JP2002241897A - Steel sheet having small variation in yield strength and fracture elongation, high formability and low yield ratio, and method for manufacturing the same - Google Patents
Steel sheet having small variation in yield strength and fracture elongation, high formability and low yield ratio, and method for manufacturing the sameInfo
- Publication number
- JP2002241897A JP2002241897A JP2001034747A JP2001034747A JP2002241897A JP 2002241897 A JP2002241897 A JP 2002241897A JP 2001034747 A JP2001034747 A JP 2001034747A JP 2001034747 A JP2001034747 A JP 2001034747A JP 2002241897 A JP2002241897 A JP 2002241897A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- rolling
- hot
- less
- rolled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鋼構造物、自動車
および家電製品などに使用される、特性値の変動が少な
く、高成形性で低降伏比を有する鋼板およびその製造方
法に関するものである。さらに詳しくは、本発明の鋼板
は、特に建築などの構造物の耐震・制震・免震部材、お
よび自動車用の高成形性が必要な部材に使用するのに最
適となるように、降伏強さと破断伸びの変動が小さく、
高成形性と低降伏比とを有する鋼板であり、溶融亜鉛メ
ッキ鋼板、合金化溶融亜鉛メッキ鋼板、電気メッキ鋼
板、有機被覆コーティング処理用として適用できる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel sheet used in steel structures, automobiles and home appliances, which has a small variation in characteristic values, has high formability and a low yield ratio, and a method for producing the same. . More specifically, the steel sheet of the present invention has a high yield strength so as to be optimally used for seismic / seismic / seismic isolation members of structures such as buildings and members requiring high formability for automobiles. And fluctuation of elongation at break is small,
It is a steel sheet having high formability and a low yield ratio, and can be used for hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, electroplated steel sheet, and organic coating treatment.
【0002】[0002]
【従来の技術】地震などの外力による変形や振動が建築
構造物に加わった際に、建築構造物の損壊や倒壊を防止
するには、外力による変形や振動エネルギーを速やかに
吸収する必要がある。このため、建築構造物の一部に柱
や梁などの主要構造部材よりも先に塑性変形する極低降
伏点鋼や鉛を使用して、建築構造物の損壊や倒壊を防止
する方法が提案されている。2. Description of the Related Art When deformation or vibration due to an external force such as an earthquake is applied to a building structure, in order to prevent the building structure from being damaged or collapsed, it is necessary to quickly absorb the deformation and vibration energy due to the external force. . For this reason, a method has been proposed to prevent the building structure from being damaged or collapsed by using extremely low yield point steel or lead that plastically deforms before the main structural members such as columns and beams in part of the building structure. Have been.
【0003】例えば、特開平9−287051号公報では、低
降伏点の鋼板を使用する方法として、C量が0.01%以下
の鋼を用い、平均コロニーサイズが80μm以上となるミ
クロ組織を有する鋼板が提案されている。ここで、コロ
ニーとは隣接する結晶粒の方位がほぼ等しい、すなわ
ち、方位差が20度以内である一群の結晶粒を指してお
り、コロニーサイズを粗大化させることによって、延性
の急激な劣化を防止して、地震発生時の建造物の制震性
を高めることができるとしている。しかし、提案の鋼板
では降伏強さは120MPa以下に限定され、それ以上の降
伏強さを得ることができない。しかも、鋼板の降伏強さ
や破断伸びの変動については何ら言及されていない。一
方、自動車や家電製品に使用される鋼板には、優れた成
形性を具備することが要求される。通常、鋼板の成形性
を向上させるには、C、P、SおよびN等の不純物を低
減させる方法があるが、この方法ではフェライト粒が極
端に粗大化する場合がある。そのため、高延性が安定し
て得られないだけでなく、降伏強さや破断伸びの変動が
大きくなり、自動車や家電製品用の鋼板として所定の成
形性が確保できない場合もある。さらに、鋼板の成形時
に表面肌荒れが生じやすいという問題も発生する。[0003] For example, in Japanese Patent Application Laid-Open No. 9-2877051, as a method of using a steel sheet having a low yield point, a steel sheet having a C content of 0.01% or less and a microstructure having an average colony size of 80 µm or more is used. Proposed. Here, a colony is a group of crystal grains in which the orientations of adjacent crystal grains are substantially equal, that is, the orientation difference is within 20 degrees, and abrupt deterioration of ductility is caused by increasing the colony size. It is said that the building will be able to improve the damping performance of buildings when an earthquake occurs. However, in the proposed steel sheet, the yield strength is limited to 120 MPa or less, and it is not possible to obtain a higher yield strength. Moreover, there is no mention of the change in the yield strength or elongation at break of the steel sheet. On the other hand, steel sheets used for automobiles and home electric appliances are required to have excellent formability. Usually, to improve the formability of a steel sheet, there is a method of reducing impurities such as C, P, S and N. However, in this method, ferrite grains may be extremely coarsened. For this reason, not only high ductility cannot be obtained stably, but also the yield strength and the elongation at break increase greatly, and the predetermined formability as a steel sheet for automobiles and home electric appliances may not be ensured in some cases. Further, there is a problem that surface roughness is likely to occur during the forming of the steel sheet.
【0004】また、不純物を低減させた鋼板を地震時の
制震材として用いると、他の構造部材よりも優先的に変
形して、エネルギーを安定して吸収することが困難にな
るという致命的な欠点がある。さらに、鋼中の不純物元
素を低減すると、スラブ鋳造時にオーステナイト粒が粗
大化してしまい、連続鋳造時やスラブ加熱後の粗圧延時
にオーステナイト粒界割れを呈する表面割れが生じやす
いという問題がある。さらに、製銑、製鋼の段階で不純
物元素を低減するには、真空脱ガスの処理時間を長くし
たり、脱硫処理剤の添加量を増やすなど対策が必要にな
り、鋼板の製造コストが高騰するという問題もある。[0004] Further, when a steel sheet with reduced impurities is used as a vibration damping material during an earthquake, it is deformed preferentially over other structural members, making it difficult to stably absorb energy. Disadvantages. Further, when impurity elements in steel are reduced, austenite grains are coarsened during slab casting, and there is a problem that surface cracks exhibiting austenite grain boundary cracks are likely to occur during continuous casting or rough rolling after slab heating. Furthermore, in order to reduce impurity elements at the iron and steelmaking stages, measures such as lengthening the processing time of vacuum degassing and increasing the amount of desulfurization treatment agent are required, and the production cost of steel sheets will rise. There is also a problem.
【0005】[0005]
【発明が解決使用とする課題】上述の通り、建築構造物
の耐震・制震に適する低降伏比の部材、または自動車用
の高成形性が必要な部材に最適な鋼板として、種々の改
善が試みられたが、いずれも特性の改善効果が不十分で
あり、必要とされる特性を具備するような鋼板を安定し
て得られないという問題があった。As described above, various improvements have been made to steel sheets that are suitable for members having a low yield ratio suitable for seismic resistance and vibration control of building structures or members that require high formability for automobiles. Attempts have been made, but there has been a problem that the effect of improving the properties is insufficient, and a steel sheet having the required properties cannot be stably obtained.
【0006】本発明は、このような問題に鑑みてなされ
たものであり、鋼の化学組成、結晶組織、熱間および冷
間圧延の最適条件を選択することによって、鋼板の強度
−延性のバランスに優れ、降伏強さと破断伸びの変動が
小さく、高成形性と低降伏比とを有する鋼板およびその
製造方法を提供することを目的としている。The present invention has been made in view of such a problem, and the strength-ductility balance of a steel sheet is selected by selecting the optimum conditions for the chemical composition, crystal structure, hot and cold rolling of steel. It is an object of the present invention to provide a steel sheet having excellent formability, a small variation in yield strength and elongation at break, high formability and a low yield ratio, and a method for producing the same.
【0007】[0007]
【課題を解決するための手段】本発明は、下記(1)の降
伏強さと破断伸びの変動が小さく高成形性と低降伏比と
を有する鋼板、および(2)のその鋼板の製造方法を要旨
としている。 (1) 質量%で、C:0.0002〜0.1%、Si:0.003〜2.0
%、Mn:0.003〜3.0%およびAl:0.002〜2.0%を含
有し、さらに下記1群から4群のうちから1群または2
群以上を選択して、残部は実質的にFeからなり不純物
としてP:0.0002〜0.15%、S:0.0002〜0.05%および
N:0.0005〜0.015%を含む鋼板であって、フェライト
相の平均結晶粒径が1μm超え〜50μmで、その体積率が
70%以上で、フェライト相のアスペクト比が5以下であ
り、フェライト粒界の70%以上が大角粒界からなり、さ
らに残部相のうちで体積率が最大である第二相の平均結
晶粒径が50μm以下であることを特徴とする降伏強さと
破断伸びの変動が小さく高成形性と低降伏比とを有する
鋼板である。さらに、この鋼板は、熱延鋼板または冷延
鋼板のいずれであってもよい。Means for Solving the Problems The present invention relates to the following (1) a steel sheet having a small change in yield strength and breaking elongation and having high formability and a low yield ratio, and (2) a method for producing the steel sheet. It is a gist. (1) In mass%, C: 0.0002 to 0.1%, Si: 0.003 to 2.0
%, Mn: 0.003 to 3.0% and Al: 0.002 to 2.0%, and one or two of the following first to fourth groups:
A steel plate containing substantially Fe and having P: 0.0002 to 0.15%, S: 0.0002 to 0.05% and N: 0.0005 to 0.015% as impurities, and the average grain size of ferrite phase The diameter is over 1μm ~ 50μm, and the volume ratio is
70% or more, the aspect ratio of the ferrite phase is 5 or less, 70% or more of the ferrite grain boundaries consist of large-angle grain boundaries, and the average crystal grain size of the second phase having the largest volume fraction among the remaining phases Is a steel sheet having a small variation in yield strength and elongation at break characterized by a high formability and a low yield ratio. Further, this steel sheet may be either a hot-rolled steel sheet or a cold-rolled steel sheet.
【0008】1群…B:0.0002〜0.01%を含む 2群…Ti、Nb、VおよびZrのうちから1種または
2種以上を合計で0.005〜1.0%を含む 3群…Cr、Mo、CuおよびNiのうちから1種また
は2種以上を合計で0.005%〜3.0%を含む 4群…Ca:0.005%以下および希土類元素:0.20%以
下を含む (2) 上記(1)に記載の成分を含有する鋼を用いてスラブ
を鋳造後、直ちに熱間圧延をするとき、または950〜130
0℃の温度域で再加熱したのち熱間圧延するとき、鋼ス
ラブを粗圧延後、仕上圧延開始時の粗圧延材のコイル長
手方向と幅方向におけるコイル内温度差が100℃以下と
なるように粗圧延材を再加熱、若しくは保熱すると同時
に、下記(a)式を満足する条件で熱間圧延を行うこと
を特徴とする降伏強さと破断伸びの変動が小さく高成形
性と低降伏比とを有する鋼板の製造方法である。 △FT≦0.6 × △RT ・・・ (a) ただし、△FT:仕上圧延完了温度の変動(℃)、△R
T:粗圧延完了温度の変動(℃)とし、△FT≦30℃
の場合には(a)式を適用しない。Group 1: B: contains 0.0002 to 0.01% Group 2: Contains one or more of Ti, Nb, V and Zr in total of 0.005 to 1.0% Group 3: Cr, Mo, Cu And one or two or more of Ni and 0.005% to 3.0% in total. Four groups: Ca: 0.005% or less and rare earth element: 0.20% or less (2) The component described in (1) above When hot rolling immediately after casting a slab using the steel contained, or 950-130
When hot rolling after reheating in a temperature range of 0 ° C., after rough rolling of the steel slab, the temperature difference in the coil in the coil longitudinal direction and width direction of the rough rolled material at the start of finish rolling is 100 ° C. or less. Characterized in that the rough-rolled material is re-heated or kept at the same time as hot rolling is performed under the conditions satisfying the following expression (a), the yield strength and the elongation at break are small, and the high formability and low yield ratio are small. And a method for producing a steel sheet having: ΔFT ≦ 0.6 × ΔRT (a) where ΔFT: fluctuation of finish rolling completion temperature (° C.), ΔR
T: Fluctuation of rough rolling completion temperature (° C.), ΔFT ≦ 30 ° C.
In the case of (1), the expression (a) is not applied.
【0009】上記の製造方法で得られた熱延鋼板を、さ
らに圧下率が50%以上の冷間圧延を行って、600〜950℃
の温度域で焼鈍処理するのが好ましい。[0009] The hot-rolled steel sheet obtained by the above-mentioned production method is further subjected to cold rolling at a reduction ratio of 50% or more, at 600 to 950 ° C.
It is preferable to perform the annealing treatment in the temperature range described above.
【0010】本発明の鋼板の特徴である、降伏強さと破
断伸びの変動が小さく、かつ高成形性と低降伏比とを具
備する特性は、後述する図1および図2に示すような鋼
板の強度−延性バランスとして表現される場合もある。
この鋼板の特性を定量的に判断する場合には、コイル内
全てにおいて引張強さTS≧270MPa、降伏強さの変動
△YS≦50MPa、破断伸びの変動△EL≦5%、降伏比
(降伏強さを引張強さで除した値)YR≦0.75、および
TS×EL≧15000MPa・%の条件を全て満足するか否
かで行われ、この条件を全て満足する場合には特性を具
備すると判断される。The characteristics of the steel sheet of the present invention, in which the fluctuation of the yield strength and the elongation at break and the high formability and the low yield ratio, are the characteristics of the steel sheet as shown in FIGS. Sometimes expressed as a strength-ductility balance.
When the properties of this steel sheet are quantitatively determined, the tensile strength TS ≧ 270 MPa, the variation in yield strength △ YS ≦ 50 MPa, the variation in elongation at break △ EL ≦ 5%, the yield ratio (yield strength) Is determined by satisfying all of the conditions of YR ≦ 0.75 and TS × EL ≧ 15000 MPa ·%. If all of these conditions are satisfied, it is determined that the material has characteristics. You.
【0011】本発明で規定するフェライト相のアスペク
ト比は、最大径を最小径で除した値として示している。
また、フェライト粒界が大角粒界であるか否かは、隣接
フェライト粒間の結晶方位差の調査を行い、隣接フェラ
イト結晶粒間の方位差が15度以上の場合に大角粒界と判
定することとしている。The aspect ratio of the ferrite phase specified in the present invention is shown as a value obtained by dividing the maximum diameter by the minimum diameter.
Whether the ferrite grain boundary is a large-angle grain boundary is examined by examining the crystal orientation difference between adjacent ferrite grains, and is determined to be a large-angle grain boundary when the orientation difference between adjacent ferrite grains is 15 degrees or more. I have to do that.
【0012】さらに、本発明で第二相と記す結晶組織と
は、フェライト相以外のパーライト、ベイナイト、マル
テンサイト、残留オーステナイト等の各種の相、および
セメンタイト(以下、これらを単に「残部相」と総称
し、析出物(セメンタイトを除く炭化物、窒化物、硫化
物、酸化物、燐化物、硼化物、およびこれらの複合生成
物など)を含まない)のうちで体積率が最も大きい相を
いう。Further, the crystal structure referred to as the second phase in the present invention includes various phases other than the ferrite phase such as pearlite, bainite, martensite, retained austenite, and cementite (hereinafter, these are simply referred to as “remainder phase”). Collectively, it refers to a phase having the largest volume ratio among precipitates (excluding carbides, nitrides, sulfides, oxides, phosphides, borides, and composite products thereof other than cementite).
【0013】本発明者らは、前記の課題を解決するため
に、鋭意実験研究を行い、以下のことを知見して、上記
の本発明を完成させた。The present inventors have conducted intensive experimental research to solve the above-mentioned problems, and have found the following, thereby completing the present invention.
【0014】各化学組成の鋼板が有する特性を把握する
ため、表1に示す各元素を含有する鋼を真空溶解炉にて
鋳塊として、これらから熱間鍛造によって圧延用の鋼材
を作製した。鋼材を再加熱した後、熱間圧延して等軸フ
ェライト相を主体とし、残部相として、セメンタイト、
パーライト、ベイナイト、マルテンサイトおよび残留オ
ーステナイトのうち1種または2種以上を有する熱延鋼
板を製造した。In order to ascertain the characteristics of the steel sheets having the respective chemical compositions, steels containing the respective elements shown in Table 1 were cast into ingots in a vacuum melting furnace, and steel materials for rolling were prepared from these by ingot hot forging. After reheating the steel material, hot rolling is performed to make the equiaxed ferrite phase the main component, and as the remaining phase, cementite,
A hot rolled steel sheet having one or more of pearlite, bainite, martensite, and retained austenite was produced.
【0015】[0015]
【表1】 一部の鋼種については、真空溶解炉で鋳塊とした後、直
ちに熱間圧延を開始する直送圧延の実験も行った。得ら
れた熱延鋼板の厚さは2.6mmであった。これらの鋼板に
ついて、熱延鋼板として等軸フェライト相の平均結晶粒
径、その体積率、および隣接フェライト粒間の結晶方位
差、さらに、残部相の平均結晶粒径とその体積率を調査
した。同時に、全ての鋼種について引張試験も行った。
一部の熱延鋼板については酸洗後、820℃×50secの焼鈍
処理を行った。[Table 1] For some steel types, an experiment was also conducted on direct-feed rolling in which hot rolling was started immediately after the ingot was formed in a vacuum melting furnace. The thickness of the obtained hot-rolled steel sheet was 2.6 mm. With respect to these steel sheets, the average crystal grain size of the equiaxed ferrite phase, the volume ratio thereof, the crystal orientation difference between adjacent ferrite grains, and the average crystal grain size of the remaining phase and the volume ratio thereof as hot rolled steel sheets were investigated. At the same time, tensile tests were performed on all steel types.
Some hot-rolled steel sheets were annealed at 820 ° C. × 50 sec after pickling.
【0016】次に、冷延鋼板の特性を把握するため、前
記表1の化学組成の鋼から厚さ4.0mmの熱延鋼板を製造
して、酸洗後、圧下率80%の冷間圧延を行い、800℃×6
0secの焼鈍を施した冷延鋼板を用いて同様の調査を行っ
た。Next, in order to grasp the characteristics of the cold-rolled steel sheet, a hot-rolled steel sheet having a thickness of 4.0 mm was manufactured from steel having the chemical composition shown in Table 1 above, and after pickling, cold-rolled at a rolling reduction of 80%. And 800 ℃ × 6
The same investigation was performed using a cold-rolled steel sheet annealed for 0 sec.
【0017】フェライト相と残部相の平均結晶粒径は、
光学顕微鏡組織写真または走査電子顕微鏡(SEM)組織
写真を5視野で撮影し、これらを用いて直線切断法によ
り測定した平均切片長さを1.128倍した値で代表した。
フェライト相と残部相の体積率は、画像解析装置を用い
て上記の5視野の組織写真を解析し、それらの平均値で
代表した。隣接フェライト結晶粒間の結晶方位差は、電
子線後方散乱法(EBSP)により測定した。The average crystal grain size of the ferrite phase and the remaining phase is:
Light microscopic micrographs or scanning electron microscopic (SEM) micrographs were taken in five fields of view, and these were used to represent the average section length measured by the linear section method multiplied by 1.128.
The volume ratios of the ferrite phase and the residual phase were represented by an average value of the structural photographs of the five visual fields using an image analyzer. The crystal orientation difference between adjacent ferrite grains was measured by electron beam backscattering (EBSP).
【0018】引張試験は、JIS Z 2201 に規定される5
号引張試験片を用いて行った。各引張試験値の平均値V
mは、Vm =(V0 +2V45+V90)/4で評価
した。ここで、V0 、V45およびV90は、それぞ
れ圧延方向、圧延方向に対して45°の方向、圧延方向に
対して90°の方向に引張試験を行った測定値を示してい
る。また、各引張値の変動値であるΔV値は、鋼板内で
の最大値と最小値との差を絶対値で示している。[0018] The tensile test is performed in accordance with JIS Z 2201.
The test was performed using a tensile test piece. Average value V of each tensile test value
m was evaluated at V m = (V 0 + 2V 45 + V 90) / 4. Here, V 0 , V 45 and V 90 indicate measured values obtained by performing a tensile test in the rolling direction, a direction at 45 ° to the rolling direction, and a direction at 90 ° to the rolling direction, respectively. The ΔV value, which is a fluctuation value of each tensile value, indicates the absolute value of the difference between the maximum value and the minimum value in the steel sheet.
【0019】図1は、フェライト相を体積率で70%以上
含有する熱延鋼板の強度−延性バランスに対するフェラ
イト相と第二相の平均結晶粒径との関係を示す図ある。
同図中の●印は、鋼の特性がTS≧270MPa、TS×E
L≧15000MPa・%、△YS≦50MPa、△EL≦5%、
YR≦0.75の条件を全て満足するものである。この特性
に合致する場合は、降伏強さと破断伸びの変動が小さ
く、高成形性と低降伏比を有する鋼板であることを示し
ている。FIG. 1 shows the relationship between the average crystal grain size of the ferrite phase and the second phase with respect to the strength-ductility balance of a hot-rolled steel sheet containing 70% or more by volume of the ferrite phase.
The symbol ● in the figure indicates that the properties of the steel are TS ≧ 270 MPa, TS × E
L ≧ 15000MPa ·%, ΔYS ≦ 50MPa, ΔEL ≦ 5%,
It satisfies all the conditions of YR ≦ 0.75. When this property is met, it indicates that the steel sheet has a small change in yield strength and elongation at break, and has high formability and a low yield ratio.
【0020】これに対し、■および▲印はこれらの特性
を満足せず、例えば、TS≧270MPa、TS×EL<150
00MPa・%、△YS>50MPa、△EL>5%、YR>0.
75のいずれかの特性を具備するものである。On the other hand, the symbols Δ and ▲ do not satisfy these characteristics. For example, TS ≧ 270 MPa, TS × EL <150
00 MPa ·%, ΔYS> 50 MPa, ΔEL> 5%, YR> 0.
It has one of the 75 characteristics.
【0021】図1に示されているように、フェライト相
の平均結晶粒径が1μm超え50μm以下で、第二相の平
均結晶粒径が50μm以下の場合には、強度−延性バラン
スが優れている。しかし、同図中でフェライト相の平均
結晶粒径が50μm以下で、第二相の平均結晶粒径が50μ
m以下の場合であっても、フェライト粒界の70%未満が
大角粒界の場合であったり、またはフェライト相のアス
ペクト比が5を超える場合であれば、TS≧270MPa、
TS×EL≧15000MPa・%、△YS≦50MPa、△EL
≦5%、YR≦0.75の条件を全てを満たすことができな
い。As shown in FIG. 1, when the average crystal grain size of the ferrite phase is more than 1 μm and 50 μm or less and the average crystal grain size of the second phase is 50 μm or less, the strength-ductility balance is excellent. I have. However, in the figure, the average crystal grain size of the ferrite phase is 50 μm or less, and the average crystal grain size of the second phase is 50 μm.
m or less, if less than 70% of ferrite grain boundaries are large-angle grain boundaries, or if the aspect ratio of the ferrite phase exceeds 5, TS ≧ 270 MPa,
TS × EL ≧ 15000MPa ·%, YS ≦ 50MPa, ΔEL
≦ 5% and YR ≦ 0.75 cannot all be satisfied.
【0022】図2は、フェライト相の平均結晶粒径が0.
5〜38μm、第二相の平均結晶粒径が0.3〜30μmである
熱延鋼板の強度−延性バランスに及ぼす等軸フェライト
相と第二相の体積率の影響を示す図である。図中の●、
■、▲印の記号は、上記図1の場合と同様である。FIG. 2 shows that the average crystal grain size of the ferrite phase is 0.2.
It is a figure which shows the influence of the volume ratio of an equiaxed ferrite phase and a 2nd phase on the strength-ductility balance of the hot-rolled steel sheet whose 5-38 micrometers and the average crystal grain diameter of a 2nd phase are 0.3-30 micrometers. ●,
The symbols ■ and ▲ are the same as those in FIG.
【0023】図2に示されているように、フェライト相
のアスペクト比が5以下で、フェライト相の比率が体積
率で70%以上である場合には、鋼板の特性がTS≧27
0MPa、TS×EL≧15000MPa・%、△YS≦50MPa、
△EL≦5%、YR≦0.75の条件を全て満足するもので
ある。しかし、同図中でフェライト相の体積率が70%以
上であっても、フェライト粒界のうち大角粒界の占める
割合が70%未満であったり、またはフェライト相のアス
ペクト比が5を超えるような場合には、上記の良好な特
性を満足できないことが分かる。As shown in FIG. 2, when the aspect ratio of the ferrite phase is 5 or less and the ratio of the ferrite phase is 70% or more by volume, the properties of the steel sheet are TS ≧ 27.
0MPa, TS × EL ≧ 15000MPa ·%, ΔYS ≦ 50MPa,
It satisfies all the conditions of ΔEL ≦ 5% and YR ≦ 0.75. However, in the figure, even if the volume fraction of the ferrite phase is 70% or more, the proportion of the large-angle grain boundaries among the ferrite grain boundaries is less than 70%, or the aspect ratio of the ferrite phase exceeds 5. In such a case, it can be seen that the above favorable characteristics cannot be satisfied.
【0024】さらに、冷延鋼板についても試験を重ねた
結果、熱延鋼板の特性が冷延鋼板に及ぼす影響につい
て、次のイおよびロの知見を得ることができた。Further, as a result of repeated tests on the cold-rolled steel sheets, the following findings (a) and (b) could be obtained regarding the effects of the properties of the hot-rolled steel sheets on the cold-rolled steel sheets.
【0025】イ.熱延鋼板でフェライト相を体積率で70
%以上含有する場合に、冷延鋼板の諸特性に及ぼす調査
結果によれば、熱延鋼板のフェライト相のアスペクト比
が5以下で、フェライト相の平均結晶粒径が1μm超え5
0μm以下で、かつ、第二相の平均結晶粒径が50μm以
下の場合に、冷延鋼板の特性もTS≧270MPa、TS×
EL≧15000MPa・%、△YS≦50MPa、△EL≦5
%、YR≦0.75の条件を全て満足することができる。言
い換えると、熱延鋼板の特性が冷延鋼板で発揮される降
伏強さと破断伸びの変動が小さく、高成形性と低降伏比
を有する特性にそのまま影響している。A. 70 volume fraction of ferrite phase in hot rolled steel sheet
According to the investigation results on the properties of the cold-rolled steel sheet when the content is not less than 5%, the aspect ratio of the ferrite phase of the hot-rolled steel sheet is 5 or less and the average crystal grain size of the ferrite phase exceeds 1 μm.
0 μm or less, and when the average crystal grain size of the second phase is 50 μm or less, the properties of the cold-rolled steel sheet are also TS ≧ 270 MPa, TS ×
EL ≧ 15000MPa ·%, ΔYS ≦ 50MPa, ΔEL ≦ 5
%, YR ≦ 0.75. In other words, the properties of the hot-rolled steel sheet have small changes in the yield strength and elongation at break exhibited by the cold-rolled steel sheet, and directly affect the properties having high formability and a low yield ratio.
【0026】しかしながら、熱延鋼板のフェライト相の
平均結晶粒径が50μm以下で、かつ第二相の平均結晶粒
径が50μm以下であっても、フェライト粒界のうち大角
粒界の占める割合が70%未満の場合や、フェライト相の
アスペクト比が5を超える場合には、冷延鋼板は上記特
性を全て満たすことができない。However, even if the average crystal grain size of the ferrite phase of the hot-rolled steel sheet is 50 μm or less and the average crystal grain size of the second phase is 50 μm or less, the proportion of the large-angle grain boundaries in the ferrite grain boundaries is small. If it is less than 70% or if the aspect ratio of the ferrite phase exceeds 5, the cold rolled steel sheet cannot satisfy all of the above characteristics.
【0027】ロ.熱延鋼板でフェライト相の平均結晶粒
径が0.5〜36μm、第二相の平均結晶粒径が0.3〜30μm
である場合に、冷延鋼板の特性に及ぼす熱延鋼板の等軸
フェライト相と第二相の体積率の影響を調査した結果に
よれば、熱延鋼板のフェライト相のアスペクト比が5以
下で、フェライト相の比率が体積率で70%以上である場
合には、冷延鋼の特性がTS≧270MPa、TS×EL≧1
5000MPa・%、△YS≦50MPa、△EL≦5%、YR≦
0.75の条件を全て満足する。B. Hot-rolled steel sheet with ferrite phase average grain size 0.5-36μm, second phase average grain size 0.3-30μm
According to the results of investigating the effect of the volume fraction of the equiaxed ferrite phase and the second phase of the hot-rolled steel sheet on the properties of the cold-rolled steel sheet, the aspect ratio of the ferrite phase of the hot-rolled steel sheet was 5 or less. When the ratio of the ferrite phase is 70% or more by volume, the characteristics of the cold-rolled steel are TS ≧ 270 MPa, TS × EL ≧ 1.
5000MPa ·%, △ YS ≦ 50MPa, △ EL ≦ 5%, YR ≦
Satisfies all conditions of 0.75.
【0028】しかしながら、フェライト相の体積率が70
%以上であっても、フェライト粒界のうち大角粒界の占
める割合が70%未満であったり、またはフェライト相の
アスペクト比が5を超える場合には、冷延鋼板の諸特性
は上記の特性を全て満たすことができない。However, when the volume ratio of the ferrite phase is 70
% Or more, if the proportion of the large-angle grain boundaries in the ferrite grain boundaries is less than 70% or if the aspect ratio of the ferrite phase exceeds 5, the properties of the cold-rolled steel sheet will be as described above. Cannot be all satisfied.
【0029】次に、熱間圧延条件が鋼板の特性に及ぼす
影響について検討した。熱延コイルの長手方向と幅方向
における仕上圧延完了温度の変動(最高温度と最低温度
の差)△FTは、粗圧延完了温度の変動△RTの影響を
受ける。△FTの変動が大きくなると、コイル内の特性
変動も大きくなる。この特性変動を抑えて、地震エネル
ギー吸収性能の安定化し、プレス加工時の成形性を良好
にするには、△RTと△FTの変動を抑制する必要があ
る。Next, the effect of the hot rolling conditions on the properties of the steel sheet was examined. Fluctuation of the finish rolling completion temperature in the longitudinal direction and width direction of the hot-rolled coil (difference between the highest temperature and the lowest temperature) △ FT is affected by the fluctuation of the rough rolling completion temperature △ RT. When the variation in ΔFT increases, the characteristic variation in the coil also increases. In order to suppress the characteristic fluctuation, stabilize the seismic energy absorption performance, and improve the formability during press working, it is necessary to suppress the fluctuation of ΔRT and ΔFT.
【0030】具体的には、粗圧延材を再加熱または保熱
して、仕上圧延を開始する直前の粗圧延材の圧延長手方
向と幅方向における温度差を100℃以下とし、△FTと
△RTの関係が下記(a)式を満たす条件で熱間圧延を
行うか、さらに好ましくは熱間圧延後に600℃〜950℃の
焼鈍処理することにより、熱延鋼板、さらに熱延鋼板を
冷間圧延および焼鈍処理した冷延コイルの圧延長手方向
と幅方向の特性の均一化が図れる。しかし、仕上圧延完
了温度の変動△FT≦30℃の条件が保てる場合には、
粗圧延完了温度の変動△RTの影響を考慮する必要がな
いことから、下記(a)式の条件を満たす必要がない。 △FT≦0.6 × △RT ・・・ (a) また、連続鋳造スラブを、再加熱することなく直接熱延
を開始する場合はスラブ温度を1300℃以下にすることに
より、また、スラブを再加熱する場合は1300℃以下950
℃以上に加熱することにより、スラブ中に存在する粗大
な析出物の再固溶を抑制し、熱延時の微細析出を抑制す
ることができるので、破断伸びを向上させることができ
る。Specifically, the rough-rolled material is reheated or kept warm, and the temperature difference in the rolling longitudinal direction and the width direction of the rough-rolled material immediately before starting the finish rolling is set to 100 ° C. or less. The hot-rolled steel sheet and further hot-rolled steel sheet are cold-rolled by performing hot rolling under the condition that the relationship of RT satisfies the following expression (a), or more preferably by performing an annealing treatment at 600 ° C. to 950 ° C. after hot rolling. The characteristics of the cold-rolled coil that has been rolled and annealed can be made uniform in the rolling longitudinal direction and the width direction. However, if the condition of variation of the finish rolling completion temperature ΔFT ≦ 30 ° C. can be maintained,
Since there is no need to consider the effect of the variation ΔRT of the rough rolling completion temperature, it is not necessary to satisfy the condition of the following equation (a). ΔFT ≦ 0.6 × ΔRT (a) In addition, when directly hot-rolling the continuous cast slab without reheating, the slab temperature is set to 1300 ° C. or less, and When reheating, 1300 ° C or less 950
By heating at a temperature of not less than ° C., the solid re-solution of coarse precipitates present in the slab can be suppressed, and fine precipitation during hot rolling can be suppressed, so that the elongation at break can be improved.
【0031】[0031]
【発明の実施の形態】本発明の鋼板およびその製造方法
を上記のように規定した理由を、1.鋼の化学組成、
2.結晶組織、3.熱間圧延および4.冷間圧延に区分
して説明する。 1.鋼の化学組成 以下の説明のおいて、成分組成は質量%を示す。BEST MODE FOR CARRYING OUT THE INVENTION The reason why the steel sheet of the present invention and the method for producing the same are specified as described above is as follows. The chemical composition of the steel,
2. 2. crystal structure; 3. hot rolling and A description will be given separately for cold rolling. 1. Chemical composition of steel In the following description, the component composition indicates% by mass.
【0032】C:0.0002〜0.1% 含有量が多いほどフェライト相の体積率が減少し、硬質
な残部相の体積率が増加するので、延性や深絞り性に悪
影響を及ぼすことになる。そのため、Cの含有は少ない
方がよく、0.1%以下とする。好ましくは0.05%以下、
より好ましくは0.01%以下である。一方、含有量を0.00
02%未満までに低下させるには、製鋼コストが嵩むだけ
でなく、フェライト粒が極端に粗大化するので、高延性
が安定して得られず、鋼板の成形時に表面肌荒れが生じ
やすいという問題がある。このため、C含有量は0.0002
%以上とする。C: 0.0002-0.1% The higher the content, the lower the volume fraction of the ferrite phase and the higher the volume fraction of the hard residual phase, which adversely affects ductility and deep drawability. Therefore, it is better that the content of C is small, and it is set to 0.1% or less. Preferably 0.05% or less,
More preferably, it is 0.01% or less. On the other hand, the content is 0.00
In order to reduce the content to less than 02%, not only does the steelmaking cost increase, but also the ferrite grains become extremely coarse, so that high ductility cannot be obtained stably and the surface roughness tends to occur during the forming of the steel sheet. is there. Therefore, the C content is 0.0002
% Or more.
【0033】Si:0.003〜2.0% Siは加工性をさほど損なうことなく、鋼の強度を向上
させる作用があるので、2.0%以下を含有させる。ま
た、フェライトの生成を促進してフェライト量を増加さ
せる作用がある。Si含有量が2.0%を超えると鋼の加
工性が悪くなるのでこれ以上の添加は好ましくない。ま
た、Siは鋼を硬くする作用に加えて、鋼の表面性状を
劣化させるので、鋼の加工性を重視する場合にはSi含
有量は少ない方が好ましい。したがって、加工性や表面
性状に実質的な悪影響を及ぼさないようにするには1.0
%以下、より好ましくは0.6%以下にする。一方、含有
量を0.003%未満までに低下させるには、製鋼コストが
嵩むため、Si含有量は0.003%以上とする。Si: 0.003 to 2.0% Since Si has the effect of improving the strength of steel without significantly impairing workability, it is contained in an amount of 2.0% or less. Further, it has the effect of promoting the formation of ferrite and increasing the amount of ferrite. If the Si content exceeds 2.0%, the workability of the steel deteriorates, so further addition is not preferred. Further, since Si degrades the surface properties of the steel in addition to the effect of hardening the steel, when the workability of the steel is emphasized, the smaller the Si content, the better. Therefore, in order to prevent a substantial adverse effect on workability and surface properties, 1.0
% Or less, more preferably 0.6% or less. On the other hand, in order to reduce the content to less than 0.003%, steelmaking costs increase, so the Si content is set to 0.003% or more.
【0034】Mn:0.003〜3.0% 一般的に、Sによる熱間脆性を防止する目的で、適量の
Mnを含有させる。また、Mnを固溶強化元素として活
用する場合には、その含有量が0.003%以上でなければ
所望の効果が得られない。しかし、Mnを過剰に含有さ
せると、成形性が劣化してしまうだけでなく、熱間圧延
後の冷却過程で十分なフェライトを生成させることが困
難になり、延性と溶接性が損なわれることになる。これ
を防止するため、Mnの含有量は3.0%以下とし、好ま
しくは2.0%以下、より好ましくは1.5%以下とする。Mn: 0.003 to 3.0% In general, an appropriate amount of Mn is contained for the purpose of preventing hot brittleness due to S. When Mn is used as a solid solution strengthening element, a desired effect cannot be obtained unless its content is 0.003% or more. However, when Mn is excessively contained, not only does formability deteriorate, but it becomes difficult to generate sufficient ferrite in a cooling process after hot rolling, and ductility and weldability are impaired. Become. In order to prevent this, the content of Mn is set to 3.0% or less, preferably 2.0% or less, more preferably 1.5% or less.
【0035】Al:0.002〜2.0% Alは健全な鋳片を得るための脱酸に用いられ、Siと
同様に、フェライトの生成を促進してフェライト量を増
加させるため、またはTiなど添加元素の歩留を確保す
るため、0.002%以上含有させる。一方、その含有量が
2.0%を超えると上記の効果が飽和するので、Al含有
量は2.0%以下とする。好ましくは1.2%以下、より好ま
しくは0.1%以下である。Al: 0.002 to 2.0% Al is used for deoxidization to obtain sound slabs, and promotes the formation of ferrite and increases the amount of ferrite, as well as Si, In order to secure the yield, the content is made 0.002% or more. On the other hand, the content
If the content exceeds 2.0%, the above effect is saturated, so the Al content is set to 2.0% or less. Preferably it is 1.2% or less, more preferably 0.1% or less.
【0036】本発明の鋼板は、上記の成分元素の他に、
次の成分元素を必要に応じて含有することができる。The steel sheet of the present invention has, in addition to the above component elements,
The following component elements can be contained as needed.
【0037】B:0.0002〜0.01%(1群) Bは必須元素でないが、鋼の焼入れ性を向上させる作用
があるため、冷却過程でフェライト相や残部相の結晶粒
径や体積率を制御する場合に添加する。また、BはAr
3点を低下させる作用があるので、オーステナイト温度
域で仕上圧延を完了するのが困難な場合に、含有させる
のが有効である。特に、板厚が2.0mm以下と薄物の熱延
鋼板を製造する場合に有効である。さらに、極低炭素鋼
板を絞り加工時に発生するおそれがある「二次加工割
れ」を防止する作用があるため、含有させてもよい。B: 0.0002-0.01% (Group 1) B is not an essential element, but has an effect of improving the hardenability of steel, so that the crystal grain size and volume ratio of the ferrite phase and the remaining phase are controlled during the cooling process. Add if necessary. B is Ar
Since it has the effect of lowering the three points, it is effective to include it when it is difficult to complete finish rolling in the austenite temperature range. In particular, it is effective when manufacturing a hot rolled steel sheet having a thickness as thin as 2.0 mm or less. Furthermore, the ultra-low carbon steel sheet may be included because it has an effect of preventing “secondary cracking” that may occur during drawing.
【0038】Bを含有させる場合には、0.0002%以上含
有させる。しかし、Bを0.01%を超えて含有させると、
フェライトの生成が著しく抑制され、二次加工割れを防
止する作用が飽和することによって、鋼板を脆くする場
合がある。このため、B含有量は0.01%以下とし、好ま
しくは0.007%以下、より好ましくは0.005%以下であ
る。When B is contained, it is contained in an amount of 0.0002% or more. However, when B is contained in more than 0.01%,
In some cases, the formation of ferrite is significantly suppressed, and the effect of preventing secondary working cracks saturates, thereby making the steel sheet brittle. Therefore, the B content is set to 0.01% or less, preferably 0.007% or less, and more preferably 0.005% or less.
【0039】Ti、Nb、V、Zrのうちから1種また
は2種以上:0.005〜1.0%(2群) これらの元素はいずれも鋼に含有される固溶C、固溶
N、固溶Sを析出物として固定して無害化する作用があ
り、特に、冷延焼鈍鋼板の深絞り性を向上するのに有効
である。また、延性や深絞り性をさほど損なうことな
く、鋼の強度を高める作用を発揮する。したがって、鋼
の深絞り性や強度を確保するために必要がある場合に
は、これらの元素のうちから1種または2種以上を合計
して、0.005以上含有させてもよい。しかし、合計の含
有量が1.0%を超えると、上記効果は飽和し、逆に延性
や深絞り性が低下するので、降伏比が高くなってプレス
成形時の形状凍結性が劣化する。このため、これらの含
有量は1.0%以下とし、好ましくは0.5%以下、より好ま
しくは0.2%以下とする。One or more of Ti, Nb, V, and Zr: 0.005 to 1.0% (group 2) These elements are all contained in solid solution C, solid solution N, and solid solution S contained in steel. Has the effect of fixing as a precipitate and rendering it harmless, and is particularly effective in improving the deep drawability of cold-rolled annealed steel sheets. Further, it exerts an effect of increasing the strength of steel without significantly impairing ductility and deep drawability. Therefore, if necessary to ensure the deep drawability and strength of steel, one or more of these elements may be added in a total amount of 0.005 or more. However, when the total content exceeds 1.0%, the above effects are saturated, and conversely, ductility and deep drawability are reduced, so that the yield ratio is increased and the shape freezing property during press molding is deteriorated. Therefore, their content is set to 1.0% or less, preferably 0.5% or less, more preferably 0.2% or less.
【0040】Cr、Mo、Cu、Niのうちから1種ま
たは2種以上:0.005%〜3.0%(3群) これらの元素には、Mnと同様に、焼入れ性を向上させ
る作用があるので、これらの元素を適量含有させること
により、冷却過程でのフェライト相や残部相の結晶粒径
や体積率を制御するのが容易になる。また、Cuは耐食
性を向上する作用も有する。したがって、必要がある場
合には、これらの元素のうちから1種または2種以上を
合計で0.005%以上含有させる。しかし、これらの含有
量が3.0%を超えると上記効果は飽和すると同時に、過
剰に添加すると成形性を損なうことになる。したがっ
て、これらのの含有量は3.0%以下とし、好ましくは1.0
%以下、より好ましくは0.5%以下である。One or more of Cr, Mo, Cu, and Ni: 0.005% to 3.0% (Group 3) These elements have an effect of improving hardenability similarly to Mn. By containing these elements in appropriate amounts, it becomes easy to control the crystal grain size and volume ratio of the ferrite phase and the remaining phase in the cooling process. Cu also has an effect of improving corrosion resistance. Therefore, if necessary, one or more of these elements are contained in a total of 0.005% or more. However, when these contents exceed 3.0%, the above effects are saturated, and when added in excess, the moldability is impaired. Therefore, the content of these should be 3.0% or less, preferably 1.0%
%, More preferably 0.5% or less.
【0041】Ca:0.005%以下および希土類元素:0.2
0%以下(4群) これらの元素は、いずれも介在物の形状を調整して、冷
間加工性を改善するので、必要に応じて含有させる。含
有させる場合には、Caが0.005%を超えて、希土類元
素が0.20%を超えて含有させると、上記効果が飽和する
ことになるので、これらを含有量の上限とする。Ca: 0.005% or less and rare earth element: 0.2
0% or less (Group 4) These elements are included as necessary because they adjust the shape of the inclusions and improve the cold workability. In the case where Ca is contained, if the content of Ca exceeds 0.005% and the content of the rare earth element exceeds 0.20%, the above-described effect is saturated. Therefore, these are set as the upper limits of the contents.
【0042】本発明の鋼板は、上記化学組成を適宜含有
し、残部はFeおよび不純物からなる。不純物のうち
P、SおよびNの含有量は次のように制御する。The steel sheet of the present invention suitably contains the above chemical composition, and the balance is composed of Fe and impurities. The contents of P, S and N among the impurities are controlled as follows.
【0043】P:0.0002〜0.15% Pは鋼を硬くし脆くする傾向があるが、加工性を阻害す
ることなく鋼の強度を高めることができる。しかし、過
度に含有させるとPは結晶粒界に偏析して鋼が脆くなる
ので、含有量は0.15%以下とする。好ましくは0.12%以
下、より好ましくは0.10%以下である。一方、P含有量
を0.0002%未満まで低下するには製鋼コストが嵩むだけ
でなく、フェライト粒が極端に粗大化して高延性が安定
して得られず、鋼板の成形時に表面肌荒れが生じやす
い。このため、含有量の下限をは0.0002%とする。P: 0.0002 to 0.15% P tends to make the steel hard and brittle, but can increase the strength of the steel without impairing the workability. However, if P is excessively contained, P segregates at the crystal grain boundaries and the steel becomes brittle. Therefore, the content is set to 0.15% or less. Preferably it is 0.12% or less, more preferably 0.10% or less. On the other hand, when the P content is reduced to less than 0.0002%, not only does the steelmaking cost increase, but also the ferrite grains become extremely coarse and high ductility cannot be obtained stably, and the surface roughness tends to occur during the formation of the steel sheet. For this reason, the lower limit of the content is set to 0.0002%.
【0044】S:0.0002〜0.05% Sは硫化物系介在物を形成して、加工性を低下させるの
で、含有量を0.05%以下で管理する。好ましくは、一段
と優れた加工性を得るために、0.03%以下、より好まし
くは0.015%以下とするのがよい。一方、S含有量を0.0
002%未満まで低下するには製鋼コストが嵩むだけでな
く、フェライト粒が極端に粗大化して高延性が安定して
得られず、鋼板の成形時に表面肌荒れが生じやすい。こ
のため、含有量の下限をは0.0002%とする。S: 0.0002-0.05% Since S forms sulfide-based inclusions and reduces workability, its content is controlled to 0.05% or less. Preferably, in order to obtain more excellent workability, the content is preferably 0.03% or less, more preferably 0.015% or less. On the other hand, when the S content is 0.0
In order to reduce the content to less than 002%, not only does the steelmaking cost increase, but also the ferrite grains become extremely coarse and high ductility cannot be obtained stably, and the surface roughening tends to occur when the steel sheet is formed. For this reason, the lower limit of the content is set to 0.0002%.
【0045】N:0.0005〜0.015% Nは少ないほどよいが、0.015%以下であれば本発明に
おいては影響が小さい。しかし、その含有量が0.015%
を超えると、AlやTiを多量に添加する必要が生じ経
済的でない。したがって、その含有量は0.015%以下と
するのがよい。好ましくは0.007%以下、より好ましく
は0.005%以下である。ただし、N含有量を0.0005%未
満に低下するには製鋼コストが嵩むだけでなく、フェラ
イト粒が極端に粗大化してしまうため高延性が安定して
得られず、鋼板の成形時に表面肌荒れが生じやすいとい
う問題がある。このため、N含有量は0.0005%以上とす
る。 2.結晶組織 本発明の鋼板は、フェライト相の平均結晶粒径が1μm
超え〜50μmとする。フェライト相の平均結晶粒径が50
μmを超えて大きくなると、特定の粗大結晶粒に変形が
集中して歪みが局在化しやすくなる。このため、高い地
震エネルギー吸収性能や良好な強度−特性バランスを安
定して得ることができなくなるだけでなく、特性変動も
大きくなる。さらに、鋼板表面がプレス加工時に肌荒れ
を起こし、表面荒さが大きくなって表面性状が不芳にな
り易い。また、熱延鋼板のフェライト粒径が大きくなる
と、冷間圧延後の焼鈍時に旧粒界近傍から生成する{1
11}再結晶集合組織の発達が抑制されるため、高延
性、高r値が安定して得られず、しかも特性変動も大き
くなる。このため、鋼板のフェライト相の平均結晶粒径
は50μm以下とし、好ましくは30μm以下、さらに好ま
しくは10μm以下とする。N: 0.0005 to 0.015% N is preferably as small as possible, but if it is 0.015% or less, the effect is small in the present invention. However, its content is 0.015%
If it exceeds 300, it is necessary to add a large amount of Al or Ti, which is not economical. Therefore, its content is preferably set to 0.015% or less. Preferably it is 0.007% or less, more preferably 0.005% or less. However, reducing the N content to less than 0.0005% not only increases the steelmaking cost, but also causes the ferrite grains to become extremely coarse, so that high ductility cannot be stably obtained, and surface roughness occurs during the formation of the steel sheet. There is a problem that it is easy. Therefore, the N content is set to 0.0005% or more. 2. Crystal Structure The steel sheet of the present invention has an average ferrite phase crystal grain size of 1 μm.
Over 50 μm. Average grain size of ferrite phase is 50
When the size exceeds μm, deformation concentrates on a specific coarse crystal grain, and strain tends to be localized. For this reason, not only is it impossible to stably obtain high seismic energy absorption performance and good strength-characteristic balance, but also the characteristic fluctuations become large. Further, the surface of the steel sheet is roughened during press working, and the surface roughness tends to be large and the surface properties are likely to be unsatisfactory. Further, when the ferrite grain size of the hot-rolled steel sheet becomes large, it is formed from the vicinity of the old grain boundary during annealing after cold rolling.
Since the development of the 11 ° recrystallized texture is suppressed, high ductility and a high r value cannot be obtained stably, and the characteristic fluctuation also increases. For this reason, the average crystal grain size of the ferrite phase of the steel sheet is set to 50 μm or less, preferably 30 μm or less, and more preferably 10 μm or less.
【0046】一方、平均結晶粒径が1μm以下となる
と、フェライト粒界に占める大角粒界の割合が減少し、
70%以上とすることが困難になる。さらに、降伏強さが
極端に高くなり、低降伏比の特性を得ることができず、
プレス成形性が大幅に低下する。したがって、フェライ
ト粒径の下限を1μmとする。On the other hand, when the average grain size is 1 μm or less, the ratio of the large-angle grain boundaries to the ferrite grain boundaries decreases,
It becomes difficult to make it 70% or more. Furthermore, the yield strength becomes extremely high, and it is not possible to obtain characteristics of a low yield ratio,
Press formability is greatly reduced. Therefore, the lower limit of the ferrite grain size is set to 1 μm.
【0047】次に、鋼板のフェライト相の体積率を70%
以上にする必要がある。フェライト相の比率が体積率で
70%未満である場合には、フェライト相よりも高強度の
第二相が増加するため、鋼板の強度を高めることができ
るが、熱延鋼板や冷延鋼板の延性が大幅に劣化し、強度
−延性バランスを適正に確保することができない。この
ため、フェライト相の比率を体積率で70%以上とし、好
ましくは80%以上、より好ましくは90%以上とする。Next, the volume ratio of the ferrite phase of the steel sheet was reduced to 70%.
It is necessary to do above. The ratio of ferrite phase is
If it is less than 70%, the strength of the steel sheet can be increased because the second phase having higher strength than the ferrite phase increases, but the ductility of the hot-rolled steel sheet and the cold-rolled steel sheet is significantly deteriorated, -Ductile balance cannot be properly maintained. For this reason, the ratio of the ferrite phase is 70% or more by volume, preferably 80% or more, more preferably 90% or more.
【0048】フェライト相のアスペクト比は5以下とす
る。アスペクト比が5を超える場合には、ミクロ組織は
実質上等軸としての等方的な特性は得られなくなり、伸
長した方向と直角の方向の成形性が変動することにな
る。The aspect ratio of the ferrite phase is 5 or less. If the aspect ratio is more than 5, the microstructure will not have substantially isotropic properties as equiaxes, and the formability in the direction perpendicular to the direction of elongation will fluctuate.
【0049】フェライト粒界の70%以上が大角粒界から
なることが必要である。フェライト相の粒界のうち大角
粒界の割合が70%未満になると、相対的に小角粒界が多
くなり、実質上粗大なフェライト粒が多くなる。この場
合、高い延性、強度−延性バランスが安定して得られな
くなる、また、冷間圧延後の焼鈍時の{111}再結晶
集合組織の発達が困難になり、成形性が低下する。It is necessary that 70% or more of the ferrite grain boundaries consist of large angle grain boundaries. When the ratio of the large-angle grain boundaries in the grain boundaries of the ferrite phase is less than 70%, relatively small-angle grain boundaries are relatively increased, and substantially coarse ferrite grains are increased. In this case, a high ductility, strength-ductility balance cannot be obtained stably, and the development of {111} recrystallized texture during annealing after cold rolling becomes difficult, and formability decreases.
【0050】このように、フェライト相の粒界のうち大
角粒界の割合が70%未満になると、実質上のフェライト
粒界としての効果が小さくなり、フェライト相の体積率
が70%以上で、平均結晶粒径が50μm以下で、かつア
スペクト比が5以下であり、同時に、後述する第二相の
平均結晶粒径が50μm以下であっても、熱延鋼板または
冷延焼鈍鋼板における良好な強度−特性バランスが確保
できず、特性変動が大きくなる。As described above, when the ratio of the large-angle grain boundaries in the grain boundaries of the ferrite phase is less than 70%, the effect as a substantial ferrite grain boundary is reduced, and when the volume ratio of the ferrite phase is 70% or more, Good strength in a hot-rolled steel sheet or cold-rolled annealed steel sheet even if the average crystal grain size is 50 μm or less, and the aspect ratio is 5 or less, and at the same time, the average crystal grain size of the second phase described below is 50 μm or less. -Characteristic balance cannot be ensured, and characteristic fluctuations increase.
【0051】残部相のうち最大体積率を占める相を第二
相とするが、この第二相の平均結晶粒径を50μm以下、
その体積率を30%未満にする必要がある。熱延鋼板の第
二相の平均結晶粒径が50μmを超えると、熱延鋼板では
硬質な第二相の分布が不均一になるため、降伏強さの変
動△YSや破断伸びの変動△ELが大きくなる。また、
プレス成形時にフェライト相と第二相の界面から発生す
るクラックがフェライト粒界で伝播を阻止されにくくな
るため、延性が低下し、強度−延性バランスも低下す
る。The phase occupying the maximum volume ratio among the remaining phases is defined as the second phase, and the average crystal grain size of the second phase is 50 μm or less.
Its volume fraction must be less than 30%. When the average crystal grain size of the second phase of the hot-rolled steel sheet exceeds 50 μm, the distribution of the hard second phase becomes uneven in the hot-rolled steel sheet, so that the yield strength changes {YS and elongation at break} EL. Becomes larger. Also,
Since cracks generated from the interface between the ferrite phase and the second phase during press molding are not easily prevented from propagating at the ferrite grain boundaries, ductility is reduced, and the strength-ductility balance is also reduced.
【0052】冷延鋼板では、熱延鋼板における第二相の
平均結晶粒径が大きくなると、第二相近傍でのすべり系
のランダム化により冷延焼鈍時の{111}再結晶集合
組織の発達が困難になり、成形性が低下する。このよう
な点からも、第二相の平均結晶粒径を50μm以下とし、
好ましくは30μm以下、さらに好ましくは10μm以下で
ある。In the cold-rolled steel sheet, when the average crystal grain size of the second phase in the hot-rolled steel sheet is increased, the {111} recrystallization texture during cold rolling annealing is developed by randomizing the slip system in the vicinity of the second phase. Becomes difficult, and the moldability decreases. From such a point, the average crystal grain size of the second phase is 50 μm or less,
Preferably it is 30 μm or less, more preferably 10 μm or less.
【0053】第二相の平均結晶粒径の好ましい下限は0.
1μmである。第二相の平均結晶粒径が0.1μmを下回る
と、フェライト相を強化する作用が強くなり、降伏強さ
が高くなって降伏比が上昇するとともに、プレス成形時
にフェライト相と第二相との界面から転位が増殖するよ
り、むしろ第二相が転位の移動の妨げとなる傾向が強く
なり、成形性が劣化するためである。 3.熱間圧延 本発明の熱延鋼板および冷延鋼板は以下の方法で製造す
る。 3-1 スラブ加熱 連続鋳造法によって製造されたスラブの温度が1300℃以
下Ar3点以上である場合には、そのまま直送して熱間
圧延することができる。スラブの温度が1300℃以上の場
合、スラブ温度が1300℃以下になるまで放冷した後、熱
間圧延を行う。冷却後に圧延する場合には、スラブを95
0〜1300℃の温度領域に再加熱した後、熱間圧延を行う
ことになる。The preferred lower limit of the average crystal grain size of the second phase is 0.1.
1 μm. When the average crystal grain size of the second phase is less than 0.1 μm, the effect of strengthening the ferrite phase is increased, the yield strength is increased, the yield ratio is increased, and the ferrite phase and the second phase are formed during press molding. This is because, rather than the dislocations proliferating from the interface, the second phase tends to hinder the movement of the dislocations, thereby deteriorating the formability. 3. Hot rolling The hot rolled steel sheet and the cold rolled steel sheet of the present invention are manufactured by the following method. 3-1 Slab heating When the temperature of the slab manufactured by the continuous casting method is 1300 ° C. or less and 3 points or more of Ar, the slab can be directly fed as it is and hot-rolled. When the temperature of the slab is 1300 ° C. or higher, the slab is allowed to cool to a temperature of 1300 ° C. or lower, and then hot-rolled. If rolling after cooling, 95 slabs
After reheating to a temperature range of 0 to 1300 ° C., hot rolling is performed.
【0054】圧延に際して、スラブ温度を1300℃以下に
するのは、スラブ温度を低温にし、鋳造時に粗大析出し
ているMnS、AlN、TiS、Ti4C2S2等の析
出物を再固溶させて、熱間圧延時の微細析出を抑制する
ためである。したがって、熱間圧延前のスラブ温度は、
好ましくは1200℃以下、より好ましくは1150℃以下にす
る。加熱時間は、全体が均一な温度になり、かつ、オー
ステナイト結晶粒が粗大にならない範囲でスラブの寸法
に応じて選定すればよい。 3-2 粗圧延 粗圧延の少なくとも最終圧延パスを、Ar3点〜1150℃
の温度域で行うのが好ましい。粗圧延の合計圧下率は、
30%以上とするのが好ましい。これにより、オーステナ
イト結晶粒が微細化し、γ/α変態後のフェライト結晶
粒の微細化を図り易い。合計圧下率は、40%以上にする
のがより好ましい。 3-3 粗圧延材の処理 粗圧延材を仕上圧延開始までに再加熱、または保熱処理
を行うことにより、強度−延性のバランスに優れた熱延
鋼板と冷延鋼板を製造し易くなる。言い換えると、この
処理によって、仕上圧延開始時の粗圧延材のコイル長手
方向と幅方向におけるコイル内温度差が100℃以下にな
るように温度制御でき、前記(a)式の条件を満たすよ
うに、コイル内の仕上圧延完了温度の変動△FTを制御
することが容易になる。In rolling, the slab temperature is set to 1300 ° C. or lower because the slab temperature is lowered and precipitates such as MnS, AlN, TiS, and Ti 4 C 2 S 2 which are coarsely precipitated during casting are re-dissolved. This is to suppress fine precipitation during hot rolling. Therefore, the slab temperature before hot rolling is
Preferably it is 1200 ° C. or lower, more preferably 1150 ° C. or lower. The heating time may be selected according to the size of the slab as long as the temperature becomes uniform throughout and the austenite crystal grains do not become coarse. 3-2 Rough rolling At least the final rolling pass of rough rolling is performed at three points of Ar to 1150 ° C.
It is preferable to carry out in the temperature range described above. The total rolling reduction of the rough rolling is
It is preferably at least 30%. Thereby, the austenite crystal grains are refined, and the ferrite crystal grains after the γ / α transformation are easily refined. More preferably, the total draft is 40% or more. 3-3 Treatment of rough rolled material By reheating the rough rolled material or carrying out heat preservation before the start of finish rolling, it becomes easy to produce a hot rolled steel sheet and a cold rolled steel sheet having an excellent balance between strength and ductility. In other words, by this process, the temperature can be controlled such that the temperature difference in the coil in the coil longitudinal direction and the width direction of the rough-rolled material at the start of the finish rolling becomes 100 ° C. or less, and the condition of the above-mentioned equation (a) is satisfied. In addition, it becomes easy to control the fluctuation ΔFT of the finish rolling completion temperature in the coil.
【0055】△FTが小さくなると、仕上圧延後の冷却
巻取過程での温度変動も小さくなる。冷却巻取過程で形
成される第二相は低温変態生成物であるため、冷却巻取
時のコイル内温度変動がそのまま第二相の種類や体積率
の変動、さらにコイル内での特性変動に直結する。この
ため、△FTが小さくなると△YSや△ELの変動が小
さくなる。When △ FT decreases, the temperature fluctuation in the cooling and winding process after finish rolling also decreases. Since the second phase formed in the cooling and winding process is a low-temperature transformation product, temperature fluctuations in the coil during cooling and winding directly change the type and volume ratio of the second phase, and furthermore, change characteristics in the coil. Connect directly. For this reason, when △ FT becomes small, the fluctuation of △ YS and △ EL becomes small.
【0056】粗圧延材を仕上圧延開始までに再加熱、ま
たは保熱処理し、前記(a)式の条件を満たすように仕
上温度を制御することにより、粗圧延材の板幅方向と圧
延方向の温度の均一化が図られ、仕上圧延、冷却、巻取
の各工程でのコイル内の温度変動を抑制することができ
る。この結果、ミクロ組織を均質にでき、コイル内での
特性変動を抑制することができる。なお、仕上圧延開始
時の粗圧延材のコイル内温度差は100℃以下とし、好ま
しくは80℃以下、より好ましくは60℃以下とする。前記
(a)式の係数は0.6としているが、好ましくは0.5と
し、より好ましくは0.4とする。The rough-rolled material is reheated or heat-treated before the start of finish rolling, and the finishing temperature is controlled so as to satisfy the condition of the above equation (a). The temperature is made uniform, and the temperature fluctuation in the coil in each of the steps of finish rolling, cooling, and winding can be suppressed. As a result, the microstructure can be made uniform, and characteristic fluctuations in the coil can be suppressed. The temperature difference in the coil of the rough rolled material at the start of the finish rolling is set to 100 ° C. or less, preferably 80 ° C. or less, more preferably 60 ° C. or less. The coefficient in the equation (a) is set to 0.6, but is preferably set to 0.5, and more preferably set to 0.4.
【0057】また、上記の処理により、仕上圧延をオー
ステナイト域で完了する場合には、△FTを低減するこ
とができるため、仕上圧延完了温度をAr3点直上にし
てもコイル全体に亘りAr3点以下になることなく圧延
できる。この結果、低温オーステナイト域での累積歪み
を増加することができ、変態後のフェライト粒径を効率
的に微細化し、粒界を大角化することができる。[0057] Further, by the above processing, when completing the finish rolling at austenite region is, △ since FT can be reduced, Ar 3 over the entire coil even if the finish rolling completion temperature just above Ar 3 point It can be rolled without falling below the point. As a result, the cumulative strain in the low-temperature austenite region can be increased, and the ferrite grain size after transformation can be efficiently reduced, and the grain boundary can be increased in angle.
【0058】仕上圧延をフェライト域で完了する場合、
上記の処理を行うことによりフェライト域での累積歪み
を増加することができ、フェライト相を熱延ままで再結
晶させるか、または熱間圧延後の熱処理(連続焼鈍、箱
焼鈍、溶融亜鉛めっきや合金化溶融亜鉛めっき前の焼鈍
など)で再結晶させることが可能になる。このような組
織を冷間圧延後に焼鈍することによって、冷延鋼板の成
形性をより一層向上することができる。When the finish rolling is completed in the ferrite region,
By performing the above treatment, the cumulative strain in the ferrite region can be increased, and the ferrite phase is recrystallized as hot rolled or heat treated after hot rolling (continuous annealing, box annealing, hot dip galvanizing, (For example, annealing before galvannealing). By annealing such a structure after cold rolling, the formability of the cold rolled steel sheet can be further improved.
【0059】仕上完了温度がオーステナイト域またはフ
ェライト域のいずれの場合であっても、上記の処理によ
って本発明の鋼板の特徴である結晶組織を得ることが容
易になり、高成形性で特性変動の少ない熱延鋼板と冷延
鋼板を得ることができる。Regardless of whether the finishing temperature is in the austenite region or the ferrite region, the above treatment facilitates obtaining the crystal structure characteristic of the steel sheet of the present invention, and has high formability and characteristic fluctuation. It is possible to obtain less hot-rolled steel sheets and cold-rolled steel sheets.
【0060】さらに、仕上圧延前に粗圧延材を再加熱ま
たは保熱処理することにより、粗圧延前のスラブ温度を
低温にしても、仕上圧延完了温度を大幅に低下すること
なく圧延できるので、仕上圧延時の熱間変形抵抗の増加
も抑制でき、熱間圧延機に過負荷をかけることなく圧延
することができる。すなわち、上記の処理によって、粗
圧延前のスラブ温度を低温にすることができるため、前
述の熱間圧延時の微細析出の抑制が可能になり、高成形
性の熱延鋼板や冷延鋼板を得ることが容易になる。スラ
ブを粗圧延し、コイルボックスを用いてコイル状に巻き
取った後、巻き戻して仕上圧延を行うプロセス、および
粗圧延材の先端部を先行する粗圧延材の後端部と接合し
た後、仕上圧延を行う連続仕上圧延プロセスは、コイル
内の特性を均一化するのに有効であるが、これらのプロ
セスと上記の処理とを組み合わせることにより、特性を
一層均一にすることが可能になる。Furthermore, by reheating or preheating the rough rolled material before the finish rolling, even if the slab temperature before the rough rolling is lowered, the finish rolling can be performed without significantly lowering the finish rolling completion temperature. An increase in hot deformation resistance during rolling can be suppressed, and rolling can be performed without overloading the hot rolling mill. That is, by the above-described processing, the slab temperature before rough rolling can be lowered, so that it is possible to suppress fine precipitation during the above-described hot rolling, and to form a hot-rolled steel sheet or a cold-rolled steel sheet with high formability. It becomes easy to obtain. After roughly rolling the slab and winding it into a coil using a coil box, after rewinding and performing the finish rolling, and joining the leading end of the rough rolled material to the rear end of the preceding rough rolled material, The continuous finish rolling process of performing finish rolling is effective in making the characteristics in the coil uniform, but by combining these processes with the above-described processing, the characteristics can be made more uniform.
【0061】粗圧延材の表層部を冷却して、組織をオー
ステナイト相からフェライト相に変態させた状態から、
上記の処理によってオーステナイト相に逆変態させるこ
とにより、熱延鋼板表層部のフェライト粒径を効率的に
微細化し粒界を大角化することができる。The surface of the rough rolled material is cooled, and the structure is transformed from the austenite phase to the ferrite phase.
By performing the reverse transformation to the austenite phase by the above treatment, the ferrite grain size in the surface layer portion of the hot-rolled steel sheet can be efficiently refined, and the grain boundary can be made large.
【0062】仕上圧延開始までに粗圧延材を加熱または
保熱する方法として、粗圧延材を高周波誘導加熱で加熱
する方式、粗圧延材に直接電流を流して加熱する通電加
熱方式、燃焼ガスを用いるガスバーナー加熱によるガス
加熱方式等を採用することができる。特に、誘導加熱方
式の粗バーヒーターが有効であるが、加熱方式はこれら
の方法に限定されるものでは無い。As a method of heating or keeping the heat of the rough-rolled material before the start of the finish rolling, a method of heating the rough-rolled material by high-frequency induction heating, a current heating method of directly applying a current to the rough-rolled material, and heating the combustion gas A gas heating method using a gas burner to be used or the like can be adopted. In particular, a rough bar heater of an induction heating method is effective, but the heating method is not limited to these methods.
【0063】なお、粗圧延を簡略化し、または省略可能
な薄スラブ鋳造プロセスにおいて、仕上圧延の開始前に
加熱或いは保熱する方法として、この処理を用いても何
ら問題の発生はない。 3-4 仕上圧延 本発明の熱延鋼板を得るためには、上述の粗圧延材の処
理を行い、前記(a)式の条件を満たすように仕上圧延
を行うことが望ましい。オーステナイト域仕上の場合、
仕上圧延完了温度は(Ar3点+100℃)以下、(Ar
3点−50℃)以上で、かつその温度域での合計圧下率が
50%以上にすることが好ましい。仕上温度が(Ar3点
+100℃)を超えるか、または合計圧下率が50%に満た
ない場合には、本発明で規定するミクロ組織を確保する
ことが困難になる。これは、歪み蓄積の程度が小さいた
めである。規定する温度域での合計圧下率は、好ましく
は60%以上、より好ましくは70%以上である。In the thin slab casting process in which rough rolling can be simplified or omitted, there is no problem even if this process is used as a method of heating or keeping heat before the start of finish rolling. 3-4 Finish Rolling In order to obtain the hot-rolled steel sheet of the present invention, it is desirable that the above-described rough rolled material be processed and finish rolling be performed so as to satisfy the condition of the above-mentioned formula (a). For austenitic finish,
Finish rolling completion temperature is (Ar 3 points + 100 ° C) or less, (Ar
3 points -50 ° C) or more and the total draft in that temperature range is
Preferably, it is 50% or more. If the finishing temperature exceeds (Ar 3 points + 100 ° C.) or the total draft is less than 50%, it becomes difficult to secure the microstructure specified in the present invention. This is because the degree of strain accumulation is small. The total draft in the specified temperature range is preferably 60% or more, more preferably 70% or more.
【0064】仕上圧延完了温度が(Ar3点−50℃)よ
りも低くなる場合は、フェライト域熱間圧延を活用す
る。フェライト域仕上圧延の場合には、仕上圧延温度は
(Ar 3点−50℃)未満、(Ar3点−250℃)以上の
温度域とし、このときの合計圧下率を50%以上とするの
が望ましい。このような条件を満足できない場合には、
本発明で規定するミクロ組織を確保することが困難にな
る。すなわち、仕上温度が(Ar3点−250℃)よりも
低いと、熱間圧延ままで再結晶組織が得られないだけで
なく、加工フェライト組織を焼鈍により再結晶させて
も、成形性を向上させるような集合組織が得られないた
めである。この温度域での合計圧下率は、好ましくは60
%以上、より好ましくは70%以上である。When the finish rolling completion temperature is (Ar3(Point -50 ℃)
If it is lower than
You. In the case of ferrite finish rolling, the finishing rolling temperature is
(Ar 3(Point -50 ° C), (Ar3(-250 ° C)
Temperature range, and the total draft at this time should be 50% or more.
Is desirable. If these conditions cannot be satisfied,
It is difficult to secure the microstructure specified in the present invention.
You. That is, when the finishing temperature is (Ar3Point -250 ° C)
If it is too low, it will not be possible to obtain a recrystallized
No, recrystallize the processed ferrite structure by annealing
However, the texture that improves the moldability was not obtained.
It is. The total reduction in this temperature range is preferably 60
%, More preferably 70% or more.
【0065】上記の仕上圧延に際しては熱間潤滑剤を用
いて、圧延ロールと被圧延材との間の摩擦係数μが0.2
以下となるようにして圧延するのが好ましい。これによ
り板厚方向の加工変形が均一化されるので、熱延鋼板や
冷延鋼板の板厚表層部での延性を向上させることができ
る。熱間潤滑剤としては慣用されているものでよく、例
えば摩擦係数を低減した機械油などを使用することがで
きる。 3-5 冷却および巻取り フェライト結晶粒を微細にするために、仕上圧延の最終
圧延パスが終了した後、20℃/sec以上の冷却速度で冷却
するのが好ましい。より好ましくは30℃/sec以上であ
る。最終圧延パス終了後冷却開始までの時間は短い方が
好ましく3秒以下、より好ましくは2秒以下にするのが
よい。In the finish rolling, a friction coefficient μ between the rolling roll and the material to be rolled is set to 0.2 by using a hot lubricant.
The rolling is preferably performed as follows. Thereby, the work deformation in the thickness direction is made uniform, so that the ductility of the hot-rolled steel sheet or the cold-rolled steel sheet at the surface layer portion of the thickness can be improved. A commonly used hot lubricant may be used. For example, a mechanical oil having a reduced friction coefficient can be used. 3-5 Cooling and winding In order to make the ferrite crystal grains fine, it is preferable to cool at a cooling rate of 20 ° C./sec or more after the final rolling pass of finish rolling is completed. It is more preferably at least 30 ° C./sec. The time from the end of the final rolling pass to the start of cooling is preferably shorter than 3 seconds, more preferably shorter than 2 seconds.
【0066】巻取温度が800℃を超えると、スケールロ
スの増加や表面性状の劣化、熱間圧延鋼板フェライト結
晶粒の粗大化等が問題になることから、巻取温度は800
℃以下とすることが好ましい。ただし、フェライト域仕
上圧延で熱間圧延ままで再結晶させる場合は、巻取温度
の下限を630℃以上とするのが好ましい。 4.冷間圧延および再結晶焼鈍 熱延鋼板は、通常の方法で酸洗して表面の酸化物や汚れ
を除去した後、冷間圧延され、その後再結晶焼鈍され
る。冷間圧延後の焼鈍時に{111}再結晶集合組織を
発達させるために、熱延鋼板でも{111}集合組織を
発達させておくことを目的として、冷間圧延前に、600
℃以上の温度に加熱する条件で熱間圧延鋼板に焼鈍を施
してもよい。If the winding temperature exceeds 800 ° C., increase in scale loss, deterioration of surface properties, coarsening of hot-rolled steel sheet ferrite crystal grains, etc. become problems.
It is preferable that the temperature is set to not more than ° C. However, in the case of recrystallization as hot rolling in the finish rolling in the ferrite region, the lower limit of the winding temperature is preferably 630 ° C. or higher. 4. Cold Rolling and Recrystallization Annealing A hot-rolled steel sheet is subjected to pickling by a usual method to remove oxides and dirt on the surface, then cold-rolled, and then recrystallization-annealed. In order to develop {111} recrystallization texture at the time of annealing after cold rolling, in order to develop {111} texture even in a hot-rolled steel sheet, 600
The hot-rolled steel sheet may be annealed under conditions of heating to a temperature of not less than ° C.
【0067】冷間圧延では、圧延集合組織を発達させ、
再結晶焼鈍で延性の向上と面内異方性の最小化に好まし
い{111}集合組織を発達させるために、50%以上の
圧下率で最終板厚に加工する。In cold rolling, a rolling texture is developed,
In order to develop {111} texture which is preferable for improving ductility and minimizing in-plane anisotropy by recrystallization annealing, the steel sheet is worked to a final thickness at a rolling reduction of 50% or more.
【0068】再結晶焼鈍は、冷間圧延により導入された
圧延集合組織から、深絞り性に好ましい集合組織を発達
させるために、600〜950℃の温度範囲に加熱し焼鈍す
る。600℃より低い温度では、長時間の焼鈍でも再結晶
が十分に進行せず、一方、950℃を超える温度では深絞
り性が低下する。焼鈍方法は限定しないが、箱焼鈍法や
連続焼鈍法、または溶融亜鉛メッキ処理や合金化溶融亜
鉛メッキ処理の際に通常おこなわれる連続焼鈍でもよ
い。In the recrystallization annealing, in order to develop a texture favorable for deep drawability from the rolled texture introduced by cold rolling, the material is annealed by heating to a temperature range of 600 to 950 ° C. At a temperature lower than 600 ° C., recrystallization does not sufficiently proceed even after long-time annealing, while at a temperature higher than 950 ° C., the deep drawability decreases. Although the annealing method is not limited, a box annealing method, a continuous annealing method, or a continuous annealing usually performed in a hot-dip galvanizing treatment or an alloyed hot-dip galvanizing treatment may be used.
【0069】冷間圧延、再結晶焼鈍の後、調質圧延(ス
キンパス)、または溶融亜鉛めっき、合金化溶融亜鉛め
っき、電気めっき、有機被覆コーティング等の表面処理
を施しても良い。これらの鋼板は、プレス加工を施した
後、例えば自動車、家電製品、鋼構造物などに使用され
る。After cold rolling and recrystallization annealing, surface treatment such as temper rolling (skin pass) or hot dip galvanizing, galvannealing, electroplating, and organic coating may be applied. After being subjected to press working, these steel sheets are used for, for example, automobiles, home appliances, steel structures, and the like.
【0070】[0070]
【実施例】本発明の鋼板の効果を確認するため、表2に
示す化学組成の鋼種A〜Jを真空溶解炉を用いて鋳造
し、熱間鍛造により厚さ50mmのスラブを作製し、これら
のスラブを用いて、熱延鋼板を製造した。表3に示す条
件に基づいて、実験室規模でスラブ加熱、粗圧延および
仕上圧延を行い、厚さ2.6mm、幅250mmの熱延鋼板を得
た。粗圧延材の加熱は、実験室規模の誘導加熱装置を用
いて行った。EXAMPLES In order to confirm the effects of the steel sheet of the present invention, steel types A to J having the chemical compositions shown in Table 2 were cast using a vacuum melting furnace, and slabs having a thickness of 50 mm were produced by hot forging. A hot-rolled steel sheet was manufactured using the slab. Based on the conditions shown in Table 3, slab heating, rough rolling and finish rolling were performed on a laboratory scale to obtain a hot-rolled steel sheet having a thickness of 2.6 mm and a width of 250 mm. Heating of the rough rolled material was performed using a laboratory scale induction heating device.
【0071】圧延条件は、極力種々の組み合わせとして
いる。例えば、熱延No.2、3の鋼種Aは、仕上圧延完
了温度を(Ar3点−150℃)とするフェライト域で仕
上圧延を行い、700℃まで冷却後徐冷(巻取相当処理)
し焼鈍を省略する場合と、600℃まだ冷却後徐冷の後800
℃で焼鈍する場合の2種類の条件で熱延鋼板を製造し
た。フェライト域での圧延は、鋼板と圧延ロール間の摩
擦係数が0.12という高潤滑条件で行った。The rolling conditions are as various as possible. For example, for steel type A of hot rolled Nos. 2 and 3 , finish rolling is performed in a ferrite region in which the finish rolling completion temperature is (Ar 3 points -150 ° C.), cooled to 700 ° C., and then gradually cooled (processing equivalent to winding).
When annealing is omitted, and after 800 ° C
A hot-rolled steel sheet was manufactured under two conditions when annealing at ℃. Rolling in the ferrite region was performed under high lubrication conditions with a friction coefficient between the steel sheet and the rolling roll of 0.12.
【0072】[0072]
【表2】 [Table 2]
【表3】 熱延No.4、6、15の鋼種Bと鋼種Dについては、表3
に示す条件で熱間圧延を行い、4.0mmの熱延鋼板も作製
した。得られた厚さ4.0mmの熱延鋼板に酸洗を施した
後、表5に示す圧延条件に基づいて冷間圧延した後、さ
らに再結晶焼鈍および圧下率0.6%の調質圧延を施し
て、厚さ0.8mm、幅250mmの冷延鋼板を製造した。再結晶
のための焼鈍は連続焼鈍法とした。[Table 3] Table 3 shows the steel types B and D of hot rolled Nos. 4, 6, and 15.
Hot rolling was performed under the conditions shown in Table 1 to produce a 4.0 mm hot-rolled steel sheet. The resulting hot-rolled steel sheet having a thickness of 4.0 mm was pickled, cold-rolled based on the rolling conditions shown in Table 5, and further subjected to recrystallization annealing and temper rolling at a rolling reduction of 0.6%. A cold-rolled steel sheet having a thickness of 0.8 mm and a width of 250 mm was manufactured. Annealing for recrystallization was a continuous annealing method.
【0073】得られた熱延鋼板と冷延焼鈍鋼板につい
て、トップ部、ミドル部およびボトム部の3箇所の両エ
ッジ部、1/2幅の合計3箇所から、JIS Z 2201 の5号試
験片を採取して、降伏強さ、引張強さ、破断伸び、それ
らの変動を調査した。調査結果を表4および表5に示
す。With respect to the obtained hot-rolled steel sheet and cold-rolled annealed steel sheet, a JIS Z 2201 No. 5 test piece was obtained from a total of three places, namely, both edges, a top part, a middle part, and a bottom part, and a half width. Were sampled, and the yield strength, tensile strength, elongation at break, and their variations were investigated. The survey results are shown in Tables 4 and 5.
【0074】各引張試験の特性値は、前述した手法によ
って、両エッジ部については圧延方向に対して平行方向
から、また、1/2幅については圧延方向に対して0°、4
5°、90°方向から採取した試験片の測定値を平均して
用いている。特性値の変動値は各特性の最大値から最小
値を引いた値として求めた。降伏比(YR)はコイル内の
最大値、TS×EL値はコイル内の最小値を示した。According to the above-described method, the characteristic values of each tensile test were set to 0 °, 4 ° with respect to the rolling direction for the both edge portions from the direction parallel to the rolling direction, and to the half width.
The measured values of test specimens taken from 5 ° and 90 ° directions are averaged and used. The fluctuation value of the characteristic value was obtained as a value obtained by subtracting the minimum value from the maximum value of each characteristic. The yield ratio (YR) indicates the maximum value in the coil, and the TS × EL value indicates the minimum value in the coil.
【0075】表4と表5の結果から明らかなように、本
発明で規定する化学組成、結晶組織および圧延条件を満
足する熱延鋼板および冷延鋼板は、いずれもコイル内で
の降伏強さと破断伸びの変動が小さく、かつ高い成形性
を有するとともに、低降伏比であることが分かる。具体
的には、表4と表5に示す発明例は、TS≧270MPa、
TS×EL≧15000MPa・%、△YS≦50MPa、△EL
≦5%、YR≦0.75の条件を全て満足している。As is evident from the results in Tables 4 and 5, the hot-rolled steel sheet and the cold-rolled steel sheet satisfying the chemical composition, crystal structure and rolling conditions specified in the present invention all have the yield strength in the coil. It can be seen that the change in elongation at break is small, the moldability is high, and the yield ratio is low. Specifically, the invention examples shown in Tables 4 and 5 show that TS ≧ 270 MPa,
TS × EL ≧ 15000MPa ·%, YS ≦ 50MPa, ΔEL
≦ 5%, and the conditions of YR ≦ 0.75 are all satisfied.
【0076】[0076]
【表4】 [Table 4]
【表5】 [Table 5]
【発明の効果】本発明の鋼板によれば、鋼の化学組成、
結晶組織、熱間および冷間圧延の最適条件を選択するこ
とによって、鋼板の強度−延性のバランスに優れ、降伏
強さと破断伸びの変動が小さく、高成形性と低降伏比と
を具備する特性を達成することができる。また、本発明
の製造方法によれば、従来のように結晶粒を粗大化させ
ることなく、建築などの構造物の耐震・制震・免震用部
材、および自動車用の高成形性が必要な部材に好適な鋼
板を効率的に製造することができる。According to the steel sheet of the present invention, the chemical composition of the steel,
By selecting the optimal conditions of crystal structure, hot and cold rolling, the steel sheet has excellent balance between strength and ductility, small variation in yield strength and elongation at break, high formability and low yield ratio. Can be achieved. Further, according to the production method of the present invention, a member for seismic, seismic control, and seismic isolation of a structure such as a building and a high formability for an automobile are required without coarsening crystal grains as in the related art. A steel sheet suitable for a member can be efficiently manufactured.
【図1】フェライト相を体積率で70%以上含有する熱延
鋼板の強度−延性バランスに対するフェライト相と第二
相の平均結晶粒径との関係を示す図ある。FIG. 1 is a graph showing the relationship between the average crystal grain size of a ferrite phase and a second phase with respect to the strength-ductility balance of a hot-rolled steel sheet containing 70% or more by volume of a ferrite phase.
【図2】フェライト相の平均結晶粒径が0.5〜38μm、
第二相の平均結晶粒径が0.3〜30μmである熱延鋼板の
強度−延性バランスに及ぼす等軸フェライト相と第二相
の体積率の影響を示す図である。FIG. 2 shows an average crystal grain size of a ferrite phase of 0.5 to 38 μm,
It is a figure which shows the influence of the volume ratio of an equiaxed ferrite phase and a 2nd phase on the intensity-ductility balance of the hot-rolled steel sheet whose average crystal grain diameter of a 2nd phase is 0.3-30 micrometers.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C21D 9/46 C21D 9/46 G C22C 38/58 C22C 38/58 (72)発明者 平野 浩一 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 金子 悦三 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 迫田 章人 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 Fターム(参考) 4K037 EA01 EA02 EA04 EA05 EA09 EA11 EA13 EA15 EA16 EA17 EA18 EA19 EA20 EA23 EA25 EA27 EA28 EA31 EA32 EA35 EA36 EB02 EB06 EB08 EB09 EB11 FA01 FA02 FA03 FB03 FC03 FC04 FE02 FE03 FF02 FF03 FJ04 FJ05 FJ06 JA01 JA06 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C21D 9/46 C21D 9/46 G C22C 38/58 C22C 38/58 (72) Inventor Koichi Hirano Osaka, Osaka, Japan Sumitomo Metal Industries Co., Ltd., 4-5-33, Kitahama, Chuo-ku, City (72) Inventor Etsuzo Kaneko 4-5-33, Kitahama, Chuo-ku, Osaka-shi, Osaka Sumitomo Metal Industries, Ltd. (72) Inventor Akira Sakota People 4-5-33 Kitahama, Chuo-ku, Osaka-shi, Osaka F-term (reference) in Sumitomo Metal Industries, Ltd. 4K037 EA01 EA02 EA04 EA05 EA09 EA11 EA13 EA15 EA16 EA17 EA18 EA19 EA20 EA23 EA25 EA27 EA28 EA31 EA32 EB35 EA36 EB35 EB09 EB11 FA01 FA02 FA03 FB03 FC03 FC04 FE02 FE03 FF02 FF03 FJ04 FJ05 FJ06 JA01 JA06
Claims (5)
03〜2.0%、Mn:0.003〜3.0%およびAl:0.002〜2.
0%を含有し、さらに下記1群から4群のうちから1群
または2群以上を選択して、残部は実質的にFeからな
り不純物としてP:0.0002〜0.15%、S:0.0002〜0.05
%およびN:0.0005〜0.015%を含む鋼板であって、フ
ェライト相の平均結晶粒径が1μm超え〜50μmで、その
体積率が70%以上で、フェライト相のアスペクト比が5
以下であり、フェライト粒界の70%以上が大角粒界から
なり、さらに残部相のうちで体積率が最大である第二相
の平均結晶粒径が50μm以下であることを特徴とする降
伏強さと破断伸びの変動が小さく高成形性と低降伏比と
を有する鋼板。 1群…B:0.0002〜0.01%を含む 2群…Ti、Nb、VおよびZrのうちから1種または
2種以上を合計で0.005〜1.0%を含む 3群…Cr、Mo、CuおよびNiのうちから1種また
は2種以上を合計で0.005%〜3.0%を含む 4群…Ca:0.005%以下および希土類元素:0.20%以
下を含む(1) In mass%, C: 0.0002 to 0.1%, Si: 0.0
03-2.0%, Mn: 0.003-3.0% and Al: 0.002-2.
0%, and one or more of the following groups 1 to 4 are selected, and the balance is substantially composed of Fe: P: 0.0002 to 0.15%, S: 0.0002 to 0.05
% And N: 0.0005 to 0.015%, wherein the average crystal grain size of the ferrite phase is more than 1 μm to 50 μm, the volume ratio is 70% or more, and the aspect ratio of the ferrite phase is 5%.
Yield strength, wherein 70% or more of ferrite grain boundaries are composed of large-angle grain boundaries, and the average crystal grain size of the second phase having the largest volume fraction among the remaining phases is 50 μm or less. A steel sheet having high formability and a low yield ratio with small fluctuation in elongation at break. Group 1 ... B: contains 0.0002 to 0.01% Group 2 ... One or more of Ti, Nb, V and Zr contain 0.005 to 1.0% in total Group 3 ... Cr, Mo, Cu and Ni One or two or more of them contain 0.005% to 3.0% in total. Four groups: Ca: 0.005% or less and rare earth element: 0.20% or less
ことを特徴とする請求項1に記載の降伏強さと破断伸び
の変動が小さく高成形性と低降伏比とを有する鋼板。2. The steel sheet according to claim 1, wherein the steel sheet is a hot-rolled steel sheet or a cold-rolled steel sheet, and has a high formability and a low yield ratio.
てスラブを鋳造後、直ちに熱間圧延をするとき、または
950〜1300℃の温度域で再加熱したのち熱間圧延すると
き、鋼スラブを粗圧延後、仕上圧延開始時の粗圧延材の
コイル長手方向と幅方向におけるコイル内温度差が100
℃以下となるように粗圧延材を再加熱、若しくは保熱す
ると同時に、下記(a)式を満足する条件で熱間圧延を
行うことを特徴とする降伏強さと破断伸びの変動が小さ
く高成形性と低降伏比とを有する鋼板の製造方法。 △FT≦0.6 × △RT ・・・ (a) ただし、△FT:仕上圧延完了温度の変動(℃)、△R
T:粗圧延完了温度の変動(℃)とし、△FT≦30℃
の場合には(a)式を適用しない。3. Hot rolling immediately after casting a slab using the steel containing the component according to claim 1, or
When hot rolling after reheating in a temperature range of 950 to 1300 ° C., after rough rolling of the steel slab, the difference in coil temperature in the coil longitudinal direction and width direction of the rough rolled material at the start of finish rolling is 100
The method is characterized in that the rough-rolled material is reheated or kept at a temperature of not more than 0 ° C. and hot-rolled at the same time as satisfying the following equation (a). A method for producing a steel sheet having a property and a low yield ratio. ΔFT ≦ 0.6 × ΔRT (a) where ΔFT: fluctuation of finish rolling completion temperature (° C.), ΔR
T: Fluctuation of rough rolling completion temperature (° C.), ΔFT ≦ 30 ° C.
In the case of (1), the expression (a) is not applied.
焼鈍処理することを特徴とする請求項3に記載の降伏強
さと破断伸びの変動が小さく高成形性と低降伏比とを有
する鋼板の製造方法。4. The method according to claim 3, wherein after the hot rolling, annealing is carried out in a temperature range of 600 to 950 ° C., wherein the variation in yield strength and elongation at break is small and high formability and low yield ratio are obtained. A method for producing a steel sheet having:
を、さらに圧下率が50%以上の冷間圧延を行って、600
〜950℃の温度域で焼鈍処理することを特徴とする降伏
強さと破断伸びの変動が小さく高成形性と低降伏比とを
有する鋼板の製造方法。5. The hot-rolled steel sheet produced according to claim 3 or 4 is further subjected to cold rolling at a rolling reduction of 50% or more to obtain 600%
A method for producing a steel sheet having a small change in yield strength and elongation at break, which has high formability and a low yield ratio, wherein the steel sheet is annealed in a temperature range of 950 ° C. to 950 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001034747A JP4003401B2 (en) | 2001-02-13 | 2001-02-13 | Steel sheet having high formability and low yield ratio with small variation in yield strength and elongation at break, and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001034747A JP4003401B2 (en) | 2001-02-13 | 2001-02-13 | Steel sheet having high formability and low yield ratio with small variation in yield strength and elongation at break, and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002241897A true JP2002241897A (en) | 2002-08-28 |
JP4003401B2 JP4003401B2 (en) | 2007-11-07 |
Family
ID=18898297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001034747A Expired - Fee Related JP4003401B2 (en) | 2001-02-13 | 2001-02-13 | Steel sheet having high formability and low yield ratio with small variation in yield strength and elongation at break, and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4003401B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003293083A (en) * | 2002-04-01 | 2003-10-15 | Sumitomo Metal Ind Ltd | Hot rolled steel sheet and method of producing hot rolled steel sheet and cold rolled steel sheet |
JP2009241090A (en) * | 2008-03-31 | 2009-10-22 | Nippon Steel Corp | Method for producing hot dip galvannealed steel sheet having excellent surface quality |
WO2013153679A1 (en) | 2012-04-12 | 2013-10-17 | Jfeスチール株式会社 | Hot-rolled steel plate for square steel tube for use as builiding structural member and process for producing same |
KR101412395B1 (en) | 2012-03-29 | 2014-06-25 | 현대제철 주식회사 | Method of manufacturing high strength cold-rolled steel sheet |
KR101516864B1 (en) | 2013-03-28 | 2015-05-04 | 현대제철 주식회사 | Method of manufacturing cold-rolled steel sheet |
WO2016194273A1 (en) * | 2015-05-29 | 2016-12-08 | Jfeスチール株式会社 | Hot-rolled steel sheet, full hard cold-rolled steel sheet, and method for producing hot-rolled steel sheet |
US20200255920A1 (en) * | 2017-11-03 | 2020-08-13 | Posco | Steel material for welding steel pipe having excellent low-temperature toughness, steel material that has undergone weld heat treatment, and method for manufacturing same |
US11008632B2 (en) | 2016-03-31 | 2021-05-18 | Jfe Steel Corporation | Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing coated steel sheet |
KR102255829B1 (en) * | 2019-12-16 | 2021-05-25 | 주식회사 포스코 | Steel sheet for seismic damper having superior toughness property and manufacturing method of the same |
US11230744B2 (en) | 2016-03-31 | 2022-01-25 | Jfe Steel Corporation | Steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing steel sheet, and method for producing plated steel sheet |
WO2022124682A1 (en) * | 2020-12-10 | 2022-06-16 | 주식회사 포스코 | Steel material for seismic damper having superior impact toughness, and manufacturing method for same |
CN115369213A (en) * | 2022-09-13 | 2022-11-22 | 包头钢铁(集团)有限责任公司 | Production method for improving ductility and plasticity of plain carbon steel for household appliances |
US11946111B2 (en) * | 2016-03-31 | 2024-04-02 | Jfe Steel Corporation | Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing heat-treated steel sheet, method for producing steel sheet, and method for producing coated steel sheet |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108796363B (en) * | 2017-04-27 | 2020-10-27 | 宝山钢铁股份有限公司 | High-surface-quality aluminum-coated substrate steel suitable for large deformation and stamping and production method thereof |
-
2001
- 2001-02-13 JP JP2001034747A patent/JP4003401B2/en not_active Expired - Fee Related
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003293083A (en) * | 2002-04-01 | 2003-10-15 | Sumitomo Metal Ind Ltd | Hot rolled steel sheet and method of producing hot rolled steel sheet and cold rolled steel sheet |
JP2009241090A (en) * | 2008-03-31 | 2009-10-22 | Nippon Steel Corp | Method for producing hot dip galvannealed steel sheet having excellent surface quality |
KR101412395B1 (en) | 2012-03-29 | 2014-06-25 | 현대제철 주식회사 | Method of manufacturing high strength cold-rolled steel sheet |
US9708680B2 (en) | 2012-04-12 | 2017-07-18 | Jfe Steel Corporation | Hot rolled steel sheet for square column for building structural members |
WO2013153679A1 (en) | 2012-04-12 | 2013-10-17 | Jfeスチール株式会社 | Hot-rolled steel plate for square steel tube for use as builiding structural member and process for producing same |
KR20140138854A (en) | 2012-04-12 | 2014-12-04 | 제이에프이 스틸 가부시키가이샤 | Hot-rolled steel plate for square steel tube for use as builiding structural member and process for producing same |
US10876180B2 (en) | 2012-04-12 | 2020-12-29 | Jfe Steel Corporation | Method of manufacturing hot rolled steel sheet for square column for building structural members |
KR101516864B1 (en) | 2013-03-28 | 2015-05-04 | 현대제철 주식회사 | Method of manufacturing cold-rolled steel sheet |
CN107709593B (en) * | 2015-05-29 | 2020-01-14 | 杰富意钢铁株式会社 | Hot-rolled steel sheet, all-hard cold-rolled steel sheet, and method for producing hot-rolled steel sheet |
CN107709593A (en) * | 2015-05-29 | 2018-02-16 | 杰富意钢铁株式会社 | The manufacture method of hot rolled steel plate, fully hard cold-rolled steel sheet and hot rolled steel plate |
KR102044086B1 (en) * | 2015-05-29 | 2019-11-12 | 제이에프이 스틸 가부시키가이샤 | Hot-rolled steel sheet, full-hard cold-rolled steel sheet, and method for manufacturing hot-rolled steel sheet |
JP6066023B1 (en) * | 2015-05-29 | 2017-01-25 | Jfeスチール株式会社 | Hot-rolled steel sheet, full-hard cold-rolled steel sheet, and hot-rolled steel sheet manufacturing method |
WO2016194273A1 (en) * | 2015-05-29 | 2016-12-08 | Jfeスチール株式会社 | Hot-rolled steel sheet, full hard cold-rolled steel sheet, and method for producing hot-rolled steel sheet |
KR20170139149A (en) * | 2015-05-29 | 2017-12-18 | 제이에프이 스틸 가부시키가이샤 | Hot-rolled steel sheet, full hard cold-rolled steel sheet, and method for producing hot-rolled steel sheet |
US11230744B2 (en) | 2016-03-31 | 2022-01-25 | Jfe Steel Corporation | Steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing steel sheet, and method for producing plated steel sheet |
US11008632B2 (en) | 2016-03-31 | 2021-05-18 | Jfe Steel Corporation | Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing coated steel sheet |
US11946111B2 (en) * | 2016-03-31 | 2024-04-02 | Jfe Steel Corporation | Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing heat-treated steel sheet, method for producing steel sheet, and method for producing coated steel sheet |
US20200255920A1 (en) * | 2017-11-03 | 2020-08-13 | Posco | Steel material for welding steel pipe having excellent low-temperature toughness, steel material that has undergone weld heat treatment, and method for manufacturing same |
WO2021125640A1 (en) * | 2019-12-16 | 2021-06-24 | 주식회사 포스코 | Steel sheet for seismic damper having superior toughness property and manufacturing method of same |
JP2023506831A (en) * | 2019-12-16 | 2023-02-20 | ポスコホールディングス インコーポレーティッド | Vibration control damper steel material with excellent impact toughness and its manufacturing method |
KR102255829B1 (en) * | 2019-12-16 | 2021-05-25 | 주식회사 포스코 | Steel sheet for seismic damper having superior toughness property and manufacturing method of the same |
JP7476312B2 (en) | 2019-12-16 | 2024-04-30 | ポスコホールディングス インコーポレーティッド | Steel material for vibration dampers with excellent impact toughness and its manufacturing method |
WO2022124682A1 (en) * | 2020-12-10 | 2022-06-16 | 주식회사 포스코 | Steel material for seismic damper having superior impact toughness, and manufacturing method for same |
KR20220082432A (en) * | 2020-12-10 | 2022-06-17 | 주식회사 포스코 | Steel sheet for seismic damper having superior toughness property and manufacturing method of the same |
KR102443928B1 (en) | 2020-12-10 | 2022-09-19 | 주식회사 포스코 | Steel sheet for seismic damper having superior toughness property and manufacturing method of the same |
CN115369213A (en) * | 2022-09-13 | 2022-11-22 | 包头钢铁(集团)有限责任公司 | Production method for improving ductility and plasticity of plain carbon steel for household appliances |
CN115369213B (en) * | 2022-09-13 | 2023-08-08 | 包头钢铁(集团)有限责任公司 | Production method for improving ductility and plasticity of common carbon steel for household appliances |
Also Published As
Publication number | Publication date |
---|---|
JP4003401B2 (en) | 2007-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9028626B2 (en) | Method for manufacturing high strength galvanized steel sheet with excellent formability | |
JP6179461B2 (en) | Manufacturing method of high-strength steel sheet | |
US10941476B2 (en) | High strength steel sheet and method for producing the same | |
US10526679B2 (en) | Method for manufacturing a hot dip galvanized and galvannealed steel sheet having excellent elongation properties | |
JP5339005B1 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JP5924332B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
US9598755B2 (en) | High strength galvanized steel sheet having excellent deep drawability and stretch flangeability and method for manufacturing the same | |
JP2010275627A (en) | High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them | |
US11466350B2 (en) | High-strength steel sheet and production method therefor | |
US20190106773A1 (en) | Hot rolled steel sheet for cold rolled steel sheet, hot rolled steel sheet for galvanized steel sheet, and method for producing the same | |
KR20120113791A (en) | Method for producing high-strength steel plate having superior deep drawing characteristics | |
US11643701B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method therefor | |
JP5256690B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same | |
JP4003401B2 (en) | Steel sheet having high formability and low yield ratio with small variation in yield strength and elongation at break, and method for producing the same | |
JP4752522B2 (en) | Manufacturing method of high strength cold-rolled steel sheet for deep drawing | |
JPWO2021079755A1 (en) | High-strength steel plate and its manufacturing method | |
US20230357874A1 (en) | High-strength cold-rolled steel sheet, hot-dipped galvanized steel sheet, alloyed hot-dipped galvanized steel sheet, and methods for producing of these | |
JP2002256390A (en) | Highly formable steel sheet and production method therefor | |
JP4010131B2 (en) | Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof | |
JP7056631B2 (en) | High-strength hot-dip galvanized steel sheet and its manufacturing method | |
US20240052449A1 (en) | High strength steel sheet, impact absorbing member, and method for manufacturing high strength steel sheet | |
US20240052464A1 (en) | High strength steel sheet, impact absorbing member, and method for manufacturing high strength steel sheet | |
JP5655436B2 (en) | High-strength steel sheet excellent in deep drawability and manufacturing method thereof | |
JP6575727B1 (en) | High ductility high strength steel sheet and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040426 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040524 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050719 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060417 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070731 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070813 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4003401 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120831 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120831 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130831 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130831 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130831 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |