JP4319940B2 - High carbon steel plate with excellent workability, hardenability and toughness after heat treatment - Google Patents

High carbon steel plate with excellent workability, hardenability and toughness after heat treatment Download PDF

Info

Publication number
JP4319940B2
JP4319940B2 JP2004132109A JP2004132109A JP4319940B2 JP 4319940 B2 JP4319940 B2 JP 4319940B2 JP 2004132109 A JP2004132109 A JP 2004132109A JP 2004132109 A JP2004132109 A JP 2004132109A JP 4319940 B2 JP4319940 B2 JP 4319940B2
Authority
JP
Japan
Prior art keywords
hardenability
steel
amount
workability
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004132109A
Other languages
Japanese (ja)
Other versions
JP2005314727A (en
Inventor
良久 高田
志郎 佐柳
一行 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004132109A priority Critical patent/JP4319940B2/en
Publication of JP2005314727A publication Critical patent/JP2005314727A/en
Application granted granted Critical
Publication of JP4319940B2 publication Critical patent/JP4319940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、加工性と焼入れ性に優れ、かつ熱処理後の靭性の優れた高炭素鋼板に関する。   The present invention relates to a high carbon steel sheet having excellent workability and hardenability and excellent toughness after heat treatment.

自動車部品(ギヤ、ミッション)等に使用される高炭素鋼板は、打ち抜き、成型加工後に焼入れ、焼き戻し等の熱処理が施され、所定の強度に調整される。一般に、高炭素鋼板は打ち抜き加工や曲げ加工、軽い絞り加工、軽度の伸びフランジ加工が施されることもある。また、部品形状が複雑な場合は、いくつかの部品を溶接して製造される場合も多い。   High carbon steel sheets used for automobile parts (gears, missions) and the like are subjected to heat treatment such as quenching and tempering after punching and forming, and adjusted to a predetermined strength. Generally, a high carbon steel sheet may be subjected to punching, bending, light drawing, and mild stretch flange processing. In addition, when the part shape is complicated, it is often produced by welding several parts.

ところが近年、部品製造コストの低減を図るべく部品加工の工程省略、一体成型が進められているため、素材の高炭素鋼板にはより加工性の優れた特性が要求されている。
また、焼入れ、焼き戻し等の熱処理により強度を調質して用いられるため、優れた焼入れ性と共に機械構造部品として優れた靭性が要求されている。
However, in recent years, parts processing steps have been omitted and integrated molding has been promoted in order to reduce part manufacturing costs, and therefore, high-carbon steel sheets as raw materials are required to have characteristics with better workability.
In addition, since the strength is tempered by heat treatment such as quenching and tempering, excellent toughness is required as a mechanical structural component together with excellent hardenability.

加工性と焼入れ性、熱処理後の靭性の優れた高炭素鋼板を提供する技術に関しては、下記に示す特許文献1〜3においても開示されている。
特許文献1の技術は、Mn量を0.2〜0.50%、Si量を0.10%以下と低めることと球状化焼鈍を行なうことで加工性を高め、低Mn化による焼入れ性の低下をCr、B添加で補うものである。
しかし、この技術で製造した高炭素鋼板は、必ずしも優れた加工性と焼入れ性を有さない。特に、焼入れ性にバラツキが大きく安定した強度調整が出来なく、重要な構造部品には提供できない。
The technology for providing a high carbon steel sheet having excellent workability, hardenability and toughness after heat treatment is also disclosed in Patent Documents 1 to 3 shown below.
The technology of Patent Document 1 improves the workability by reducing the Mn amount to 0.2 to 0.50% and the Si amount to 0.10% or less and performing spheroidizing annealing, and the hardenability due to the low Mn reduction. The decrease is compensated by addition of Cr and B.
However, the high carbon steel sheet manufactured by this technique does not necessarily have excellent workability and hardenability. In particular, the hardenability varies greatly and stable strength adjustment cannot be performed, and it cannot be provided for important structural parts.

特許文献2の技術は、特許文献1とほぼ同じ技術思想で構成分を調整し、加工性を高めるため炭化物球状化率、炭化物粒径、フェライト粒径を特定したものであり、その手段として球状化焼鈍をAc1点以上の温度まで昇温後に徐冷する熱サイクルを採用したものである。
しかし、この技術で製造した鋼板は軟質化し、通常の引張り試験の伸びは高くなるが、加工方法によっては良好な加工性を示さない場合がある。また、この鋼板も焼入れ性にバラツキが大きく安定した強度調整が出来なく、重要な構造部品には提供できない。
The technique of Patent Document 2 is a technique in which the components are adjusted with substantially the same technical idea as Patent Document 1, and the carbide spheroidization ratio, carbide particle diameter, and ferrite particle diameter are specified in order to improve workability. A heat cycle in which the annealing is gradually cooled after the temperature is raised to a temperature higher than the Ac1 point is adopted.
However, although the steel plate manufactured by this technique becomes soft and the elongation of a normal tensile test becomes high, it may not show favorable workability depending on a processing method. In addition, this steel plate also has a large variation in hardenability and cannot be adjusted for stable strength, and cannot be provided for important structural parts.

特許文献3の技術は、BとP量の関係と炭化物粒径、球状化率を特定したものであるが、この技術を適用しても焼入れ性が不安定で、構造部品に適用することは出来ない。
このように従来技術で製造された鋼板は、優れた加工性と安定した焼入れ性を両立出来ないのが現状である。
特開平10−147816号公報 特開平11−256268号公報 特開平2000−248330号公報
The technology of Patent Document 3 specifies the relationship between the amount of B and P, the carbide particle size, and the spheroidization rate. However, even if this technology is applied, the hardenability is unstable, and it can be applied to structural parts. I can't.
Thus, the present situation is that the steel plate manufactured by the prior art cannot achieve both excellent workability and stable hardenability.
Japanese Patent Laid-Open No. 10-147816 JP 11-256268 A JP 2000-248330 A

本発明が解決すべく課題は、優れた加工性と安定した焼入れ性を有し、しかも熱処理後の靭性が良好な高炭素鋼板を提供することである。   The problem to be solved by the present invention is to provide a high carbon steel sheet having excellent workability and stable hardenability and having good toughness after heat treatment.

高炭素鋼板は、フェライトとパーライトの混合組織、あるいはフェライトとセメンタイトの混合組織である。パーライトは、フェライトとセメンタイトが層状に積層した組織で延性が乏しいため、加工性を必要とするときは球状化焼鈍し、フェライトと球状炭化物(セメンタイト)の混合組織として用いられる。この球状炭化物は硬質なため変形能はほとんどなく、炭化物の周りは歪が不連続となり、炭化物の周りにボイドが生じ、このボイドが連結して割れが生じる。
したがって、炭化物が少ないほど加工性が良好になるため、加工性の観点からはC量を低めることが有用である。
The high carbon steel sheet has a mixed structure of ferrite and pearlite or a mixed structure of ferrite and cementite. Pearlite is a structure in which ferrite and cementite are laminated in a layered form and has poor ductility. Therefore, when workability is required, pearlite is annealed and used as a mixed structure of ferrite and spherical carbide (cementite). Since this spherical carbide is hard, there is almost no deformability, strain is discontinuous around the carbide, voids are generated around the carbide, and the voids are connected to cause cracks.
Therefore, since the workability becomes better as the amount of carbide decreases, it is useful to reduce the amount of C from the viewpoint of workability.

しかし、Cは焼入れ性、焼入れ最高硬さに直接影響し、C量が低くなると焼入れ後の硬さが得られなくなるので、ある程度以上のC量が必要である。
低C化した鋼板の焼入れ性の低下を補う手段としてBを添加することが良く知られているが、単にBを添加しただけでは、従来技術で説明したように安定した焼入れ性を得ることができない。
そこで、本発明者等はB添加鋼の焼入れ性について種々の検討をした結果、Sn、Teを添加、P+S量を特定することにより安定した焼入れ性を得られ、しかも熱処理後の靭性が優れた鋼板を得られることを知見した。
However, C directly affects the hardenability and the maximum hardness of quenching, and if the amount of C decreases, the hardness after quenching cannot be obtained.
It is well known that B is added as a means to compensate for the decrease in hardenability of the steel sheet having a low C content, but simply adding B can provide stable hardenability as described in the prior art. Can not.
Therefore, as a result of various investigations on the hardenability of the B-added steel, the present inventors have added Sn and Te, can obtain a stable hardenability by specifying the amount of P + S, and have excellent toughness after heat treatment. It has been found that a steel plate can be obtained.

本発明は、上記知見に基づいて完成したものであり、その要旨は以下のとおりである。
(1)質量%で、
C :0.20〜0.45%、
Mn :0.40〜1.50%、
P :0.03%以下、
S :0.02%以下、
P+S:0.010%以上、
Cr :0.01〜0.80%、
Ti :0.005〜0.050%、
B :0.0003〜0.0050%
を含有し、残部Feおよび不可避的不純物からなり、さらに、
Sn :0.05%以下、
Te :0.05%以下を含有し、かつSn+Teの合計が0.005%以上含有し、フェライトとパーライトの混合組織またはフェライトとセメンタイトの混合組織からなることを特徴とする加工性と、焼入れ性、熱処理後の靭性の優れた高炭素鋼板。
The present invention has been completed based on the above findings, and the gist thereof is as follows.
(1) In mass%,
C: 0.20 to 0.45%,
Mn: 0.40 to 1.50%
P: 0.03% or less,
S: 0.02% or less,
P + S: 0.010% or more,
Cr: 0.01-0.80%
Ti: 0.005 to 0.050%,
B: 0.0003 to 0.0050%
Comprising the balance Fe and unavoidable impurities ,
Sn: 0.05% or less,
Te: 0.05% or less, and the total of Sn + Te is 0.005% or more , and it has a mixed structure of ferrite and pearlite or a mixed structure of ferrite and cementite, and hardenability High carbon steel sheet with excellent toughness after heat treatment .

以下、本発明の鋼組成の限定理由について説明する。なお、以下の説明、特に成分範囲において使用する%表示は、質量%を意味する。
Cは、焼入れ後硬さに直接影響し、C量が0.20%未満では焼入れ後、機械構造部品として十分な強度が得られない。
一方、0.45%を超えると炭化物量が多くなり、加工時に炭化物の周りにボイドが生成し、このボイドが連結する機構で破断が進捗して加工性を劣化させるため、Cの上限を0.45%に特定した。なお、好ましい範囲は、同様の理由から0.20〜0.35%である。
Hereinafter, the reasons for limiting the steel composition of the present invention will be described. In the following explanation, especially the% display used in the component range means mass%.
C directly affects the hardness after quenching. If the amount of C is less than 0.20%, sufficient strength as a machine structural component cannot be obtained after quenching.
On the other hand, if it exceeds 0.45%, the amount of carbide increases, voids are generated around the carbide during processing, and the mechanism of connecting these voids breaks down and deteriorates workability. .45% specified. In addition, a preferable range is 0.20 to 0.35% for the same reason.

Mnは、焼入れ性を高めることで知られているが、Mnの過剰添加は成分の偏析を助長し、炭化物の分散、粒径のバラツキを大きくして加工性を劣化させるため、焼入れ性と加工性のバランスを考慮して0.40〜1.5%の範囲に特定した。   Mn is known to improve hardenability. However, excessive addition of Mn promotes segregation of components, disperses carbides, and increases the dispersion in particle size to deteriorate workability. Considering the balance of sex, it was specified in the range of 0.40 to 1.5%.

Crは、球状化炭化物の粒径のバラツキを抑えて加工性を高める働きをするため、0.80%以内で添加する。0.80%を超える添加は、球状化のための焼鈍時間が長時間必要となるため製造コストを上昇させるだけでなく、鋼板が硬質となり加工性をも劣化させる。
一方、炭化物粒径のバラツキを抑える手段としては、凝固条件、熱延条件、焼鈍条件等、Cr添加以外に存在するため、Cr量の下限量を0.01%とした。
Cr is added within 0.80% in order to suppress the variation in the particle size of the spheroidized carbide and improve the workability. Addition exceeding 0.80% not only increases the manufacturing cost because annealing time for spheroidization is required for a long time, but also makes the steel plate hard and deteriorates workability.
On the other hand, as means for suppressing the variation in the carbide particle size, since there exist other than Cr addition such as solidification conditions, hot rolling conditions, annealing conditions, etc., the lower limit amount of Cr amount was set to 0.01%.

Bは、焼入れ性を高める元素として知られている。本発明でも、この目的で0.0050%を上限で添加する。0.0050%を超えると連続鋳造スラブに欠陥が生じ、製品に表面疵が多くなり、歩留まりが低下する。
一方、添加量が0.0003%未満になると焼入れ性を高める効果を発揮できないことから、下限を0.0003%に特定した。
B is known as an element that enhances hardenability. In the present invention, 0.0050% is added at the upper limit for this purpose. If it exceeds 0.0050%, defects occur in the continuously cast slab, the surface flaws increase in the product, and the yield decreases.
On the other hand, when the addition amount is less than 0.0003%, the effect of enhancing the hardenability cannot be exhibited, so the lower limit is specified as 0.0003%.

Tiは、Bの添加効果を顕現させるためと焼入れ後の靭性を高めるために添加するものであるが、0.050%を超える添加は、製造条件により靭性が劣化することがあるので、上限を0.050%に特定した。
一方、0.005%未満の添加量では上記したTiの効果を発揮できないことから、下限を0.005%に特定した。
Ti is added in order to manifest the effect of addition of B and to increase the toughness after quenching, but addition exceeding 0.050% may deteriorate the toughness depending on manufacturing conditions, so the upper limit is set. It was specified as 0.050%.
On the other hand, since the effect of Ti described above cannot be exhibited with an addition amount of less than 0.005%, the lower limit was specified to 0.005%.

Pは、焼入れ後の靭性を劣化させるので、0.03%以下にする必要がある。   Since P deteriorates the toughness after quenching, it is necessary to make it 0.03% or less.

Sは、MnS等の介在物となり加工性を劣化させるので、添加量を0.02%以下にする必要がある。
しかし、添加量があまり少なくなると、後で説明するが焼入れ性が安定しなくなるので、P+S量の合計を0.010%以上とする必要がある。
Since S becomes an inclusion such as MnS and degrades workability, the addition amount needs to be 0.02% or less.
However, if the amount added is too small, the hardenability becomes unstable as will be described later, so the total amount of P + S needs to be 0.010% or more.

Sn、Te量は、本発明の重要な構成要因である。Sn、Teが焼入れ性の安定化に有用であることを知見した実験事実について詳細に説明する。
C:0.22%、Si:0.15%、Mn:0.89%、Cr:0.22%、Ti:0.015〜0.021%、B:0.0012〜0.0015%、Al:0.030〜0.035%、P:0.014〜0.016%、S:0.003〜0.005%でSn、Teを種々に変えた鋼を真空溶解炉で溶製し、鋼塊を造り、1250℃で加熱、6.0mm厚みに熱延した。表面、裏面から0.5mm研削して5.0mm厚みの鋼板を造った。
The amount of Sn and Te is an important constituent factor of the present invention. The experimental facts that have found that Sn and Te are useful for stabilizing hardenability will be described in detail.
C: 0.22%, Si: 0.15%, Mn: 0.89%, Cr: 0.22%, Ti: 0.015-0.021%, B: 0.0012-0.0015%, Aluminum: 0.030 to 0.035%, P: 0.014 to 0.016%, S: 0.003 to 0.005%, steel with various Sn and Te changed in a vacuum melting furnace A steel ingot was made, heated at 1250 ° C., and hot rolled to a thickness of 6.0 mm. A steel plate having a thickness of 5.0 mm was made by grinding 0.5 mm from the front and back surfaces.

この鋼板を加熱雰囲気を変えて、690℃の温度で16〜126時間の焼鈍を行い、850℃×60分の保持後に60℃の油中に焼入れ、硬さをビッカス硬度計で測定した。硬さは板厚方向に10点測定し、その平均値を硬さとした。併せて、この鋼板からJIS4号衝撃試験片を作り−20℃の衝撃値を測定した。   The steel sheet was annealed at a temperature of 690 ° C. for 16 to 126 hours while changing the heating atmosphere. After holding at 850 ° C. × 60 minutes, the steel plate was quenched in oil at 60 ° C., and the hardness was measured with a Bickus hardness meter. The hardness was measured at 10 points in the thickness direction, and the average value was taken as the hardness. In addition, a JIS No. 4 impact test piece was made from this steel sheet, and the impact value at −20 ° C. was measured.

図1に合計添加量が0.07%以下についてTe+Sn量と焼入れ硬さの関係を示した。図から分かるようにTe+Snの合計添加量が0.005%以下になると焼入れ硬さの低いものが一部に見られ、安定した焼入れ硬さが得られない。
一方、Te+Snの合計添加量が0.01%以上になると、焼入れ硬さがHv550以上が安定して得られる。
FIG. 1 shows the relationship between the amount of Te + Sn and the quenching hardness when the total addition amount is 0.07% or less. As can be seen from the figure, when the total addition amount of Te + Sn is 0.005% or less, some of the quenching hardness is low, and stable quenching hardness cannot be obtained.
On the other hand, when the total addition amount of Te + Sn is 0.01% or more, a quenching hardness of Hv550 or more can be stably obtained.

図2は焼入れ硬さがHv:550以上のものについて、−20℃の衝撃値とSn、Te添加量の関係を示した図である。なお、Sn、Te添加量の少ないものは測定値を省略してある。
Sn、Te添加量が0.05%を超えると衝撃値が低下する事実から、Sn、Teの上限は、それぞれ0.05%以下が望ましい。
Sn+Teが0.005%未満になると安定した焼入れ性が得られなくなるため、Sn+Teの合計を0.005%以上に特定した。好ましい範囲は、同様の理由から、Sn+Teが0.010%以上である。
FIG. 2 is a graph showing the relationship between the impact value at −20 ° C. and the added amounts of Sn and Te for those having a quenching hardness of Hv: 550 or more. In addition, the measured value is abbreviate | omitted for the thing with little Sn and Te addition amount.
The upper limit of Sn and Te is preferably 0.05% or less from the fact that the impact value decreases when the added amount of Sn and Te exceeds 0.05%.
Since stable hardenability cannot be obtained when Sn + Te is less than 0.005%, the total of Sn + Te was specified to be 0.005% or more. A preferable range is 0.010% or more of Sn + Te for the same reason.

次に、P+S量が焼入れ性の安定に寄与することを知見した実験事実について詳細に説明する。
C:0.22%、Si:0.15%、Mn:0.89%、Cr:0.22%、Ti:0.015〜0.021%、B:0.0012〜0.0015%、Al:0.030〜0.035%、Sn+Te量が0.005〜0.015%の組成で、P、S量を種々に変えた鋼を真空溶解炉で溶製し、鋼塊を造り、1250℃で加熱、6.0mm厚みに熱延した。表面、裏面から0.5mm研削して5.0mm厚みの鋼板を造った。
Next, experimental facts that have found that the amount of P + S contributes to the stability of hardenability will be described in detail.
C: 0.22%, Si: 0.15%, Mn: 0.89%, Cr: 0.22%, Ti: 0.015-0.021%, B: 0.0012-0.0015%, Al: 0.030 to 0.035%, Sn + Te amount 0.005 to 0.015% of the composition, steel with various amounts of P and S were melted in a vacuum melting furnace to make a steel ingot, Heated at 1250 ° C. and hot rolled to a thickness of 6.0 mm. A steel plate having a thickness of 5.0 mm was made by grinding 0.5 mm from the front and back surfaces.

この鋼板を加熱雰囲気を変えて、690℃の温度で16〜126時間の焼鈍を行ない、850℃×60分の保持後に60℃の油中に焼入れ、硬さをビッカス硬度計で測定した。硬さは板厚方向に10点測定し、その平均値を硬さとした。   The steel sheet was annealed at a temperature of 690 ° C. for 16 to 126 hours while changing the heating atmosphere. After holding at 850 ° C. for 60 minutes, the steel plate was quenched in oil at 60 ° C., and the hardness was measured with a Bickus hardness meter. The hardness was measured at 10 points in the thickness direction, and the average value was taken as the hardness.

得られたP+S量と焼入れ硬さの関係を図3に示した。図から分かるようにP+S量が0.01%未満になると、焼入れ硬さがHv:500以下のものがあり安定した焼入れ性が得られない。この事実に基づきP+S量を0.010%以上に特定した。好ましくは、同様の理由からP+S量:0.015%以上である。
一方、P+S量があまり多くなると加工性が劣化するので、P+Sの上限は0.05%である。良好な加工性を得るためには0.035%以下とすることが好ましい。
The relationship between the obtained P + S amount and the quenching hardness is shown in FIG. As can be seen from the figure, when the P + S amount is less than 0.01%, there is a quenching hardness of Hv: 500 or less, and stable quenchability cannot be obtained. Based on this fact, the amount of P + S was specified to be 0.010% or more. Preferably, for the same reason, the amount of P + S is 0.015% or more.
On the other hand, if the amount of P + S becomes too large, the workability deteriorates, so the upper limit of P + S is 0.05%. In order to obtain good workability, the content is preferably 0.035% or less.

この発明は、加工性の向上と焼入れ性を両立するにあたり、特定に成分調整した鋼にTe、Snを添加し、P+S量を特定することで、優れた加工性と安定した焼入れ性を有し、しかも熱処理後の靭性が優れた鋼板を提供することが可能となる。
この高炭素鋼板を用いることにより、自動車の駆動系機械部品等の加工において加工度が高く取ることができ、製造工程を省略して低コストで部品等を製造することが可能となり、工業的に極めて有用な発明である。
The present invention has excellent workability and stable hardenability by adding Te and Sn to a steel whose composition is specifically adjusted to specify the amount of P + S in order to achieve both workability improvement and hardenability. In addition, it is possible to provide a steel sheet having excellent toughness after heat treatment.
By using this high-carbon steel sheet, it is possible to obtain a high degree of processing in processing of automobile drive system machine parts, etc., making it possible to manufacture parts etc. at low cost by omitting the manufacturing process. It is a very useful invention.

この発明の鋼は、質量%で、
C :0.20〜0.45%、
Mn :0.40〜1.50%、
P :0.03%以下、
S :0.02%以下、
P+S:0.010%以上、
Cr :0.05〜0.80%、
Ti :0.010〜0.050%、
B :0.0003〜0.0050%
を含有し、さらに、
Sn :0.05%以下、
Te :0.05%以下の1種または2種を含有し、かつSn+Teの合計が0.01%以上を含有すればよく、その他の化学成分については特に規定せず、Si、Al、Nなどの元素は通常範囲で含有させても本発明の特徴を損なわない。但し、好ましくは次のようにすると良い。
The steel of this invention is in mass%,
C: 0.20 to 0.45%,
Mn: 0.40 to 1.50%
P: 0.03% or less,
S: 0.02% or less,
P + S: 0.010% or more,
Cr: 0.05 to 0.80%
Ti: 0.010 to 0.050%
B: 0.0003 to 0.0050%
In addition,
Sn: 0.05% or less,
Te: One or two of 0.05% or less and the total of Sn + Te may be 0.01% or more, and other chemical components are not particularly defined, such as Si, Al, N, etc. Even if it is made to contain in the normal range, the characteristic of this invention is not impaired. However, the following is preferable.

Siは、鋼板を硬質にし、加工性を損なうと同時に鋼板の表面欠陥の原因となるので、1.0%以下とすることが好ましい。   Si hardens the steel sheet, impairs workability, and at the same time causes surface defects of the steel sheet, so it is preferably made 1.0% or less.

Alは、過剰に添加すると鋼板の表面欠陥の原因となりやすいので、0.08%以下の範囲で添加することが好ましい。   Since adding Al excessively tends to cause surface defects of the steel sheet, it is preferable to add Al in a range of 0.08% or less.

Nは、多量に添加するとAl、Ti、Bと窒化物をつくり焼入れ性を劣化させるので、0.0080%以下の範囲で添加することが好ましい。   When N is added in a large amount, Al, Ti, B and nitride are formed and the hardenability is deteriorated.

さらに、目的に応じて、通常添加される範囲でCu、Ni、Mo、Nb、V、Ca、Mg等の元素を添加してもよい。これらの元素は、本発明の特徴に特に影響を及ぼさない。また、製造過程で不可避的に混入する元素、不純物も本発明の特徴を損なわない。   Further, depending on the purpose, elements such as Cu, Ni, Mo, Nb, V, Ca, and Mg may be added within a range that is usually added. These elements do not particularly affect the characteristics of the present invention. Further, elements and impurities inevitably mixed in the manufacturing process do not impair the characteristics of the present invention.

上記のように成分調整された鋼は、連続鋳造、あるいは造塊−分塊圧延によりスラブとする。このスラブを熱間圧延するが、その際、スラブ加熱温度は、スケール生成による表面状況の劣化を避けるため1280℃以下とすることが好ましい。
熱間圧延の仕上温度は、加工性の観点からAr3点以上とすることが望ましい。巻取り温度については、加工性を良好とする炭化物のサイズおよびその分布に制御する観点から、500〜650℃とすることが望ましい。
なお、仕上圧延後の冷却は、炭化物のサイズ分布を均一にした方が加工性に有利に作用するので、パーライトが恒温変態するように注水冷却することが望ましい。
The steel whose components have been adjusted as described above is made into a slab by continuous casting or ingot-bundling rolling. The slab is hot-rolled. At this time, the slab heating temperature is preferably set to 1280 ° C. or lower in order to avoid deterioration of the surface condition due to scale generation.
The finishing temperature of hot rolling is desirably Ar3 or higher from the viewpoint of workability. About coiling temperature, it is desirable to set it as 500-650 degreeC from a viewpoint of controlling to the size and distribution of the carbide | carbonized_material which makes workability favorable.
In addition, since cooling after finish rolling has an advantageous effect on workability if the size distribution of the carbides is made uniform, it is desirable to cool by pouring water so that the pearlite undergoes isothermal transformation.

このようにして製造された熱延鋼帯は脱スケール後に球状化焼鈍、あるいは冷間圧延して、焼鈍、または球状化焼鈍後に冷間圧延し焼鈍して製品に供される。
熱延鋼帯を酸洗後に焼鈍する場合、冷間圧延後に焼鈍する場合の良好な加工性を確保するため、Ac1点温度以下の温度で行うことが望ましい。
The hot-rolled steel strip produced in this manner is subjected to spheroidizing annealing or cold rolling after descaling, cold rolling and annealing after annealing or spheroidizing annealing, and supplied to the product.
When annealing a hot-rolled steel strip after pickling, it is desirable to carry out at a temperature below the Ac1 point temperature in order to ensure good workability when annealing after cold rolling.

熱延鋼帯を酸洗後あるいは球状化焼鈍後に冷間圧延する場合の冷間圧延率は、良好な再結晶組織とし良好な加工性を得るため20%以上にすることが好ましい。
一方、冷間圧延率を高くとると、必然的に熱延鋼帯の厚みを厚くなるため、炭化物のバラツキが大きくなり易いので、70%以下の冷間圧延率を採用することが好ましい。
このようにして製造された鋼帯は必要に応じて、調質圧延して機械構造部品等の加工に供される。
本発明の高炭素鋼板は、熱延鋼板でも冷延鋼板でもよく、いずれの場合も本発明の特徴の効果を得ることができる。
When the hot-rolled steel strip is cold-rolled after pickling or spheroidizing annealing, the cold rolling rate is preferably 20% or more in order to obtain a good recrystallized structure and good workability.
On the other hand, when the cold rolling rate is high, the thickness of the hot-rolled steel strip is inevitably increased, and the dispersion of carbide tends to increase. Therefore, it is preferable to adopt a cold rolling rate of 70% or less.
The steel strip manufactured in this way is subjected to temper rolling as needed to process machine structural parts and the like.
The high-carbon steel sheet of the present invention may be a hot-rolled steel sheet or a cold-rolled steel sheet, and in any case, the effects of the features of the present invention can be obtained.

表1に示す組成の鋼を真空溶解炉で溶製し、90mm厚の鋼塊を造り、1250℃×60分の加熱保持後に、熱間圧延し、6.0mm厚の鋼板を作った。このときの熱延仕上温度は820〜860℃であった。
熱延仕上後に平均冷却速度が20℃/秒で580〜650℃まで冷却し、その温度で1時間保持後に炉冷した後、鋼板の表裏面から0.5mm研削し、5.0mm厚みとした。
なお、Si量は0.10〜0.21%、Al量は0.022〜0.035%、N量は0.0032〜0.0038%であった。
Steel having the composition shown in Table 1 was melted in a vacuum melting furnace to form a steel ingot having a thickness of 90 mm, heated and held at 1250 ° C. for 60 minutes, and then hot-rolled to produce a steel plate having a thickness of 6.0 mm. The hot rolling finishing temperature at this time was 820-860 degreeC.
After hot rolling finish, the average cooling rate is 580 to 650 ° C. at 20 ° C./second, and after holding at that temperature for 1 hour, furnace cooling is performed, and then 0.5 mm is ground from the front and back surfaces of the steel sheet to obtain a thickness of 5.0 mm. .
The Si amount was 0.10 to 0.21%, the Al amount was 0.022 to 0.035%, and the N amount was 0.0032 to 0.0038%.

この鋼板を680〜710℃で保持時間を18〜126時間に変え、球状化焼鈍を行なった。
この鋼板からJIS5号引張り試験片の平行部中央にr:10mmの5mm深さの切り込みを両側から入れた試験片を造り、引張り速度25mm/分で引張り、絞りを測定した。
なお、絞り率=(初期断面積−破断時断面積)/初期断面積×100とした。この方法を加工性の指標に採用したのは、ファインブランキング加工、FCF等の高炭素鋼板の加工性と良い相関が認められたためである。このC量では、絞りが65%以上あれば合格である。
The steel sheet was subjected to spheroidizing annealing at 680 to 710 ° C. and the holding time was changed to 18 to 126 hours.
From this steel plate, a test piece in which a notch of 5 mm depth of r: 10 mm was inserted from both sides in the center of the parallel part of a JIS No. 5 tensile test piece was drawn, and the drawing was measured at a pulling speed of 25 mm / min.
Note that the drawing ratio = (initial cross-sectional area−cross-sectional area at break) / initial cross-sectional area × 100. This method was adopted as an index of workability because a good correlation was found with the workability of high carbon steel sheets such as fine blanking and FCF. With this amount of C, if the aperture is 65% or more, it is acceptable.

また、各々の焼鈍条件毎に850℃×60分加熱保持後に60℃の油中に焼入れ、この断面硬さを厚さ方向に10点、ビッカス硬度計で測定した。
焼入れ性の評価は測定個数中に、硬さの平均値がHv:500以上の数と全数との比で評価した。
焼入れ硬度がHv:500以上のものについてJIS4号衝撃サブサイズ試験片を造り、0℃の衝撃値を測定した。同一鋼について全試験の平均値で衝撃値を靭性の評点とした。
Further, after each heating condition, after heating and holding at 850 ° C. × 60 minutes, it was quenched in oil at 60 ° C., and the cross-sectional hardness was measured at 10 points in the thickness direction with a Bickus hardness meter.
The hardenability was evaluated by the ratio of the number of Hv: 500 or more and the total number of hardness in the measured number.
A JIS No. 4 impact subsize test piece was prepared for a sample having a quenching hardness of Hv: 500 or more, and the impact value at 0 ° C. was measured. The impact value was taken as the toughness score with the average value of all tests for the same steel.

Figure 0004319940
Figure 0004319940

Figure 0004319940
Figure 0004319940

鋼1は、Te:0.015%、Sn:0.002%を添加したものである。引張り試験の絞りが71%と優れた加工性を有し、しかも焼入れ材すべてがHv:500以上を有し優れた焼入れ性を有する。また、焼入れ材の衝撃値も105Jと高い値を有する。   Steel 1 is one to which Te: 0.015% and Sn: 0.002% are added. The drawing of the tensile test has an excellent workability of 71%, and all the hardened materials have Hv: 500 or more and have an excellent hardenability. Further, the impact value of the quenching material has a high value of 105 J.

鋼2は、Te:0.001%、Sn:0.012%を添加した本発明範囲内の実施例である。この鋼板も加工性の指標である絞り値が66%と高く、焼入れ硬さも11個すべてがHv:500以上の硬さが得られる。   Steel 2 is an example within the scope of the present invention in which Te: 0.001% and Sn: 0.012% were added. This steel plate also has a high drawing value, which is an index of workability, of 66%, and a hardness of Hv: 500 or more is obtained for all 11 quenching hardnesses.

鋼3は、Ti量が0.001%と本発明のTi量の下限0.005%を満たしていない比較例である。この鋼板も焼入れ硬さがHv:500以下のものが半数以上存在し、安定した焼入れ性を有しないことが分かる。   Steel 3 is a comparative example in which the Ti amount is 0.001% and does not satisfy the lower limit of 0.005% of the Ti amount of the present invention. It can be seen that more than half of these steel sheets have a quenching hardness of Hv: 500 or less and do not have stable hardenability.

鋼4は、Te+Snの合計が0.003%と本発明のTe+Sn>0.005%を満足しない比較例である。この鋼板は焼入れ後の硬さがHv:500に満たないものがあり、安定した焼入れ性が有さない事が分かる。   Steel 4 is a comparative example in which the sum of Te + Sn is 0.003% and does not satisfy Te + Sn> 0.005% of the present invention. This steel sheet has a hardness after quenching of less than Hv: 500, indicating that it does not have stable hardenability.

鋼5は、B量が0.0001%でB量の下限以下の比較例である。この鋼板はすべての鋼板が焼入れ硬さHv:500以下で焼入れ性が悪いことがわかる。
鋼6は、P+Sが0.007%と本発明範囲外の比較例である。この鋼の焼入れ硬さはHv500未満の値となるものが見られ、焼入れ性が安定しないことが分かる。
Steel 5 is a comparative example in which the B amount is 0.0001% and is not more than the lower limit of the B amount. As for this steel plate, it turns out that all the steel plates have a quenching hardness Hv: 500 or less and the hardenability is poor.
Steel 6 is a comparative example outside the scope of the present invention, with P + S of 0.007%. The quenching hardness of this steel has a value of less than Hv500, indicating that the hardenability is not stable.

このように単にBを添加しただけでは安定した焼入れ性が得られなく、P+S量およびSe+Sn量を特定範囲に制御することにより初めて優れた焼入れ性と靭性が得られることが分かる。   Thus, it can be seen that stable hardenability cannot be obtained by simply adding B, and excellent hardenability and toughness can be obtained only by controlling the P + S amount and Se + Sn amount within a specific range.

表3に記載組成の鋼を転炉で溶製し、連続鋳造でスラブを造り、1250℃に加熱後、板厚4.0mmの熱延コイルを造った。熱延仕上温度は820〜840℃の範囲、巻取り温度は600〜625℃であった。
このコイルを酸洗後に690℃×16〜96時間の焼鈍を行ない、この鋼板からJIS5号引張り試験片の平行部中央にr=10のRを付けた試験を作成し、引張り試験後に絞りを求めた。この試験を行った理由は、高炭素鋼板の広い成型方法において加工性と良い相関があるからである。
この成分の鋼の場合、絞りが65%以上あれば合格であり、絞り値は、同一組成の鋼について焼鈍条件が変えたものの平均値で評価した。
Steels having the compositions shown in Table 3 were melted in a converter, slabs were made by continuous casting, and heated to 1250 ° C., and then hot rolled coils having a plate thickness of 4.0 mm were made. The hot rolling finishing temperature was in the range of 820 to 840 ° C, and the winding temperature was 600 to 625 ° C.
This coil was pickled and annealed at 690 ° C. for 16 to 96 hours, and a test with r = 10 at the center of the parallel part of a JIS No. 5 tensile test piece was created from this steel sheet, and the drawing was determined after the tensile test. It was. The reason for performing this test is that there is a good correlation with workability in a wide forming method of high-carbon steel sheets.
In the case of steel of this component, if the drawing was 65% or more, it was acceptable, and the drawing value was evaluated by the average value of the steels having the same composition but with different annealing conditions.

また、焼入れ条件を850〜880℃×45〜90分の加熱後に、60℃の油中に焼入れを行い、ビッカス硬さを測定した。なお、加熱保持時の雰囲気はCポテンシャル0.25で行なった。
焼入れ硬さがHv:500以上のものから4号衝撃サブ試験片を造り、0℃の衝撃値を測定した。衝撃値も焼鈍条件、焼入れ条件すべての平均値で評価した。これらの測定結果を図4に示す。
Further, after heating at 850 to 880 ° C. for 45 to 90 minutes as quenching conditions, quenching was performed in oil at 60 ° C., and the Bickus hardness was measured. The atmosphere during heating and holding was performed with a C potential of 0.25.
A No. 4 impact sub-test specimen was made from one having a quenching hardness of Hv: 500 or more, and the impact value at 0 ° C. was measured. The impact value was also evaluated by the average value of all annealing conditions and quenching conditions. The measurement results are shown in FIG.

Figure 0004319940
Figure 0004319940

Figure 0004319940
Figure 0004319940

鋼8は、本発明内の実施例である。絞りが78%と優れた加工性を有し、焼入れ硬さも18条件すべてHv:500以上、衝撃値も115Jで焼入れ性、靭性共に優れた特性を有することが分かる。   Steel 8 is an example within the present invention. It can be seen that the drawing has excellent workability of 78%, the quenching hardness is 18 conditions under all Hv: 500 or more, the impact value is 115 J, and the hardenability and toughness are excellent.

鋼9は、Te、Sn量が本発明範囲から外れた比較例で加工性、靭性は良好であるが、焼入れ硬さが19条件中、6条件でHv:500に満たなく、安定した焼入れ性を有しないことが分かる。   Steel 9 is a comparative example in which the amounts of Te and Sn deviate from the scope of the present invention, and the workability and toughness are good. However, the quenching hardness is less than Hv: 500 under 19 conditions and stable hardenability. It turns out that it does not have.

鋼10はTi量が、鋼11はB量が共に本発明範囲外の比較例である。共に、焼入れ硬さがHv:500に満たないものが多く焼入れ性の安定性に劣り、重要な機械構造部品等には適用できないことが分かる。   Steel 10 has a Ti content, and steel 11 has a B content both of which are out of the scope of the present invention. In both cases, the quenching hardness is less than Hv: 500, and the stability of the hardenability is inferior.

鋼12は、P+S量が0.006%と本発明範囲から外れた比較例である。この鋼も焼入れ性の安定性に欠点がある。
鋼13は、Snが0.065%と本発明の上限を外れた比較例である。この鋼板は、加工性の指標である絞りが70%以下、衝撃値も25Jと低く、加工性、靭性が劣ることが分かる。
Steel 12 is a comparative example having a P + S amount of 0.006%, which is out of the scope of the present invention. This steel also has a drawback in the stability of hardenability.
Steel 13 is a comparative example in which Sn is 0.065%, which is outside the upper limit of the present invention. It can be seen that this steel sheet has poor workability and toughness, with the drawing being an index of workability being 70% or less and the impact value being as low as 25J.

このように、本発明のすべての条件を満足することによって初めて優れた加工性と安定した焼入れ性、焼入れ後の靭性の優れた鋼板が提供可能となることが分かる。   Thus, it can be seen that a steel sheet having excellent workability, stable hardenability, and toughness after quenching can be provided only when all the conditions of the present invention are satisfied.

表3に記載の組成の鋼を転炉で溶製し、連続鋳造でスラブを造った。このスラブを1250℃に加熱後に、板厚6.0mmの熱延コイルとし、酸洗後に、球状化焼鈍後、あるいは直接に板厚4.0mmまで冷間圧延し、680℃×12〜96時間の焼鈍を行なった。
この鋼板から実施例2と同じ方法で加工性、焼入れ性、焼入れ後の靭性を調査した。子番号2は熱延板を直接に冷延、焼鈍したもの、子番号3は熱延板を球状化焼鈍後に冷延、焼鈍したものである。
Steels having the compositions shown in Table 3 were melted in a converter and slabs were made by continuous casting. This slab is heated to 1250 ° C. to form a hot rolled coil having a thickness of 6.0 mm, pickled, spheroidized, or directly cold-rolled to a thickness of 4.0 mm, 680 ° C. × 12 to 96 hours. Annealing was performed.
From this steel sheet, workability, hardenability, and toughness after quenching were investigated in the same manner as in Example 2. The child number 2 is obtained by directly cold-rolling and annealing a hot-rolled plate, and the child number 3 is obtained by cold-rolling and annealing the hot-rolled plate after spheroidizing annealing.

Figure 0004319940
Figure 0004319940

鋼8・2は、本発明範囲内実施例で絞りが72%と良好な加工性を有し、焼入れ性も18サンプルすべてがHv:500以上の硬さが得られ、安定した焼入れ性を有することが分かる。また、焼入れ材の衝撃値も110Jと優れた靭性を有することが分かる。
鋼8・3は、球状化焼鈍材を冷延、焼鈍した本発明内の実施例である。この鋼も優れた加工性と、安定した良好な焼入れ性、焼入れ後も優れた靭性を有することが分かる。
Steels 8 and 2 have good workability with a drawing of 72% in Examples within the scope of the present invention, and all 18 samples have a hardness of Hv: 500 or more, and have a stable hardenability. I understand that. It can also be seen that the impact value of the quenched material has an excellent toughness of 110 J.
Steel 8.3 is an example within the present invention in which a spheroidized annealed material was cold-rolled and annealed. It can be seen that this steel also has excellent workability, stable and good hardenability, and excellent toughness after quenching.

鋼9・2、9・3は、Sn、Te添加量が本発明範囲から外れた比較例である。Sn、Te添加が本発明範囲を外れると焼入れ性が安定しなく、Hv:500未満の焼入れ硬さ約4割存在する。   Steels 9 and 2 and 9 and 3 are comparative examples in which the added amounts of Sn and Te are out of the scope of the present invention. When the addition of Sn and Te is outside the range of the present invention, the hardenability is not stable, and there is about 40% of the quenching hardness with Hv: less than 500.

鋼10・2、10・3は、Ti量が本発明範囲から外れた比較例である。この鋼も焼きいれ硬さがHv:500に満たないものが多く、焼入れ性が不安定であることが分かる。
鋼11・2、11・3は、B量が本発明範囲から外れた比較例であるが、この鋼は焼入れ硬さがHv:500以上のものが無く、焼入れ性が悪い。
Steels 10 · 2, 10 · 3 are comparative examples in which the amount of Ti deviates from the scope of the present invention. It can be seen that many of these steels are hardened and have a hardness less than Hv: 500, and the hardenability is unstable.
Steels 11 and 2 and 11 and 3 are comparative examples in which the amount of B deviates from the scope of the present invention, but this steel has no quenching hardness of Hv: 500 or more and has poor hardenability.

鋼12・2、12・3は、P+S量が本発明範囲から外れた比較例である。この鋼も焼入れ性が安定しなく、焼入れ硬さがHv:500以下のものが4分の1程度存在する。
鋼13・2、13・3は、Sn量が本発明の上限に外れた比較例である。この鋼は、焼入れ硬さは安定してHv:500以上が得られるが、加工性の指標である絞りが低く、焼入れ後の衝撃値が低く、良好な加工性、優れた靭性を得る目的に到達しない。
Steels 12 and 2 and 12 and 3 are comparative examples in which the amount of P + S is out of the scope of the present invention. This steel is not stable in hardenability, and there are about one-quarter of one with a quenching hardness of Hv: 500 or less.
Steels 13 and 2 and 13 and 3 are comparative examples in which the amount of Sn deviates from the upper limit of the present invention. This steel has stable quenching hardness of Hv: 500 or more, but has the objective of obtaining good workability and excellent toughness with a low drawing which is an index of workability, low impact value after quenching. Not reach.

表6に示した鋼を転炉で溶製し、連続鋳造でスラブを造った。このスラブを1240℃に加熱、6.0mmおよび4.0mm厚に熱間圧延した。熱延仕上温度は800〜860℃、巻取り温度は580〜650℃であった。
この鋼帯を酸洗後に、4.0mm厚のものは690〜710℃で18〜96時間保持する炭化物球状化焼鈍を行った。
6.0mm厚の鋼帯は、4.0mm厚まで冷間圧延後に670〜690℃×16〜62時間の焼鈍を行い、この鋼板から、実施例2と同じ方法で加工性を評価し、C:0.28%は65%以上、C:0.35%は60%以上が合格である。
The steel shown in Table 6 was melted in a converter and a slab was made by continuous casting. The slab was heated to 1240 ° C. and hot-rolled to 6.0 mm and 4.0 mm thickness. The hot rolling finishing temperature was 800 to 860 ° C, and the winding temperature was 580 to 650 ° C.
After pickling the steel strip, a steel sheet having a thickness of 4.0 mm was subjected to carbide spheroidizing annealing at 690 to 710 ° C. for 18 to 96 hours.
The steel strip of 6.0 mm thickness was annealed at 670 to 690 ° C. for 16 to 62 hours after cold rolling to 4.0 mm thickness, and from this steel plate, the workability was evaluated by the same method as in Example 2, and C : 0.28% is 65% or more, and C: 0.35% is 60% or more.

焼入れ性はC:0.28%がHv:550、C:0.35%がHv:600を焼入れ性に基準硬さとし、この硬さ以上の焼入れ硬さが得られたものと全試験数との比で評価した。
基準硬さ以上のものについて、焼き戻しにより硬さをHv:440〜460に調整し、この調査結果を表7に示した。
なお、子番号1は熱延板を球状化焼鈍したもので、子番号2は熱延板を冷延、焼鈍したものである。
As for the hardenability, C: 0.28% is Hv: 550, C: 0.35% is Hv: 600 as the standard hardness in the hardenability, and a hardenability higher than this hardness is obtained and the total number of tests. The ratio was evaluated.
About the thing more than reference | standard hardness, hardness was adjusted to Hv: 440-460 by tempering, and this investigation result was shown in Table 7.
The child number 1 is obtained by spheroidizing and annealing a hot-rolled sheet, and the child number 2 is obtained by cold-rolling and annealing a hot-rolled sheet.

Figure 0004319940
Figure 0004319940

Figure 0004319940
Figure 0004319940

鋼14は、C:0.28%の本発明範囲内の実施例である。熱延鋼帯を球状化焼鈍した14・1も、冷延、焼鈍した14・2も優れた焼入れ性、加工牲を有し、熱処理後の靭性も良である。   Steel 14 is an example within the scope of the present invention of C: 0.28%. 14 · 1 in which the hot-rolled steel strip is spheroidized and annealed and 14 · 2 in the cold-rolled and annealed state have excellent hardenability and workability, and have good toughness after heat treatment.

鋼15は、鋼14と同一C量であるが、P+S量が本発明範囲から外れた比較例である。この鋼は、球状化焼鈍材、冷延・焼鈍材共に、焼入れ硬さがHv:550未満のものが見られ、安定した焼入れ性が得られないことが分かる。   Steel 15 is a comparative example in which the amount of C is the same as steel 14 but the P + S amount is out of the scope of the present invention. In this steel, both the spheroidized annealed material and the cold rolled / annealed material have a quenching hardness of less than Hv: 550, indicating that stable hardenability cannot be obtained.

鋼16はC:0.35%の本発明範囲内の実施例である。16・1は熱延鋼帯を球状化焼鈍したもの、16・2は冷延、焼鈍したものであるが、共に良好な加工性と安定した焼入れ性を有すると共に、熱処理後の靭性も優れていることが分かる。   Steel 16 is an example within the scope of the present invention of C: 0.35%. 16.1 is a spheroidized annealed hot-rolled steel strip, 16.2 is cold-rolled and annealed, and both have good workability and stable hardenability, as well as excellent toughness after heat treatment. I understand that.

一方、C量は同一であるが、Sn+Te添加量が本発明範囲から外れた17・1、17・2は焼入れ性が安定していなく、焼入れ硬さがHv:600に満たないものが存在する。   On the other hand, although the C amount is the same, 17.1 and 17.2 in which the added amount of Sn + Te is out of the scope of the present invention are not stable in hardenability, and there are some in which the quenching hardness is less than Hv: 600. .

鋼18はTi、B量、Sn+Te量が本発明範囲外の比較例である。焼入れ性はC:0.45%と高いため焼入れ性は安定しているが、加工性の指標である絞り率が58%と低く、加工性が本発明の実施例に比較して加工性が劣ることが分かる、また、熱処理後の靭性も本発明の実施例に比べて大幅に劣ることが分かる。   Steel 18 is a comparative example in which the Ti, B amount, and Sn + Te amount are outside the scope of the present invention. The hardenability is as high as C: 0.45%, so the hardenability is stable, but the drawability, which is an index of workability, is as low as 58%, and the workability is lower than that of the examples of the present invention. It turns out that it is inferior, and it turns out that the toughness after heat processing is also significantly inferior compared with the Example of this invention.

以上実施例で詳細に説明したように、加工性の向上と焼入れ性を両立するにあたり、特定に成分調整した鋼にTe、Snを添加しP+S量を特定することで、優れた加工性と安定した焼入れ性を有し、しかも熱処理後の靭性が優れた鋼板を提供することが可能となる。
この高炭素鋼板を用いることにより、自動車の駆動系機械部品等の加工において加工度が高く取ることができ、製造工程を省略して低コストで部品等を製造することが可能となり、工業的に極めて有用な発明である。
As explained in detail in the above examples, in order to achieve both improvement in workability and hardenability, by adding Te and Sn to a steel whose composition has been specifically adjusted and specifying the amount of P + S, excellent workability and stability are achieved. Thus, it is possible to provide a steel sheet having excellent hardenability and excellent toughness after heat treatment.
By using this high-carbon steel sheet, it is possible to obtain a high degree of processing in processing of automobile drive system machine parts, etc., making it possible to manufacture parts etc. at low cost by omitting the manufacturing process. It is a very useful invention.

Sn+Te量と焼入れ硬さの関係を示す図である。It is a figure which shows the relationship between Sn + Te amount and quenching hardness. Sn、Te量と衝撃値の関係を示す図である。It is a figure which shows the relationship between Sn, Te amount, and an impact value. P+S量と焼入れ硬さの関係を示す図である。It is a figure which shows the relationship between the amount of P + S and quenching hardness.

Claims (1)

質量%で、
C :0.20〜0.45%、
Mn :0.40〜1.50%、
P :0.03%以下、
S :0.02%以下、
P+S:0.010%以上、
Cr :0.01〜0.80%、
Ti :0.005〜0.050%、
B :0.0003〜0.0050%
を含有し、残部Feおよび不可避的不純物からなり、さらに、
Sn :0.05%以下、
Te :0.05%以下を含有し、かつSn+Teの合計が0.005%以上含有し、フェライトとパーライトの混合組織またはフェライトとセメンタイトの混合組織からなることを特徴とする加工性と、焼入れ性、熱処理後の靭性の優れた高炭素鋼板。
% By mass
C: 0.20 to 0.45%,
Mn: 0.40 to 1.50%
P: 0.03% or less,
S: 0.02% or less,
P + S: 0.010% or more,
Cr: 0.01-0.80%
Ti: 0.005 to 0.050%,
B: 0.0003 to 0.0050%
Comprising the balance Fe and unavoidable impurities ,
Sn: 0.05% or less,
Te: 0.05% or less, and the total of Sn + Te is 0.005% or more , and it has a mixed structure of ferrite and pearlite or a mixed structure of ferrite and cementite, and hardenability High carbon steel sheet with excellent toughness after heat treatment .
JP2004132109A 2004-04-27 2004-04-27 High carbon steel plate with excellent workability, hardenability and toughness after heat treatment Expired - Fee Related JP4319940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004132109A JP4319940B2 (en) 2004-04-27 2004-04-27 High carbon steel plate with excellent workability, hardenability and toughness after heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004132109A JP4319940B2 (en) 2004-04-27 2004-04-27 High carbon steel plate with excellent workability, hardenability and toughness after heat treatment

Publications (2)

Publication Number Publication Date
JP2005314727A JP2005314727A (en) 2005-11-10
JP4319940B2 true JP4319940B2 (en) 2009-08-26

Family

ID=35442457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004132109A Expired - Fee Related JP4319940B2 (en) 2004-04-27 2004-04-27 High carbon steel plate with excellent workability, hardenability and toughness after heat treatment

Country Status (1)

Country Link
JP (1) JP4319940B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180004262A (en) 2015-06-17 2018-01-10 신닛테츠스미킨 카부시키카이샤 Steel sheet and manufacturing method
US10837077B2 (en) 2015-05-26 2020-11-17 Nippon Steel Corporation Steel sheet and method for production thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2014KN01254A (en) 2012-01-05 2015-10-16 Jfe Steel Corp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10837077B2 (en) 2015-05-26 2020-11-17 Nippon Steel Corporation Steel sheet and method for production thereof
KR20180004262A (en) 2015-06-17 2018-01-10 신닛테츠스미킨 카부시키카이샤 Steel sheet and manufacturing method

Also Published As

Publication number Publication date
JP2005314727A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
JP6068314B2 (en) Hot-rolled steel sheet with excellent cold workability and surface hardness after carburizing heat treatment
JP4644076B2 (en) High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof
JP6583587B2 (en) Carburizing steel sheet and method for manufacturing carburizing steel sheet
JP2007277696A (en) Dead soft high-carbon hot-rolled steel sheet and its manufacturing method
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
KR20140041930A (en) Hot-rolled steel sheet having excellent cold working properties and hardening properties, and method for producing same
KR101576345B1 (en) High carbon steel sheet and method for manufacturing the same
JP2005298964A (en) High strength and high ductility thin steel sheet having excellent hole expansibility and its production method
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP6244701B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP4600196B2 (en) High carbon cold-rolled steel sheet with excellent workability and manufacturing method thereof
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
KR100673422B1 (en) High carbon hot rolled steel sheet, cold rolled steel sheet and method for production thereof
JP5348071B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP4696853B2 (en) Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
JP4867177B2 (en) High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same
JP2006097109A (en) High-carbon hot-rolled steel sheet and manufacturing method therefor
JP4403925B2 (en) High carbon cold-rolled steel sheet and method for producing the same
KR102451005B1 (en) High-strength steel sheet having excellent thermal stability and method for mnufacturing thereof
JP4319940B2 (en) High carbon steel plate with excellent workability, hardenability and toughness after heat treatment
JP4412094B2 (en) High carbon cold-rolled steel sheet and method for producing the same
JP5034296B2 (en) Hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP5884781B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4319940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees