewpoint of cost. The soaking time is not particularly specified as long as the reduction is sufficiently performed, and is generally 10 seconds or longer. The upper limit is 5 minutes or less, more preferably 2 minutes or less in order not to coarsen the ferrite. After passing through heating and soaking for this reduction, the steel sheet temperature is cooled to the vicinity of the plating bath temperature, adjusted to a predetermined adhesion amount after being immersed in the plating bath, and cooled to room temperature. In the case of alloying hot dip galvanizing, after hot dip galvanizing as described above, reheating to 470 to 600 ° C. causes a reaction between the base iron and the plating film, and the Fe—Zn alloy film is formed on the steel sheet surface. Form.

このように、溶融めっき法では、鋼板はめっき浴中で加熱されるだけでなく、めっき浴に浸される前の表面酸化層を還元する工程や、めっき浴浸漬後の合金化工程でも高温熱処理を受ける。しかし、本発明の鋼板のフェライト組織は熱的に安定であるために、これらの工程を経ても微細粒組織が保たれ、優れた機械特性を示す。さらに、表面のフェライト結晶粒が微細であるために、合金化反応速度が増加して、効率的に生産できるという利点も有する。   Thus, in the hot dipping method, the steel sheet is not only heated in the plating bath, but also in the process of reducing the surface oxide layer before being immersed in the plating bath, and in the alloying step after immersion in the plating bath, high-temperature heat treatment. Receive. However, since the ferrite structure of the steel sheet of the present invention is thermally stable, the fine grain structure is maintained even after these steps and exhibits excellent mechanical properties. Further, since the ferrite crystal grains on the surface are fine, the alloying reaction rate is increased, and there is an advantage that the production can be efficiently performed.

なお、めっきを施す場合の鋼組成としては、C:0.001〜0.15%とし、Si:0.005〜1.5%及び/またはP:0.005〜1.0%とすることが好ましい。   In addition, as steel composition in the case of plating, C: 0.001 to 0.15%, Si: 0.005 to 1.5% and / or P: 0.005 to 1.0% Is preferred.

(E)溶接性について
従来の低温圧延により作成した微細粒組織を有する鋼板では、熱的安定性に劣り、HAZ部が軟化するため、溶接部の特性が低下する。これに対して、本発明に係る鋼板の熱的安定性は、鋼板そのものや上述の表面被膜を施した鋼板を溶接により接合した場合においても、良好であり、レーザ、スポット、アーク等の溶接を用いた溶接後の溶接部の成形性を向上させる。
(E) About weldability In the steel plate which has the fine grain structure created by the conventional low temperature rolling, since it is inferior to thermal stability and a HAZ part softens, the characteristic of a welded part will fall. On the other hand, the thermal stability of the steel sheet according to the present invention is good even when the steel sheet itself or the steel sheet with the above-mentioned surface coating is joined by welding, and welding such as laser, spot, arc, etc. The formability of the welded part after welding is improved.

アーク・プラズマ溶接やレーザ溶接に代表される溶融溶接においては、さらに、鋼板の化学成分に関して、下記の(7)式で定義される炭素当量Ceq(I)を0.06〜0.6%と規定するのが好ましい。
Ceq(I)=C+Mn/6+Si/24+Cr/5
+Mo/4+Ni/40+V/14・・・・・・・(7)式
ここで、式中の元素記号は各元素の鋼中の含有量(単位:質量%)を示す。
In fusion welding represented by arc / plasma welding and laser welding, the carbon equivalent Ceq (I) defined by the following formula (7) is 0.06 to 0.6% with respect to the chemical composition of the steel sheet. It is preferable to specify.
Ceq (I) = C + Mn / 6 + Si / 24 + Cr / 5
+ Mo / 4 + Ni / 40 + V / 14 (7) Formula Here, the element symbol in the formula indicates the content (unit: mass%) of each element in the steel.

Ceq(I)は、溶接部の最高硬さの指標であり、Ceq(I)を0.06〜0.6%と規定することで、溶接後の部材の成形性を確保することができる。Ceq(I)が0.06%未満では、焼入れ性に乏しいため、溶接金属部の硬さが、熱的に安定な細粒組織により強化された母材の硬さよりも軟らかくなるため、溶接部の加工性が低下する。そして、0.6%を超えると、焼入れ硬化により、溶接金属部及び熱的安定性を有したHAZ部では、母材硬さに対する硬化が著しいため、溶接部の成形性が低下する。なお、Ceq(I)を0.10〜0.5%と規定するのが好ましい。また、溶接部の硬化、脆化を生じさせるCの含有量を0.17質量%以下とするのが好ましい。   Ceq (I) is an index of the maximum hardness of the welded portion, and by defining Ceq (I) as 0.06 to 0.6%, the formability of the member after welding can be ensured. When Ceq (I) is less than 0.06%, the hardenability is poor, and therefore the hardness of the weld metal part is softer than the hardness of the base material reinforced by the thermally stable fine grain structure. The workability of is reduced. If the content exceeds 0.6%, the weld metal part and the HAZ part having thermal stability are hardened by quench hardening, and the formability of the weld part is deteriorated because the hardening to the base metal hardness is remarkable. Ceq (I) is preferably specified to be 0.10 to 0.5%. Moreover, it is preferable that the C content that causes hardening and embrittlement of the welded portion is 0.17% by mass or less.

一方、母材への通電発熱により抵抗溶接が為されるスポット溶接において、継手強度を確保するため、溶接部の硬度分布及び脆化抑制の観点から、化学組成に関して、C含有量を0.17質量%以下と規定し、かつ下記の(8)式で定義される炭素当量Ceq(II)を0.03〜0.20%と規定するとともに、さらに、継手強度を確保するためのナゲット径を広い条件範囲において得るために、下記の(9)式で定義される母材抵抗の指標Rspを45以下と規定するのが好ましい。
Ceq(II)=C+Mn/100+Si/90+Cr/100・・・(8)式
Rsp=13.5×(Si+Al+0.4Mn+0.4Cr)+12.2・・・(9)式
ここで、式中の元素記号は各元素の鋼中の含有量(単位:質量%)を示す。
On the other hand, in spot welding in which resistance welding is performed by energization heat generation to the base material, in order to ensure joint strength, the C content is set to 0.17 with respect to the chemical composition from the viewpoint of hardness distribution of the weld and suppression of embrittlement. The carbon equivalent Ceq (II) defined by the following formula (8) is specified as 0.03 to 0.20%, and the nugget diameter for securing the joint strength is specified. In order to obtain in a wide range of conditions, it is preferable that the base material resistance index Rsp defined by the following formula (9) is specified to be 45 or less.
Ceq (II) = C + Mn / 100 + Si / 90 + Cr / 100 (8) Formula Rsp = 13.5 × (Si + Al + 0.4Mn + 0.4Cr) +12.2 (9) where the element symbol in the formula Indicates the content of each element in steel (unit: mass%).

スポット溶接のような急冷熱サイクルでは、C量による硬化、脆化への影響が大きいため、C含有量は0.17%以下とするのが好ましく、0.15%以下とするのがより好ましい。   In a rapid thermal cycle such as spot welding, since the effect of C content on hardening and embrittlement is large, the C content is preferably 0.17% or less, more preferably 0.15% or less. .

Ceq(II)は、スポット溶接のような急冷熱サイクルにおける溶接部の最高硬さの指標であり、Ceq(II)を0.03〜0.20%と規定することで、抵抗溶接性に優れた溶接部を得ることができる。Ceq(II)が0.03%未満では、焼入れ性に乏しいため、スポット溶接部で得られる最高硬さが母材硬度に対して小さくなり、そのため継手強度評価試験において、いわゆるボタン破断を得ることができるが、得られる最大破断荷重が小さくなってしまう。そして、Ceq(II)が0.20%を超えると、焼入れ硬化により、溶接金属部及び熱的安定性を有したHAZ部では、母材硬さに対する硬化・脆化が著しく、強度評価試験において、溶融金属部(ナゲット内)に割れを生じ、いわゆるボタン破断を得ることが難しくなる。なお、Ceq(II)を0.06〜0.17%と規定するのが好ましい。   Ceq (II) is an index of the maximum hardness of a welded part in a rapid thermal cycle such as spot welding. By specifying Ceq (II) as 0.03 to 0.20%, resistance weldability is excellent. A welded part can be obtained. When Ceq (II) is less than 0.03%, the hardenability is poor, so the maximum hardness obtained at the spot welded portion is smaller than the base metal hardness, and so a so-called button fracture is obtained in the joint strength evaluation test. However, the maximum breaking load that can be obtained is reduced. When Ceq (II) exceeds 0.20%, hardening and embrittlement with respect to the base metal hardness is remarkable in the weld metal part and the HAZ part having thermal stability due to quench hardening. The molten metal part (in the nugget) is cracked, making it difficult to obtain a so-called button break. In addition, it is preferable to prescribe | regulate Ceq (II) as 0.06 to 0.17%.

母材抵抗の指標Rspは、継手強度を確保するための十分なナゲット(溶融接合部)径をどの程度の広さの溶接条件範囲で得ることができるかの指標であり、抵抗溶接性に優れた溶接部を得るためには、45以下にすることが好ましい。40以下にするのがより好ましい。   The base material resistance index Rsp is an index of how wide the welding condition range can provide a sufficient nugget (molten joint) diameter to ensure joint strength, and is excellent in resistance weldability. In order to obtain a welded portion, it is preferable to make it 45 or less. More preferably, it is 40 or less.

広い溶接条件範囲にて、継手強度を確保するためのナゲット径を得るためには、電流密度と抵抗発熱が重要となる。ここで、電流密度は、溶接中の通電経路の断面積により決まり、熱的安定性に優れる本発明鋼では、粒成長に起因した軟化を生じないため、初期の通電経路の広がりを抑制し、十分なナゲット径が形成されやすい。一方、抵抗発熱は母材の電気抵抗値の影響が大きく、母材抵抗が大きい場合には、過剰に抵抗発熱がなされ、適正条件範囲を超えると、チリ発生がし易くなる。なお、一般に、スポット溶接の適正条件範囲とは、4×√tのナゲット径が形成される溶接電流〜チリ発生電流(tは接合材の板厚)の範囲、又は、ボタン破断を示す最小電流〜チリ発生電流の範囲を用いて表される。   In order to obtain a nugget diameter for securing joint strength in a wide range of welding conditions, current density and resistance heating are important. Here, the current density is determined by the cross-sectional area of the energization path during welding, and the steel of the present invention, which is excellent in thermal stability, does not cause softening due to grain growth, thus suppressing the initial energization path spread, Sufficient nugget diameter is easily formed. On the other hand, the resistance heat generation is greatly affected by the electric resistance value of the base material. When the base material resistance is large, excessive resistance heat generation occurs, and dust generation is likely to occur when the appropriate condition range is exceeded. In general, the appropriate condition range for spot welding is a range of welding current to dust generation current (where t is the plate thickness of the joining material) in which a nugget diameter of 4 × √t is formed, or a minimum current indicating button fracture. ~ Expressed using the range of dust generation current.

(F)圧延について
圧延は、1000℃を超える温度から、レバースミルもしくはタンデムミルを用いて、オーステナイト温度域で行う。工業的生産性の観点からは、少なくとも最終の数段はタンデムミルを用いるのが好ましい。
(F) About rolling Rolling is performed in the austenite temperature range from a temperature exceeding 1000 ° C. using a lever mill or a tandem mill. From the viewpoint of industrial productivity, it is preferable to use a tandem mill for at least the last several stages.

連続鋳造や鋳造・分塊により得たスラブ、ストリップキャスティングにより得た鋼板などや、必要によってはそれらに一度、熱間又は冷間加工を加えたものを用い、それらが冷片であれば1000℃を超える温度に再加熱して圧延する。圧延の開始温度が1000℃以下になると、圧延荷重が過大になり、十分な圧延率を得ることが困難になるばかりか、十分な圧延率の圧延をAr点以上の温度で終了することも困難となり、所望の機械特性や熱的安定性を得られなくなる。好ましくは1025℃以上、より好ましくは1050℃以上の温度から圧延を開始する。上限は、オーステナイト粒の粗大化を抑制するため、また、設備費用や加熱燃料費を抑制するため、1350℃以下、好ましくは1250℃以下とする。TiCやNbCなどの析出物をオーステナイト中に十分に溶解させる必要がない鋼種の場合、この範囲の中でも比較的低い温度(1050〜1150℃)に再加熱することが好ましい。初期のオーステナイト結晶粒が微細化し、最終のフェライト結晶粒も微細化し易くなるためである。Use slabs obtained by continuous casting or casting / bundling, steel plates obtained by strip casting, etc., and if necessary, those once hot or cold worked, and if they are cold pieces, 1000 ° C Reheated to a temperature exceeding 30 ° C and rolled. When the rolling start temperature is 1000 ° C. or less, the rolling load becomes excessive and it becomes difficult to obtain a sufficient rolling rate, and rolling at a sufficient rolling rate may be terminated at a temperature of 3 or more points at Ar. This makes it difficult to obtain desired mechanical properties and thermal stability. Rolling is preferably started at a temperature of 1025 ° C. or higher, more preferably 1050 ° C. or higher. The upper limit is set to 1350 ° C. or lower, preferably 1250 ° C. or lower in order to suppress coarsening of austenite grains and to suppress equipment costs and heating fuel costs. In the case of a steel type in which it is not necessary to sufficiently dissolve precipitates such as TiC and NbC in austenite, it is preferable to reheat to a relatively low temperature (1050 to 1150 ° C.) within this range. This is because the initial austenite crystal grains are refined and the final ferrite crystal grains are easily refined.

圧延仕上げ温度は、圧延後にオーステナイトからフェライトへと変態させるためにAr点以上かつ780℃以上の温度範囲とする。仕上げ温度が、Ar点を下回ると、圧延中にフェライトが発生する。また780℃未満の温度では、圧延荷重が増大し、十分な圧下を加えることが困難となるばかりか、圧延中に板表層部でフェライト変態が生じる場合がある。好ましくは、Ar点以上かつ800℃以上の温度で圧延を終了する。The rolling finishing temperature is set to a temperature range of Ar 3 points or more and 780 ° C. or more in order to transform from austenite to ferrite after rolling. When the finishing temperature is lower than Ar 3 point, ferrite is generated during rolling. If the temperature is lower than 780 ° C., the rolling load increases and it becomes difficult to apply sufficient reduction, and ferrite transformation may occur in the surface layer portion during rolling. Preferably, the rolling is finished at a temperature of Ar 3 points or higher and 800 ° C. or higher.

なお、圧延を終了する温度は、Ar点以上かつ780℃以上の温度範囲であれば低い程良い。これは、圧延によってオーステナイトに導入された加工歪みの蓄積効果が大きくなり、結晶粒の微細化が促進されるためである。本発明で用いる鋼種のAr点は、概ね780から900℃である。The temperature to terminate the rolling, the better low if the temperature range of more than Ar 3 point and 780 ° C.. This is because the effect of accumulating processing strain introduced into austenite by rolling increases, and the refinement of crystal grains is promoted. The Ar 3 point of the steel type used in the present invention is approximately 780 to 900 ° C.

総圧下量は、フェライトの微細化を促進するため板厚減少率で90%以上、好ましくは92%、より好ましくは94%以上である。圧延終了温度から「圧延終了温度+100℃」までの温度範囲における板厚減少率で40%以上とすることが好ましい。より好ましくは、圧延終了温度から「圧延終了温度+80℃」までの温度範囲における板厚減少率で60%以上である。圧延は、連続した複数パスの圧延とする。1パス当たりの圧下量は、好ましくは15〜60%である。1パス当たりの圧下量を大きく取る方がオーステナイトへの歪みを蓄積させ、変態によって生成するフェライトの結晶粒径を微細化する意味からは好ましいが、圧延荷重の増大が必要となるので、圧延設備が大型化するだけでなく、板形状の制御も困難になる。本発明の方法では、1パス当たりの圧下量を40%以下とした複数パスの圧延でも微細なフェライト結晶粒を得ることができる。したがって、特に板形状の制御を容易にしたいときには、最終の2パスの圧下率を40%/パス以下とすることが好ましい。   The total reduction amount is 90% or more, preferably 92%, more preferably 94% or more in terms of sheet thickness reduction rate in order to promote the refinement of ferrite. The sheet thickness reduction rate in the temperature range from the rolling end temperature to “rolling end temperature + 100 ° C.” is preferably 40% or more. More preferably, the sheet thickness reduction rate in the temperature range from the rolling end temperature to “rolling end temperature + 80 ° C.” is 60% or more. The rolling is continuous multi-pass rolling. The amount of reduction per pass is preferably 15 to 60%. A larger rolling reduction per pass is preferable from the viewpoint of accumulating strain into austenite and refining the crystal grain size of ferrite produced by transformation, but it requires an increase in rolling load. Not only increases in size but also makes it difficult to control the shape of the plate. In the method of the present invention, fine ferrite crystal grains can be obtained even by rolling in a plurality of passes with a reduction amount per pass of 40% or less. Therefore, in particular, when it is desired to easily control the plate shape, it is preferable that the rolling reduction rate of the final two passes is 40% / pass or less.

(G)圧延後の冷却について
圧延を終了後、オーステナイトに導入された加工歪みを解放することなく、これを駆動力としてオーステナイトからフェライトへと変態させ、微細なフェライト結晶粒組織を生成させるために、圧延終了から0.4秒以内に720℃以下の温度まで冷却する。好ましくは圧延終了から0.2秒以内に720℃以下の温度まで冷却する。冷却は、水冷を用いるのが望ましく、そして、その冷却速度は、空冷期間を除外し強制冷却を行っている期間の平均冷却速度として、400℃/秒以上とするのが、好ましい。
(G) Cooling after rolling In order to generate a fine ferrite grain structure by transforming from austenite to ferrite as a driving force without releasing the processing strain introduced into austenite after rolling is finished. Then, it is cooled to a temperature of 720 ° C. or less within 0.4 seconds from the end of rolling. Preferably, it is cooled to a temperature of 720 ° C. or less within 0.2 seconds from the end of rolling. It is desirable to use water cooling for cooling, and the cooling rate is preferably 400 ° C./second or more as an average cooling rate during the period of forced cooling excluding the air cooling period.

ここで、720℃以下の温度に冷却されるまでの時間を規定する理由は、720℃を超える温度で、冷却を停止もしくは鈍化させると、微細なフェライトが生成する以前に、加工によって導入された歪みが解放されて、又は、歪みの存在形態が変化して、フェライトの核生成に有効ではなくなり、フェライト結晶粒が顕著に粗大化するためである。   Here, the reason for prescribing the time until cooling to a temperature of 720 ° C. or lower was introduced by processing before fine ferrite was formed when cooling was stopped or slowed at a temperature exceeding 720 ° C. This is because the strain is released or the existence form of the strain is changed, so that it becomes ineffective for nucleation of ferrite and the ferrite crystal grains are remarkably coarsened.

温度が720℃以下に達すると、フェライト変態が活発化する変態温度域に入る。上記のフェライト組織が得られるフェライト変態温度域は、この温度から600℃までの間の温度域である。したがって、720℃以下に達した後、冷却を一次停止、もしくはその速度を鈍化させて、この温度域で2秒以上保持させることによって、上記の熱的に安定なフェライト結晶粒組織の形成を確実にすることができる。この温度域での保持時間が短いと上記の熱的に安定なフェライト結晶粒組織の形成が阻害されるおそれがある。より好ましくは、620〜700℃の温度域で3秒以上滞留させるのがよい。   When the temperature reaches 720 ° C. or lower, it enters a transformation temperature range in which ferrite transformation is activated. The ferrite transformation temperature range where the above ferrite structure is obtained is a temperature range between this temperature and 600 ° C. Therefore, after reaching 720 ° C. or lower, the cooling is temporarily stopped, or the speed thereof is slowed down and held at this temperature range for 2 seconds or more, so that the formation of the above thermally stable ferrite crystal grain structure is ensured. Can be. If the holding time in this temperature range is short, the formation of the thermally stable ferrite crystal grain structure may be hindered. More preferably, it is good to make it stay for 3 seconds or more in the temperature range of 620-700 degreeC.

微細なフェライト結晶粒組織を主相とし、その中に体積率で5%以上のマルテンサイトを分散させた複相組織鋼とする場合は、上述の冷却・保持の後、350℃以下の温度まで冷却することが好ましい。40℃/s以上の冷却速度で250℃以下の温度まで冷却するのが、より好ましい。なお、350℃以下の温度までの冷却を20℃/s以下の冷却速度で行うと、ベイナイトが発生し易くなって、マルテンサイト生成を阻害するおそれがある。   In the case of a multi-phase structure steel having a fine ferrite crystal grain structure as a main phase and martensite of 5% or more in volume ratio dispersed therein, after cooling and holding as described above, the temperature reaches 350 ° C. or less. It is preferable to cool. It is more preferable to cool to a temperature of 250 ° C. or lower at a cooling rate of 40 ° C./s or higher. In addition, when cooling to a temperature of 350 ° C. or less is performed at a cooling rate of 20 ° C./s or less, bainite is likely to be generated, and martensite formation may be hindered.

一方、微細なフェライト結晶粒組織を主とし、体積率で3〜30%の残留オーステナイトが分散した複相組織鋼とする場合は、上述の冷却の後、20℃/s以上の冷却速度で350〜500℃まで冷却し、その後、60℃℃/h以下の冷却速度で徐冷することが好ましい。400〜500℃までの冷却速度を50℃/s以上とすることがより好ましい。   On the other hand, in the case of a dual phase structure steel mainly composed of a fine ferrite crystal grain structure and 3 to 30% of retained austenite is dispersed in volume ratio, after cooling as described above, the cooling rate is set to 350 ° C. at a cooling rate of 20 ° C./s or more. It is preferable to cool to ˜500 ° C. and then gradually cool at a cooling rate of 60 ° C./h or less. The cooling rate from 400 to 500 ° C. is more preferably 50 ° C./s or more.

(H)冷却設備について
本発明において、上記の冷却を行う設備は限定されない。工業的には、水量密度の高い水スプレー装置を用いることが好適である。例えば、圧延板搬送ローラーの間に水スプレーヘッダーを配置し、板の上下から十分な水量密度の高圧水を噴射することで冷却することができる。
(H) About cooling equipment In this invention, the equipment which performs said cooling is not limited. Industrially, it is preferable to use a water spray device having a high water density. For example, a water spray header can be arrange | positioned between rolling plate conveyance rollers, and it can cool by injecting high-pressure water with sufficient water quantity density from the upper and lower sides of a plate.

(I)冷間圧延と焼鈍について
微細粒組織を持った薄鋼板を効率的に生産するため、熱間圧延した後、酸洗して、さらに冷間圧延した後、焼鈍する。冷間圧延率は、焼鈍中のフェライトの再結晶を促進するため40%以上とし、圧延が困難となるため90%以下とする。圧延設備に制限はなく、タンデムミルやリバースミルを用いることができる。
(I) Cold rolling and annealing In order to efficiently produce a thin steel sheet having a fine grain structure, it is hot-rolled, pickled, further cold-rolled, and then annealed. The cold rolling rate is set to 40% or more to promote recrystallization of ferrite during annealing, and is set to 90% or less because rolling becomes difficult. There is no restriction | limiting in rolling equipment, A tandem mill and a reverse mill can be used.

冷間圧延後、加工フェライトを再結晶させ微細粒フェライト組織とするため、熱処理する。温度はフェライトの再結晶の生じる温度以上で結晶粒の粗大化を防ぐため900℃以下とする。好ましくは、Ac点以上の温度かつAc点以下の温度である。Ac点未満ではフェライトの再結晶に長時間を要し、Ac点を超えると組織がオーステナイト単相となるため組織が粗大化し易いためである。焼鈍時間は、フェライトが再結晶する時間以上で、上限に制限はない。通常の連続焼鈍設備やバッチ焼鈍設備などを用いることができるが、効率的な生産のために連続焼鈍設備を用いて短時間の焼鈍を行うことが好ましい。連続溶融メッキ設備を用いて溶融メッキを行う場合は、一般にメッキ設備に前焼鈍工程が具備されているため、冷間圧延後に焼鈍を行う必要はなく、冷間圧延材を直接メッキ設備に通板することができる。After cold rolling, heat treatment is performed in order to recrystallize the processed ferrite to obtain a fine-grained ferrite structure. The temperature is set to 900 ° C. or lower in order to prevent coarsening of crystal grains at a temperature higher than the temperature at which ferrite recrystallization occurs. Preferably, the temperature is at least one Ac and at most three Ac. If the Ac is less than 1 point, it takes a long time to recrystallize the ferrite, and if the Ac exceeds 3 points, the structure becomes an austenite single phase and the structure is likely to be coarsened. The annealing time is longer than the time for ferrite to recrystallize, and there is no upper limit. Although normal continuous annealing equipment, batch annealing equipment, etc. can be used, it is preferable to perform annealing for a short time using continuous annealing equipment for efficient production. When performing hot dipping using a continuous hot dipping equipment, there is generally no pre-annealing process in the plating equipment, so there is no need to anneal after cold rolling, and the cold rolled material is passed directly through the plating equipment. can do.

以下、実施例により、本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail by way of examples.

表1に示す化学組成を有する鋼種A1〜A11の鋼を溶製し、熱間鍛造によって30mm厚さにした。その後、1050℃以上に再加熱した後、試験用小型タンデムミルにて圧延を実施し、2mmの板厚に仕上げた。   Steels of steel types A1 to A11 having chemical compositions shown in Table 1 were melted and made 30 mm thick by hot forging. Then, after reheating to 1050 degreeC or more, it rolled by the small tandem mill for a test, and finished to 2 mm of plate | board thickness.

Figure 0005029361
Figure 0005029361

表2に、その圧延仕上げ温度と冷却条件を示す。全ての圧延において、圧延の仕上げ温度は、各鋼種のAr点よりも高い温度とし、さらに、仕上げ温度〜[仕上げ温度+100℃]の温度域内で3パス以上の多パス圧延を行なった。最終の2パスの圧延は、試験番号3を除いて35%/パス以下の軽圧下圧延とした。試験番号3については最終の2パスを50〜60%の大圧下圧延とした。圧延仕上げ後は、表2に記載したとおり、水冷によって500〜720℃の温度域内の所定の温度まで冷却した。なお、試験番号によっては、水冷後に空冷時間を設けることで720〜600℃における保持時間を設けた。表2には、720〜600℃の温度域における保持時間に加えて、そのうちの700〜620℃の温度域における保持時間をも示した。その後、約100℃/sの速度で室温までの水冷を行うか、又は、600〜400℃の温度域内の所定の温度までの水冷後に炉中で炉冷を行うことによって、種々の第2相の組織を有する鋼板を作製した。Table 2 shows the rolling finishing temperature and cooling conditions. In all rolling, the finishing temperature of rolling was higher than the Ar 3 point of each steel type, and further, multi-pass rolling of 3 passes or more was performed within the temperature range of finishing temperature to [finishing temperature + 100 ° C.]. The final two-pass rolling was light rolling at 35% / pass or less except for test number 3. For test number 3, the final two passes were 50% to 60% large rolling. After the rolling finish, as shown in Table 2, it was cooled to a predetermined temperature within a temperature range of 500 to 720 ° C. by water cooling. Depending on the test number, a holding time at 720 to 600 ° C. was provided by providing an air cooling time after water cooling. In Table 2, in addition to the holding time in the temperature range of 720 to 600 ° C., the holding time in the temperature range of 700 to 620 ° C. is also shown. Thereafter, water cooling to room temperature is performed at a rate of about 100 ° C./s, or by performing furnace cooling in the furnace after water cooling to a predetermined temperature within a temperature range of 600 to 400 ° C. A steel sheet having the following structure was prepared.

Figure 0005029361
Figure 0005029361

このようにして得られた熱延鋼板の組織について、走査電子顕微鏡を用いることによって鋼板板厚の断面を観察した。   About the structure | tissue of the hot-rolled steel plate obtained in this way, the cross section of the steel plate thickness was observed by using a scanning electron microscope.

フェライトの結晶粒径およびその粒径分布については、板表面から板厚の1/4の深さにて、EBSP(Electron Back Scattering Pattern)法を用いて結晶方位解析を行うことで求めた。各相の体積率の測定は、板表面から板厚の1/4の深さにて、ナイタール又はピクリン酸で腐食した組織を走査電子顕微鏡を用いて観察することで行った。なお、本実施例で製造した鋼板のフェライト相以外の第2相の組織は、パーライト、ベイナイト、そして、粒内の球状セメンタイト又は粒界セメンタイトであった。   The crystal grain size and grain size distribution of ferrite were determined by conducting crystal orientation analysis using the EBSP (Electron Back Scattering Pattern) method at a depth of ¼ of the plate thickness from the plate surface. The volume ratio of each phase was measured by observing a structure corroded with nital or picric acid at a depth of 1/4 of the plate thickness from the plate surface using a scanning electron microscope. The structure of the second phase other than the ferrite phase of the steel sheet produced in this example was pearlite, bainite, and intragranular spherical cementite or grain boundary cementite.

本発明の鋼板に関しては、鋼板表面から100μmの深さ位置における結晶粒径と板厚の中心部分における結晶粒径を上記と同じ方法で測定した。その結果、全ての本発明鋼板に関し100μmの深さ位置における結晶粒径は板厚中心における粒径の60%以下、板厚の1/4の深さにおける粒径は板厚中心における粒径の85%以下であった。   Regarding the steel plate of the present invention, the crystal grain size at a depth of 100 μm from the steel plate surface and the crystal grain size at the center of the plate thickness were measured by the same method as described above. As a result, the crystal grain size at a depth of 100 μm is 60% or less of the grain size at the center of the plate thickness, and the grain size at a depth of ¼ of the plate thickness is the grain size at the center of the plate thickness. It was 85% or less.

機械的性質については、引張特性をJIS5号引張試験片にて行い、引張強度TS(MPa)、降伏比YR及び全伸びEl(%)を評価した。   For mechanical properties, tensile properties were measured with JIS No. 5 tensile test pieces, and tensile strength TS (MPa), yield ratio YR and total elongation El (%) were evaluated.

熱的安定性については、700℃の塩浴に10、30又は60分間浸した後、急冷し、上記したのと同じ方法で粒径を測定し、焼鈍前粒径d(μm)と焼鈍後粒径d(μm)の差を、焼鈍時間(min)で割り算をすることによって、平均結晶粒径の増加速度X(μm/min)を算出した。For thermal stability, after immersing in a salt bath at 700 ° C. for 10, 30 or 60 minutes, quench, measure the particle size by the same method as described above, and determine the pre-annealing particle size d 0 (μm) and annealing. An increase rate X (μm / min) of the average crystal grain size was calculated by dividing the difference of the post grain size d 1 (μm) by the annealing time (min).

表3に、このようにして得られた熱延鋼板の組織とその性質および引張試験結果を示す。ここで、試験番号1は、720〜600℃の温度域における保持時間が0.8秒と短いため、フェライト体積率は14.8%と少ないだけでなく、700℃で焼鈍したときの粒成長速度も大きく、熱的安定性に劣る。試験番号3は、低温で大圧下圧延を採用したため、粒径が1.13μmと過度に細かく、熱的安定性と強度・伸びバランスに劣る。試験番号5は、仕上圧延の終了直後に720℃まで冷却するのに1.52秒の時間を要したため、フェライトの平均結晶粒径が4.52μmとなって粗粒化するとともに混粒組織となり、熱的安定性に劣る。試験番号19は、720〜600℃の温度域における保持時間が0.2秒と極めて短いため、95%を超えるベイナイト組織になり、フェライト体積率は5%未満と少ない。これらの比較例に対して、冷却条件が本発明の範囲内である本発明例は、熱的安定性および機械的性質の両方に優れている。   Table 3 shows the structure, properties, and tensile test results of the hot-rolled steel sheet thus obtained. Here, since test number 1 has a short holding time in the temperature range of 720 to 600 ° C. of 0.8 seconds, the ferrite volume fraction is not only as small as 14.8%, but also the grain growth when annealed at 700 ° C. High speed and poor thermal stability. Test No. 3 employs large rolling at low temperature, so the particle size is excessively fine, 1.13 μm, and is inferior in thermal stability and strength / elongation balance. Test No. 5 took 1.52 seconds to cool down to 720 ° C. immediately after finishing rolling, so that the average crystal grain size of ferrite became 4.52 μm and coarsened and became a mixed grain structure Inferior in thermal stability. Test No. 19 has an extremely short holding time of 0.2 seconds in a temperature range of 720 to 600 ° C., and therefore has a bainite structure exceeding 95% and a ferrite volume fraction of less than 5%. In contrast to these comparative examples, the inventive examples in which the cooling conditions are within the scope of the present invention are excellent in both thermal stability and mechanical properties.

Figure 0005029361
Figure 0005029361

表4に示す化学組成を有する鋼種1〜5からなる鋼片(サイズ:80mm幅×100mm長×35mm厚)を、表5に示す条件でAr点以上の温度で熱間圧延後、水冷し、板厚が1.2mmの熱延鋼板を得た。A steel piece (size: 80 mm width × 100 mm length × 35 mm thickness) having a chemical composition shown in Table 4 is hot-rolled at a temperature of 3 or more Ar under the conditions shown in Table 5, and then water-cooled. A hot rolled steel sheet having a thickness of 1.2 mm was obtained.

Figure 0005029361
Figure 0005029361

Figure 0005029361
Figure 0005029361

得られた熱延鋼板について、板表面から板厚の1/4の深さにおけるフェライト平均結晶粒径、その粒径分布と転位密度の測定を行い、そして、熱的安定性の評価を行った。なお、フェライト結晶粒径、その粒径分布と転位密度の測定を行い、そして、熱的安定性の評価については、前記したのと同じ方法で行った。転位密度ρ(cm−2)は、透過電子顕微鏡観察により明視野像において、任意の線分の長さL(cm)と転位線との交切点の数Nを測定し、膜厚t(cm)として、次の(10)式にしたがって求めた。
ρ=2N/Lt・・・・・・・・・・・・・・・(10)式
フェライト結晶粒の熱的安定性については、700℃の塩浴に10、30又は60分浸した後、急冷し、前記したのと同じ方法で粒径を測定し、焼鈍前粒径d(μm)と焼鈍後粒径d(μm)の差を、焼鈍時間(min)で割り算をすることによって、平均結晶粒径の増加速度X(μm/min)算出した。
The obtained hot-rolled steel sheet was measured for ferrite average crystal grain size, its grain size distribution and dislocation density at a depth of ¼ of the plate thickness from the plate surface, and thermal stability was evaluated. . The ferrite crystal grain size, the grain size distribution and the dislocation density were measured, and the thermal stability was evaluated by the same method as described above. The dislocation density ρ (cm −2 ) was determined by measuring the number L of intersection points between the length L (cm) of an arbitrary line segment and the dislocation line in a bright field image by observation with a transmission electron microscope, and measuring the film thickness t ( cm) was obtained according to the following equation (10).
ρ = 2N / Lt (10) Formula Regarding thermal stability of ferrite grains, after soaking in a salt bath at 700 ° C. for 10, 30 or 60 minutes Quickly cool, measure the particle size in the same way as described above, and divide the difference between the pre-annealed particle size d 0 (μm) and the post-annealed particle size d 1 (μm) by the annealing time (min). From the above, the increase rate X (μm / min) of the average crystal grain size was calculated.

本発明鋼板に関しては、鋼板表面から100μmの深さ位置における結晶粒径と板厚の中心部分における結晶粒径を前記したのと同じ方法で測定した。その結果、全ての本発明鋼板に関し100μmの深さ位置における結晶粒径は板厚中心における粒径の60%以下、板厚の1/4の深さにおける粒径は板厚中心における粒径の85%以下であった。   Regarding the steel sheet of the present invention, the crystal grain size at a depth of 100 μm from the steel sheet surface and the crystal grain size at the center part of the plate thickness were measured by the same method as described above. As a result, the crystal grain size at a depth of 100 μm is 60% or less of the grain size at the center of the plate thickness, and the grain size at a depth of ¼ of the plate thickness is the grain size at the center of the plate thickness. It was 85% or less.

このようにして得られた熱延鋼板の機械特性に及ぼす熱処理の影響を明らかにする目的で、730〜830℃の範囲で再加熱処理を行った後、再度、フェライト平均結晶粒径を測定した。ここで、機械的性質については、引張特性をJIS5号引張試験片にて行い、引張強度TS(MPa)、降伏比YR及び全伸びEl(%)を評価した。   In order to clarify the influence of the heat treatment on the mechanical properties of the hot-rolled steel sheet thus obtained, the reheat treatment was performed in the range of 730 to 830 ° C., and then the ferrite average crystal grain size was measured again. . Here, as for the mechanical properties, tensile properties were measured with a JIS No. 5 tensile test piece, and the tensile strength TS (MPa), the yield ratio YR, and the total elongation El (%) were evaluated.

表6に、このようにして得られた熱延鋼板の組織とその性質および引張試験結果、さらに、730〜830℃の範囲で再加熱処理を行った後、再度、フェライト平均結晶粒径を測定した結果を示す。ここで、試験番号C及びFは、熱延後の鋼板は機械特性に劣るとともに熱的安定性にも劣る。そして、再加熱処理によって、そのフェライト結晶粒径が8μmを超えるようになり、一層機械特性が劣化することが確認できた。これらの比較例に対して、本発明例の熱的安定性に優れる鋼板は、優れた機械特性を示すとともに、730℃〜830℃で数十秒熱処理をしても、殆んど粒径の変化を示さない。よって、本発明に係る鋼板は、熱処理後も細粒強化されていることが確認できた。   Table 6 shows the structure, properties and tensile test results of the hot-rolled steel sheet thus obtained, and after reheating treatment in the range of 730 to 830 ° C., the average ferrite grain size was measured again. The results are shown. Here, in test numbers C and F, the steel sheet after hot rolling is inferior in mechanical properties and thermal stability. Then, it was confirmed that the reheat treatment increased the ferrite crystal grain size to more than 8 μm and further deteriorated the mechanical properties. In contrast to these comparative examples, the steel sheet having excellent thermal stability according to the present invention exhibits excellent mechanical properties and has a particle size of almost no grain even after heat treatment at 730 ° C. to 830 ° C. for several tens of seconds. No change is shown. Therefore, it was confirmed that the steel sheet according to the present invention was strengthened with fine grains even after the heat treatment.

Figure 0005029361
Figure 0005029361

表7に示す化学組成を有する鋼種AA〜AZの鋼を溶製し、熱間鍛造によって30mm厚さにした。その後1100〜1200℃の温度に再加熱した後、Ar点よりも高い温度で5パスの圧延を行い、2mmの板厚に仕上げた。最終の2パスの圧延は、35%/パス以下の軽圧下圧延とした。圧延後、表8に示す条件で冷却した。得られた鋼材の組織は、走査型電子顕微鏡(SEM)を用いて鋼板板厚の断面を観察した。Steels of steel types AA to AZ having chemical compositions shown in Table 7 were melted and made 30 mm thick by hot forging. Then, after reheating to a temperature of 1100 to 1200 ° C., rolling was performed for 5 passes at a temperature higher than the Ar 3 point to finish a plate thickness of 2 mm. The final two-pass rolling was light rolling at 35% / pass or less. After rolling, it was cooled under the conditions shown in Table 8. The structure of the obtained steel material observed the cross section of the steel plate thickness using the scanning electron microscope (SEM).

Figure 0005029361
Figure 0005029361

Figure 0005029361
Figure 0005029361

フェライト結晶粒径および粒径分布については、板表面から板厚の1/4の深さにて、EBSP(Electron Back Scattering Pattern)法を用いて結晶方位解析を行うことで求めた。各相の体積率の測定は、板表面から板厚の1/4の深さにて、ナイタール又はピクリン酸で腐食した組織をSEMを用いて観察することで行った。フェライト体積率及びマルテンサイト体積率については、板表面から板厚の1/4の深さにて、いわゆるメッシュ法にて測定し、これらの算術平均値で示した。さらに、圧延材からJIS5号試験片を採取し、常温引張り試験にて機械的特性を評価した。   The ferrite crystal grain size and grain size distribution were determined by conducting crystal orientation analysis using the EBSP (Electron Back Scattering Pattern) method at a depth of 1/4 of the plate thickness from the plate surface. The volume ratio of each phase was measured by observing the structure corroded with nital or picric acid at a depth of ¼ of the plate thickness from the plate surface using SEM. The ferrite volume fraction and martensite volume fraction were measured by a so-called mesh method at a depth of ¼ of the plate thickness from the plate surface, and indicated by their arithmetic average values. Furthermore, a JIS No. 5 test piece was collected from the rolled material, and the mechanical properties were evaluated by a normal temperature tensile test.

本発明鋼板に関しては、鋼板表面から100μmの深さ位置における結晶粒径と板厚の中心部分における結晶粒径を前記したのと同じ方法で測定した。その結果、全ての本発明鋼板に関し100μmの深さ位置における結晶粒径は板厚中心における粒径の60%以下、板厚の1/4の深さにおける粒径は板厚中心における粒径の85%以下であった。   Regarding the steel sheet of the present invention, the crystal grain size at a depth of 100 μm from the steel sheet surface and the crystal grain size at the center part of the plate thickness were measured by the same method as described above. As a result, the crystal grain size at a depth of 100 μm is 60% or less of the grain size at the center of the plate thickness, and the grain size at a depth of ¼ of the plate thickness is the grain size at the center of the plate thickness. It was 85% or less.

熱的安定性については、700℃の塩浴に10、30又は60分間浸した後、急冷し、前記したのと同じ方法で、平均結晶粒径の増加速度X(μm/min)を算出した。   For thermal stability, the sample was immersed in a 700 ° C. salt bath for 10, 30 or 60 minutes, then rapidly cooled, and the average crystal grain size increase rate X (μm / min) was calculated in the same manner as described above. .

これらの結果を表9に示す。ここで、試験番号A10は、フェライト結晶粒径が4.57μmと粗大であるとともにフェライトの体積率が小さいため、そして、試験番号A8〜A9及びA11は、平均結晶粒径の増加速度Xと平均結晶粒径Dの積D・Xが0.1μm/minを超えるとともにフェライトの体積率が小さいため、機械特性にも劣るとともに熱的安定性に劣る。これらの比較例に対して、試験番号A1〜A7の本発明例は、軽圧下圧延としたにもかかわらず2.5μm前後の微細なフェライト結晶粒径を有するとともに、50体積%以上のフェライトと10体積%以上のマルテンサイトからなる鋼板となっている。これらのフェライト組織は熱的に安定であり、またマルテンサイトを適量含むフェライト組織となっているため、高強度でかつ良好な伸び特性が得られる。These results are shown in Table 9. Here, the test number A10 has a ferrite crystal grain size as coarse as 4.57 μm and the volume fraction of ferrite is small, and the test numbers A8 to A9 and A11 have an average crystal grain size increase rate X and an average Since the product D · X of the crystal grain size D exceeds 0.1 μm 2 / min and the volume fraction of ferrite is small, the mechanical properties are inferior and the thermal stability is inferior. In contrast to these comparative examples, the present invention examples of test numbers A1 to A7 have a fine ferrite crystal grain size of about 2.5 μm despite the fact that the rolling is performed under light rolling, and 50% by volume or more of ferrite. The steel sheet is made of 10% by volume or more of martensite. These ferrite structures are thermally stable and have a ferrite structure containing an appropriate amount of martensite, so that high strength and good elongation characteristics can be obtained.

Figure 0005029361
Figure 0005029361

表10に示す化学組成を有する鋼種A1〜A10の鋼を溶製し、熱間鍛造によって35
mm厚さにした。その後、1050〜1250℃の温度に再加熱した後、Ar点よりも高い温度で5パスの圧延を行い、1.5mmの板厚に仕上げた。圧延後、表11に示す条件で冷却した。得られた鋼材の組織は、走査型電子顕微鏡(SEM)を用いて鋼板板厚の断面を観察した。
Steels of steel types A1 to A10 having chemical compositions shown in Table 10 are melted and 35 by hot forging.
The thickness was set to mm. Then, after reheating to a temperature of 1050 to 1250 ° C., subjected to rolling five passes at a temperature higher than the Ar 3 point, it was finished to a thickness of 1.5 mm. After rolling, it was cooled under the conditions shown in Table 11. The structure of the obtained steel material observed the cross section of the steel plate thickness using the scanning electron microscope (SEM).

Figure 0005029361
Figure 0005029361

Figure 0005029361
Figure 0005029361

フェライト結晶粒径および粒径分布については、板表面から板厚の1/4の深さにて、EBSP(Electron Back Scattering Pattern)法を用いて結晶方位解析を行うことで求めた。各相の体積率の測定は、板表面から板厚の1/4の深さにて、ナイタール又はピクリン酸で腐食した組織をSEMを用いて観察することで行った。フェライト体積率については、板表面から板厚の1/4の深さにて、いわゆるメッシュ法にて測定し、これらの算術平均値で示した。また、残留オーステナイト体積率はX線回折測定から求めた。さらに、圧延材からJIS5号試験片を採取し、常温引張り試験にて機械的特性を評価した。熱的安定性については、700℃の塩浴に10、30又は60分間浸した後、急冷し、前記したのと同じ方法で、平均結晶粒径の増加速度X(μm/min)を算出した。   The ferrite crystal grain size and grain size distribution were determined by conducting crystal orientation analysis using the EBSP (Electron Back Scattering Pattern) method at a depth of 1/4 of the plate thickness from the plate surface. The volume ratio of each phase was measured by observing the structure corroded with nital or picric acid at a depth of ¼ of the plate thickness from the plate surface using SEM. The ferrite volume fraction was measured by a so-called mesh method at a depth of ¼ of the plate thickness from the plate surface, and indicated by an arithmetic average value thereof. The residual austenite volume fraction was determined from X-ray diffraction measurement. Furthermore, a JIS No. 5 test piece was collected from the rolled material, and the mechanical properties were evaluated by a normal temperature tensile test. For thermal stability, the sample was immersed in a 700 ° C. salt bath for 10, 30 or 60 minutes, then rapidly cooled, and the average crystal grain size increase rate X (μm / min) was calculated in the same manner as described above. .

本発明鋼板に関しては、鋼板表面から100μmの深さ位置における結晶粒径と板厚の中心部分における結晶粒径を前記したのと同じ方法で測定した。その結果、全ての本発明鋼板に関し100μmの深さ位置における結晶粒径は板厚中心における粒径の60%以下、板厚の1/4の深さにおける粒径は板厚中心における粒径の85%以下であった。   Regarding the steel sheet of the present invention, the crystal grain size at a depth of 100 μm from the steel sheet surface and the crystal grain size at the center part of the plate thickness were measured by the same method as described above. As a result, the crystal grain size at a depth of 100 μm is 60% or less of the grain size at the center of the plate thickness, and the grain size at a depth of ¼ of the plate thickness is the grain size at the center of the plate thickness. It was 85% or less.

これらの結果を表12に示す。ここで、試験番号1〜8及び10の本発明例は、フェライトは細粒であり、かつ熱的安定性と機械的特性に優れている。これに対して、試験番号9及び11〜13の比較例は、本発明例に比べて熱的安定性と機械的特性に劣る。   These results are shown in Table 12. Here, in the inventive examples of Test Nos. 1 to 8 and 10, ferrite is fine and excellent in thermal stability and mechanical properties. On the other hand, the comparative examples of test numbers 9 and 11 to 13 are inferior in thermal stability and mechanical properties as compared with the inventive examples.

Figure 0005029361
Figure 0005029361

表13に示す化学組成を有する鋼種A〜Cの鋼からなる50mm厚さのスラブを、表14に示す圧延条件で連続する6パスで総圧下率96%の熱間圧延した後、表14に示す冷却条件で冷却して、板厚2mmの鋼板を得た。   After hot-rolling a 50 mm thick slab made of steel of steel types A to C having the chemical composition shown in Table 13 with 6 consecutive passes under the rolling conditions shown in Table 14 and having a total reduction of 96%, Table 14 shows The steel sheet was cooled under the cooling conditions shown to obtain a steel sheet having a thickness of 2 mm.

Figure 0005029361
Figure 0005029361

Figure 0005029361
Figure 0005029361

本発明例の試料1、4及び6並びに比較例の試料3及び5は終段2パスの圧延率を40〜35%の軽圧下とし、比較例の試料2及び7は低温圧延で最終パスの圧延率を65%の大圧下とした。圧延後、酸洗処理を行い、スケールを除去した。この供試材を80×200mmの大きさに裁断し、縦型溶融Znめっき装置を用い、以下の条件でめっきを行った。   Samples 1, 4 and 6 of the present invention and samples 3 and 5 of the comparative example were subjected to a rolling reduction of 40 to 35% in the final stage 2 passes, and samples 2 and 7 of the comparative example were subjected to the final pass by low temperature rolling. The rolling rate was a large reduction of 65%. After rolling, pickling treatment was performed to remove the scale. This specimen was cut into a size of 80 × 200 mm, and plated using a vertical hot-dip Zn plating apparatus under the following conditions.

まず、板厚2.0mmの鋼板を75℃のNaOH溶液で脱脂洗浄し、雰囲気ガスN+20%H2、露点−40℃の雰囲気中で600、720、又は840℃で60秒焼鈍した。焼鈍後、浴温近傍まで鋼板を冷却し、各種めっき浴で3秒間浸漬した後、ワイピング方式によりめっき片面付着量を50g/mに調整した。合金化処理を行う場合は引き続き、赤外線加熱装置を用いてめっき鋼板に500℃で30秒の加熱処理を施した。冷却速度は、風量及びミスト量を変化させることによって、調整した。また、めっき後の調質圧延は、ロールのRaを1〜5μmとし、荷重を200トン/mとした。First, a steel plate having a thickness of 2.0 mm was degreased and washed with a NaOH solution at 75 ° C. and annealed at 600, 720, or 840 ° C. for 60 seconds in an atmosphere of N 2 + 20% H 2 and a dew point of −40 ° C. After annealing, the steel sheet was cooled to near the bath temperature, immersed in various plating baths for 3 seconds, and then the amount of coating on one side of the plating was adjusted to 50 g / m 2 by a wiping method. When the alloying treatment was performed, the plated steel plate was subsequently subjected to a heat treatment at 500 ° C. for 30 seconds using an infrared heating device. The cooling rate was adjusted by changing the air volume and mist volume. In the temper rolling after plating, Ra of the roll was set to 1 to 5 μm, and the load was set to 200 ton / m.

熱間圧延後およびめっき後の鋼板の表面から板厚の1/4におけるフェライトの結晶粒径と粒径分布をEBSPにより、鋼組織の各相の体積率を腐食組織のSEM観察とX線回折測定により、さらにフェライト結晶粒内の転位密度を透過型電子顕微鏡にて調査した。また、めっき後の鋼板については、JIS5号引張り試験片を採取して引張り特性を調査した。   EBSP shows the ferrite grain size and grain size distribution at 1/4 of the plate thickness from the surface of the steel sheet after hot rolling and plating, and the volume fraction of each phase of the steel structure is observed by SEM observation of the corrosion structure and X-ray diffraction By the measurement, the dislocation density in the ferrite crystal grains was further investigated with a transmission electron microscope. Moreover, about the steel plate after plating, JIS No. 5 tensile test piece was extract | collected and the tensile characteristic was investigated.

本発明鋼板に関しては、鋼板表面から100μmの深さ位置における結晶粒径と板厚の中心部分における結晶粒径を前記したのと同じ方法で測定した。その結果、全ての本発明鋼板に関し100μmの深さ位置における結晶粒径は板厚中心における粒径の60%以下、板厚の1/4の深さにおける粒径は板厚中心における粒径の85%以下であった。   Regarding the steel sheet of the present invention, the crystal grain size at a depth of 100 μm from the steel sheet surface and the crystal grain size at the center part of the plate thickness were measured by the same method as described above. As a result, the crystal grain size at a depth of 100 μm is 60% or less of the grain size at the center of the plate thickness, and the grain size at a depth of ¼ of the plate thickness is the grain size at the center of the plate thickness. It was 85% or less.

これらの結果を表15に示す。ここで、試験番号1〜3、6〜8、10及び12の本発明例に係る微細フェライト結晶粒組織の熱延鋼板は、高い熱的組織安定性をもつため、溶融めっき処理を施してもフェライト結晶粒径がほとんど増加することはないし、その微細フェライト組織は適度な粒径分布と低転位密度を保持する。したがって、めっき後も、機械特性と熱的安定性がともに優れている。これに対して、試験番号4〜5、9及び11の比較例は、本発明例に比べて熱的安定性や機械特性が劣る。   These results are shown in Table 15. Here, since the hot-rolled steel sheets having fine ferrite crystal grain structures according to the inventive examples of test numbers 1 to 3, 6 to 8, 10 and 12 have high thermal structure stability, they can be subjected to hot dipping treatment. The ferrite crystal grain size hardly increases, and the fine ferrite structure maintains an appropriate grain size distribution and low dislocation density. Therefore, both mechanical properties and thermal stability are excellent even after plating. On the other hand, the comparative examples of test numbers 4 to 5, 9 and 11 are inferior in thermal stability and mechanical properties as compared with the inventive examples.

Figure 0005029361
Figure 0005029361

実施例1、3及び5に示す板厚2mmの鋼板に対し、プラズマ溶接(溶接速度:0.5m/min、溶接電流:約180A)及びレーザ溶接(溶接速度:1.0m/min、集光スポット直径:0.6mm、出力:3000W)により、突き合わせ貫通溶接を実施した。表16に、鋼板の主成分と炭素当量Ceq(I)を示す。   Plasma welding (welding speed: 0.5 m / min, welding current: about 180 A) and laser welding (welding speed: 1.0 m / min, condensing) to the steel sheet having a thickness of 2 mm shown in Examples 1, 3 and 5. Butt through welding was performed with a spot diameter of 0.6 mm and an output of 3000 W. Table 16 shows the main components and carbon equivalent Ceq (I) of the steel sheet.

Figure 0005029361
Figure 0005029361

得られた溶接部の特性評価は、直径50mmの球頭張り出し試験を用いて実施した。球頭張り出し試験体の形状を図1に示す。(a)が主歪み方向が溶接線2の方向に対して平行のとき(Type I)であり、(b)が主歪み方向が溶接線2の方向に対して垂直のとき(Type
II)である。球頭張り出し試験体1を、溶接部からそれぞれ切り出して、その張り出し高さ、破断位置を評価した。
Characteristic evaluation of the obtained welded part was carried out using a ball head overhang test having a diameter of 50 mm. The shape of the ball head projecting specimen is shown in FIG. (a) is when the principal strain direction is parallel to the direction of the weld line 2 (Type I), and (b) is when the principal strain direction is perpendicular to the direction of the weld line 2 (Type I).
II). The ball head overhang test specimen 1 was cut out from each welded portion, and the overhang height and breakage position were evaluated.

その結果を表17に示す。ここで、試験番号13のものはCeq(I)が小さく、溶接時に溶融・凝固したビード部分が母材と比べて軟らかく、Type IIの試験においてビードで破断が生じる。試験番号14のものはCeq(I)が過大なためにビード部が過度に硬化し、Type Iの試験においてビード割れが生じる。試験番号15のものは低温圧延により作製した微細粒組織鋼板であり、熱的安定性に劣り、そのためビード部は適度な硬度を持つにもかかわらず、HAZ部が軟化するため、Type
IIの試験においてHAZにて破断が生じる。これらに対して、試験番号1〜12は、プラスマやレーザを用いた溶融溶接を行っても、溶接部を含む部位において高い加工性を示し、溶接後の成形性に優れることが分かる。
The results are shown in Table 17. Here, the test number 13 has a small Ceq (I), and the bead portion melted and solidified during welding is softer than the base metal, and the bead breaks in the Type II test. In the case of test number 14, since Ceq (I) is excessive, the bead portion is excessively cured, and a bead crack occurs in the Type I test. Test No. 15 is a fine-grained steel sheet produced by low temperature rolling, which is inferior in thermal stability, so that the HAZ part softens despite the bead part having an appropriate hardness.
Fracture occurs in HAZ in the test of II. On the other hand, Test Nos. 1 to 12 show high workability at the site including the welded portion and are excellent in formability after welding even when fusion welding using plasma or laser is performed.

Figure 0005029361
Figure 0005029361

実施例1、3、4及び5に示す引張強度TSが440〜780MPaクラスの強度を持つ板厚2mmの微細粒熱延鋼板と、これらとほぼ同じ引張強度を有する市販の粗粒熱延鋼板を用いて、抵抗溶接性を評価した。表18に、それぞれの熱延鋼板の引張強度TSと主要な化学組成と炭素当量Ceq(II)等を示す。   A fine-grain hot-rolled steel sheet with a thickness of 2 mm having a tensile strength TS of 440 to 780 MPa class as shown in Examples 1, 3, 4 and 5, and a commercially available coarse-grain hot-rolled steel sheet having substantially the same tensile strength as these. Used to evaluate resistance weldability. Table 18 shows the tensile strength TS, main chemical composition, carbon equivalent Ceq (II), and the like of each hot-rolled steel sheet.

Figure 0005029361
Figure 0005029361

30×100mmの試験片を切り出し、ラップ代を30mmとして、重ね合わせ、8mm直径のドーム型電極を用いて、加圧力3920N(400kg・f)、通電時間30サイクルの条件にて、溶接電流を種々に変化させて継手を作成した。   A test piece of 30 × 100 mm was cut out, overlapped with a lap allowance of 30 mm, and various welding currents were applied using an 8 mm diameter dome-shaped electrode with a pressure of 3920 N (400 kg · f) and an energization time of 30 cycles. The joint was made by changing to.

チリ発生電流を測定するとともに、剪断引張試験を実施して、その継手の最大破断荷重を評価した。また、スポット溶接部の断面マクロ観察を行い、ピクリン酸腐食後のナゲット径を測定することにより、4√tのナゲット径形成からチリ発生までの電流範囲及び継手のボタン破断からチリ発生までの電流範囲を求めて、抵抗溶接性を評価した。なお、継手の最大破断荷重は、ボタン破断した条件のうちで最小ボタン径が得られた継手における最大破断荷重を示す。   While measuring the generation current of dust, a shear tensile test was performed to evaluate the maximum breaking load of the joint. In addition, the cross-sectional macro observation of spot welds is performed, and the nugget diameter after picric acid corrosion is measured, so that the current range from 4√t nugget diameter formation to dust generation and the current from button breakage to dust generation of the joint. A range was determined to evaluate resistance weldability. Note that the maximum breaking load of the joint indicates the maximum breaking load in the joint at which the minimum button diameter was obtained among the conditions in which the button was broken.

その結果を表19に示す。ここで、試験番号1は、Ceq(II)が過小であるため、溶接部の最高硬さが低く、継手強度が低下する。また、試験番号10〜12は、Ceq(II)又はRspが過大であるため、いずれも、ボタン破断からチリ発生までの電流範囲が小さい。試験番号14は、低温圧延により作成した微細粒組織鋼板であり、熱的安定性に劣り、そのためビード部は適度な硬度を持つにもかかわらず、HAZ部が軟化するため、継ぎ手強度が低い。そして、試験番号3、6及び13は、市販の粗粒熱延鋼板であり、熱的安定性に劣る上に、いずれも、ボタン破断からチリ発生までの電流範囲が小さい。これに対して、試験番号2、4〜5及び7〜9の鋼板は、優れた機械的特性を有するとともに、広い溶接適正電流範囲を持ち、優れた抵抗溶接性を示す。   The results are shown in Table 19. Here, in Test No. 1, since Ceq (II) is too small, the maximum hardness of the welded portion is low, and the joint strength is reduced. In Test Nos. 10 to 12, since Ceq (II) or Rsp is excessive, the current range from button breakage to dust generation is small. Test No. 14 is a fine-grained steel plate produced by low-temperature rolling, which is inferior in thermal stability. Therefore, although the bead portion has an appropriate hardness, the HAZ portion is softened, so the joint strength is low. Test numbers 3, 6 and 13 are commercially available coarse-grain hot-rolled steel sheets, which are inferior in thermal stability and all have a small current range from button breakage to dust generation. On the other hand, the steel plates with test numbers 2, 4 to 5 and 7 to 9 have excellent mechanical properties, a wide welding appropriate current range, and excellent resistance weldability.

Figure 0005029361
Figure 0005029361

実施例1の表1に示す化学組成A1を有する鋼を溶製し、熱間鍛造によって30mm厚さにした。その後、1000℃に再加熱した後、試験用小型タンデムミルにて圧延を実施し、1.3mmの板厚に仕上げた。圧延仕上げ温度は830℃であり、Ar点よりも高い温度とした。最終の3パスの圧延は、40〜50%の大圧下圧延とした。圧延仕上げ後は、0.05秒後に水冷を開始し、1000℃/秒以上の冷却速度で680℃の温度に冷却し、約4秒放冷して、600℃となった後、再度水冷して、室温まで冷却した。その後、酸洗して、0.5mm厚まで圧下率62%で冷間圧延し、焼鈍した。焼鈍は800℃の塩浴に約2分浸漬した後、室温まで水冷した。A steel having a chemical composition A1 shown in Table 1 of Example 1 was melted and made 30 mm thick by hot forging. Then, after reheating to 1000 degreeC, it rolled by the small tandem mill for a test, and was finished to 1.3 mm in plate | board thickness. The rolling finishing temperature was 830 ° C., which was higher than the Ar 3 point. The final three-pass rolling was 40-50% large reduction rolling. After rolling finish, water cooling is started after 0.05 seconds, cooled to a temperature of 680 ° C. at a cooling rate of 1000 ° C./second or more, allowed to cool for about 4 seconds, reaches 600 ° C., and then water cooled again. And cooled to room temperature. Thereafter, pickling, cold rolling to a thickness of 0.5 mm at a reduction ratio of 62%, and annealing were performed. The annealing was performed by immersing in a salt bath at 800 ° C. for about 2 minutes and then cooling to room temperature.

熱間圧延後のフェライトの平均結晶粒径は表面から板厚の1/16深さ、1/4の深さ、および板厚中心位置で各々1.4、1.7及び2.3μmであった。フェライトの体積率は93%で第2相はベイナイトもしくはマルテンサイトであった。また、表面から板厚の1/4の深さ位置において、フェライトの90%以上がその深さの平均粒径の1/3から3倍の間の粒径であり、700℃における粒成長速度と粒径の積Xは0.026μm/min(=0.015μm/min×1.7μm)であった。図2は700℃におけるフェライトの粒径の時間変化を示すものであり、この図から粒成長速度は0.015μm/minと小さいことが分かる。なお、フェライト粒の形態は等軸である。The average crystal grain size of the ferrite after hot rolling was 1.4, 1.7, and 2.3 μm at the 1/16 depth, 1/4 depth, and the center position of the plate thickness from the surface, respectively. It was. The volume fraction of ferrite was 93%, and the second phase was bainite or martensite. Further, at a depth position of 1/4 of the plate thickness from the surface, 90% or more of the ferrite has a grain size between 1/3 to 3 times the average grain size of the depth, and the grain growth rate at 700 ° C. And the particle size product X was 0.026 μm 2 / min (= 0.015 μm / min × 1.7 μm). FIG. 2 shows the time change of the grain size of ferrite at 700 ° C., and it can be seen that the grain growth rate is as small as 0.015 μm / min. The form of the ferrite grains is equiaxed.

冷間圧延および焼鈍後の粒径の焼鈍時間による変化を図3に示す。焼鈍時間零のデータは熱間圧延後の粒径である。焼鈍によって、粒径は大きくなるものの、その変化は小さく焼鈍後も表面から板厚の1/16深さ、1/4深さ、及び板厚中心で各々2.2、2.4及び2.9μmと微細である。焼鈍時間延長による粗大化も見られない。同じ組成の市販冷延鋼板の結晶粒径は約7.5μmであり、本発明の鋼板の粒径は約1/3になっている。このときの組織の例(800℃、5min焼鈍)を図4に示す。本発明鋼板の焼鈍後のフェライトの体積率は約70%、第2相はマルテンサイトであった。700℃における粒成長速度と粒径の積D・Xは約0.02μm/minであった。また、表面から板厚の1/4の深さにおいて、フェライトの90%以上がその深さの平均粒径の1/3から3倍の間の粒径をもっていた。 FIG. 3 shows the change of the grain size after cold rolling and annealing depending on the annealing time. The data with no annealing time is the grain size after hot rolling. Although the grain size is increased by annealing, the change is small, and after annealing, 1/16 depth, 1/4 depth, and 2.2, 2.4, and 2. It is as fine as 9 μm. There is no coarsening due to the extended annealing time. The crystal grain size of the commercial cold-rolled steel sheet having the same composition is about 7.5 μm, and the grain size of the steel sheet of the present invention is about 1/3. FIG. 4 shows an example of the structure at this time (800 ° C., 5 min annealing). The volume fraction of ferrite after annealing of the steel sheet of the present invention was about 70%, and the second phase was martensite. The product D · X of the grain growth rate and the particle diameter at 700 ° C. was about 0.02 μm 2 / min. Further, at a depth of 1/4 of the plate thickness from the surface, 90% or more of the ferrite had a particle size between 1/3 and 3 times the average particle size of the depth.

実施例8の熱延鋼板を同様に、酸洗後、0.5mmの板厚になるまで圧下率62%で冷間圧延したのち、焼鈍した。焼鈍は、工業的な連続焼鈍ラインの熱処理工程を模擬するものとした。昇温速度は10〜15℃/秒、均熱温度は750℃又は800℃とし、圧延後の冷却条件は、均熱温度が750℃のときは連続Zn合金メッキ処理に相当するものとし、均熱温度が800℃のときは400℃から320℃までを徐冷する過時効処理を加えたものとした。   Similarly, the hot-rolled steel sheet of Example 8 was pickled, cold-rolled at a reduction ratio of 62% until a thickness of 0.5 mm was obtained, and then annealed. The annealing simulated the heat treatment process of an industrial continuous annealing line. The heating rate is 10 to 15 ° C./second, the soaking temperature is 750 ° C. or 800 ° C., and the cooling condition after rolling is equivalent to continuous Zn alloy plating when the soaking temperature is 750 ° C. When the heat temperature was 800 ° C., an overaging treatment for gradually cooling from 400 ° C. to 320 ° C. was added.

冷間圧延および熱処理後のフェライトの粒径は、均熱温度が750℃のとき、表面から板厚の1/16深さ、1/4深さ及び板厚中心で各々3.5、3.8及び4.1μm、均熱温度が800℃のとき、4.2、4.6及び5.0μmであった。この粒径は同じ組成の市販冷延鋼板の結晶粒径、約7.5μmの50ないし60%である。均熱温度が750℃の材料の組織の一例を図5に示す。700℃における粒成長速度と粒径の積D・Xは0.01μm/min以下であり、測定時間(30分)以内では粒径は殆ど変化しなかった。また、表面から板厚の1/4の深さにおいて、フェライトの90%以上がその深さの平均粒径の1/3から3倍の間の粒径であった。フェライトの体積率はいずれの鋼板も93%以上であり、第2相はパーライトであった。これらの鋼板の機械特性を表20に示す。
本発明鋼の降伏強度は同組成の市販鋼に比較して、60から80MPaも上昇し、引っ張り強度も30から50MPa増加していることが分かる。均一伸び(UEL)は強度の増加にも拘わらず市販鋼とほぼ同程度である。全伸びELは低下しているが、これは市販鋼の板厚が1.2mmと厚いことが原因で、板厚差を考慮すると本発明鋼の強度および伸びバランスは市販鋼と同程度もしくはそれ以上である。
When the soaking temperature is 750 ° C., the ferrite grain size after cold rolling and heat treatment is 3.5, 3 and 3 at the 1/16 depth, 1/4 depth and the center of the plate thickness from the surface, respectively. When the soaking temperature was 800 ° C., it was 4.2, 4.6, and 5.0 μm. This grain size is 50 to 60% of the crystal grain size of a commercially available cold-rolled steel sheet having the same composition, about 7.5 μm. An example of the structure of a material having a soaking temperature of 750 ° C. is shown in FIG. The product D · X of the grain growth rate and the particle diameter at 700 ° C. was 0.01 μm 2 / min or less, and the particle diameter hardly changed within the measurement time (30 minutes). Further, at a depth of 1/4 of the plate thickness from the surface, 90% or more of the ferrite had a particle size between 1/3 and 3 times the average particle size of the depth. The volume fraction of ferrite was 93% or more for all the steel plates, and the second phase was pearlite. Table 20 shows the mechanical properties of these steel sheets.
It can be seen that the yield strength of the steel of the present invention is increased by 60 to 80 MPa and the tensile strength is increased by 30 to 50 MPa as compared with the commercial steel having the same composition. Uniform elongation (UEL) is about the same as that of commercial steels despite the increase in strength. Although the total elongation EL has decreased, this is due to the fact that the thickness of the commercial steel is as thick as 1.2 mm. Considering the difference in thickness, the strength and elongation balance of the steel of the present invention is the same as or higher than that of the commercial steel. That's it.

Figure 0005029361
Figure 0005029361

本発明鋼の降伏強度は同組成の市販鋼に比較して、60から80MPaも上昇し、引っ張り強度も30から50MPa増加していることが分かる。均一伸び(UEL)は強度の増加にもかかわらず、市販鋼とほぼ同程度である。全伸び(EL)は低下しているが、これは市販鋼の板厚が1.2mmと厚いことが原因であり、板厚差を考慮すると本発明鋼の強度および伸びバランスは市販鋼と同程度もしくはそれ以上である。   It can be seen that the yield strength of the steel of the present invention is increased by 60 to 80 MPa and the tensile strength is increased by 30 to 50 MPa as compared with the commercial steel having the same composition. Uniform elongation (UEL) is about the same as that of commercial steel despite the increase in strength. Although the total elongation (EL) has decreased, this is because the thickness of the commercial steel is as thick as 1.2 mm, and considering the difference in thickness, the strength and elongation balance of the steel of the present invention is the same as that of the commercial steel. About or above.

本発明の鋼板は、超微細な結晶粒を有し、溶接や溶融めっき工程の熱に耐えることができる熱的安定性と機械特性に優れる。また、このような熱的安定性と機械特性に優れる鋼板は、本発明の方法によって、容易に製造することができる。   The steel sheet of the present invention has ultrafine crystal grains and is excellent in thermal stability and mechanical properties that can withstand the heat of welding and hot dipping processes. Moreover, such a steel plate excellent in thermal stability and mechanical properties can be easily produced by the method of the present invention.

球頭張り出し試験体の形状である。(a)が主歪み方向が溶接線方向に対して平行のときであり、(b)が主歪み方向が溶接線方向に対して垂直のときである。It is the shape of a ball head projecting specimen. (a) is when the principal strain direction is parallel to the weld line direction, and (b) is when the principal strain direction is perpendicular to the weld line direction. 表面から板厚の1/4の深さにおけるフェライト粒径の時間変化を示す。The time change of the ferrite particle diameter in the depth of 1/4 of plate | board thickness from the surface is shown. 冷延・焼鈍後のフェライト粒径の焼鈍時間による変化を示す。The change by the annealing time of the ferrite grain size after cold rolling and annealing is shown. 冷延後、800℃×5分間の焼鈍後の組織を示す。The structure after annealing at 800 ° C. for 5 minutes after cold rolling is shown. 冷延後、750℃での焼鈍後の組織の一例を示す。An example of the structure | tissue after annealing at 750 degreeC after cold rolling is shown.

符号の説明Explanation of symbols

1 球頭張り出し試験体
2 溶接線
1 Sphere head projecting specimen 2 Welding line

Claims (14)

質量%で、C:0.01〜0.25%、Si:3%以下、Mn:3%以下、Al:3%以下、P:0.5%以下、Ti:0〜0.3%、Nb:0〜0.1%、V:0〜1%、Cr:0〜1%、Cu:0〜3%、Ni:0〜1%、Mo:0〜1%およびCa+REM+B:0〜0.005%並びに残部Feおよび不純物からなる化学組成を有し、フェライトを50体積%以上含有する炭素鋼または低合金鋼からなる鋼板であって、鋼板表面から板厚の1/4の深さ位置におけるフェライトの平均結晶粒径D(μm)が下記の(1)式及び(2)式を満足するとともに、鋼板表面から板厚の1/4の深さ位置におけるフェライトの平均結晶粒径の700℃における増加速度X(μm/min)と前記平均結晶粒径D(μm)が下記の(3)式を満足することを特徴とする熱延鋼板。
1.2≦D≦7・・・・・・・・・・・・・・・・・・・・・・(1)式
D≦2.7+5000/(5+350・C+40・Mn)・・・(2)式
D・X≦0.1・・・・・・・・・・・・・・・・・・・・・・(3)式
ここで、CおよびMnは鋼中の各元素の含有量(単位:質量%)を示す。
In mass%, C: 0.01 to 0.25%, Si: 3% or less, Mn: 3% or less, Al: 3% or less, P: 0.5% or less, Ti: 0 to 0.3%, Nb: 0 to 0.1%, V: 0 to 1%, Cr: 0 to 1%, Cu: 0 to 3 %, Ni: 0 to 1%, Mo: 0 to 1% and Ca + REM + B: 0 to 0. It has a chemical composition consisting of 005% and the balance Fe and impurities, a steel sheet composed of ferrite carbon steel or low alloy steel containing not less than 50 vol%, at 1/4 depth position of the sheet thickness from the steel sheet surface The average crystal grain size D (μm) of ferrite satisfies the following formulas (1) and (2), and is 700 ° C. of the average crystal grain size of ferrite at a depth position ¼ of the plate thickness from the steel sheet surface. The increase rate X (μm / min) and the average crystal grain size D (μm) satisfy the following formula (3): Hot-rolled steel sheet and butterflies.
1.2 ≦ D ≦ 7 (1) Formula D ≦ 2.7 + 5000 / (5 + 350 · C + 40 · Mn) 2 (2) Formula D · X ≦ 0.1 (3) Formula where C and Mn are the elements of steel The content (unit: mass%) is shown.
鋼板表面から板厚の1/4の深さ位置において、結晶粒径d(μm)が下記の(4)式を満足するフェライト結晶粒の前記位置におけるフェライトの占める面積割合が80%以上であることを特徴とする請求項1に記載の熱延鋼板。
D/3≦d≦3D・・・・・・・・・・・・・・・・(4)式
ここで、Dは鋼板表面から板厚の1/4の深さ位置におけるフェライトの平均結晶粒径(μm)を示す。
At a depth position of ¼ of the plate thickness from the steel sheet surface, the area ratio of the ferrite crystal grains whose crystal grain diameter d (μm) satisfies the following formula (4) is 80% or more. The hot-rolled steel sheet according to claim 1.
D / 3 ≦ d ≦ 3D (4) where D is the average ferrite crystal at a depth of 1/4 of the plate thickness from the steel plate surface. The particle size (μm) is shown.
質量%で、C:0.01〜0.25%、Si:3%以下、Mn:3%以下、Al:3%以下、P:0.5%以下、Ti:0〜0.3%、Nb:0〜0.1%、V:0〜1%、Cr:0〜1%、Cu:0〜3%、Ni:0〜1%、Mo:0〜1%およびCa+REM+B:0〜0.005%並びに残部Feおよび不純物からなる化学組成を有し、フェライトを50体積%以上含有する炭素鋼または低合金鋼からなる鋼板であって、鋼板表面から板厚の1/4の深さにおけるフェライトの平均結晶粒径D(μm)が下記の(5)式及び(6)式を満足するとともに、鋼板表面から板厚の1/4の深さ位置におけるフェライトの平均結晶粒径の700℃における増加速度X(μm/min)と前記平均結晶粒径D(μm)が下記の(3)式を満足し、
1.2≦D≦9.3・・・・・・・・・・・・・・・・・・・・・・(5)式
D≦5.0−2.0・Cr+5000/(5+350・C+40・Mn)・・(6)式
D・X≦0.1・・・・・・・・・・・・・・・・・・・・・・(3)式
かつ、鋼板表面から板厚の1/4の深さ位置において、結晶粒径d(μm)が下記の(4)式を満足するフェライト結晶粒の前記位置におけるフェライトの占める面積割合が80%以上であることを特徴とする冷延鋼板。
D/3≦d≦3D・・・・・・・・・・・・・・・・(4)式
ここで、C、CrおよびMnは鋼中の各元素の含有量(単位:質量%)を示す。
In mass%, C: 0.01 to 0.25%, Si: 3% or less, Mn: 3% or less, Al: 3% or less, P: 0.5% or less, Ti: 0 to 0.3%, Nb: 0 to 0.1%, V: 0 to 1%, Cr: 0 to 1%, Cu: 0 to 3 %, Ni: 0 to 1%, Mo: 0 to 1% and Ca + REM + B: 0 to 0. 005% , a steel plate made of carbon steel or low alloy steel having a chemical composition consisting of Fe and impurities, and containing 50% by volume or more of ferrite, and ferrite at a depth of 1/4 of the plate thickness from the steel plate surface The average crystal grain size D (μm) satisfies the following formulas (5) and (6), and the average crystal grain size of ferrite at a depth position of ¼ of the plate thickness from the steel plate surface at 700 ° C. The increase rate X (μm / min) and the average crystal grain size D (μm) satisfy the following formula (3):
1.2 ≦ D ≦ 9.3 (5) Formula D ≦ 5.0−2.0 · Cr + 5000 / (5 + 350 · C + 40 · Mn) 2・ ・ (6) Formula D ・ X ≦ 0.1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (3) The ratio of the area occupied by ferrite at the position of the ferrite crystal grains having a crystal grain size d (μm) satisfying the following formula (4) at a depth of 1/4 of the thickness is 80% or more. Cold rolled steel sheet.
D / 3 ≦ d ≦ 3D (4) where C, Cr and Mn are the contents of each element in the steel (unit: mass%) Indicates.
請求項1から3までのいずれかに記載の鋼板において、フェライト以外の第2相として、体積率で、50%未満のベイナイト、30%未満のパーライト、5%未満の粒状セメンタイト、5%未満のマルテンサイトおよび3%未満の残留オーステナイトからなる群から選ばれた1種または2種以上を合計で50%未満含有するとともに、降伏比が0.75以上であることを特徴とする熱延鋼板又は冷延鋼板。  In the steel plate according to any one of claims 1 to 3, as a second phase other than ferrite, the volume ratio is less than 50% bainite, less than 30% pearlite, less than 5% granular cementite, less than 5%. A hot-rolled steel sheet characterized by containing one or two or more selected from the group consisting of martensite and less than 3% retained austenite in a total of less than 50% and having a yield ratio of 0.75 or more, or Cold rolled steel sheet. 請求項1から3までのいずれかに記載の鋼板において、フェライト以外の第2相として、体積率で、5〜40%のマルテンサイトを含有するとともに、降伏比が0.75未満であることを特徴とする熱延鋼板又は冷延鋼板。  The steel sheet according to any one of claims 1 to 3, wherein the second phase other than ferrite contains 5 to 40% martensite by volume and has a yield ratio of less than 0.75. A hot-rolled steel sheet or a cold-rolled steel sheet. 請求項1から3までのいずれかに記載の鋼板において、フェライト以外の第2相として、体積率で、3〜30%の残留オーステナイトを含有するとともに、引張強度TS(MPa)と全伸びEl(%)との積TS×Elが18000(MPa・%)以上であることを特徴とする熱延鋼板又は冷延鋼板。  The steel sheet according to any one of claims 1 to 3, wherein the second phase other than ferrite contains 3 to 30% of retained austenite by volume ratio, and has a tensile strength TS (MPa) and total elongation El ( %) And a product TS × El of 18000 (MPa ·%) or more. 鋼板表面から板厚の1/16の深さ位置における平均結晶粒径Ds(μm)、鋼板表面から板厚の1/4の深さ位置における平均結晶粒径D(μm)、板厚の中心部分における平均結晶粒径Dc(μm)の間に、Ds≦0.75DcおよびD≦0.9Dcなる関係を満足することを特徴とする、請求項1、2、4、5および6のいずれかに記載の熱延鋼板。  Average crystal grain size Ds (μm) at a depth position of 1/16 of the plate thickness from the steel sheet surface, average crystal grain size D (μm) at a depth position of 1/4 of the plate thickness from the steel sheet surface, center of the plate thickness The average crystal grain size Dc (μm) in the portion satisfies a relationship of Ds ≦ 0.75Dc and D ≦ 0.9Dc, according to any one of claims 1, 2, 4, 5 and 6. The hot-rolled steel sheet according to 1. 鋼板表面から板厚の1/16の深さ位置における平均結晶粒径Ds(μm)、板厚の中心部分における平均結晶粒径Dc(μm)の間に、Ds≦0.9Dcなる関係を満足することを特徴とする、請求項3から6までのいずれかに記載の冷延鋼板。  Satisfying the relationship of Ds ≦ 0.9Dc between the average crystal grain size Ds (μm) at the depth position of 1/16 of the plate thickness from the steel sheet surface and the average crystal grain size Dc (μm) at the center of the plate thickness The cold-rolled steel sheet according to any one of claims 3 to 6, wherein 下記の(7)式で定義される炭素当量Ceq(I)が0.06〜0.6%であることを特徴とする、請求項1から8までのいずれかに記載の熱延鋼板又は冷延鋼板。
Ceq(I)=C+Mn/6+Si/24+Cr/5
+Mo/4+Ni/40+V/14・・・・・・・(7)式
ここで、式中の元素記号は各元素の鋼中の含有量(単位:質量%)を示す。
The hot-rolled steel sheet or the cold-rolled steel according to any one of claims 1 to 8, wherein a carbon equivalent Ceq (I) defined by the following formula (7) is 0.06 to 0.6%. Rolled steel sheet.
Ceq (I) = C + Mn / 6 + Si / 24 + Cr / 5
+ Mo / 4 + Ni / 40 + V / 14 (7) Formula Here, the element symbol in the formula indicates the content (unit: mass%) of each element in the steel.
C含有量が0.17質量%以下であり、かつ下記の(8)式で定義される炭素当量Ceq(II)が0.03〜0.20%であり、さらに、下記の(9)式で定義される母材抵抗の指標Rspが45以下であることを特徴とする、請求項1から8までのいずれかに記載の熱延鋼板又は冷延鋼板。
Ceq(II)=C+Mn/100+Si/90+Cr/100・・・(8)式
Rsp=13.5×(Si+Al+0.4Mn+0.4Cr)+12.2・・・(9)式
ここで、式中の元素記号は各元素の鋼中の含有量(単位:質量%)を示す。
The C content is 0.17% by mass or less, the carbon equivalent Ceq (II) defined by the following formula (8) is 0.03 to 0.20%, and the following formula (9) The hot-rolled steel sheet or cold-rolled steel sheet according to any one of claims 1 to 8, wherein the index Rsp of the base material resistance defined by the formula (1) is 45 or less.
Ceq (II) = C + Mn / 100 + Si / 90 + Cr / 100 (8) Formula Rsp = 13.5 × (Si + Al + 0.4Mn + 0.4Cr) +12.2 (9) where the element symbol in the formula Indicates the content of each element in steel (unit: mass%).
請求項1から10までのいずれかに記載の熱延鋼板の表面に、Zn、Al、Zn−Al合金またはFe−Zn合金の被覆層を備えることを特徴とする、溶融めっき熱延鋼板又は冷延鋼板。  A hot-rolled hot-rolled steel sheet or cold-coated steel sheet, comprising a coating layer of Zn, Al, Zn-Al alloy or Fe-Zn alloy on the surface of the hot-rolled steel sheet according to any one of claims 1 to 10. Rolled steel sheet. 炭素鋼又は低合金鋼からなるスラブを多パス熱間圧延して熱延鋼板を製造する方法であって、最終の圧延パスをAr点以上かつ780℃以上の温度で終了し、その後400℃/秒以上の冷却速度で0.4秒以内に720℃以下まで冷却した後、600〜720℃の温度域で2秒以上保持することを特徴とする、請求項1、2、4、5、6、7、9、10および11のいずれかに記載の熱延鋼板の製造方法。A method of producing a hot-rolled steel sheet by multi-pass hot rolling a slab made of carbon steel or low alloy steel, and ending the final rolling pass at a temperature of Ar 3 points or higher and 780 ° C. or higher, and then 400 ° C. After cooling to 720 ° C. or less within 0.4 seconds at a cooling rate of at least / sec, the temperature is maintained at 600 to 720 ° C. for 2 seconds or more, A method for producing a hot-rolled steel sheet according to any one of 6, 7, 9, 10 and 11. 請求項12に記載の方法により得られた熱延鋼板を酸洗後、40〜90%の圧延率で冷間圧延した後、900℃以下の温度で熱処理することを特徴とする、請求項3、4、5、6、8、9および10のいずれかに記載の冷延鋼板の製造方法。  The hot-rolled steel sheet obtained by the method according to claim 12 is pickled, cold-rolled at a rolling rate of 40 to 90%, and then heat-treated at a temperature of 900 ° C or lower. The manufacturing method of the cold-rolled steel plate in any one of 4, 5, 6, 8, 9, and 10. 請求項12に記載の方法により得られた熱延鋼板を酸洗後、もしくは酸洗後さらに40〜90%の圧延率で冷間圧延した後、連続溶融めっきラインにて溶融めっきを施すことを特徴とする、請求項11記載の溶融めっき熱延鋼板または溶融めっき冷延鋼板の製造方法。  The hot-rolled steel sheet obtained by the method according to claim 12 is pickled or cold-rolled at a rolling rate of 40 to 90% after pickling and then hot-plated in a continuous hot dipping line. The method for producing a hot-dip hot-rolled steel sheet or hot-rolled cold-rolled steel sheet according to claim 11.
JP2007529525A 2005-08-03 2006-08-03 Hot-rolled steel sheet, cold-rolled steel sheet and methods for producing them Active JP5029361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007529525A JP5029361B2 (en) 2005-08-03 2006-08-03 Hot-rolled steel sheet, cold-rolled steel sheet and methods for producing them

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005225803 2005-08-03
JP2005225803 2005-08-03
PCT/JP2006/315390 WO2007015541A1 (en) 2005-08-03 2006-08-03 Hot rolled steel sheet, cold rolled steel sheet and process for producing the same
JP2007529525A JP5029361B2 (en) 2005-08-03 2006-08-03 Hot-rolled steel sheet, cold-rolled steel sheet and methods for producing them

Publications (2)

Publication Number Publication Date
JPWO2007015541A1 JPWO2007015541A1 (en) 2009-02-19
JP5029361B2 true JP5029361B2 (en) 2012-09-19

Family

ID=37708821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007529525A Active JP5029361B2 (en) 2005-08-03 2006-08-03 Hot-rolled steel sheet, cold-rolled steel sheet and methods for producing them

Country Status (5)

Country Link
US (4) US7731808B2 (en)
JP (1) JP5029361B2 (en)
KR (1) KR100979854B1 (en)
CN (5) CN102242307B (en)
WO (1) WO2007015541A1 (en)

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008110670A1 (en) 2007-03-14 2008-09-18 Arcelormittal France Steel for hot working or quenching with a tool having an improved ductility
US8803023B2 (en) * 2007-11-29 2014-08-12 Isg Technologies Seam welding
EP2072630A1 (en) * 2007-12-21 2009-06-24 ArcelorMittal Commercial RPS S.à r.l. Corrosion resistant steel for marine applications
JP5093029B2 (en) * 2008-09-29 2012-12-05 住友金属工業株式会社 Cold rolled steel sheet and method for producing the same
JP2010077512A (en) * 2008-09-29 2010-04-08 Sumitomo Metal Ind Ltd Method for producing cold-rolled steel sheet
JP5035297B2 (en) * 2009-05-28 2012-09-26 住友金属工業株式会社 Hot-rolled steel sheet and manufacturing method thereof
WO2011055373A1 (en) * 2009-11-03 2011-05-12 The Secretary, Department Of Atomic Energy,Govt.Of India. Niobium based superconducting radio frequency (scrf) cavities comprising niobium components joined by laser welding; method and apparatus for manufacturing such cavities
JP5446885B2 (en) * 2010-01-06 2014-03-19 新日鐵住金株式会社 Cold rolled steel sheet manufacturing method
JP5446886B2 (en) * 2010-01-06 2014-03-19 新日鐵住金株式会社 Cold rolled steel sheet manufacturing method
JP5187320B2 (en) * 2010-01-06 2013-04-24 新日鐵住金株式会社 Cold rolled steel sheet manufacturing method
JP5533144B2 (en) * 2010-03-31 2014-06-25 新日鐵住金株式会社 Hot-dip cold-rolled steel sheet and manufacturing method thereof
JP5533145B2 (en) * 2010-03-31 2014-06-25 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5533143B2 (en) * 2010-03-31 2014-06-25 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5533146B2 (en) * 2010-03-31 2014-06-25 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5413276B2 (en) * 2010-03-31 2014-02-12 新日鐵住金株式会社 Hot-rolled steel sheet and manufacturing method thereof
WO2011135700A1 (en) * 2010-04-28 2011-11-03 住友金属工業株式会社 Hot rolled dual phase steel sheet having excellent dynamic strength, and method for producing same
EP2578711B1 (en) * 2010-05-27 2019-10-09 Nippon Steel Corporation Steel sheet and a method for its manufacture
JP5499956B2 (en) * 2010-07-02 2014-05-21 新日鐵住金株式会社 Hot-rolled steel sheet and manufacturing method thereof
US9435013B2 (en) 2010-08-23 2016-09-06 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet and process for production thereof
EP2631314B1 (en) * 2010-10-18 2019-09-11 Nippon Steel Corporation Hot-rolled, cold-rolled, and plated steel sheet having improved uniform and local ductility at a high strain rate
US9896736B2 (en) 2010-10-22 2018-02-20 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot stamped body having vertical wall and hot stamped body having vertical wall
MX348196B (en) 2010-10-22 2017-06-05 Nippon Steel & Sumitomo Metal Corp Method for manufacturing hot stamped body having vertical wall, and hot stamped body having vertical wall.
BR112013009520B1 (en) 2010-10-22 2019-05-07 Nippon Steel & Sumitomo Metal Corporation METHODS FOR CHASSI HOT PRINTING AND CHASSI HOT PRINTING
JP5408383B2 (en) 2011-03-28 2014-02-05 新日鐵住金株式会社 Cold-rolled steel sheet and manufacturing method thereof
JP5549640B2 (en) * 2011-05-18 2014-07-16 Jfeスチール株式会社 High carbon steel sheet and method for producing the same
JP5594226B2 (en) * 2011-05-18 2014-09-24 Jfeスチール株式会社 High carbon steel sheet and method for producing the same
TWI470092B (en) * 2011-05-25 2015-01-21 Nippon Steel & Sumitomo Metal Corp Cold rolled steel sheet and manufacturing method thereof
JP5618917B2 (en) * 2011-06-23 2014-11-05 株式会社神戸製鋼所 Machine structural steel for cold working, method for producing the same, and machine structural parts
US10174392B2 (en) 2011-07-06 2019-01-08 Nippon Steel & Sumitomo Metal Corporation Method for producing cold-rolled steel sheet
CA2841064C (en) 2011-07-06 2016-07-12 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvanized cold-rolled steel sheet and process for producing same
JP5644703B2 (en) * 2011-07-06 2014-12-24 新日鐵住金株式会社 Cold rolled steel sheet manufacturing method
JP5648596B2 (en) * 2011-07-06 2015-01-07 新日鐵住金株式会社 Cold rolled steel sheet manufacturing method
BR112014000063A2 (en) 2011-07-06 2017-02-14 Nippon Steel & Sumitomo Metal Corp cold rolled steel sheet
JP5644704B2 (en) * 2011-07-06 2014-12-24 新日鐵住金株式会社 Cold rolled steel sheet manufacturing method
JP5648597B2 (en) * 2011-07-06 2015-01-07 新日鐵住金株式会社 Cold rolled steel sheet manufacturing method
CN103732775B (en) * 2011-07-27 2016-08-24 新日铁住金株式会社 Stretch flange and the excellent high strength cold rolled steel plate of fine-edge blanking and manufacture method thereof
MX349893B (en) * 2011-08-09 2017-08-18 Nippon Steel & Sumitomo Metal Corp Hot-rolled steel sheet having high yield ratio and excellent low-temperature impact energy absorption and haz softening resistance and method for producing same.
JP5668642B2 (en) * 2011-08-23 2015-02-12 新日鐵住金株式会社 Hot-rolled steel sheet and manufacturing method thereof
TWI464279B (en) * 2011-10-19 2014-12-11 Jfe Steel Corp High strength steel sheet and method for manufacturing the same
ES2640315T3 (en) * 2012-01-13 2017-11-02 Nippon Steel & Sumitomo Metal Corporation Hot rolled steel sheet and manufacturing method for it
JP5464302B2 (en) * 2012-02-22 2014-04-09 新日鐵住金株式会社 Cold-rolled steel sheet and manufacturing method thereof
PL2818569T3 (en) 2012-02-22 2018-09-28 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet and process for manufacturing same
JP5447564B2 (en) * 2012-03-16 2014-03-19 新日鐵住金株式会社 Cold rolled steel sheet manufacturing method
JP5860343B2 (en) * 2012-05-29 2016-02-16 株式会社神戸製鋼所 High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same
JP5874581B2 (en) * 2012-08-28 2016-03-02 新日鐵住金株式会社 Hot rolled steel sheet
RU2495942C1 (en) * 2012-09-11 2013-10-20 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Method of producing higher-strength hot-rolled stock
WO2014093744A1 (en) * 2012-12-13 2014-06-19 Thyssenkrupp Steel Usa, Llc Process for making cold-rolled dual phase steel sheet
JP5716760B2 (en) * 2013-01-10 2015-05-13 新日鐵住金株式会社 Cold rolled steel sheet manufacturing method
JP5776763B2 (en) * 2013-12-27 2015-09-09 新日鐵住金株式会社 Hot-dip cold-rolled steel sheet and manufacturing method thereof
JP5776764B2 (en) * 2013-12-27 2015-09-09 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5776762B2 (en) * 2013-12-27 2015-09-09 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5776761B2 (en) * 2013-12-27 2015-09-09 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
MX2017002410A (en) * 2014-08-25 2017-05-23 Tata Steel Ijmuiden Bv Cold rolled high strength low alloy steel.
KR101693522B1 (en) * 2014-12-24 2017-01-06 주식회사 포스코 Grain oriented electrical steel having excellent magnetic properties and method for manufacturing the same
CN104651719A (en) * 2015-03-05 2015-05-27 苏州市凯业金属制品有限公司 Novel weldable metal product
CN104674118B (en) * 2015-03-09 2016-09-28 中天钢铁集团有限公司 A kind of containing chromium Low Carbon Iron silk screen steel and production method thereof
US10655194B2 (en) 2015-03-25 2020-05-19 Jfe Steel Corporation High-strength steel sheet and method for producing the same
US10480042B2 (en) * 2015-04-10 2019-11-19 The Nanosteel Company, Inc. Edge formability in metallic alloys
US20180209011A1 (en) 2015-07-17 2018-07-26 Salzgitter Flachstahl Gmbh Method of producing a hot strip of a bainitic multi-phase steel having a zn-mg-al coating, and a corresponding hot strip
CN105483531A (en) * 2015-12-04 2016-04-13 重庆哈工易成形钢铁科技有限公司 Steel for stamping formation and forming component and heat treatment method thereof
RU2696996C1 (en) * 2015-12-04 2019-08-08 Арконик Инк. Sheet subject to electric discharge texturing
CN106435390A (en) * 2016-08-31 2017-02-22 芜湖市和蓄机械股份有限公司 High-strength connecting base casting raw material formula and preparing technology thereof
US11732341B2 (en) * 2016-10-19 2023-08-22 Nippon Steel Corporation Metal coated steel sheet, manufacturing method of hot-dip galvanized steel sheet, and manufacturing method of alloyed galvannealed steel sheet
CN109963958B (en) * 2016-11-16 2021-04-20 杰富意钢铁株式会社 High-strength steel sheet and method for producing same
KR101889193B1 (en) * 2016-12-22 2018-08-16 주식회사 포스코 Cold-rolled steel sheet having excellent corrosion resistance and formability and method for manufacturing the same
KR101977474B1 (en) * 2017-08-09 2019-05-10 주식회사 포스코 Plated steel sheet having excellent surface quality, strength and ductility
US20190071747A1 (en) * 2017-09-07 2019-03-07 GM Global Technology Operations LLC Method of heat treating steel
CN113226614B (en) * 2018-12-26 2023-04-28 日本制铁株式会社 Welded structure
CN112746235A (en) * 2020-12-30 2021-05-04 新冶高科技集团有限公司 Production process of thick-specification small-spangle aluminum-zinc-silicon coating steel plate and steel plate
CN113073262B (en) * 2021-03-24 2022-05-10 东北大学 Double-gradient ultrafine-grained steel plate with excellent ultralow-temperature toughness and preparation method thereof
CN113667903B (en) * 2021-08-11 2022-05-06 浙江久立特材科技股份有限公司 Stepped structure austenitic stainless steel, seamless pipe and preparation method and application thereof
DE102021212902A1 (en) * 2021-11-17 2023-05-17 Sms Group Gmbh Process for producing a hot strip from a fine-grain steel material
CN114086071B (en) * 2021-11-19 2022-10-18 本钢板材股份有限公司 Low-cost 1200 Mpa-grade cold-rolled high-strength martensitic steel and manufacturing method thereof
CN114633009B (en) * 2022-03-30 2023-06-20 鞍钢股份有限公司 Method for reducing strip breakage of narrow lap joint weld of aluminum-zinc plated product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176782A (en) * 1995-12-25 1997-07-08 Nippon Steel Corp Building use high tensile strength steel excellent in fracture resistance and its production
JPH1017982A (en) * 1996-06-28 1998-01-20 Nippon Steel Corp High tensile strength steel material with low yield ratio for construction use, excellent in fracture resistance, and its production
JPH111747A (en) * 1997-06-06 1999-01-06 Kawasaki Steel Corp High tensile strength hot rolled steel plate having superfine grain and excellent in ductility, toughness, fatigue resistance, and balance between strength and elongation, and its production
JPH11152544A (en) * 1997-09-11 1999-06-08 Kawasaki Steel Corp Hot rolled steel sheet for working having ultrafine grain, its production and production of cold rolled steel sheet
JP2002180187A (en) * 2000-10-06 2002-06-26 Nippon Steel Corp High strength and high toughness weather resistant steel having excellent shade weather resistance

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205447A (en) 1983-05-02 1984-11-21 Nippon Steel Corp Ultra-fine grain ferrite steel and preparation thereof
TW426744B (en) * 1997-09-11 2001-03-21 Kawasaki Steel Co Hot rolled steel plate to be processed having hyper fine particles, method of manufacturing the same, and method of manufacturing cold rolled steel plate
CA2297291C (en) * 1999-02-09 2008-08-05 Kawasaki Steel Corporation High tensile strength hot-rolled steel sheet and method of producing the same
WO2001020051A1 (en) * 1999-09-16 2001-03-22 Nkk Corporation Steel thin plate having high strength and method for production thereof
US20030015263A1 (en) * 2000-05-26 2003-01-23 Chikara Kami Cold rolled steel sheet and galvanized steel sheet having strain aging hardening property and method for producing the same
EP1498506B1 (en) 2000-05-26 2006-06-28 JFE Steel Corporation High tensile strength cold-rolled steel sheet having a high r-value, excellent strain age hardenability and natural aging resistance and method of producing the same
JP4062118B2 (en) * 2002-03-22 2008-03-19 Jfeスチール株式会社 High-tensile hot-rolled steel sheet with excellent stretch characteristics and stretch flange characteristics and manufacturing method thereof
KR100949694B1 (en) * 2002-03-29 2010-03-29 제이에프이 스틸 가부시키가이샤 Cold rolled steel sheet having ultrafine grain structure and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176782A (en) * 1995-12-25 1997-07-08 Nippon Steel Corp Building use high tensile strength steel excellent in fracture resistance and its production
JPH1017982A (en) * 1996-06-28 1998-01-20 Nippon Steel Corp High tensile strength steel material with low yield ratio for construction use, excellent in fracture resistance, and its production
JPH111747A (en) * 1997-06-06 1999-01-06 Kawasaki Steel Corp High tensile strength hot rolled steel plate having superfine grain and excellent in ductility, toughness, fatigue resistance, and balance between strength and elongation, and its production
JPH11152544A (en) * 1997-09-11 1999-06-08 Kawasaki Steel Corp Hot rolled steel sheet for working having ultrafine grain, its production and production of cold rolled steel sheet
JP2002180187A (en) * 2000-10-06 2002-06-26 Nippon Steel Corp High strength and high toughness weather resistant steel having excellent shade weather resistance

Also Published As

Publication number Publication date
US20100263767A1 (en) 2010-10-21
US20100209283A1 (en) 2010-08-19
CN101238233B (en) 2012-11-28
CN102242308B (en) 2013-03-27
JPWO2007015541A1 (en) 2009-02-19
CN101238233A (en) 2008-08-06
CN102242307A (en) 2011-11-16
KR20080027948A (en) 2008-03-28
US7879164B2 (en) 2011-02-01
WO2007015541A1 (en) 2007-02-08
CN102242308A (en) 2011-11-16
US8257517B2 (en) 2012-09-04
CN102251087A (en) 2011-11-23
CN102242306B (en) 2013-03-27
KR100979854B1 (en) 2010-09-02
US7927433B2 (en) 2011-04-19
US7731808B2 (en) 2010-06-08
CN102242307B (en) 2013-03-27
CN102242306A (en) 2011-11-16
CN102251087B (en) 2013-03-27
US20080202639A1 (en) 2008-08-28
US20110162760A1 (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5029361B2 (en) Hot-rolled steel sheet, cold-rolled steel sheet and methods for producing them
US10745775B2 (en) Galvannealed steel sheet and method for producing the same
JP6544494B1 (en) High strength galvanized steel sheet and method of manufacturing the same
JP4700764B2 (en) High-strength cold-rolled steel sheet excellent in formability and weldability, high-strength galvanized steel sheet, high-strength galvannealed steel sheet, and methods for producing them
JP5068688B2 (en) Hot-rolled steel sheet with excellent hole expansion
JP6525114B1 (en) High strength galvanized steel sheet and method of manufacturing the same
JP6394812B2 (en) Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
JP2019506530A (en) High strength steel plate having excellent formability and method of manufacturing the same
JP6308333B2 (en) Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
JP5412746B2 (en) High strength steel plate with good weldability and stretch flangeability
EP2527484B1 (en) Method for manufacturing a high-strength galvanized steel sheet having excellent formability and spot weldability
JP6950826B2 (en) High-strength steel sheet, hot-rolled steel sheet manufacturing method, cold-rolled full-hard steel sheet manufacturing method, and high-strength steel sheet manufacturing method
JP2013221198A (en) Cold rolled steel sheet and method for producing the same
JP6769576B1 (en) High-strength galvanized steel sheet and its manufacturing method
JP2014043631A (en) Method of manufacturing fine grain steel sheet
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4436275B2 (en) High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and methods for producing them
JP2002256387A (en) Galvannealed high tensile strength steel sheet and production method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Ref document number: 5029361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350