JP2005133199A - High carbon cold rolled steel sheet, and method for manufacturing the same - Google Patents

High carbon cold rolled steel sheet, and method for manufacturing the same Download PDF

Info

Publication number
JP2005133199A
JP2005133199A JP2004218719A JP2004218719A JP2005133199A JP 2005133199 A JP2005133199 A JP 2005133199A JP 2004218719 A JP2004218719 A JP 2004218719A JP 2004218719 A JP2004218719 A JP 2004218719A JP 2005133199 A JP2005133199 A JP 2005133199A
Authority
JP
Japan
Prior art keywords
less
carbide
temperature
steel sheet
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004218719A
Other languages
Japanese (ja)
Other versions
JP4412094B2 (en
Inventor
Takeshi Fujita
毅 藤田
Tetsuo Mochida
哲男 持田
Nobuyuki Nakamura
展之 中村
Tetsuo Shimizu
哲雄 清水
Noritaka Takahashi
紀隆 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004218719A priority Critical patent/JP4412094B2/en
Priority to KR1020040067439A priority patent/KR100673422B1/en
Priority to CNB200410068318XA priority patent/CN1303244C/en
Publication of JP2005133199A publication Critical patent/JP2005133199A/en
Application granted granted Critical
Publication of JP4412094B2 publication Critical patent/JP4412094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high carbon cold rolled steel sheet in which cracks at the blanked edge faces are hard to be generated, and which has excellent stretch flanging property or ductility as well. <P>SOLUTION: The high carbon cold rolled steel sheet comprises 0.20 to 0.58% C, ≤0.1% Si, 0.20 to 0.60% Mn, ≤0.02% P, ≤0.01% S, ≤0.1% sol.Al, ≤0.005% N, 0.001 to 0.005% B and 0.05 to 0.3% Cr, and has a structure in which the average grain size of ferrite is ≤6 μm, the average grain size of carbide is 0.1 to <1.20 μm, and the volume ratio of the ferrite grains substantially including no carbide is ≤15%. In the method of manufacturing a high carbon cold rolled steel sheet, the steel having the above composition is subjected to hot rolling under the conditions where the finishing temperature is ≥(an Ar<SB>3</SB>point-10°C), the cooling velocity is >120°C/s, the cooling stop temperature is ≤620°C, and the coiling temperature is ≤600°C, is thereafter subjected to cold rolling at a draft of ≥30%, and is annealed at 640°C to an Ac<SB>1</SB>transformation point. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車の構造部品等に使用され、素材である冷延鋼板の強度において440MPa以上を有する伸びフランジ性に優れ、あるいはさらに延性にも優れた高炭素冷延鋼板およびその製造方法に関する。   The present invention relates to a high-carbon cold-rolled steel sheet that is used for structural parts of automobiles and the like and has excellent stretch flangeability having a strength of a cold-rolled steel sheet that is 440 MPa or more, or further excellent in ductility, and a method for producing the same.

工具あるいは自動車部品(ギア、ミッション)等に使用される高炭素鋼板は、打抜き、成形後、焼入れ焼戻し等の熱処理が施される。これらの部品加工を行うユーザの要求の一つに、打抜き後の成形において、穴拡げ加工(バーリング)性の向上がある。この穴拡げ加工性は、プレス成形性としては伸びフランジ性で評価されている。そのため、伸びフランジ性の優れた材料が望まれている。また、複雑形状に成形する場合は延性の指標である伸び特性が良好であることも要求される。   High carbon steel sheets used for tools or automobile parts (gears, missions) and the like are subjected to heat treatment such as quenching and tempering after punching and forming. One of the requirements of users who perform these parts processing is to improve hole expansion processing (burring) in forming after punching. This hole expansion workability is evaluated as stretch flangeability as press formability. Therefore, a material excellent in stretch flangeability is desired. In addition, when forming into a complex shape, it is also required that the elongation characteristic, which is an index of ductility, is good.

このような、高炭素鋼板の伸びフランジ性の向上については、いくつかの技術が検討されている。例えば、特許文献1には、冷間圧延を経たプロセスにおいて、伸びフランジ性に優れた中・高炭素鋼板を作る方法が提案されている。この技術は、C:0.1〜0.8質量%を含有する鋼からなり、金属組織が実質的にフェライト+パーライト組織であり、必要に応じて初析フェライト面積率がC含有量(質量%)により決まる所定の値以上、パーライトラメラ間隔が0.1μm以上の熱延鋼板に、15%以上の冷間圧延を施し、次いで、3段階又は2段階の温度範囲で長時間保持する3段階又は2段階焼鈍を施すというものである。   Several techniques have been studied for improving the stretch flangeability of such a high-carbon steel sheet. For example, Patent Document 1 proposes a method for producing a medium / high carbon steel sheet having excellent stretch flangeability in a process after cold rolling. This technique consists of steel containing C: 0.1 to 0.8% by mass, the metal structure is substantially a ferrite + pearlite structure, and the pro-eutectoid ferrite area ratio is determined by the C content (% by mass) as necessary. Hot rolling steel sheets with a perlite lamellar spacing of 0.1μm or more are given a cold rolling of 15% or more, and then subjected to three-stage or two-stage annealing for a long time in a three-stage or two-stage temperature range. It is to give.

また、特許文献2には、C:0.1〜0.8質量%を含有する鋼からなり、初析フェライト面積率(%)がC含有量により決まる所定値以上である、初析フェライト+パーライト組織の熱延鋼板に、1段目の加熱保持と2段目の加熱保持を連続して行う焼鈍を施す、という技術が開示されている。   Patent Document 2 discloses that the heat of pro-eutectoid ferrite + pearlite structure is made of steel containing C: 0.1 to 0.8% by mass, and the pro-eutectoid ferrite area ratio (%) is not less than a predetermined value determined by the C content. A technique is disclosed in which a steel sheet is subjected to annealing in which the first stage of heating and holding and the second stage of heating and holding are continuously performed.

さらに特許文献3には、伸びフランジ性に優れた高炭素熱延鋼板が提案されている。これは、Cを0.2〜0.7質量%含有する鋼を、仕上温度 (Ar3変態点-20℃)以上で熱間圧延した後、冷却速度120℃/秒超かつ冷却停止温度650℃以下で冷却を行い、次いで巻取温度600℃以下で巻取り、酸洗後、焼鈍温度640℃以上Ac1変態点以下で焼鈍する技術である。金属組織については、炭化物平均粒径を0.1μm以上1.2μm未満、炭化物を含まないフェライト粒の体積率を10%以下に制御することを特徴としている。 Further, Patent Document 3 proposes a high carbon hot-rolled steel sheet excellent in stretch flangeability. This is because steel containing 0.2 to 0.7% by mass of C is hot-rolled at a finishing temperature (Ar 3 transformation point -20 ° C) or higher and then cooled at a cooling rate exceeding 120 ° C / second and a cooling stop temperature of 650 ° C or lower. And then winding at a coiling temperature of 600 ° C. or lower, pickling, and annealing at an annealing temperature of 640 ° C. or higher and an Ac 1 transformation point or lower. The metal structure is characterized by controlling the average particle size of carbide to 0.1 μm or more and less than 1.2 μm and the volume fraction of ferrite grains not containing carbide to 10% or less.

また、特許文献4には、伸びフランジ性に優れた高炭素冷延鋼板が提案されている。これは、Cを0.2〜0.7質量%含有する鋼を、仕上温度(Ar3変態点-20℃)以上で熱間圧延した後、冷却速度120℃/秒超かつ冷却停止温度650℃以下で冷却を行い、次いで巻取温度600℃以下で巻取り、酸洗後、冷圧率30%以上で冷間圧延を行い、焼鈍温度600℃以上Ac1変態点以下で焼鈍する技術である。金属組織については、炭化物平均粒径を0.1μm以上2.0μm未満、炭化物を含まないフェライト粒の体積率を15%以下に制御することを特徴としている。
特開平11-269552号公報 特開平11-269553号公報 特開2003−13145号公報 特開2003−13144号公報
Patent Document 4 proposes a high carbon cold-rolled steel sheet having excellent stretch flangeability. This is because steel containing 0.2 to 0.7 mass% of C is hot-rolled at a finishing temperature (Ar 3 transformation point -20 ° C) or higher and then cooled at a cooling rate of over 120 ° C / second and a cooling stop temperature of 650 ° C or lower. And then winding at a coiling temperature of 600 ° C. or lower, pickling, cold rolling at a cold pressure ratio of 30% or higher, and annealing at an annealing temperature of 600 ° C. or higher and an Ac 1 transformation point or lower. The metal structure is characterized by controlling the average particle size of carbide to 0.1 μm or more and less than 2.0 μm, and the volume fraction of ferrite grains not containing carbide to 15% or less.
Japanese Patent Laid-Open No. 11-269552 Japanese Patent Laid-Open No. 11-269553 Japanese Patent Laid-Open No. 2003-13145 Japanese Patent Laid-Open No. 2003-13144

これら特許文献1、2記載の技術では、フェライト組織が初析フェライトからなり、炭化物を実質的に含まないため柔らかく延性に優れているが、伸びフランジ性は必ずしも良好ではない。それは、以下のように考えられる。すなわち、打抜き加工時に、打抜き端面の近傍で初析フェライトの部分が大きく変形するため、初析フェライトと球状化炭化物を含むフェライトでは変形量が大きく異なる。その結果、これら変形量が大きく異なる粒の粒界付近に応力が集中し、球状化組織とフェライトの界面にボイドが発生する。これがクラックに成長するため、結果的には伸びフランジ性を劣化させると考えられる。   In the techniques described in Patent Documents 1 and 2, since the ferrite structure is composed of pro-eutectoid ferrite and does not substantially contain carbide, it is soft and excellent in ductility, but stretch flangeability is not necessarily good. This is considered as follows. That is, during the punching process, the pro-eutectoid ferrite portion is greatly deformed in the vicinity of the punched end face, and therefore the deformation amount differs greatly between the pro-eutectoid ferrite and the ferrite containing the spheroidized carbide. As a result, stress concentrates in the vicinity of the grain boundaries of the grains having greatly different deformation amounts, and voids are generated at the interface between the spheroidized structure and the ferrite. Since this grows into a crack, it is considered that the stretch flangeability is deteriorated as a result.

この対策として、球状化焼鈍を強化することにより、全体として軟質化させることが考えられる。しかし、その場合は球状化した炭化物が粗大化し、加工の際にボイド発生の起点となるとともに、加工後の熱処理段階で炭化物が溶解し難くなり、焼入強度の低下につながる。   As a countermeasure against this, it is conceivable to soften the whole by strengthening the spheroidizing annealing. However, in that case, the spheroidized carbides become coarse and become the starting point of void generation during processing, and the carbides are difficult to dissolve in the heat treatment stage after processing, leading to a decrease in quenching strength.

また、最近では従来にもまして、生産性向上の観点からの加工レベルに対する要求が厳しくなっている。そのため、高炭素鋼板の穴拡げ加工についても、加工度の増加等により、打抜き端面の割れが発生しやすくなっている。従って、高炭素鋼板にも高い伸びフランジ性が要求されている。   In recent years, demands for processing levels from the viewpoint of productivity improvement have become stricter than ever before. Therefore, also in the hole expanding process of the high carbon steel sheet, the punched end face is likely to be cracked due to an increase in the degree of processing. Therefore, a high stretch steel sheet is also required to have high stretch flangeability.

本発明者らは、かかる事情に鑑み、長時間を要する多段階焼鈍を用いることなく製造でき、打抜き端面の割れが発生しにくい伸びフランジ性に優れた高炭素鋼板を提供することを目的として、特許文献3、4記載の技術を開発した。これらの技術により、伸びフランジ性に優れた高炭素熱延鋼板あるいは高炭素冷延鋼板が製造できるようになった。   In view of such circumstances, the present inventors have been able to manufacture without using multi-stage annealing requiring a long time, and for the purpose of providing a high carbon steel sheet excellent in stretch flangeability in which cracking of the punched end face is unlikely to occur. The technologies described in Patent Documents 3 and 4 were developed. These technologies have made it possible to produce high carbon hot rolled steel sheets or high carbon cold rolled steel sheets having excellent stretch flangeability.

最近では、駆動系部品などの用途に対しては、高耐久・軽量化の観点から一体成形部品などで非熱処理部においても高強度化が進み、素材である鋼板の引張強度(TS)として440MPa以上の強度を要求されるようになってきている。   Recently, for applications such as driveline parts, the strength of non-heat treated parts has been increasing with integral molded parts from the viewpoint of high durability and light weight, and the tensile strength (TS) of the steel plate is 440 MPa. The above strength has been demanded.

また、一体成形においては、10数工程のプレス工程を有し、バーリング加工のみならず、張出し、曲げなどの成形モードが複雑に組み合わされて成形がなされているため、伸びフランジ性とさらには延性の両特性を同時に要求されるようになってきている。   In addition, in the integral molding, there are more than 10 pressing processes, and not only burring, but also molding is performed by complex combinations of molding modes such as overhang and bending, so stretch flangeability and ductility Both of these characteristics are required at the same time.

しかしながら、上記特許文献3、4記載の技術では、TS≧440MPa(HRB硬度換算で73ポイント以上、Hv硬度換算にて135ポイント以上)を達成しようとすると、十分な伸びフランジ性が必ずしも得られなかった。すなわち、伸びフランジ性は穴拡げ率(λ)により評価され、高炭素冷延鋼板では、λ≧80%、好ましくはλ≧85%が望まれているが、上記技術ではこのTSと伸びフランジ性の要望を、同時に安定して確保することができなかった。また、延性については言及してなかった。   However, with the techniques described in Patent Documents 3 and 4 above, when trying to achieve TS ≧ 440 MPa (73 points or more in terms of HRB hardness, 135 points or more in terms of Hv hardness), sufficient stretch flangeability is not necessarily obtained. It was. That is, stretch flangeability is evaluated by the hole expansion ratio (λ). In high-carbon cold-rolled steel sheets, λ ≧ 80%, preferably λ ≧ 85% is desired. At the same time, it was not possible to secure a stable demand. Also, no mention was made of ductility.

本発明は、かかる事情に鑑み、長時間を要する多段階焼鈍を用いることなく製造でき、打抜き端面の割れが発生しにくく、440MPa以上の引張強度を有するとともに、穴拡げ率λ≧80%、好ましくはλ≧85%を満足する伸びフランジ性に優れた高炭素冷延鋼板を提供することを目的とし、さらに特に優れた延性が要求される場合には伸び35%をも満足する延性および伸びフランジ性に優れた高炭素冷延鋼板を提供することを目的とする。   In view of such circumstances, the present invention can be manufactured without using a multi-stage annealing that requires a long time, cracking of the punched end face is unlikely to occur, the tensile strength is 440 MPa or more, and the hole expansion ratio λ ≧ 80%, preferably Is intended to provide a high carbon cold-rolled steel sheet with excellent stretch flangeability satisfying λ ≧ 85%, and moreover, when particularly excellent ductility is required, ductility and stretch flange satisfying 35% elongation. It aims at providing the high carbon cold-rolled steel plate excellent in property.

上記課題は、次の発明により解決される。その発明は、質量%で、C:0.20〜0.58%、Si:0.1%以下、Mn:0.20〜0.60%、P:0.02%以下、S:0.01%以下、sol.Al: 0.1%以下、N:0.005%以下、B:0.001〜0.005%、Cr:0.05〜0.3%を含有し、残部鉄および不可避的不純物である組成と、フェライト平均粒径が6μm以下、炭化物平均粒径が0.1μm以上1.20μm未満、炭化物を実質的に含まないフェライト粒の体積率が15%以下である組織を有することを特徴とする高炭素冷延鋼板である。   The above problem is solved by the following invention. The invention is, in mass%, C: 0.20 to 0.58%, Si: 0.1% or less, Mn: 0.20 to 0.60%, P: 0.02% or less, S: 0.01% or less, sol. Al: 0.1% or less, N: 0.005% or less, B: 0.001 to 0.005%, Cr: 0.05 to 0.3%, the composition of the balance iron and inevitable impurities, the average ferrite grain size of 6 μm or less, the average carbide A high carbon cold-rolled steel sheet having a structure in which a grain size is 0.1 μm or more and less than 1.20 μm, and a volume fraction of ferrite grains substantially not containing carbide is 15% or less.

上記高炭素冷延鋼板の発明においては、さらに、炭化物平均粒径が0.5μm以上1.20μm未満であることを特徴とする高炭素冷延鋼板とすることもできる。   In the invention of the high-carbon cold-rolled steel sheet, a high-carbon cold-rolled steel sheet characterized by having an average carbide particle size of 0.5 μm or more and less than 1.20 μm can also be provided.

また、上記高炭素冷延鋼板の発明においては、さらに、炭化物を実質的に含まないフェライト粒の体積率が10%以下であることを特徴とする高炭素冷延鋼板とすることもできる。   In the invention of the high carbon cold-rolled steel sheet, a high-carbon cold-rolled steel sheet characterized in that the volume fraction of ferrite grains substantially free of carbides is 10% or less.

製造方法の発明としては、上記組成を有する鋼素材を、仕上温度 (Ar3変態点-10℃)以上の仕上温度で熱間圧延した後、冷却速度120℃/秒超かつ冷却停止温度620℃以下として冷却を行い、次いで巻取温度600℃以下で巻取り、圧下率30%以上で冷間圧延を行った後、焼鈍温度640℃以上Ac1変態点以下で焼鈍することを特徴とする高炭素冷延鋼板の製造方法である。 As an invention of the manufacturing method, a steel material having the above composition is hot-rolled at a finishing temperature equal to or higher than the finishing temperature (Ar 3 transformation point −10 ° C.), and then the cooling rate exceeds 120 ° C./second and the cooling stop temperature is 620 ° C. Cooling is performed as follows, and then winding is performed at a coiling temperature of 600 ° C. or less, cold rolling is performed at a reduction rate of 30% or more, and then annealing is performed at an annealing temperature of 640 ° C. or more and an Ac 1 transformation point or less. It is a manufacturing method of a carbon cold-rolled steel sheet.

製造方法の発明としては、前述の発明において、さらに、前記焼鈍を焼鈍温度680℃以上Ac1変態点以下で行うことを特徴とする高炭素冷延鋼板の製造方法とすることもできる。 As an invention of the manufacturing method, in the above-mentioned invention, it is also possible to provide a manufacturing method of a high carbon cold-rolled steel sheet characterized in that the annealing is performed at an annealing temperature of 680 ° C. or more and an Ac 1 transformation point or less.

また、製造方法の発明としては、前述の発明において、さらに、前記冷却停止温度600℃以下で冷却を行い、前記巻取温度500℃以下で巻取ることを特徴とする高炭素冷延鋼板の製造方法とすることもできる。   Further, as an invention of a manufacturing method, in the above-described invention, further, the cooling is performed at a cooling stop temperature of 600 ° C. or less, and the winding is performed at a winding temperature of 500 ° C. or less. It can also be a method.

また、製造方法の発明としては、前述の発明において、前記巻取り後、前記冷間圧延前に、さらに、焼鈍温度640℃以上Ac1変態点以下で焼鈍することを特徴とする高炭素冷延鋼板の製造方法とすることもできる。 Further, as an invention of a manufacturing method, in the above-mentioned invention, after the winding, and before the cold rolling, further annealing is performed at an annealing temperature of 640 ° C. or more and an Ac 1 transformation point or less. It can also be set as the manufacturing method of a steel plate.

これらの発明は、高炭素鋼板の伸びフランジ性および延性に及ぼす組成およびミクロ組織の影響について鋭意研究を進める中でなされた。その過程で、鋼板の伸びフランジ性および延性に影響を及ぼす因子は、組成や炭化物の形状および量のみならず、炭化物の分散状態も大きな影響を及ぼしていることを見出した。   These inventions were made in the course of diligent research on the effects of composition and microstructure on stretch flangeability and ductility of high carbon steel sheets. In the process, it has been found that factors affecting the stretch flangeability and ductility of the steel sheet have a great influence not only on the composition and shape and amount of carbide, but also on the dispersion state of carbide.

また、炭化物の形状としては炭化物平均粒径、炭化物の分散状態としては炭化物を実質的に含まないフェライト粒の体積率を、それぞれ制御することにより、高炭素冷延鋼板の伸びフランジ性が向上することがわかった。さらに、組成およびフェライト粒径を制御することにより、伸びフランジ性と強度を、安定してかつ高いレベルで両立でき、炭化物粒径をさらに規定し制御することで伸びを安定して高めることを見出した。そして、この知見に基づき、上記の組織を制御するための製造方法を検討し、伸びフランジ性に優れ、あるいはさらに延性にも優れた高炭素冷延鋼板およびその製造方法を確立した。   Further, by controlling the carbide average particle size as the shape of the carbide and the volume fraction of ferrite grains substantially free of carbide as the carbide dispersion state, the stretch flangeability of the high carbon cold-rolled steel sheet is improved. I understood it. Furthermore, it has been found that by controlling the composition and ferrite particle size, it is possible to achieve both stable and high levels of stretch flangeability and strength, and to stably increase the elongation by further defining and controlling the carbide particle size. It was. And based on this knowledge, the manufacturing method for controlling said structure | tissue was examined, and the high carbon cold-rolled steel plate excellent in stretch flangeability, or also excellent in ductility, and its manufacturing method were established.

以下、本発明の構成要素について説明する。   Hereinafter, the components of the present invention will be described.

C含有量: 0.20〜0.58%(質量%、以下同様)
Cは、炭化物を形成し、焼入後の硬度を付与する重要な元素である。しかし、C含有量が0.20%未満では、熱延後の組織において初析フェライトの生成が顕著となり、炭化物を実質的に含まないフェライト粒が多くなって、炭化物の分布が不均一となる。また、フェライト粒も粗大化する。さらにその場合、焼入後も、機械構造用部品として十分な強度が得られない。一方、C含有量が0.58%を超える場合、焼鈍後でも伸びフランジ性および延性が低い。従って、C含有量を0.20%以上0.58%以下とする。
C content: 0.20 to 0.58% (mass%, the same applies hereinafter)
C is an important element that forms carbides and imparts hardness after quenching. However, if the C content is less than 0.20%, the formation of pro-eutectoid ferrite becomes remarkable in the structure after hot rolling, the number of ferrite grains substantially not containing carbides increases, and the distribution of carbides becomes uneven. Further, the ferrite grains are also coarsened. Furthermore, in that case, sufficient strength cannot be obtained as a machine structural component even after quenching. On the other hand, when the C content exceeds 0.58%, stretch flangeability and ductility are low even after annealing. Therefore, the C content is set to 0.20% or more and 0.58% or less.

Si:0.1%以下
Siは、焼入れ性を向上させるとともに固溶強化により素材強度を上昇させる元素であるため、0.005%以上含有することが好ましい。しかし、0.1%を超えて含有すると、初析フェライトが生成し易くなり、炭化物を実質的に含まないフェライト粒が多くなって、伸びフランジ性が劣化する。従って、Si含有量を0.1%以下に制限する。
Si: 0.1% or less Since Si is an element that improves hardenability and increases the strength of the material by solid solution strengthening, it is preferably contained in an amount of 0.005% or more. However, if the content exceeds 0.1%, pro-eutectoid ferrite is likely to be generated, and ferrite grains that do not substantially contain carbides increase, and stretch flangeability deteriorates. Therefore, the Si content is limited to 0.1% or less.

Mn:0.20〜0.60%:
Mnは、Siと同様に焼入れ性を向上させるとともに固溶強化により素材強度を上昇させる元素である。また、SをMnSとして固定し、スラブの熱間割れを防止する重要な元素である。そして、Mnの含有量については、焼入性に大きな影響をおよぼすことが知られている。そこで、本発明のB、Cr添加鋼における焼入性におよぼすMn量の影響について調査した。
Mn: 0.20 to 0.60%:
Mn is an element that improves the hardenability and increases the strength of the material by solid solution strengthening as in the case of Si. Moreover, it is an important element which fixes S as MnS and prevents the hot crack of a slab. And it is known that the content of Mn has a great influence on the hardenability. Therefore, the influence of the amount of Mn on the hardenability in the B and Cr-added steel of the present invention was investigated.

C:0.36%、Si:0.03%、Mn:0.10〜0.90%、P:0.01%、S:0.003%、sol.Al:0.03%、N:0.0040%、B:0.0025%、Cr:0.25%からなる鋼を溶解後、加熱温度1250℃、熱延仕上温度880℃、巻取温度560℃で熱間圧延を行った。次いで、圧下率50%で冷間圧延を行い、710℃で40h保持の条件で焼鈍を行い、板厚2.5mmの鋼板を作製した。得られた鋼板を50x100mmの大きさに切断後、加熱炉にて820℃に昇温し、60秒保持後に約60℃の油中へ焼入れた。焼入れ後の試験片における硬さをロックウェルCスケール(HRc)で試料表面を測定面として10点測定して焼入れ性を評価した。評価は測定した10点の平均硬さ(HRc)50以上を良好とした。得られた結果を図1に示す。   C: 0.36%, Si: 0.03%, Mn: 0.10 to 0.90%, P: 0.01%, S: 0.003%, sol. After melting steel composed of Al: 0.03%, N: 0.0040%, B: 0.0025%, Cr: 0.25%, hot rolling was performed at a heating temperature of 1250 ° C, a hot rolling finishing temperature of 880 ° C, and a winding temperature of 560 ° C. . Next, cold rolling was performed at a reduction rate of 50%, and annealing was performed at 710 ° C. for 40 hours, thereby producing a steel plate having a thickness of 2.5 mm. The obtained steel sheet was cut into a size of 50 × 100 mm, heated to 820 ° C. in a heating furnace, held for 60 seconds, and then quenched into oil at about 60 ° C. Hardness of the test piece after quenching was measured on a Rockwell C scale (HRc) using the sample surface as a measurement surface at 10 points to evaluate the hardenability. Evaluation made the 10-point measured average hardness (HRc) 50 or more favorable. The obtained results are shown in FIG.

図1は、Mn量と焼入れ後の平均硬さとの関係を示す図である。図1より、Mn量が0.20%以上で平均硬さ(HRc)50以上が確保され、Mn量が0.35%以上で平均硬さ(HRc)が55に達し、より高い焼入れ硬さが安定して得られることがわかる。   FIG. 1 is a graph showing the relationship between the amount of Mn and the average hardness after quenching. From Fig. 1, when the Mn content is 0.20% or more, an average hardness (HRc) of 50 or more is secured, and when the Mn content is 0.35% or more, the average hardness (HRc) reaches 55, and a higher quenching hardness is stabilized. It turns out that it is obtained.

また、素材強度を上昇させ、SをMnSとして固定し、スラブの熱間割れを防止する点から、Mn含有量が0.20%未満では、これらの効果が小さくなる、とともに初析フェライトの生成を助長し、フェライト粒を粗大化させる。   Also, since the strength of the material is increased, S is fixed as MnS, and hot cracking of the slab is prevented, when the Mn content is less than 0.20%, these effects are reduced and the formation of proeutectoid ferrite is promoted. And coarsening the ferrite grains.

一方0.60%を超えると、引張強度は得られるが、偏析帯であるマンガンバンドの生成が顕著となり、伸びフランジ性および伸びが劣化する。   On the other hand, if it exceeds 0.60%, the tensile strength can be obtained, but the formation of a manganese band which is a segregation band becomes remarkable, and the stretch flangeability and elongation deteriorate.

以上より、Mn含有量は0.20%以上0.60%以下、好ましくは0.35%以上0.60%以下とする。   Accordingly, the Mn content is 0.20% or more and 0.60% or less, preferably 0.35% or more and 0.60% or less.

P:0.02%以下
Pは、粒界に偏析し、靭性を低下させるため、低減しなければならない元素である。しかし、Pの含有量が0.02%までは許容できるため、P含有量を0.02%以下に制限する。
P: 0.02% or less P is an element that must be reduced in order to segregate at grain boundaries and reduce toughness. However, since the P content is acceptable up to 0.02%, the P content is limited to 0.02% or less.

S:0.01%以下
Sは、MnとMnSを形成し伸びフランジ性を劣化させるため、低減しなければならない元素である。しかし、Sの含有量が0.01%までは許容できるため、S含有量を0.01%以下に制限する。
S: 0.01% or less S is an element that must be reduced in order to form Mn and MnS and degrade stretch flangeability. However, since the S content is acceptable up to 0.01%, the S content is limited to 0.01% or less.

sol.Al:0.1%以下
Alは、脱酸剤として用い、鋼の清浄度を向上させるため、製鋼段階で添加し、鋼中には通常sol.Alで概ね0.005%以上含有される。一方、sol.Al含有量が0.1%を超える程Alを添加しても、清浄度を向上させるという効果が飽和しコスト増となる。従って、鋼中のsol.Al含有量は0.1%以下とする。
sol.Al: 0.1% or less Al is used as a deoxidizer, and is added in the steelmaking stage to improve the cleanliness of the steel. Usually, the steel contains 0.005% or more of sol.Al. On the other hand, even if Al is added so that the sol.Al content exceeds 0.1%, the effect of improving the cleanliness is saturated and the cost increases. Therefore, the sol.Al content in the steel is 0.1% or less.

N:0.005%以下
Nは、BNを形成して焼入れ性に有効な固溶B量を減少させて焼入性を低下させるので、低減しなければならない元素である。しかし、Nの含有量が0.005%までは許容できるため、N含有量を0.005%以下に制限する。より好ましくは0.0050%以下に制限する。
N: 0.005% or less N is an element that must be reduced because BN is formed to reduce the amount of solid solution B effective for hardenability and lower hardenability. However, since the N content is acceptable up to 0.005%, the N content is limited to 0.005% or less. More preferably, it is limited to 0.0050% or less.

B:0.001〜0.005%
Bは、熱間圧延後の冷却中の初析フェライトの生成を抑制し、伸びフランジ性を向上させると同時に、焼入性を高める重要な元素である。しかし、B含有量が0.001%未満では、十分な効果が得られない。一方、0.005%を超えると、効果が飽和するとともに、熱間圧延の負荷が高くなり操業性が低下する。従って、B含有量を0.001%以上0.005%以下とする。より好ましくは0.0010%以上0.0050%以下とする。
B: 0.001 to 0.005%
B is an important element that suppresses the formation of pro-eutectoid ferrite during cooling after hot rolling, improves stretch flangeability, and at the same time enhances hardenability. However, if the B content is less than 0.001%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.005%, the effect is saturated and the hot rolling load is increased and the operability is lowered. Therefore, the B content is set to 0.001% or more and 0.005% or less. More preferably, it is 0.0010% or more and 0.0050% or less.

Cr:0.05〜0.3%
Crは、Bと同様に熱間圧延後の冷却中の初析フェライトの生成を抑制し、伸びフランジ性を向上させると同時に、焼入性を高める重要な元素である。しかし、Cr含有量が0.05%未満では、十分な効果が得られない。一方、0.3%を超えて含有しても、焼入性は向上するが、初析フェライト生成の抑制効果が飽和するとともに、コスト増となる。従って、Cr含有量を0.05%以上0.3%以下とする。より好ましくは0.05%以上0.30%以下とする。
Cr: 0.05-0.3%
Cr, like B, is an important element that suppresses the formation of pro-eutectoid ferrite during cooling after hot rolling, improves stretch flangeability, and at the same time enhances hardenability. However, if the Cr content is less than 0.05%, a sufficient effect cannot be obtained. On the other hand, if the content exceeds 0.3%, the hardenability is improved, but the effect of suppressing the formation of pro-eutectoid ferrite is saturated and the cost is increased. Therefore, the Cr content is 0.05% or more and 0.3% or less. More preferably, it is 0.05% or more and 0.30% or less.

次に、本発明の鋼板の組織について説明する。   Next, the structure of the steel sheet of the present invention will be described.

フェライト平均粒径: 6μm以下
フェライト粒径は、伸びフランジ性と素材強度を支配する重要な因子であり、本発明において重要な要件である。フェライト粒を微細化することにより、伸びフランジ性を劣化させることなく強度を上昇させることが可能となる。すなわち、フェライト平均粒径を6μm以下とすることにより、素材の引張強度を440MPa以上確保しつつ、優れた伸びフランジ性が得られる。一方、1.0μm未満の微細粒になると強度上昇が著しく、プレス加工時の負荷が増大する可能性があるため、1.0μm以上とすることが好ましい。なお、フェライト粒径は、製造条件、特に熱間圧延の仕上温度、冷却停止温度により、制御することができる。
Average ferrite particle diameter: 6 μm or less The ferrite particle diameter is an important factor governing stretch flangeability and material strength, and is an important requirement in the present invention. By refining the ferrite grains, it is possible to increase the strength without deteriorating stretch flangeability. That is, by setting the average ferrite grain size to 6 μm or less, excellent stretch flangeability can be obtained while securing the tensile strength of the material to 440 MPa or more. On the other hand, when the particle size is less than 1.0 μm, the strength is remarkably increased and the load during press working may increase. Therefore, it is preferably 1.0 μm or more. The ferrite grain size can be controlled by manufacturing conditions, particularly the hot rolling finishing temperature and the cooling stop temperature.

炭化物平均粒径: 0.1μm以上かつ1.20μm未満
炭化物粒径は、加工性一般、および穴拡げ加工におけるボイドの発生に大きく影響する。炭化物が微細になるとボイドの発生は抑制できるが、炭化物平均粒径が0.1μm未満になると、硬度の上昇に伴い延性が低下し、そのため伸びフランジ性も低下する。一方、炭化物平均粒径の増加に伴い加工性一般は向上するが、1.20μm以上になると、穴拡げ加工におけるボイドの発生により伸びフランジ性が低下する。従って、炭化物平均粒径を0.1μm以上かつ1.20μm未満に制御する。より好ましくは0.1μm以上かつ1.2μm未満に制御する。さらに、炭化物平均粒径を0.5μm以上かつ1.20μm未満に制御することにより、強度上昇が抑えられると同時に、伸びが増大し優れた伸び特性が得られる。よって、好ましくは0.5μm以上かつ1.20μm未満とする。より好ましくは0.5μm以上かつ1.2μm未満に制御する。なお、炭化物平均粒径は、製造条件、特に熱間圧延後の冷却停止温度、巻取温度、および冷延鋼板の焼鈍処理における焼鈍温度あるいはさらに冷間圧延前の熱延鋼板の焼鈍処理における焼鈍温度により制御することができる。ここで、炭化物の粒径については、炭化物の長径と短径の平均を個々の炭化物の粒径とし、この個々の炭化物の粒径を平均した値を炭化物平均粒径とする。
Carbide average particle size: 0.1 μm or more and less than 1.20 μm Carbide particle size greatly affects the workability in general and the generation of voids in hole expansion processing. When the carbide becomes finer, the generation of voids can be suppressed. However, when the carbide average particle size is less than 0.1 μm, the ductility decreases with an increase in hardness, and the stretch flangeability also decreases. On the other hand, the workability generally improves as the average carbide particle size increases, but if it exceeds 1.20 μm, the stretch flangeability deteriorates due to the generation of voids in the hole expanding process. Therefore, the carbide average particle size is controlled to be 0.1 μm or more and less than 1.20 μm. More preferably, it is controlled to be 0.1 μm or more and less than 1.2 μm. Furthermore, by controlling the carbide average particle size to 0.5 μm or more and less than 1.20 μm, an increase in strength can be suppressed, and at the same time, elongation can be increased and excellent elongation characteristics can be obtained. Therefore, it is preferably 0.5 μm or more and less than 1.20 μm. More preferably, it is controlled to 0.5 μm or more and less than 1.2 μm. The average carbide grain size is the manufacturing conditions, especially the cooling stop temperature after hot rolling, the coiling temperature, and the annealing temperature in the annealing treatment of the cold-rolled steel sheet, or further annealing in the annealing treatment of the hot-rolled steel sheet before cold rolling. It can be controlled by temperature. Here, regarding the particle size of the carbide, the average of the major axis and the minor axis of the carbide is the particle size of each carbide, and the average value of the particle size of each individual carbide is the average particle size of the carbide.

炭化物の分散状態: 炭化物を実質的に含まないフェライト粒の体積率が15%以下
炭化物の分散状態を均一とすることにより、前述のように、穴拡げ加工の際の打抜き端面における応力集中が緩和され、ボイドの発生が抑制できる。炭化物を実質的に含まないフェライト粒を、体積率にして15%以下にすることにより、炭化物の分散状態を均一にすることができ、伸びフランジ性が著しく向上する。従って、炭化物を実質的に含まないフェライト粒の体積率を15%以下とする。さらに、炭化物を実質的に含まないフェライト粒の体積率を10%以下にすることで、炭化物の分散状態を一層均一化し、極めて優れた伸びフランジ性が得られる。よって、好ましくは10%以下とする。一方、本成分系が亜共析鋼であり、初析フェライトを完全に抑制することは困難であることを考慮すると、炭化物を実質的に含まないフェライト粒の体積率の下限は1%程度とするのが好ましい。なお、炭化物の分散状態、即ち炭化物を実質的に含まないフェライト粒の体積率は、製造条件、特に熱間圧延の仕上温度、圧延後の冷却速度、冷却停止温度、および巻取温度により制御することができる。
Dispersion state of carbide: The volume fraction of ferrite grains substantially free of carbide is 15% or less. By making the dispersion state of carbide uniform, the stress concentration on the punched end face is alleviated as described above. And generation of voids can be suppressed. By making ferrite particles substantially free of carbides to have a volume ratio of 15% or less, the dispersion state of carbides can be made uniform, and stretch flangeability is remarkably improved. Accordingly, the volume fraction of ferrite grains substantially free of carbides is set to 15% or less. Furthermore, by making the volume fraction of ferrite grains substantially free of carbides 10% or less, the dispersion state of the carbides can be made more uniform, and extremely excellent stretch flangeability can be obtained. Therefore, it is preferably 10% or less. On the other hand, considering that this component system is hypoeutectoid steel and it is difficult to completely suppress pro-eutectoid ferrite, the lower limit of the volume fraction of ferrite grains substantially free of carbide is about 1%. It is preferable to do this. The carbide dispersion state, that is, the volume fraction of ferrite grains substantially free of carbide, is controlled by production conditions, particularly the finishing temperature of hot rolling, the cooling rate after rolling, the cooling stop temperature, and the coiling temperature. be able to.

ここで、炭化物を実質的に含まないフェライト粒とは、通常の光学顕微鏡による金属組織観察では炭化物が検出されないフェライト粒を意味し、走査型電子顕微鏡でも低倍率では炭化物が検出されないフェライト粒を意味する。すなわち、本発明における炭化物を実質的に含まないフェライト粒とは、鋼板試料の板厚断面を研磨し、ナイタルで腐食後、走査型電子顕微鏡で1000倍で観察しても炭化物が検出されないフェライト粒とする。このようなフェライト粒は、熱延後に初析フェライトとして生成した部分であり、焼鈍後の状態でも粒内に炭化物が観察されない、即ち炭化物を実質的に含まないフェライト粒と言える。   Here, the ferrite grain substantially free of carbide means a ferrite grain in which carbide is not detected by observation of a metal structure with a normal optical microscope, and means a ferrite grain in which carbide is not detected at a low magnification even with a scanning electron microscope. To do. That is, the ferrite grains substantially free of carbides in the present invention is a ferrite grain in which the thickness of a steel sheet sample is polished, corroded with a night, and no carbide is detected even when observed with a scanning electron microscope at 1000 times And Such a ferrite grain is a portion generated as pro-eutectoid ferrite after hot rolling, and it can be said that no carbide is observed in the grain even after annealing, that is, a ferrite grain substantially free of carbide.

次に、本発明の高炭素冷延鋼板を製造するに好適な製造条件の限定理由について述べる。   Next, the reason for limiting the production conditions suitable for producing the high carbon cold rolled steel sheet of the present invention will be described.

熱間圧延の仕上温度: (Ar3変態点-10℃)以上
鋼を熱間圧延する際の仕上温度が(Ar3変態点-10℃)未満では、一部でフェライト変態が進行するため炭化物を実質的に含まないフェライト粒が増加し、伸びフランジ性が劣化する。また、フェライト粒の粗大化が顕著となりフェライト平均粒径が6μmを超えるため、伸びフランジ性とともに強度が低下する。よって、熱間圧延の仕上圧延の仕上温度は(Ar3変態点-10℃)以上とする。これにより、組織の均一微細化を図ることができ、伸びフランジ性と強度の向上が図れる。一方、仕上温度の上限は特に規定しないが、1000℃を超えるような高温の場合、スケール性欠陥が発生し易くなるため、1000℃以下が好ましい。なお、Ar3変態点(℃)は次の式で算出することができる。
Hot rolling finishing temperature: (Ar 3 transformation point -10 ° C) or higher If the finishing temperature during hot rolling of steel is less than (Ar 3 transformation point -10 ° C), ferrite transformation proceeds in part, so carbide As a result, ferrite grains that do not contain substantially increase and stretch flangeability deteriorates. Further, the coarsening of the ferrite grains becomes remarkable and the average ferrite grain diameter exceeds 6 μm, so that the strength decreases with stretch flangeability. Therefore, the finishing temperature of the hot rolling finish rolling is set to (Ar 3 transformation point −10 ° C.) or higher. Thereby, uniform refinement | miniaturization of a structure | tissue can be achieved and the stretch flangeability and intensity | strength can be aimed at. On the other hand, the upper limit of the finishing temperature is not particularly defined. However, when the temperature is higher than 1000 ° C., a scale defect is likely to occur. The Ar 3 transformation point (° C.) can be calculated by the following formula.

Ar3=930.21-394.75C+54.99Si-14.40Mn+5.77Cr (1)
ここで、式中の元素記号はそれぞれの元素の含有量(質量%)を表す。
Ar 3 = 930.21-394.75C + 54.99Si-14.40Mn + 5.77Cr (1)
Here, the element symbol in a formula represents content (mass%) of each element.

熱間圧延後の冷却条件: 冷却速度>120℃/秒
本発明では、変態後のフェライト粒の体積率の低減を図るため、圧延後に急冷(冷却)を行う。熱間圧延後の冷却方法が徐冷であると、オーステナイトの過冷度が小さく初析フェライトが多く生成する。冷却速度が120℃/秒以下の場合、初析フェライトの生成が顕著となり、炭化物を実質的に含まないフェライト粒が15%超となり、伸びフランジ性が劣化する。従って、圧延後の冷却の冷却速度は120℃/秒超とする。一方、冷却速度の上限は現在の設備上の能力からは700℃/秒程度である。
Cooling conditions after hot rolling: Cooling rate> 120 ° C./second In the present invention, rapid cooling (cooling) is performed after rolling in order to reduce the volume fraction of ferrite grains after transformation. If the cooling method after hot rolling is slow cooling, the degree of supercooling of austenite is small and a large amount of proeutectoid ferrite is generated. When the cooling rate is 120 ° C./second or less, pro-eutectoid ferrite is remarkably produced, and ferrite grains substantially not containing carbides exceed 15%, and stretch flangeability deteriorates. Therefore, the cooling rate of the cooling after rolling is set to more than 120 ° C./second. On the other hand, the upper limit of the cooling rate is about 700 ° C./second based on the current facility capacity.

ここで、冷却速度とは仕上圧延後の冷却開始から冷却停止までの平均冷却速度である。また、仕上圧延後、通常は3秒以内程度で冷却を開始するが、変態後のフェライト結晶粒やパーライト等の析出物をより微細化し、加工性をより一層向上させる点から、仕上圧延後、0.1秒を超え1.0秒未満の時間内で冷却を開始することが好ましい。   Here, the cooling rate is an average cooling rate from the start of cooling after finish rolling to the stop of cooling. In addition, after finishing rolling, cooling is usually started within about 3 seconds, but the finer precipitates such as ferrite crystal grains and pearlite after transformation, from the point of further improving workability, after finishing rolling, It is preferable to start cooling within a time period exceeding 0.1 second and less than 1.0 second.

冷却停止温度: 620℃以下
熱間圧延後の冷却の冷却停止温度が高い場合、巻取りまでの冷却中にフェライトが生成するとともに、パーライトのコロニーおよびラメラ間隔が増大する。そのため、冷間圧延-焼鈍後にフェライト粒が粗大化すると同時に微細炭化物が得られなくなり、強度が低下し、伸びフランジ性が劣化する。冷却停止温度が620℃より高い場合、炭化物を実質的に含まないフェライト粒が15%超となり、伸びフランジ性が劣化する。従って、熱間圧延後の冷却の冷却停止温度を620℃以下とする。さらに、炭化物を実質的に含まないフェライト粒を10%以下とする場合は、冷却停止温度を600℃以下とすることが好ましい。一方、冷却停止温度の下限は特に規定しないが、低温になるほど鋼板の形状が劣化するため、200℃以上とすることが好ましい。
Cooling stop temperature: 620 ° C. or less When the cooling stop temperature for cooling after hot rolling is high, ferrite is generated during cooling until winding, and pearlite colonies and lamella spacing increase. Therefore, the ferrite grains become coarse after cold rolling-annealing, and at the same time, fine carbides cannot be obtained, the strength is lowered, and the stretch flangeability is deteriorated. When the cooling stop temperature is higher than 620 ° C., ferrite grains substantially not containing carbides exceed 15%, and stretch flangeability deteriorates. Therefore, the cooling stop temperature for cooling after hot rolling is set to 620 ° C. or lower. Further, when the ferrite grains substantially not containing carbides are made 10% or less, the cooling stop temperature is preferably made 600 ° C. or less. On the other hand, the lower limit of the cooling stop temperature is not particularly defined, but the shape of the steel sheet deteriorates as the temperature becomes lower, and therefore it is preferably set to 200 ° C. or higher.

巻取温度: 600℃以下
冷却停止後は鋼板を巻き取るが、巻取温度が高いほどパーライトのラメラ間隔が大きくなる。そのため、冷間圧延-焼鈍後の炭化物が粗大化し、巻取温度が600℃を超えると伸びフランジ性が劣化する。従って、巻取温度を600℃以下とする。さらに、巻取温度を500℃以下とすることにより、炭化物の分散状態が一層均一化し、極めて優れた伸びフランジ性が得られるため、500℃以下とすることが好ましい。一方、巻取温度の下限は特に規定しないが、低温になるほど鋼板の形状が劣化するため、200℃以上とすることが好ましい。
Winding temperature: 600 ° C or less The steel sheet is wound after cooling is stopped. The higher the winding temperature, the larger the pearlite lamella spacing. Therefore, the carbide after cold rolling-annealing becomes coarse, and when the coiling temperature exceeds 600 ° C., stretch flangeability deteriorates. Accordingly, the coiling temperature is set to 600 ° C. or lower. Furthermore, by setting the coiling temperature to 500 ° C. or lower, the dispersion state of carbides becomes even more uniform and extremely excellent stretch flangeability can be obtained. On the other hand, the lower limit of the coiling temperature is not particularly defined, but the shape of the steel sheet deteriorates as the temperature is lowered, and therefore it is preferably set to 200 ° C. or higher.

なお、炭化物の分散状態をさらに均一化し、優れた伸びフランジ性を得るためには、冷却停止温度を600℃以下として冷却するとともに、巻取温度500℃以下で巻取ることが好ましい。   In order to further uniformize the dispersion state of carbides and obtain excellent stretch flangeability, it is preferable to cool the cooling stop temperature to 600 ° C. or lower and wind it at a winding temperature of 500 ° C. or lower.

さらに、巻取後の熱延鋼板は、冷間圧延を行う前にスケール除去のため酸洗を施すことが好ましい。特に、熱延鋼板に焼鈍を施す場合は、スケールによる鋼板表面への影響を除くため、前記焼鈍を施す前に酸洗を行うことが好ましい。酸洗は常法に従って行えばよい。   Furthermore, the hot-rolled steel sheet after winding is preferably subjected to pickling for scale removal before cold rolling. In particular, when annealing a hot-rolled steel sheet, it is preferable to perform pickling before the annealing to remove the influence of the scale on the steel sheet surface. Pickling may be performed according to a conventional method.

熱延鋼板の焼鈍温度: 焼鈍を行う場合640℃以上Ac1変態点以下
熱延後、冷間圧延を行うが、その前に炭化物を球状化するために焼鈍(一次焼鈍)を行うことが好ましい。なお、この時の一次焼鈍は、箱焼鈍、連続焼鈍のどちらでもよい。一次焼鈍の焼鈍温度が640℃未満の場合、焼鈍の効果が得られない。一方、焼鈍温度がAc1変態点を超える場合、一部がオーステナイト化し、冷却中に再度パーライトを生成するため、やはり、焼鈍の効果が得られない。よって、一次焼鈍を行う場合の焼鈍温度は640℃以上Ac1変態点以下とする。なお、優れた伸びフランジ性を得るには、焼鈍温度を680℃以上とすることが好ましい。
Annealing temperature of hot-rolled steel sheet: When annealing, 640 ° C or higher and Ac 1 transformation point or lower After hot rolling, cold rolling is performed, but before that, annealing (primary annealing) is preferably performed in order to spheroidize the carbide. . The primary annealing at this time may be either box annealing or continuous annealing. When the annealing temperature of primary annealing is less than 640 ° C., the effect of annealing cannot be obtained. On the other hand, when the annealing temperature exceeds the Ac 1 transformation point, a part is austenitized and pearlite is generated again during cooling, so that the annealing effect cannot be obtained. Therefore, the annealing temperature when performing the primary annealing is set to 640 ° C. or higher and Ac 1 transformation point or lower. In order to obtain excellent stretch flangeability, the annealing temperature is preferably 680 ° C. or higher.

冷間圧延の圧下率: 30%以上
冷間圧延は、炭化物の微細均一分散を行い、伸びフランジ性を向上させる。しかし、冷間圧延の圧下率が30%未満では効果が得られないばかりか、焼鈍後に未再結晶部が残存し、かえって伸びフランジ性を劣化させる。また、伸びも低下する。よって、冷間圧延の圧下率は30%以上とする。圧下率の上限は特に制約はないが、圧延負荷の問題から80%以下とすることが好ましい。
Cold rolling reduction: 30% or more Cold rolling improves the stretch flangeability by finely dispersing carbides uniformly. However, if the rolling reduction of the cold rolling is less than 30%, not only the effect is not obtained, but also the non-recrystallized portion remains after annealing, and the stretch flangeability is deteriorated. Also, the elongation decreases. Therefore, the rolling reduction of cold rolling is set to 30% or more. The upper limit of the rolling reduction is not particularly limited, but is preferably 80% or less from the viewpoint of rolling load.

冷延鋼板の焼鈍温度: 640℃以上Ac1変態点以下
冷間圧延後、再結晶および炭化物の球状化促進のために焼鈍を行う。焼鈍温度が640℃未満の場合、炭化物の球状化が不十分あるいは炭化物平均粒径が0.1μm未満となり、伸びフランジ性が劣化する。一方、焼鈍温度がAc1変態点を超える場合、一部がオーステナイト化し、冷却中に再度パーライトを生成するため、伸びフランジ性が劣化する。また伸びも劣化する。以上より、冷延鋼板の焼鈍温度は640℃以上Ac1変態点以下とする。さらに、焼鈍温度を680℃以上とすることにより、炭化物平均粒径が0.5μm以上となり、高い伸び特性が得られる。よって、好ましくは680℃以上Ac1変態点以下である。なお、Ac1変態点(℃)は次の式で算出することができる。
Annealing temperature of cold-rolled steel sheet: 640 ° C. or higher and Ac 1 transformation point or lower After cold rolling, annealing is performed to promote recrystallization and spheroidization of carbides. When the annealing temperature is less than 640 ° C., the spheroidization of the carbide is insufficient or the average particle size of the carbide is less than 0.1 μm, and the stretch flangeability deteriorates. On the other hand, when the annealing temperature exceeds the Ac 1 transformation point, a part is austenitized, and pearlite is generated again during cooling, so the stretch flangeability deteriorates. Elongation also deteriorates. From the above, the annealing temperature of the cold-rolled steel sheet is set to 640 ° C. or more and Ac 1 transformation point or less. Furthermore, by setting the annealing temperature to 680 ° C. or higher, the average carbide particle size becomes 0.5 μm or higher, and high elongation characteristics can be obtained. Therefore, it is preferably 680 ° C. or higher and Ac 1 transformation point or lower. The Ac 1 transformation point (° C.) can be calculated by the following formula.

Ac1=754.83-32.25C+23.32Si-17.76Mn+17.13Cr (2)
ここで、式中の元素記号はそれぞれの元素の含有量(質量%)を表す。
Ac 1 = 754.83-32.25C + 23.32Si-17.76Mn + 17.13Cr (2)
Here, the element symbol in a formula represents content (mass%) of each element.

本発明によれば、伸びフランジ性の向上を図るに当たって、成分組成および製造条件の制御のみならず、フェライト粒径、炭化物粒径、および炭化物の分散状態をも制御することで、打抜き時の端面におけるボイドの発生を抑制し、穴拡げ加工におけるクラックの成長を遅くすることができる。その結果、440MPa以上の引張強度を有するとともに極めて伸びフランジ性に優れ、あるいはさらに極めて延性にも優れた高炭素冷延鋼板が提供可能となる。   According to the present invention, in order to improve stretch flangeability, not only the control of the component composition and production conditions, but also the ferrite particle size, carbide particle size, and the dispersion state of the carbide are controlled, so that the end face at the time of punching Generation of voids can be suppressed, and crack growth in the hole expanding process can be slowed. As a result, it is possible to provide a high-carbon cold-rolled steel sheet having a tensile strength of 440 MPa or more and extremely excellent stretch flangeability or even excellent ductility.

本発明の高炭素鋼の成分調製には、転炉あるいは電気炉のどちらでも使用可能である。このように成分調製された高炭素鋼を、造塊−分塊圧延または連続鋳造により鋼素材である鋼スラブとする。この鋼スラブについて熱間圧延を行うが、その際、スラブ加熱温度は、スケール発生による表面状態の劣化を避けるため1300℃以下とすることが好ましい。   Either a converter or an electric furnace can be used for preparing the components of the high carbon steel of the present invention. The high carbon steel whose components are prepared in this way is used as a steel slab, which is a steel material, by ingot-bundling rolling or continuous casting. The steel slab is hot-rolled. At this time, the slab heating temperature is preferably 1300 ° C. or lower in order to avoid deterioration of the surface state due to generation of scale.

なお、熱間圧延時に粗圧延を省略して仕上圧延を行ってもよく、連続鋳造スラブをそのまま又は温度低下を抑制する目的で保熱しつつ圧延する直送圧延を行ってもよい。また、仕上温度確保のため、熱間圧延中にバーヒータ等の加熱手段により圧延材の加熱を行ってもよい。なお、球状化促進あるいは硬度低減のため、巻取後にコイルを徐冷カバー等の手段で保温してもよい。   In addition, rough rolling may be omitted during hot rolling and finish rolling may be performed, or direct feed rolling may be performed in which a continuously cast slab is rolled as it is or for the purpose of suppressing temperature reduction. In order to secure the finishing temperature, the rolled material may be heated by a heating means such as a bar heater during hot rolling. In order to promote spheroidization or reduce hardness, the coil may be kept warm by means such as a slow cooling cover after winding.

巻取を行った後、場合によっては常法に従い酸洗する。次いで、冷間圧延後、焼鈍を行う。なお、冷間圧延前に熱延鋼板を一次焼鈍し、冷間圧延後焼鈍を行うようにしてもよい。冷間圧延後の焼鈍については、箱焼鈍、連続焼鈍のいずれでもよい。冷間圧延後の焼鈍の後、必要に応じて調質圧延を行う。この調質圧延については焼入れ性には影響を及ぼさないことから、その条件に対して特に制限はない。   After winding up, it is pickled according to a conventional method in some cases. Next, annealing is performed after cold rolling. Note that the hot-rolled steel sheet may be subjected to primary annealing before cold rolling and annealing after cold rolling. As for annealing after cold rolling, either box annealing or continuous annealing may be used. After annealing after cold rolling, temper rolling is performed as necessary. Since this temper rolling does not affect the hardenability, there is no particular limitation on the conditions.

以上より、伸びフランジ性に優れ、あるいはさらに延性にも優れた高炭素冷延鋼板が得られる。なお、上記は、本発明の製造方法の一実施態様を示すものであり、これに限定されるものではない。   From the above, a high carbon cold-rolled steel sheet having excellent stretch flangeability or further excellent ductility can be obtained. The above shows one embodiment of the production method of the present invention, and the present invention is not limited to this.

このようにして得られた高炭素冷延鋼板が、優れた伸びフランジ性を有する理由は次のように考えられる。伸びフランジ性には、打抜き端面の部分の内部組織が大きく影響する。特に、炭化物を実質的に含まないフェライト粒(熱延後の初析フェライトに対応する部分)が多い場合、球状化組織の部分との粒界からクラックが発生することが確認されている。   The reason why the high carbon cold-rolled steel sheet obtained in this way has excellent stretch flangeability is considered as follows. Stretch flangeability is greatly affected by the internal structure of the punched end face. In particular, when there are many ferrite grains substantially free of carbides (part corresponding to pro-eutectoid ferrite after hot rolling), it has been confirmed that cracks are generated from the grain boundary with the part of the spheroidized structure.

ミクロ組織の挙動を見ると、打抜き加工時には炭化物の界面に、応力集中によるボイドの発生が顕著となる。この応力集中は、炭化物の寸法が大きいほど、また、炭化物を実質的に含まないフェライト粒が多いほど大きくなる。穴拡げ加工の際は、これらのボイドが連結しクラックとなる。   Looking at the behavior of the microstructure, voids due to stress concentration become prominent at the carbide interface during punching. This stress concentration increases as the size of the carbide increases and as the number of ferrite grains substantially free of carbide increases. During the hole expanding process, these voids are connected to form a crack.

このように、製造条件の制御のみならず、炭化物平均粒径、および炭化物を実質的に含まないフェライト粒の占める割合を制御することにより、応力集中を小さくし、ボイドの発生を低減することができる。   Thus, by controlling not only the production conditions but also the average particle size of carbides and the proportion of ferrite grains substantially free of carbides, stress concentration can be reduced and void generation can be reduced. it can.

表1に示す化学成分を有する鋼の連続鋳造スラブを、加熱温度1250℃、熱延仕上温度880℃、仕上げ圧延後冷却開始までの時間0.7秒、熱延後冷却速度150℃/秒、冷却停止温度610℃、巻取温度560℃で熱間圧延を行い熱延鋼板とした。その後、酸洗し、圧下率50%で冷間圧延し、710℃で40h保持する箱焼鈍を行い、板厚2.5mmの鋼板を製造した。ここで、鋼No.A〜Eは化学成分(組成)が本発明範囲内の発明例であり、鋼No.F〜Mは組成が本発明範囲を外れた比較例である。   Continuous casting slab of steel with chemical components shown in Table 1 is heated at 1250 ° C, hot-rolled finishing temperature 880 ° C, time after finish rolling to start cooling 0.7 seconds, cooling rate after hot-rolling 150 ° C / second, cooling stopped Hot rolling was performed at a temperature of 610 ° C. and a winding temperature of 560 ° C. to obtain a hot-rolled steel sheet. Thereafter, pickling, cold rolling at a reduction rate of 50%, and box annealing for 40 hours at 710 ° C. were performed to produce a steel sheet with a thickness of 2.5 mm. Here, Steel Nos. A to E are invention examples in which the chemical components (compositions) are within the scope of the present invention, and Steel Nos. F to M are comparative examples in which the composition is outside the scope of the present invention.

Figure 2005133199
Figure 2005133199

これらの鋼板からサンプルを採取し、フェライト平均粒径、炭化物平均粒径ならびに炭化物の分散状態の測定、伸びフランジ性評価、および引張試験を行った。それぞれの試験・測定の方法および条件について以下に示す。   Samples were taken from these steel plates, and the ferrite average particle size, carbide average particle size and carbide dispersion state measurement, stretch flangeability evaluation, and tensile test were performed. Each test and measurement method and conditions are shown below.

(i) フェライト平均粒径、炭化物平均粒径およびその分散状態
サンプルの板厚断面を研磨・ナイタル腐食後、走査型電子顕微鏡にてミクロ組織を撮影し、標記の特性値を測定した。
(i) Average ferrite particle diameter, carbide average particle diameter and dispersion state After the plate thickness cross section of the sample was polished and subjected to night corrosion, the microstructure was photographed with a scanning electron microscope, and the characteristic values shown were measured.

まず、フェライト平均粒径については、上記走査型電子顕微鏡で1000倍で撮影した組織写真について、JIS規格G0552に規定されているフェライト結晶粒度試験方法の中の切断法に準拠して測定した。   First, the average ferrite grain size was measured according to the cutting method in the ferrite grain size test method defined in JIS standard G0552, with respect to the structure photograph taken at 1000 times with the scanning electron microscope.

炭化物平均粒径については、同様に3000倍で撮影した組織写真を用い、実面積0.01mm2の範囲で、板厚方向に100mmの線分20本を引き、これらの線分と交差した炭化物についてその長径と短径を測定し、両者の平均値をその炭化物の粒径とし、さらに測定した全炭化物の粒径の平均を求め炭化物平均粒径とした。 The average carbide grain size, using tissue photographs were similarly taken at 3000 times, the range of actual area 0.01 mm 2, pull the twenty segments of 100mm in the thickness direction, the carbides cross the line segments The major axis and minor axis were measured, the average value of both was taken as the grain size of the carbide, and the average of the grain sizes of all the measured carbides was determined as the average grain size of the carbide.

また、炭化物の分散状態については、上記1000倍で撮影した組織写真について、炭化物が観察されないフェライト粒の面積率を測定し、これをもって炭化物を実質的に含まないフェライト粒の体積率とし、炭化物の分散状態の指標とした。   As for the dispersion state of carbide, for the structure photograph taken at a magnification of 1000 times, the area ratio of ferrite grains in which carbide is not observed is measured, and this is used as the volume ratio of ferrite grains substantially free of carbide. It was used as an indicator of the dispersion state.

(ii) 伸びフランジ性評価
サンプルを、ポンチ径d0=10mm、ダイス径11mm(クリアランス20%)の打抜き工具を用いて打抜き後、穴拡げ試験を実施した。穴拡げ試験は、円筒平底ポンチ(50mmφ、5R(肩半径5mm))にて押し上げる方法で行い、穴縁に板厚貫通クラックが発生した時点での穴径db(mm)を測定して、次式で定義される穴拡げ率λ(%)を求めた。
(ii) Evaluation of stretch flangeability The sample was punched with a punching tool having a punch diameter d 0 = 10 mm and a die diameter 11 mm (clearance 20%), and then a hole expansion test was performed. The hole expansion test is performed by pushing up with a cylindrical flat bottom punch (50mmφ, 5R (shoulder radius 5mm)), and the hole diameter db (mm) at the time when a plate thickness penetration crack occurs at the hole edge is measured. The hole expansion rate λ (%) defined by the equation was obtained.

λ=100×(db-d0)/d0 (3).
(iii) 引張試験
圧延方向に対し、90゜方向(C方向)に沿ってJIS5号試験片を採取し、引張速度10mm/minで引張試験を行い、引張強度および伸びを測定した。
λ = 100 × (db−d 0 ) / d 0 (3).
(iii) Tensile test A JIS No. 5 test piece was taken along the 90 ° direction (C direction) with respect to the rolling direction, a tensile test was performed at a tensile speed of 10 mm / min, and tensile strength and elongation were measured.

以上の試験結果より得られた、フェライト平均粒径、炭化物平均粒径、炭化物の分散状態、伸びフランジ性、および引張強度、伸びを表2に示す。ここで、伸びフランジ性は上記式(3)の穴拡げ率λで評価した。なお、本発明では、引張強度TSについては440MPa以上、穴拡げ率λについては80%以上(板厚2.5mm)をそれぞれ目標とする。また、優れた延性を要求される場合の伸びとして、35%以上を目標とする。   Table 2 shows the ferrite average particle diameter, carbide average particle diameter, carbide dispersion state, stretch flangeability, tensile strength, and elongation obtained from the above test results. Here, the stretch flangeability was evaluated by the hole expansion ratio λ of the above formula (3). In the present invention, the target for the tensile strength TS is 440 MPa or more, and the hole expansion rate λ is 80% or more (plate thickness 2.5 mm). In addition, when the excellent ductility is required, the target is 35% or more.

Figure 2005133199
Figure 2005133199

この表2で、鋼No.A〜Eは、化学成分(組成)が本発明範囲内であり、フェライト平均粒径が6μm以下、炭化物平均粒径が0.1μm以上かつ1.20μm未満、炭化物を実質的に含まないフェライト粒の体積率が15%以下の発明例である。これらは、引張強度(TS)が440MPa以上、穴拡げ率λが80%以上という本発明の目標を達成している。また、炭化物平均粒径が0.5μm以上であるため、伸びも35%以上を達成している。   In Table 2, steel Nos. A to E have chemical components (compositions) within the scope of the present invention, the average ferrite particle size is 6 μm or less, the average carbide particle size is 0.1 μm or more and less than 1.20 μm, and the carbide is substantially This is an invention example in which the volume fraction of ferrite grains not included is 15% or less. These achieve the objectives of the present invention with a tensile strength (TS) of 440 MPa or more and a hole expansion ratio λ of 80% or more. In addition, since the average particle size of carbide is 0.5 μm or more, the elongation is 35% or more.

これに対して、表2の鋼No.F〜Mは、化学成分(組成)が本発明範囲を外れた比較例である。鋼No.FはCが低く、フェライト平均粒径、炭化物平均粒径、炭化物を実質的に含まないフェライト粒の体積率が本発明範囲を超えており、引張強度が440MPa未満で、穴拡げ率も目標より低い。鋼No.GはCが高く、組織は発明範囲となったものの、穴拡げ率が目標より低い。また、伸びも低い。鋼No.HはSi,Pが高く、鋼No.L,MはB,Crがそれぞれ低いため、いずれも初析フェライトが多量に生成し、炭化物を実質的に含まないフェライト粒の体積率が本発明範囲の上限15%を超えており、穴拡げ率が目標より低い。   On the other hand, Steel Nos. F to M in Table 2 are comparative examples in which chemical components (compositions) are out of the scope of the present invention. Steel No. F has low C, ferrite average particle size, carbide average particle size, volume fraction of ferrite grains substantially free of carbides is beyond the scope of the present invention, tensile strength is less than 440 MPa, hole expansion rate Is lower than the target. Steel No. G has a high C and the structure is within the scope of the invention, but the hole expansion rate is lower than the target. Also, the elongation is low. Steel No. H is high in Si and P, and Steel No. L and M are low in B and Cr respectively. Therefore, in each case, a large amount of pro-eutectoid ferrite is formed, and the volume fraction of ferrite grains substantially free of carbides is high. The upper limit of 15% of the present invention range is exceeded and the hole expansion rate is lower than the target.

比較例の鋼No.IはMnが低いため、初析フェライトが多量に生成し、炭化物を実質的に含まないフェライト粒の体積率が本発明範囲より高く、さらにフェライト平均粒径が6μmを超えており、強度および穴拡げ率が目標より低い。鋼No.JはMnが高く、バンド組織が発生したため、穴拡げ率が目標より低い。また、伸びも低い。鋼No.KはSが高く、MnSが増大して、穴拡げ率が大幅に低下している。   Steel No. I in the comparative example has a low Mn, so that a large amount of pro-eutectoid ferrite is generated, the volume fraction of ferrite grains substantially free of carbides is higher than the range of the present invention, and the average ferrite grain size exceeds 6 μm. Strength and hole expansion rate are lower than target. Steel No. J has a high Mn and a band structure, so the hole expansion rate is lower than the target. Also, the elongation is low. Steel No. K has high S, MnS increases, and the hole expansion rate is greatly reduced.

前掲の表1に示した鋼の内、発明例の鋼No.A,Cの連続鋳造スラブを1250℃に加熱した後、表3に示す条件にて、熱間圧延して熱延鋼板とした後、酸洗し、冷間圧延および焼鈍を行い、板厚2.5mmの鋼板を製造した。なお、一部の熱延鋼板については酸洗後、一次焼鈍を施した。ここで、鋼板No.1〜12は、製造条件が本発明範囲内の発明例であり、鋼板No.13〜19は製造条件が本発明範囲を外れた比較例である。   Among the steels shown in Table 1 above, after heating the continuous casting slabs of the steel Nos. A and C of the inventive examples to 1250 ° C, they were hot-rolled into hot-rolled steel sheets under the conditions shown in Table 3 Thereafter, pickling, cold rolling and annealing were performed to produce a steel plate having a thickness of 2.5 mm. Some hot-rolled steel sheets were subjected to primary annealing after pickling. Here, steel plates Nos. 1 to 12 are invention examples whose manufacturing conditions are within the scope of the present invention, and steel plates Nos. 13 to 19 are comparative examples whose manufacturing conditions are outside the scope of the present invention.

Figure 2005133199
Figure 2005133199

これらの鋼板からサンプルを採取し、実施例1と同様に、フェライト平均粒径、炭化物平均粒径ならびに炭化物の分散状態の測定、伸びフランジ性測定、および引張試験を行った。結果を表4に示す。   Samples were collected from these steel plates, and in the same manner as in Example 1, the ferrite average particle size, the carbide average particle size and the dispersion state of the carbide, the stretch flangeability measurement, and the tensile test were performed. The results are shown in Table 4.

Figure 2005133199
Figure 2005133199

この表4より、製造条件が本発明範囲内の鋼板No.1〜12は、フェライト平均粒径が6μm以下、炭化物平均粒径が0.1μm以上かつ1.20μm未満、炭化物を実質的に含まないフェライト粒の体積率が15%以下となっており、発明例の鋼板である。これらの発明例の鋼板は、引張強度(TS)が440MPa以上、穴拡げ率λが80%以上という本発明の目標を達成している。   From Table 4, steel sheets No. 1 to 12 whose production conditions are within the scope of the present invention are ferrite average particle size of 6 μm or less, carbide average particle size of 0.1 μm or more and less than 1.20 μm, and substantially free of carbides. The volume ratio of the grains is 15% or less, which is a steel sheet of the invention example. The steel plates of these inventive examples achieve the objectives of the present invention with a tensile strength (TS) of 440 MPa or more and a hole expansion ratio λ of 80% or more.

それらの内、特に鋼板No.3,4,5,6,11,12は冷却停止温度が600℃以下、巻取温度が500℃以下、また鋼板No.5,6,9,10,11,12は一次焼鈍を施した例であり、それぞれ本発明の製造条件の好ましい範囲内である。これらは、高い穴拡げ率(85%以上)が得られている。また、鋼板No.1,3,5,7,9,11は、冷間圧延後の焼鈍温度が680℃以上であり、これらは伸びも35%以上を達成している。   Among them, especially steel plates No. 3, 4, 5, 6, 11, and 12 have a cooling stop temperature of 600 ° C. or lower, a coiling temperature of 500 ° C. or lower, and steel plates No. 5, 6, 9, 10, 11, No. 12 is an example in which primary annealing is performed, and each is within the preferable range of the production conditions of the present invention. These have a high hole expansion rate (85% or more). Steel plates No. 1, 3, 5, 7, 9, and 11 have an annealing temperature after cold rolling of 680 ° C. or higher, and they have achieved an elongation of 35% or higher.

これに対して、表4の鋼板No.13〜19は製造条件(表3)が本発明範囲を外れた比較例である。鋼板No.13は、熱間圧延の圧延終了温度が本発明範囲より低く、フェライト平均粒径、炭化物を実質的に含まないフェライト粒の体積率が本発明範囲の上限を超えており、引張強度および穴拡げ率が目標より低い。鋼板No.14は、圧延後の冷却速度が本発明範囲より低く、炭化物を実質的に含まないフェライト粒の体積率も本発明範囲の上限を超えており、穴拡げ率が目標より低い。   In contrast, steel plates Nos. 13 to 19 in Table 4 are comparative examples in which the production conditions (Table 3) are outside the scope of the present invention. Steel plate No. 13 has a rolling end temperature of hot rolling lower than the range of the present invention, the ferrite average particle size, the volume fraction of ferrite grains substantially not containing carbide exceeds the upper limit of the range of the present invention, and the tensile strength And the hole expansion rate is lower than the target. Steel plate No. 14 has a cooling rate after rolling lower than the range of the present invention, the volume fraction of ferrite grains substantially free of carbides also exceeds the upper limit of the range of the present invention, and the hole expansion rate is lower than the target.

比較例の鋼板No.15は、冷却停止温度が本発明範囲より高く、フェライト平均粒径、炭化物平均粒径、炭化物を実質的に含まないフェライト粒の体積率も本発明範囲の上限を超えており、引張強度および穴拡げ率が目標より低い。比較例の鋼板No.16は、巻取温度が本発明範囲より高く、炭化物平均粒径が本発明範囲の上限を超えており、穴拡げ率が目標より低い。   Steel plate No. 15 of the comparative example has a cooling stop temperature higher than the range of the present invention, and the ferrite average particle size, carbide average particle size, and the volume fraction of ferrite grains substantially free of carbides also exceed the upper limit of the range of the present invention. The tensile strength and hole expansion rate are lower than the target. Steel plate No. 16 as a comparative example has a coiling temperature higher than the range of the present invention, an average carbide particle size exceeding the upper limit of the range of the present invention, and a hole expansion rate lower than the target.

鋼板No.17は、冷間圧延の圧下率が本発明範囲より低く、未再結晶組織が残留し、フェライト粒が細粒化せず、引張強度も高めで、伸びおよび穴拡げ率が目標より低い。鋼板No.18は、冷間圧延後の焼鈍温度が本発明範囲より高く、炭化物平均粒径、炭化物を実質的に含まないフェライト粒の体積率も本発明範囲の上限を超えており、穴拡げ率が目標より低い。また、伸びも低下している。鋼板No.19は、冷間圧延後の焼鈍温度が本発明範囲より低く、炭化物の球状化が不十分で正確な粒径測定が不可能であるが、炭化物平均粒径は明らかに1.2μmを超えており、穴拡げ率が目標より低い。また、伸びも低い。   Steel plate No. 17 has a cold rolling reduction ratio lower than the scope of the present invention, an unrecrystallized structure remains, ferrite grains do not become finer, tensile strength is higher, and elongation and hole expansion ratio are higher than the target. Low. Steel plate No. 18 has an annealing temperature after cold rolling higher than the range of the present invention, the average particle size of carbide, the volume fraction of ferrite grains substantially free of carbide exceeds the upper limit of the range of the present invention, The rate is lower than the target. In addition, the elongation is also decreasing. Steel plate No. 19 has an annealing temperature after cold rolling lower than the range of the present invention, carbide spheroidization is insufficient and accurate particle size measurement is impossible, but the average particle size of carbide is clearly 1.2 μm. The hole expansion rate is lower than the target. Also, the elongation is low.

本発明の高炭素冷延鋼板を用いることにより、ギアに代表される変速機部品等の加工において加工度を高くとることができ、その結果、製造工程を省略して低コストで部品等を製造することが可能となる。   By using the high-carbon cold-rolled steel sheet of the present invention, it is possible to increase the degree of processing in processing of transmission parts and the like typified by gears. As a result, the manufacturing process is omitted and parts and the like are manufactured at low cost. It becomes possible to do.

Mn量と焼入れ後の平均硬さとの関係を示す図である。It is a figure which shows the relationship between the amount of Mn, and the average hardness after hardening.

Claims (7)

質量%で、C:0.20〜0.58%、Si:0.1%以下、Mn:0.20〜0.60%、P:0.02%以下、S:0.01%以下、sol.Al:0.1%以下、N:0.005%以下、B:0.001〜0.005%、Cr:0.05〜0.3%を含有し、残部鉄および不可避的不純物である組成と、フェライト平均粒径が6μm以下、炭化物平均粒径が0.1μm以上1.20μm未満、炭化物を実質的に含まないフェライト粒の体積率が15%以下である組織を有することを特徴とする高炭素冷延鋼板。   In mass%, C: 0.20 to 0.58%, Si: 0.1% or less, Mn: 0.20 to 0.60%, P: 0.02% or less, S: 0.01% or less, sol. Al: 0.1% or less, N: 0.005% or less, B: 0.001 to 0.005%, Cr: 0.05 to 0.3%, the composition of the balance iron and unavoidable impurities, the average ferrite particle size is 6 μm or less, and the carbide average A high carbon cold-rolled steel sheet having a structure in which a grain size is 0.1 µm or more and less than 1.20 µm, and a volume fraction of ferrite grains substantially not containing carbide is 15% or less. 質量%で、C:0.20〜0.58%、Si:0.1%以下、Mn:0.20〜0.60%、P:0.02%以下、S:0.01%以下、sol.Al:0.1%以下、N:0.005%以下、B:0.001〜0.005%、Cr:0.05〜0.3%を含有し、残部鉄および不可避的不純物である組成と、フェライト平均粒径が6μm以下、炭化物平均粒径が0.5μm以上1.20μm未満、炭化物を実質的に含まないフェライト粒の体積率が15%以下である組織を有することを特徴とする高炭素冷延鋼板。   In mass%, C: 0.20 to 0.58%, Si: 0.1% or less, Mn: 0.20 to 0.60%, P: 0.02% or less, S: 0.01% or less, sol. Al: 0.1% or less, N: 0.005% or less, B: 0.001 to 0.005%, Cr: 0.05 to 0.3%, the composition of the balance iron and unavoidable impurities, the average ferrite particle size is 6 μm or less, and the carbide average A high carbon cold-rolled steel sheet having a structure in which a grain size is 0.5 μm or more and less than 1.20 μm, and a volume ratio of ferrite grains substantially not containing carbide is 15% or less. 炭化物を実質的に含まないフェライト粒の体積率が10%以下であることを特徴とする請求項1または2に記載の高炭素冷延鋼板。   The high carbon cold-rolled steel sheet according to claim 1 or 2, wherein the volume fraction of ferrite grains substantially free of carbides is 10% or less. 請求項1記載の組成を有する鋼を、 (Ar3変態点-10℃)以上の仕上温度で熱間圧延した後、冷却速度120℃/秒超かつ冷却停止温度620℃以下として冷却を行い、次いで巻取温度600℃以下で巻取り、圧下率30%以上で冷間圧延を行った後、焼鈍温度640℃以上Ac1変態点以下で焼鈍することを特徴とする高炭素冷延鋼板の製造方法。 The steel having the composition according to claim 1 is hot-rolled at a finishing temperature of (Ar 3 transformation point −10 ° C.) or higher, and then cooled at a cooling rate exceeding 120 ° C./second and a cooling stop temperature of 620 ° C. or less. Next, it is wound at a coiling temperature of 600 ° C. or lower, cold-rolled at a rolling reduction of 30% or higher, and then annealed at an annealing temperature of 640 ° C. or higher and below the Ac 1 transformation point. Method. 請求項2記載の組成を有する鋼を、 (Ar3変態点-10℃)以上の仕上温度で熱間圧延した後、冷却速度120℃/秒超かつ冷却停止温度620℃以下として冷却を行い、次いで巻取温度600℃以下で巻取り、圧下率30%以上で冷間圧延を行った後、焼鈍温度680℃以上Ac1変態点以下で焼鈍することを特徴とする高炭素冷延鋼板の製造方法。 The steel having the composition according to claim 2 is hot-rolled at a finishing temperature of (Ar 3 transformation point −10 ° C.) or higher, and then cooled at a cooling rate exceeding 120 ° C./second and a cooling stop temperature of 620 ° C. or less. Next, it is wound at a coiling temperature of 600 ° C. or lower, cold-rolled at a rolling reduction of 30% or higher, and then annealed at an annealing temperature of 680 ° C. or higher and an Ac 1 transformation point or lower. Method. 前記冷却停止温度600℃以下で冷却を行い、前記巻取温度500℃以下で巻取ることを特徴とする請求項4または5に記載の高炭素冷延鋼板の製造方法。   The method for producing a high-carbon cold-rolled steel sheet according to claim 4 or 5, wherein cooling is performed at the cooling stop temperature of 600 ° C or lower and winding is performed at the winding temperature of 500 ° C or lower. 前記巻取り後前記冷間圧延前に、さらに、焼鈍温度640℃以上Ac1変態点以下で焼鈍することを特徴とする請求項4ないし6に記載の高炭素冷延鋼板の製造方法。 The prior between after winding the cold rolling, further method for producing a high carbon cold rolled steel sheet according to claims 4 to 6, characterized in that annealing in the following transformation point annealing temperature 640 ° C. or higher Ac.
JP2004218719A 2003-08-28 2004-07-27 High carbon cold-rolled steel sheet and method for producing the same Expired - Fee Related JP4412094B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004218719A JP4412094B2 (en) 2003-10-10 2004-07-27 High carbon cold-rolled steel sheet and method for producing the same
KR1020040067439A KR100673422B1 (en) 2003-08-28 2004-08-26 High carbon hot rolled steel sheet, cold rolled steel sheet and method for production thereof
CNB200410068318XA CN1303244C (en) 2003-08-28 2004-08-27 High-carbon hot-rolled steel plate,cold-rolled steel plate and making method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003352478 2003-10-10
JP2004218719A JP4412094B2 (en) 2003-10-10 2004-07-27 High carbon cold-rolled steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005133199A true JP2005133199A (en) 2005-05-26
JP4412094B2 JP4412094B2 (en) 2010-02-10

Family

ID=34656118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004218719A Expired - Fee Related JP4412094B2 (en) 2003-08-28 2004-07-27 High carbon cold-rolled steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4412094B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031762A (en) * 2005-07-26 2007-02-08 Jfe Steel Kk High-carbon cold-rolled steel sheet superior in workability, and manufacturing method therefor
WO2009075494A1 (en) * 2007-12-06 2009-06-18 Posco High carbon steel sheet superior in tensile strength and elongation and method for manufacturing the same
US20120222786A1 (en) * 2005-12-26 2012-09-06 Posco Manufacturing Method of Carbon Steel Sheet Superior in Formability
JP2017031492A (en) * 2015-08-05 2017-02-09 新日鐵住金株式会社 Manufacturing method of cold rolled steel sheet and cold rolled steel sheet
KR20220089552A (en) 2020-12-21 2022-06-28 주식회사 포스코 Steel for tool and manufacturing method for the same
CN115747647A (en) * 2022-11-08 2023-03-07 江阴兴澄特种钢铁有限公司 High-wear-resistance and heat-treatment-resistant deformed steel for linear guide rail and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031762A (en) * 2005-07-26 2007-02-08 Jfe Steel Kk High-carbon cold-rolled steel sheet superior in workability, and manufacturing method therefor
JP4600196B2 (en) * 2005-07-26 2010-12-15 Jfeスチール株式会社 High carbon cold-rolled steel sheet with excellent workability and manufacturing method thereof
US20120222786A1 (en) * 2005-12-26 2012-09-06 Posco Manufacturing Method of Carbon Steel Sheet Superior in Formability
US8685181B2 (en) * 2005-12-26 2014-04-01 Posco Manufacturing method of carbon steel sheet superior in formability
WO2009075494A1 (en) * 2007-12-06 2009-06-18 Posco High carbon steel sheet superior in tensile strength and elongation and method for manufacturing the same
US8465601B2 (en) 2007-12-06 2013-06-18 Posco High carbon steel sheet superior in tensile strength and elongation and method for manufacturing the same
JP2017031492A (en) * 2015-08-05 2017-02-09 新日鐵住金株式会社 Manufacturing method of cold rolled steel sheet and cold rolled steel sheet
KR20220089552A (en) 2020-12-21 2022-06-28 주식회사 포스코 Steel for tool and manufacturing method for the same
CN115747647A (en) * 2022-11-08 2023-03-07 江阴兴澄特种钢铁有限公司 High-wear-resistance and heat-treatment-resistant deformed steel for linear guide rail and preparation method thereof
CN115747647B (en) * 2022-11-08 2023-10-10 江阴兴澄特种钢铁有限公司 High-wear-resistance heat treatment deformation-resistant steel for linear guide rail and preparation method thereof

Also Published As

Publication number Publication date
JP4412094B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP5292698B2 (en) Extremely soft high carbon hot-rolled steel sheet and method for producing the same
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
US7879163B2 (en) Method for manufacturing a high carbon hot-rolled steel sheet
JP5050433B2 (en) Method for producing extremely soft high carbon hot-rolled steel sheet
JP4600196B2 (en) High carbon cold-rolled steel sheet with excellent workability and manufacturing method thereof
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
CN111406124B (en) High-strength cold-rolled steel sheet and method for producing same
KR100673422B1 (en) High carbon hot rolled steel sheet, cold rolled steel sheet and method for production thereof
JP5358914B2 (en) Super soft high carbon hot rolled steel sheet
JP4696853B2 (en) Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
JPWO2019151017A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing them
JP4380471B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP3879446B2 (en) Method for producing high carbon hot-rolled steel sheet with excellent stretch flangeability
JP4380469B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP4696753B2 (en) Method for producing high carbon cold-rolled steel sheet excellent in punching workability and high-carbon cold-rolled steel sheet
JP3879447B2 (en) Method for producing high carbon cold-rolled steel sheet with excellent stretch flangeability
JP4403925B2 (en) High carbon cold-rolled steel sheet and method for producing the same
JP4412094B2 (en) High carbon cold-rolled steel sheet and method for producing the same
JP4622609B2 (en) Method for producing soft high workability high carbon hot rolled steel sheet with excellent stretch flangeability
JP5157417B2 (en) Steel sheet and manufacturing method thereof
JP4280202B2 (en) High carbon steel plate with excellent hardenability and stretch flangeability
JP4319940B2 (en) High carbon steel plate with excellent workability, hardenability and toughness after heat treatment
JP3755368B2 (en) High carbon steel plate with excellent stretch flangeability
WO2022209839A1 (en) High-strength steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4412094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees