JP4867177B2 - High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same - Google Patents
High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same Download PDFInfo
- Publication number
- JP4867177B2 JP4867177B2 JP2005053276A JP2005053276A JP4867177B2 JP 4867177 B2 JP4867177 B2 JP 4867177B2 JP 2005053276 A JP2005053276 A JP 2005053276A JP 2005053276 A JP2005053276 A JP 2005053276A JP 4867177 B2 JP4867177 B2 JP 4867177B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- rolled steel
- sec
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車の構造部材、足周り部材等の使途に供して好適な薄物熱延鋼板およびその製造方法に関し、特に焼付硬化性に優れ、かつ成形性にも優れた高張力熱延鋼板およびその製造方法に関する。 The present invention relates to a thin hot-rolled steel sheet suitable for use in automobile structural members, leg members, and the like, and a method for producing the same, and particularly, a high-tensile hot-rolled steel sheet having excellent bake hardenability and excellent formability, and It relates to the manufacturing method.
近年、自動車の構造部材、足周り部材等に使用される自動車用鋼板に対しては、軽量化による燃費向上のため一層の高強度化が要求されている。しかし、鋼板の高強度化は、一方でプレス成形を困難にするという問題がある。また、最近では乗員の安全確保と言う目的から、衝突時におけるような高歪速度下での変形エネルギー量で評価される耐衝突性の向上も望まれている。 In recent years, steel sheets for automobiles used for automobile structural members, leg-surrounding members, and the like have been required to have higher strength in order to improve fuel efficiency by reducing weight. However, increasing the strength of the steel sheet has the problem of making press forming difficult. Further, recently, for the purpose of ensuring the safety of passengers, it is also desired to improve the collision resistance evaluated by the amount of deformation energy at a high strain rate as in the case of a collision.
このような中で、プレス成形性の劣化を防止した高強度化技術としては、成形時には比較的低強度で加工がし易く、塗装時の焼付によって強度を増加させる、いわゆる焼付硬化性(BH性)を利用した技術が知られており、冷延鋼板については広く利用されている(例えば、特許文献1、特許文献2)。しかしながら、これらの技術で得られる焼付硬化性の向上は、降伏強さのみが増加し引張り強さの増加が得られないため、自動車外板における耐デント性の向上には有効であるが、内装板に要求される耐疲労性や耐衝撃性の向上には繋がらない。 Under such circumstances, as a technology for increasing the strength to prevent deterioration of press formability, the so-called bake hardenability (BH property), which is easy to process with relatively low strength during molding and increases strength by baking during coating. ) Is known, and cold-rolled steel sheets are widely used (for example, Patent Document 1 and Patent Document 2). However, the improvement in bake hardenability obtained by these techniques is effective in improving the dent resistance of automobile outer plates because only the yield strength increases and the tensile strength cannot be increased. It does not lead to improvement in fatigue resistance and impact resistance required for the plate.
一方、特許文献3では、鋼板中のC、Nの固溶量を増加させ、BH性の向上を図るために、C:0.030〜0.100wt%、N:0.0015〜0.0150wt%、Al:0.025〜0.100wt%を含有する鋼を1200℃以下に加熱し、(Ar3+30℃)〜950℃の温度で仕上げ圧延を行い、圧延後3秒以内に50℃/sec以上の冷却速度で500℃以下まで急冷し、400℃〜500℃で巻き取る、加熱後、焼付硬化性に優れた熱延鋼板の製造方法が開示されている。 On the other hand, in Patent Document 3, C: 0.030 to 0.100 wt%, N: 0.0015 to 0.0150 wt%, Al: 0.025 to increase the solid solution amount of C and N in the steel sheet and improve the BH property. Steel containing 0.100wt% is heated to 1200 ° C or lower, finish rolled at a temperature of (Ar3 + 30 ° C) to 950 ° C, and rapidly cooled to 500 ° C or lower at a cooling rate of 50 ° C / sec or higher within 3 seconds after rolling. And the manufacturing method of the hot-rolled steel plate excellent in bake hardenability after the heating which is wound up at 400 to 500 degreeC is disclosed.
また、特許文献4には、焼付硬化性と加工性に優れた熱延鋼板を得るために、C:0.02〜0.1wt%、N:0.0080〜0.0250wt%、Sol.Al:0.10wt%以下を含有する鋼を1100℃以上に再加熱し、850〜950℃の温度で仕上げ圧延を終了する熱間圧延を施し、ついで15℃/sec以上の冷却速度で、途中空冷を挟み、あるいは途中空冷することなく、350℃以下まで冷却したのち巻き取る製造方法が開示されている。 In Patent Document 4, in order to obtain a hot rolled steel sheet having excellent bake hardenability and workability, C: 0.02 to 0.1 wt%, N: 0.0080 to 0.0250 wt%, Sol.Al: 0.10 wt% or less. Re-heat the contained steel to 1100 ° C or higher, perform hot rolling to finish finish rolling at a temperature of 850 to 950 ° C, and then sandwich air cooling or air cooling at a cooling rate of 15 ° C / sec or higher Without being disclosed, a manufacturing method of winding after cooling to 350 ° C. or lower is disclosed.
また特許文献5には、C:0.010〜0.02wt%、N:0.0015〜0.0030wt%、Nb:0.01〜0.05wt%
を含有し、sol.Al:0.008wt%以下とし、熱延後の巻取り温度を制御することにより固溶C、固溶Nを適量残存させた焼付硬化性熱延鋼板か開示され、その効果として加工−塗装焼付処理後に疲労限が上昇することが記載されている。
In
Sol.Al: 0.008 wt% or less, and by controlling the coiling temperature after hot rolling, disclosed is a bake-hardening hot-rolled steel sheet in which an appropriate amount of solid solution C and solid solution N remains, and its effect It is described that the fatigue limit increases after the processing-paint baking process.
また、特許文献6には、C:0.01〜0.08wt%、N:0.001〜0.01wt%を含有する鋼において熱延後の冷却速度や巻取り温度を制御することによりBH量(焼付処理による降伏強さの上昇量)を高める技術が開示されている。
しかしながら、特許文献3に記載された技術で製造された熱延鋼板では、耐常温時効性が劣化する。また、塗装焼付後の降伏強さは増加するが、引張り強さは考慮されておらず不充分である。さらに、引張り強さが不充分であるため、耐疲労性、耐衝撃性の著しい向上も望めない。 However, in a hot-rolled steel sheet manufactured by the technique described in Patent Document 3, the normal temperature aging resistance deteriorates. Moreover, although the yield strength after baking is increased, the tensile strength is not taken into account and is insufficient. Furthermore, since the tensile strength is insufficient, a remarkable improvement in fatigue resistance and impact resistance cannot be expected.
特許文献4に記載された技術で製造された熱延鋼板は、フェライトとマルテンサイトを主体とする複合組織であり、加工−塗装焼付処理後の引張り強さは増加するが、マルテンサイトを含む組織となっているため伸びフランジ性の評価指標である穴拡げ率が低く、適用個所な部品・部位が限定されるなどの問題がある。 The hot-rolled steel sheet manufactured by the technique described in Patent Document 4 is a composite structure mainly composed of ferrite and martensite, and the tensile strength after the processing-paint baking process is increased, but the structure including martensite. Therefore, there is a problem that the hole expansion rate, which is an evaluation index of stretch flangeability, is low, and the parts and parts where the application is applied are limited.
特許文献5に記載された鋼板では、降伏強さの増加に比べ、疲労限の上昇は少なく、上昇量もたかだか25Mpa程度であり、耐疲労性の向上は不充分である。
In the steel sheet described in
特許文献6に記載された技術で製造された熱延鋼板では、主に加工−塗装焼付処理後の降伏強さを上昇させることを意図しており、成形性については必ずしも最適な条件を見出しておらず充分ではない。 In the hot-rolled steel sheet manufactured by the technique described in Patent Document 6, it is mainly intended to increase the yield strength after the processing-paint baking process, and the optimum condition is not always found for the formability. Not enough.
本発明は、上記問題点を解決するためになされたもので、焼付硬化性と成形性ともに優れた高張力熱延鋼板およびその製造方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a high-tensile hot-rolled steel sheet excellent in both bake hardenability and formability and a method for producing the same.
従来、高い焼付け硬化特性を達成するためにはC、Nを過飽和に固溶させるため低温変態相(例えばベイナイトやベイニチックフェライトなど)を含む組織としており、パーライト相の生成を極力抑制していた。しかしながら低温変態相は延性が低いため、成形性が劣る傾向にあった。本発明者らは、上記の点に注目し、上記の課題を解決し、高い焼付け硬化性を有しながらも成形性(延性)をも有する鋼板を得るべく、鋭意研究した。その結果、鋼板中に固溶状態で存在するN、すなわち固溶Nの存在形態に着目し、組織の主相をフェライトとし結晶粒を微細化し結晶粒界を増加させたうえで、さらに第2相としてパーライト相を適度に存在させることにより、焼付硬化性と成形性(延性)が共に良好な熱延鋼板が得られることを見出した。 Conventionally, in order to achieve high bake-hardening characteristics, a structure containing a low-temperature transformation phase (for example, bainite or bainitic ferrite) is used to dissolve C and N in a supersaturated state, and the formation of a pearlite phase is suppressed as much as possible. It was. However, since the low temperature transformation phase has low ductility, the moldability tends to be inferior. The present inventors have paid attention to the above points, and have made extensive studies to solve the above problems and obtain a steel sheet having high bake hardenability but also formability (ductility). As a result, paying attention to the presence of solid solution N in the steel sheet, that is, the form of solid solution N, the main phase of the structure is ferrite and the crystal grain is refined to increase the grain boundary. It was found that a hot-rolled steel sheet having good bake hardenability and formability (ductility) can be obtained by appropriately including a pearlite phase as a phase.
本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。 The present invention has been made based on the above findings, and the gist thereof is as follows.
[1]質量%で、C:0.01〜0.12%、Si:0.2%以下、Mn:0.01〜1.7%、P:0.2%以下、Al:0.001〜0.1%、N:0.004〜0.020%を含有し、残部はFe及び不可避的不純物からなり、フェライト相を主相とし、第2相が10〜25%のパーライト相を有し、かつ、前記フェライト相の平均結晶粒径が10μm以下である混合組織であり、さらに、固溶N量が0.004〜0.010%であることを特徴とする焼付硬化性及び成形性に優れた高張力熱延鋼板。 [1] In mass%, C: 0.01 to 0.12%, Si: 0.2% or less, Mn: 0.01 to 1.7%, P: 0.2% or less, Al: 0.001 to 0.1%, N: 0.004 to 0.020%, The balance consists of Fe and inevitable impurities, the ferrite phase is the main phase, the second phase has a pearlite phase of 10 to 25%, and the average grain size of the ferrite phase is 10 μm or less. Further, a high-tensile hot-rolled steel sheet excellent in bake hardenability and formability, characterized in that the amount of solute N is 0.004 to 0.010%.
[2]前記[1]において、さらに、質量%で、Nb:0.001〜0.05%、Ti:0.005〜0.01%、V:0.001〜0.05%、Cr:0.01〜0.1%、B:0.0001〜0.001%の1種または2種以上を含有することを特徴とする焼付硬化性及び成形性に優れた高張力熱延鋼板。 [2] In the above [1], Nb: 0.001-0.05%, Ti: 0.005-0.01%, V: 0.001-0.05%, Cr: 0.01-0.1%, B: 0.0001-0.001% A high-tensile hot-rolled steel sheet excellent in bake hardenability and formability, characterized by containing one or more.
[3]前記[1]または[2]において、前記高張力熱延鋼板の表面にメッキ層を形成させたことを特徴とする焼付硬化性及び成形性に優れた高張力熱延鋼板。 [3] A high-tensile hot-rolled steel sheet excellent in bake hardenability and formability, wherein a plating layer is formed on the surface of the high-tensile hot-rolled steel sheet in [1] or [2].
[4]質量%で、C:0.01〜0.12%、Si:0.2%以下、Mn:0.01〜1.7%、P:0.2%以下、Al:0.001〜0.1%、N:0.004〜0.020%を含有し、残部はFe及び不可避的不純物からなる鋼を、1000℃以上1300℃以下の温度に加熱し、粗圧延後、10%以上の最終スタンド圧下率、(Ar3+10℃)以上の最終仕上げ圧延終了温度FDTで仕上げ圧延を行い、次いで、100℃/sec以上200℃/sec以下の冷却速度で、650℃以上750℃以下まで冷却した後、10℃/sec以上25℃/sec以下の冷却速度で、450℃以上600℃以下の巻取り温度まで冷却し、該巻取り温度で巻き取ることを特徴とする焼付硬化性及び成形性に優れた高張力熱延鋼板の製造方法。 [4] In mass%, C: 0.01 to 0.12%, Si: 0.2% or less, Mn: 0.01 to 1.7%, P: 0.2% or less, Al: 0.001 to 0.1%, N: 0.004 to 0.020%, The remainder is steel consisting of Fe and inevitable impurities, heated to a temperature of 1000 ° C or higher and 1300 ° C or lower, and after rough rolling, with a final stand rolling reduction of 10% or higher and a final finish rolling finish temperature FDT of (Ar3 + 10 ° C) or higher. After finishing rolling, and then cooling to 650 ° C to 750 ° C at a cooling rate of 100 ° C / sec to 200 ° C / sec, 450 ° C to a cooling rate of 10 ° C / sec to 25 ° C / sec A method for producing a high-tensile hot-rolled steel sheet excellent in bake hardenability and formability, characterized by cooling to a coiling temperature of 600 ° C. or lower and winding at the coiling temperature.
[5]質量%で、C:0.01〜0.12%、Si:0.2%以下、Mn:0.01〜1.7%、P:0.2%以下、Al:0.001〜0.1%、N:0.004〜0.020%を含有し、さらに、Nb:0.001〜0.05%、Ti:0.005〜0.01%、V:0.001〜0.05%、Cr:0.01〜0.1%、B:0.0001〜0.001%の1種または2種以上を含有し、残部はFe及び不可避的不純物からなる鋼を、1070℃〜1300℃の温度範囲に加熱し、粗圧延後、10%以上の最終スタンド圧下率、(Ar3+10℃)以上の最終仕上げ圧延終了温度FDTで仕上げ圧延を行い、次いで、100℃/sec以上200℃/sec以下の冷却速度で、650℃以上750℃以下まで冷却した後、10℃/sec以上25℃/sec以下の冷却速度で、450℃以上600℃以下の巻取り温度まで冷却し、該巻取り温度で巻き取ることを特徴とする焼付硬化性及び成形性に優れた高張力熱延鋼板の製造方法。 [5] By mass%, C: 0.01 to 0.12%, Si: 0.2% or less, Mn: 0.01 to 1.7%, P: 0.2% or less, Al: 0.001 to 0.1%, N: 0.004 to 0.020%, Further, Nb: 0.001 to 0.05%, Ti: 0.005 to 0.01%, V: 0.001 to 0.05%, Cr: 0.01 to 0.1%, B: 0.0001 to 0.001%, or one or more types, with the balance being Fe And the steel consisting of inevitable impurities is heated to a temperature range of 1070 ° C to 1300 ° C, and after rough rolling, finish rolling is performed at a final stand rolling reduction rate of 10% or more and final finish rolling finish temperature FDT of (Ar3 + 10 ° C) or more Then, after cooling at a cooling rate of 100 ° C./sec to 200 ° C./sec to 650 ° C. to 750 ° C., cooling at a cooling rate of 10 ° C./sec to 25 ° C./sec, 450 ° C. to 600 ° C. A method for producing a high-tensile hot-rolled steel sheet having excellent bake hardenability and formability, wherein the steel sheet is cooled to the following winding temperature and wound at the winding temperature.
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。 In the present specification, “%” indicating the component of steel is “% by mass”.
また、本発明において、高張力熱延鋼板とは、自動車の内装材として好適な引張り強さが400Mpaを超える熱延鋼板である。 Further, in the present invention, the high-tensile hot-rolled steel sheet is a hot-rolled steel sheet having a tensile strength suitable for automobile interior materials exceeding 400 MPa.
また、本発明において、焼付硬化性の向上とは、加工−焼付塗装処理後の降伏強さの増加とともに、さらに引張り強さの増加をも意味するものとする。 Further, in the present invention, the improvement in bake hardenability means an increase in tensile strength as well as an increase in yield strength after processing-baking coating treatment.
さらに、本発明が目的とする自動車内装用材料としては、部品成形時にプレス加工を伴い、このプレス成形性の指標として、伸び(延性)が使用される。よって、本発明における成形性とは、熱延鋼板の伸びを意味するものである。 Furthermore, the automotive interior material that is the object of the present invention is accompanied by press working at the time of component molding, and elongation (ductility) is used as an index of this press formability. Therefore, the formability in the present invention means the elongation of the hot-rolled steel sheet.
本発明によれば、焼付硬化性及び成形性に優れた高張力熱延鋼板を安定して得ることができる。また、本発明により得られる高張力熱延鋼板は、引張り強さが十分に向上しているため耐疲労性、耐衝撃性にも優れ、さらに固溶元素の過剰な添加を必要としないので、自動車の内板部品として好適であり、産業上格段の効果を奏するものである。 According to the present invention, a high-tensile hot-rolled steel sheet having excellent bake hardenability and formability can be stably obtained. In addition, the high-tensile hot-rolled steel sheet obtained by the present invention is excellent in fatigue resistance and impact resistance because the tensile strength is sufficiently improved, and further does not require excessive addition of solid solution elements. It is suitable as an inner plate part of an automobile and has a remarkable industrial effect.
本発明の高張力熱延鋼板は、成分を下記に示すように規定し、フェライト相を主相とし、第2相が10〜25%のパーライト相を有し、かつ、前記フェライト相の平均結晶粒径が10μm以下である混合組織形態であり、さらに、固溶N量が0.004〜0.010%であることを特徴とする。これらは本発明において最も重要な要件である。このように成分、組織及び固溶N量を規定することにより、焼付硬化性及び成形性に優れた高張力熱延鋼板を得ることができる。また、上記高張力熱延鋼板は、熱延条件を制御する、具体的には加熱温度:1000℃以上1300℃以下で加熱し、粗圧延後、最終スタンド圧下率:10%以上、最終仕上げ圧延終了温度FDT:(Ar3+10℃)以上で仕上げ圧延を行い、圧延終了後、100℃/sec以上200℃/sec以下の冷却速度で、650℃以上750℃以下まで冷却した後、さらに10℃/sec以上25℃/sec以下の冷却速度で450℃以上600℃以下の巻取り温度まで冷却し、前記巻取り温度で巻き取ることにより製造することが可能となる。 The high-tensile hot-rolled steel sheet of the present invention has the following components, the ferrite phase is the main phase, the second phase has a pearlite phase of 10 to 25%, and the average crystal of the ferrite phase It is a mixed tissue form having a particle size of 10 μm or less, and further has a solid solution N content of 0.004 to 0.010%. These are the most important requirements in the present invention. Thus, a high-tensile hot-rolled steel sheet excellent in bake hardenability and formability can be obtained by defining the components, the structure, and the solute N amount. The high-tensile hot-rolled steel sheet controls the hot-rolling conditions. Specifically, it is heated at a heating temperature of 1000 ° C or higher and 1300 ° C or lower, and after rough rolling, the final stand rolling reduction: 10% or higher, final finish rolling. Finishing temperature FDT: Finish rolling at (Ar3 + 10 ° C) or higher, and after rolling, after cooling to 650 ° C or higher and 750 ° C or lower at a cooling rate of 100 ° C / sec or higher and 200 ° C / sec or lower, further 10 ° C / sec It can be manufactured by cooling to a winding temperature of 450 ° C. or more and 600 ° C. or less at a cooling rate of 25 ° C./sec or less and winding at the winding temperature.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
まず、本発明における鋼の化学成分の限定理由について説明する。 First, the reasons for limiting the chemical components of steel in the present invention will be described.
C:0.01〜0.12%
Cは、鋼の強度を増加させる元素であり、本発明を構成するパーライト相を含む組織を得るためには0.01%以上、好ましくは0.02%以上である。一方、0.12%を越えて含有すると溶接性が劣化する。以上より、Cは0.01%以上0.12%以下、好ましくは0.02%以上0.12%以下とする。
C: 0.01-0.12%
C is an element that increases the strength of steel, and is 0.01% or more, preferably 0.02% or more in order to obtain a structure containing a pearlite phase constituting the present invention. On the other hand, if it exceeds 0.12%, weldability deteriorates. Accordingly, C is 0.01% or more and 0.12% or less, preferably 0.02% or more and 0.12% or less.
Si:0.2%以下
Siは、固溶強化により鋼の強度を増加させる元素であり、所望の強度に応じ含有量を調整する。しかし、0.2%を超えて含有すると加工性が劣化する。以上より、Siは0.2%以下とする。なお、強度確保の観点からは、Siは0.003%以上含有するのが望ましい。
Si: 0.2% or less
Si is an element that increases the strength of the steel by solid solution strengthening, and the content is adjusted according to the desired strength. However, if it exceeds 0.2%, workability deteriorates. From the above, Si is 0.2% or less. From the viewpoint of securing strength, Si is preferably contained in an amount of 0.003% or more.
Mn:0.01〜1.7%
Mnは、鋼の強度を増加させるとともに、Sによる熱間脆性を防止する元素であり、本発明では積極的に含有させる。このように所望の強度を確保し、熱間脆性を防止するためには0.01%以上の含有を必要とする。しかし、1.7%を超えて含有すると加工性の劣化する。以上より、Mnは、0.01%以上1.7%以下とする。
Mn: 0.01-1.7%
Mn is an element that increases the strength of the steel and prevents hot brittleness due to S, and is actively contained in the present invention. Thus, in order to ensure desired intensity | strength and to prevent hot brittleness, containing 0.01% or more is required. However, if the content exceeds 1.7%, the workability deteriorates. Therefore, Mn is set to 0.01% or more and 1.7% or less.
P:0.2%以下
Pは、鋼の強度を増加させる元素であり、所望の強度を確保するために0.005%以上含有させるのが望ましい。しかし、0.2%を超えて含有すると溶接性が劣化し、またPが粒界に偏析し、粒界割れを発生させる恐れがある。以上より、Pは0.2%以下とする。
P: 0.2% or less
P is an element that increases the strength of the steel, and is desirably contained in an amount of 0.005% or more in order to ensure a desired strength. However, if the content exceeds 0.2%, the weldability deteriorates, and P segregates at the grain boundaries, which may cause grain boundary cracks. Therefore, P is 0.2% or less.
Al:0.001〜0.1%
Alは、脱酸材として作用し、鋼の脱酸のためには0.001%以上の含有を必要とする。一方、0.1%を超えて含有すると表面性状が劣化する。以上より、Alは0.001%以上0.1%以下とする。さらに、Alは窒化物を形成する元素でもあるので、固溶N量を確保する観点から0.07%以下が好ましい。
Al: 0.001 to 0.1%
Al acts as a deoxidizer and requires 0.001% or more for deoxidation of steel. On the other hand, if the content exceeds 0.1%, the surface properties deteriorate. From the above, Al is made 0.001% or more and 0.1% or less. Furthermore, since Al is also an element forming a nitride, it is preferably 0.07% or less from the viewpoint of securing the amount of dissolved N.
N:0.004〜0.020%、固溶N量:0.004〜0.010%
Nは、本発明では重要な元素であり、鋼板中に固溶して加工−塗装焼付処理後の降伏強さ、引張り強さを増加すなわち焼付硬化性を向上させるのに有効に作用する。この作用を得るためには、鋼板中に固溶Nとして0.004%以上、好ましくは0.005%以上残存させる必要がある。一方、固溶Nは0.010%を超えて存在していてもΔTSの格段の向上は得られず、耐時効性が低下する。このため固溶Nの上限は0.010%以下とする。そして、この範囲内の固溶Nを得るための添加N量は、0.004%以上とする。一方、添加N量が0.020%を越えて含有してもΔTS向上に寄与する固溶Nとはならず、また過剰な窒化物の形成等により成形性が劣化する。以上より、添加N量Nは0.004%以上0.020%以下とする。
N: 0.004 to 0.020%, solid solution N amount: 0.004 to 0.010%
N is an important element in the present invention, and effectively acts to increase the yield strength and tensile strength after processing-paint baking treatment, that is, to improve bake hardenability, by dissolving in the steel sheet. In order to obtain this effect, it is necessary to leave 0.004% or more, preferably 0.005% or more as solid solution N in the steel sheet. On the other hand, even if solid solution N is present in an amount exceeding 0.010%, a marked improvement in ΔTS cannot be obtained, and the aging resistance is lowered. For this reason, the upper limit of solute N is made 0.010% or less. And the amount of addition N for obtaining the solid solution N in this range shall be 0.004% or more. On the other hand, even if the added N amount exceeds 0.020%, it does not become solid solution N that contributes to the improvement of ΔTS, and the formability deteriorates due to the formation of excess nitride and the like. From the above, the added N amount N is set to 0.004% or more and 0.020% or less.
本発明鋼は、上記の必須添加元素で目的とする特性が得られるが、上記の必須添加元素に加えて、強度上昇のためNb、Ti、V、Cr 、Bを必要に応じて1種または2種以上添加しても良い。その場合、それぞれの添加量が0.001%、0.005%、0.001%、0.01%、0.0001%未満では添加の効果は十分でない。一方、Nb、Ti、V、Bはそれぞれ0.05%、0.01%、0.05%、0.001%を超えると、炭化物もしくは窒化物を形成することにより強化量が大きくなりすぎる。また、析出物形成により、機械的特性を劣化(伸び低下)させるとともに焼付け硬化性に寄与するC、N量が減少するため、本発明の目的とする焼付け硬化性を減少させる。一方、Crが0.1%を超えると化成処理性、スポット溶接性を劣化させる。したがって、これらの元素を添加する場合は、Nbは0.001%以上0.05%以下、Tiは0.005%以上0.01%以下、Vは0.001%以上0.05%以下、Crは0.01%以上0.1%以下、Bは0.0001以上0.001%以下とする。 The steel of the present invention can achieve the desired characteristics with the above-mentioned essential additive elements, but in addition to the above-mentioned essential additive elements, Nb, Ti, V, Cr, B may be used alone or as needed for increasing the strength. Two or more kinds may be added. In that case, the effect of addition is not sufficient if the respective addition amounts are less than 0.001%, 0.005%, 0.001%, 0.01%, and 0.0001%. On the other hand, if Nb, Ti, V, and B exceed 0.05%, 0.01%, 0.05%, and 0.001%, respectively, the amount of reinforcement becomes too large due to the formation of carbides or nitrides. In addition, the formation of precipitates deteriorates mechanical properties (decreases elongation) and decreases the amount of C and N contributing to bake hardenability, thereby reducing the bake hardenability targeted by the present invention. On the other hand, if the Cr content exceeds 0.1%, chemical conversion properties and spot weldability are deteriorated. Therefore, when these elements are added, Nb is 0.001% to 0.05%, Ti is 0.005% to 0.01%, V is 0.001% to 0.05%, Cr is 0.01% to 0.1%, and B is 0.0001. More than 0.001%.
なお、上記以外の残部はFe及び不可避不純物とする。不可避的不純物として、例えば、S、Oは非金属介在物を形成し品質に悪影響を及ぼすため、Sは0.05%以下、Oは0.01%以下に低減するのが望ましい。 The remainder other than the above is Fe and inevitable impurities. As unavoidable impurities, for example, S and O form non-metallic inclusions and adversely affect the quality. Therefore, it is desirable to reduce S to 0.05% or less and O to 0.01% or less.
次に、以上の化学成分範囲に調整された熱延鋼板について、組織と機械特性の関係を調べるために、以下の実験を行った。 Next, in order to investigate the relationship between the structure and the mechanical properties of the hot-rolled steel sheet adjusted to the above chemical component range, the following experiment was performed.
C:0.08%、Si:0.01%、Mn:1.25%、P:0.013%、Al:0.025%、N:0.009%を含有し、残部はFeおよび不可避的不純物からなる鋼を用いて、種々の製造条件にて熱間加工を行い、主相組織であるフェライト粒径と第2相のパーライト分率を変化させた熱延鋼板を製造した。 Contains C: 0.08%, Si: 0.01%, Mn: 1.25%, P: 0.013%, Al: 0.025%, N: 0.009%, the balance being made of steel consisting of Fe and inevitable impurities. A hot-rolled steel sheet was manufactured by performing hot working under conditions to change the ferrite grain size as the main phase structure and the pearlite fraction of the second phase.
次いで、これら熱延鋼板からJIS5号引張試験用の試験片を採取し、1)通常の引張試験と、2)10%の引張り予歪みを与えた後一旦停止して、170℃×20minの熱処理(塗装焼付け処理相当)を施した後に、再度破断まで引張る引張試験の2種類を実施し、それぞれの引張り強さを測定した。得られた測定結果から2)により得られた加工−塗装焼付処理を施したのちの引張り強さTSBHと、1)により得られた熱延ままの引張り強さTSとの差、ΔTSを求めた。さらに、鋼板の機械特性として強度が上がるにつれ伸びは低下するため、TS×ELを算出し、材料評価指標とした。図1に、組織中のパーライト分率とTS×ELの関係を示す。また、図2に組織中のパーライト分率とΔTSの関係を示す。上記試験に用いた各種の熱延鋼板の引張強度(TS)は、450〜500MPaであり、また固溶N量は、いずれも0.0089%であった。 Next, specimens for JIS No. 5 tensile test were collected from these hot-rolled steel sheets, 1) normal tensile test, 2) 10% tensile pre-strain and then temporarily stopped, heat treatment at 170 ° C x 20 min. After applying (corresponding to the paint baking process), two types of tensile tests were performed, in which the samples were pulled again until breakage, and the respective tensile strengths were measured. The difference between the tensile strength TS BH after the processing-paint bake treatment obtained in 2) and the hot-stretched tensile strength TS obtained in 1) is obtained from the obtained measurement results, and ΔTS is obtained. It was. Furthermore, as the mechanical properties of the steel sheet increase in strength, the elongation decreases. Therefore, TS × EL was calculated and used as a material evaluation index. FIG. 1 shows the relationship between the pearlite fraction in the tissue and TS × EL. FIG. 2 shows the relationship between the pearlite fraction in the tissue and ΔTS. The tensile strength (TS) of the various hot-rolled steel sheets used in the above test was 450 to 500 MPa, and the solute N amount was 0.0089%.
図1より、フェライトと、10%以上25%以下のパーライトからなる組織とすることにより、TS×Elが17500以上となることが分る。ここで、現在使用されている引張強度が450MPa級前後の熱延鋼板では、TS×ELは17000程度である。17500以上であれば、同一強度レベルで、比較した場合に1%以上の伸び向上となる。よって、本発明ではTS×Elが17500以上を成形性良好の判断基準とする。 From FIG. 1, it can be seen that TS × El is 17500 or more when the structure is composed of ferrite and pearlite of 10% to 25%. Here, TS × EL is about 17000 in the hot-rolled steel sheet having a tensile strength of around 450 MPa currently used. If it is 17500 or more, the elongation is improved by 1% or more when compared at the same strength level. Therefore, in the present invention, TS × El is 17500 or more as a criterion for determining good moldability.
また、図2より、上記のパーライト分率(10%以上25%以下)の場合、フェライト粒径が10μm以下で、ΔTSは50Mpa以上となることが分る。ここで、ΔTSが大きくなるに従い、使用する鋼板の板厚を減少(軽量化)することが可能となり、例えば自動車の構造部材に本発明の鋼板を適用した場合、その板厚を5%以上減少させるには、50Mpa以上あれば十分である。よって、本発明では、ΔTSが50Mpa以上を焼付硬化性良好の判断基準とする。
パーライト分率が10%以下でも高いΔTSが得られるが、図1より、TS×ELが大きく低下しており、本発明の目的とする成形性と加工−塗装焼付処理後の引張強さが両立されない。
Further, FIG. 2 shows that in the case of the pearlite fraction (10% or more and 25% or less), the ferrite particle diameter is 10 μm or less and ΔTS is 50 Mpa or more. Here, as ΔTS increases, it is possible to reduce the thickness of the steel sheet to be used (weight reduction). For example, when the steel sheet of the present invention is applied to a structural member of an automobile, the thickness is reduced by 5% or more. 50Mpa or more is enough to make it happen. Therefore, in the present invention, ΔTS is 50 Mpa or more as a criterion for determining good bake hardenability.
Although a high ΔTS can be obtained even when the pearlite fraction is 10% or less, as shown in FIG. 1, TS × EL is greatly reduced, and both the moldability and the tensile strength after processing-paint baking treatment are achieved. Not.
さらに、加工−塗装焼付処理後の引張り強さの著しい増加(焼付硬化性の顕著な向上)を得るためには、組織はフェライトを主相とし、さらに主相であるフェライトを微細化し、固溶Nの存在位置としての結晶粒界を増加させることが重要となる。固溶Nを全て結晶粒界に存在(偏析)させるためにはフェライトの平均結晶粒径は10μm以下とする必要がある。そして、フェライト結晶粒を微細化することによる粒界面積の増大は、粒界に存在する固溶Nの比率が高くなり、粒内の固溶N量が減少するため常温での時効性劣化が抑制される。またパーライトが10〜25%存在することにより、鋼板の伸びが大きく向上するが、25%を超えると、逆にTS×ELが低下する。 Furthermore, in order to obtain a significant increase in tensile strength after processing and paint baking (significant improvement in bake hardenability), the structure has ferrite as the main phase, and further refines the main phase ferrite to form a solid solution. It is important to increase the grain boundary as the location of N. In order for all the solute N to exist (segregate) at the crystal grain boundaries, the average crystal grain size of ferrite needs to be 10 μm or less. And the increase in grain interfacial area due to the refinement of ferrite crystal grains increases the ratio of solid solution N present in the grain boundary, and the amount of solid solution N in the grain decreases, so that aging deterioration at room temperature decreases. It is suppressed. Further, when 10% to 25% pearlite is present, the elongation of the steel sheet is greatly improved. However, if it exceeds 25%, TS × EL decreases.
以上の結果から、本発明の熱延鋼板は、フェライト相を主相とし、第2相が10〜25%のパーライト相を有し、前記フェライト相の平均結晶粒径が10μm以下である混合組織とする。これらは本発明において最も重要な要件である。
なお、本発明において、「主相」とは体積分率で60%を超える相である。
From the above results, the hot-rolled steel sheet of the present invention has a mixed structure in which a ferrite phase is a main phase, a second phase has a pearlite phase of 10 to 25%, and an average crystal grain size of the ferrite phase is 10 μm or less. And These are the most important requirements in the present invention.
In the present invention, the “main phase” is a phase with a volume fraction exceeding 60%.
さらに、本発明の熱延鋼板の組織では、上記に加えて、フェライトと第2相のパーライト以外のその他の相(第3相)として、ベイナイト、マルテンサイト、残留オーステナイトのうちの1種または2種以上を、パーライト相の分率未満で含有しても良い。これらの第3相を含有し存在させることにより、高価な添加元素を多量に添加することなく高強度化が可能となり、耐衝突性、耐疲労性が向上する。なお、成形性(TS×EL)の向上の点からは、第3相の体積率は10%以下、穴拡げ性の向上という点からは、さらに5%以下とするのが望ましい。 Furthermore, in the structure of the hot-rolled steel sheet of the present invention, in addition to the above, as a phase other than ferrite and second-phase pearlite (third phase), one or two of bainite, martensite, and retained austenite You may contain seed | species or more with less than the fraction of a pearlite phase. By including and present these third phases, it is possible to increase the strength without adding a large amount of expensive additive elements, and the impact resistance and fatigue resistance are improved. From the viewpoint of improving moldability (TS × EL), the volume ratio of the third phase is preferably 10% or less, and from the viewpoint of improving hole expansibility, it is further preferably 5% or less.
次に、本発明の焼付硬化性及び成形性に優れた高張力熱延鋼板の製造方法について説明する。 Next, a method for producing a high-tensile hot-rolled steel sheet having excellent bake hardenability and formability according to the present invention will be described.
本発明の高張力熱延鋼板は、上記化学成分範囲に調整された鋼を、加熱温度:1000℃(Nb、Ti、V、Cr 、Bを添加する場合には1070℃)以上1300℃以下にて加熱し、粗圧延後、最終スタンド圧下率:10%以上、最終仕上げ圧延終了温度FDT:(Ar3+10℃)以上にて仕上げ圧延を行い、次いで、冷却速度:100℃/sec以上200℃/sec以下で650℃以上750℃以下まで冷却した後、10℃/sec以上25℃/sec以下の冷却速度で450℃以上600℃以下の巻取り温度まで冷却し、次いで、前記巻取り温度で巻き取ることにより得られる。 The high-tensile hot-rolled steel sheet according to the present invention is a steel adjusted to the above chemical composition range at a heating temperature of 1000 ° C. (1070 ° C. when Nb, Ti, V, Cr, and B are added) to 1300 ° C. After heating and rough rolling, finish rolling is performed at a final stand rolling reduction of 10% or more, final finish rolling finish temperature FDT: (Ar3 + 10 ° C) or more, and then a cooling rate: 100 ° C / sec or more and 200 ° C / sec. After cooling to 650 ° C. or more and 750 ° C. or less below, cool to a coiling temperature of 450 ° C. or more and 600 ° C. or less at a cooling rate of 10 ° C./sec or more and 25 ° C./sec. Can be obtained.
熱延板で本発明の固溶N量を確保するためには、加熱時に窒化物を溶解させておく必要があり、また熱延板の組織を微細化するためには、加熱温度を低くして加熱時のオーステナイト粒をできるだけ細かくすることが必要である。以上から加熱温度は窒化物形成元素(Nb、Ti、V、Cr 、B)を含まない場合、1000℃以上1300℃以下、より好ましくは1100℃以上1180℃以下とする。また、Nb、Ti、V、Cr 、Bを必要に応じて1種または2種以上添加する場合、これら元素の強化能を十分に活用するため、1070℃以上1300℃以下、より好ましくは1100℃以上1180℃以下とする。1000℃未満(1070℃未満)ではNの析出が進行し、熱延板中に固溶状態でNを残存させるのが困難となる。また1300℃を超えると、フェライトの平均結晶粒径を10μm以下とするのが困難となる。
In order to secure the solid solution N amount of the present invention in the hot-rolled sheet, it is necessary to dissolve the nitride during heating, and in order to refine the structure of the hot-rolled sheet, the heating temperature is lowered. Thus, it is necessary to make the austenite grains as fine as possible during heating. From the above, the heating temperature is 1000 ° C. or higher and 1300 ° C. or lower, more preferably 1100 ° C. or higher and 1180 ° C. or lower when nitride-forming elements (Nb, Ti, V, Cr 2, B) are not included. Further, when adding one or more of Nb, Ti, V, Cr, and B as required, in order to fully utilize the strengthening ability of these elements, it is 1070 ° C or higher and 1300 ° C or lower, more preferably 1100 ° C. Above 1180 ° C. If it is less than 1000 ° C. (less than 1070 ° C.), precipitation of N proceeds, making it difficult to leave N in a solid solution state in the hot-rolled sheet. If it exceeds 1300 ° C., it becomes difficult to make the average crystal grain size of
この時の加熱は、加熱炉等の公知の装置で加熱することができる。さらにこの時の鋼としては、公知の溶製方法により溶製された溶鋼を、公知の連続鋳造法、あるいは造塊法により鋳造凝固し、スラブ等の形状とするのが好ましい。 The heating at this time can be performed by a known apparatus such as a heating furnace. Furthermore, as the steel at this time, it is preferable that the molten steel melted by a known melting method is cast and solidified by a known continuous casting method or ingot forming method to form a slab or the like.
加熱後、熱間圧延される。熱間圧延は粗圧延、および仕上げ圧延からなり、粗圧延により適当な厚さに調整された鋼は、次いで仕上げ圧延を施される。この時の仕上げ圧延は、熱延後組織の結晶径を微細化するため、最終スタンド圧下率を10%以上で、最終仕上げ圧延温度FDT(以下、FDTと称す)を(Ar3+10℃)以上で行うものとする。最終スタンド圧延圧下率が10%未満で、かつFDTが(Ar3+10℃)未満では、変態前の板厚方向での歪分布が不均一となり、フェライトの平均結晶粒径が微細化できない。また最終スタンドの圧延後(仕上げ圧延後)の冷却においては、冷却開始温度であるFDTが高い場合、フェライト変態前の歪の蓄積が十分でなく、結晶粒の微細化、固溶Nの存在形態の制御が不十分となる。以上の理由から、最終スタンド圧延の圧下率は好ましくは20%以上、FDTは好ましくは(Ar3+100℃)〜(Ar3+10℃)である。 After heating, it is hot rolled. Hot rolling consists of rough rolling and finish rolling, and the steel adjusted to an appropriate thickness by rough rolling is then subjected to finish rolling. At this time, the final rolling reduction rate is 10% or more and the final finishing rolling temperature FDT (hereinafter referred to as FDT) is (Ar3 + 10 ° C) or higher in order to refine the crystal diameter of the microstructure after hot rolling. It shall be done in If the final stand rolling reduction is less than 10% and the FDT is less than (Ar 3 + 10 ° C.), the strain distribution in the thickness direction before transformation becomes non-uniform, and the average crystal grain size of ferrite cannot be refined. In addition, when cooling the final stand after rolling (after finish rolling), if the FDT, which is the cooling start temperature, is high, the accumulation of strain before ferrite transformation is not sufficient, resulting in refinement of crystal grains and the form of solute N Insufficient control. For the above reasons, the rolling reduction of the final stand rolling is preferably 20% or more, and the FDT is preferably (Ar3 + 100 ° C.) to (Ar 3 + 10 ° C.).
仕上げ圧延終了後、100℃/sec以上200℃/sec以下の冷却速度で650℃以上750℃以下まで(一次)冷却した後、10℃/sec以上25℃/sec以下の冷却速度で巻取り温度まで(二次)冷却する。 After finishing rolling, after cooling to 650 ° C or higher and 750 ° C or lower (primary) at a cooling rate of 100 ° C / sec to 200 ° C / sec, the coiling temperature is set to 10 ° C / sec or higher and 25 ° C / sec or lower. Cool to (secondary).
このように本発明では、歪が蓄積した状態で過冷度を大きくするために、圧延終了後、100℃/sec以上の冷却速度で冷却する。これにより、より多くのフェライト核を生成し、結晶粒が微細化するとともに固溶Nがフェライト粒内に拡散するのが抑制でき、粒界に存在する固溶N量が増加する。一方で、冷却速度が200℃/sec超えでは、鋼板の表面組織にマルテンサイト相等の硬質な低温変態相が生じ、延性を低下させる。よって、(一次)冷却速度は100℃/sec以上200℃/sec以下とする。 As described above, in the present invention, in order to increase the degree of supercooling in a state where strain is accumulated, cooling is performed at a cooling rate of 100 ° C./sec or more after rolling. As a result, more ferrite nuclei are generated, crystal grains are refined, and solid solution N can be prevented from diffusing into the ferrite grains, so that the amount of solid solution N existing at the grain boundaries increases. On the other hand, when the cooling rate exceeds 200 ° C./sec, a hard low-temperature transformation phase such as a martensite phase is generated in the surface structure of the steel sheet, thereby reducing ductility. Therefore, the (primary) cooling rate is set to 100 ° C./sec or more and 200 ° C./sec or less.
そして、適度なパーライト相が形成するよう上記冷却速度で650℃以上750℃以下に冷却後、冷却速度を10℃/sec以上25℃/sec以下に変更し、450℃以上600℃以下の巻き取り温度まで冷却する。一次冷却の冷却停止温度が750℃を超える場合、パーライト核が多量に生成し、また、二次冷却速度が10℃/sec未満では、パーライトの生成が適量をこえることにより成形性を低下する。一次冷却の冷却停止温度が650℃未満、または二次冷却速度が25℃/sec超えの冷却速度では、パーライト核が十分に生成、成長せず、やはり成形性が低下する。ΔTS向上の観点から十分な固溶Nを得るためには、2次冷却速度は15℃以上とするのが好ましい。 Then, after cooling to 650 ° C. or higher and 750 ° C. or lower at the above cooling rate so that an appropriate pearlite phase is formed, the cooling rate is changed to 10 ° C./sec or higher and 25 ° C. or lower, and winding is performed at 450 ° C. or higher and 600 ° C. or lower. Cool to temperature. When the cooling stop temperature of the primary cooling exceeds 750 ° C., a large amount of pearlite nuclei are generated, and when the secondary cooling rate is less than 10 ° C./sec, the formation of pearlite exceeds an appropriate amount, thereby reducing the moldability. When the cooling stop temperature of the primary cooling is less than 650 ° C. or the cooling rate is more than 25 ° C./sec, the pearlite nuclei are not sufficiently generated and grown, and the moldability is also lowered. In order to obtain sufficient solute N from the viewpoint of improving ΔTS, the secondary cooling rate is preferably 15 ° C. or higher.
冷却後、前記巻取り温度(450℃以上600℃以下)で巻き取る。巻取り温度が600℃を超えると、巻取り後に固溶Nの析出が生じ、焼付硬化に必要な固溶N量を所定値以上とすることができない。一方、巻取り温度が450℃未満では、低温変態フェライト(ベイニチックフェライト)やベイナイトが生じ、成形性が劣化するとともに板形状が悪化したり、通板性が劣化するなどの操業上の問題が発生する。以上から巻取り温度は450℃以上600℃以下とする。ΔTS向上の観点から十分な固溶Nを得るためには、巻取り温度は550℃以下が好ましい。 After cooling, it is wound at the winding temperature (450 ° C. or higher and 600 ° C. or lower). When the winding temperature exceeds 600 ° C., solid solution N precipitates after winding, and the amount of solid solution N necessary for bake hardening cannot be set to a predetermined value or more. On the other hand, when the coiling temperature is less than 450 ° C, low-temperature transformation ferrite (bainitic ferrite) and bainite are generated, and the operational problems such as deterioration of formability, plate shape, and deterioration of sheet passability. Will occur. Therefore, the coiling temperature is set to 450 ° C. or higher and 600 ° C. or lower. In order to obtain sufficient solute N from the viewpoint of improving ΔTS, the coiling temperature is preferably 550 ° C. or lower.
なお、以上により得られた本発明の焼付硬化性及び成形性に優れた高張力熱延鋼板は各種メッキ溶原板として好適であり、表面に各種メッキ層を形成し、各種メッキ鋼板として使用してもよい。メッキの種類としては、電気亜鉛メッキ、溶融亜鉛メッキ、電気錫メッキ、電気クロムメッキが挙げられ、いずれも本発明の熱延鋼板表面に形成されるメッキ層として好適である。 In addition, the high-tensile hot-rolled steel sheet excellent in bake hardenability and formability of the present invention obtained as described above is suitable as various plating hot metal sheets, various plating layers are formed on the surface, and used as various plating steel sheets. Also good. Examples of the type of plating include electrogalvanizing, hot dip galvanizing, electrotin plating, and electrochrome plating, and any of them is suitable as a plating layer formed on the surface of the hot-rolled steel sheet of the present invention.
表1に示す元素を含有し、残部はFeおよび不可避的不純物からなる鋼を用いて、表2に示す種々の製造条件にて熱間圧延を行い、パーライト相の体積率を変化させた板厚2.3mmの熱延鋼板を製造した。 Thickness containing the elements shown in Table 1, with the balance being steel made of Fe and inevitable impurities, hot-rolled under various production conditions shown in Table 2, and changing the volume fraction of the pearlite phase A 2.3 mm hot-rolled steel sheet was produced.
次いで、これら熱延鋼板からJIS5号引張り試験用試験片を採取し、1)通常の引張り試験と、2)10%の引張り予歪を与えた後一旦停止して、170℃×20minの熱処理(塗装焼付処理相当)を施した後に、再度引張り歪を加える引張り試験、の2種類を実施しそれぞれ引張り強さを測定した。得られた測定結果から2)により得られた加工−塗装焼付処理を施したのちの引張り強さTSBHと、1)により得られた熱延ままの引張り強さTSとの差、ΔTS(BHT)を計算した。 Next, JIS No. 5 tensile test specimens were collected from these hot-rolled steel sheets, 1) normal tensile test, and 2) 10% tensile pre-strain and then temporarily stopped, and heat treatment (170 ° C x 20 min) After applying the paint baking process, the tensile strength was measured again, and the tensile strength was measured. From the measurement results obtained, the difference between the tensile strength TS BH after the processing-paint baking process obtained in 2) and the tensile strength TS as-hot-rolled obtained in 1), ΔTS (BHT ) Was calculated.
さらに、鋼板に要求される成形性を評価するため、上記熱延鋼板に対して、延性以外に伸びフランジ性の指標となる穴拡げ性λも併せて測定を行った。試験条件は、日本鉄鋼連盟規格の穴拡げ試験方法(T1001-1996)に従い測定した。 Furthermore, in order to evaluate the formability required for the steel sheet, the hole expandability λ, which is an index of stretch flangeability, was measured in addition to the ductility. The test conditions were measured in accordance with the Japan Iron and Steel Federation standard hole expansion test method (T1001-1996).
熱延鋼板の組織形態は、各熱延板のL断面を腐食後に、金属顕微鏡もしくは走査電子顕微鏡を用い観察・撮影し、決定した。組織分率は、撮影後の写真を用い体積分率に換算した。 The microstructure of the hot-rolled steel sheet was determined by observing and photographing using a metal microscope or a scanning electron microscope after corroding the L cross section of each hot-rolled sheet. The tissue fraction was converted to a volume fraction using a photograph after photographing.
以上により、得られた結果を表3に示す。また、熱延条件により、組織形態、引張強度が大きく変化するため、本発明の指標としては、自動車用鋼板の成形性の指標として用いられるTS×ELを併せて表3に示す。また、パーライト分率とフェライト結晶粒径、および固溶N量も併せて示す。 The results obtained as described above are shown in Table 3. Further, since the microstructure and the tensile strength greatly change depending on the hot rolling conditions, Table 3 also shows TS × EL used as an index of formability of an automotive steel sheet as an index of the present invention. The pearlite fraction, ferrite crystal grain size, and solid solution N content are also shown.
表3より、本発明例では、パーライトが10%以上25%以下存在し、TS×Elが17500以上の値を示し成形性が充分であることがわかる。 From Table 3, it can be seen that in the examples of the present invention, pearlite is present at 10% or more and 25% or less, TS × El shows a value of 17500 or more, and the moldability is sufficient.
一方、比較例である試料記号AとE1およびLは、パーライトが25%を超え、F1、G1およびKは、パーライトが10%未満であり、TS×ELは17500に達しておらず、成形性に劣ることがわかる。すなわち、パーライト相を含む鋼板の成形性を向上させるのに、熱延条件の適切な領域が存在し、その範囲となるよう熱延条件を決定する必要があることがわかる。 On the other hand, sample symbols A, E1 and L, which are comparative examples, have pearlite exceeding 25%, F1, G1 and K have pearlite less than 10%, TS × EL does not reach 17500, and formability It turns out that it is inferior to. That is, it can be seen that in order to improve the formability of a steel sheet containing a pearlite phase, there is an appropriate region of hot rolling conditions, and it is necessary to determine the hot rolling conditions so as to be within that range.
引張強度が440MPa級の熱延鋼板の穴拡げ率は、通常で50%程度、高穴拡げ用では80%以上となる。これに対し、本発明例は何れも70%以上と高穴拡げ用鋼板に近い性能が得られることが分る。一方、比較例A、E1から、パ−ライト相の分率が25%を超えて高い場合では、安定した穴拡げ率が得られていないことがわかる。 The hole expansion ratio of a hot rolled steel sheet with a tensile strength of 440 MPa is usually about 50%, and 80% or more for high hole expansion. On the other hand, it can be seen that all of the examples of the present invention can obtain a performance close to 70% or more, which is similar to a steel sheet for high hole expansion. On the other hand, it can be seen from Comparative Examples A and E1 that when the fraction of the pearlite phase is higher than 25%, a stable hole expansion rate is not obtained.
また本発明の特性のもう一つの目標であるΔTS(BHT)に注目すると、フェライトの結晶粒径が10μm以下、かつ固溶N量が0.004%を超える場合に、50MPa以上と良好な値を示すことが分る。 In addition, paying attention to ΔTS (BHT), which is another target of the characteristics of the present invention, when the crystal grain size of ferrite is 10 μm or less and the amount of solute N exceeds 0.004%, it shows a good value of 50 MPa or more. I understand that.
一方、比較例である試料番号A、Lは粒径が10μm以上となっており、他の試料より結晶粒が粗大化していることが分る。これは、固溶したC,Nは転位などの格子欠陥とその近傍および結晶粒界面にも偏析し、結晶粒が微細化すると粒界面積が増加するため、固溶C,Nの存在サイトが増加し、歪み時効時に有効に作用するものと考えられるのに対し、試料番号A、Lでは、結晶粒の粗大化により、粒界面積が減少し、歪み時効後の強度上昇(ΔTS)に必要な固溶Nが十分でないためと考えられる。 On the other hand, sample numbers A and L, which are comparative examples, have a particle size of 10 μm or more, and it can be seen that the crystal grains are coarser than other samples. This is because solid solution C and N segregates also at the lattice defects such as dislocations and in the vicinity and at the crystal grain interface, and when the crystal grains become finer, the grain interface area increases. Increased and considered to work effectively during strain aging, but with Sample Nos. A and L, grain interfacial area decreases due to the coarsening of crystal grains and is necessary for strength increase after strain aging (ΔTS) This is thought to be due to insufficient solid solution N.
フェライト粒径を10μm以下とするためには、スラブ加熱から熱延仕上後、1次冷却停止温度が重要で、粒径が10μm以上となる試料記号Aでは、1次冷却温度が、本請求範囲を超えて高いため、試料記号Lでは、最終スタンド圧下率が、範囲を超えて低いためフェライドの粗大化が進行している。 In order to reduce the ferrite grain size to 10 μm or less, the primary cooling stop temperature is important after slab heating to hot rolling, and for sample symbol A with a grain size of 10 μm or more, the primary cooling temperature is the scope of this claim. Therefore, in the sample symbol L, the final stand rolling reduction is low beyond the range, and the coarsening of the ferride is proceeding.
またフェライト粒が10μm以下であってもスラブ加熱温度が低いJでは、窒化物の溶解が不十分であるため十分な固溶Nが得られない。 Further, even when the ferrite grains are 10 μm or less, J having a low slab heating temperature cannot sufficiently obtain a solid solution N because the nitride is not sufficiently dissolved.
鋼組成と熱延最終仕上圧延後、コイル巻取りまでの熱延条件が本発明の範囲である試料記号B〜D2、E2、I、Mでは、十分な固溶N量が得られるとともにパーライト相が本発明範囲の範囲内で存在するためTS×ELが17500以上と成形性に優れ、かつ50MPa以上と良好な値を示し、焼付硬化性にも優れていることがわかる。 Sample symbols B to D2, E2, I, and M, in which the hot rolling conditions from the steel composition and hot rolling final finish rolling to coil winding are within the scope of the present invention, a sufficient amount of solute N is obtained and the pearlite phase Is present within the range of the present invention, TS × EL is 17500 or more, which is excellent in moldability, and it shows a good value of 50 MPa or more, and it is understood that bake hardenability is also excellent.
その他の比較例においては、TS×ELが17500未満か、ΔTS(BHT)が50Mpa未満と、成形性もしくは焼付硬化性の一つ以上が劣っていることがわかる。 In other comparative examples, it can be seen that one or more of moldability or bake hardenability is inferior when TS × EL is less than 17500 or ΔTS (BHT) is less than 50 Mpa.
また、本発明例では、引張り強さも十分に向上しているため耐疲労性、耐衝撃性にも優れている。 Moreover, in the example of this invention, since the tensile strength is also improving sufficiently, it is excellent also in fatigue resistance and impact resistance.
本発明の高張力熱延鋼板は、自動車の構造部材以外にも、優れた耐疲労性、耐衝撃性、焼付硬化性、成形性が要求される分野でも好適である。
The high-tensile hot-rolled steel sheet of the present invention is suitable not only for structural members of automobiles but also in fields where excellent fatigue resistance, impact resistance, bake hardenability and formability are required.
Claims (5)
60%超のフェライト相を主相とし、第2相が10〜25%のパーライト相を有し、かつ、前記フェライト相の平均結晶粒径が10μm以下である混合組織であり、
さらに、固溶N量が0.004〜0.010%であることを特徴とする焼付硬化性及び成形性に優れた高張力熱延鋼板。 In mass%, C: 0.01-0.12%, Si: 0.2% or less, Mn: 0.01-1.7%, P: 0.2% or less, Al: 0.001-0.1%, N: 0.004-0.020%, the balance being Fe And inevitable impurities,
A mixed structure in which a ferrite phase of more than 60% is a main phase, a second phase has a pearlite phase of 10 to 25%, and an average crystal grain size of the ferrite phase is 10 μm or less;
Furthermore, a high-tensile hot-rolled steel sheet excellent in bake hardenability and formability, characterized in that the amount of solute N is 0.004 to 0.010%.
10%以上の最終スタンド圧下率、(Ar3+10℃)以上の最終仕上げ圧延終了温度FDTで仕上げ圧延を行い、
次いで、100℃/sec以上200℃/sec以下の冷却速度で、650℃以上750℃以下まで冷却した後、
10℃/sec以上25℃/sec以下の冷却速度で、450℃以上600℃以下の巻取り温度まで冷却し、
該巻取り温度で巻き取ることを特徴とする焼付硬化性及び成形性に優れた高張力熱延鋼板の製造方法。 In mass%, C: 0.01-0.12%, Si: 0.2% or less, Mn: 0.01-1.7%, P: 0.2% or less, Al: 0.001-0.1%, N: 0.004-0.020%, the balance being Fe And the steel consisting of inevitable impurities is heated to a temperature of 1000 ° C or higher and 1300 ° C or lower, and after rough rolling,
Finish rolling at a final stand rolling reduction rate of 10% or more, final finish rolling finish temperature FDT of (Ar3 + 10 ℃) or more,
Next, after cooling to 650 ° C. or more and 750 ° C. or less at a cooling rate of 100 ° C./sec or more and 200 ° C./sec or less,
Cool to a coiling temperature of 450 ° C or more and 600 ° C or less at a cooling rate of 10 ° C / sec or more and 25 ° C / sec or less,
A method for producing a high-tensile hot-rolled steel sheet having excellent bake hardenability and formability, wherein the steel sheet is wound at the winding temperature.
10%以上の最終スタンド圧下率、(Ar3+10℃)以上の最終仕上げ圧延終了温度FDTで仕上げ圧延を行い、
次いで、100℃/sec以上200℃/sec以下の冷却速度で、650℃以上750℃以下まで冷却した後、
10℃/sec以上25℃/sec以下の冷却速度で、450℃以上600℃以下の巻取り温度まで冷却し、
該巻取り温度で巻き取ることを特徴とする焼付硬化性及び成形性に優れた高張力熱延鋼板の製造方法。 In mass%, C: 0.01 to 0.12%, Si: 0.2% or less, Mn: 0.01 to 1.7%, P: 0.2% or less, Al: 0.001 to 0.1%, N: 0.004 to 0.020%, Nb : 0.001 to 0.05%, Ti: 0.005 to 0.01%, V: 0.001 to 0.05%, Cr: 0.01 to 0.1%, B: 0.0001 to 0.001%, 2 or more types, the balance being Fe and inevitable Steel made of impurities is heated to a temperature range of 1070 ° C to 1300 ° C, and after rough rolling,
Finish rolling at a final stand rolling reduction rate of 10% or more, final finish rolling finish temperature FDT of (Ar3 + 10 ℃) or more,
Next, after cooling to 650 ° C. or more and 750 ° C. or less at a cooling rate of 100 ° C./sec or more and 200 ° C./sec or less,
Cool to a coiling temperature of 450 ° C or more and 600 ° C or less at a cooling rate of 10 ° C / sec or more and 25 ° C / sec or less,
A method for producing a high-tensile hot-rolled steel sheet having excellent bake hardenability and formability, wherein the steel sheet is wound at the winding temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005053276A JP4867177B2 (en) | 2005-02-28 | 2005-02-28 | High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005053276A JP4867177B2 (en) | 2005-02-28 | 2005-02-28 | High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006233309A JP2006233309A (en) | 2006-09-07 |
JP4867177B2 true JP4867177B2 (en) | 2012-02-01 |
Family
ID=37041288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005053276A Expired - Fee Related JP4867177B2 (en) | 2005-02-28 | 2005-02-28 | High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4867177B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5125081B2 (en) * | 2006-11-30 | 2013-01-23 | Jfeスチール株式会社 | Cold-rolled steel sheet with excellent flatness after punching and method for producing the same |
JP5018934B2 (en) * | 2010-06-29 | 2012-09-05 | Jfeスチール株式会社 | High-strength steel sheet with excellent workability and method for producing the same |
JP5018935B2 (en) | 2010-06-29 | 2012-09-05 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof |
JP6058439B2 (en) * | 2013-01-10 | 2017-01-11 | 株式会社神戸製鋼所 | Hot-rolled steel sheet with excellent cold workability and surface hardness after processing |
JP6284813B2 (en) * | 2014-04-18 | 2018-02-28 | 株式会社神戸製鋼所 | Hot-rolled steel sheet with excellent cold workability and excellent hardness after processing |
JP7303435B2 (en) * | 2019-08-20 | 2023-07-05 | 日本製鉄株式会社 | Hot-rolled steel sheet and manufacturing method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3858551B2 (en) * | 1999-02-09 | 2006-12-13 | Jfeスチール株式会社 | High-tensile hot-rolled steel sheet excellent in bake hardenability, fatigue resistance, impact resistance and room temperature aging resistance and method for producing the same |
-
2005
- 2005-02-28 JP JP2005053276A patent/JP4867177B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006233309A (en) | 2006-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109642288B (en) | High-strength steel sheet and method for producing same | |
JP6179461B2 (en) | Manufacturing method of high-strength steel sheet | |
KR101399741B1 (en) | High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same | |
JP5332355B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
JP5672421B1 (en) | High strength hot rolled steel sheet and method for producing the same | |
JP5825189B2 (en) | High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and low-temperature toughness, and method for producing the same | |
KR20170015303A (en) | High strength multiphase steel, production method and use | |
JP4926814B2 (en) | High strength steel plate with controlled yield point elongation and its manufacturing method | |
JP5825082B2 (en) | High yield ratio high strength cold-rolled steel sheet with excellent elongation and stretch flangeability and its manufacturing method | |
WO2011122031A1 (en) | Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same | |
WO2012002565A1 (en) | High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same | |
JP2007138262A (en) | High strength cold rolled steel sheet reduced in dispersion in mechanical characteristic, and its manufacturing method | |
WO2012002566A1 (en) | High-strength steel sheet with excellent processability and process for producing same | |
JP5482204B2 (en) | High strength hot rolled steel sheet and method for producing the same | |
WO2013160928A1 (en) | High-strength steel sheet and method for manufacturing same | |
JP2008174776A (en) | High-strength cold-rolled steel sheet excellent in stretch-flange formability and impact energy absorption characteristic and its production method | |
KR20200101980A (en) | High-strength cold-rolled steel sheet, high-strength plated steel sheet and their manufacturing method | |
KR20200106195A (en) | High-strength steel sheet and its manufacturing method | |
KR102098482B1 (en) | High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof | |
JP5348071B2 (en) | High strength hot rolled steel sheet and method for producing the same | |
JP4867177B2 (en) | High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same | |
JP2004250749A (en) | High strength thin steel sheet having burring property, and production method therefor | |
JP5482205B2 (en) | High strength hot rolled steel sheet and method for producing the same | |
JP4513552B2 (en) | High-tensile hot-rolled steel sheet excellent in bake hardenability and room temperature aging resistance and method for producing the same | |
KR102451005B1 (en) | High-strength steel sheet having excellent thermal stability and method for mnufacturing thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060921 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111018 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111031 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4867177 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141125 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |