JP4010131B2 - Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof - Google Patents

Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof Download PDF

Info

Publication number
JP4010131B2
JP4010131B2 JP2001312687A JP2001312687A JP4010131B2 JP 4010131 B2 JP4010131 B2 JP 4010131B2 JP 2001312687 A JP2001312687 A JP 2001312687A JP 2001312687 A JP2001312687 A JP 2001312687A JP 4010131 B2 JP4010131 B2 JP 4010131B2
Authority
JP
Japan
Prior art keywords
less
cold
steel sheet
rolled
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001312687A
Other languages
Japanese (ja)
Other versions
JP2002226941A (en
Inventor
才二 松岡
哲雄 清水
敬 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001312687A priority Critical patent/JP4010131B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to EP01998666A priority patent/EP1338667B1/en
Priority to KR1020027009698A priority patent/KR20020073564A/en
Priority to PCT/JP2001/010340 priority patent/WO2002044434A1/en
Priority to TW090129328A priority patent/TW520398B/en
Priority to DE60143907T priority patent/DE60143907D1/en
Priority to CA002398126A priority patent/CA2398126A1/en
Priority to AU24118/02A priority patent/AU776043B2/en
Priority to CNB018073271A priority patent/CN1193110C/en
Priority to US10/181,810 priority patent/US20030129444A1/en
Publication of JP2002226941A publication Critical patent/JP2002226941A/en
Application granted granted Critical
Publication of JP4010131B2 publication Critical patent/JP4010131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鋼板の引張り強さが440MPa以上である、自動車用鋼板等の使途に有用な深絞り性に優れた複合組織型高張力冷延鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、地球環境の保全問題からの排出ガス規制に関連して、自動車の車体重量の軽減が極めて重要な課題となっており、最近、車体重量の軽減のために、自動車用鋼板を高強度化して鋼板板厚を低減することが検討されている。
【0003】
鋼板を素材とする自動車の車体用部品の多くがプレス加工により成形されるため、使用される冷延鋼板には、優れたプレス成形性を有することが要求される。プレス成形性向上のためには、鋼板の機械的特性として、高いランクフォード値(r値)と高い延性(El)および低い降伏応力(YS)が必要である。
しかし、一般に、鋼板を高強度化すると、r値および延性が低下し、プレス成形性が劣化するとともに、降伏応力が上昇して形状凍結性が劣化して、スプリングバックの問題が生じやすい。
【0004】
プレス成形性の良好な高張力鋼板の代表例としては、軟らかいフェライトと硬質のマルテンサイトの複合組織からなる複合組織鋼板が挙げられ、特に連続焼鈍後ガスジェット冷却で製造される複合組織鋼板は、降伏応力が低く高延性と優れた焼付け硬化性とを兼ね備えている。上記複合組織鋼板は、加工性については概ね良好であるものの、厳しい条件下での加工性、特にr値が低く深絞り成形性が劣るという欠点があった。
【0005】
そのため、複合組織鋼板のr値を大きくして深絞り性を改善する試みがなされている。例えば特公昭55−10650号公報では、冷間圧延後、再結晶温度〜Ac3変態点の温度で箱焼鈍を行い、その後、複合組織とするため700〜800℃に加熱した後、焼入れ焼戻しを伴う連続焼鈍を行う技術が開示されている。しかしながら、この方法では、連続焼鈍時に焼入れ焼戻しを行うため降伏応力が高く、低い降伏比が得られない。この高降伏応力の鋼板はプレス成形に適さず、かつプレス部品の形状凍結性が悪いという欠点がある。
【0006】
さらにまた、前記高降伏応力を改善するための方法としては、特開昭55−100934号公報に開示されている。この方法は、高r値を得るためにまず箱焼鈍を行うが、箱焼鈍時の温度をフェライト(α)−オーステナイト(γ)の2相域とし、均熱時にα相からγ相にMnを濃化させる。このMn濃化相は連続焼鈍時に優先的にγ相となり、ガスジェット程度の冷却速度でも混合組織が得られ、さらに降伏応力も低い。しかし、この方法では、Mn濃化のためα−γの2相域という比較的高温で長時間の箱焼鈍が必要であり、そのため鋼板間の密着の多発、テンパーカラーの発生および炉体インナーカバーの寿命低下など製造工程上、多くの問題がある。従来、このように高いr値と低い降伏応力を兼ね備えた高張力鋼板を工業的に安定して製造することは困難であった。
【0007】
加えて、特公平1-35900号公報では、0.012質量%C-0.32質量%Si-0.53質量%Mn-0.03質量%P−0.051質量%Tiの組成の鋼を冷間圧延後、α-γの2相域である870℃に加熱後、100℃/sの平均冷却速度にて冷却することにより、r=1.61、YS=224MPa、TS=482MPaの非常に高いr値と低降伏応力を有する複合組織型冷延鋼板が製造可能となる技術が開示されている。しかしながら、100℃/sという高い冷却速度は、通常のガスジェット冷却では達成できないため、水焼入れ設備が必要となる他、水焼入れした冷延鋼板は、表面処理性の問題が顕在化するため、製造設備上および材質上の問題がある。
【0008】
【発明が解決しようとする課題】
本発明は、上記の問題を有利に解決した、高いr値を有する深絞り性に優れた複合組織型高張力冷延鋼板およびその製造方法を提案することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するため、冷延鋼板のミクロ組織および再結晶集合組織におよぼす合金元素の影響について鋭意研究を重ねたところ、鋼スラブ中のCを低含有量に制限するとともに、C含有量との関係でV含有量の適正化を図ることにより、再結晶焼鈍前には、鋼中のCをV系炭化物として析出させて固溶Cを極力低減させ、{111}再結晶集合組織を発達させることにより高r値が得られること、また引き続きα−γの2相域に加熱することにより、V系炭化物を溶解させて、オーステナイト中にCを濃化させることにより、その後の冷却過程でマルテンサイトが生成しやすくなる結果、r値の高い深絞り性に優れた複合組織型高張力冷延鋼板を安定して製造できることを見い出した。
【0010】
まず、本発明者らが行った基礎的な実験結果について説明する。
質量%で、C:0.03%、Si:0.02%、Mn:1.7%、P:0.01%、S:0.005%、Al:0.04%、N:0.002%、Mo:0.15%を基本組成とし、これにVを0.03〜0.55質量%の範囲で添加することによって、異なるV含有量を有する種々のシートバーについて、1250℃に加熱−均熱後、仕上圧延終了温度が900℃となるように3パス圧延を行って板厚4.0mmとした。なお、仕上圧延終了後、コイル巻取り処理として650℃×1hの保温相当処理を施した。引き続き、圧下率70%の冷間圧延を施して板厚1.2mmとした。ついで、これらの冷延板に、850℃で60sの再結晶焼鈍を施した後、30℃/sの冷却速度で冷却した。
【0011】
得られた冷延鋼板について、引張試験を実施し引張特性を調査した。引張試験は、JIS5号引張試験片を用いて行った。r値は、圧延方向(rL)、圧延方向に45度方向(rD)および圧延方向に垂直(90度)方向(rc)の平均r値{=(rL +rc +2×rD)/4}として求めた。
【0012】
図1は、鋼スラブ中のV含有量がr値と降伏比(=降伏応力(YS)/引張り強さ(TS)×100(%))に及ぼす影響を示すための図であり、横軸はV含有量とC含有量の原子比((V/51)/(C/12))であり、縦軸はr値と降伏比に上下に分けて示す。
図1から、鋼スラブ中のV含有量をCとの原子比にして0.5〜3.0の範囲に制限することにより、高いr値と低い降伏比が得られ、深絞り性に優れた複合組織型高張力冷延鋼板が製造可能となることが明らかになった。
【0013】
本発明の冷延鋼板では、再結晶焼鈍前には固溶CおよびNが少なく、{111}再結晶集合組織が強く発達するため、高r値が得られる。一方、α-γの2相域にて焼鈍することにより、V炭化物が溶解し、固溶Cがオーステナイト相に多量に濃化することにより、その後の冷却過程においてオーステナイトがマルテンサイトに容易に変態することができ、フェライトとマルテンサイトの複合組織が得られることを明らかにした。
【0014】
ここで、従来は炭化物形成元素としてTiおよびNbが主に使用されてきたが、本発明者らは高温域での焼鈍で有効に固溶Cを得るために、炭化物の溶解度がTiおよびNbよりも高いVに着目した。すなわち、V炭化物はTi炭化物およびNb炭化物よりも、高温焼鈍時に容易に溶解する結果、α−γの2相域での焼鈍により、オーステナイトがマルテンサイトに変態するのに十分な量の固溶Cが得られることを発見した。加えて、この現象は、V成分が最も顕著に生じるが、Nb、Tiを複合添加することによっても同様に得られることも明らかになった。
【0015】
本発明は、上記した知見に基づき、さらに検討して完成されたものであり、本発明の要旨は下記のとおりである。
(1)質量%でC:0.01〜0.08%、Si:2.0%以下、Mn:3.0%以下、P:0.10%以下、S:0.02%以下、Al:0.005〜0.20%、N:0.004%以下およびV:0.01〜0.5%を含有し、かつ、VとCが、
0.5×C/12≦V/51≦3×C/12
なる関係を満たし、残部Feおよび不可避的不純物からなる組成を有し、第1相であるフェライト相と、組織全体に対する面積率で1%以上のマルテンサイト相を含む第2相とからなる組織を有することを特徴とする、深絞り性に優れた複合組織型高張力冷延鋼板。
【0016】
(2)質量%でC:0.01〜0.08%、Si:2.0%以下、Mn:3.0%以下、P:0.10%以下、S:0.02%以下、Al:0.005〜0.20%、N:0.004%以下およびV:0.01〜0.5%を含有するとともに、Nb:0.001〜0.3%とTi:0.001〜0.3%のうちの1種または2種を合計で0.3%以下含有し、かつ、V、Nb、TiとCとが、
0.5×C/12≦(V/51+2×Nb/93+2×Ti/48)≦3×C/12
なる関係を満たし、残部Feおよび不可避的不純物からなる組成を有し、第1相であるフェライト相と、組織全体に対する面積率で1%以上のマルテンサイト相を含む第2相とからなる組織を有することを特徴とする、深絞り性に優れた複合組織型高張力冷延鋼板。
【0017】
(3)上記組成に加えてさらに、質量%で、下記に示すA群およびB群のうちの1群または2群を含有することを特徴とする上記(1)又は(2)に記載の深絞り性に優れた複合組織型高張力冷延鋼板。

A群:Cr2.0質量%以下
B群:CuおよびNiのうちの1種または2種を合計で2.0質量%以下
【0018】
(4)質量%でC:0.01〜0.08%、Si:2.0%以下、Mn:3.0%以下、P:0.10%以下、S:0.02%以下、Al:0.005〜0.20%、N:0.004%以下およびV:0.01〜0.5%を含有し、かつ、VとCが、
0.5×C/12≦V/51≦3×C/12
なる関係を満たし、残部Feおよび不可避的不純物の組成になる鋼スラブを、熱間圧延し、引き続き酸洗した後、冷間圧延を施し、その後、Ac1 〜Ac3 変態点の温度域で連続焼鈍することを特徴とする、深絞り性に優れた複合組織型高張力冷延鋼板の製造方法。
【0019】
(5)質量%でC:0.01〜0.08%、Si:2.0%以下、Mn:3.0%以下、P:0.10%以下、S:0.02%以下、Al:0.005〜0.20%、N:0.004%以下およびV:0.01〜0.5%を含有するとともに、Nb:0.001〜0.3%とTi:0.001〜0.3%のうちの1種または2種を合計で0.3%以下含有し、かつ、V、Nb、TiとCとが、
0.5×C/12≦(V/51+2×Nb/93+2×Ti/48)≦3×C/12
なる関係を満たし、残部Feおよび不可避的不純物の組成になる鋼スラブを、熱間圧延し、引き続き酸洗した後、冷間圧延を施し、その後、Ac1 〜Ac3 変態点の温度域で連続焼鈍することを特徴とする、深絞り性に優れた複合組織型高張力冷延鋼板の製造方法。
【0020】
(6)鋼スラブは、上記組成に加えてさらに、質量%で、下記に示すA群およびB群のうちの1群または2群を含有することを特徴とする上記(4)又は(5)に記載の深絞り性に優れた複合組織型高張力冷延鋼板の製造方法。

A群:Cr2.0質量%以下
B群:CuおよびNiのうちの1種または2種を合計で2.0質量%以下
【0021】
【発明の実施の形態】
本発明の冷延鋼板は、引張強さ(TS)が440MPa以上の深絞り性に優れた複合組織型高張力冷延鋼板である。
まず、本発明の冷延鋼板の組成を限定した理由について説明する。なお、質量%は単に%と記す。
【0022】
C:0.01〜0.08%
Cは、鋼板の強度を増加し、さらにフェライトとマルテンサイトの複合組織の形成を促進する元素であり、本発明では複合組織形成の観点から0.01%以上、より好ましくは0.015%以上含有する必要がある。なお、TS:540MPa以上の高強度化を指向する場合にもCは0.015%以上とすることが好ましい。一方、0.08%を超える含有は、{111}再結晶集合組織の発達を阻害し、深絞り成形性を低下させる。このため、本発明では、C含有量は0.01〜0.08%に限定した.なお、深絞り性の観点からは0.05%以下とするのが好ましい。
【0023】
Si:2.0%以下
Siは、鋼板の延性を顕著に低下させることなく、鋼板を高強度化させることができる有用な強化元素であるが、その含有量が2.0%を超えると、深絞り性の劣化を招くとともに、表面性状が悪化する。このため、Siは2.0%以下に限定した。
【0024】
Mn:3.0%以下
Mnは、鋼を強化する作用があり、さらにフェライトとマルテンサイトの複合組織が得られる臨界冷却速度を小さくして、フェライトとマルテンサイトの複合組織の形成を促進する作用を有しており、再結晶焼鈍後の冷却速度に応じた量を含有させるのが好ましい。また、Mnは、Sによる熟間割れを防止する有効な元素でもあるため、含有するS量に応じて適量含有させるのが好ましい。しかしながら、Mn含有量が3.0%を超えると、深絞り性および溶接性が劣化する。このため、本発明ではMn含有量は3.0%以下に限定した。尚、Mn含有量は、0.5%以上含有させることが上記効果を顕著に発揮させる上で好ましく、より好ましくは1.0%以上である。
【0025】
P:0.10%以下
Pは鋼を強化する作用があり、所望の強度に応じて必要量含有させることができるが、P含有量が0.10%を超えると、プレス成形性が劣化する。このため、P含有量は0.10%以下と限定した。なお、より優れたプレス成形性が要求される場合には、P含有量は0.08%以下とするのが好ましい。
【0026】
S:0.02%以下
Sは、鋼板中では介在物として存在し、鋼板の延性、成形性、とくに伸びフランジ成形性の劣化をもたらす元素であるため、できるだけ低減するのが好ましく、0.02%以下に低減するとさほど悪影響を及ぼさなくなることから、本発明ではS含有量は0.02%を上限とした。なお、より優れた伸びフランジ成形性を要求される場合には、S含有量は0.01%以下とするのが好ましく、より好ましくは0.005%以下である。
【0027】
Al:0.005〜0.20%
Alは、鋼の脱酸元素として添加され、鋼の清浄度を向上させるのに有用な元素であるが、0.005%未満では添加の効果がなく、一方、0.20%を越えて含有してもより一層の脱酸効果は得られず、逆に深絞り性が劣化する.このため、Alは0.005〜0.20%に限定した。なお、本発明では、Al脱酸以外の脱酸方法による溶製方法を排除するものではなく、たとえばTi脱酸やSi脱酸を行ってもよく、これらの脱酸法による鋼板も本発明の範囲に含まれる。その際、CaやREM等を溶鋼に添加しても、本発明鋼板の特徴はなんら阻害されず、CaやREM等を含む鋼板も本発明範囲に含まれるのは勿論である。
【0028】
N:0.004%以下
Nは、固溶強化や歪時効硬化で鋼板の強度を増加させる元素であるが、0.004%を超えて含有すると、鋼板中に窒化物が増加し、それにより鋼板の深絞り性が顕著に劣化する。このため、Nは0.004%以下に限定した。
【0029】
V:0.01〜0.5%でかつ0.5×C/12≦V/51≦3×C/12
Vは、本発明において最も重要な元素であり、再結晶前には固溶CをV炭化物として析出固定することにより、{111}再結晶集合組織を発達させて高いr値を得ることができ、さらに、α−γのニ相域焼鈍時にはV炭化物を溶解させて固溶Cを多量にオーステナイト相に濃化させ、その後の冷却過程において容易にマルテンサイト変態させることにより、フェライトとマルテンサイトの複合組織を有する複合組織鋼板を得ることができる。このような効果は、V含有量が0.01%以上、より好ましくは0.02%以上でかつC含有量との関係で0.5×C/12≦V/51で有効となる。一方、V含有量が0.5%を超えるかあるいはC含有量との関係でV/51>3×C/12であると、α-γの2相域におけるV炭化物の溶解が起こりにくくなるため、フェライトとマルテンサイトの複合組織が得られにくくなる。したがって、V含有量は0.01〜0.5%でかつ0.5×C/12≦V/51≦3×C/12に限定した。なお、V/51≦2×C/12とすることが、フェライトとマルテンサイトの複合組織を得るうえで好ましい。
【0030】
また、本発明では、上記した組成に加えて、質量%で、Nb:0.001〜0.3%およびTi:0.001〜0.3%のうちの1種または2種を合計で0.3%以下含有し、かつ、V含有量とC含有量とが0.5×C/12≦V/51≦3×C/12を満足することに代えて、V、Nb、Tiの各含有量とCの含有量とが、
0.5×C/12≦(V/51+2×Nb/93+2×Ti/48)≦3×C/12なる関係を満たすことが好ましい。
【0031】
Nb:0.001〜0.3%およびTi:0.001〜0.3%のうちの1種または2種を合計で0.3%以下含有し、かつ、V、Nb、TiとCとが、0.5×C/12≦(V/51+2×Nb/93+2×Ti/48)≦3×C/12なる関係を満たすこと
NbおよびTiはVと同様に炭化物形成元素であって、上述したVと同様の作用を有する。すなわち、再結晶前には固溶CをNbおよびTi炭化物として析出固定することにより、{111}再結晶集合組織を発達させて高いr値を得ることができ、さらにα−γの2相域での焼鈍時にはNbおよびTi炭化物を溶解させて固溶Cを多量にオーステナイト相に濃化させ、その後の冷却過程においてマルテンサイト変態させることにより、フェライトとマルテンサイトの複合組織を有する複合組織鋼板を得ることができる。但し、NbおよびTiの上述した効果は、Vに比べるとかなり小さいため、鋼スラブ中にVを添加することなく、NbやTiだけを添加しただけでは、本発明の効果である深絞り性を十分に高めることはできない。
【0032】
具体的には、NbおよびTi含有量がそれぞれ0.001%以上でかつCおよびV含有量との関係で0.5×C/12≦(V/51+2×Nb/93+2×Ti/48)であることが上記効果を発揮する上で好ましい。一方、NbおよびTiの単独添加で又は複合添加の合計で0.3%を超えるか、あるいはCとV含有量との関係で(V/51+2×Nb/93+2×Ti/48)>3×C/12の場合には、α−γの2相域における炭化物の溶解が起こりにくくなるため、フェライトとマルテンサイトの複合組織が得られにくくなる。したがって、NbおよびTiのいずれか1方のみを添加する場合には、ともに0.001〜0.3%の範囲とし、また、NbおよびTiを複合添加する場合には、合計で0.3%以下とし、かつVおよびCとの関係で0.5×C/12≦(V/51+2×Nb/93+2×Ti/48)≦3×C/12の範囲に限定した。
【0033】
また、本発明では、上記した鋼スラブの組成に加えてさらに、下記に示すA群およびB群、すなわち、
A群:Cr2.0%以下
B群:Cu、Niのうちの1種または2種を合計で2.0%以下
のうちの1群または2群を含有することが好ましい。
【0034】
A群:Cr2.0%以下
A群:Crは、 Mnと同様に、フェライトとマルテンサイトの複合組織が得られる臨界冷却速度を小さくし、フェライトとマルテンサイトの複合組織の形成を促進する作用を有しており、必要に応じ含有できる。上記効果を得るための好ましいCr含有量の下限値は、Cr:0.05%ある。但し、Cr2.0%超えて含有すると、深絞り性が低下する。このため、A群:Cr2.0%以下に限定するのが好ましい。
【0035】
B群:Cu、Niのうちの1種または2種を合計で2.0%以下
B群:Cu、Niは、鋼を強化する作用があり、所望の強度に応じて必要量含有することができるが、CuおよびNiを単独添加でまたは複合添加の合計で2.0%を超えると、深絞り性が劣化する傾向がある。このため、Cu、Niは1種または2種を合計で2.0%以下とするのが好ましい。なお、上記効果を得るための好ましいCu、Niの含有量の下限値は、Cu:0.05%、Ni:0.05%である。
【0036】
なお、本発明では、上記した成分以外については、特に限定していないが、B、Ca、Zr、REM等を通常の鋼組成の範囲内であれば含有させてもなんら問題はない。
【0037】
上記した成分以外の残部はFeおよび不可避的不純物である。不可避的不純物としては、例えばSb、Sn、Zn、Co等が挙げられ、これらの含有量の許容範囲としては、Sb:0.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:0.1%以下の範囲である。
【0038】
次に、本発明鋼板の組織について説明する。本発明の冷延鋼板は、組織が、第1相であるフェライト相と、組織全体に対する面積率で1%以上のマルテンサイト相を含む第2相とからなる組織を有する。
【0039】
低い降伏応力(YS)と高い延性(El)を有し、優れた深絞り性を有する冷延鋼板とするために、本発明では鋼板の組織を、第1相であるフェライト相と、マルテンサイト相を含む第2相との複合組織とする必要がある。第1相であるフェライト相は、面積率で80%以上とするのが好ましい。フェライト相が面積率で80%未満では、高い延性を確保することが困難となり、プレス成形性が低下する傾向があるからである。また、さらに良好な延性が要求される場合には、フェライト相を面積率で85%以上とするのが好ましい。なお、複合組織の利点を利用するため、フェライト相は99%以下とする必要がある。
【0040】
また、第2相として、本発明では、マルテンサイト相を、組織全体に対する面積率で1%以上含有する必要がある。マルテンサイトが面積率で1%未満では、低い降伏応力(YS)と高い延性(El)を同時に満足させることができない。より好ましくはマルテンサイト相は面積率で3%以上である。なお、第2相は、面積率で1%以上のマルテンサイト相単独としても、あるいは面積率で1%以上のマルテンサイト相と、副相としてそれ以外のパーライト相、ベイナイト相、残留オーステナイト相のいずれかとの混合としてもよく、特に限定されない。ただし、これらパーライト相、ベイナイト相、残留オーステナイト相は、前記マルテンサイト相の効果をより有効に発揮させるため、これらの相の合計を第2相の組織に対して面積率で50%以下とするのが好ましい。
上記した組織を有する冷延鋼板は、低降伏応力で高延性を有する深絞り性に優れた鋼板である。
【0041】
次に、本発明の冷延鋼板の製造方法について説明する。
本発明の製造方法に用いられる鋼スラブの組成は、上述した冷延鋼板の組成と同様であるので、鋼スラブの限定理由の説明については省略する。
本発明の冷延鋼板は、上記した範囲内の組成を有する鋼スラブを素材とし、該素材に熱間圧延を施し熱延板とする熱延工程と、該熱延板を酸洗する酸洗工程と、該熱延板に冷間圧延を施し冷延板とする冷延工程と、該冷延板に再結晶焼鈍を施して冷延焼鈍板とする再結晶焼鈍工程とを順次施すことにより製造される。
【0042】
使用する鋼スラブは、成分のマクロ偏析を防止するために連続鋳造法で製造するのが好ましいが、造塊法、薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造したのち、いったん室温まで冷却し、その後、再度加熱する従来法に加え、冷却しないで、温片のままで加熱炉に挿入する方法や、わずかの保熱を行った後に直ちに圧延する直送圧延・直接圧延する方法などの省エネルギープロセスも問題なく適用できる。
【0043】
上記した素材(鋼スラブ)を加熱し、熱間圧延を施し熱延板とする熱延工程を施す。熱延工程は所望の板厚の熱延板が製造できる条件であればよく、通常の圧延条件を用いても特に問題はない。なお、参考のため、好適な熱延条件を以下に示しておく。
【0044】
スラブ加熱温度:900℃以上
スラブ加熱温度は、析出物を粗大化させることにより、{111}再結晶集合組織を発達させ、深絞り性を改善するため、低い方が望ましい。しかし、加熱温度が900℃未満では、圧延荷重が増大し、熱間圧延時におけるトラブル発生の危険性が増大する。このため、スラブ加熱温度は900℃以上にすることが好ましい。また、酸化重量の増加に伴うスケールロスの増大による歩留まりの低下などから、スラブ加熱温度の上限は1300℃とすることがより好適である。なお、スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点から、シートバーを加熱する、いわゆるシートバーヒーターを活用することは、有効な方法であることは言うまでもない。
【0045】
仕上圧延終了温度:700℃以上
仕上圧延終了温度(FDT)は、冷間圧延および再結晶焼鈍後に優れた深絞り性が得られる均一な熱延母板組織を得るため、700℃以上にすることが好ましい。すなわち、仕上圧延終了温度が700℃未満では、熱延母板組織が不均一となるとともに、熱間圧延時の圧延負荷が高くなり、熱間圧延時におけるトラブル発生の危険性が増大するからである。
【0046】
巻取温度:800℃以下
巻取温度は、800℃以下とするのが好ましい。すなわち、巻取温度が800℃を超えると、スケールが増加しスケールロスにより歩留りが低下する傾向があるからである。なお、巻取温度は200℃未満となると、鋼板形状が顕著に乱れ、実際の使用にあたり不具合を生じる危険性が増大するため、巻取温度の下限を200℃とすることがより好適である。
【0047】
このように、本発明の熱延工程では、鋼スラブを900℃以上に加熱した後、仕上圧延終了温度:700℃以上とする熱間圧延を施し、800℃以下の巻取温度で巻き取るのが好ましい。
なお、本発明における熱間圧延工程では、熱間圧延時の圧延荷重を低滅するため、仕上圧延の一部または全部のパス間で潤滑圧延としてもよい。加えて、潤滑圧延を行うことは、鋼板形状の均一化や材質の均一化の観点からも有効である。なお、潤滑圧延の際の摩擦係数は0.10〜0.25の範囲とすることが好ましい。
【0048】
また、相前後するシートバー同士を接合し、連続的に仕上圧延する連続圧延プロセスとすることが好ましい。連続圧延プロセスを適用することは、熱間圧延の操業安定性の観点からも望ましい。
【0049】
ついで、熱延板にスケール除去のため酸洗を施す。酸洗工程は、常法に従えばよく、酸洗液としては、例えば塩酸や硫酸系の処理液を用いることが好ましい。さらに、熱延板に冷間圧延を施し冷延板とする。冷聞圧延条件は、所望の寸法形状の冷延板とすることができればよく、特に限定されないが、冷間圧延時の圧下率は40%以上とすることが好ましい。圧下率が40%未満では、{111}再結晶集合組織が発達せず、優れた深絞り性が得られないからである。
【0050】
その後、再結晶焼鈍工程にて、冷延板に再結晶焼鈍を行い冷延焼鈍板とする。再結晶焼鈍は、連続焼鈍ラインで行う。再結晶焼鈍の焼鈍温度は、Ac1〜Ac3変態点の温度範囲の(α+γ)の2相域で行う必要がある。焼鈍温度がAc1変態点よりも低いと、フェライト単相組織となって、マルテンサイトを生成することができなくなるからであり、一方、Ac3変態点よりも高いと、結晶粒が粗大化するとともに、オーステナイト単相域となり、{111}再結晶集合組織が発達せずに深絞り性が著しく劣化するからである。
【0051】
なお、再結晶焼鈍時の冷却は、マルテンサイトを生成することができ、フェライトとマルテンサイトの複合組織を得るため、冷却速度5℃/s以上で行うことが好ましい。
【0052】
また、再結晶焼鈍工程後に、形状矯正、表面粗度等の調整のために、伸び率10%以下の調質圧延を加えてもよい。
なお、本発明の冷延鋼板は、加工用冷延鋼板としてのみならず、加工用表面処理鋼板の原板としても適用できる。加工用表面処理鋼板としては、亜鉛めっき鋼板(合金系を含む。)、錫めっき鋼板、ほうろう等が挙げられる。また、本発明の冷延鋼板には、亜鉛めっき後、化成処理性、溶接性、プレス成形性および耐食性等の改善のために特殊な処理を施してもよい。
【0053】
【実施例】
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブとした。ついで、これら鋼スラブを1150℃に加熱したのち、仕上圧延終了温度:900℃、巻取温度:650℃とする熱間圧延を施す熱延工程により、板厚4.0mmの熱延鋼帯(熱延板)とした。引き続き、これら熱延鋼帯(熱延板)に酸洗、圧下率:70%で冷間圧延を施す冷延工程により、板厚1.2mmの冷延鋼帯(冷延板)とした。ついで、これら冷延鋼帯(冷延板)に、連続焼鈍ラインにて表2に示す焼鈍温度で再結晶焼鈍を施した。得られた鋼帯(冷延板)に、さらに伸び率:0.8%の調質圧延を施した。
【0054】
得られた鋼帯から試験片を採取し、圧延方向に直交する断面(C断面)について、光学顕微鏡あるいは走査型電子顕微鏡を用いて微視組織を撮像し、画像解析装置を用いて第1相であるフェライトの組織分率および第2相の種類と組織分率を求めた。また、得られた鋼帯から、JIS5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を行い、降伏応力(YS)、引張強さ(TS)、伸び(El)、降伏比(YR)およびランクフォード値(r値)を求めた。これらの結果を表2に示す。
【0055】
【表1】

Figure 0004010131
【0056】
【表2】
Figure 0004010131
【0057】
表2に示す結果から、本発明例は、いずれも、低い降伏応力(YS)、高い伸び(El)および低い降伏比(YR)を有し、さらに高いr値を示して、深絞り成形性に優れるとともに、引張り強さが(TS)が440MPa以上の高張力を有している。これに対し、本発明の範囲を外れる比較例では、降伏応力(YS)が高いか、伸び(El)が低いか、あるいはr値が低くなっている。
【0058】
【発明の効果】
本発明によれば、優れた深絞り成形性を有する高張力の冷延鋼板を安定して製造することができるという産業上格段の効果を奏する。本発明の冷延鋼板を自動車部品に適用した場合、プレス成形が容易で、自動車車体の軽量化に十分に寄与できるという効果もある。
【図面の簡単な説明】
【図1】 鋼スラブ中のVおよびC含有量がr値と降伏比(=降伏応力(YS)/引張り強さ(TS)×100(%))に及ぼす影響を示すための図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability, which is useful for use in an automotive steel sheet or the like, in which the tensile strength of the steel sheet is 440 MPa or more, and a method for producing the same.
[0002]
[Prior art]
In recent years, reducing the weight of automobile bodies has become an extremely important issue in connection with exhaust gas regulations due to global environmental conservation issues. Recently, the strength of automobile steel sheets has been increased to reduce the weight of automobile bodies. Therefore, it has been studied to reduce the plate thickness.
[0003]
Since many automotive body parts made of steel sheets are formed by press working, the cold-rolled steel sheets used are required to have excellent press formability. In order to improve the press formability, as the mechanical properties of the steel sheet, high Rankford value (r value), high ductility (El), and low yield stress (YS) are required.
However, generally, when the strength of a steel plate is increased, the r value and ductility are lowered, the press formability is deteriorated, the yield stress is increased, the shape freezing property is deteriorated, and the problem of springback is likely to occur.
[0004]
As a typical example of a high-tensile steel plate having good press formability, a composite steel plate composed of a composite structure of soft ferrite and hard martensite can be mentioned, and in particular, a composite steel plate manufactured by gas jet cooling after continuous annealing, It has a low yield stress and combines high ductility and excellent bake hardenability. Although the above-mentioned composite structure steel plate is generally good in workability, it has a disadvantage that workability under severe conditions, particularly, r value is low and deep drawability is inferior.
[0005]
For this reason, attempts have been made to improve the deep drawability by increasing the r value of the composite structure steel plate. For example, in Japanese Patent Publication 55-10650 and JP after cold rolling, subjected to box annealing at a temperature of recrystallization temperature to A c3 transformation point, then, after heating to 700 to 800 ° C. for a composite structure, the quenching and tempering A technique for performing continuous annealing is disclosed. However, in this method, since quenching and tempering is performed during continuous annealing, the yield stress is high and a low yield ratio cannot be obtained. This high yield stress steel sheet is not suitable for press forming and has the disadvantages that the shape freezing property of the pressed part is poor.
[0006]
Furthermore, a method for improving the high yield stress is disclosed in JP-A-55-100934. In this method, box annealing is first performed in order to obtain a high r value. The temperature during box annealing is set to a two-phase region of ferrite (α) -austenite (γ), and Mn is changed from α phase to γ phase during soaking. Thicken. This Mn-concentrated phase preferentially becomes a γ phase during continuous annealing, and a mixed structure can be obtained even at a cooling rate comparable to that of a gas jet, and the yield stress is low. However, this method requires a relatively high temperature and long-time box annealing in the α-γ two-phase region for Mn concentration. Therefore, frequent adhesion between steel plates, generation of temper color, and furnace body inner cover There are a number of problems in the manufacturing process, such as a reduction in the service life. Conventionally, it has been difficult to industrially stably produce a high-tensile steel plate having such a high r value and a low yield stress.
[0007]
In addition, in Japanese Patent Publication No. 1-35900, after cold rolling a steel having a composition of 0.012 mass% C-0.32 mass% Si-0.53 mass% Mn-0.03 mass% P-0.051 mass% Ti, After heating to 870 ° C, which is a two-phase region, and cooling at an average cooling rate of 100 ° C / s, a composite with a very high r value and low yield stress of r = 1.61, YS = 224 MPa, TS = 482 MPa A technique that enables the production of a textured cold-rolled steel sheet is disclosed. However, since a high cooling rate of 100 ° C./s cannot be achieved by ordinary gas jet cooling, water quenching equipment is required, and water-quenched cold-rolled steel sheet has a problem of surface treatment, There are problems with manufacturing equipment and materials.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to propose a composite structure type high-tensile cold-rolled steel sheet having a high r value and excellent deep drawability, and a method for producing the same, which have advantageously solved the above problems.
[0009]
[Means for Solving the Problems]
In order to achieve the above-mentioned problems, the present inventors have conducted extensive research on the influence of alloying elements on the microstructure and recrystallization texture of cold-rolled steel sheets. As a result, C in the steel slab is limited to a low content. In addition, by optimizing the V content in relation to the C content, before recrystallization annealing, C in the steel is precipitated as V-based carbides to reduce the solid solution C as much as possible. } A high r value can be obtained by developing a recrystallized texture, and by subsequently heating to a two-phase region of α-γ, V-type carbides are dissolved and C is concentrated in austenite. As a result, it was found that martensite is easily generated in the subsequent cooling process, and as a result, a high-strength cold rolled steel sheet having a high r value and excellent deep drawability can be stably produced.
[0010]
First, basic experimental results performed by the present inventors will be described.
Based on mass%, C: 0.03%, Si: 0.02%, Mn: 1.7%, P: 0.01%, S: 0.005%, Al: 0.04%, N: 0.002%, Mo: 0.15% By adding V in the range of 0.03 to 0.55 mass%, various sheet bars having different V contents are heated to 1250 ° C, soaked, and then subjected to 3-pass rolling so that the finish rolling finish temperature is 900 ° C. To obtain a plate thickness of 4.0 mm. In addition, after finishing rolling, the heat | fever equivalent process of 650 degreeC x 1h was performed as coil winding-up process. Subsequently, cold rolling with a rolling reduction of 70% was performed to a sheet thickness of 1.2 mm. Subsequently, these cold-rolled sheets were subjected to recrystallization annealing at 850 ° C. for 60 s and then cooled at a cooling rate of 30 ° C./s.
[0011]
About the obtained cold-rolled steel plate, the tensile test was implemented and the tensile characteristic was investigated. The tensile test was performed using a JIS No. 5 tensile test piece. The r value is the average r value in the rolling direction (r L ), 45 ° direction (r D ) in the rolling direction and 90 ° direction (r c ) in the rolling direction {= (r L + r c + 2 × r D ) / 4}.
[0012]
Figure 1 shows the effect of V content in steel slabs on r-value and yield ratio (= yield stress (YS) / tensile strength (TS) x 100 (%)). Is the atomic ratio of V content to C content ((V / 51) / (C / 12)), and the vertical axis shows the r value and the yield ratio divided up and down.
From FIG. 1, by limiting the V content in the steel slab to an atomic ratio with C in the range of 0.5 to 3.0, a high r value and a low yield ratio can be obtained, and a composite structure type excellent in deep drawability. It became clear that high-tensile cold-rolled steel sheets can be manufactured.
[0013]
In the cold-rolled steel sheet of the present invention, a high r value is obtained because the solid solution C and N are small before the recrystallization annealing and the {111} recrystallization texture develops strongly. On the other hand, by annealing in the α-γ two-phase region, V carbide dissolves and solute C concentrates abundantly in the austenite phase, so that austenite is easily transformed into martensite in the subsequent cooling process. It was clarified that a composite structure of ferrite and martensite can be obtained.
[0014]
Here, conventionally, Ti and Nb have been mainly used as carbide-forming elements. However, in order to obtain solid solution C effectively by annealing in a high temperature region, the present inventors have a solubility of carbides more than that of Ti and Nb. We also focused on high V. That is, V carbide is more easily dissolved during high-temperature annealing than Ti carbide and Nb carbide. As a result, annealing in the two-phase region of α-γ is sufficient to dissolve austenite into martensite. I found out that In addition, it has also been clarified that this phenomenon can be obtained by adding Nb and Ti in a similar manner, although the V component is most prominent.
[0015]
The present invention has been completed by further study based on the above-described findings, and the gist of the present invention is as follows.
(1) C: 0.01 to 0.08% by mass, Si: 2.0% or less, Mn: 3.0% or less, P: 0.10% or less, S: 0.02% or less, Al: 0.005-0.20%, N: 0.004 % or less and V: 0.01 to 0.5%, and V and C are
0.5 × C / 12 ≦ V / 51 ≦ 3 × C / 12
The balance has a composition consisting of Fe and inevitable impurities, and the structure is composed of a ferrite phase as a first phase and a second phase containing a martensite phase with an area ratio of 1% or more with respect to the entire structure. A composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability.
[0016]
(2) By mass%, C: 0.01 to 0.08%, Si: 2.0% or less, Mn: 3.0% or less, P: 0.10% or less, S: 0.02% or less, Al: 0.005-0.20%, N: 0.004 % or less and V: 0.01 to 0.5%, Nb: 0.001 to 0.3% and Ti: 0.001 to 0.3%, or a total of 0.3% or less, and V, Nb, Ti and C And
0.5 × C / 12 ≦ (V / 51 + 2 × Nb / 93 + 2 × Ti / 48) ≦ 3 × C / 12
The balance has a composition consisting of Fe and inevitable impurities, and the structure is composed of a ferrite phase as a first phase and a second phase containing a martensite phase with an area ratio of 1% or more with respect to the entire structure. A composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability.
[0017]
(3) In addition to the above composition, the depth described in (1) or (2) above, further comprising, in mass%, one group or two groups of the following groups A and B: Composite structure type high-tensile cold-rolled steel sheet with excellent drawability.
Group A: 2.0% by mass or less of Cr Group B: 2.0% by mass or less of one or two of Cu and Ni in total
(4) By mass%: C: 0.01 to 0.08%, Si: 2.0% or less, Mn: 3.0% or less, P: 0.10% or less, S: 0.02% or less, Al: 0.005 to 0.20%, N: 0.004 % or less and V: 0.01 to 0.5%, and V and C are
0.5 × C / 12 ≦ V / 51 ≦ 3 × C / 12
The steel slab with the composition of Fe and the inevitable impurities in the balance is hot-rolled, subsequently pickled, then cold-rolled, and then continuously annealed in the temperature range of Ac1 to Ac3 transformation points. A method for producing a composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability.
[0019]
(5) C: 0.01 to 0.08% by mass, Si: 2.0% or less, Mn: 3.0% or less, P: 0.10% or less, S: 0.02% or less, Al: 0.005-0.20%, N: 0.004 % or less and V: 0.01 to 0.5%, Nb: 0.001 to 0.3% and Ti: 0.001 to 0.3%, or a total of 0.3% or less, and V, Nb, Ti and C And
0.5 × C / 12 ≦ (V / 51 + 2 × Nb / 93 + 2 × Ti / 48) ≦ 3 × C / 12
The steel slab with the composition of Fe and the inevitable impurities in the balance is hot-rolled, subsequently pickled, then cold-rolled, and then continuously annealed in the temperature range of Ac1 to Ac3 transformation points. A method for producing a composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability.
[0020]
(6) Steel slabs, in addition to the above composition, by mass%, the (4), characterized in that it contains 1 group or 2 group of the group A and group B shown below, or (5) The manufacturing method of the composite structure type | mold high-tensile cold-rolled steel plate excellent in the deep drawability as described in 2.
Group A: 2.0% by mass or less of Cr Group B: 2.0% by mass or less of one or two of Cu and Ni in total
DETAILED DESCRIPTION OF THE INVENTION
The cold-rolled steel sheet of the present invention is a composite structure type high-tensile cold-rolled steel sheet having a tensile strength (TS) of 440 MPa or more and excellent deep drawability.
First, the reason for limiting the composition of the cold-rolled steel sheet of the present invention will be described. The mass% is simply written as%.
[0022]
C: 0.01-0.08%
C is an element that increases the strength of the steel sheet and further promotes the formation of a composite structure of ferrite and martensite. In the present invention, it is necessary to contain 0.01% or more, more preferably 0.015% or more from the viewpoint of forming the composite structure. is there. Note that C is also preferably set to 0.015% or more when aiming at increasing the strength of TS: 540 MPa or more. On the other hand, the content exceeding 0.08% inhibits the development of {111} recrystallized texture and lowers the deep drawability. For this reason, in this invention, C content was limited to 0.01 to 0.08%. From the viewpoint of deep drawability, it is preferably 0.05% or less.
[0023]
Si: 2.0% or less
Si is a useful strengthening element that can increase the strength of the steel sheet without significantly reducing the ductility of the steel sheet, but when its content exceeds 2.0%, it causes deterioration of deep drawability, The surface properties deteriorate. For this reason, Si was limited to 2.0% or less.
[0024]
Mn: 3.0% or less
Mn has the effect of strengthening steel, and further has the effect of reducing the critical cooling rate at which a composite structure of ferrite and martensite is obtained, and promoting the formation of a composite structure of ferrite and martensite. It is preferable to contain the quantity according to the cooling rate after crystal annealing. Further, since Mn is also an effective element for preventing aging cracks due to S, it is preferable to contain an appropriate amount according to the amount of S contained. However, if the Mn content exceeds 3.0%, the deep drawability and weldability deteriorate. For this reason, in the present invention, the Mn content is limited to 3.0% or less. The Mn content is preferably 0.5% or more in order to significantly exhibit the above effects, and more preferably 1.0% or more.
[0025]
P: 0.10% or less P has an effect of strengthening steel and can be contained in a necessary amount depending on a desired strength. However, if the P content exceeds 0.10%, press formability deteriorates. For this reason, P content was limited to 0.10% or less. In addition, when more excellent press formability is required, the P content is preferably 0.08% or less.
[0026]
S: 0.02% or less S is an element present in the steel sheet as an inclusion, and is an element that causes deterioration of the ductility and formability of the steel sheet, particularly stretch flangeability. Therefore, it is preferable to reduce it as much as possible, and reduce it to 0.02% or less. Then, since it does not have much adverse effects, the upper limit of the S content is 0.02% in the present invention. When more excellent stretch flange formability is required, the S content is preferably 0.01% or less, more preferably 0.005% or less.
[0027]
Al: 0.005-0.20%
Al is added as a deoxidizing element for steel, and is an element useful for improving the cleanliness of steel. However, if it is less than 0.005%, there is no effect of addition, while it is more than 0.20%. A further deoxidation effect cannot be obtained, and conversely the deep drawability deteriorates. For this reason, Al was limited to 0.005 to 0.20%. In the present invention, it does not exclude a melting method by a deoxidation method other than Al deoxidation. For example, Ti deoxidation or Si deoxidation may be performed. Included in the range. At that time, even if Ca, REM, etc. are added to the molten steel, the characteristics of the steel sheet of the present invention are not inhibited at all, and it is a matter of course that a steel sheet containing Ca, REM, etc. is also included in the scope of the present invention.
[0028]
N: 0.004 % or less N is an element that increases the strength of the steel sheet by solid solution strengthening or strain age hardening, but if it exceeds 0.004 %, nitride increases in the steel sheet, thereby deep drawing the steel sheet. Remarkably deteriorates. For this reason, N was limited to 0.004 % or less.
[0029]
V: 0.01 to 0.5% and 0.5 × C / 12 ≦ V / 51 ≦ 3 × C / 12
V is the most important element in the present invention. By precipitating and fixing solute C as V carbide before recrystallization, {111} recrystallized texture can be developed to obtain a high r value. Furthermore, during the two-phase annealing of α-γ, V carbides are dissolved to concentrate a large amount of solid solution C into the austenite phase, and are easily martensitic transformed in the subsequent cooling process, so that ferrite and martensite A composite steel sheet having a composite structure can be obtained. Such an effect is effective when the V content is 0.01% or more, more preferably 0.02% or more and 0.5 × C / 12 ≦ V / 51 in relation to the C content. On the other hand, when V content exceeds 0.5% or V / 51> 3 × C / 12 in relation to C content, dissolution of V carbide in the α-γ two-phase region is difficult to occur. It becomes difficult to obtain a composite structure of ferrite and martensite. Therefore, the V content was 0.01 to 0.5% and was limited to 0.5 × C / 12 ≦ V / 51 ≦ 3 × C / 12. V / 51 ≦ 2 × C / 12 is preferable for obtaining a composite structure of ferrite and martensite.
[0030]
Further, in the present invention, in addition to the above-described composition, in terms of mass%, one or two of Nb: 0.001 to 0.3% and Ti: 0.001 to 0.3% are contained in total of 0.3% or less, and V Instead of satisfying 0.5 × C / 12 ≦ V / 51 ≦ 3 × C / 12, the content and C content, each content of V, Nb, Ti and the content of C,
It is preferable to satisfy the relationship of 0.5 × C / 12 ≦ (V / 51 + 2 × Nb / 93 + 2 × Ti / 48) ≦ 3 × C / 12.
[0031]
One or two of Nb: 0.001 to 0.3% and Ti: 0.001 to 0.3% are contained in a total of 0.3% or less, and V, Nb, Ti and C are 0.5 × C / 12 ≦ (V / 51 + 2 × Nb / 93 + 2 × Ti / 48) ≦ 3 × C / 12
Nb and Ti are carbide-forming elements like V and have the same action as V described above. That is, by precipitating and fixing solute C as Nb and Ti carbide before recrystallization, {111} recrystallized texture can be developed and high r value can be obtained. During annealing, the Nb and Ti carbides are dissolved to concentrate a large amount of solid solution C into the austenite phase, and the martensite transformation is performed in the subsequent cooling process, thereby producing a composite steel sheet having a composite structure of ferrite and martensite. Obtainable. However, since the above-described effects of Nb and Ti are considerably smaller than V, the deep drawability, which is the effect of the present invention, can be achieved by adding only Nb and Ti without adding V to the steel slab. It cannot be raised sufficiently.
[0032]
Specifically, the Nb and Ti contents are 0.001% or more and 0.5 × C / 12 ≦ (V / 51 + 2 × Nb / 93 + 2 × Ti / 48) in relation to the C and V contents. It is preferable for exhibiting the effect. On the other hand, the total addition of Nb and Ti exceeds 0.3%, or the relationship between C and V content (V / 51 + 2 × Nb / 93 + 2 × Ti / 48)> 3 × C / 12 In this case, since it is difficult for the carbide to dissolve in the α-γ two-phase region, it becomes difficult to obtain a composite structure of ferrite and martensite. Therefore, when only one of Nb and Ti is added, both are in the range of 0.001 to 0.3%, and when Nb and Ti are added in combination, the total is 0.3% or less, and V and In relation to C, the range is limited to 0.5 × C / 12 ≦ (V / 51 + 2 × Nb / 93 + 2 × Ti / 48) ≦ 3 × C / 12.
[0033]
In addition, in the present invention, in addition to the composition of the steel slab described above, the following group A and group B, that is,
Group A: Cr is 2.0% or less Group B: One or two of Cu and Ni are preferably contained in one or two of 2.0% or less in total.
[0034]
Group A: Cr 2.0% or less Group A: Cr, like Mn, the critical cooling rate composite structure of ferrite and martensite is obtained by reducing the effect of promoting formation of a composite structure of ferrite and martensite It can be contained if necessary. The lower limit of the content of the preferred Cr for obtaining the above effects, Cr: 0.05%. However, when the content exceeds Cr 2.0%, deep drawability is deteriorated. For this reason, it is preferable to limit A group: Cr to 2.0% or less.
[0035]
Group B: 2.0% or less of one or two of Cu and Ni in total B group: Cu and Ni have an action of strengthening steel and can be contained in a necessary amount according to desired strength. When Cu and Ni are added alone or in total, the combined addition exceeds 2.0%, the deep drawability tends to deteriorate. For this reason, Cu or Ni is preferably 2.0% or less in total of one or two of them. In addition, the minimum value of preferable Cu and Ni content for acquiring the said effect is Cu: 0.05%, Ni: 0.05%.
[0036]
In the present invention, the components other than those described above are not particularly limited, but there is no problem even if B, Ca, Zr, REM, etc. are contained within the range of the normal steel composition.
[0037]
The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include, for example, Sb, Sn, Zn, Co, etc. The allowable ranges of these contents are Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01% or less, Co: 0.1 % Or less.
[0038]
Next, the structure of the steel sheet of the present invention will be described. The cold-rolled steel sheet of the present invention has a structure composed of a ferrite phase that is a first phase and a second phase that includes a martensite phase of 1% or more in terms of the area ratio relative to the entire structure.
[0039]
In order to obtain a cold-rolled steel sheet having low yield stress (YS) and high ductility (El) and having excellent deep drawability, in the present invention, the structure of the steel sheet is composed of a ferrite phase as a first phase and martensite. It is necessary to have a composite structure with the second phase including the phase. The ferrite phase as the first phase is preferably 80% or more in terms of area ratio. This is because if the ferrite phase is less than 80% in area ratio, it is difficult to ensure high ductility and the press formability tends to decrease. Further, when better ductility is required, the ferrite phase is preferably 85% or more by area ratio. In order to take advantage of the composite structure, the ferrite phase needs to be 99% or less.
[0040]
Moreover, as a 2nd phase, in this invention, it is necessary to contain a martensite phase 1% or more by the area ratio with respect to the whole structure | tissue. If the martensite is less than 1% in area ratio, low yield stress (YS) and high ductility (El) cannot be satisfied at the same time. More preferably, the martensite phase is 3% or more by area ratio. The second phase may be composed of a martensite phase with an area ratio of 1% or more alone, or a martensite phase with an area ratio of 1% or more and other pearlite, bainite, and retained austenite phases as subphases. It may be mixed with either, and is not particularly limited. However, these pearlite phase, bainite phase, and residual austenite phase make the martensite phase more effective, so the total of these phases is 50% or less in terms of area ratio with respect to the structure of the second phase. Is preferred.
The cold-rolled steel sheet having the above-described structure is a steel sheet excellent in deep drawability having low yield stress and high ductility.
[0041]
Next, the manufacturing method of the cold rolled steel sheet of this invention is demonstrated.
Since the composition of the steel slab used in the production method of the present invention is the same as that of the above-described cold-rolled steel sheet, description of the reason for limiting the steel slab is omitted.
The cold-rolled steel sheet of the present invention comprises a steel slab having a composition within the above range as a raw material, hot-rolling the hot-rolled sheet by subjecting the raw material to hot rolling, and pickling the hot-rolled sheet. By sequentially performing a process, a cold rolling process in which the hot-rolled sheet is cold-rolled to form a cold-rolled sheet, and a recrystallization annealing process in which the cold-rolled sheet is subjected to recrystallization annealing to form a cold-rolled annealed sheet Manufactured.
[0042]
The steel slab to be used is preferably produced by a continuous casting method in order to prevent macro segregation of components, but may be produced by an ingot casting method or a thin slab casting method. After manufacturing the steel slab, in addition to the conventional method of cooling to room temperature and then heating it again, without cooling, the method of inserting it into a heating furnace as it is, or after performing a slight heat retention Energy-saving processes such as direct feed rolling and direct rolling, which are immediately rolled, can be applied without problems.
[0043]
The above-mentioned raw material (steel slab) is heated and subjected to a hot rolling step of hot rolling to obtain a hot rolled sheet. The hot rolling process only needs to be a condition that enables the production of a hot rolled sheet having a desired thickness, and there is no particular problem even if normal rolling conditions are used. For reference, suitable hot rolling conditions are shown below.
[0044]
Slab heating temperature: 900 ° C. or higher The slab heating temperature is preferably low because the precipitates are coarsened to develop {111} recrystallized texture and improve deep drawability. However, if the heating temperature is less than 900 ° C., the rolling load increases and the risk of trouble occurring during hot rolling increases. For this reason, it is preferable that slab heating temperature shall be 900 degreeC or more. In addition, the upper limit of the slab heating temperature is more preferably 1300 ° C. due to a decrease in yield due to an increase in scale loss accompanying an increase in oxidized weight. Needless to say, using a so-called sheet bar heater that heats the sheet bar from the viewpoint of lowering the slab heating temperature and preventing troubles during hot rolling is of course effective.
[0045]
Finish rolling end temperature: 700 ° C or higher Finish rolling end temperature (FDT) should be 700 ° C or higher to obtain a uniform hot-rolled base metal structure that provides excellent deep drawability after cold rolling and recrystallization annealing. Is preferred. In other words, if the finish rolling finish temperature is less than 700 ° C, the hot rolled base metal structure becomes non-uniform, the rolling load during hot rolling increases, and the risk of trouble occurring during hot rolling increases. is there.
[0046]
Winding temperature: 800 ° C. or lower The winding temperature is preferably 800 ° C. or lower. That is, when the coiling temperature exceeds 800 ° C., the scale increases and the yield tends to decrease due to scale loss. When the coiling temperature is less than 200 ° C., the shape of the steel sheet is significantly disturbed and the risk of causing problems in actual use increases. Therefore, the lower limit of the coiling temperature is more preferably 200 ° C.
[0047]
Thus, in the hot rolling process of the present invention, after the steel slab is heated to 900 ° C. or higher, the finish rolling finish temperature is hot rolled to 700 ° C. or higher and wound at a winding temperature of 800 ° C. or lower. Is preferred.
In the hot rolling process of the present invention, in order to reduce the rolling load during hot rolling, lubrication rolling may be performed between some or all passes of finish rolling. In addition, performing lubrication rolling is also effective from the viewpoint of uniform steel plate shape and uniform material. In addition, it is preferable to make the friction coefficient in the case of lubrication rolling into the range of 0.10-0.25.
[0048]
Moreover, it is preferable to set it as the continuous rolling process which joins the sheet | seat bars which precede and follow, and finish-rolls continuously. The application of the continuous rolling process is also desirable from the viewpoint of the operational stability of hot rolling.
[0049]
Next, the hot-rolled sheet is pickled to remove scale. The pickling step may be performed in accordance with a conventional method, and it is preferable to use, for example, hydrochloric acid or sulfuric acid-based processing solution as the pickling solution. Further, the hot-rolled sheet is cold-rolled to obtain a cold-rolled sheet. The cold rolling condition is not particularly limited as long as it can be a cold-rolled sheet having a desired dimension and shape, but the rolling reduction during cold rolling is preferably 40% or more. This is because if the rolling reduction is less than 40%, the {111} recrystallized texture does not develop and an excellent deep drawability cannot be obtained.
[0050]
Thereafter, in the recrystallization annealing step, the cold rolled sheet is subjected to recrystallization annealing to obtain a cold rolled annealed sheet. Recrystallization annealing is performed in a continuous annealing line. The annealing temperature for recrystallization annealing needs to be performed in a two-phase region of (α + γ) in the temperature range of the A c1 to A c3 transformation points. This is because if the annealing temperature is lower than the A c1 transformation point, a ferrite single-phase structure is formed and martensite cannot be generated. On the other hand, if the annealing temperature is higher than the A c3 transformation point, the crystal grains become coarse. At the same time, it becomes an austenite single-phase region, and the {111} recrystallization texture does not develop and the deep drawability deteriorates significantly.
[0051]
The cooling during the recrystallization annealing is preferably performed at a cooling rate of 5 ° C./s or more in order to generate martensite and to obtain a composite structure of ferrite and martensite.
[0052]
In addition, after the recrystallization annealing step, temper rolling with an elongation of 10% or less may be added for adjustment of shape correction, surface roughness, and the like.
The cold-rolled steel sheet of the present invention can be applied not only as a cold-rolled steel sheet for processing but also as an original sheet of a surface-treated steel sheet for processing. Examples of the surface-treated steel sheet for processing include galvanized steel sheets (including alloy systems), tin-plated steel sheets, enamels and the like. Further, the cold-rolled steel sheet of the present invention may be subjected to a special treatment for improving chemical conversion treatment properties, weldability, press formability, corrosion resistance, and the like after galvanization.
[0053]
【Example】
Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. Next, after these steel slabs are heated to 1150 ° C, a hot-rolled steel strip with a thickness of 4.0 mm (hot) is applied by hot rolling at a finish rolling finish temperature of 900 ° C and a winding temperature of 650 ° C. Sheet). Subsequently, these hot-rolled steel strips (hot-rolled plates) were pickled and cold-rolled by cold rolling at a reduction ratio of 70% to obtain cold-rolled steel strips (cold-rolled plates) having a thickness of 1.2 mm. Then, these cold-rolled steel strips (cold-rolled sheets) were subjected to recrystallization annealing at the annealing temperatures shown in Table 2 in a continuous annealing line. The obtained steel strip (cold rolled sheet) was further subjected to temper rolling with an elongation of 0.8%.
[0054]
A specimen is collected from the obtained steel strip, and a microscopic structure is imaged using an optical microscope or a scanning electron microscope with respect to a cross section (C cross section) orthogonal to the rolling direction, and the first phase is used using an image analyzer. The structure fraction of ferrite and the type and structure fraction of the second phase were determined. In addition, JIS No. 5 tensile test specimens were collected from the obtained steel strip and subjected to a tensile test in accordance with the provisions of JIS Z 2241. Yield stress (YS), tensile strength (TS), elongation (El), Yield ratio (YR) and Rankford value (r value) were determined. These results are shown in Table 2.
[0055]
[Table 1]
Figure 0004010131
[0056]
[Table 2]
Figure 0004010131
[0057]
From the results shown in Table 2, each of the inventive examples has low yield stress (YS), high elongation (El), and low yield ratio (YR), and exhibits a higher r value, deep drawing formability. In addition, the tensile strength (TS) has a high tension of 440 MPa or more. On the other hand, in the comparative example outside the scope of the present invention, the yield stress (YS) is high, the elongation (El) is low, or the r value is low.
[0058]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, there exists an industrial remarkable effect that the high tension cold-rolled steel plate which has the outstanding deep drawing formability can be manufactured stably. When the cold-rolled steel sheet of the present invention is applied to automobile parts, press forming is easy, and there is an effect that it can sufficiently contribute to weight reduction of the automobile body.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing the influence of the contents of V and C in a steel slab on the r value and the yield ratio (= yield stress (YS) / tensile strength (TS) × 100 (%)).

Claims (6)

質量%でC:0.01〜0.08%、Si:2.0%以下、Mn:3.0%以下、P:0.10%以下、S:0.02%以下、Al:0.005〜0.20%、N:0.004%以下およびV:0.01〜0.5%を含有し、かつ、VとCが、
0.5×C/12≦V/51≦3×C/12
なる関係を満たし、残部Feおよび不可避的不純物からなる組成を有し、第1相であるフェライト相と、組織全体に対する面積率で1%以上のマルテンサイト相を含む第2相とからなる組織を有することを特徴とする、深絞り性に優れた複合組織型高張力冷延鋼板。
C: 0.01 to 0.08% by mass, Si: 2.0% or less, Mn: 3.0% or less, P: 0.10% or less, S: 0.02% or less, Al: 0.005-0.20%, N: 0.004 % or less, and V: 0.01 ~ 0.5% and V and C are
0.5 × C / 12 ≦ V / 51 ≦ 3 × C / 12
The balance has a composition consisting of Fe and inevitable impurities, and the structure is composed of a ferrite phase as a first phase and a second phase containing a martensite phase with an area ratio of 1% or more with respect to the entire structure. A composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability.
質量%でC:0.01〜0.08%、Si:2.0%以下、Mn:3.0%以下、P:0.10%以下、S:0.02%以下、Al:0.005〜0.20%、N:0.004%以下およびV:0.01〜0.5%を含有するとともに、Nb:0.001〜0.3%とTi:0.001〜0.3%のうちの1種または2種を合計で0.3%以下含有し、かつ、V、Nb、TiとCとが、
0.5×C/12≦(V/51+2×Nb/93+2×Ti/48)≦3×C/12
なる関係を満たし、残部Feおよび不可避的不純物からなる組成を有し、
第1相であるフェライト相と、組織全体に対する面積率で1%以上のマルテンサイト相を含む第2相とからなる組織を有することを特徴とする、深絞り性に優れた複合組織型高張力冷延鋼板。
C: 0.01 to 0.08% by mass, Si: 2.0% or less, Mn: 3.0% or less, P: 0.10% or less, S: 0.02% or less, Al: 0.005-0.20%, N: 0.004 % or less, and V: 0.01 And 0.5% or less, and Nb: 0.001 to 0.3% and Ti: 0.001 to 0.3%, or a total of 0.3% or less, and V, Nb, Ti, and C are contained.
0.5 × C / 12 ≦ (V / 51 + 2 × Nb / 93 + 2 × Ti / 48) ≦ 3 × C / 12
And the balance has a composition consisting of Fe and inevitable impurities,
A composite structure type high tension excellent in deep drawability, characterized by having a structure composed of a ferrite phase as a first phase and a second phase containing a martensite phase with an area ratio of 1% or more with respect to the entire structure. Cold rolled steel sheet.
上記組成に加えてさらに、質量%で、下記に示すA群およびB群のうちの1群または2群を含有することを特徴とする請求項1又は2に記載の深絞り性に優れた複合組織型高張力冷延鋼板。

A群:Cr2.0質量%以下
B群:CuおよびNiのうちの1種または2種を合計で2.0質量%以下
The composite having excellent deep drawability according to claim 1 or 2, further comprising one group or two groups of group A and group B shown below in mass% in addition to the above composition: Structure type high-tensile cold-rolled steel sheet.
Group A: Cr is 2.0% by mass or less Group B: One or two of Cu and Ni are 2.0% by mass or less in total
質量%でC:0.01〜0.08%、Si:2.0%以下、Mn:3.0%以下、P:0.10%以下、S:0.02%以下、Al:0.005〜0.20%、N:0.004%以下およびV:0.01〜0.5%を含有し、かつ、VとCが、
0.5×C/12≦V/51≦3×C/12
なる関係を満たし、残部Feおよび不可避的不純物の組成になる鋼スラブを、熱間圧延し、引き続き酸洗した後、冷間圧延を施し、その後、Ac1〜Ac3変態点の温度域で連続焼鈍することを特徴とする、深絞り性に優れた複合組織型高張力冷延鋼板の製造方法。
C: 0.01 to 0.08% by mass, Si: 2.0% or less, Mn: 3.0% or less, P: 0.10% or less, S: 0.02% or less, Al: 0.005-0.20%, N: 0.004 % or less, and V: 0.01 ~ 0.5% and V and C are
0.5 × C / 12 ≦ V / 51 ≦ 3 × C / 12
A steel slab having the composition of Fe and the inevitable impurities in the balance is hot-rolled, subsequently pickled, and then cold-rolled, and thereafter in the temperature range of the A c1 to A c3 transformation points. A method for producing a composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability, characterized by performing continuous annealing.
質量%でC:0.01〜0.08%、Si:2.0%以下、Mn:3.0%以下、P:0.10%以下、S:0.02%以下、Al:0.005〜0.20%、N:0.004%以下およびV:0.01〜0.5%を含有するとともに、Nb:0.001〜0.3%とTi:0.001〜0.3%のうちの1種または2種を合計で0.3%以下含有し、かつ、V、Nb、TiとCとが、
0.5×C/12≦(V/51+2×Nb/93+2×Ti/48)≦3×C/12
なる関係を満たし、残部Feおよび不可避的不純物の組成になる鋼スラブを、熱間圧延し、引き続き酸洗した後、冷間圧延を施し、その後、Ac1〜Ac3変態点の温度域で連続焼鈍することを特徴とする、深絞り性に優れた複合組織型高張力冷延鋼板の製造方法。
C: 0.01 to 0.08% by mass, Si: 2.0% or less, Mn: 3.0% or less, P: 0.10% or less, S: 0.02% or less, Al: 0.005-0.20%, N: 0.004 % or less, and V: 0.01 And 0.5% or less, and Nb: 0.001 to 0.3% and Ti: 0.001 to 0.3%, or a total of 0.3% or less, and V, Nb, Ti, and C are contained.
0.5 × C / 12 ≦ (V / 51 + 2 × Nb / 93 + 2 × Ti / 48) ≦ 3 × C / 12
A steel slab having the composition of Fe and the inevitable impurities in the balance is hot-rolled, subsequently pickled, and then cold-rolled, and thereafter in the temperature range of the A c1 to A c3 transformation points. A method for producing a composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability, characterized by performing continuous annealing.
鋼スラブは、上記組成に加えてさらに、質量%で、下記に示すA群およびB群のうちの1群または2群を含有することを特徴とする請求項4又は5に記載の深絞り性に優れた複合組織型高張力冷延鋼板の製造方法。

A群:Cr2.0質量%以下
B群:CuおよびNiのうちの1種または2種を合計で2.0質量%以下
The steel slab further contains, in addition to the above composition, 1% or 2 groups of the following groups A and B in mass%, and the deep drawability according to claim 4 or 5 For producing a high-strength cold-rolled steel sheet with excellent structure.
Group A: Cr is 2.0% by mass or less Group B: One or two of Cu and Ni are 2.0% by mass or less in total
JP2001312687A 2000-11-28 2001-10-10 Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof Expired - Fee Related JP4010131B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2001312687A JP4010131B2 (en) 2000-11-28 2001-10-10 Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
CNB018073271A CN1193110C (en) 2000-11-28 2001-11-27 Composite structure type hipe tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
PCT/JP2001/010340 WO2002044434A1 (en) 2000-11-28 2001-11-27 Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
TW090129328A TW520398B (en) 2000-11-28 2001-11-27 Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
DE60143907T DE60143907D1 (en) 2000-11-28 2001-11-27 COMPOSITE STRUCTURE STEEL PLATE WITH HIGH TENSILE STRENGTH, COATED COMPOSITSTRUCTURE STEEL PLATE WITH HIGH TENSILE STRENGTH AND THEIR PRODUCTION PROCESS
CA002398126A CA2398126A1 (en) 2000-11-28 2001-11-27 High-strength dual-phase steel sheets and high-strength dual-phase plated steel sheets as well as method of producing the same
EP01998666A EP1338667B1 (en) 2000-11-28 2001-11-27 Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
KR1020027009698A KR20020073564A (en) 2000-11-28 2001-11-27 Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
US10/181,810 US20030129444A1 (en) 2000-11-28 2001-11-27 Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
AU24118/02A AU776043B2 (en) 2000-11-28 2001-11-27 Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000361274 2000-11-28
JP2000-361274 2000-11-28
JP2001312687A JP4010131B2 (en) 2000-11-28 2001-10-10 Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002226941A JP2002226941A (en) 2002-08-14
JP4010131B2 true JP4010131B2 (en) 2007-11-21

Family

ID=26604724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001312687A Expired - Fee Related JP4010131B2 (en) 2000-11-28 2001-10-10 Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4010131B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635525B2 (en) * 2003-09-26 2011-02-23 Jfeスチール株式会社 High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP4735552B2 (en) * 2007-01-22 2011-07-27 Jfeスチール株式会社 Manufacturing method of high strength steel plate and high strength plated steel plate
DE102008038865A1 (en) * 2008-08-08 2010-02-11 Sms Siemag Aktiengesellschaft Process for the production of semi-finished products, in particular steel strip, with dual-phase structure
JP4998757B2 (en) 2010-03-26 2012-08-15 Jfeスチール株式会社 Manufacturing method of high strength steel sheet with excellent deep drawability
JP5765116B2 (en) 2010-09-29 2015-08-19 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP5532088B2 (en) 2011-08-26 2014-06-25 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof
JP5408314B2 (en) 2011-10-13 2014-02-05 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same

Also Published As

Publication number Publication date
JP2002226941A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
JP5532188B2 (en) Manufacturing method of high-strength steel sheet with excellent workability
JP4737319B2 (en) High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same
JP5310919B2 (en) Method for producing high-strength cold-rolled steel sheets with excellent aging resistance and seizure curability
JP4559969B2 (en) Hot-rolled steel sheet for processing and manufacturing method thereof
KR20020073564A (en) Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
JP2008291304A (en) High-strength cold-rolled steel sheet and high strength hot-dip galvanized steel sheet both excellent in deep-drawability and strength-ductility balance, and producing method of the both
WO2012002565A1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
US9598755B2 (en) High strength galvanized steel sheet having excellent deep drawability and stretch flangeability and method for manufacturing the same
JP4608822B2 (en) Highly ductile hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JP5256690B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP4003401B2 (en) Steel sheet having high formability and low yield ratio with small variation in yield strength and elongation at break, and method for producing the same
JP4010131B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP4010132B2 (en) Composite structure type high-tensile hot-dip galvanized steel sheet excellent in deep drawability and method for producing the same
JP3912181B2 (en) Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof
WO2013084477A1 (en) High-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
JP2003193189A (en) High tensile strength galvanized steel sheet with composite structure having excellent deep drawability and production method therefor
JP4670135B2 (en) Manufacturing method of hot-rolled steel sheet with excellent strain age hardening characteristics
JP3870840B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP4178974B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent structure
JP2003193191A (en) High tensile strength cold rolled steel sheet with composite structure having excellent deep drawability and production method therefor
JP3925064B2 (en) Hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JP4599768B2 (en) Highly ductile cold-rolled steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JP3925063B2 (en) Cold-rolled steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JP4325233B2 (en) Composite structure type high-tensile cold-rolled steel sheet and hot-dip galvanized steel sheet excellent in deep drawability and strain age hardenability, and methods for producing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees