JPH11152544A - Hot rolled steel sheet for working having ultrafine grain, its production and production of cold rolled steel sheet - Google Patents

Hot rolled steel sheet for working having ultrafine grain, its production and production of cold rolled steel sheet

Info

Publication number
JPH11152544A
JPH11152544A JP25627298A JP25627298A JPH11152544A JP H11152544 A JPH11152544 A JP H11152544A JP 25627298 A JP25627298 A JP 25627298A JP 25627298 A JP25627298 A JP 25627298A JP H11152544 A JPH11152544 A JP H11152544A
Authority
JP
Japan
Prior art keywords
steel sheet
rolled steel
less
hot
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25627298A
Other languages
Japanese (ja)
Other versions
JP3386726B2 (en
Inventor
Hideko Yasuhara
英子 安原
Masahiko Morita
正彦 森田
Osamu Furukimi
古君  修
Susumu Okada
岡田  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26537908&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11152544(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25627298A priority Critical patent/JP3386726B2/en
Publication of JPH11152544A publication Critical patent/JPH11152544A/en
Application granted granted Critical
Publication of JP3386726B2 publication Critical patent/JP3386726B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a hot rolled steel sheet which contains ultrafine grains and is small in the anisotropy of mechanical properties by regulating the average ferrite grain size and the aspect ratio of ferrite grains to < specified value and regulating the ratio of the average ferrite grain size to the average grain size of the secondary phase to a specified range. SOLUTION: The average ferrite grain size in regulated to <2 μm, the aspect ratio of ferrite grains is regulated to <1.5, and the average ferrite grain size dm (μm) and the average grain size ds (μm) of the secondary phase satisfy 0.3<dm/ds<3. The compsn. of the steel sheet preferably has a compsn. contg., by weight, 0.01 to 0.3% C, <=3.0% Si, <=3.0% Mn and <=0.5% P, contg. the other metals by 0 to 0.005% in total, and the balance substantial iron. The stock for a hot rolled steel sheet is melted is immediately or temporarily cooled and is heated to <=1200 deg.C, and at the time of subjecting it to hot rolling, the rolling reduction in the dynamic recrystallization region is executed by the passes of >=5 stands.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、自動車用、家電
用、機械構造用、建築用などの使途に適用して有利な、
熱延のままで平均粒径2μm 未満の超微細フェライト粒
を有し、延性、じん性、疲労強度などに優れ、更にはこ
れらの特性の異方性が小さい熱延鋼板とその製造方法に
関する。また、上記熱延鋼板を素材とする加工性に優れ
た冷延鋼板に関する。
TECHNICAL FIELD The present invention is advantageous when applied to uses for automobiles, home appliances, mechanical structures, constructions, etc.
The present invention relates to a hot-rolled steel sheet which has ultrafine ferrite grains having an average grain size of less than 2 μm as hot-rolled, is excellent in ductility, toughness, fatigue strength and the like, and has a small anisotropy of these properties, and a method for producing the same. In addition, the present invention relates to a cold-rolled steel sheet having excellent workability using the hot-rolled steel sheet as a material.

【0002】[0002]

【従来の技術】自動車用材、構造材などに用いられる鋼
材には、強度、加工性、じん性といった機械的性質に優
れることが求められる。これらの機械的性質を総合的に
高めるには組織を微細化することが有効であることか
ら、微細な組織をめざす製造方法が数多く模索されてい
る。また、高張力鋼板においては、近年、低コストと高
機能特性を両立できる高張力鋼板のニーズが強く、か
つ、このニーズに適合する鋼板の開発に目標が移行しつ
つあり、高張力化に伴う延性、じん性、耐久比などの劣
化を抑える目的で高張力鋼の組織の微細化が重要な課題
となっている。更に、同じく自動車用材などに用いられ
る冷延鋼板においては、素材とする熱延鋼板の細粒化が
加工性、特にr値(ランクフォード値)の向上に有効で
あるとされており、冷延母材としての熱延鋼板の組織の
細粒化も重要な課題となっている。
2. Description of the Related Art Steel materials used for automobile materials and structural materials are required to have excellent mechanical properties such as strength, workability and toughness. Since it is effective to refine the structure to comprehensively enhance these mechanical properties, many production methods aiming at the fine structure are being sought. In recent years, with regard to high-tensile steel sheets, there is a strong need for high-tensile steel sheets that can achieve both low cost and high-performance characteristics, and the target is shifting to the development of steel sheets that meet these needs. For the purpose of suppressing deterioration of ductility, toughness, durability ratio, and the like, miniaturization of the structure of high-strength steel is an important issue. Furthermore, in cold-rolled steel sheets also used for automobile materials, it is said that the grain refinement of the hot-rolled steel sheets used as the material is effective in improving workability, particularly r-value (Rankford value). Refining the structure of a hot-rolled steel sheet as a base material is also an important issue.

【0003】従来技術における組織の微細化手段を総括
すると、大圧下圧延法、制御圧延法、制御冷却法などが
ある。このうち、大圧下圧延による組織微細化法として
は、例えば特開昭58−123823号公報などに代表
される提案がある。これらの方法における微細化機構の
要点は、オーステナイト粒に大圧下を加えることによる
γ→α歪誘起変態を促進させることにあり、かかる方法
により、ある程度の微細化は達成される。しかし、一パ
ス当たりの圧下量を40%以上にするなど、一般的なホッ
トストリップミルでは実現し難いという製造上の問題が
ある。しかも、かかる実現し難い製造条件のために得ら
れる最終組織の微細化には限界があり、平均結晶粒径は
せいぜい5μm 程度までであった。また、大圧下圧延に
よって結晶粒は偏平となるため、機械的特性に異方性が
生じたり、セパレーションにより破壊吸収エネルギーが
低下するという問題もあった。
[0003] In general, means for refining the structure in the prior art include a large rolling reduction method, a controlled rolling method and a controlled cooling method. Among them, there is proposed a method of refining the structure by large rolling reduction, which is represented by, for example, JP-A-58-123823. The essential point of the refining mechanism in these methods is to promote the γ → α strain-induced transformation by applying a large pressure to the austenite grains, and a certain degree of refining is achieved by such a method. However, there is a manufacturing problem that it is difficult to realize with a general hot strip mill, such as making the rolling reduction per pass 40% or more. In addition, the refinement of the final structure obtained due to such difficult-to-realize manufacturing conditions has a limit, and the average crystal grain size is at most about 5 μm. In addition, since the crystal grains are flattened by the high rolling reduction, there is a problem that anisotropy occurs in the mechanical properties and the fracture absorption energy decreases due to separation.

【0004】一方、制御圧延法や制御冷却法に属する結
晶微細化法を適用した鋼板としては、NbもしくはTiを含
む析出強化型鋼板がある。これらの鋼板は、Nb、Tiの析
出強化作用を利用して高張力化を図るとともに、Nb、Ti
がそなえるオーステナイト粒の再結晶抑制作用を利用し
て、低温仕上圧延を施したときの未再結晶変形オーステ
ナイト粒からのγ→α歪誘起変態によってフェライト結
晶粒を微細化するものである。しかし、これらの鋼板は
機械的性質の異方性が大きい点に問題があり、例えば、
プレス成形を施す自動車用鋼板などでは、成形限界は最
も延性の劣る方向での特性水準によって決まるので、こ
のように異方性の大きい鋼板では組織を微細化した効果
が特性として全く現れない場合がある。構造材などに用
いた場合も同様であり、構造材において重要なじん性、
疲労強度などの異方性が大きくなるため組織を微細化し
た効果が特性として全く現れない場合がある。更に、こ
れらのいずれの方法においても、得られる粒径はせいぜ
い2μm 程度であった。また、熱間圧延直後に急冷処理
を行うことにより、粒成長を抑制する手段も知られてい
るが(例えば、特公平4−11608号公報)、この方
法によっても、4μm 程度の細粒が限度である。
On the other hand, as a steel sheet to which a crystal refinement method belonging to a controlled rolling method or a controlled cooling method is applied, there is a precipitation strengthened steel sheet containing Nb or Ti. These steel sheets use the precipitation strengthening action of Nb and Ti to increase the tensile strength,
Utilizing the recrystallization inhibiting action of austenite grains provided by the method, ferrite grains are refined by γ → α strain-induced transformation from unrecrystallized deformed austenite grains when subjected to low-temperature finish rolling. However, these steel sheets have a problem in that the anisotropy of mechanical properties is large, for example,
In the case of automotive steel sheets subjected to press forming, the forming limit is determined by the characteristic level in the direction in which ductility is the least ductile.Therefore, in such a highly anisotropic steel sheet, the effect of refining the structure may not appear as a characteristic at all. is there. The same applies when used for structural materials, etc.
Since the anisotropy such as fatigue strength increases, the effect of making the structure finer may not appear as a characteristic at all. Further, in any of these methods, the particle size obtained was at most about 2 μm. There is also known a means for suppressing grain growth by performing a quenching treatment immediately after hot rolling (for example, Japanese Patent Publication No. 4-1608), but this method also limits fine grains of about 4 μm. It is.

【0005】[0005]

【発明が解決しようとする課題】上述したように従来技
術においては、到達できる最終フェライト粒径は、2μ
m が限界であった。結晶粒の微細化による機械的性質の
改善効果は、結晶粒径の平方根に逆比例することから、
この改善効果は、粒径が2μm 以上の領域では緩慢な向
上しか見られないが、2μm 未満の結晶粒径が実現され
るならば、大幅な特性向上が達成できる。
As described above, in the prior art, the achievable final ferrite grain size is 2 μm.
m was the limit. Since the effect of improving mechanical properties by refining crystal grains is inversely proportional to the square root of the crystal grain size,
Although this improvement effect only shows a gradual improvement in the region where the grain size is 2 μm or more, a significant improvement in characteristics can be achieved if the crystal grain size of less than 2 μm is realized.

【0006】この発明は、従来技術が抱える問題を解決
し、一般のホットストリップミルで容易に実施可能で、
かつ、機械的性質の異方性が少なく、しかも従来技術で
達成できなかった最終フェライト粒径2μm 未満の超微
細粒を達成した加工用熱延鋼板や冷延鋼板用母材を、そ
の有利な製造方法とともに提案することを目的とする。
[0006] The present invention solves the problems of the prior art, and can be easily implemented with a general hot strip mill.
In addition, the base material for hot-rolled steel sheets and cold-rolled steel sheets, which have low anisotropy of mechanical properties and achieve ultra-fine grains having a final ferrite grain size of less than 2 μm, which could not be achieved by the prior art, is advantageous. The purpose is to propose with the manufacturing method.

【0007】[0007]

【課題を解決するための手段】この発明は、フェライト
を主相とする熱延鋼板であって、平均のフェライト粒径
が2μm 未満、フェライト粒のアスペクト比が1.5 未満
であることを特徴とする、超微細粒を有する加工用熱延
鋼板である。また、この発明は、フェライトを主相とす
る熱延鋼板であって、平均のフェライト粒径が2μm 未
満、フェライト粒のアスペクト比が1.5 未満であり、平
均のフェライト粒径dm(μm )と第2相の平均結晶粒径
ds(μm )とが、次式 0.3 <dm/ds<3 を満たす超微細粒を有する加工用熱延鋼板である。更
に、この発明は、フェライトを主相とする熱延鋼板であ
って、平均のフェライト粒径が2μm 未満、フェライト
粒のアスペクト比が1.5 未満であり、平均のフェライト
粒径dm(μm )と第2相の平均結晶粒径ds(μm )と
が、次式 0.3 <dm/ds<3 を満たし、直近の第2相粒子相互の間隔が該第2相の結
晶粒半径の2倍未満となる割合が10%未満になる第2相
を有する超微細粒を有する加工用熱延鋼板である。この
発明の加工用熱延鋼板の好適成分組成範囲は、C:0.01
〜0.3 wt%、Si:3.0 wt%以下、Mn:3.0 wt%以下、
P:0.5 wt%以下を含み、かつ、Ti:0〜1.0 wt%、N
b:0〜1.0 wt%、V:0〜1.0 wt%、Cr:0〜1.0 wt
%、Cu:0〜3.0 wt%、Mo:0〜1.0 wt%、Ni:0〜1.
0 wt%、の1種又は2種以上、Ca、REM、Bの1種又は
2種以上を合計で0〜0.005 wt%を含有し、残部は実質
的に鉄の組成である。また、上記好適成分組成のうち、
Mn量を0.5 wt%以上含有する場合の第2相には、マルテ
ンサイト、ベイナイト、残留オーステナイト、パーライ
ト及び針状フェライトの1種又は2種以上を含有する組
織がある。更に、この発明は、熱延鋼板用素材を溶製
し、直ちに又は一旦冷却して1200℃以下に加熱して熱間
圧延を施す際、動的再結晶域での圧下を5スタンド以上
の圧下パスにて行うことを特徴とする超微細粒を有する
加工用熱延鋼板の製造方法である。また、この発明の加
工用熱延鋼板は、焼付硬化量が100 MPa 以上であること
が、より好ましい。この発明の加工用熱延鋼板の製造方
法においては、仕上圧延設備のロールスタンド間に設け
た加熱手段によりロール又は鋼板の加熱を行うことがで
きる。また、この発明の加工用熱延鋼板は、超微細粒を
有する冷延鋼板用の母材としすることができ、このかか
る超微細粒を有する冷延鋼板を製造するには、該冷延鋼
板用母材に、圧下率50〜90%の冷間圧延、次いで600 ℃
〜Ac3 変態点以下での焼鈍を施す方法がある。
The present invention is a hot-rolled steel sheet containing ferrite as a main phase, characterized in that the average ferrite grain size is less than 2 μm and the aspect ratio of the ferrite grains is less than 1.5. , A hot-rolled steel sheet for processing having ultra-fine grains. The present invention also relates to a hot-rolled steel sheet containing ferrite as a main phase, wherein the average ferrite grain size is less than 2 μm, the aspect ratio of the ferrite grains is less than 1.5, and the average ferrite grain size is dm (μm). Average grain size of two phases
ds (μm) is a hot-rolled steel sheet for processing having ultrafine grains satisfying the following expression: 0.3 <dm / ds <3. Further, the present invention relates to a hot-rolled steel sheet containing ferrite as a main phase, wherein the average ferrite grain size is less than 2 μm, the aspect ratio of the ferrite grains is less than 1.5, and the average ferrite grain size is dm (μm). The average crystal grain size ds (μm) of the two phases satisfies the following equation: 0.3 <dm / ds <3, and the interval between the nearest second phase particles is less than twice the crystal grain radius of the second phase. This is a hot-rolled steel sheet for processing having ultrafine grains having a second phase in which the ratio is less than 10%. The preferred composition range of the hot-rolled steel sheet for processing according to the present invention is C: 0.01.
~ 0.3 wt%, Si: 3.0 wt% or less, Mn: 3.0 wt% or less,
P: 0.5 wt% or less, Ti: 0 to 1.0 wt%, N
b: 0 to 1.0 wt%, V: 0 to 1.0 wt%, Cr: 0 to 1.0 wt%
%, Cu: 0 to 3.0 wt%, Mo: 0 to 1.0 wt%, Ni: 0 to 1.
0 wt%, one or more of Ca, REM, B, and one or more of them in total from 0 to 0.005 wt%, with the balance being substantially iron. Further, among the above preferred component compositions,
When the Mn content is 0.5 wt% or more, the second phase has a structure containing one or more of martensite, bainite, retained austenite, pearlite, and acicular ferrite. Further, the present invention provides a method for producing a material for hot-rolled steel sheet, immediately or once cooled and heated to 1200 ° C. or less to perform hot rolling, wherein the reduction in the dynamic recrystallization region is reduced by 5 stands or more. This is a method for producing a hot-rolled steel sheet for processing having ultrafine grains, which is performed in a pass. Further, the hot-rolled steel sheet for processing of the present invention more preferably has a bake hardening amount of 100 MPa or more. In the method for producing a hot-rolled steel sheet for processing according to the present invention, the roll or the steel sheet can be heated by the heating means provided between the roll stands of the finish rolling equipment. Further, the hot-rolled steel sheet for processing of the present invention can be used as a base material for a cold-rolled steel sheet having ultra-fine grains. Cold rolling at 50-90% reduction rate, then 600 ° C
There is a method of performing annealing at a temperature not higher than the Ac 3 transformation point.

【0008】なお、この発明において、フェライト粒の
アスペクト比とは、フェライト粒の長径と短径との比を
いう。実用上は、フェライト粒は圧延方向に伸びるの
で、圧延方向断面上の長径と短径の比で代用される。ま
た、この発明において、フェライト粒の平均粒径は、常
法に従い、圧延方向断面における平均粒径とする。第2
相の平均結晶粒径とは、結晶組織写真により主相である
フェライト以外の組織の面積と結晶の数を求めて、該面
積を有する円相当の径(直径)に換算し測定したもので
ある。個々の第2相粒径を求める場合も、円相当に換算
するものとする。鋼板が、フェライトを主相とすると
は、フェライト相が体積分率で50%以上有することをい
う。また、この発明の鋼板において、成分組成範囲でTi
量などの含有量の下限が0%であるのは、それらの成分
を添加しない場合があることを意味する。
[0008] In the present invention, the aspect ratio of ferrite grains refers to the ratio between the major axis and the minor axis of the ferrite grains. Practically, since the ferrite grains extend in the rolling direction, the ratio of the major axis to the minor axis on the cross section in the rolling direction is substituted. Further, in the present invention, the average particle size of the ferrite particles is defined as the average particle size in a cross section in the rolling direction according to a conventional method. Second
The average crystal grain size of a phase is obtained by measuring the area and the number of crystals of a structure other than ferrite, which is the main phase, from a crystal structure photograph, and converting it into a diameter (diameter) equivalent to a circle having the area. . Also in the case of obtaining the individual second phase particle size, it is to be converted into a circle equivalent. A steel sheet having ferrite as a main phase means that the ferrite phase has a volume fraction of 50% or more. Also, in the steel sheet of the present invention, Ti
The lower limit of the content such as the amount being 0% means that those components may not be added in some cases.

【0009】[0009]

【発明の実施の形態】さて、発明者らは、上記問題を解
決すべく研究開発を重ねた結果、熱間圧延時において、
動的再結晶域において繰り返し圧下を行うことにより、
フェライトを超微細粒にすることができることを見出し
た。そして、かかる動的再結晶域での圧下は大圧下とす
る必要がなく、そのため、フェライト粒のアスペクト比
が1.5未満という良好な組織が得られるために、機械的
特性の異方性も解消されることを併せて見出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The inventors have conducted research and development to solve the above problems, and as a result, during hot rolling,
By repeatedly performing reduction in the dynamic recrystallization region,
It has been found that ferrite can be made into ultrafine grains. And it is not necessary to reduce the rolling in the dynamic recrystallization region to a large value, and therefore, a good structure in which the aspect ratio of the ferrite grains is less than 1.5 is obtained. It was also found out.

【0010】上記のような平均のフェライト粒径が2μ
m 未満、フェライト粒のアスペクト比が1.5 未満である
鋼板は、結晶粒が微細であるから、強度、じん性、延性
などの機械的特性が特に優れているばかりでなく、その
異方性も少ない。しかも、粒径が2μm 以上の鋼板に比
べて粒界面積が大きいため、固溶Cが結晶粒界に多くト
ラップされる。したがって、焼付塗装時にかかる固溶C
が粒内に拡散して転位を固着するために、焼付硬化量が
100 MPa 以上の優れた塗装焼付硬化能を具備することが
できる。したがって、成形加工時には容易に加工をする
ことができる一方で、その後の塗装焼付などの熱処理に
より高強度を得ることができるため、自動車用鋼板など
として特に適している。
The average ferrite grain size as described above is 2 μm.
m, and the ferrite grains have an aspect ratio of less than 1.5, because the crystal grains are fine, not only are the mechanical properties such as strength, toughness, and ductility particularly excellent, but also their anisotropy is low. . Moreover, since the grain boundary area is larger than that of a steel sheet having a grain size of 2 μm or more, a large amount of solid solution C is trapped in the crystal grain boundaries. Therefore, solid solution C during baking coating
Is diffused into the grains to fix dislocations,
Excellent paint bake hardening ability of 100 MPa or more. Therefore, it can be easily processed at the time of forming processing, but can obtain high strength by heat treatment such as baking after painting, and is particularly suitable as a steel plate for automobiles.

【0011】そして、主相がフェライトであり、平均の
フェライト粒径が2μm 未満、フェライト粒のアスペク
ト比が1.5 未満の熱延鋼板のなかでも、平均のフェライ
ト粒径dm(μm )と第2相の平均結晶粒径ds(μm )と
が、次式 0.3 <dm/ds<3 を満たす鋼板は、特に結晶粒径の差が小さいので、均一
に変形し、ネッキング、しわ発生、表面性状の不良が発
生しにくい。このため、加工性が良好で、特に穴拡げを
施すような加工方法に適している。また、疲労特性、破
壊靱性も極めて良好となる。
Among the hot-rolled steel sheets whose main phase is ferrite, the average ferrite grain size is less than 2 μm, and the aspect ratio of the ferrite grains is less than 1.5, the average ferrite grain size dm (μm) and the second phase The average grain size ds (μm) of the steel sheet satisfying the following equation: 0.3 <dm / ds <3, particularly, has a small difference in crystal grain size, so that the steel sheet is uniformly deformed, necked, wrinkled, and has poor surface properties. Is less likely to occur. For this reason, the workability is good, and it is particularly suitable for a processing method for expanding a hole. Also, the fatigue properties and fracture toughness are extremely good.

【0012】以上のような特質を具備するこの発明に従
う熱延鋼板は、軟鋼板から、自動車構造用鋼板、加工用
自動車高張力用鋼板、家電用鋼板、構造用鋼板などとし
て幅広い分野、用途の鋼板に適用することが可能である
(以下、この明細書で加工用鋼板とは、これらの用途を
全て包含する意味で用いる。)。したがって、DP(Dua
l Phase)鋼やTRIP(Transformation Induced Plasti
city) 鋼などのような第2相としてマルテンサイト、ベ
イナイト、残留オーステナイト、パーライト及び針状フ
ェライトの1種又は2種以上を含有する複合組織鋼板に
適用することができ、また、フェライト単相又は第2相
として少量のパーライトないしはセメンタイトを含有す
る組織になる鋼板とすることも可能である。さらに、S
量を0.002 wt%以下に低減して、穴拡げ性と疲労亀裂の
伝播停止特性を向上させて、自動車のホイール用の鋼板
としても用いることができる。
The hot-rolled steel sheet according to the present invention having the above-mentioned characteristics is applicable to a wide range of fields and applications from mild steel sheets to steel sheets for automobile structures, steel sheets for high-strength automobiles for processing, steel sheets for home appliances, structural steel sheets and the like. The present invention can be applied to a steel sheet (hereinafter, the term “steel sheet for processing” in this specification is used in a meaning including all of these uses). Therefore, DP (Dua
l Phase) steel and TRIP (Transformation Induced Plasti
city) can be applied to a composite structure steel sheet containing one or more of martensite, bainite, retained austenite, pearlite, and acicular ferrite as a second phase such as steel. It is also possible to use a steel sheet having a structure containing a small amount of pearlite or cementite as the second phase. Furthermore, S
The amount can be reduced to 0.002 wt% or less to improve hole spreading properties and fatigue crack propagation stopping properties, and can be used as a steel plate for automobile wheels.

【0013】図1に熱延鋼板のフェライト平均粒径と機
械的性質との関係について調べた結果を示す。この調査
は、C:0.03wt%、Si:0.1 wt%、Mn:0.2 wt%、P:
0.01wt%、S:0.003 wt%、Al:0.04wt%を含有する鋼
について1100℃に加熱してから、通常の条件にて粗圧延
を施した後、7スタンドからなる仕上圧延設備により種
々の仕上圧延条件にて圧下を加えて得られた種々のフェ
ライト結晶粒径になる熱延鋼板について行ったものであ
る。粒径2μm 未満の鋼板は、仕上圧延時に、第1スタ
ンド入側の鋼板温度と最終(第7)スタンド出側の鋼板
温度との温度差が60℃以下で得られ、粒径1μm以下
の鋼板は同じく温度差が約30℃以下で得られた。また、
アスペクト比を調べたところ、上記の方法で得られた粒
径2μm 未満の鋼板においては、全て1.5 未満であっ
た。なお、同図における焼付硬化量(BH量)は、2パ
ーセント予歪後、170 ℃で20分加熱し、その後に再度引
張試験を行い、荷重上昇分から求めた。
FIG. 1 shows the results of a study on the relationship between the average ferrite grain size and mechanical properties of a hot-rolled steel sheet. In this investigation, C: 0.03 wt%, Si: 0.1 wt%, Mn: 0.2 wt%, P:
A steel containing 0.01 wt%, S: 0.003 wt%, and Al: 0.04 wt% is heated to 1100 ° C., then subjected to rough rolling under ordinary conditions, and then subjected to various finishing rolling equipment including 7 stands. The test was performed on hot-rolled steel sheets having various ferrite crystal grain sizes obtained by applying rolling under finish rolling conditions. For the steel sheet having a grain size of less than 2 μm, the temperature difference between the steel sheet temperature at the entrance of the first stand and the steel sheet temperature at the exit side of the final (seventh) stand at the time of finish rolling is 60 ° C. or less. Was also obtained at a temperature difference of about 30 ° C. or less. Also,
Examination of the aspect ratio revealed that all of the steel sheets having a grain size of less than 2 μm obtained by the above-mentioned method were less than 1.5. Incidentally, the bake hardening amount (BH amount) in the figure was determined by heating at 170 ° C. for 20 minutes after a 2% prestrain, and then performing a tensile test again to determine the amount of increase in load.

【0014】同図より、フェライト平均結晶粒径を2μ
m 未満にすることにより、2μm 以上の鋼板に比べて、
諸特性が格段に向上することが分かる。かかる傾向は、
実験した成分組成の鋼板のみならず、他の成分系の鋼板
でも同様であった。また、フェライト平均結晶粒径を1
μm 以下にすることにより、諸特性が更に向上した。し
たがって、この発明では、平均のフェライト粒径を2μ
m 未満、フェライト粒のアスペクト比を1.5 未満に限定
する。なお、平均フェライト粒径が2μm 未満のものに
ついて、第2相の粒径を調査したところ、全てdm/dsは
0.5 超〜2未満の範囲内であった。
From the figure, it can be seen that the average ferrite grain size is 2 μm.
m, compared to steel plates of 2 μm or more,
It can be seen that various characteristics are significantly improved. This tendency is
The same was true not only for the steel sheets of the component compositions tested, but also for steel sheets of other component systems. In addition, the average ferrite grain size is 1
Various characteristics were further improved by setting the thickness to μm or less. Therefore, in the present invention, the average ferrite grain size is 2 μm.
m, the aspect ratio of ferrite grains is limited to less than 1.5. When the average ferrite grain size was less than 2 μm, the grain size of the second phase was examined.
It was in the range of more than 0.5 to less than 2.

【0015】この発明のフェライトを主相とする鋼板
は、平均のフェライト粒径dm(μm )と第2相の平均結
晶粒径ds(μm )とが、次式 0.3 <dm/ds<3 を満たすことが、より好適である。これは、主相のフェ
ライトと第2相の結晶とで、結晶粒径に大きな差が生じ
ると、機械的特性が劣化するおそれがあるためである。
これは、結晶粒径の差が大きい場合、加工時の変形が不
均一になるためと考えられる。発明者らが主相と第2相
との結晶粒径の比の好適範囲について検討した結果、0.
3 より大きく、3より小さい場合に機械的特性が良好で
あり、均一な変形が生じることが分かった。より好適に
は、0.5 <dm/ds<2の範囲である。
In the steel sheet having ferrite as a main phase according to the present invention, the average ferrite grain size dm (μm) and the average crystal grain size ds (μm) of the second phase satisfy the following equation: 0.3 <dm / ds <3. It is more preferable to satisfy. This is because if there is a large difference in crystal grain size between the main phase ferrite and the second phase crystal, mechanical properties may be degraded.
This is considered to be because when the difference in crystal grain size is large, deformation during processing becomes non-uniform. As a result of studying the preferred range of the ratio of the crystal grain size between the main phase and the second phase by the inventors, it was found that the ratio was 0.2
It was found that when the value was larger than 3 and smaller than 3, the mechanical properties were good and uniform deformation occurred. More preferably, it is in the range of 0.5 <dm / ds <2.

【0016】また、この発明の鋼板は、第2相に関し
て、直近の第2相粒子相互の間隔が該第2相の結晶粒半
径の2倍未満となる割合が10%未満になる第2相を有す
る超微細粒を有することは、好適である。発明者らが第
2相の分布状態について種々検討した結果、第2相がバ
ンド状もしくは列状(層状)に分布していると機械的特
性、特に伸びフランジ性において十分な改善が得られな
いため、第2相の密集なく、第2相同士が比較的孤立し
て存在する、いわゆる島状の分布形態が望ましいことが
分かった。このように島状に分布した形態を示す評価手
段として、第2相に関して、直近の第2相粒子相互の間
隔が該第2相の結晶粒半径の2倍未満となる割合が10%
未満であれば、特性が向上する。なお、第2相の全体に
対する体積率は3〜30%の範囲が好ましい。
Further, in the steel sheet according to the present invention, with respect to the second phase, the rate at which the interval between the nearest second phase particles is less than twice the crystal grain radius of the second phase is less than 10%. It is preferable to have ultrafine particles having the following. As a result of various studies on the distribution state of the second phase, the inventors have found that if the second phase is distributed in a band shape or a row shape (layer shape), sufficient improvement in mechanical properties, particularly stretch flangeability, cannot be obtained. Therefore, it has been found that a so-called island-like distribution mode in which the second phases are relatively isolated without dense second phases is desirable. As an evaluation means showing such a form distributed in an island shape, as for the second phase, the ratio at which the interval between the nearest second phase particles is less than twice the crystal grain radius of the second phase is 10%.
If it is less than this, the characteristics are improved. The volume ratio of the second phase to the whole is preferably in the range of 3 to 30%.

【0017】この発明の鋼板の好適成分組成範囲は次の
とおりである。 (C:0.01〜0.3 wt%)Cは、安価な強化成分であり、
所望の鋼板強度に応じて必要量を含有させる。C量が0.
01wt%に満たないと、結晶粒が粗大化し、この発明で目
的とするフェライト平均結晶粒径2μm 以下が達成でき
ず、また、0.3 wt%を超えるような多量の添加では、加
工性が劣化するとともに溶接性も劣化するので、0.01〜
0.3 wt%程度にすることが好ましい。なお、フェライト
単相又は第2相として少量(10%以下)のセメンタイト
もしくはパーライトを含有する組織である場合には、C
は0.01〜0.1 wt%程度とするのが好ましい。
The preferred composition range of the steel sheet of the present invention is as follows. (C: 0.01 to 0.3 wt%) C is a cheap reinforcing component,
The necessary amount is added according to the desired steel sheet strength. C content is 0.
If the content is less than 01 wt%, the crystal grains become coarse, and the ferrite average crystal grain size of 2 μm or less, which is the object of the present invention, cannot be achieved, and if added in a large amount exceeding 0.3 wt%, the workability deteriorates. And the weldability also deteriorates.
Preferably, the content is about 0.3 wt%. When the structure contains a small amount (10% or less) of cementite or pearlite as the ferrite single phase or the second phase, C
Is preferably about 0.01 to 0.1 wt%.

【0018】(Si:3.0 wt%以下)Siは、固溶強化成分
として強度−伸びバランスを改善しつつ強度上昇に有効
に寄与し、また、フェライト変態を抑制して、所望の第
2相体積率を持つ組織を得る上で有効に作用するが、過
剰な添加は、延性や表面性状を劣化させるために上限を
3.0 wt%程度とする。より好ましくは、0.05〜2.0 wt%
の範囲である。なお、フェライト単相又は第2相として
少量(10%以下)のセメンタイトもしくはパーライトを
含有する組織である場合には、Siは1.0 wt%以下とする
のが好ましい。
(Si: 3.0 wt% or less) Si effectively contributes to the increase in strength while improving the strength-elongation balance as a solid solution strengthening component, and suppresses ferrite transformation to obtain a desired second phase volume. Works effectively to obtain a texture with high elongation, but excessive addition limits the upper limit to deteriorate ductility and surface properties.
3.0 wt%. More preferably, 0.05 to 2.0 wt%
Range. When the ferrite single phase or the second phase has a structure containing a small amount (10% or less) of cementite or pearlite, the content of Si is preferably 1.0 wt% or less.

【0019】(Mn:3.0 wt%以下)Mnは、Ar3 変態点を
低下させる作用を通じて結晶粒の微細化に寄与し、ま
た、第2相のマルテンサイト化及び残留オーステナイト
相化を進展させる作用を通じて、強度−延性バランス、
強度−疲労強度延性バランスを高める作用を有する。更
に、有害な固溶SをMnS として無害化する作用を有する
が、あまりに多量の添加は鋼が硬化してかえって強度−
延性バランスを劣化させるので上限を3.0 wt%とする。
第2相としてマルテンサイト、ベイナイト、パーライ
ト、残留オーステナイト及び針状フェライトの1種又は
2種以上を含有する組織になる場合は、かかるの組織を
得るために0.5 wt%以上を含有させるのが好ましい。よ
り好ましくは、1.0 〜2.0 wt%の範囲である。また、フ
ェライト単相又は第2相として少量(10%以下)のセメ
ンタイトもしくはパーライトを含有する組織になる場合
には、Mnは2.0 wt%以下、より好ましくは0.1 〜1.0 wt
%とするのが好適である。
(Mn: 3.0 wt% or less) Mn contributes to the refinement of crystal grains through the action of lowering the Ar 3 transformation point, and also promotes the formation of martensite and a retained austenite phase in the second phase. Through the strength-ductility balance,
It has the effect of increasing the strength-fatigue strength ductility balance. Furthermore, it has the effect of detoxifying harmful solid-solution S as MnS. However, if too much is added, the steel hardens and the strength is reduced.
Since the ductility balance is deteriorated, the upper limit is set to 3.0 wt%.
When the second phase has a structure containing one or more of martensite, bainite, pearlite, retained austenite and acicular ferrite, it is preferable to contain 0.5 wt% or more in order to obtain such a structure. . More preferably, it is in the range of 1.0 to 2.0 wt%. When the ferrite single phase or the second phase has a structure containing a small amount (10% or less) of cementite or pearlite, Mn is 2.0 wt% or less, more preferably 0.1 to 1.0 wt%.
% Is preferable.

【0020】(P:0.5 wt%以下)Pも鋼の強化成分と
して有用であるため、所望の鋼板強度に応じて添加させ
ることができるが、過剰の添加は、粒界に偏析し、脆性
劣化の原因となるため、上限は0.5 wt%とする。より好
ましくは0.005 〜0.2 wt%の範囲である。
(P: 0.5 wt% or less) Since P is also useful as a reinforcing component of steel, it can be added according to the desired steel sheet strength. However, excessive addition causes segregation at the grain boundaries and deterioration of brittleness. Therefore, the upper limit is 0.5 wt%. More preferably, it is in the range of 0.005 to 0.2 wt%.

【0021】Ti、Nb、V、Moは、炭窒化物を形成して結
晶粒を微細化するため、2μm 以下という超微細な組織
を得るこの発明において有用な成分であり、また、析出
強化により強度を向上させる作用もある。したがって、
この発明ではTi、Nb、V及びMoの1種又は2種以上を、
必要に応じて添加する。特にTiは、比較的低い温度でも
炭窒化物を形成し安定して鋼中に存在するため、低温の
スラブ加熱温度においても上記作用を容易に発揮する。
この発明において、これらの作用を発揮させるために
は、0.01wt%以上を含有されるのが好ましく、あまりに
多量の添加では、作用が飽和する他にコストアップの要
因になるので、上限は1.0 wt%、より好ましくは0.5 wt
%以下とする。なお、フェライト単相又は第2相として
少量(10%以下)のセメンタイトもしくはパーライトを
含有する組織である場合には、これらの成分は0.3 wt%
以下、より好ましくは0.1 wt%以下とするのが好適であ
る。
Ti, Nb, V, and Mo are components useful in the present invention for forming a carbonitride and refining crystal grains to obtain an ultrafine structure of 2 μm or less. It also has the effect of improving strength. Therefore,
In the present invention, one or more of Ti, Nb, V and Mo are
Add as needed. Particularly, Ti forms a carbonitride even at a relatively low temperature and is stably present in the steel. Therefore, the above-mentioned effect is easily exerted even at a low slab heating temperature.
In the present invention, in order to exert these effects, it is preferable to contain 0.01 wt% or more, and if added in an excessively large amount, the effects are saturated and the cost is increased. %, More preferably 0.5 wt%
% Or less. In the case of a structure containing a small amount (10% or less) of cementite or pearlite as the ferrite single phase or the second phase, the content of these components is 0.3 wt%.
The content is preferably at most 0.1 wt% or less.

【0022】Cr、Cu、NiもMn同様に強化成分として必要
に応じて含有させることができるが、あまりに多量の添
加ではかえって強度−延性バランスを劣化させるので上
限はCuは3.0 wt%、NiやCrは1.0 wt%程度とする。な
お、その作用効果を十分に発揮させるためには、0.01wt
%程度は含有させるのが好ましい。
Like Cr, Cu and Ni, Mn can also be contained as a strengthening component, if necessary. However, if too much is added, the strength-ductility balance is rather deteriorated. Cr is set to about 1.0 wt%. In addition, in order to fully exhibit the effect, 0.01wt
% Is preferably contained.

【0023】Ca、REM 、Bは、硫化物の形状制御や粒界
強度の上昇を通じて加工性を改善する効果があるため、
必要に応じて含有させることができるが、過剰な添加で
は清浄性や再結晶性に悪影響を及ぼすおそれがあるの
で、50ppm 程度以下が好ましい。なお、Bには、冷延鋼
板を連続焼鈍で得る際に、時効性を低減させる効果もあ
る。
Since Ca, REM and B have the effect of improving the workability by controlling the shape of the sulfide and increasing the grain boundary strength,
Although it can be contained as needed, excessive addition may adversely affect cleanliness and recrystallization, so it is preferably about 50 ppm or less. Note that B also has an effect of reducing aging when a cold-rolled steel sheet is obtained by continuous annealing.

【0024】この発明の鋼板は、上記好適成分組成範囲
でMnを0.5 wt%以上含有させて第2相がマルテンサイ
ト、ベイナイト、残留オーステナイト、パーライト及び
針状フェライトの1種又は2種以上を含有する複合組織
とすることができる。また、これに限らず、フェライト
単相、あるいは第2相として少量のパーライトないしは
セメンタイトを含有する組織の鋼板とすることもでき
る。
In the steel sheet of the present invention, Mn is contained in an amount of 0.5 wt% or more in the above preferred composition range, and the second phase contains one or more of martensite, bainite, retained austenite, pearlite and acicular ferrite. Composite tissue. The present invention is not limited to this, and a steel sheet having a structure containing a small amount of pearlite or cementite as the ferrite single phase or the second phase can also be used.

【0025】次に、この発明の鋼板の製造方法について
述べる。所定の成分組成範囲に調整した溶鋼を、連続鋳
造又は造塊−分塊圧延により圧延素材とし、この圧延素
材に熱間圧延を施すのであるが、圧延に供する際には、
一旦冷却して1200℃以下に再加熱しても良いし、また、
直送圧延やホットチャージローリング(HCR)でも構
わない。また、薄スラブ連続鋳造法のように、連続鋳造
により鋳造されたスラブを直接熱間圧延しても構わな
い。再加熱する場合は1200℃以下の低温加熱の方が、結
晶粒が粗大化しないので有利である。直送圧延の場合
も、1200℃以下まで冷却後に圧延開始するのが圧延中の
粒成長の抑制の上で望ましい。平均のフェライト粒径dm
(μm )と第2相の平均結晶粒径ds(μm )とが、特に
次式 0.3 <dm/ds<3 を満たすには、スラブ加熱温度は1150℃以下が望まし
い。また、第2相を島状に分散させるには、スラブ加熱
温度は1100℃以下が好ましい。いずれの場合も下限は仕
上圧延温度が確保できれば良く、現状では900 ℃程度で
ある。
Next, a method for manufacturing a steel sheet according to the present invention will be described. Molten steel adjusted to a predetermined component composition range, as a rolled material by continuous casting or ingot-bulking-rolling, and hot rolled to this rolled material, when subjected to rolling,
It may be cooled once and reheated to 1200 ° C or less, or
Direct rolling or hot charge rolling (HCR) may be used. Further, as in the thin slab continuous casting method, a slab cast by continuous casting may be directly hot-rolled. In the case of reheating, heating at a low temperature of 1200 ° C. or less is advantageous because the crystal grains do not become coarse. Also in the case of direct rolling, it is desirable to start rolling after cooling to 1200 ° C. or less from the viewpoint of suppressing grain growth during rolling. Average ferrite grain size dm
The slab heating temperature is desirably 1150 ° C. or lower so that (μm) and the average crystal grain size ds (μm) of the second phase satisfy the following expression: 0.3 <dm / ds <3. In order to disperse the second phase in an island shape, the slab heating temperature is preferably 1100 ° C. or lower. In any case, the lower limit is sufficient if the finish rolling temperature can be ensured, and is about 900 ° C. at present.

【0026】熱間圧延は、この発明の最も重要な点であ
る。すなわち、熱間圧延を動的再結晶域での圧下を5ス
タンド以上の圧下パスにて行うことが、この発明で所期
したフェライト平均結晶粒径2μm 未満、アスペクト比
1.5 未満で、平均のフェライト粒径dm(μm )と第2相
の平均結晶粒径ds(μm )とが、次式 0.3 <dm/ds<3 を満たす超微細粒を有する組織を得るために肝要であ
る。
[0026] Hot rolling is the most important aspect of the present invention. That is, the hot rolling is performed in a dynamic recrystallization region by a rolling pass of 5 stands or more, and the ferrite average crystal grain size of less than 2 μm expected in the present invention and the aspect ratio are reduced.
In order to obtain a structure having ultra-fine grains in which the average ferrite grain size dm (μm) is less than 1.5 and the average crystal grain size ds (μm) of the second phase satisfies the following equation: 0.3 <dm / ds <3. It is important.

【0027】かかる動的再結晶域での圧下を加えるに
は、例えば、仕上圧延中の圧延素材の温度低下を極力防
止しながら連続する5スタンド以上で圧下を加えること
が有効であり、その際、その最初のスタンド入側と最後
のスタンド出側の鋼板温度の温度差が60℃以下、より好
ましくは30℃以下にすると良い。なお、連続する5スタ
ンドとは、実際に圧延を行うスタンドを表し、例えば開
放状態で圧下しないスタンドを挟んでも無論問題はな
い。
In order to apply the reduction in the dynamic recrystallization region, for example, it is effective to apply the reduction in five or more continuous stands while minimizing the temperature reduction of the rolling material during finish rolling. The temperature difference between the temperature of the steel plate on the first stand entrance side and the temperature of the steel sheet on the last stand exit side is preferably 60 ° C. or less, more preferably 30 ° C. or less. The five consecutive stands represent stands that actually perform rolling. For example, there is no problem even if a stand that is not lowered in an open state is sandwiched.

【0028】後段を含む仕上圧延において動的再結晶域
で圧延を施す場合、良好なアスペクト比を得るために
は、動的再結晶域での圧下は、最終スタンドを含むこと
が好ましい。また、容易に動的再結晶域での圧下を実現
するために、Ar3 変態点直上で、圧下を加えるのが望ま
しい。動的再結晶域で圧延する各スタンドの圧下率は、
大圧下は不要で、むしろ大圧下では結晶粒のアスペクト
比が劣化するので好ましくない。最高でも20%もあれば
良い。なお、圧下率の下限は、動的再結晶が生ずる範囲
であれば、特に限定するものではないが4%以上が好ま
しい。なお、動的再結晶域が、より高温域である場合
は、粗圧延後段から仕上圧延前段にわたり動的再結晶域
圧延を行ってもよい。好ましい圧延条件は、仕上圧延後
段を含む場合と同様である。
When rolling is performed in the dynamic recrystallization region in the finish rolling including the latter stage, it is preferable that the reduction in the dynamic recrystallization region includes the final stand in order to obtain a good aspect ratio. Further, in order to easily realize the reduction in the dynamic recrystallization region, it is desirable to apply the reduction immediately above the Ar 3 transformation point. The rolling reduction of each stand rolling in the dynamic recrystallization zone is:
High pressure reduction is not necessary, but rather high pressure reduction is not preferable because the aspect ratio of crystal grains is deteriorated. At most 20% is good. The lower limit of the rolling reduction is not particularly limited as long as dynamic recrystallization occurs, but is preferably 4% or more. When the dynamic recrystallization region is a higher temperature region, the dynamic recrystallization region rolling may be performed from a stage after the rough rolling to a stage before the finish rolling. Preferable rolling conditions are the same as in the case of including the latter stage of finish rolling.

【0029】以上のような仕上圧延は、通常の仕上圧延
設備においても熱延時の鋼板及び設備の冷却を極度に低
減することで実施することができるが、仕上圧延スタン
ド間に加熱手段を設置して、被圧延材又はロールを加熱
することは、仕上圧延中の鋼板の温度低下をより簡単に
防止することができる。図2に、かかる加熱手段の一例
を示す。同図(a) 示した例は高周波加熱装置であり、鋼
板に交番磁場を印加することにより、誘導電流を生起さ
せて鋼板を加熱するものである。この発明の加熱手段
は、同図(a) の高周波加熱装置に限らず、同図(b) のよ
うな電熱ヒーター加熱(ロールを加熱する場合を示す)
でもよく、更に、直接通電加熱ヒーターであっても良
い。なお、熱間圧延時においては、潤滑を施しつつ圧下
を行ってもよいことは、いうまでもない。
The finish rolling as described above can be carried out even in a normal finishing rolling equipment by extremely reducing the cooling of the steel sheet and the equipment during hot rolling. However, a heating means is provided between the finishing rolling stands. Thus, heating the material to be rolled or the roll can more easily prevent a temperature drop of the steel sheet during finish rolling. FIG. 2 shows an example of such a heating means. The example shown in FIG. 3A is a high-frequency heating apparatus, which applies an alternating magnetic field to a steel sheet to generate an induced current and heat the steel sheet. The heating means of the present invention is not limited to the high-frequency heating device shown in FIG. 1A, but may be heated by an electric heater as shown in FIG.
Alternatively, a direct current heating heater may be used. In addition, at the time of hot rolling, it goes without saying that the reduction may be performed while applying lubrication.

【0030】上記のような仕上圧延を経た鋼板は、巻き
取ってコイルとする。巻取温度や巻取後の冷却速度は特
に限定するものではなく、製造しようとする鋼板に応じ
て、適宜定める。DP鋼、TRIP鋼のような複合組織
鋼板の場合は、冷却曲線上のフェライト領域のノーズを
経て、それぞれのマルテンサイやベイナイト領域に急冷
を行い、巻き取るような条件で所望の複合組織が得られ
るし、フェライト単相又は第2相として少量のパーライ
トないしはセメンタイトを含有する組織になる鋼板は、
第2相組織が生成する冷却曲線を回避するような圧延、
巻取り及び冷却を行えばよい。また、直近の第2相粒子
相互の間隔が該第2相の結晶粒半径の2倍未満となる割
合が10%未満になる、島状に分布した第2相を有する組
織を得るには、スラブ加熱温度を1100℃以下とし、仕上
圧延直後に冷却を施し、30℃/s以上の冷却速度で冷却す
ることが望ましい。なお、仕上圧延後、直ちに冷却を行
う直近急冷を行うことは、結晶粒の粗大化が防止できる
ので、超微細粒を得るこの発明の鋼板を得るために、よ
り好ましい。好ましい急冷条件は、圧延後0.5 秒以内に
30℃/s以上で冷却することである。
The steel sheet that has been subjected to the above finish rolling is wound up into a coil. The winding temperature and the cooling rate after winding are not particularly limited, and are appropriately determined according to the steel sheet to be manufactured. In the case of a composite structure steel sheet such as a DP steel or a TRIP steel, a desired composite structure can be obtained under conditions such as quenching the respective martens and bainite regions through the nose of the ferrite region on the cooling curve and winding up. However, a steel sheet having a structure containing a small amount of pearlite or cementite as a ferrite single phase or the second phase,
Rolling to avoid the cooling curve produced by the second phase structure,
Winding and cooling may be performed. Further, in order to obtain a structure having an island-like distributed second phase in which the distance between adjacent second phase particles is less than twice the crystal grain radius of the second phase is less than 10%, It is desirable that the slab heating temperature be 1100 ° C. or less, cooling is performed immediately after finish rolling, and cooling is performed at a cooling rate of 30 ° C./s or more. Immediately after the finish rolling, immediate quenching for cooling is more preferable in order to obtain the steel sheet of the present invention in which ultrafine grains are obtained, since crystal grains can be prevented from becoming coarse. Preferred quenching conditions are within 0.5 seconds after rolling.
Cooling at 30 ° C / s or more.

【0031】この発明のフェライト粒径、アスペクト比
を満足する鋼板は、熱延鋼板として種々の用途に用いら
れるほか、冷延鋼板用の母材としても適用することがで
きる。結晶粒が微細で、しかも均質なため、特に加工用
冷延鋼板用などとして好適であり、優れたr値の鋼板が
得られる。
The steel sheet satisfying the ferrite grain size and the aspect ratio according to the present invention can be used as a hot-rolled steel sheet for various uses and also as a base material for a cold-rolled steel sheet. Since the crystal grains are fine and homogeneous, they are particularly suitable for use in cold-rolled steel sheets for processing and the like, and can provide steel sheets having excellent r-values.

【0032】かかる加工用冷延鋼板を製造するには、圧
下率50〜90%での冷延、600 〜Ac3変態点での焼鈍を行
う。圧下率が50%未満では、良好な加工性が得られず、
90%を超える圧下を加えても特性が飽和する。焼鈍温度
が600 ℃に満たない場合及びAc3 点変態点を超える場合
のいずれも、良好な加工性が得られない。焼鈍後に急冷
してから過時効処理を行ってもよい。また、連続焼鈍の
みならず、コイルに巻き取って、箱焼鈍にする方法でも
良い。
In order to manufacture such a cold-rolled steel sheet for processing, cold rolling is performed at a rolling reduction of 50 to 90%, and annealing is performed at a transformation point of 600 to Ac 3 . If the rolling reduction is less than 50%, good workability cannot be obtained,
Even if a reduction exceeding 90% is applied, the characteristics are saturated. In both cases where the annealing temperature is lower than 600 ° C. and where the temperature exceeds the Ac 3 point transformation point, good workability cannot be obtained. After quenching after annealing, an overaging treatment may be performed. Further, not only continuous annealing but also a method of winding around a coil and performing box annealing may be used.

【0033】[0033]

【実施例】(実施例1)表1に示す成分組成になる鋼素
材に、表2に示す種々の条件で加熱、熱間圧延を行って
熱延鋼板を得た。各鋼板は、仕上圧延後、0.3 秒以内に
50℃/sで冷却を開始した。また、鋼種Bについては、潤
滑圧延を施した。これらの鋼板の機械的特性について調
べた結果を表3示す。また、これらの熱延鋼板を母材と
して、表4に示す冷延圧下率、焼鈍温度で冷間圧延及び
焼鈍を行って冷延鋼板を得た。これらの冷延鋼板の機械
的特性を表4に併記する。なお、この発明の熱延鋼板
は、いずれも40kgf/mm2 以上の引張強度を有していた。
表3から明らかなように、この発明に従い平均フェライ
ト粒径が2μm 未満の発明鋼は、比較鋼と比べて強度−
伸びバランス、耐久比、じん性に優れ、かつ、異方性が
小さく、良好なBH量を有している。
EXAMPLES Example 1 A steel material having the composition shown in Table 1 was heated and hot-rolled under various conditions shown in Table 2 to obtain a hot-rolled steel sheet. Each steel sheet must be finished within 0.3 seconds after finish rolling.
Cooling was started at 50 ° C / s. Further, for the steel type B, lubrication rolling was performed. Table 3 shows the results of examining the mechanical properties of these steel sheets. Further, using these hot-rolled steel sheets as base materials, cold-rolling and annealing were performed at cold-rolling reduction rates and annealing temperatures shown in Table 4 to obtain cold-rolled steel sheets. Table 4 also shows the mechanical properties of these cold-rolled steel sheets. Each of the hot-rolled steel sheets of the present invention had a tensile strength of 40 kgf / mm 2 or more.
As is evident from Table 3, the inventive steel having an average ferrite grain size of less than 2 μm according to the present invention has a lower strength than the comparative steel.
It has excellent elongation balance, durability ratio, toughness, small anisotropy and good BH content.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】(実施例2)C:0.06wt%、Si:0.9 wt
%、Mn:1.3 wt%、P:0.01wt%、でSを0.0008〜0.00
6 wt%の範囲で種々に変化させた試料を用いて、平均結
晶粒径7μm (6.0 〜8.0 μm )と、2μm 未満(0.7
〜1.0 μm )の熱延鋼板を作製した。なお、この鋼板の
第2相としてはパーライトが生成し、フェライトとパー
ライトとの平均結晶粒径の比は平均結晶粒径が2 μm 未
満の場合で0.5 〜2、平均結晶粒径が7 mmの場合で0.1
〜4であった。平均結晶粒径が2μm 未満の熱延鋼板
は、この発明に従う方法により製造したものであり、ス
ラブ加熱温度などを制御して、第2相粒の分布を、直近
の第2相粒子相互間の間隔が第2相の結晶粒半径の2倍
未満となる割合で10%未満としたグループと、10〜30%
としたグループを得た。これらの鋼板につき、図3に示
すように鋼板を20mmφ径(d0 )で打ち抜き後、円錐形
パンチ(頂角60°)で拡げ、鋼板にクラックが発生する
までの穴拡げ率(d−d0 )/d0 )を測定した。その
結果を図4に示す。同図の曲線Aはフェライトの平均結
晶粒径が2μm 未満、アスペクト比が1.3 、dm/ds が1.
8 、直近の第2相粒子相互の間隔が該第2相の結晶粒半
径の2倍未満となる割合が10%以下(平均8%)のグル
ープを示している。また、曲線Bはフェライトの結晶粒
径が2μm 未満、アスペクト比が1.3 、dm/ds が1.8 、
直近の第2相粒子相互の間隔が該第2相の結晶粒半径の
2倍未満となる割合が10〜30%(平均23%)のグループ
を示している。更に、曲線Cはフェライトの平均結晶粒
径が7μm 、アスペクト比が2.5 のグループを示してい
る。曲線A,Bで示されるグループがこの発明の熱延鋼
板であり、曲線Cで示されるグループが比較の熱延鋼板
である。同図から、この発明に従う熱延鋼板は、良好な
穴拡げ率が得られ、特にS量を0.002 wt%以下に軽減し
た場合に優れた特性が得られた。また、第2相を島状に
分布させることにより、穴拡げ率は更に向上した。した
がって、この発明に従う熱延鋼板は、自動車のホイール
など、穴拡げ性が要求される用途にも好適である。
(Example 2) C: 0.06% by weight, Si: 0.9% by weight
%, Mn: 1.3 wt%, P: 0.01 wt%, and 0.0008 to 0.00 S
Using samples varied in the range of 6 wt%, the average crystal grain size was 7 μm (6.0 to 8.0 μm) and less than 2 μm (0.7 μm).
1.01.0 μm). Incidentally, pearlite is formed as the second phase of the steel sheet, and the ratio of the average crystal grain size of ferrite and pearlite is 0.5 to 2 when the average crystal grain size is less than 2 μm, and the average crystal grain size is 7 mm. 0.1 in case
-4. A hot-rolled steel sheet having an average crystal grain size of less than 2 μm is manufactured by the method according to the present invention, and the distribution of the second phase grains is controlled by controlling the slab heating temperature and the like to make the distribution between the nearest second phase grains. A group in which the interval is less than 10% at a ratio of less than twice the crystal grain radius of the second phase, and 10 to 30%
And got a group. As shown in FIG. 3, the steel sheet was punched into a 20 mmφ diameter (d 0 ) and expanded with a conical punch (vertical angle 60 °), and the hole expansion ratio (dd) until cracks occurred in the steel sheet as shown in FIG. 0) / d 0) was measured. FIG. 4 shows the results. Curve A in the figure shows an average ferrite crystal grain size of less than 2 μm, an aspect ratio of 1.3, and a dm / ds of 1.
8 shows a group in which the ratio of the distance between the nearest second phase particles being less than twice the crystal grain radius of the second phase is 10% or less (average 8%). Curve B shows a ferrite crystal grain size of less than 2 μm, an aspect ratio of 1.3, a dm / ds of 1.8,
The group in which the distance between the nearest second phase particles is less than twice the crystal grain radius of the second phase is 10 to 30% (average 23%). Curve C shows a group in which the average crystal grain size of ferrite is 7 μm and the aspect ratio is 2.5. The group indicated by the curves A and B is the hot-rolled steel sheet of the present invention, and the group indicated by the curve C is the comparative hot-rolled steel sheet. As shown in the figure, in the hot-rolled steel sheet according to the present invention, a good hole expansion ratio was obtained, and in particular, excellent characteristics were obtained when the S content was reduced to 0.002 wt% or less. Further, by distributing the second phase in an island shape, the hole expansion rate was further improved. Therefore, the hot-rolled steel sheet according to the present invention is also suitable for applications requiring hole expandability, such as automobile wheels.

【0039】(実施例3)表5に示す成分組成になる鋼
素材に、表6に示す種々の条件で加熱、熱間圧延を行っ
て熱延鋼板を得た。ここで、動的再結晶域圧延は、粗圧
延後段から仕上げ圧延前段にかけて施した。各鋼板は、
仕上圧延後、0.3 秒以内に50℃/sで冷却を開始した。ま
た、鋼種C(番号6、7)については、潤滑圧延を施し
た。これらの鋼板の機械的特性について調べた結果を表
7に示す。また、鋼種B(番号4,5)及び鋼種D(番
号8,9)の、得られた熱延鋼板を母材として、冷延圧
下率75%、焼鈍温度750 ℃で冷間圧延及び焼鈍を行って
冷延鋼板を得た。これらの冷延鋼板の機械的特性を表7
に併記する。なお、番号8(鋼種D)については1000℃
で加熱し、800 ℃で圧下率80%の圧下を行い、次いで60
0 ℃まで一旦放冷してから、再度850 ℃に昇温しこの85
0 ℃で圧下率90%の圧下を施した後、放冷した。これら
の鋼において、第2相の体積率は3〜30%であった。表
7から明らかなように、この発明に従い平均フェライト
粒径が2μm 未満の発明鋼は、比較鋼と比べて強度−伸
びバランス、耐久比、じん性に優れ、、特に、主相の平
均粒径と第2相の平均粒径との比dm/dsを0.3 超〜3未
満に制御した鋼は、更に耐久比、じん性に優れ、かつ異
方性が小さく、良好なBH量を有している。
Example 3 A steel material having the composition shown in Table 5 was heated and hot-rolled under various conditions shown in Table 6 to obtain a hot-rolled steel sheet. Here, the dynamic recrystallization zone rolling was performed from a stage after the rough rolling to a stage before the finish rolling. Each steel plate is
After finish rolling, cooling was started at 50 ° C / s within 0.3 seconds. Further, lubricating rolling was performed on steel type C (Nos. 6 and 7). Table 7 shows the results of examining the mechanical properties of these steel sheets. Using the obtained hot-rolled steel sheets of steel types B (Nos. 4, 5) and D (Nos. 8, 9) as base materials, cold rolling and annealing were performed at a cold rolling reduction of 75% and an annealing temperature of 750 ° C. Performed to obtain a cold-rolled steel sheet. Table 7 shows the mechanical properties of these cold rolled steel sheets.
It is described together. The number 8 (steel type D) is 1000 ° C.
At 800 ° C and a reduction of 80%, then 60
Once cooled to 0 ° C, the temperature is raised again to 850 ° C and
After a reduction of 90% at 0 ° C., the mixture was allowed to cool. In these steels, the volume fraction of the second phase was 3 to 30%. As is clear from Table 7, the inventive steels having an average ferrite grain size of less than 2 μm according to the present invention are superior in strength-elongation balance, durability ratio, and toughness as compared with the comparative steels. The steel in which the ratio dm / ds of the average particle diameter of the second phase to the average of the second phase is controlled to be more than 0.3 to less than 3 has further excellent durability ratio, toughness, small anisotropy, and good BH content. I have.

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【表6】 [Table 6]

【0042】[0042]

【表7】 [Table 7]

【0043】[0043]

【発明の効果】かくしてこの発明によれば、40kgf/mm2
以上の低炭素熱延鋼板において、良好な機械的特性を異
方性なくして得ることができる。
According to the present invention, 40 kgf / mm 2
In the low-carbon hot-rolled steel sheet described above, good mechanical properties can be obtained without anisotropy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱延鋼板のフェライト平均粒径と機械的性質と
の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between ferrite average grain size and mechanical properties of a hot-rolled steel sheet.

【図2】仕上圧延設備における鋼板加熱手段を示す図で
ある。
FIG. 2 is a diagram showing a steel sheet heating means in a finish rolling facility.

【図3】穴拡げ率の測定法を説明する図である。FIG. 3 is a diagram illustrating a method of measuring a hole expansion ratio.

【図4】鋼板のS量と穴拡げ率との関係を示す図であ
る。
FIG. 4 is a diagram showing the relationship between the S amount of a steel sheet and the hole expansion rate.

【符号の説明】[Explanation of symbols]

1 ロールスタンド 2 圧下ロール 3 バックアップロール 4 被圧延材 5 高周波加熱装置 6 ヒーター加熱装置 DESCRIPTION OF SYMBOLS 1 Roll stand 2 Roll-down roll 3 Backup roll 4 Rolled material 5 High frequency heating device 6 Heater heating device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古君 修 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 岡田 進 東京都千代田区内幸町2丁目2番3号 川 崎製鉄株式会社東京本社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Osamu Furukun 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Inside the Technical Research Institute of Kawasaki Steel Co., Ltd. (72) Inventor Susumu Okada 2-3-2 Uchisaiwaicho, Chiyoda-ku, Tokyo No. Kawasaki Steel Corporation Tokyo Head Office

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 フェライトを主相とする熱延鋼板であっ
て、平均のフェライト粒径が2μm 未満、フェライト粒
のアスペクト比が1.5 未満であることを特徴とする、超
微細粒を有する加工用熱延鋼板。
1. A hot-rolled steel sheet containing ferrite as a main phase, characterized by having an average ferrite grain size of less than 2 μm and an aspect ratio of ferrite grains of less than 1.5, for processing having ultra-fine grains. Hot rolled steel sheet.
【請求項2】 フェライトを主相とする熱延鋼板であっ
て、平均のフェライト粒径が2μm 未満、フェライト粒
のアスペクト比が1.5 未満であり、平均のフェライト粒
径dm(μm )と第2相の平均結晶粒径ds(μm )とが、
次式 0.3 <dm/ds<3 を満たす超微細粒を有する加工用熱延鋼板。
2. A hot-rolled steel sheet comprising ferrite as a main phase, wherein the average ferrite grain size is less than 2 μm, the aspect ratio of the ferrite grains is less than 1.5, and the average ferrite grain size is dm (μm). The average grain size ds (μm) of the phase is
A hot-rolled steel sheet for processing having ultra-fine grains that satisfies the following formula: 0.3 <dm / ds <3.
【請求項3】 フェライトを主相とする熱延鋼板であっ
て、平均のフェライト粒径が2μm 未満、フェライト粒
のアスペクト比が1.5 未満であり、平均のフェライト粒
径dm(μm )と第2相の平均結晶粒径ds(μm )とが、
次式 0.3 <dm/ds<3 を満たし、直近の第2相粒子相互の間隔が該第2相の結
晶粒半径の2倍未満となる割合が10%未満になる第2相
を有する超微細粒を有する加工用熱延鋼板。
3. A hot-rolled steel sheet containing ferrite as a main phase, wherein the average ferrite grain size is less than 2 μm, the aspect ratio of the ferrite grains is less than 1.5, and the average ferrite grain size is dm (μm). The average grain size ds (μm) of the phase is
An ultrafine particle having a second phase that satisfies the following equation: 0.3 <dm / ds <3, and the ratio at which the distance between the nearest second phase particles is less than twice the crystal grain radius of the second phase is less than 10%. Hot rolled steel sheet for processing with grains.
【請求項4】 C:0.01〜0.3 wt%、Si:3.0 wt%以
下、Mn:3.0 wt%以下、P:0.5 wt%以下を含み、か
つ、Ti:0〜1.0 wt%、Nb:0〜1.0 wt%、V:0〜1.
0 wt%、Cr:0〜1.0 wt%、Cu:0〜3.0 wt%、Mo:0
〜1.0 wt%、Ni:0〜1.0 wt%、の1種又は2種以上、
Ca、REM 、Bの1種又は2種以上を合計で0〜0.005 wt
%を含有し、残部は実質的に鉄の組成からなる、請求項
1、2又は3記載の超微細粒を有する加工用熱延鋼板。
4. C: 0.01 to 0.3 wt%, Si: 3.0 wt% or less, Mn: 3.0 wt% or less, P: 0.5 wt% or less, Ti: 0 to 1.0 wt%, Nb: 0 to 0 wt% 1.0 wt%, V: 0 to 1.
0 wt%, Cr: 0 to 1.0 wt%, Cu: 0 to 3.0 wt%, Mo: 0
~ 1.0 wt%, Ni: 0 ~ 1.0 wt%, one or more of
One, two or more of Ca, REM and B are 0 to 0.005 wt in total
The hot-rolled steel sheet for processing having ultra-fine grains according to claim 1, wherein the hot-rolled steel sheet comprises ultra-fine grains.
【請求項5】 C:0.01〜0.3 wt%、Si:3.0 wt%以
下、Mn:0.5 〜3.0 wt%、P:0.5 wt%以下を含み、か
つ、Ti:0〜1.0 wt%、Nb:0〜1.0 wt%、V:0〜1.
0 wt%、Cr:0〜1.0 wt%、Cu:0〜3.0 wt%、Mo:0
〜1.0 wt%、Ni:0〜1.0 wt%、の1種又は2種以上、
Ca、REM 、Bの1種又は2種以上を合計で0〜0.005 wt
%を含有し、残部は実質的に鉄の組成からなり、第2相
としてマルテンサイト、ベイナイト、残留オーステナイ
ト、パーライト及び針状フェライトの1種又は2種以上
を含有する組織になる請求項1、2又は3記載の超微細
粒を有する加工用熱延鋼板。
5. C: 0.01 to 0.3 wt%, Si: 3.0 wt% or less, Mn: 0.5 to 3.0 wt%, P: 0.5 wt% or less, Ti: 0 to 1.0 wt%, Nb: 0 ~ 1.0 wt%, V: 0 ~ 1.
0 wt%, Cr: 0 to 1.0 wt%, Cu: 0 to 3.0 wt%, Mo: 0
~ 1.0 wt%, Ni: 0 ~ 1.0 wt%, one or more of
One, two or more of Ca, REM and B are 0 to 0.005 wt in total
%, With the balance substantially consisting of iron and a structure containing one or more of martensite, bainite, retained austenite, pearlite and acicular ferrite as the second phase. 4. A hot-rolled steel sheet for processing having ultra-fine grains according to 2 or 3.
【請求項6】 焼付硬化量が100 MPa 以上である請求項
1〜5のいずれか1項に記載の超微細粒を有する加工用
熱延鋼板。
6. The hot-rolled steel sheet for processing having ultrafine grains according to claim 1, wherein the bake hardening amount is 100 MPa or more.
【請求項7】 熱延鋼板用素材を溶製し、直ちに又は一
旦冷却して1200℃以下に加熱して熱間圧延を施す際、動
的再結晶域での圧下を5スタンド以上の圧下パスにて行
うことを特徴とする超微細粒を有する加工用熱延鋼板の
製造方法。
7. A hot rolling process in which a material for a hot-rolled steel sheet is melted and immediately or once cooled and heated to 1200 ° C. or less to perform hot rolling, wherein a reduction in a dynamic recrystallization zone is performed by 5 stands or more. A method for producing a hot-rolled steel sheet for processing having ultra-fine grains, wherein
【請求項8】 仕上圧延設備のロールスタンド間に設け
た加熱手段によりロール又は鋼板の加熱を行う請求項7
記載の加工用熱延鋼板の製造方法。
8. A roll or a steel plate is heated by a heating means provided between roll stands of a finish rolling facility.
The method for producing a hot-rolled steel sheet for processing according to the above.
【請求項9】 請求項1〜5のいずれか1項に記載され
た組織及び組成を有する超微細粒を有する冷延鋼板用母
材。
9. A base material for a cold rolled steel sheet having ultrafine grains having the structure and composition according to claim 1. Description:
【請求項10】 請求項9記載の冷延鋼板用母材に、圧
下率50〜90%の冷間圧延、次いで600 ℃〜Ac3 変態点で
の焼鈍を施す冷延鋼板の製造方法。
10. A method for producing a cold-rolled steel sheet, wherein the base material for a cold-rolled steel sheet according to claim 9 is subjected to cold rolling at a reduction ratio of 50 to 90%, and then annealing at 600 ° C. to the Ac 3 transformation point.
JP25627298A 1997-09-11 1998-09-10 Hot-rolled steel sheet for processing having ultrafine grains, method for producing the same, and method for producing cold-rolled steel sheet Ceased JP3386726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25627298A JP3386726B2 (en) 1997-09-11 1998-09-10 Hot-rolled steel sheet for processing having ultrafine grains, method for producing the same, and method for producing cold-rolled steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-246779 1997-09-11
JP24677997 1997-09-11
JP25627298A JP3386726B2 (en) 1997-09-11 1998-09-10 Hot-rolled steel sheet for processing having ultrafine grains, method for producing the same, and method for producing cold-rolled steel sheet

Publications (2)

Publication Number Publication Date
JPH11152544A true JPH11152544A (en) 1999-06-08
JP3386726B2 JP3386726B2 (en) 2003-03-17

Family

ID=26537908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25627298A Ceased JP3386726B2 (en) 1997-09-11 1998-09-10 Hot-rolled steel sheet for processing having ultrafine grains, method for producing the same, and method for producing cold-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP3386726B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220641A (en) * 2000-02-02 2001-08-14 Kawasaki Steel Corp High strength thin steel sheet and high strength gavlanized thin steel sheet excellent in ductility and low in yield ratio and producing method therefor
JP2002173738A (en) * 2000-12-06 2002-06-21 Nkk Corp High tensile hot rolled steel plate with high workability
US6666932B2 (en) 2000-10-31 2003-12-23 Nkk Corporation High strength hot rolled steel sheet
JP2004052099A (en) * 2002-05-31 2004-02-19 Jfe Steel Kk Steel member for machine structural
JP2005307246A (en) * 2004-04-19 2005-11-04 Nippon Steel Corp High-tensile-strength steel with composite structure of fine crystal grain
WO2006059653A1 (en) * 2004-12-03 2006-06-08 Honda Motor Co., Ltd. High strength steel sheet and method for production thereof
WO2007015541A1 (en) * 2005-08-03 2007-02-08 Sumitomo Metal Industries, Ltd. Hot rolled steel sheet, cold rolled steel sheet and process for producing the same
JP2007270197A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Ind Ltd Steel sheet for for hydroform working and steel tube for hydroform working, and method for manufacturing therefor
WO2007138752A1 (en) * 2006-06-01 2007-12-06 Honda Motor Co., Ltd. High-strength steel sheet and process for producing the same
KR100947203B1 (en) * 2002-03-29 2010-03-11 제이에프이 스틸 가부시키가이샤 Cold rolled steel sheet having ultrafine grain structure and method for producing the same
US8252428B2 (en) 2009-06-03 2012-08-28 Honda Motor Co., Ltd. High-strength member for vehicle
WO2013005618A1 (en) 2011-07-06 2013-01-10 新日鐵住金株式会社 Cold-rolled steel sheet
WO2013005714A1 (en) 2011-07-06 2013-01-10 新日鐵住金株式会社 Method for producing cold-rolled steel sheet
WO2013005670A1 (en) 2011-07-06 2013-01-10 新日鐵住金株式会社 Hot-dip plated cold-rolled steel sheet and process for producing same
WO2014188966A1 (en) 2013-05-21 2014-11-27 新日鐵住金株式会社 Hot-rolled steel sheet and method for manufacturing same
JP2015081366A (en) * 2013-10-22 2015-04-27 株式会社神戸製鋼所 Hot rolled steel sheet excellent in cold workability and surface hardness after carburization heat treatment
JP2016513174A (en) * 2013-02-11 2016-05-12 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv High-strength hot-rolled steel strip or steel plate having very excellent formability and fatigue performance, and method for producing the steel strip or steel plate
KR20170015461A (en) 2014-07-14 2017-02-08 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet
KR20170015471A (en) 2014-07-14 2017-02-08 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet
JP2017150052A (en) * 2016-02-26 2017-08-31 Jfeスチール株式会社 High strength steel sheet excellent in toughness and ductility and manufacturing method therefor
KR20190034281A (en) 2016-08-18 2019-04-01 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet
CN114326187A (en) * 2020-09-29 2022-04-12 北京小米移动软件有限公司 Metal back plate and manufacturing method thereof, backlight module and electronic equipment

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220641A (en) * 2000-02-02 2001-08-14 Kawasaki Steel Corp High strength thin steel sheet and high strength gavlanized thin steel sheet excellent in ductility and low in yield ratio and producing method therefor
US6666932B2 (en) 2000-10-31 2003-12-23 Nkk Corporation High strength hot rolled steel sheet
JP2002173738A (en) * 2000-12-06 2002-06-21 Nkk Corp High tensile hot rolled steel plate with high workability
KR100947203B1 (en) * 2002-03-29 2010-03-11 제이에프이 스틸 가부시키가이샤 Cold rolled steel sheet having ultrafine grain structure and method for producing the same
KR100949694B1 (en) 2002-03-29 2010-03-29 제이에프이 스틸 가부시키가이샤 Cold rolled steel sheet having ultrafine grain structure and method for producing the same
JP2004052099A (en) * 2002-05-31 2004-02-19 Jfe Steel Kk Steel member for machine structural
JP2005307246A (en) * 2004-04-19 2005-11-04 Nippon Steel Corp High-tensile-strength steel with composite structure of fine crystal grain
WO2006059653A1 (en) * 2004-12-03 2006-06-08 Honda Motor Co., Ltd. High strength steel sheet and method for production thereof
JP2006161077A (en) * 2004-12-03 2006-06-22 Honda Motor Co Ltd High strength steel sheet and its production method
US7754030B2 (en) 2004-12-03 2010-07-13 Honda Motor Co., Ltd. High strength steel sheet and method for production thereof
WO2007015541A1 (en) * 2005-08-03 2007-02-08 Sumitomo Metal Industries, Ltd. Hot rolled steel sheet, cold rolled steel sheet and process for producing the same
US7731808B2 (en) 2005-08-03 2010-06-08 Sumitomo Metal Industries, Ltd. Hot-rolled steel sheet and cold-rolled steel sheet and manufacturing method thereof
US7879164B2 (en) 2005-08-03 2011-02-01 Sumitomo Metal Industries, Ltd. Method of producing hot-rolled steel sheet
US7927433B2 (en) 2005-08-03 2011-04-19 Sumitomo Metal Industries, Ltd. Cold-rolled steel sheet
US8257517B2 (en) 2005-08-03 2012-09-04 Sumitomo Metal Industries, Ltd. Method of producing cold-rolled steel sheet
JP5029361B2 (en) * 2005-08-03 2012-09-19 住友金属工業株式会社 Hot-rolled steel sheet, cold-rolled steel sheet and methods for producing them
JP2007270197A (en) * 2006-03-30 2007-10-18 Sumitomo Metal Ind Ltd Steel sheet for for hydroform working and steel tube for hydroform working, and method for manufacturing therefor
WO2007138752A1 (en) * 2006-06-01 2007-12-06 Honda Motor Co., Ltd. High-strength steel sheet and process for producing the same
US8177924B2 (en) 2006-06-01 2012-05-15 Honda Motor Co., Ltd. High-strength steel sheet and process for producing the same
US8252428B2 (en) 2009-06-03 2012-08-28 Honda Motor Co., Ltd. High-strength member for vehicle
WO2013005670A1 (en) 2011-07-06 2013-01-10 新日鐵住金株式会社 Hot-dip plated cold-rolled steel sheet and process for producing same
EP2730671B1 (en) 2011-07-06 2017-11-01 Nippon Steel & Sumitomo Metal Corporation Hot-dip plated cold-rolled steel sheet and process for producing same
WO2013005618A1 (en) 2011-07-06 2013-01-10 新日鐵住金株式会社 Cold-rolled steel sheet
KR20140030335A (en) 2011-07-06 2014-03-11 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel sheet
KR20140033227A (en) 2011-07-06 2014-03-17 신닛테츠스미킨 카부시키카이샤 Hot-dip plated cold-rolled steel sheet and process for producing same
KR20140033226A (en) 2011-07-06 2014-03-17 신닛테츠스미킨 카부시키카이샤 Method for producing cold-rolled steel sheet
US10774412B2 (en) 2011-07-06 2020-09-15 Nippon Steel Corporation Hot-dip galvanized cold-rolled steel sheet and process for producing same
US10174392B2 (en) 2011-07-06 2019-01-08 Nippon Steel & Sumitomo Metal Corporation Method for producing cold-rolled steel sheet
WO2013005714A1 (en) 2011-07-06 2013-01-10 新日鐵住金株式会社 Method for producing cold-rolled steel sheet
US9523139B2 (en) 2011-07-06 2016-12-20 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet
JP2016513174A (en) * 2013-02-11 2016-05-12 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv High-strength hot-rolled steel strip or steel plate having very excellent formability and fatigue performance, and method for producing the steel strip or steel plate
US10023929B2 (en) 2013-05-21 2018-07-17 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet
WO2014188966A1 (en) 2013-05-21 2014-11-27 新日鐵住金株式会社 Hot-rolled steel sheet and method for manufacturing same
WO2015060223A1 (en) * 2013-10-22 2015-04-30 株式会社神戸製鋼所 Hot-rolled steel sheet having excellent surface hardness after carburizing heat treatment and excellent cold workability
JP2015081366A (en) * 2013-10-22 2015-04-27 株式会社神戸製鋼所 Hot rolled steel sheet excellent in cold workability and surface hardness after carburization heat treatment
KR20170015471A (en) 2014-07-14 2017-02-08 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet
KR20170015461A (en) 2014-07-14 2017-02-08 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet
US9896737B2 (en) 2014-07-14 2018-02-20 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet
US10226800B2 (en) 2014-07-14 2019-03-12 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet
JP2017150052A (en) * 2016-02-26 2017-08-31 Jfeスチール株式会社 High strength steel sheet excellent in toughness and ductility and manufacturing method therefor
KR20190034281A (en) 2016-08-18 2019-04-01 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet
US11255005B2 (en) 2016-08-18 2022-02-22 Nippon Steel Corporation Hot-rolled steel sheet
CN114326187A (en) * 2020-09-29 2022-04-12 北京小米移动软件有限公司 Metal back plate and manufacturing method thereof, backlight module and electronic equipment
CN114326187B (en) * 2020-09-29 2024-04-23 北京小米移动软件有限公司 Metal backboard, manufacturing method thereof, backlight module and electronic equipment

Also Published As

Publication number Publication date
JP3386726B2 (en) 2003-03-17

Similar Documents

Publication Publication Date Title
EP0945522B1 (en) Method of producing a hot rolled sheet having ultra fine grains
KR100543828B1 (en) Hot rolled steel sheet having an ultrafine grain structure and process for producing steel sheet
JP5821912B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP3386726B2 (en) Hot-rolled steel sheet for processing having ultrafine grains, method for producing the same, and method for producing cold-rolled steel sheet
EP2615191B1 (en) High-strength cold-rolled steel sheet having excellent stretch flange properties, and process for production thereof
US11401569B2 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP2004292891A (en) High tensile strength hot dip galvanized steel sheet having excellent fatigue property and hole expansibility, and its production method
JP3433687B2 (en) High-strength hot-rolled steel sheet excellent in workability and method for producing the same
JPWO2019151017A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing them
JP5811725B2 (en) High-tensile cold-rolled steel sheet excellent in surface distortion resistance, bake hardenability and stretch flangeability, and method for producing the same
JP3901039B2 (en) Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP3539546B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP2002241897A (en) Steel sheet having small variation in yield strength and fracture elongation, high formability and low yield ratio, and method for manufacturing the same
JP2004256836A (en) High tensile strength hot-dip galvanized steel sheet having excellent strength-elongation balance and fatigue characteristic, and its manufacturing method
WO2022244707A1 (en) High-strength hot-rolled steel plate and method for manufacturing high-strength hot-rolled steel plate
JP6098537B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP3797165B2 (en) High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same
JP3366843B2 (en) Hot-rolled steel sheet for processing having ultrafine grains and method for producing the same
JP2001040451A (en) Hot rolled steel plate for press forming
JP4280202B2 (en) High carbon steel plate with excellent hardenability and stretch flangeability
JP2000192191A (en) High tensile strength steel plate excellent in burring property, and its manufacture
JP3603563B2 (en) Method for producing hot-rolled steel sheet and cold-rolled steel sheet having ultrafine grains
JP3373765B2 (en) Method for producing hot-rolled steel sheet for processing having ultrafine grains

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021126

RVOP Cancellation by post-grant opposition