JP4280202B2 - High carbon steel plate with excellent hardenability and stretch flangeability - Google Patents
High carbon steel plate with excellent hardenability and stretch flangeability Download PDFInfo
- Publication number
- JP4280202B2 JP4280202B2 JP2004168060A JP2004168060A JP4280202B2 JP 4280202 B2 JP4280202 B2 JP 4280202B2 JP 2004168060 A JP2004168060 A JP 2004168060A JP 2004168060 A JP2004168060 A JP 2004168060A JP 4280202 B2 JP4280202 B2 JP 4280202B2
- Authority
- JP
- Japan
- Prior art keywords
- carbide
- particle size
- steel
- stretch flangeability
- standard deviation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000677 High-carbon steel Inorganic materials 0.000 title claims description 18
- 239000002245 particle Substances 0.000 claims description 117
- 239000012535 impurity Substances 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 description 88
- 239000010959 steel Substances 0.000 description 88
- 238000012360 testing method Methods 0.000 description 25
- 238000000137 annealing Methods 0.000 description 24
- 238000005098 hot rolling Methods 0.000 description 24
- 238000012545 processing Methods 0.000 description 22
- 238000010791 quenching Methods 0.000 description 17
- 230000000171 quenching effect Effects 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 150000001247 metal acetylides Chemical class 0.000 description 15
- 238000009749 continuous casting Methods 0.000 description 14
- 238000005097 cold rolling Methods 0.000 description 13
- 229910001562 pearlite Inorganic materials 0.000 description 13
- 238000009826 distribution Methods 0.000 description 11
- 238000004080 punching Methods 0.000 description 11
- 238000005096 rolling process Methods 0.000 description 11
- 230000009466 transformation Effects 0.000 description 11
- 238000005266 casting Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 229910000859 α-Fe Inorganic materials 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 238000005204 segregation Methods 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 4
- 230000000149 penetrating effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910001567 cementite Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 230000008719 thickening Effects 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、焼き入れ性と伸びフランジ性の優れた高炭素鋼板に関する。 The present invention relates to a high carbon steel sheet having excellent hardenability and stretch flangeability.
自動車部品(ギヤ、ミッション)等に使用される高炭素鋼板は、打ち抜き、成型加工後に焼き入れ・焼き戻し等の熱処理が施され、所定の強度に調整される。一般に、高炭素鋼板は打ち抜き加工や曲げ加工、軽い絞り加工、軽度の伸びフランジ加工が施されこともある。また、部品形状が複雑な場合は、いくつかの部品を溶接して製造される場合も多い。ところが、近年、部品の製造コストの低減するため、部品加工の工程省略、一体成型が進められている。このため、素材の高炭素鋼板にはより加工性の優れた特性を要求される。また、加工部分を更に異なる加工形態の二次加工を行う方法も試みられている。例えば、打ち抜き穴部を穴広げ加工後に、増肉加工等が施されることがある。これらの要求に応えるためには単に伸びフランジ性が良好なだけでは加工には耐えられない。 High carbon steel sheets used for automobile parts (gears, missions) and the like are subjected to heat treatment such as quenching and tempering after punching and forming, and adjusted to a predetermined strength. In general, high carbon steel sheets may be stamped, bent, light drawn, and slightly stretched. In addition, when the part shape is complicated, it is often produced by welding several parts. However, in recent years, in order to reduce the manufacturing cost of parts, part processing steps have been omitted and integrated molding has been promoted. For this reason, the high carbon steel plate as a raw material is required to have excellent workability. There has also been attempted a method of performing secondary processing in a different processing form on the processed portion. For example, a thickening process or the like may be performed after the punching hole is expanded. In order to meet these requirements, it is impossible to withstand the processing simply by having a good stretch flangeability.
高炭素鋼板の伸びフランジ性を良好にしようとする技術は、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8、特許文献9、特許文献10、特許文献11、特許文献12、特許文献13、特許文献14、特許文献15、特許文献16の技術が開示されている。特許文献1〜10は、鋼成分、熱延条件に特徴を有するが、基本の技術は焼鈍時にAc1−50℃〜Ac1で保定後にAc1〜Ac1+100℃の温度で保定した後に冷却速度5〜30℃/hrで冷却途中のAc1〜Ac1−50℃の温度範囲で再び保持する焼鈍サイクルに特徴がある。この方法は焼鈍に長時間を必要とする上に、この技術を開示した明細書に示されるVノッチ伸びは良好であるが、実際の伸びフランジ性は必ずしも良好でない。特許文献12、特許文献13は共に焼鈍時にγ域に加熱後に50℃/hr以下の冷却速度で冷却する熱サイクルを採用する技術で、基本的には先の技術と同じであり、十分な伸びフランジ性は得られない。
The techniques for improving the stretch flangeability of the high carbon steel sheet include
特許文献11は熱延材のためフェライト+パーライト組織であるため、十分な加工性が得られない。特許文献14は炭化物粒径を0.1〜1.2μmにし、炭化物を含まないフェライト粒体積率を15%以下にする技術であるが、この技術も優れた伸びフランジを有する高炭素鋼板を安定して製造することが出来なく、厳しい伸びフランジ加工後の増肉加工時に割れが生じる等の問題点がある。特許文献15、特許文献16の技術は熱延後の冷却速度を120℃/S以上で冷却し、炭化物粒径を0.1〜1.2μmにし、炭化物を含まないフェライト粒体積率を15%以下にする鋼板を製造する技術であるが、熱延後に、120℃/S以上の冷却速度で冷却するため、安定した鋼板が得られない。また、厳しい伸びフランジ加工後には増肉加工で割れが生じる等の問題点がある。
組織が不均一な鋼板は、伸びフランジ加工の打ち抜き加工時に、打ち抜き端面にボイドが生じる。例え、平滑な面の場合に優れた局部延性を有していても、打ち抜き加工部に伸びフランジ加工が施されると、加工の初期にボイドが連結し、割れが生じるため、伸びフランジ加工性が不十分となる。一方、熱延後に急冷することで組織を均一にした鋼板は、打ち抜き加工ではボイドが生じ難いが、鋼板の延性が低いため、厳しい伸びフランジ加工には耐えられない。そこで、本発明においては、軟質で延性が優れかつ、打ち抜き加工時にボイドが生じにくく、かつ焼き入れ性の優れた鋼板を提供することにある。 In a steel sheet having a non-uniform structure, voids are generated on the punched end surface during the punching process of stretch flange processing. For example, even if it has excellent local ductility in the case of a smooth surface, if stretched flange processing is applied to the punched portion, voids are connected and cracks occur at the beginning of processing, so stretch flangeability Is insufficient. On the other hand, a steel sheet whose structure is made uniform by rapid cooling after hot rolling hardly causes voids in the punching process, but cannot withstand severe stretch flange processing because the ductility of the steel sheet is low. Therefore, an object of the present invention is to provide a steel sheet that is soft and excellent in ductility, is less likely to cause voids during punching, and has excellent hardenability.
伸びフランジ加工性は、打ち抜き加工時に打ち抜き面は剪断変形され、加工硬化し、伸びフランジ加工前に既にボイドが生じる。これを伸びフランジ加工するとボイドを起点に、大きな割れが生じ、これが伸びフランジ加工限界となる。一方、打ち抜き加工時にボイドが生じない場合は、伸びフランジ加工の歪をいかに均一に分担するかによって左右され、不均一な歪分布になると伸びフランジ性は劣化し、均一に分担すれば、伸びフランジ性は良好になる。しかし、歪を均一に分担しても、鋼板の延性が劣れば、厳しい伸びフランジ加工に耐えられない。したがって、打ち抜き加工時に、ボイドを生じ難く、伸びフランジ加工時に歪を均一に分担し、かつ、延性の優れた鋼板を必要とする。高炭素鋼板は、フェライトとパーライトの混合組織、あるいはフェライトとセメンタイトの混合組織である。パーライトはフェライトとセメンタイトが層状に積層した組織で、延性が乏しいため、加工性を必要とするときは球状化焼鈍し、フェライトと球状炭化物(セメンタイト)の混合組織として用いられる。この球状炭化物は硬質なため、変形能はほとんどなく、炭化物の周りは歪が不連続となり、炭化物の周りにボイドが生じ、このボイドが連結して割れが生じる。したがって、炭化物は少なければ少ないほど加工性が良好になる。しかし、炭化物量はC量に依存し、炭化物が少ないと焼き入れ後の硬さが得られなくなるので、ある程度以上の炭化物は必要である。 In the stretch flangeability, the punched surface is sheared and deformed at the time of punching, and the void is already generated before the stretch flange processing. When this is stretch flanged, a large crack occurs starting from the void, which becomes the stretch flange processing limit. On the other hand, if no voids occur during punching, it depends on how uniformly the strain of stretch flange processing is shared, and if the strain distribution becomes uneven, stretch flangeability deteriorates. The property becomes good. However, even if the strain is evenly distributed, if the steel sheet has poor ductility, it cannot withstand severe stretch flange processing. Therefore, it is difficult to produce voids during punching, and a steel plate having a uniform ductility and excellent ductility is required during stretch flange processing. The high carbon steel sheet has a mixed structure of ferrite and pearlite or a mixed structure of ferrite and cementite. Pearlite is a structure in which ferrite and cementite are laminated in a layered form and has poor ductility. Therefore, when workability is required, pearlite is annealed and used as a mixed structure of ferrite and spherical carbide (cementite). Since this spherical carbide is hard, there is almost no deformability, strain is discontinuous around the carbide, voids are generated around the carbide, and the voids are connected to cause cracks. Therefore, the smaller the carbide, the better the workability. However, the amount of carbide depends on the amount of C, and if the amount of carbide is small, hardness after quenching cannot be obtained, so a certain amount of carbide is necessary.
そこで、炭化物量が一定の場合の、伸びフランジ性におよぼす炭化物の存在形態の影響を検討した結果、(1)大きな炭化物の周りでは加工時にボイドが生じ易くなり、伸びフランジ性が劣化する。(2)炭化物が小さいとボイドが生じる歪は大きくなるが、ボイドが生じるとこれらが連結して、クラックが生じ易くなり、やはり伸びフランジ性が不十分である。(3)平均炭化物粒径が同一でも、炭化物粒径にバラツキが大きいと伸びフランジ性が劣り、炭化物の平均粒径だけを制御しても優れた伸びフランジ性を有する鋼板が得られなく、炭化物粒径とそのバラツキを小さくすると優れた伸びフランジ性鋼板が得られる。(4)炭化物のバラツキを少なくするには、偏析を小さくする凝固条件、熱延組織を均一にする熱延条件、大きな炭化物を生成させない焼鈍条件と共に、Crの適量添加で達成できることが分かつた。(5)Ti、Bを添加すれば、伸びフランジ性を劣化させることなく、低C量でも、通常の熱処理条件では、C量が高い鋼と同等の硬さが得られ、かつ優れた靭性を得られる。 Therefore, as a result of examining the influence of the existence form of carbide on stretch flangeability when the amount of carbide is constant, (1) voids are likely to occur around large carbides during processing, and stretch flangeability deteriorates. (2) If the carbide is small, the distortion that causes voids increases, but if voids occur, they are connected and cracks are likely to occur, and the stretch flangeability is still insufficient. (3) Even if the average carbide particle size is the same, if the variation in the carbide particle size is large, the stretch flangeability is inferior, and even if only the average particle size of the carbide is controlled, a steel sheet having excellent stretch flangeability cannot be obtained. An excellent stretch-flangeable steel sheet can be obtained by reducing the particle diameter and its variation. (4) In order to reduce the dispersion of carbides, it has been found that addition of an appropriate amount of Cr can be achieved together with solidification conditions for reducing segregation, hot rolling conditions for making the hot rolled structure uniform, and annealing conditions for preventing generation of large carbides. (5) If Ti and B are added, the hardness equivalent to that of steel with a high C content can be obtained under normal heat treatment conditions without degrading stretch flangeability, and excellent toughness can be obtained. can get.
以上の知見から、本発明を完成し、伸びフランジ性と焼き入れ性の優れた高炭素鋼板の提供を可能とした。その要旨は、質量%で、C:0.22〜0.45%、Si:1.0%以下、Mn:1.5%以下、P:0.03%以下、S:0.03%以下、Al:0.08%以下、N:0.0080%以下、Cr:0.01〜0.70%、Ti:0.005〜0.050%、B:0.0003〜0.0050%、残部Feおよび不可避的不純物からなり、炭化物の平均粒径が0.1〜1.0μmで、炭化物粒径の標準偏差/炭化物の平均粒径の比が0.5以上1.0以下であることを特徴とする焼き入れ性と伸びフランジ性の優れた高炭素鋼板にある。 Based on the above knowledge, the present invention has been completed, and it has become possible to provide a high carbon steel sheet having excellent stretch flangeability and hardenability. The gist is mass%, C: 0.22 to 0.45 % , Si: 1.0% or less, Mn: 1.5% or less, P: 0.03% or less, S: 0.03% or less. , Al: 0.08% or less, N: 0.0080% or less, Cr: 0.01~0.70%, Ti: 0.005~0.050%, B: 0.0003~0.0050%, It consists of the remainder Fe and inevitable impurities , the average particle size of the carbide is 0.1 to 1.0 μm, and the ratio of the standard deviation of the carbide particle size / the average particle size of the carbide is 0.5 or more and 1.0 or less. It is a high carbon steel sheet with excellent hardenability and stretch flangeability.
以下、本発明の限定理由について説明する。
Cは、焼き入れ後の硬さに直接影響し、C量が0.20質量%未満になると焼き入れ後、機械構造部品として十分な強度が得られない。C含有量が0.45質量%を超えると、炭化物量が多くなり、加工時に炭化物の周りにボイドが生成し、このボイドが連結する機構で破断が進捗するため、伸びフランジ性が劣化する。このため、Cの上限を0.45質量%に特定した。好ましい範囲は同様の理由から0.22〜0.35質量%である。
Crは、球状化炭化物の粒径のバラツキを少なくする働きをするため、0.70質量%以内で添加する。0.70%を超えてCrを添加すると、球状化のための焼鈍時間を長時間必要となり、製造コストを上昇させるだけでなく、鋼板が硬質となり、加工性を劣化させる。炭化物粒径のバラツキを小さくする手段は、凝固条件、熱延条件、焼鈍条件等、Cr添加以外に存在するため、Cr量の下限は、0.01質量%である。
Bは、焼き入れ性を高める元素として、知られている。本発明でも、この目的で0.0050質量%を上限で添加する。B量が0.0050%を超えると連続鋳造スラブに欠陥が生じ、製品に表面疵が多くなり、歩留まりが低下する。一方、添加量が0.0003質量%未満になると焼き入れ性を高める効果を不十分となる。このため、下限を0.0003質量%に特定した。
Tiは、Bの添加効果を顕現させるためと、焼き入れ後の靭性を高めるために添加する。添加量が0.05質量%を超えると、逆に、製造条件により、靭性が劣化することがあるので、上限を0.05質量%に特定した。一方、添加量が0.005質量%未満では上記の効果が発揮できなくなるため、下限を0.005質量%に特定した。
Hereinafter, the reasons for limitation of the present invention will be described.
C directly affects the hardness after quenching. If the amount of C is less than 0.20% by mass, sufficient strength as a machine structural component cannot be obtained after quenching. If the C content exceeds 0.45% by mass, the amount of carbide increases, voids are generated around the carbides during processing, and breakage progresses by a mechanism in which these voids are connected, so that stretch flangeability deteriorates. For this reason, the upper limit of C was specified as 0.45 mass%. A preferable range is 0.22 to 0.35 mass% for the same reason.
Since Cr serves to reduce the variation in the particle size of the spheroidized carbide, it is added within 0.70% by mass. Addition of Cr exceeding 0.70% requires a long annealing time for spheroidization, which not only increases the manufacturing cost but also makes the steel plate hard and deteriorates workability. Means for reducing the variation in the carbide particle diameter exist in addition to Cr addition, such as solidification conditions, hot rolling conditions, annealing conditions, etc., so the lower limit of the Cr amount is 0.01% by mass.
B is known as an element that enhances hardenability. Also in this invention, 0.0050 mass% is added at the upper limit for this purpose. When the amount of B exceeds 0.0050%, defects occur in the continuous casting slab, the surface flaws increase in the product, and the yield decreases. On the other hand, when the addition amount is less than 0.0003 mass%, the effect of improving the hardenability becomes insufficient. For this reason, the lower limit was specified as 0.0003 mass%.
Ti is added to manifest the effect of addition of B and to increase toughness after quenching. If the addition amount exceeds 0.05% by mass, the toughness may be deteriorated depending on the manufacturing conditions. Therefore, the upper limit is specified as 0.05% by mass. On the other hand, when the addition amount is less than 0.005% by mass, the above effect cannot be exhibited, so the lower limit was specified as 0.005% by mass.
炭化物粒径は、加工性および穴広げ性においてボイドの生成に大きく影響する。炭化物が微細になると、ボイドが生じる歪は大きくなるが、ボイドの連結によるクラックが発生する歪が逆に小さくなり加工性を悪くする、このため、炭化物平均粒径の下限を0.1μmに特定した。一方、炭化物粒径が1.0μm超になると炭化物の周りに出来たボイドを起点に破断が進行し、伸びフランジ性が悪くなる。このため、炭化物平均粒径の上限を1.0μmに特定した。好ましい範囲は同様の理由から、炭化物平均粒径が0.3〜0.8μmの範囲である。 Carbide particle size greatly affects void formation in processability and hole expandability. When carbides become finer, the strain that creates voids increases, but the strain that causes cracks due to the connection of voids decreases and the workability deteriorates. For this reason, the lower limit of the average carbide particle size is specified to 0.1 μm. did. On the other hand, when the carbide particle size exceeds 1.0 μm, the breakage progresses starting from voids formed around the carbide and the stretch flangeability deteriorates. For this reason, the upper limit of the carbide average particle size was specified as 1.0 μm. For the same reason, a preferable range is a range in which the carbide average particle size is 0.3 to 0.8 μm.
炭化物粒径のバラツキは、炭化物粒径と同様に穴広げ加工時のボイドの生成に大きく影響する。炭化物のバラツキが大きくなると、例え、平均炭化物粒径が0.1〜1.0μmの範囲内であっても、大きな炭化物や、小さな炭化物の比率が多くなり、伸びフランジ性を劣化させる。炭化物粒径の標準偏差が平均炭化物粒径の比で1.0を超えると、伸びフランジ性を悪くする効果が顕著となるので、炭化物粒径の標準偏差を平均炭化物粒径の比で1.0以下にする必要がある。これは、C:0.30%、Si:0.12%、Mn:0.67%、Cr:0.30%、Ti:0.016%、B:0.0015%(全て質量%)の鋼を連続鋳造でスラブを造り、1250℃に加熱後に、種々の条件で熱間圧延し、種々の焼鈍条件で球状化焼鈍した3.5mm厚みの鋼板から、150角の穴広げ試験片、および断面のミクロ組織観察用試験片を採取した。穴広げ試験片は板の中央部にクリアランス12%で10φの穴を打ち抜き、この穴に60度の円錐ポンチで押し上げ、打ち抜き面、板厚を貫通するクラックが生じた時に試験を止め、そのときの穴径と初期穴径の差を初期穴径で割り、100分率表示したものを穴広げ率とした。圧延方向に平行な断面の炭化物を走査型顕微鏡で観察し、炭化物の平均粒径および炭化物粒径の標準偏差を測定した。炭化物の観察個所は少なくとも、10視野以上とした。測定した炭化物平均粒径が0.3〜0.4μm範囲と、炭化物平均粒径が0.7〜0.75μmのものについて、炭化物の標準偏差/平均炭化物粒径の比と穴広げ率の関係を図1に示した。平均炭化物粒径に係わらず、炭化物粒径の標準偏差が大きくなると穴広げ率が低下する。特に、標準偏差が平均炭化物粒径以上になると穴広げ率の低下傾向が顕著となる。この事実に基づき、炭化物粒径の標準偏差と平均炭化物粒径の比が1.0以下に特定した。 The variation in the carbide particle size has a great influence on the generation of voids during the hole expanding process, similarly to the carbide particle size. When the variation in carbides increases, even if the average carbide particle size is in the range of 0.1 to 1.0 μm, the ratio of large carbides and small carbides increases, and stretch flangeability deteriorates. If the standard deviation of the carbide particle size exceeds 1.0 in terms of the average carbide particle size ratio, the effect of worsening the stretch flangeability becomes significant. Therefore, the standard deviation of the carbide particle size is 1. Must be 0 or less. This is: C: 0.30%, Si: 0.12%, Mn: 0.67%, Cr: 0.30%, Ti: 0.016%, B: 0.0015% (all by mass) A steel slab is formed by continuous casting, heated to 1250 ° C., hot-rolled under various conditions, and spheroidized and annealed under various annealing conditions. A specimen for microstructural observation of the cross section was collected. The hole-expanded test piece was punched with a 10φ hole at the center of the plate with a clearance of 12%. The hole was pushed up with a conical punch of 60 degrees, and the test was stopped when a crack penetrating the punched surface and plate thickness occurred. The difference between the hole diameter and the initial hole diameter was divided by the initial hole diameter, and the ratio expressed as 100 minutes was defined as the hole expansion ratio. The carbide having a cross section parallel to the rolling direction was observed with a scanning microscope, and the average particle size of the carbide and the standard deviation of the carbide particle size were measured. Carbide observation sites were at least 10 fields of view. Relationship between the ratio of the standard deviation of carbide / average carbide particle size and the hole expansion ratio in the case where the measured average particle size of carbide is in the range of 0.3 to 0.4 μm and the average particle size of carbide is 0.7 to 0.75 μm. Is shown in FIG. Regardless of the average carbide particle size, the hole expansion rate decreases as the standard deviation of the carbide particle size increases. In particular, when the standard deviation is equal to or greater than the average carbide particle size, the tendency of the hole expansion rate to decrease becomes significant. Based on this fact, the ratio of the standard deviation of the carbide particle size to the average carbide particle size was specified to be 1.0 or less.
この発明は、伸びフランジ性の向上と焼き入れ性を両立するにあたり、単に炭化物の粒径を制御するだけでなく、鋼の成分を適正に調整し、炭化物のバラツキを制御することで、打ち抜き時の端面のボイド生成を抑制し、穴広げ加工におけるクラックの成長を遅らすことができる。この結果、極めて伸びフランジ性の優れた、しかも焼き入れ性が優れ、焼き入れ後の靭性が優れた高炭素鋼板の提供が可能となる。この高炭素鋼板を用いることにより、自動車の駆動系機械部品等の加工において加工度が高く取ることができ、製造工程を省略して低コストで部品等を製造することが可能となり、工業的に極めて有用な発明である。 In this invention, in order to achieve both the improvement of stretch flangeability and hardenability, not only simply controlling the particle size of carbide, but also adjusting the steel components appropriately and controlling the variation of carbide, It is possible to suppress the generation of voids on the end face of the metal and to delay the growth of cracks in the hole expanding process. As a result, it is possible to provide a high carbon steel sheet having extremely excellent stretch flangeability, excellent hardenability, and excellent toughness after quenching. By using this high-carbon steel sheet, it is possible to obtain a high degree of processing in processing of automobile drive system machine parts, etc., making it possible to manufacture parts etc. at low cost by omitting the manufacturing process. It is a very useful invention.
この発明の鋼は、C:0.22〜0.45質量%、Cr:0.05〜0.70質量%、Ti:0.010〜0.050質量%、B:0.0003〜0.0050質量%を含有する他は、炭化物の平均粒径とそのバラツキを前述の範囲に特定すればよい。その他の化学成分については、特に規定せず、Si、Mn、P、S、Al、Nなどの元素は通常範囲で含有させても、本発明の特徴を損なわない。但し、好ましくは次のようにすると良い。
Siは鋼板を硬質にし、加工性を損なうと同時に、鋼板の表面欠陥の原因となるので、1.0質量%以下とすることが好ましい。
Mnは、過剰に添加すると延性の低下を引き起こすと同時に、炭化物の粒径のバラツキを大きくする傾向があるので、1.5質量%以下とすることが好ましい。
P、Sは、過剰に添加すると延性を低下させるので0.03質量%以下にすることが好ましい。
Alは、過剰に添加すると鋼板の表面欠陥の原因となりやすいので、0.08質量%以下の範囲で添加することが好ましい。
Nは、多量に添加するとAl、Ti、Bと窒化物をつくり、焼き入れ性を劣化させるので、0.0080質量%以下の範囲で添加することが好ましい。さらに、目的に応じて、通常添加される範囲で、Cu、Ni、Mo、Nb、V、Ca、Mg等の元素を添加してもよい。これらの元素は、本発明の特徴に特に影響を及ぼさない。また、製造過程で不可避的に混入する元素、不純物も本発明の特徴を損なわない。
The steel of this invention has C: 0.22-0.45 mass%, Cr: 0.05-0.70 mass%, Ti: 0.010-0.050 mass%, B: 0.0003-0. Except for containing 0050% by mass, the average particle size and variation of the carbide may be specified in the above-mentioned range. Other chemical components are not particularly defined, and even if elements such as Si, Mn, P, S, Al, and N are contained in a normal range, the characteristics of the present invention are not impaired. However, the following is preferable.
Si hardens the steel sheet, impairs workability, and at the same time causes surface defects of the steel sheet.
When Mn is added in excess, it causes a decrease in ductility and at the same time tends to increase the variation in the particle size of the carbide. Therefore, Mn is preferably 1.5% by mass or less.
When P and S are added excessively, the ductility is lowered.
Since adding Al excessively tends to cause surface defects of the steel sheet, it is preferable to add Al in the range of 0.08% by mass or less.
When N is added in a large amount, it forms Al, Ti, B and nitride and deteriorates the hardenability. Therefore, N is preferably added in the range of 0.0080% by mass or less. Furthermore, elements such as Cu, Ni, Mo, Nb, V, Ca, and Mg may be added in a range that is usually added according to the purpose. These elements do not particularly affect the characteristics of the present invention. Further, elements and impurities inevitably mixed in the manufacturing process do not impair the characteristics of the present invention.
上記のように成分調整された鋼は、連続鋳造、あるいは造塊−分塊圧延によりスラブとする。この際、鋼塊の成分偏析は炭化物粒径のバラツキを大きくするので、未凝固域圧下、電磁攪拌等の凝固偏析を少なくする方法を採用することが好ましい。このスラブを熱間圧延するが、その際、スラブ加熱温度は、スケール生成による表面状況の劣化を避けるため、1280℃以下とすることが好ましい。熱間圧延の仕上温度は、加工性の観点からAr3点以上とすることが望ましい。巻取り温度については、炭化物のサイズおよびその分布の制御の観点から、500〜650℃とすることが望ましい。なお、仕上圧延後の冷却は、炭化物のサイズ分布に大きく影響するので、パーライトが恒温変態するように注水冷却することが望ましい。このようにして製造された熱延鋼帯は脱スケール後に球状化焼鈍、あるいは、冷間圧延して、焼鈍、または球状化焼鈍後に冷間圧延し焼鈍して製品に供される。熱延鋼帯を酸洗後に焼鈍する場合、冷間圧延後に焼鈍する場合の、大きな粒径の炭化物を多くしないためにAc1点温度以下の温度で行うことが望ましい。熱延鋼帯を酸洗後あるいは球状化焼鈍後に冷間圧延する場合の冷間圧延率は、炭化物を均一な大きさに制御するために、20%以上にすることが好ましい。一方、冷間圧延率を高くとると、必然的に熱延鋼帯の厚みを厚くなるため、炭化物のバラツキが大きくなり易いので、70%以下の冷間圧延率を採用することが好ましい。このようにして製造された鋼帯は必要に応じて、調質圧延して機械構造部品等の加工に供される。本発明の高炭素鋼板は、熱延鋼板でも冷延鋼板でもよく、いずれの場合も本発明の特徴の効果を得ることができる。 The steel whose components have been adjusted as described above is made into a slab by continuous casting or ingot-bundling rolling. At this time, the component segregation of the steel ingot increases the variation in the carbide particle size, and therefore it is preferable to employ a method of reducing solidification segregation such as electromagnetic stirring under unsolidified region pressure. The slab is hot-rolled. At this time, the slab heating temperature is preferably set to 1280 ° C. or less in order to avoid deterioration of the surface condition due to scale generation. The finishing temperature of hot rolling is desirably Ar3 or higher from the viewpoint of workability. About coiling temperature, it is desirable to set it as 500-650 degreeC from a viewpoint of control of the size of carbide and its distribution. In addition, since cooling after finish rolling greatly affects the size distribution of carbides, it is desirable to cool by pouring water so that pearlite undergoes a constant temperature transformation. The hot-rolled steel strip produced in this manner is subjected to spheroidizing annealing after descaling, or cold rolling, annealing, or cold rolling and annealing after spheroidizing annealing, and supplied to the product. When annealing a hot-rolled steel strip after pickling, it is desirable to carry out at a temperature not higher than the Ac1 point temperature in order not to increase carbides having a large particle size when annealing after cold rolling. The cold rolling rate when the hot-rolled steel strip is cold-rolled after pickling or spheroidizing annealing is preferably 20% or more in order to control the carbide to a uniform size. On the other hand, when the cold rolling rate is high, the thickness of the hot-rolled steel strip is inevitably increased, and the dispersion of carbide tends to increase. Therefore, it is preferable to adopt a cold rolling rate of 70% or less. The steel strip manufactured in this way is subjected to temper rolling as needed to process machine structural parts and the like. The high-carbon steel sheet of the present invention may be a hot-rolled steel sheet or a cold-rolled steel sheet, and in any case, the effects of the features of the present invention can be obtained.
質量%で、C:0.28%、Si:0.15%、Mn:0.58%、Cr0.30%、S:0.002%、Ti:0.018%、B:0.0015%、N:0.0038%の組成の成分的には本発明範囲内の鋼を転炉で溶製し、連続鋳造でスラブを造った。連続鋳造時に、一部の鋳造時に、未凝固域で圧下、電磁攪拌、鋳造速度を通常のものより、1.5倍に速めて鋳造した。このスラブを1240℃に加熱し、熱間圧延を行った。熱延仕上温度は790〜880℃、巻取り温度は450〜680℃の範囲であった。この熱延鋼板を酸洗後、615〜705℃で14〜96時間の箱焼鈍を行なって、板厚4.0mmの鋼板を製造した。これらの鋼板から、サンプルを採取し、炭化物の平均粒径および炭化物粒径の標準偏差、硬さを測定した。同時に、穴広げ試験と穴広げ試験後に据え込み試験を行った。炭化物粒径は鋼板の圧延方向に平行な断面を研磨し、ピクリン酸溶液で腐食し、走査型電子顕微鏡観察で個々の炭化物面積を測定し、これが真円と仮定してその径を求めた。炭化物の測定は炭化物個数が2000個以上になるように測定視野数を調整した。測定した炭化物粒径の標準偏差を求めた。穴広げ試験は、150mm角の鋼板の中央部にクリアランス12%にして、10mmφ(d0)の穴を打ち抜いた後、その穴部に、60度の円錐ポンチで押し上げる方法で行い、穴周囲に板厚を貫通する亀裂が発生した時点の穴径(d)を測定し、次式で定義される穴広げ率λ(%)を求めた。
λ=(d−d0)/d0×100
据え込み試験は100角の中心部にクリアランス12%にして、15mmφの穴を打ち抜き、径が20mmφの平底ポンチで穴径がポンチ径と同一になるまで押し上げた。これを圧縮試験機で穴広げの頭部を圧縮し、高さが50%になった時点で頭部にクラックが生じるかどうかで評価した。クラックが観察されないものを○、クラックがわずかに観察されるものを△、クラックが存在するものを×の評点とした。これの測定結果を表1に記載した。
In mass%, C: 0.28%, Si: 0.15%, Mn: 0.58%, Cr 0.30%, S: 0.002%, Ti: 0.018%, B: 0.0015% N: 0.0038% of the composition, steel within the scope of the present invention was melted in a converter and a slab was made by continuous casting. At the time of continuous casting, at the time of a part of casting, the casting was performed in the unsolidified region at a reduction, electromagnetic stirring, and the casting speed 1.5 times faster than usual. This slab was heated to 1240 ° C. and hot rolled. The hot rolling finishing temperature was 790 to 880 ° C, and the winding temperature was 450 to 680 ° C. After this hot-rolled steel sheet was pickled, box annealing was performed at 615 to 705 ° C. for 14 to 96 hours to produce a steel sheet having a thickness of 4.0 mm. Samples were taken from these steel plates, and the average particle size of carbide, the standard deviation of carbide particle size, and the hardness were measured. At the same time, the upsetting test was conducted after the hole expansion test and the hole expansion test. The carbide particle size was obtained by polishing a cross section parallel to the rolling direction of the steel sheet, corroding with a picric acid solution, measuring each carbide area by observation with a scanning electron microscope, and determining the diameter assuming that this was a perfect circle. In the measurement of carbide, the number of fields of view was adjusted so that the number of carbides was 2000 or more. The standard deviation of the measured carbide particle size was determined. The hole expansion test was performed by punching out a 10mmφ (d0) hole at the center of a 150mm square steel plate with a clearance of 12%, and then pushing it up with a 60 ° conical punch. The hole diameter (d) at the time when a crack penetrating the thickness occurred was measured, and the hole expansion ratio λ (%) defined by the following equation was obtained.
λ = (d−d0) / d0 × 100
In the upsetting test, a hole of 15 mmφ was punched at a clearance of 12% at the center of 100 corners, and the hole diameter was pushed up with a flat bottom punch with a diameter of 20 mmφ until the hole diameter became the same as the punch diameter. The head of the hole expansion was compressed with a compression tester, and it was evaluated whether or not a crack occurred in the head when the height reached 50%. A case where no crack was observed was evaluated as “◯”, a case where a crack was slightly observed as “Δ”, and a case where a crack was present as “×”. The measurement results are shown in Table 1.
鋼No.1は、連続鋳造時に偏析が最少となる条件の電磁攪拌を採用し、熱延仕上げ温度:820℃、巻取り温度:600℃、仕上げ圧延後の冷却は、パーライト変態温度が600〜610℃間で終了するように注水した。なお、通常の熱延では、変態温度域は比較的に大きく、例えば、比較材の鋼4のパーライト変態は、590〜650℃間である。熱延後、酸洗し、670℃×18時間の焼鈍して、特性調査に供した。炭化物平均粒径が0.76μm、炭化物粒径の標準偏差が0.45μm、炭化物粒径の標準偏差/炭化物平均粒径が0.592と炭化物サイズ分布は本発明範囲内の実施例である。穴広げ率が68%と優れた伸びフランジ性を有する。鋼No.2は連続鋳造時に電磁攪拌と鋳造速度を通常のものより、1.5倍の引き抜き速度を採用した。熱延仕上げ温度:800℃、巻取り温度;600℃、パーライト変態が10℃以内に終了するように、変態発熱を考慮して注水した。この鋼の炭化物の平均粒径が0.56μm、炭化物粒径の標準偏差が0.32μm、炭化物粒径の標準偏差/炭化物平均粒径が0.571と炭化物サイズ分布は本発明範囲内の実施例である。穴広げ率が75%と優れた伸びフランジ性を有する。鋼No.3は、連続鋳造時に、未凝固域で5%の圧下を行い、鋳造してスラブを造り、熱延に供した。熱延仕上げ温度:815℃、巻取り温度:580℃、パーライト温度変態温度が590〜600℃となるように注水冷却した。炭化物の平均粒径が0.45μm、炭化物粒径の標準偏差が0.28μm、炭化物粒径の標準偏差/炭化物平均粒径が0.622と炭化物サイズ分布は本発明範囲内の実施例である。穴広げ率が78%と優れた伸びフランジ性を有する。また、本発明範囲内の実施例である鋼No.1、2、3は穴広げ後の据え込み試験でクラックが観察されなく、いずれも優れた伸びフランジ性を有することがわかる。 Steel No. No. 1 employs electromagnetic stirring under conditions that minimize segregation during continuous casting, hot rolling finish temperature: 820 ° C., coiling temperature: 600 ° C., and cooling after finish rolling has a pearlite transformation temperature between 600 and 610 ° C. The water was poured to finish. In normal hot rolling, the transformation temperature range is relatively large. For example, the pearlite transformation of the comparative steel 4 is between 590 and 650 ° C. After hot rolling, it was pickled, annealed at 670 ° C. for 18 hours, and subjected to characteristic investigation. Carbide size distribution with an average carbide particle size of 0.76 μm, a standard deviation of carbide particle size of 0.45 μm, a standard deviation of carbide particle size / an average particle size of carbide of 0.592 is an example within the scope of the present invention. It has excellent stretch flangeability with a hole expansion ratio of 68%. Steel No. In No. 2, the electromagnetic stirring and casting speed during continuous casting was 1.5 times higher than the normal one. Hot rolling finishing temperature: 800 ° C., coiling temperature: 600 ° C. Water was poured in consideration of transformation heat generation so that the pearlite transformation was completed within 10 ° C. Carbide size distribution with an average particle size of carbide of this steel of 0.56 μm, standard deviation of carbide particle size of 0.32 μm, standard deviation of carbide particle size / average average particle size of carbide of 0.571 It is an example. It has excellent stretch flangeability with a hole expansion ratio of 75%. Steel No. No. 3 was subjected to 5% reduction in an unsolidified region during continuous casting, cast to make a slab, and subjected to hot rolling. Hot-rolling finishing temperature: 815 ° C., coiling temperature: 580 ° C., and pearlite temperature transformation temperature was poured and cooled so as to be 590-600 ° C. Carbide size distribution with an average particle size of carbide of 0.45 μm, standard deviation of carbide particle size of 0.28 μm, standard deviation of carbide particle size / carbide average particle size of 0.622 is an example within the scope of the present invention. . It has excellent stretch flangeability with a hole expansion ratio of 78%. Moreover, steel No. which is an Example within the scope of the present invention. Nos. 1, 2 and 3 show that cracks are not observed in the upsetting test after hole expansion, and all have excellent stretch flangeability.
鋼No.4は炭化物の平均粒径が0.82μm、炭化物粒径の標準偏差が0.90μm、炭化物粒径の標準偏差/炭化物平均粒径が1.10と炭化物平均粒径は本発明範囲内であるが、炭化物粒径のバラツキが大きく本発明範囲から外れた比較例である。この鋼は穴広げ率が35%と本発明の実施例に比べて低く、穴広げ試験後の据え込み試験でもクラックが生じ、伸びフランジ性が劣ることが分かる。鋼No.5は炭化物平均粒径が0.56μm、炭化物粒径の標準偏差が0.80μm、炭化物粒径の標準偏差/炭化物平均粒径が1.429と炭化物粒径の標準偏差が本発明範囲から外れた比較例である。穴広げ率が41%と低く、穴広げ後の据え込み試験でクラックが観察された。鋼No.6は炭化物平均粒径が1.25μm、炭化物粒径の標準偏差が0.80μm、炭化物粒径の標準偏差/炭化物平均粒径が0.64で、炭化物平均粒径が本発明範囲から外れた比較例である。この鋼板の穴広げ率は42%で、本発明範囲内の実施例に比較すると穴広げ率が劣ることが分かる。このように、鋼成分が同一であっても、炭化物平均粒径、炭化物粒径の標準偏差/炭化物平均粒径のいずれかが本発明範囲から外れると優れた伸びフランジ性を有する鋼板を提供できないことが分かる。 Steel No. No. 4 has an average particle size of carbide of 0.82 μm, a standard deviation of carbide particle size of 0.90 μm, a standard deviation of carbide particle size / an average particle size of carbide of 1.10, and the average particle size of carbide is within the scope of the present invention. However, this is a comparative example having a large variation in carbide particle size and deviating from the scope of the present invention. This steel has a hole expansion rate of 35%, which is lower than that of the example of the present invention, and it can be seen that cracks occur in the upsetting test after the hole expansion test and the stretch flangeability is inferior. Steel No. No. 5 has an average carbide particle size of 0.56 μm, a standard deviation of carbide particle size of 0.80 μm, a standard deviation of carbide particle size / an average particle size of carbide of 1.429, and the standard deviation of carbide particle size is out of the scope of the present invention. It is a comparative example. The hole expansion rate was as low as 41%, and cracks were observed in the upsetting test after the hole expansion. Steel No. No. 6 has a carbide average particle size of 1.25 μm, a carbide particle size standard deviation of 0.80 μm, a carbide particle size standard deviation / carbide average particle size of 0.64, and the carbide average particle size is outside the scope of the present invention. It is a comparative example. The hole expansion rate of this steel sheet is 42%, and it can be seen that the hole expansion rate is inferior compared to the examples within the scope of the present invention. Thus, even if the steel components are the same, it is not possible to provide a steel sheet having excellent stretch flangeability when either the carbide average particle diameter, the standard deviation of carbide particle diameter / the average particle diameter of carbide is outside the scope of the present invention. I understand that.
質量%で、C:0.28%、Si:0.15%、Mn:0.58%、Cr0.30%、S:0.002%、Ti:0.18%、B:0.0015%、N:0.0038%の組成の鋼を転炉で溶製し、連続鋳造でスラブを造った。連続鋳造時に、一部の鋳造時に未凝固域圧下、電磁攪拌、鋳造速度を通常のものより、1.5倍に速めて鋳造した。このスラブを1240℃に加熱し、熱間圧延を行った。熱延仕上温度は790〜880℃、巻取り温度は450〜680℃の範囲であった。この熱延鋼板を酸洗後に冷間圧延率が25〜65%の冷間圧延後に、615〜705℃で14〜96時間の箱焼鈍を行ない、板厚2.0mmの鋼板を製造した。これらの鋼板から、サンプルを採取し、炭化物の平均粒径および炭化物粒径の標準偏差、硬さを測定した。同時に、穴広げ試験と穴広げ試験後に据え込み試験を行った。炭化物粒径は鋼板の庄延方向に平行な断面を研磨し、ピクリン酸溶液で腐食し、走査型電子顕微鏡観察で個々の炭化物面積を測定し、これが真円と仮定してその径を求めた。炭化物の測定は炭化物個数が2000個以上になるように測定視野数を調整した。測定した炭化物粒径の標準偏差を求めた。穴広げ試験は、150mm角の鋼板の中央部にクリアランス12%にして、10mmφ(d0)の穴を打ち抜いた後、その穴部に、60度の円錐ポンチで押し上げる方法で行い、穴周囲に板厚を貫通する亀裂が発生した時点の穴径(d)を測定し、次式で定義される穴広げ率λ(%)を求めた。
λ=(d−d0)/d0×100
据え込み試験は100角の中心部にクリアランス12%にして、15mmφの穴を打ち抜き、径が20mmφの平底ポンチで穴径がポンチ径と同一になるまで押し上げた。これを圧縮試験機で穴広げの頭部を圧縮し、高さが50%になった時点で頭部にクラックが生じるかどうかで評価したクラックが観察されないものを○、クラックがわずかに観察されるものを△、クラックが存在するものを×の評点とした。これの測定結果を表2に記載した。
In mass%, C: 0.28%, Si: 0.15%, Mn: 0.58%, Cr 0.30%, S: 0.002%, Ti: 0.18%, B: 0.0015% , N: A steel having a composition of 0.0038% was melted in a converter and a slab was formed by continuous casting. At the time of continuous casting, casting was carried out by lowering the unsolidified zone pressure during part casting, electromagnetic stirring, and casting speed 1.5 times higher than usual. This slab was heated to 1240 ° C. and hot rolled. The hot rolling finishing temperature was 790 to 880 ° C, and the winding temperature was 450 to 680 ° C. After this hot-rolled steel sheet was pickled and cold-rolled at a cold rolling rate of 25 to 65%, box annealing was performed at 615 to 705 ° C. for 14 to 96 hours to produce a steel sheet having a thickness of 2.0 mm. Samples were taken from these steel plates, and the average particle size of carbide, the standard deviation of carbide particle size, and the hardness were measured. At the same time, the upsetting test was conducted after the hole expansion test and the hole expansion test. Carbide grain size was obtained by polishing a cross section parallel to the spreading direction of the steel sheet, corroding with a picric acid solution, and measuring each carbide area by observation with a scanning electron microscope, and calculating the diameter assuming that this was a perfect circle. . In the measurement of carbide, the number of fields of view was adjusted so that the number of carbides was 2000 or more. The standard deviation of the measured carbide particle size was determined. The hole expansion test was performed by punching out a 10mmφ (d0) hole at the center of a 150mm square steel plate with a clearance of 12%, and then pushing it up with a 60 ° conical punch. The hole diameter (d) at the time when a crack penetrating the thickness occurred was measured, and the hole expansion ratio λ (%) defined by the following equation was obtained.
λ = (d−d0) / d0 × 100
In the upsetting test, a hole of 15 mmφ was punched at a clearance of 12% at the center of 100 corners, and the hole diameter was pushed up with a flat bottom punch with a diameter of 20 mmφ until the hole diameter became the same as the punch diameter. The head of the hole expansion was compressed with a compression tester. When the height reached 50%, the crack was evaluated as to whether or not a crack would occur in the head. Those with cracks were rated as △, and those with cracks were rated as x. The measurement results are shown in Table 2.
鋼No.7は、熱延仕上温度:800℃で、パーライト変態を600〜610℃となるように注水して冷却し、590℃で巻取り、酸洗後、冷延率:40%の冷延、660℃×24時間加熱保持の焼鈍で製造した。炭化物平均粒径が0.56μm、炭化物粒径の標準偏差が0.45μm、炭化物粒径の標準偏差/炭化物平均粒径が0.804と炭化物サイズ分布ともに、本発明範囲内の実施例である。穴広げ率が83%と優れた伸びフランジ性を有する。鋼No.8は、連続鋳造時に未凝固域圧下を施してスラブを造った。熱延は、仕上熱延域を潤滑圧延し、仕上温度:815℃で、パーライト変態を560〜570℃の範囲で進行するように熱延後の冷却を制御し、巻取り温度:550℃であった。焼鈍は650℃×24時間で行った。炭化物の平均粒径が0.35μm、炭化物粒径の標準偏差が0・25μm、炭化物粒径の標準偏差/炭化物平均粒径が0.714と炭化物サイズ分布ともに本発明範囲内の実施例である。穴広げ率が79%と優れた値を有する。また、穴広げ後の据え込み試験でも、クラックが観察されなく、優れた伸びフランジ性を有することが分かる。鋼No.9は熱延後の冷却中のパーライト変態温度域を高め、620〜630℃に制御した熱延を行った。他の条件はNo.8と同じである。炭化物の平均粒径が0.78μm、炭化物粒径の標準偏差が0.45μm、炭化物粒径の標準偏差/炭化物平均粒径が0.577と炭化物サイズ分布ともに本発明範囲内の実施例である。穴広げ率が77%と優れた値を有する。また、穴広げ後の据え込み試験でも、クラックが観察されなく、優れた伸びフランジ性を有することが分かる。 Steel No. No. 7 is hot rolling finishing temperature: 800 ° C., pearlite transformation is poured and cooled so as to be 600 to 610 ° C., wound at 590 ° C., pickled, cold rolling rate: 40% cold rolling, 660 It was manufactured by annealing with heating and holding for 24 hours. The carbide size distribution is 0.56 μm, the standard deviation of carbide particle size is 0.45 μm, the standard deviation of carbide particle size / carbide average particle size is 0.804, and both carbide size distributions are examples within the scope of the present invention. . It has excellent stretch flangeability with a hole expansion ratio of 83%. Steel No. In No. 8, a slab was formed by applying unsolidified zone reduction during continuous casting. In hot rolling, the hot rolling zone is lubricated and rolled, the cooling after hot rolling is controlled so that the pearlite transformation proceeds in the range of 560 to 570 ° C. at a finishing temperature of 815 ° C., and the winding temperature is 550 ° C. there were. Annealing was performed at 650 ° C. for 24 hours. The average particle size of carbide is 0.35 μm, the standard deviation of carbide particle size is 0.25 μm, the standard deviation of carbide particle size / carbide average particle size is 0.714, and both carbide size distributions are examples within the scope of the present invention. . The hole expansion ratio has an excellent value of 79%. In addition, in the upsetting test after the hole expansion, it is understood that no cracks are observed and that the film has excellent stretch flangeability. Steel No. No. 9 raised the pearlite transformation temperature range during cooling after hot rolling, and performed hot rolling controlled at 620 to 630 ° C. Other conditions are No. Same as 8. The average particle size of the carbide is 0.78 μm, the standard deviation of the carbide particle size is 0.45 μm, the standard deviation of the carbide particle size / the average particle size of the carbide is 0.577, and both the carbide size distributions are examples within the scope of the present invention. . The hole expansion rate has an excellent value of 77%. In addition, in the upsetting test after the hole expansion, it is understood that no cracks are observed and that the film has excellent stretch flangeability.
鋼No.10は炭化物の平均粒径が0.78μm、炭化物粒径の標準偏差が0.91μm、炭化物粒径の標準偏差/炭化物平均粒径が1.167と炭化物平均粒径は鋼No.9と同じであるが、炭化物のバラツキが大きい。この鋼板の穴広げ率は、52%と同じ炭化物サイズの鋼No.9に比べて大きく劣化している。また、穴広げ後の据え込み試験でも、クラックが僅かに観察され、本発明範囲内の鋼に比較して伸びフランジ性が劣ることが分かる。鋼No.11は炭化物平均粒径が1.30μm、炭化物の標準偏差/炭化物平均粒径が0.754で、炭化物平均粒径が本発明範囲から外れた比較例である。この鋼板の硬さはHRB:75と他の鋼より軟質であるにもかかわらず、穴広げ率は43%と低く、穴広げ後の据え込み試験でもクラックが観察され、伸びフランジ性が本発明実施例に比較して劣る。鋼No.12は、炭化物平均粒径が1.20μm、炭化物粒径の標準偏差/炭化物平均粒径が1.083と炭化物のサイズ、分布ともに本発明範囲から外れた比較例である。この鋼板の穴広げ率は35%と本発明実施例に比べ、伸びフランジ性が劣る。冷延高炭素鋼板でも、炭化物の平均粒径とそのバラツキを共に、本発明範囲内に制御することで初めて優れた伸びフランジ性を有する鋼板が提供できることが分かる。 Steel No. No. 10 has an average carbide particle size of 0.78 μm, a standard deviation of carbide particle size of 0.91 μm, a standard deviation of carbide particle size / an average particle size of carbide of 1.167, and an average carbide particle size of Steel No. Same as 9, but with large variations in carbides. The hole expansion rate of this steel plate is the same as that of steel No. Compared to 9, it is greatly deteriorated. Further, in the upsetting test after the hole expansion, a slight crack is observed, and it can be seen that the stretch flangeability is inferior as compared with the steel within the range of the present invention. Steel No. 11 is a comparative example in which the carbide average particle size is 1.30 μm, the standard deviation of carbide / carbide average particle size is 0.754, and the carbide average particle size is out of the scope of the present invention. Although the hardness of this steel plate is HRB: 75, which is softer than other steels, the hole expansion rate is as low as 43%, cracks are observed in the upsetting test after hole expansion, and the stretch flangeability is the present invention. It is inferior compared with an Example. Steel No. No. 12 is a comparative example in which the carbide average particle size is 1.20 μm, the standard deviation of carbide particle size / carbide average particle size is 1.083, and the carbide size and distribution are both out of the scope of the present invention. The steel sheet has a hole expansion ratio of 35%, which is inferior in stretch flangeability compared to the embodiment of the present invention. It can be seen that even a cold-rolled high carbon steel sheet can provide a steel sheet having excellent stretch flangeability for the first time by controlling both the average grain size of carbide and its variation within the scope of the present invention.
表3に記載の組成の鋼を転炉で溶製し、連続鋳造でスラブを造った。連続鋳造時に、一部の鋳造時に電磁攪拌、鋳造速度を通常のものより、1.5倍まで速めて鋳造した。このスラブを1240℃に加熱し、熱間圧延を行った。熱延仕上温度は790〜880℃、巻取り温度は450〜680℃の範囲であった。この熱延鋼板を酸洗後に615〜710℃で14〜96時間の箱焼鈍を施し、4.0mmの鋼板を製造した。また酸洗した鋼板を冷間圧延率が50%の冷間圧延後に、615〜705℃で14〜96時間の箱焼鈍を行った。板厚2.0mmの鋼板を製造した。これらの鋼板から、サンプルを採取し、炭化物の平均粒径および炭化物粒径の標準偏差、硬さを測定した。同時に、穴広げ試験と穴広げ試験後に据え込み試験を行った。炭化物粒径は鋼板の圧延方向に平行な断面を研磨し、ピクリン酸溶液で腐食し、走査型電子顕微鏡観察で個々の炭化物面積を測定し、これが真円と仮定してその径を求めた。炭化物の測定は炭化物個数が2000個以上になるように測定視野数を調整した。測定した炭化物粒径の標準偏差を求めた。穴広げ試験は、150mm角の鋼板の中央部にクリアランス12%にして、10mmφ(d0)の穴を打ち抜いた後、その穴部に、60度の円錐ポンチで押し上げる方法で行い、穴周囲に板厚を貫通する亀裂が発生した時点の穴径(d)を測定し、次式で定義される穴広げ率λ(%)を求めた。
λ=(d−d0)/d0×100
また、これらの鋼板を850℃に加熱後、10分保持後に60℃の油中に焼き入れ、焼き入れビッカース硬さを測定し、焼き入れ硬さがHv:450以上のものは焼き戻しにより、Hv:450に調整し、JIS4号衝撃サブサイズ(4mm厚まま)の試験片を作成し、20℃の衝撃値を測定した。酸洗板を焼鈍した鋼板の特性を表4に、冷延、焼鈍した鋼板の測定結果を表5に記載した。
Steels having the compositions shown in Table 3 were melted in a converter and slabs were made by continuous casting. During continuous casting, casting was carried out with electromagnetic stirring and casting speed increased to 1.5 times that of a normal one during partial casting. This slab was heated to 1240 ° C. and hot rolled. The hot rolling finishing temperature was 790 to 880 ° C, and the winding temperature was 450 to 680 ° C. This hot-rolled steel sheet was pickled and then subjected to box annealing at 615 to 710 ° C. for 14 to 96 hours to produce a 4.0 mm steel sheet. The pickled steel sheet was subjected to box annealing at 615 to 705 ° C. for 14 to 96 hours after cold rolling with a cold rolling rate of 50%. A steel plate having a thickness of 2.0 mm was manufactured. Samples were taken from these steel plates, and the average particle size of carbide, the standard deviation of carbide particle size, and the hardness were measured. At the same time, the upsetting test was conducted after the hole expansion test and the hole expansion test. The carbide particle size was obtained by polishing a cross section parallel to the rolling direction of the steel sheet, corroding with a picric acid solution, measuring each carbide area by observation with a scanning electron microscope, and determining the diameter assuming that this was a perfect circle. In the measurement of carbide, the number of fields of view was adjusted so that the number of carbides was 2000 or more. The standard deviation of the measured carbide particle size was determined. The hole expansion test was performed by punching out a 10mmφ (d0) hole at the center of a 150mm square steel plate with a clearance of 12%, and then pushing it up with a 60 ° conical punch. The hole diameter (d) at the time when a crack penetrating the thickness occurred was measured, and the hole expansion ratio λ (%) defined by the following equation was obtained.
λ = (d−d0) / d0 × 100
In addition, after heating these steel plates to 850 ° C., holding them for 10 minutes, quenching them in oil at 60 ° C., measuring the quenching Vickers hardness, and quenching hardness of Hv: 450 or more by tempering, The test piece was adjusted to Hv: 450, a JIS No. 4 impact subsize (thickness of 4 mm), and the impact value at 20 ° C. was measured. Table 4 shows the properties of the steel plates annealed with the pickled plates, and Table 5 shows the measurement results of the cold-rolled and annealed steel plates.
熱延板を酸洗後に焼鈍した鋼板の特性について説明する。鋼A−1は、成分的にも炭化物平均粒径、炭化物粒径の標準偏差/炭化物平均粒径の比が共に本発明範囲内の実施例である。この鋼板は、連続鋳造時に偏析を少なくする条件の電磁攪拌を負荷してスラブを造り、熱延の仕上圧延スタンドの後段で圧下率を通常の圧延に比べ30%増加させて、仕上温度:800℃で行った。熱延後の冷却は、パーライト変態を600〜610℃間で進行するように注水し、巻取り温度:580℃で行った。焼鈍は670℃×36時間である。穴広げ率が78%と高く、優れた伸びフランジ性を有する。また、焼き入れ硬さもHv:600と高く、焼き戻し後の衝撃値も高く、優れた伸びフランジ性を有するだけでなく、優れた焼き入れ性、靭性を有することがわかる。鋼B−1は、B量が本発明範囲から外れた比較例である。伸びフランジ性は良好であるが、焼き入れ硬さがHv:330と不十分で、焼き入れ性と伸びフランジ性を両立できない。鋼C−1はC量が本発明範囲の下限から外れた実施例である。この鋼も焼き入れ硬さがHv:400と、焼き入れ性が不十分である。D−1はTi量が本発明範囲から外れた比較例である。この鋼も焼き入れ硬さがHv:330と低く、焼き入れ性が不十分である。鋼E−1はC量が0.55%で本発明範囲から外れた比較例である。焼き入れ硬さは高く、焼き入れ性は十分であるが、焼き戻し後の靭性が本発明範囲の実施例に比較して劣り、伸びフランジ性も悪い。 The characteristics of the steel sheet obtained by annealing the hot-rolled sheet after pickling will be described. Steel A-1 is an example in which the carbide average particle diameter and the ratio of carbide particle diameter standard deviation / carbide average particle diameter are both within the scope of the present invention. This steel plate is made with a magnetic slab under conditions that reduce segregation during continuous casting, and a slab is made after the hot rolling finish rolling stand, and the rolling reduction is increased by 30% compared to normal rolling, and the finishing temperature is 800. Performed at ° C. Cooling after hot rolling was performed at a winding temperature of 580 ° C. by pouring water so that the pearlite transformation proceeded between 600 to 610 ° C. Annealing is 670 ° C. × 36 hours. The hole expansion ratio is as high as 78% and has excellent stretch flangeability. Moreover, it can be seen that the quenching hardness is as high as Hv: 600, the impact value after tempering is high, and not only has excellent stretch flangeability but also excellent quenchability and toughness. Steel B-1 is a comparative example in which the amount of B deviates from the scope of the present invention. Although the stretch flangeability is good, the quenching hardness is insufficient as Hv: 330, and it is impossible to achieve both quenchability and stretch flangeability. Steel C-1 is an example in which the amount of C deviates from the lower limit of the range of the present invention. This steel also has a quenching hardness of Hv: 400, which is insufficient in hardenability. D-1 is a comparative example in which the Ti content deviates from the scope of the present invention. This steel also has a quenching hardness as low as Hv: 330, and the quenchability is insufficient. Steel E-1 is a comparative example having a C content of 0.55% and deviating from the scope of the present invention. Although the quenching hardness is high and the quenchability is sufficient, the toughness after tempering is inferior to that of the examples within the scope of the present invention, and the stretch flangeability is also poor.
表5に記載したA−2〜E−2は、冷延焼鈍した鋼板の特性を示す。A−2は、A−1を50%の冷間圧延率で冷間圧延し、650℃×18時間の焼鈍し、0.5%の調質圧延して製造した鋼板である。この鋼は、成分、炭化物粒径、炭化物粒径の標準偏差/炭化物平均粒径共に本発明範囲の実施例で、優れた穴広げ率と焼き入れ硬さを有するが、成分的にB量が本発明範囲から外れたB−2、C量が外れたC−2、Ti量が外れたD−2は共に焼き入れ硬さが不十分で機械構造部品に適用できないことがわかる。一方、炭化物粒径、炭化物粒径の標準偏差/炭化物平均粒径が本発明範囲内でも、C量が多すぎるE−2は伸びフランジ性が不十分であることが分かる。 A-2 to E-2 shown in Table 5 show the properties of the cold-rolled steel sheet. A-2 is a steel sheet produced by cold rolling A-1 at a cold rolling rate of 50%, annealing at 650 ° C. for 18 hours, and temper rolling at 0.5%. This steel is an example within the scope of the present invention in terms of components, carbide particle size, standard deviation of carbide particle size / carbide average particle size, and has an excellent hole expansion ratio and quenching hardness. It can be seen that B-2 deviating from the scope of the present invention, C-2 deviating from the amount of C, and D-2 deviating from the amount of Ti have insufficient quenching hardness and cannot be applied to machine structural parts. On the other hand, even when the carbide particle size and the standard deviation of carbide particle size / carbide average particle size are within the range of the present invention, it can be seen that E-2 having too much C content has insufficient stretch flangeability.
以上の実施例で詳述したように、鋼成分と炭化物の平均粒径だけでなく、そのバラツキをも制御することによりはじめて、伸びフランジ性が優れ、かつ、焼き入れ性と熱処理後の靭性が優れた高炭素鋼板の提供が可能となる。 As described in detail in the above examples, only by controlling not only the average particle diameter of steel components and carbides but also the variation thereof, the stretch flangeability is excellent, and the hardenability and toughness after heat treatment are excellent. An excellent high carbon steel sheet can be provided.
この発明は、伸びフランジ性の向上と焼き入れ性を両立するにあたり、単に炭化物の粒径を制御するだけでなく、鋼の成分を適正に調整し、炭化物のバラツキを制御することで、打ち抜き時の端面のボイド生成を抑制し、穴広げ加工におけるクラックの成長を遅らすことができる。この結果、極めて伸びフランジ性の優れた、しかも焼き入れ性が優れ、焼き入れ後の靭性が優れた高炭素鋼板の提供が可能となる。この高炭素鋼板を用いることにより、自動車の駆動系機械部品等の加工において加工度が高く取ることができ、製造工程を省略して低コストで部品等を製造することが可能となり、工業的に極めて有用な発明である。 In this invention, in order to achieve both the improvement of stretch flangeability and hardenability, not only simply controlling the particle size of carbide, but also adjusting the steel components appropriately and controlling the variation of carbide, It is possible to suppress the generation of voids on the end face of the metal and to delay the growth of cracks in the hole expanding process. As a result, it is possible to provide a high carbon steel sheet having extremely excellent stretch flangeability, excellent hardenability, and excellent toughness after quenching. By using this high-carbon steel sheet, it is possible to obtain a high degree of processing in processing of automobile drive system machine parts, etc., making it possible to manufacture parts etc. at low cost by omitting the manufacturing process. It is a very useful invention.
Claims (1)
C :0.22〜0.45%、
Si:1.0%以下、
Mn:1.5%以下、
P :0.03%以下、
S :0.03%以下、
Al:0.08%以下、
N :0.0080%以下、
Cr:0.01〜0.70%、
Ti:0.005〜0.050%、
B :0.0003〜0.0050%、
残部Feおよび不可避的不純物からなり、
炭化物の平均粒径が0.1〜1.0μmで、
炭化物粒径の標準偏差/炭化物の平均粒径の比が0.5以上1.0以下であることを特徴とする焼き入れ性と伸びフランジ性の優れた高炭素鋼板。 % By mass
C: 0.22-0.45 % ,
Si: 1.0% or less,
Mn: 1.5% or less,
P: 0.03% or less,
S: 0.03% or less,
Al: 0.08% or less,
N: 0.0080% or less,
Cr: 0.01-0.70 %
Ti: 0.005 to 0.050 % ,
B: 0.0003 to 0.0050 %,
The balance Fe and inevitable impurities ,
The average particle size of the carbide is 0.1 to 1.0 μm,
A high carbon steel sheet having excellent hardenability and stretch flangeability, wherein a ratio of standard deviation of carbide particle diameter / average particle diameter of carbide is 0.5 or more and 1.0 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004168060A JP4280202B2 (en) | 2004-06-07 | 2004-06-07 | High carbon steel plate with excellent hardenability and stretch flangeability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004168060A JP4280202B2 (en) | 2004-06-07 | 2004-06-07 | High carbon steel plate with excellent hardenability and stretch flangeability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005344197A JP2005344197A (en) | 2005-12-15 |
JP4280202B2 true JP4280202B2 (en) | 2009-06-17 |
Family
ID=35496841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004168060A Expired - Lifetime JP4280202B2 (en) | 2004-06-07 | 2004-06-07 | High carbon steel plate with excellent hardenability and stretch flangeability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4280202B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4964492B2 (en) * | 2006-04-26 | 2012-06-27 | 新日本製鐵株式会社 | Medium carbon steel sheet and method for producing the same |
JP5472531B2 (en) | 2011-04-27 | 2014-04-16 | 新日鐵住金株式会社 | Steel sheet for hot stamp member and manufacturing method thereof |
JP5594226B2 (en) | 2011-05-18 | 2014-09-24 | Jfeスチール株式会社 | High carbon steel sheet and method for producing the same |
JP5929233B2 (en) * | 2012-01-25 | 2016-06-01 | 新日鐵住金株式会社 | Steel plate for machine structural parts |
-
2004
- 2004-06-07 JP JP2004168060A patent/JP4280202B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005344197A (en) | 2005-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101050698B1 (en) | Ultra-thin high carbon hot rolled steel sheet and manufacturing method thereof | |
US7879163B2 (en) | Method for manufacturing a high carbon hot-rolled steel sheet | |
JP5609945B2 (en) | High-strength cold-rolled steel sheet and manufacturing method thereof | |
JP4650006B2 (en) | High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same | |
JP5126844B2 (en) | Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member | |
US20090223609A1 (en) | High-strength hot rolled steel plate and manufacturing method thereof | |
CN111406124B (en) | High-strength cold-rolled steel sheet and method for producing same | |
JP5862052B2 (en) | High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same | |
JP4600196B2 (en) | High carbon cold-rolled steel sheet with excellent workability and manufacturing method thereof | |
JP4696853B2 (en) | Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet | |
JP2009024226A (en) | High-strength thin steel sheet superior in stamped-hole expandability, and manufacturing method therefor | |
JP5811725B2 (en) | High-tensile cold-rolled steel sheet excellent in surface distortion resistance, bake hardenability and stretch flangeability, and method for producing the same | |
JP3901039B2 (en) | Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same | |
JP5501819B2 (en) | Cold-rolled steel sheet for nitriding with excellent nitriding characteristics and anti-recrystallization softening characteristics and method for producing the same | |
JP2016216809A (en) | Low carbon steel sheet excellent in cold moldability and toughness after heat treatment and manufacturing method therefor | |
JP2003013144A (en) | Method for manufacturing high-carbon cold-rolled steel sheet superior in stretch flange formability | |
JP6098537B2 (en) | High-strength cold-rolled steel sheet and manufacturing method thereof | |
JP4280202B2 (en) | High carbon steel plate with excellent hardenability and stretch flangeability | |
JP5860345B2 (en) | High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same | |
JP4319948B2 (en) | High carbon cold-rolled steel sheet with excellent stretch flangeability | |
JP6575733B1 (en) | High carbon cold-rolled steel sheet and method for producing the same | |
US11434555B2 (en) | Hot-rolled steel sheet | |
JP2005133199A (en) | High carbon cold rolled steel sheet, and method for manufacturing the same | |
JP4319940B2 (en) | High carbon steel plate with excellent workability, hardenability and toughness after heat treatment | |
JP7239072B1 (en) | High-strength hot-rolled steel sheet and method for producing high-strength hot-rolled steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081125 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20090106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090310 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090313 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4280202 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140319 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |