WO2022209839A1 - High-strength steel sheet and method for manufacturing same - Google Patents
High-strength steel sheet and method for manufacturing same Download PDFInfo
- Publication number
- WO2022209839A1 WO2022209839A1 PCT/JP2022/011493 JP2022011493W WO2022209839A1 WO 2022209839 A1 WO2022209839 A1 WO 2022209839A1 JP 2022011493 W JP2022011493 W JP 2022011493W WO 2022209839 A1 WO2022209839 A1 WO 2022209839A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- strength
- surface layer
- thickness
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 157
- 239000010959 steel Substances 0.000 title claims abstract description 157
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title abstract description 20
- 238000005452 bending Methods 0.000 claims abstract description 55
- 239000002344 surface layer Substances 0.000 claims abstract description 51
- 239000000203 mixture Substances 0.000 claims abstract description 26
- 238000001816 cooling Methods 0.000 claims description 89
- 229910001566 austenite Inorganic materials 0.000 claims description 85
- 229910001563 bainite Inorganic materials 0.000 claims description 68
- 229910000734 martensite Inorganic materials 0.000 claims description 65
- 230000000717 retained effect Effects 0.000 claims description 54
- 238000005096 rolling process Methods 0.000 claims description 37
- 239000000463 material Substances 0.000 claims description 35
- 238000005098 hot rolling Methods 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 19
- 239000012535 impurity Substances 0.000 claims description 5
- 239000013078 crystal Substances 0.000 abstract description 9
- 230000000694 effects Effects 0.000 description 36
- 230000009466 transformation Effects 0.000 description 21
- 238000012360 testing method Methods 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 15
- 238000004804 winding Methods 0.000 description 13
- 230000007423 decrease Effects 0.000 description 10
- 229910000859 α-Fe Inorganic materials 0.000 description 10
- 239000000126 substance Substances 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 8
- 239000006104 solid solution Substances 0.000 description 8
- 238000005336 cracking Methods 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 7
- 229910052761 rare earth metal Inorganic materials 0.000 description 7
- 150000002910 rare earth metals Chemical class 0.000 description 7
- 238000005728 strengthening Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- 238000001953 recrystallisation Methods 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 230000003749 cleanliness Effects 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 4
- 238000007542 hardness measurement Methods 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 229910001567 cementite Inorganic materials 0.000 description 3
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001887 electron backscatter diffraction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000029052 metamorphosis Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/02—Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/84—Controlled slow cooling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a high-strength steel sheet and its manufacturing method.
- tensile strength 980 MPa or more and uniform elongation of 6% or more
- it has excellent bending workability, and is suitable as a material for trucks and passenger car frames, suspension parts, etc. It relates to a high strength steel sheet and a method for producing the same. .
- Patent Documents 1 to 6 have the following problems.
- Patent Documents 1 and 2 a tensile strength of 980 MPa or more cannot be obtained.
- hot-rolled steel sheets are considered to have excellent workability, and "elongation" is used as an index of workability.
- This "elongation” is also called total elongation (El), and represents the elongation at the time when the test piece breaks in the tensile test.
- El total elongation
- necking occurs before breakage occurs. If necking occurs, the plate thickness becomes thin locally, resulting in product defects during press molding. Therefore, high total elongation alone is not sufficient to achieve excellent press formability.
- Patent Documents 1 and 2 do not refer to bending workability.
- Patent Documents 3 to 5 are said to yield high-strength steel sheets with excellent bending workability, but all of them focus only on cracks that occur on the outside of bending. If cracks occur during bending, regardless of whether they are on the outside or inside of the bend, the cracks will become fatigue crack initiation points, which may reduce the durability of the part. It cannot be said that ensuring sexuality is sufficient.
- Patent Document 6 With the technology described in Patent Document 6, it is said that a high-strength steel sheet with excellent bending workability can be obtained, but attention is focused only on cracks that occur on the inner side of bending. If cracks occur during bending, regardless of whether they are on the outside or inside of the bend, those cracks can become fatigue crack initiation points, reducing the durability of the part. Otherwise, the performance of parts cannot be ensured.
- the present invention has been made in view of the above-mentioned actual situation, and an object thereof is to provide a high-strength steel sheet having tensile strength, press formability, and bending workability, and a method for manufacturing the same.
- the present inventors have found that a tensile strength of 980 MPa or more and a virtual stress-strain curve of steel sheets having various yield stresses and uniform elongations are created, and the stress-strain curve is used.
- the inventors studied the optimal steel sheet structure in order to obtain a tensile strength of 980 MPa or more and a uniform elongation of 6% or more.
- the main phase is upper bainite, and a microstructure containing an appropriate amount of a hard secondary phase containing fresh martensite and/or retained austenite results in a high strength of 980 MPa or more and a uniform elongation of 6% or more. It has been shown that it is possible to combine
- the upper bainite referred to here is an aggregate of lath-shaped ferrite with an orientation difference of less than 15°, and a structure having Fe-based carbides and/or retained austenite between lath-shaped ferrites (however, between lath-shaped ferrites (including the case of not having Fe-based carbides and/or retained austenite).
- lath-like ferrite has a lath-like shape and a relatively high dislocation density inside. electron microscopy).
- Fresh martensite is martensite that does not contain Fe-based carbides.
- Fresh martensite and retained austenite have similar contrast in SEM, but are distinguishable using electron backscatter diffraction (EBSD) methods.
- the inventors investigated the bending workability of high-strength steel sheets having a tensile strength of 980 MPa or more and a uniform elongation of 6% or more. Specifically, steel sheets with a tensile strength of 980 MPa or more and a uniform elongation of 6% or more, manufactured by different manufacturing methods, were subjected to a 90° V bending test to observe the fracture surface of bending cracks and the microstructure in the vicinity of the cracks. On the outside of the bending, the fracture surface of the crack was ductile fracture, and many voids were observed in the microstructure near the crack.
- the crack fracture surface is brittle fracture surface, and voids are not observed in the microstructure near the crack. Therefore, an improvement in ductility can suppress external bending cracks, and an improvement in compression embrittlement resistance can suppress internal bending cracks. Therefore, it was found that it is necessary to control the microstructure of the surface layer region and its neighboring region where bending cracks can occur.
- the present invention has been made based on further studies based on the above findings, and the gist thereof is as follows. [1] % by mass, C: 0.05 to 0.20%, Si: 0.5 to 1.2%, Mn: 1.5-4.0%, P: 0.10% or less, S: 0.03% or less, Al: 0.001 to 2.0%, N: 0.01% or less, O: 0.01% or less and B: 0.0005 to 0.010% or less, with the balance being Fe and unavoidable impurities,
- the microstructure includes upper bainite with an area ratio of 80% or more and fresh martensite and/or retained austenite with a total area ratio of 2% or more in the surface layer region from the steel plate surface to the position of 1/10 of the plate thickness,
- the internal region from the plate thickness 1/10 position to the plate thickness 3/10 position contains upper bainite with an area ratio of 70% or more and fresh martensite and / or retained austenite with a total area ratio of 3% or more,
- the component composition further contains, in % by mass, Cr: 1.0% or less, and Mo: 1.0% or less, The high-strength steel sheet according to [1], containing at least one of [3]
- the component composition further contains, in % by mass, Cu: 2.0% or less, Ni: 2.0% or less, Ti: 0.3% or less, The high-strength steel sheet according to [1] or [2], containing at least one of Nb: 0.3% or less and V: 0.3% or less.
- the component composition further contains, in % by mass, Sb: 0.005-0.020% The high-strength steel sheet according to any one of [1] to [3], containing [5]
- the component composition further contains, in % by mass, Ca: 0.01% or less, The high-strength steel sheet according to any one of [1] to [4], containing at least one of Mg: 0.01% or less and REM: 0.01% or less.
- a hot-rolled steel sheet is obtained by hot rolling under the conditions that the total rolling reduction in the temperature range of RC1 or less is 25% or more and 80% or less, and the finish rolling end temperature is (RC2-50°C) or more (RC2 + 120°C) or less, Time from the end of hot rolling to the start of cooling of the hot-rolled steel sheet: within 2.0 s, average cooling rate at 3/10 thickness position: 15 ° C./s or more, cooling stop temperature: Trs or more, (Trs + 250 ° C.
- the hot-rolled steel sheet after cooling is coiled at a coiling temperature of Trs or more and (Trs + 250 ° C.) or less, A method for producing a high-strength steel sheet by cooling to 100°C or less at an average cooling rate of 20°C/s or less.
- Trs a coiling temperature of Trs or more and (Trs + 250 ° C.) or less
- Trs a coiling temperature of Trs or more and (Trs + 250 ° C.) or less
- Trs a high-strength steel sheet by cooling to 100°C or less at an average cooling rate of 20°C/s or less.
- RC1, RC2, and Trs are defined by the following formulas (1), (2), and (3), respectively.
- RC1 (°C) 900 + 100 x C + 100 x N + 10 x Mn + 700 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 2000 x Nb + 150 x V
- RC2 (°C) 750 + 100 x C + 100 x N + 10 x Mn + 350 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 1000 x Nb + 150 x V
- Trs (° C.) 500-450 ⁇ C-35 ⁇ Mn-15 ⁇ Cr-10 ⁇ Ni-20 ⁇ Mo (3)
- each element symbol in the above formulas (1), (2), and (3) represents the content (% by mass) of each element, and is set to 0 when the element is not contained.
- a high-strength steel sheet having a tensile strength of 980 MPa or more, press formability, and bending workability can be obtained.
- the high-strength steel sheet of the present invention has high tensile strength, it is excellent in press formability and can be press-formed without forming defects such as necking and cracking.
- the high-strength steel sheet of the present invention is applied to members of trucks and passenger cars, it is possible to reduce the weight of automobile bodies by reducing the amount of steel used while ensuring safety, thereby contributing to the reduction of environmental load.
- excellent press formability means having a uniform elongation of 6% or more.
- excellent bending workability means that R/t, which is the ratio of the limit bending radius R and the plate thickness t at which cracks of 50 ⁇ m or more in depth do not occur on both the outer side and the inner side of the bend in the 90° V bending test, is 1.5. 5 or less.
- C 0.05-0.20%
- C is an element that has the effect of improving the strength of steel.
- C promotes the formation of bainite by improving hardenability and contributes to high strength.
- C also contributes to high strength by increasing the strength of martensite.
- the C content In order to obtain a tensile strength of 980 MPa or more, the C content must be 0.05% or more. Therefore, the C content should be 0.05% or more, preferably 0.06% or more.
- the C content should be 0.20% or less, preferably 0.18% or less.
- Si 0.5-1.2% Si has the effect of suppressing the formation of Fe-based carbides and suppresses precipitation of cementite during upper bainite transformation.
- C is distributed in untransformed austenite, and by cooling after coiling in the hot rolling process, untransformed austenite becomes fresh martensite and/or retained austenite, and the desired fresh martensite and/or retained austenite are obtained. be able to.
- the Si content should be 0.5% or more.
- the Si content is 0.6% or more.
- the Si content exceeds 1.2%, fresh martensite and/or retained austenite are formed more than the desired area ratio, and as a result, the desired upper bainite area ratio cannot be obtained. may worsen sexuality. Therefore, the Si content should be 1.2% or less, preferably 1.1% or less.
- Mn 1.5-4.0% Mn stabilizes austenite and contributes to the generation of fresh martensite and/or retained austenite. In order to obtain such effects, the Mn content must be 1.5% or more. Therefore, the Mn content is set to 1.5% or more, preferably 1.7% or more. On the other hand, when the Mn content exceeds 4.0%, fresh martensite and/or retained austenite are excessively generated, and as a result, the desired area ratio of upper bainite cannot be obtained, resulting in deterioration of bendability. Therefore, the Mn content should be 4.0% or less, preferably 3.8% or less.
- P 0.10% or less
- P is an element that forms a solid solution and contributes to an increase in the strength of steel.
- P is also an element that causes slab cracks during hot rolling by segregating at austenite grain boundaries during hot rolling. In addition, it segregates at grain boundaries to reduce uniform elongation. For this reason, it is preferable to keep the P content as low as possible, but the P content up to 0.10% is permissible. Therefore, the P content should be 0.10% or less.
- the lower limit is not particularly limited, but if the P content is less than 0.0002%, production efficiency is lowered, so 0.0002% or more is preferable.
- S 0.03% or less S combines with Ti and Mn to form coarse sulfides, which hasten the generation of voids, thereby lowering the uniform elongation. Therefore, it is preferable to keep the S content as low as possible, but an S content of up to 0.03% is permissible. Therefore, the S content is made 0.03% or less.
- the lower limit is not particularly limited, but if the S content is less than 0.0002%, production efficiency is lowered, so 0.0002% or more is preferable.
- Al 0.001-2.0%
- Al is an element that acts as a deoxidizing agent and is effective in improving the cleanliness of steel. If the Al content is less than 0.001%, the effect is not sufficient, so the Al content should be 0.001% or more, preferably 0.005% or more, and more preferably 0.010% or more.
- Al, like Si, has the effect of suppressing the formation of Fe-based carbides and suppresses precipitation of cementite during upper bainite transformation. This contributes to the generation of fresh martensite and/or retained austenite during cooling after winding.
- an excessive content of Al causes an increase in oxide-based inclusions and lowers the uniform elongation. Therefore, the Al content should be 2.0% or less, preferably 1.0% or less, and more preferably 0.1% or less.
- N 0.01% or less N precipitates as a nitride by combining with a nitride-forming element, and generally contributes to grain refinement.
- N combines with Ti at high temperatures to form coarse nitrides, a content exceeding 0.01% causes a decrease in uniform elongation. Therefore, the N content is set to 0.01% or less.
- the lower limit is not particularly limited, but if the N content is less than 0.0002%, production efficiency is lowered, so 0.0002% or more is preferable.
- O 0.01% or less O forms oxides and deteriorates moldability, so the content must be suppressed. In particular, when O exceeds 0.01%, this tendency becomes remarkable. Therefore, the O content should be 0.01% or less, preferably 0.005%, more preferably 0.003%.
- the lower limit is not specified, but if it is less than 0.00005%, production efficiency may be remarkably lowered, so 0.00005% or more is preferable.
- B 0.0005 to 0.010%
- B is an element that segregates at prior austenite grain boundaries, suppresses the formation of ferrite, promotes the formation of upper bainite, and contributes to the improvement of the strength of the steel sheet.
- the B content In order to develop these effects, the B content must be 0.0005% or more. Therefore, the B content is set to 0.0005% or more, preferably 0.0006%, and more preferably 0.0007%.
- the B content exceeds 0.010%, the above effects are saturated. Therefore, the B content is 0.010% or less, preferably 0.009% or less, more preferably 0.008% or less.
- the balance consists of Fe and unavoidable impurities.
- unavoidable impurities include Zr, Co, Sn, Zn, and W.
- the component composition contains at least one of Zr, Co, Sn, Zn, and W as unavoidable impurities, the total content of these elements is preferably 0.5% or less.
- the chemical composition of the high-strength steel sheet of the present invention can optionally contain at least one of the elements listed below.
- Cr 1.0% or less
- Cr is a carbide-forming element that segregates at the interface between the upper bainite and the untransformed austenite during the upper bainite transformation after winding, thereby reducing the driving force of the bainite transformation and causing the upper bainite to segregate. It has the effect of stopping metamorphosis. Untransformed austenite remaining after the transformation to upper bainite stops becomes fresh martensite and/or retained austenite by cooling after winding. Therefore, when Cr is added, Cr also contributes to the formation of a desired area ratio of fresh martensite and/or retained austenite. This effect is obtained when Cr is preferably 0.1% or more.
- the Cr content exceeds 1.0%, fresh martensite and/or retained austenite are excessively generated, and as a result, the desired area ratio of upper bainite cannot be obtained, resulting in deterioration of bendability. Therefore, when Cr is added, the Cr content is 1.0% or less, preferably 0.9% or less, and more preferably 0.8% or less.
- Mo 1.0% or less Mo promotes formation of bainite through improvement of hardenability and contributes to strength improvement of the steel sheet.
- Mo like Cr, is a carbide-forming element, and segregates at the interface between the upper bainite and the untransformed austenite during the upper bainite transformation after winding, thereby reducing the transformation driving force of the bainite and cooling the winding. It contributes to the later generation of fresh martensite and/or retained austenite.
- Mo exceeds 1.0%, fresh martensite and/or retained austenite are excessively generated, and as a result, the desired area ratio of upper bainite cannot be obtained, which deteriorates uniform elongation. .
- This effect is obtained when Mo is preferably 0.1% or more. Therefore, when Mo is added, the Mo content is 1.0% or less, preferably 0.9% or less, and more preferably 0.8% or less.
- the chemical composition of the high-strength steel sheet of the present invention can optionally contain at least one of the elements listed below.
- Cu 2.0% or less
- Cu is an element that forms a solid solution and contributes to increasing the strength of steel. Further, Cu promotes the formation of bainite through improvement of hardenability and contributes to strength improvement. This effect is obtained when Cu is preferably 0.01% or more.
- the Cu content exceeds 2.0%, the surface properties of the high-strength steel sheet are deteriorated, and the bendability of the high-strength steel sheet is deteriorated. Therefore, when Cu is added, the Cu content is 2.0% or less, preferably 1.9% or less, and more preferably 1.8% or less.
- Ni 2.0% or less
- Ni is an element that forms a solid solution and contributes to increasing the strength of steel.
- Ni promotes the formation of bainite through improvement of hardenability and contributes to strength improvement. This effect is obtained when Ni is preferably 0.01% or more.
- the Ni content exceeds 2.0%, fresh martensite and/or retained austenite excessively increase, and as a result, the desired area ratio of upper bainite cannot be obtained. deteriorate. Therefore, when Ni is added, the Ni content should be 2.0% or less, preferably 1.9% or less, and more preferably 1.8% or less.
- Ti 0.3% or less
- Ti is an element that acts to improve the strength of the steel sheet by precipitation strengthening or solid solution strengthening. Ti forms nitrides in the high temperature range of austenite. As a result, precipitation of BN is suppressed, and B becomes a solid solution. Therefore, when Ti is added, Ti also contributes to ensuring the hardenability necessary for forming upper bainite, and the strength is improved. This effect is obtained when Ti is preferably 0.01% or more. However, when the Ti content exceeds 0.3%, a large amount of Ti nitrides are formed, which reduces the uniform elongation. Therefore, when Ti is added, the Ti content should be 0.3% or less, preferably 0.28% or less, and more preferably 0.25% or less.
- Nb 0.3% or less
- Nb is an element that has the effect of improving the strength of the steel sheet by precipitation strengthening or solid solution strengthening.
- Nb like Ti, raises the recrystallization temperature of austenite during hot rolling, enabling rolling in the austenite unrecrystallized region, refining the grain size of upper bainite, fresh martensite and / Or contribute to an increase in the area ratio of retained austenite.
- Nb like Cr, is a carbide-forming element, and segregates at the interface between upper bainite and untransformed austenite during the upper bainite transformation after winding, thereby reducing the transformation driving force of bainite and untransformed austenite.
- Nb it is an element that has the effect of stopping the upper bainite transformation while leaving the The untransformed austenite is then cooled to become fresh martensite and/or retained austenite. Therefore, when Nb is added, Nb also contributes to the formation of a desired area ratio of fresh martensite and/or retained austenite. This effect is obtained when Nb is preferably 0.01% or more. However, when the Nb content exceeds 0.3%, fresh martensite and/or retained austenite excessively increase, and as a result, the desired area ratio of upper bainite cannot be obtained, resulting in a decrease in uniform elongation. Therefore, when Nb is added, the Nb content should be 0.3% or less, preferably 0.28% or less, and more preferably 0.25% or less.
- V 0.3% or less
- V is an element that acts to improve the strength of the steel sheet by precipitation strengthening and solid solution strengthening. Further, similarly to Ti, V raises the recrystallization temperature of austenite during hot rolling, thereby enabling rolling in the austenite non-recrystallization region and contributing to refinement of the grain size of upper bainite.
- V is a carbide-forming element, and segregates at the interface between upper bainite and untransformed austenite during upper bainite transformation after winding, thereby reducing the transformation driving force of bainite and untransformed austenite.
- V is an element that has the effect of stopping the upper bainite transformation while leaving the The untransformed austenite is then cooled to become fresh martensite and/or retained austenite. Therefore, when V is added, V also contributes to the formation of a desired area ratio of fresh martensite and/or retained austenite. This effect is obtained when V is preferably 0.01% or more. However, when the V content exceeds 0.3%, fresh martensite and/or retained austenite excessively increase, and as a result, the desired area ratio of upper bainite cannot be obtained, resulting in a decrease in uniform elongation. Therefore, when V is added, the V content is 0.3% or less, preferably 0.28% or less, and more preferably 0.25% or less.
- the chemical composition of the high-strength steel sheet of the present invention can optionally contain the following elements.
- Sb is an element that has the effect of suppressing nitridation of the surface of the steel material (slab) when the steel material (slab) is heated.
- Sb precipitation of BN in the surface layer of the steel material can be suppressed.
- the remaining solid solution B contributes to ensuring the hardenability necessary for the formation of bainite and thereby improving the strength of the steel sheet.
- the Sb content is 0.005% or more, preferably 0.006% or more, more preferably 0.007% or more, in order to obtain the above effect.
- the Sb content exceeds 0.020%, the toughness of the steel is lowered, and slab cracks and hot rolling cracks may occur. Therefore, when Sb is added, the Sb content is 0.020% or less, preferably 0.019% or less, and more preferably 0.018% or less.
- the chemical composition of the high-strength steel sheet in the present invention can optionally contain at least one of the elements listed below.
- the elements listed below contribute to further improvement of properties such as press formability.
- Ca 0.01% or less Ca controls the shape of oxide- and sulfide-based inclusions, and contributes to the suppression of cracking at sheared edge surfaces of steel sheets and the further improvement of bending workability. This effect is obtained when Ca is preferably 0.001% or more. However, if the Ca content exceeds 0.01%, the amount of Ca-based inclusions increases and the cleanliness of the steel deteriorates, which may rather cause shear edge cracks and bending cracks. Therefore, when Ca is added, the Ca content is set to 0.01% or less.
- Mg 0.01% or less Like Ca, Mg controls the shape of oxide- and sulfide-based inclusions, and contributes to the suppression of cracking at sheared edge surfaces of steel sheets and the further improvement of bending workability. This effect is obtained when Mg is preferably 0.001% or more. However, if the Mg content exceeds 0.01%, the cleanliness of the steel deteriorates, which may rather cause shear edge cracks and bending cracks. Therefore, when Mg is added, the Mg content is made 0.01% or less.
- REM 0.01% or less Like Ca, REM (rare earth metal) controls the shape of oxide- and sulfide-based inclusions, and contributes to the suppression of cracking at sheared edge surfaces of steel sheets and the further improvement of bending workability. do. This effect is obtained when REM is preferably 0.001% or more. However, if the REM content exceeds 0.01%, the cleanliness of the steel deteriorates, which may rather cause shear edge cracks and bending cracks. Therefore, when REM is added, the REM content is made 0.01% or less.
- the high-strength steel sheet of the present invention includes upper bainite with an area ratio of 80% or more and fresh martensite with a total area ratio of 2% or more and / or residual Top bainite with an area ratio of 70% or more and fresh martensite with a total area ratio of 3% or more and/or residual It contains austenite and has an average crystal grain size of 6 ⁇ m or less in the surface layer region from the steel plate surface to the plate thickness 1/10 position, and the hardness (HV1) of the surface layer region from the steel plate surface to the plate thickness 1/10 position.
- the difference (HV2-HV1) in the hardness (HV2) of the inner region from the 1/10th thickness position to the 3/10th thickness position is 5% or more and 15% or less with respect to [0.3 ⁇ tensile strength (MPa)] It has a certain microstructure.
- the soft upper part By finely dispersing hard fresh martensite and/or retained austenite in bainite, ductility can be improved and external bending cracks can be suppressed.
- the surface layer should have an area fraction of upper bainite of 80% or more and an area fraction of fresh martensite and/or retained austenite of 2% or more.
- the area ratio of upper bainite is 85% or more, and the area ratio of fresh martensite and/or retained austenite is 3% or more.
- the bendability may decrease, so the total area ratio of fresh martensite and/or retained austenite is It is preferable to make it 20% or less. It is more preferably 18% or less, still more preferably 15% or less.
- the bainite transformation progresses quickly, and the concentration of C for forming fresh martensite and/or retained austenite is less than in the interior. If the concentration of C is small, martensite transformation is suppressed. As a result, the area ratio of fresh martensite and/or retained austenite in the surface layer region of the steel sheet is smaller than that in the interior.
- upper bainite is included as a main phase in the inner region from the 1/10 thickness position to the 3/10 thickness position. If the area ratio of upper bainite is less than 70%, a tensile strength of 980 MPa or more and a uniform elongation of 6% or more cannot be achieved. Therefore, the area ratio of upper bainite is set to 70% or more, preferably 80% or more.
- fresh martensite and/or retained austenite are included in the internal region from the 1/10 thickness position to the 3/10 thickness position.
- Fresh martensite has the effect of improving uniform elongation by promoting work hardening and delaying the onset of plastic instability.
- Retained austenite can increase uniform elongation by TRIP (Transformation Induced Plasticity) effect.
- the total area ratio of fresh martensite and/or retained austenite is set to 3% or more, preferably 4% or more.
- the microstructure near the center of the plate thickness after the 3/10th position of the plate thickness has little effect on bendability, but from the viewpoint of ductility, the area ratio of upper bainite is preferably 60% or more.
- Fresh martensite/tempered martensite/retained austenite and the like may be contained up to 40% due to Mn segregation at the thickness center.
- Average crystal grain size in the surface layer region from the steel plate surface to the position of 1/10 of the plate thickness 6 ⁇ m or less
- Bending inner cracks are brittle fractures due to strong compression. That is, if the resistance to compression embrittlement is improved, internal bending cracks can be suppressed. Compression embrittlement is less likely to occur due to the refinement of crystal grains.
- the average crystal grain size in the surface layer region should be 6 ⁇ m or less, preferably 5 ⁇ m or less. As the average grain size becomes smaller, the effect of improving resistance to compression embrittlement can be obtained. Therefore, the average crystal grain size in the surface layer region is preferably 2 ⁇ m or more.
- the effect of improving the uniform elongation of fresh martensite and/or retained austenite and the control of the surface layer microstructure can only be achieved by combining inhibitory effects.
- the difference (HV2-HV1) between the hardness (HV1) of the surface layer region from the steel plate surface to the 1/10 thickness position and the hardness (HV2) of the inner region from the 1/10 thickness position to the 3/10 thickness position 5% or more and 15% or less with respect to [0.3 ⁇ tensile strength (MPa)]
- MPa tensile strength
- the difference between the hardness of the surface layer region (HV1) and the hardness of the inner region (HV2) (HV2-HV1) is 0.3 ⁇ tensile strength (MPa ) to 5% or more. It is preferably 6% or more, more preferably 7% or more.
- MPa tensile strength
- the difference between the hardness of the surface layer region and the hardness of the inner region is set to 15% or less with respect to 0.3 ⁇ tensile strength (MPa). It is preferably 14% or less, more preferably 13% or less.
- MPa tensile strength
- the microstructure can further contain any structure (hereinafter referred to as "other structures") other than upper bainite, fresh martensite, and retained austenite.
- other structures such structure
- the total area ratio of other structures is preferably 3% or less.
- the total area ratio of upper bainite, fresh martensite, and retained austenite in the microstructure is preferably 97% or more.
- Other structures include, for example, cementite, polygonal ferrite, pearlite, tempered martensite, and lower bainite.
- the high-strength steel sheet of the present invention has a tensile strength of 980 MPa or more, a uniform elongation of 6% or more, and R / t (limit bending radius R and plate thickness t at which cracks with a depth of 50 ⁇ m or more do not occur on both the outside and inside of the bend. ratio) is 1.5 or less. Therefore, the high-strength steel sheet of the present invention has excellent press formability despite its high tensile strength, and can be press-formed without causing forming defects such as necking and cracking. The durability of the part can be ensured without large cracks occurring on both the outside and inside of the bend. Therefore, safety can be ensured when applied to members of trucks and passenger cars.
- microstructure, hardness, and mechanical properties of the present invention can be determined by the measurement methods described in Examples below.
- the high-strength steel sheet of the present invention can be produced by sequentially subjecting a steel material to the following treatments (1) to (5). Each step will be described below. (1) heating (2) hot rolling (3) cooling (first cooling) (4) Winding (5) Cooling (second cooling)
- the steel material any material can be used as long as it has the chemical composition described above.
- the chemical composition of the finally obtained high-strength steel sheet is the same as the chemical composition of the steel material used.
- a steel slab can be used as the steel material.
- the manufacturing method of the steel material is not particularly limited. For example, molten steel having the above chemical composition can be melted by a known method such as a converter, and a steel material can be obtained by a casting method such as continuous casting.
- a method other than the continuous casting method such as an ingot casting-blooming rolling method, can also be used.
- scrap may be used as a raw material.
- the steel material may be directly subjected to the next heating step after being manufactured by a method such as a continuous casting method, or may be subjected to the heating step after being cooled into a hot piece or a cold piece. good.
- the steel material is heated to a heating temperature of 1150°C or higher.
- a heating temperature 1150°C or higher.
- carbonitride-forming elements such as Ti exist as coarse carbonitrides in steel materials.
- the presence of this coarse and non-uniform precipitates is generally required for high-strength steel sheets for truck and passenger car parts (e.g. shear edge crack resistance, bending workability, burring workability, etc.). aggravate. Therefore, it is necessary to heat the steel material prior to hot rolling to dissolve coarse precipitates.
- the heating temperature of the steel material must be 1150° C. or higher in order to sufficiently dissolve the coarse precipitates.
- the heating temperature of the steel material becomes too high, slab flaws will occur and the yield will decrease due to scale off.
- the heating temperature of the steel material it is preferable to set the heating temperature of the steel material to 1350° C. or lower.
- the lower limit of the heating temperature of the steel material is more preferably 1180°C or higher, and still more preferably 1200°C or higher.
- the upper limit of the heating temperature of the steel material is more preferably 1300° C. or lower, and still more preferably 1280° C. or lower.
- the heating from the viewpoint of uniforming the temperature of the steel material, it is preferable to raise the temperature of the steel material to the heating temperature and then maintain it at the heating temperature.
- the time for which the heating temperature is maintained (holding time) is not particularly limited, but from the viewpoint of improving the temperature uniformity of the steel material, it is preferably 1800 seconds or longer.
- the holding time exceeds 10000 seconds, the amount of scale generation increases. As a result, entrapment of scales and the like is likely to occur in subsequent hot rolling, leading to a decrease in yield due to defective surface defects. Therefore, the retention time is preferably 10000 seconds or less, more preferably 8000 seconds or less.
- Hot rolling Next, the heated steel material is hot rolled to form a hot rolled steel sheet.
- Hot rolling may consist of rough rolling and finish rolling.
- the conditions are not particularly limited.
- descaling is preferably performed prior to finish rolling in order to remove surface scales. Descaling may be performed between stands in the finish rolling.
- the total rolling reduction in the temperature range of RC1 or less is 25% or more and 80% or less
- the finishing temperature of finish rolling should be (RC2-50°C) or more and (RC2+120°C) or less.
- RC1 is the austenite 50% recrystallization temperature estimated from the component composition
- RC2 is the austenite lower limit recrystallization temperature estimated from the component composition. If the total rolling reduction of RC1 or less is less than 25%, the average crystal grain size becomes large and good bending workability cannot be obtained. On the other hand, when the total rolling reduction in the temperature range of RC1 or less exceeds 80%, the dislocation density of austenite is high, the ductility of the bainite structure transformed from austenite in a state of high dislocation density is poor, and the uniform elongation is 6% or more. is not obtained. Therefore, the total rolling reduction in the temperature range of RC1 or less is set to 25% or more and 80% or less.
- finish rolling finish temperature (RC2-50°C) or more and (RC2+120°C) or less. If the finish rolling finish temperature is lower than (RC2-50° C.), bainite transformation occurs from austenite in a state of high dislocation density. Since upper bainite transformed from austenite with a high dislocation density has a high dislocation density and poor ductility, the uniform elongation decreases. Also, when the rolling end temperature is low and the rolling is performed at the two-phase region temperature of ferrite + austenite, the uniform elongation decreases. Therefore, the finishing temperature of finish rolling should be (RC2-50° C.) or higher.
- the finish rolling finish temperature is set to (RC2+120° C.) or less.
- RC1 and RC2 are defined by the following formulas (1) and (2).
- RC1 (°C) 900 + 100 x C + 100 x N + 10 x Mn + 700 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 2000 x Nb + 150 x V
- RC2 (°C) 750 + 100 x C + 100 x N + 10 x Mn + 350 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 1000 x Nb + 150 x V (2)
- each element symbol in the above formulas (1) and (2) represents the content (% by mass) of each element, and is set to 0 when the element is not contained.
- Cooling (first cooling) Next, the obtained hot-rolled steel sheet is cooled (first cooling). At that time, the time from the end of hot rolling (end of finish rolling) to the start of cooling (cooling start time) is set within 2.0 seconds. If the cooling start time exceeds 2.0 seconds, grain growth of austenite grains occurs and a tensile strength of 980 MPa or more cannot be secured. The cooling start time is preferably within 1.5 seconds.
- the average cooling rate at the plate thickness 3/10 position shall be 15°C/s or more.
- different microstructures are created between the surface layer and the inside. Due to the rapid cooling of the surface layer, the bainite transformation of the surface layer starts early, and the formation of martensite and retained austenite due to the enrichment of C is less than in the inside. If the average cooling rate in cooling is less than 15 ° C. / s, the surface layer is not cooled sufficiently rapidly, and the upper bainite with an area ratio of 80% or more and the total area ratio of 2% or more fresh martensite and / or residual An austenite surface layer structure cannot be obtained.
- the average cooling rate is set to 15° C./s or higher, preferably 20° C./s or higher, more preferably 50° C./s or higher.
- the upper limit of the average cooling rate is not particularly limited, but if the average cooling rate is too high, it becomes difficult to manage the cooling stop temperature. Therefore, the average cooling rate is preferably 200° C./s or less.
- the average cooling rate is defined based on the average cooling rate on the surface of the steel sheet.
- the average cooling rate of the surface layer - the average cooling rate at the plate thickness 3/10 position of 10 ° C./s or more by satisfying the average cooling rate of the surface layer - the average cooling rate at the plate thickness 3/10 position of 10 ° C./s or more, the formation of martensite and retained austenite due to the enrichment of C in the surface layer is reduced to the plate thickness. Less than the 3/10 position. As a result, a soft surface layer structure can be created.
- the cooling rate is slower than the surface layer, and the progress of bainite transformation is slower than that in the surface layer. be able to. That is, a difference in hardness between the surface layer and the inside can be realized.
- the average cooling rate of the plate thickness 3/10 position surface layer is less than 10 ° C / s, the above effect is not observed, so the average cooling rate of the surface layer - plate thickness
- the average cooling rate at the 3/10 position is 10° C./s or more.
- the average cooling rate is obtained by (temperature at the start of cooling - temperature at the end of cooling)/cooling time.
- the temperature of the surface layer is actually measured with a thermometer.
- the temperature at the 3/10 thickness position is obtained by calculating the temperature distribution in the cross section of the steel sheet by heat transfer analysis and correcting the result with the actual surface temperature of the steel sheet.
- cooling forced cooling may be performed so as to achieve the above average cooling rate.
- the cooling method is not particularly limited, but for example, water cooling is preferable.
- the cooling stop temperature shall be Trs or higher and (Trs + 250°C) or lower.
- Trs When the cooling stop temperature is less than Trs, the microstructure becomes tempered martensite or lower bainite. Tempered martensite and lower bainite are both high-strength structures, but their uniform elongation is remarkably low. Therefore, the cooling stop temperature is set to Trs or higher.
- the cooling stop temperature is set to (Trs+250° C.) or less.
- each element symbol in the above formula (3) represents the content (% by mass) of each element, and is set to 0 when the element is not contained.
- the cooled hot-rolled steel sheet is coiled under the conditions of a coiling temperature of Trs or more and (Trs+250° C.) or less. If the coiling temperature is lower than Trs, martensite transformation or lower bainite transformation proceeds after coiling, and desired fresh martensite and/or retained austenite cannot be obtained. Therefore, the winding temperature should be Trs or higher. On the other hand, if the coiling temperature is higher than (Trs+250° C.), ferrite is generated, and a tensile strength of 980 MPa cannot be obtained. Therefore, the winding temperature is set to (Trs+250° C.) or less.
- Cooling After winding, it is further cooled to 100° C. or lower at an average cooling rate of 20° C./s or lower (second cooling).
- the average cooling rate affects the formation of fresh martensite and/or retained austenite.
- the average cooling rate is set to 20° C./s or less, preferably 2° C./s or less, more preferably 0.02° C./s or less.
- the lower limit of the average cooling rate is not particularly limited, it is preferably 0.0001° C./s or more.
- Cooling can be performed to any temperature below 100°C, but cooling to about 10 to 30°C (for example, room temperature) is preferable. It should be noted that the cooling can be performed in any form, for example, it may be performed in the state of a wound coil.
- the high-strength steel sheet of the present invention can be manufactured by the above procedure.
- the winding and subsequent cooling may be carried out in accordance with a conventional method. For example, temper rolling may be applied, or pickling may be applied to remove scales formed on the surface.
- Molten steel having the composition shown in Table 1 was melted in a converter, and a steel slab was produced as a steel material by continuous casting.
- the obtained steel material was heated to the heating temperature shown in Table 2, and then the heated steel material was subjected to hot rolling consisting of rough rolling and finish rolling to obtain a hot-rolled steel sheet.
- Table 2 shows the finishing temperature of hot rolling.
- the obtained hot-rolled steel sheet was cooled under the conditions of the average cooling rate and the cooling stop temperature shown in Table 2 (first cooling).
- the cooled hot-rolled steel sheet was coiled at the coiling temperature shown in Table 2, and the coiled steel sheet was cooled at the average cooling rate shown in Table 2 (second cooling) to obtain a high-strength steel sheet.
- skin-pass rolling and pickling were performed as post-treatments. The pickling was carried out at a temperature of 85° C. using an aqueous solution of hydrochloric acid having a concentration of 10% by mass.
- a test piece was taken from the obtained high-strength steel sheet, and the microstructure, surface roughness, and mechanical properties were evaluated according to the procedure described below.
- a test piece for microstructure observation was taken from the obtained high-strength steel sheet so that the thickness cross-section parallel to the rolling direction was the observation surface.
- the surface of the obtained test piece was polished, and the surface was corroded using an etchant (3 vol.% nital solution) to expose the microstructure.
- the obtained SEM images were analyzed by image processing to quantify the area ratios of upper bainite (UB), polygonal ferrite (F), and tempered martensite (TM).
- UB upper bainite
- F polygonal ferrite
- TM tempered martensite
- fresh martensite (M) and retained austenite ( ⁇ ) are difficult to distinguish by SEM, so they were identified using an electron backscatter diffraction (EBSD) method, and each area ratio and average crystal Particle size was determined.
- Table 3 shows the measured area ratio of each microstructure and the average crystal grain size of the surface layer structure. Table 3 also shows the total area ratio (M+ ⁇ ) of fresh martensite and retained austenite.
- Hardness measurement From the obtained high-strength steel sheet, a sample for hardness measurement is taken so that the thickness cross section parallel to the rolling direction becomes the hardness measurement cross section, and the surface layer region from the steel plate surface to the thickness 1/10 position and the thickness 1/ The hardness of the internal region from the 10th position to the plate thickness 3/10th position was measured. The hardness of the surface layer region from the surface of the steel plate to the position of 1/10 of the plate thickness was measured at a position 50 ⁇ m away from the surface with an indentation interval of 250 ⁇ m. The hardness of the inner region from the 1/10 thickness position to the 3/10 thickness position was measured at the 1/5 thickness position with an indentation interval of 250 ⁇ m. All hardness measurement conditions were a load of 100 g, a holding time of 10 s, and an average of 5 measurement points.
- Test test A JIS No. 5 test piece (gauge length, GL: 50 mm) was taken from the obtained high-strength steel sheet so that the tensile direction was perpendicular to the rolling direction. Using the obtained test piece, a tensile test was performed in accordance with the provisions of JIS Z 2241, yield strength (yield point, YP), tensile strength (TS), yield ratio (YR), total elongation (El), Similar elongation (u-El) was determined. The tensile test was performed twice for each high-strength steel sheet, and the average of the obtained measured values is shown in Table 3 as the mechanical properties of the high-strength steel sheet. In the present invention, when TS was 980 MPa or more, it was evaluated as high strength. Moreover, when the uniform elongation was 6% or more, the press formability was evaluated as good.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
Abstract
Description
[1]質量%で、
C:0.05~0.20%、
Si:0.5~1.2%、
Mn:1.5~4.0%、
P:0.10%以下、
S:0.03%以下、
Al:0.001~2.0%、
N:0.01%以下、
O:0.01%以下、および
B:0.0005~0.010%以下
を含有し、残部Feおよび不可避的不純物からなる成分組成を有し、
ミクロ組織は、鋼板表面から板厚1/10位置までの表層領域において、面積率で80%以上の上部ベイナイトと、合計の面積率で2%以上のフレッシュマルテンサイトおよび/または残留オーステナイトを含み、
板厚1/10位置から板厚3/10位置までの内部領域において、面積率で70%以上の上部ベイナイトと、合計の面積率で3%以上のフレッシュマルテンサイトおよび/または残留オーステナイトを含み、
鋼板表面から板厚1/10位置までの表層領域での平均結晶粒径が6μm以下であり、
鋼板表面から板厚1/10位置までの表層領域の硬度(HV1)と、板厚1/10位置から板厚3/10位置までの内部領域の硬度(HV2)の差(HV2-HV1)が[0.3×引張強度(MPa)]に対して5%以上15%以下であり、
引張強度が980MPa以上、一様伸びが6%以上、かつ限界曲げ半径Rと板厚tの比R/tが1.5以下である、高強度鋼板。
[2]前記成分組成が、さらに、質量%で、
Cr:1.0%以下、および
Mo:1.0%以下、
の少なくとも1種を含有する、[1]に記載の高強度鋼板。
[3]前記成分組成が、さらに、質量%で、
Cu:2.0%以下、
Ni:2.0%以下、
Ti:0.3%以下、
Nb:0.3%以下、および
V:0.3%以下
の少なくとも1種を含有する、[1]または[2]に記載の高強度鋼板。
[4]前記成分組成が、さらに、質量%で、
Sb:0.005~0.020%
を含有する、[1]~[3]のいずれかに記載の高強度鋼板。
[5]前記成分組成が、さらに、質量%で、
Ca:0.01%以下、
Mg:0.01%以下、および
REM:0.01%以下
の少なくとも1種を含有する、[1]~[4]のいずれかに記載の高強度鋼板。
[6][1]~[5]のいずれかに記載の高強度鋼板の製造方法であって、
前記成分組成を有する鋼素材を1150℃以上の加熱温度に加熱し、
次いで、粗圧延を施した後、
RC1以下の温度範囲での合計圧下率が25%以上80%以下で、かつ仕上圧延終了温度:(RC2-50℃)以上(RC2+120℃)以下の条件で熱間圧延して熱延鋼板とし、
前記熱延鋼板を、熱間圧延終了から冷却開始までの時間:2.0s以内、板厚3/10位置での平均冷却速度:15℃/s以上、冷却停止温度:Trs以上、(Trs+250℃)以下の条件で冷却し、
前記冷却後の熱延鋼板を、巻取温度:Trs以上、(Trs+250℃)以下の条件で巻取り、
20℃/s以下の平均冷却速度で100℃以下まで冷却する、高強度鋼板の製造方法。
なお、RC1、RC2、Trsは、下記(1)、(2)、(3)式でそれぞれ定義される。
RC1(℃)=900+100×C+100×N+10×Mn+700×Ti+5000×B+10×Cr+50×Mo+2000×Nb+150×V…(1)
RC2(℃)=750+100×C+100×N+10×Mn+350×Ti+5000×B+10×Cr+50×Mo+1000×Nb+150×V…(2)
Trs(℃)=500-450×C-35×Mn-15×Cr-10×Ni-20×Mo…(3)
ここで、上記(1)、(2)、(3)式における各元素記号は各元素の含有量(質量%)を表し、含有されていない元素の場合は0とする。
[7]前記熱間圧延終了後の冷却工程において、表層の平均冷却速度と板厚3/10位置での平均冷却速度が(4)式をする、[6]に記載の高強度鋼板の製造方法。
表層の平均冷却速度-板厚3/10位置での平均冷却速度≧10℃/s…(4) The present invention has been made based on further studies based on the above findings, and the gist thereof is as follows.
[1] % by mass,
C: 0.05 to 0.20%,
Si: 0.5 to 1.2%,
Mn: 1.5-4.0%,
P: 0.10% or less,
S: 0.03% or less,
Al: 0.001 to 2.0%,
N: 0.01% or less,
O: 0.01% or less and B: 0.0005 to 0.010% or less, with the balance being Fe and unavoidable impurities,
The microstructure includes upper bainite with an area ratio of 80% or more and fresh martensite and/or retained austenite with a total area ratio of 2% or more in the surface layer region from the steel plate surface to the position of 1/10 of the plate thickness,
The internal region from the plate thickness 1/10 position to the plate thickness 3/10 position contains upper bainite with an area ratio of 70% or more and fresh martensite and / or retained austenite with a total area ratio of 3% or more,
The average grain size in the surface layer region from the steel plate surface to the position of 1/10 of the plate thickness is 6 μm or less,
The difference (HV2-HV1) between the hardness (HV1) of the surface layer region from the steel plate surface to the 1/10 thickness position and the hardness (HV2) of the inner region from the 1/10 thickness position to the 3/10 thickness position 5% or more and 15% or less with respect to [0.3 × tensile strength (MPa)],
A high-strength steel sheet having a tensile strength of 980 MPa or more, a uniform elongation of 6% or more, and a ratio R/t of limit bending radius R to plate thickness t of 1.5 or less.
[2] The component composition further contains, in % by mass,
Cr: 1.0% or less, and Mo: 1.0% or less,
The high-strength steel sheet according to [1], containing at least one of
[3] The component composition further contains, in % by mass,
Cu: 2.0% or less,
Ni: 2.0% or less,
Ti: 0.3% or less,
The high-strength steel sheet according to [1] or [2], containing at least one of Nb: 0.3% or less and V: 0.3% or less.
[4] The component composition further contains, in % by mass,
Sb: 0.005-0.020%
The high-strength steel sheet according to any one of [1] to [3], containing
[5] The component composition further contains, in % by mass,
Ca: 0.01% or less,
The high-strength steel sheet according to any one of [1] to [4], containing at least one of Mg: 0.01% or less and REM: 0.01% or less.
[6] A method for manufacturing a high-strength steel sheet according to any one of [1] to [5],
Heating a steel material having the above composition to a heating temperature of 1150 ° C. or higher,
Then, after rough rolling,
A hot-rolled steel sheet is obtained by hot rolling under the conditions that the total rolling reduction in the temperature range of RC1 or less is 25% or more and 80% or less, and the finish rolling end temperature is (RC2-50°C) or more (RC2 + 120°C) or less,
Time from the end of hot rolling to the start of cooling of the hot-rolled steel sheet: within 2.0 s, average cooling rate at 3/10 thickness position: 15 ° C./s or more, cooling stop temperature: Trs or more, (Trs + 250 ° C. ) cooled under the following conditions,
The hot-rolled steel sheet after cooling is coiled at a coiling temperature of Trs or more and (Trs + 250 ° C.) or less,
A method for producing a high-strength steel sheet by cooling to 100°C or less at an average cooling rate of 20°C/s or less.
Note that RC1, RC2, and Trs are defined by the following formulas (1), (2), and (3), respectively.
RC1 (°C) = 900 + 100 x C + 100 x N + 10 x Mn + 700 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 2000 x Nb + 150 x V (1)
RC2 (°C) = 750 + 100 x C + 100 x N + 10 x Mn + 350 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 1000 x Nb + 150 x V (2)
Trs (° C.)=500-450×C-35×Mn-15×Cr-10×Ni-20×Mo (3)
Here, each element symbol in the above formulas (1), (2), and (3) represents the content (% by mass) of each element, and is set to 0 when the element is not contained.
[7] Manufacture of the high-strength steel sheet according to [6], wherein in the cooling step after the hot rolling is completed, the average cooling rate of the surface layer and the average cooling rate at the 3/10th thickness position satisfy the formula (4). Method.
Average cooling rate of the surface layer - Average cooling rate at the position of 3/10 of the plate thickness ≥ 10 ° C./s (4)
はじめに、本発明の高強度鋼板の成分組成の限定理由について説明する。なお、含有量の単位としての「%」は、特に断らない限り「質量%」を意味するものとする。 [Component composition]
First, the reasons for limiting the chemical composition of the high-strength steel sheet of the present invention will be described. In addition, "%" as a unit of content means "% by mass" unless otherwise specified.
Cは、鋼の強度を向上させる作用を有する元素である。Cは、焼入れ性を向上させることによってベイナイトの生成を促進し、高強度化に寄与する。また、Cは、マルテンサイトの強度を高めることによっても高強度化に寄与する。980MPa以上の引張強度を得るためには、C含有量を0.05%以上とする必要がある。そのため、C含有量は0.05%以上とし、好ましくは0.06%以上とする。一方、C含有量が0.20%を超えると、マルテンサイトの強度が過度に上昇し、主相としての上部ベイナイト、フレッシュマルテンサイトおよび/または残留オーステナイトとの強度差が大きくなり、その結果、一様伸びが低下する。そのため、C含有量は0.20%以下とし、好ましくは0.18%以下とする。 C: 0.05-0.20%
C is an element that has the effect of improving the strength of steel. C promotes the formation of bainite by improving hardenability and contributes to high strength. In addition, C also contributes to high strength by increasing the strength of martensite. In order to obtain a tensile strength of 980 MPa or more, the C content must be 0.05% or more. Therefore, the C content should be 0.05% or more, preferably 0.06% or more. On the other hand, when the C content exceeds 0.20%, the strength of martensite increases excessively, and the difference in strength from upper bainite, fresh martensite and/or retained austenite as the main phase increases, resulting in Uniform elongation is reduced. Therefore, the C content should be 0.20% or less, preferably 0.18% or less.
Siは、Fe系炭化物の形成を抑制する作用を有し、上部ベイナイト変態時のセメンタイトの析出を抑制する。これにより未変態オーステナイトにCが分配され、熱間圧延工程での巻取後の冷却で、未変態オーステナイトがフレッシュマルテンサイトおよび/または残留オーステナイトとなり、所望のフレッシュマルテンサイトおよび/または残留オーステナイトを得ることができる。これらの効果を得るためには、Si含有量を0.5%以上とする必要がある。好ましくは、Si含有量を0.6%以上とする。一方、Siの含有量が1.2%を超えるとフレッシュマルテンサイトおよび/または残留オーステナイトが所望の面積率よりも多く形成し、その結果、所望の上部ベイナイトの面積率が得られないため、曲げ性を悪化させる可能性がある。したがって、Si含有量は1.2%以下とし、好ましくは1.1%以下とする。 Si: 0.5-1.2%
Si has the effect of suppressing the formation of Fe-based carbides and suppresses precipitation of cementite during upper bainite transformation. As a result, C is distributed in untransformed austenite, and by cooling after coiling in the hot rolling process, untransformed austenite becomes fresh martensite and/or retained austenite, and the desired fresh martensite and/or retained austenite are obtained. be able to. In order to obtain these effects, the Si content should be 0.5% or more. Preferably, the Si content is 0.6% or more. On the other hand, when the Si content exceeds 1.2%, fresh martensite and/or retained austenite are formed more than the desired area ratio, and as a result, the desired upper bainite area ratio cannot be obtained. may worsen sexuality. Therefore, the Si content should be 1.2% or less, preferably 1.1% or less.
Mnは、オーステナイトを安定化させ、フレッシュマルテンサイトおよび/または残留オーステナイトの生成に寄与する。このような効果を得るためには、Mn含有量を1.5%以上とする必要がある。そのため、Mn含有量を1.5%以上とし、好ましくは1.7%以上とする。一方、Mn含有量が4.0%を超えると、フレッシュマルテンサイトおよび/または残留オーステナイトが過剰に生成し、その結果、所望の上部ベイナイトの面積率が得られないため、曲げ性が低下する。したがって、Mn含有量は4.0%以下とし、好ましくは3.8%以下とする。 Mn: 1.5-4.0%
Mn stabilizes austenite and contributes to the generation of fresh martensite and/or retained austenite. In order to obtain such effects, the Mn content must be 1.5% or more. Therefore, the Mn content is set to 1.5% or more, preferably 1.7% or more. On the other hand, when the Mn content exceeds 4.0%, fresh martensite and/or retained austenite are excessively generated, and as a result, the desired area ratio of upper bainite cannot be obtained, resulting in deterioration of bendability. Therefore, the Mn content should be 4.0% or less, preferably 3.8% or less.
Pは、固溶して鋼の強度増加に寄与する元素である。しかし、Pは、熱間圧延時のオーステナイト粒界に偏析することで、熱間圧延時のスラブ割れを発生させる元素でもある。また、粒界に偏析して一様伸びを低下させる。このため、P含有量を極力低くすることが好ましいが、0.10%までのPの含有は許容できる。したがって、P含有量は0.10%以下とする。下限については特に限定されるものではないがP含有量が0.0002%未満では生産能率の低下を招くため、0.0002%以上が好ましい。 P: 0.10% or less P is an element that forms a solid solution and contributes to an increase in the strength of steel. However, P is also an element that causes slab cracks during hot rolling by segregating at austenite grain boundaries during hot rolling. In addition, it segregates at grain boundaries to reduce uniform elongation. For this reason, it is preferable to keep the P content as low as possible, but the P content up to 0.10% is permissible. Therefore, the P content should be 0.10% or less. The lower limit is not particularly limited, but if the P content is less than 0.0002%, production efficiency is lowered, so 0.0002% or more is preferable.
Sは、TiやMnと結合して粗大な硫化物を形成し、これがボイドの発生を早めることで一様伸びが低下する。そのため、S含有量は極力低くすることが好ましいが、0.03%までのSの含有は許容できる。したがって、S含有量を0.03%以下とする。下限については特に限定されるものではないが、S含有量が0.0002%未満では生産能率の低下を招くため、0.0002%以上が好ましい。 S: 0.03% or less S combines with Ti and Mn to form coarse sulfides, which hasten the generation of voids, thereby lowering the uniform elongation. Therefore, it is preferable to keep the S content as low as possible, but an S content of up to 0.03% is permissible. Therefore, the S content is made 0.03% or less. The lower limit is not particularly limited, but if the S content is less than 0.0002%, production efficiency is lowered, so 0.0002% or more is preferable.
Alは、脱酸剤として作用し、鋼の清浄度を向上させるのに有効な元素である。Al含有量が0.001%未満ではその効果が十分ではないため、Al含有量は0.001%以上、好ましくは0.005%以上、より好ましくは0.010%以上とする。また、Alは、Siと同様に、Fe系炭化物の形成を抑制する効果があり、上部ベイナイト変態時のセメンタイトの析出を抑制する。これにより、巻取り後の冷却でのフレッシュマルテンサイトおよび/または残留オーステナイトの生成に寄与する。一方、Alの過剰な含有は、酸化物系介在物の増加を招き、一様伸びを低下させる。したがって、Al含有量は2.0%以下、好ましくは1.0%以下、より好ましくは0.1%以下とする。 Al: 0.001-2.0%
Al is an element that acts as a deoxidizing agent and is effective in improving the cleanliness of steel. If the Al content is less than 0.001%, the effect is not sufficient, so the Al content should be 0.001% or more, preferably 0.005% or more, and more preferably 0.010% or more. Al, like Si, has the effect of suppressing the formation of Fe-based carbides and suppresses precipitation of cementite during upper bainite transformation. This contributes to the generation of fresh martensite and/or retained austenite during cooling after winding. On the other hand, an excessive content of Al causes an increase in oxide-based inclusions and lowers the uniform elongation. Therefore, the Al content should be 2.0% or less, preferably 1.0% or less, and more preferably 0.1% or less.
Nは、窒化物形成元素と結合することにより窒化物として析出し、一般に結晶粒微細化に寄与する。しかし、Nは高温でTiと結合して粗大な窒化物を形成するため、0.01%超の含有は一様伸び低下の原因になる。このため、N含有量を0.01%以下とする。下限については特に限定されるものではないが、N含有量が0.0002%未満では生産能率の低下を招くため、0.0002%以上が好ましい。 N: 0.01% or less N precipitates as a nitride by combining with a nitride-forming element, and generally contributes to grain refinement. However, since N combines with Ti at high temperatures to form coarse nitrides, a content exceeding 0.01% causes a decrease in uniform elongation. Therefore, the N content is set to 0.01% or less. The lower limit is not particularly limited, but if the N content is less than 0.0002%, production efficiency is lowered, so 0.0002% or more is preferable.
Oは、酸化物を生成し、成形性を劣化させることから、含有量を抑える必要がある。特に、Oが0.01%を超えると、この傾向が顕著となる。このことから、O含有量は0.01%以下、好ましくは0.005%、より好ましくは0.003%とする。下限は特に規定しないが、0.00005%未満では生産能率の著しい低下を招く場合があるため、0.00005%以上が好ましい。 O: 0.01% or less O forms oxides and deteriorates moldability, so the content must be suppressed. In particular, when O exceeds 0.01%, this tendency becomes remarkable. Therefore, the O content should be 0.01% or less, preferably 0.005%, more preferably 0.003%. The lower limit is not specified, but if it is less than 0.00005%, production efficiency may be remarkably lowered, so 0.00005% or more is preferable.
Bは、旧オーステナイト粒界に偏析し、フェライトの生成を抑制することで、上部ベイナイトの生成を促進し、鋼板の強度向上に寄与する元素である。これらの効果を発現させるためには、B含有量を0.0005%以上とする必要がある。そのため、B含有量を0.0005%以上とし、好ましくは0.0006%とし、より好ましくは0.0007%とする。一方、B含有量が0.010%を超えると、上記した効果が飽和する。したがって、B含有量を0.010%以下とし、好ましくは0.009%以下とし、より好ましくは0.008%以下とする。 B: 0.0005 to 0.010%
B is an element that segregates at prior austenite grain boundaries, suppresses the formation of ferrite, promotes the formation of upper bainite, and contributes to the improvement of the strength of the steel sheet. In order to develop these effects, the B content must be 0.0005% or more. Therefore, the B content is set to 0.0005% or more, preferably 0.0006%, and more preferably 0.0007%. On the other hand, when the B content exceeds 0.010%, the above effects are saturated. Therefore, the B content is 0.010% or less, preferably 0.009% or less, more preferably 0.008% or less.
Crは炭化物形成元素であり、巻取り後の上部ベイナイト変態時に、上部ベイナイトと未変態オーステナイトとの間の界面に偏析してベイナイト変態の駆動力を低下させ、上部ベイナイト変態を停留させる効果を有する。上部ベイナイトへの変態が停留することで残存した未変態オーステナイトは、巻取り後の冷却によりフレッシュマルテンサイトおよび/または残留オーステナイトとなる。したがって、Crを添加した場合、Crも所望の面積率のフレッシュマルテンサイトおよび/または残留オーステナイトの形成に寄与する。この効果は、Crが好ましくは0.1%以上で得られる。しかし、CrはCr含有量が1.0%を超えると、フレッシュマルテンサイトおよび/または残留オーステナイトが過剰に生成し、その結果、所望の上部ベイナイトの面積率が得られないため、曲げ性が悪化するため、Crを添加する場合、Cr含有量を1.0%以下とし、好ましくは0.9%以下とし、より好ましくは0.8%以下とする。 Cr: 1.0% or less Cr is a carbide-forming element that segregates at the interface between the upper bainite and the untransformed austenite during the upper bainite transformation after winding, thereby reducing the driving force of the bainite transformation and causing the upper bainite to segregate. It has the effect of stopping metamorphosis. Untransformed austenite remaining after the transformation to upper bainite stops becomes fresh martensite and/or retained austenite by cooling after winding. Therefore, when Cr is added, Cr also contributes to the formation of a desired area ratio of fresh martensite and/or retained austenite. This effect is obtained when Cr is preferably 0.1% or more. However, when the Cr content exceeds 1.0%, fresh martensite and/or retained austenite are excessively generated, and as a result, the desired area ratio of upper bainite cannot be obtained, resulting in deterioration of bendability. Therefore, when Cr is added, the Cr content is 1.0% or less, preferably 0.9% or less, and more preferably 0.8% or less.
Moは、焼入れ性の向上を通じてベイナイトの形成を促進し、鋼板の強度向上に寄与する。また、Moは、Crと同様に、炭化物形成元素であり、巻取り後の上部ベイナイト変態時に上部ベイナイトと未変態オーステナイトの界面に偏析することで、ベイナイトの変態駆動力を低下させ、巻取り冷却後のフレッシュマルテンサイトおよび/または残留オーステナイトの生成に寄与する。しかし、Mo含有量が1.0%を超えると、フレッシュマルテンサイトおよび/または残留オーステナイトが過度に生成してその結果、所望の上部ベイナイトの面積率が得られないため、一様伸びを悪化させる。この効果は、Moが好ましくは0.1%以上で得られる。したがって、Moを添加する場合、Mo含有量を1.0%以下とし、好ましくは0.9%以下とし、より好ましくは0.8%以下とする。 Mo: 1.0% or less Mo promotes formation of bainite through improvement of hardenability and contributes to strength improvement of the steel sheet. In addition, Mo, like Cr, is a carbide-forming element, and segregates at the interface between the upper bainite and the untransformed austenite during the upper bainite transformation after winding, thereby reducing the transformation driving force of the bainite and cooling the winding. It contributes to the later generation of fresh martensite and/or retained austenite. However, when the Mo content exceeds 1.0%, fresh martensite and/or retained austenite are excessively generated, and as a result, the desired area ratio of upper bainite cannot be obtained, which deteriorates uniform elongation. . This effect is obtained when Mo is preferably 0.1% or more. Therefore, when Mo is added, the Mo content is 1.0% or less, preferably 0.9% or less, and more preferably 0.8% or less.
Cuは、固溶して鋼の強度増加に寄与する元素である。また、Cuは、焼入れ性の向上を通じてベイナイトの形成を促進し、強度向上に寄与する。この効果は、Cuが好ましくは0.01%以上で得られる。しかし、Cu含有量が2.0%を超えると、高強度鋼板の表面性状の低下を招き、高強度鋼板の曲げ性を劣化させる。したがって、Cuを添加する場合、Cu含有量を2.0%以下とし、好ましくは1.9%以下とし、より好ましくは1.8%以下とする。 Cu: 2.0% or less Cu is an element that forms a solid solution and contributes to increasing the strength of steel. Further, Cu promotes the formation of bainite through improvement of hardenability and contributes to strength improvement. This effect is obtained when Cu is preferably 0.01% or more. However, when the Cu content exceeds 2.0%, the surface properties of the high-strength steel sheet are deteriorated, and the bendability of the high-strength steel sheet is deteriorated. Therefore, when Cu is added, the Cu content is 2.0% or less, preferably 1.9% or less, and more preferably 1.8% or less.
Niは、固溶して鋼の強度増加に寄与する元素である。また、Niは、焼入れ性の向上を通じてベイナイトの形成を促進し、強度向上に寄与する。この効果は、Niが好ましくは0.01%以上で得られる。しかし、Ni含有量が2.0%を超えると、フレッシュマルテンサイトおよび/または残留オーステナイトが過度に増加して、その結果、所望の上部ベイナイトの面積率が得られないため、高強度鋼板の延性を劣化させる。したがって、Niを添加する場合、Ni含有量を2.0%以下とし、好ましくは1.9%以下とし、より好ましくは1.8%以下とする。 Ni: 2.0% or less Ni is an element that forms a solid solution and contributes to increasing the strength of steel. In addition, Ni promotes the formation of bainite through improvement of hardenability and contributes to strength improvement. This effect is obtained when Ni is preferably 0.01% or more. However, when the Ni content exceeds 2.0%, fresh martensite and/or retained austenite excessively increase, and as a result, the desired area ratio of upper bainite cannot be obtained. deteriorate. Therefore, when Ni is added, the Ni content should be 2.0% or less, preferably 1.9% or less, and more preferably 1.8% or less.
Tiは、析出強化または固溶強化により鋼板の強度を向上させる作用を有する元素である。Tiは、オーステナイトの高温域で窒化物を形成する。これにより、BNの析出が抑制され、Bが固溶状態になる。したがって、Tiを添加した場合、Tiも上部ベイナイトの生成に必要な焼入れ性の確保に寄与し、強度が向上する。この効果は、Tiが好ましくは0.01%以上で得られる。しかし、Ti含有量が0.3%を超えると、Ti窒化物が多量に生成し、一様伸びを低下させる。したがって、Tiを添加する場合、Ti含有量を0.3%以下とし、好ましくは0.28%以下とし、より好ましくは0.25%以下とする。 Ti: 0.3% or less Ti is an element that acts to improve the strength of the steel sheet by precipitation strengthening or solid solution strengthening. Ti forms nitrides in the high temperature range of austenite. As a result, precipitation of BN is suppressed, and B becomes a solid solution. Therefore, when Ti is added, Ti also contributes to ensuring the hardenability necessary for forming upper bainite, and the strength is improved. This effect is obtained when Ti is preferably 0.01% or more. However, when the Ti content exceeds 0.3%, a large amount of Ti nitrides are formed, which reduces the uniform elongation. Therefore, when Ti is added, the Ti content should be 0.3% or less, preferably 0.28% or less, and more preferably 0.25% or less.
Nbは、析出強化または固溶強化により鋼板の強度を向上させる作用を有する元素である。また、Nbは、Tiと同様に、熱間圧延時のオーステナイトの再結晶温度を上昇させることで、オーステナイト未再結晶域での圧延を可能とし、上部ベイナイトの粒径微細化とフレッシュマルテンサイトおよび/または残留オーステナイトの面積率の増加に寄与する。また、Nbは、Crと同様に、炭化物形成元素であり、巻取り後の上部ベイナイト変態時に上部ベイナイトと未変態オーステナイトの界面に偏析することで、ベイナイトの変態駆動力を低下させ、未変態オーステナイトを残したまま上部ベイナイト変態を停止させる効果を有する元素である。未変態オーステナイトは、その後冷却されることでフレッシュマルテンサイトおよび/または残留オーステナイトとなる。したがって、Nbを添加した場合、Nbも所望の面積率のフレッシュマルテンサイトおよび/または残留オーステナイトの形成に寄与する。この効果は、Nbが好ましくは0.01%以上で得られる。しかし、Nb含有量が0.3%を超えるとフレッシュマルテンサイトおよび/または残留オーステナイトが過度に増加し、その結果、所望の上部ベイナイトの面積率が得られないため、一様伸びが低下する。したがって、Nbを添加する場合、Nb含有量を0.3%以下とし、好ましくは0.28%以下とし、より好ましくは0.25%以下とする。 Nb: 0.3% or less Nb is an element that has the effect of improving the strength of the steel sheet by precipitation strengthening or solid solution strengthening. In addition, Nb, like Ti, raises the recrystallization temperature of austenite during hot rolling, enabling rolling in the austenite unrecrystallized region, refining the grain size of upper bainite, fresh martensite and / Or contribute to an increase in the area ratio of retained austenite. Nb, like Cr, is a carbide-forming element, and segregates at the interface between upper bainite and untransformed austenite during the upper bainite transformation after winding, thereby reducing the transformation driving force of bainite and untransformed austenite. It is an element that has the effect of stopping the upper bainite transformation while leaving the The untransformed austenite is then cooled to become fresh martensite and/or retained austenite. Therefore, when Nb is added, Nb also contributes to the formation of a desired area ratio of fresh martensite and/or retained austenite. This effect is obtained when Nb is preferably 0.01% or more. However, when the Nb content exceeds 0.3%, fresh martensite and/or retained austenite excessively increase, and as a result, the desired area ratio of upper bainite cannot be obtained, resulting in a decrease in uniform elongation. Therefore, when Nb is added, the Nb content should be 0.3% or less, preferably 0.28% or less, and more preferably 0.25% or less.
Vは、析出強化および固溶強化により鋼板の強度を向上させる作用を有する元素である。また、Vは、Tiと同様に、熱間圧延時のオーステナイトの再結晶温度を上昇させることで、オーステナイト未再結晶域での圧延を可能とし、上部ベイナイトの粒径微細化に寄与する。また、Vは、Crと同様に、炭化物形成元素であり、巻取り後の上部ベイナイト変態時に上部ベイナイトと未変態オーステナイトの界面に偏析することで、ベイナイトの変態駆動力を低下させ、未変態オーステナイトを残したまま上部ベイナイト変態を停止させる効果を有する元素である。未変態オーステナイトは、その後冷却されることでフレッシュマルテンサイトおよび/または残留オーステナイトとなる。したがって、Vを添加した場合、Vも所望の面積率のフレッシュマルテンサイトおよび/または残留オーステナイトの形成に寄与する。この効果は、Vが好ましくは0.01%以上で得られる。しかし、V含有量が0.3%を超えるとフレッシュマルテンサイトおよび/または残留オーステナイトが過度に増加し、その結果、所望の上部ベイナイトの面積率が得られないため、一様伸びが低下する。したがって、Vを添加する場合、V含有量を0.3%以下とし、好ましくは0.28%以下とし、より好ましくは0.25%以下とする。 V: 0.3% or less V is an element that acts to improve the strength of the steel sheet by precipitation strengthening and solid solution strengthening. Further, similarly to Ti, V raises the recrystallization temperature of austenite during hot rolling, thereby enabling rolling in the austenite non-recrystallization region and contributing to refinement of the grain size of upper bainite. In addition, like Cr, V is a carbide-forming element, and segregates at the interface between upper bainite and untransformed austenite during upper bainite transformation after winding, thereby reducing the transformation driving force of bainite and untransformed austenite. It is an element that has the effect of stopping the upper bainite transformation while leaving the The untransformed austenite is then cooled to become fresh martensite and/or retained austenite. Therefore, when V is added, V also contributes to the formation of a desired area ratio of fresh martensite and/or retained austenite. This effect is obtained when V is preferably 0.01% or more. However, when the V content exceeds 0.3%, fresh martensite and/or retained austenite excessively increase, and as a result, the desired area ratio of upper bainite cannot be obtained, resulting in a decrease in uniform elongation. Therefore, when V is added, the V content is 0.3% or less, preferably 0.28% or less, and more preferably 0.25% or less.
Sbは、鋼素材(スラブ)を加熱する際に鋼素材表面の窒化を抑制する効果を有する元素である。Sbを添加することにより、鋼素材の表層部におけるBNの析出を抑制することができる。その結果、残存する固溶Bはベイナイトの生成に必要な焼入れ性の確保と、それによる鋼板の強度向上に寄与する。Sbを添加する場合、前記効果を得るためにSb含有量を0.005%以上とし、好ましくは0.006%以上とし、より好ましくは0.007%以上する。一方、Sb含有量が0.020%を超えると、鋼の靭性が低下し、スラブ割れおよび熱間圧延割れを引き起こす場合がある。したがって、Sbを添加する場合、Sb含有量を0.020%以下とし、好ましくは0.019%以下とし、より好ましくは0.018%以下とする。 Sb: 0.005-0.020%
Sb is an element that has the effect of suppressing nitridation of the surface of the steel material (slab) when the steel material (slab) is heated. By adding Sb, precipitation of BN in the surface layer of the steel material can be suppressed. As a result, the remaining solid solution B contributes to ensuring the hardenability necessary for the formation of bainite and thereby improving the strength of the steel sheet. When Sb is added, the Sb content is 0.005% or more, preferably 0.006% or more, more preferably 0.007% or more, in order to obtain the above effect. On the other hand, when the Sb content exceeds 0.020%, the toughness of the steel is lowered, and slab cracks and hot rolling cracks may occur. Therefore, when Sb is added, the Sb content is 0.020% or less, preferably 0.019% or less, and more preferably 0.018% or less.
Caは、酸化物や硫化物系の介在物の形状を制御し、鋼板のせん断端面の割れ抑制および曲げ加工性のさらなる向上に寄与する。この効果は、Caが好ましくは0.001%以上で得られる。しかし、Ca含有量が0.01%を超えると、Ca系介在物が増加して鋼の清浄度が悪化し、かえってせん断端面割れや曲げ加工割れの原因となる場合がある。したがって、Caを添加する場合、Ca含有量を0.01%以下とする。 Ca: 0.01% or less Ca controls the shape of oxide- and sulfide-based inclusions, and contributes to the suppression of cracking at sheared edge surfaces of steel sheets and the further improvement of bending workability. This effect is obtained when Ca is preferably 0.001% or more. However, if the Ca content exceeds 0.01%, the amount of Ca-based inclusions increases and the cleanliness of the steel deteriorates, which may rather cause shear edge cracks and bending cracks. Therefore, when Ca is added, the Ca content is set to 0.01% or less.
Mgは、Caと同様に、酸化物や硫化物系の介在物の形状を制御し、鋼板のせん断端面の割れ抑制および曲げ加工性のさらなる向上に寄与する。この効果は、Mgが好ましくは0.001%以上で得られる。しかし、Mg含有量が0.01%を超えると、鋼の清浄度が悪化し、かえってせん断端面割れや曲げ加工割れの原因となる場合がある。したがって、Mgを添加する場合、Mg含有量を0.01%以下とする。 Mg: 0.01% or less Like Ca, Mg controls the shape of oxide- and sulfide-based inclusions, and contributes to the suppression of cracking at sheared edge surfaces of steel sheets and the further improvement of bending workability. This effect is obtained when Mg is preferably 0.001% or more. However, if the Mg content exceeds 0.01%, the cleanliness of the steel deteriorates, which may rather cause shear edge cracks and bending cracks. Therefore, when Mg is added, the Mg content is made 0.01% or less.
REM(希土類金属)は、Caと同様に、酸化物や硫化物系の介在物の形状を制御し、鋼板のせん断端面の割れ抑制および曲げ加工性のさらなる向上に寄与する。この効果は、REMが好ましくは0.001%以上で得られる。しかし、REM含有量が0.01%を超えると、鋼の清浄度が悪化し、かえってせん断端面割れや曲げ加工割れの原因となる場合がある。したがって、REMを添加する場合、REM含有量を0.01%以下とする。 REM: 0.01% or less Like Ca, REM (rare earth metal) controls the shape of oxide- and sulfide-based inclusions, and contributes to the suppression of cracking at sheared edge surfaces of steel sheets and the further improvement of bending workability. do. This effect is obtained when REM is preferably 0.001% or more. However, if the REM content exceeds 0.01%, the cleanliness of the steel deteriorates, which may rather cause shear edge cracks and bending cracks. Therefore, when REM is added, the REM content is made 0.01% or less.
次に、本発明の高強度鋼板のミクロ組織の限定理由について説明する。 [Microstructure]
Next, reasons for limiting the microstructure of the high-strength steel sheet of the present invention will be described.
本発明の高強度鋼板では、軟質の上部ベイナイトに硬質なフレッシュマルテンサイトおよび/または残留オーステナイトを微細分散させることによって、延性を向上させ、曲げ外割れを抑制できる。この効果を得るために、表層での上部ベイナイトの面積分率を80%以上とし、フレッシュマルテンサイトおよび/または残留オーステナイトの面積率を2%以上とする。好ましくは、上部ベイナイトの面積率を85%以上とし、フレッシュマルテンサイトおよび/または残留オーステナイトの面積率を3%以上とする。なお、一方、フレッシュマルテンサイトおよび/または残留オーステナイトの合計の面積率が20%以上になると、曲げ性が低下する可能性がある理由から、フレッシュマルテンサイトおよび/または残留オーステナイトの合計の面積率を20%以下とすることが好ましい。より好ましくは18%以下、さらに好ましくは15%以下とする。 Upper bainite: 80% or more, fresh martensite and/or retained austenite: 2% or more in total area ratio in the surface layer region from the steel plate surface to the plate thickness 1/10 position In the high-strength steel plate of the present invention, the soft upper part By finely dispersing hard fresh martensite and/or retained austenite in bainite, ductility can be improved and external bending cracks can be suppressed. In order to obtain this effect, the surface layer should have an area fraction of upper bainite of 80% or more and an area fraction of fresh martensite and/or retained austenite of 2% or more. Preferably, the area ratio of upper bainite is 85% or more, and the area ratio of fresh martensite and/or retained austenite is 3% or more. On the other hand, if the total area ratio of fresh martensite and/or retained austenite is 20% or more, the bendability may decrease, so the total area ratio of fresh martensite and/or retained austenite is It is preferable to make it 20% or less. It is more preferably 18% or less, still more preferably 15% or less.
本発明では、板厚1/10位置から板厚3/10位置までの内部領域において、上部ベイナイトを主相として含む。上部ベイナイトの面積率が70%未満であると、980MPa以上の引張強度と6%以上の一様伸びを実現することができない。そのため、上部ベイナイトの面積率を70%以上とし、好ましくは80%以上とする。また、本発明では、板厚1/10位置から板厚3/10位置までの内部領域において、フレッシュマルテンサイトおよび/または残留オーステナイトを含む。フレッシュマルテンサイトは、加工硬化を促進して塑性不安定(plastic instability)の開始を遅らせることにより一様伸びを向上させる効果を有している。残留オーステナイトはTRIP(Transformation Induced Plasticity)効果により一様伸びを上げることができる。これらの効果を得るために、フレッシュマルテンサイトおよび/または残留オーステナイトの合計の面積率を3%以上とし、好ましくは4%以上とする。
また、本発明では、板厚3/10位置以降の板厚中央付近のミクロ組織について、曲げ性への影響が小さいが、延性の観点から上部ベイナイトの面積率60%以上が好ましい。板厚中心のMn偏析によりフレッシュマルテンサイト/焼き戻しマルテンサイト/残留オーステナイトなどが40%まで含んでもよい。 Upper bainite with an area ratio of 70% or more and fresh martensite and/or retained austenite with a total area ratio of 3% or more in the inner region from the plate thickness 1/10 position to the plate thickness 3/10 position. , upper bainite is included as a main phase in the inner region from the 1/10 thickness position to the 3/10 thickness position. If the area ratio of upper bainite is less than 70%, a tensile strength of 980 MPa or more and a uniform elongation of 6% or more cannot be achieved. Therefore, the area ratio of upper bainite is set to 70% or more, preferably 80% or more. In addition, in the present invention, fresh martensite and/or retained austenite are included in the internal region from the 1/10 thickness position to the 3/10 thickness position. Fresh martensite has the effect of improving uniform elongation by promoting work hardening and delaying the onset of plastic instability. Retained austenite can increase uniform elongation by TRIP (Transformation Induced Plasticity) effect. In order to obtain these effects, the total area ratio of fresh martensite and/or retained austenite is set to 3% or more, preferably 4% or more.
Further, in the present invention, the microstructure near the center of the plate thickness after the 3/10th position of the plate thickness has little effect on bendability, but from the viewpoint of ductility, the area ratio of upper bainite is preferably 60% or more. Fresh martensite/tempered martensite/retained austenite and the like may be contained up to 40% due to Mn segregation at the thickness center.
曲げ内割れは強圧縮による脆性破壊である。すなわち、耐圧縮脆化特性を向上させると曲げ内割れを抑制することができる。そして、結晶粒微細化によって圧縮脆化が起こりにくくなる。この効果を得るためには、表層領域での平均結晶粒径を6μm以下、好ましくは5μm以下とする。平均結晶粒径が小さくなるほど耐圧縮脆化向上の効果が得られるが、平均結晶粒径が小さくなりすぎると、強度が高くなるとともに伸びが低下し、外曲げの割れを抑制できない恐れがある。このため、表層領域での平均結晶粒径2μm以上が好ましい。 Average crystal grain size in the surface layer region from the steel plate surface to the position of 1/10 of the plate thickness: 6 μm or less Bending inner cracks are brittle fractures due to strong compression. That is, if the resistance to compression embrittlement is improved, internal bending cracks can be suppressed. Compression embrittlement is less likely to occur due to the refinement of crystal grains. In order to obtain this effect, the average crystal grain size in the surface layer region should be 6 μm or less, preferably 5 μm or less. As the average grain size becomes smaller, the effect of improving resistance to compression embrittlement can be obtained. Therefore, the average crystal grain size in the surface layer region is preferably 2 μm or more.
本発明の高強度鋼板では、軟質な表層によって曲げ外側の割れを抑制し、その表層と隣接する硬質な内部によって曲げ割れの板厚方向の成長を抑制する。このような曲げ割れの発生と成長を抑制する効果を得るには、表層領域の硬度(HV1)と内部領域(HV2)の硬度の差(HV2-HV1)が、0.3×引張強度(MPa)に対して5%以上とする。好ましくは6%以上とし、より好ましくは7%以上とする。一方、表層領域の硬度と内部領域の硬度の差が大きいと、引張試験において表層と内部との間にひずみ不整合が生じ、目標の引張特性を得られない。したがって、表層領域の硬度と内部領域の硬度の差を0.3×引張強度(MPa)に対して15%以下とする。好ましくは14%以下とし、より好ましくは13%以下とする。なお、上記の効果は鋼板の表面と板厚内部の冷却速度制御を実施することで得られる。 The difference (HV2-HV1) between the hardness (HV1) of the surface layer region from the steel plate surface to the 1/10 thickness position and the hardness (HV2) of the inner region from the 1/10 thickness position to the 3/10 thickness position 5% or more and 15% or less with respect to [0.3 × tensile strength (MPa)] In the high-strength steel sheet of the present invention, the soft surface layer suppresses cracking on the outside of bending, and the hard inside adjacent to the surface layer prevents bending. Suppresses the growth of cracks in the plate thickness direction. In order to obtain the effect of suppressing the occurrence and growth of such bending cracks, the difference between the hardness of the surface layer region (HV1) and the hardness of the inner region (HV2) (HV2-HV1) is 0.3 × tensile strength (MPa ) to 5% or more. It is preferably 6% or more, more preferably 7% or more. On the other hand, if the hardness difference between the surface layer region and the inner region is large, a strain mismatch occurs between the surface layer and the inner region in the tensile test, making it impossible to obtain the target tensile properties. Therefore, the difference between the hardness of the surface layer region and the hardness of the inner region is set to 15% or less with respect to 0.3×tensile strength (MPa). It is preferably 14% or less, more preferably 13% or less. The above effect can be obtained by controlling the cooling rate on the surface and inside the thickness of the steel sheet.
本発明の高強度鋼板は、980MPa以上の引張強度と6%以上の一様伸びおよびR/t(曲げ外側と曲げ内側ともに深さ50μm以上の割れが発生しない限界曲げ半径Rと板厚tの比)が1.5以下を兼ね備えている。そのため、本発明の高強度鋼板は、引張強度が高いにもかかわらず、プレス成形性に優れており、ネッキングや割れ等の成形不良を生じることなくプレス成形することができるとともに、曲げ加工部において曲げ外側も曲げ内側も大きな割れが発生することなく部品の耐久性を確保できる。したがって、トラックや乗用車の部材に適用した場合、安全性を確保できる。 [Mechanical properties]
The high-strength steel sheet of the present invention has a tensile strength of 980 MPa or more, a uniform elongation of 6% or more, and R / t (limit bending radius R and plate thickness t at which cracks with a depth of 50 μm or more do not occur on both the outside and inside of the bend. ratio) is 1.5 or less. Therefore, the high-strength steel sheet of the present invention has excellent press formability despite its high tensile strength, and can be press-formed without causing forming defects such as necking and cracking. The durability of the part can be ensured without large cracks occurring on both the outside and inside of the bend. Therefore, safety can be ensured when applied to members of trucks and passenger cars.
次に、本発明の一実施形態における高強度鋼板の製造方法について説明する。なお、以下の説明における温度は、とくに断らない限り、対象物(鋼素材または鋼板)の表面温度を表すものとする。 [Production method]
Next, a method for manufacturing a high-strength steel sheet according to one embodiment of the present invention will be described. In addition, the temperature in the following description represents the surface temperature of the object (steel material or steel plate) unless otherwise specified.
(1)加熱
(2)熱間圧延
(3)冷却(第1の冷却)
(4)巻取り
(5)冷却(第2の冷却)
なお、鋼素材としては、上述した成分組成を有するものであれば任意のものを用いることができる。最終的に得られる高強度鋼板の成分組成は、使用した鋼素材の成分組成と同じである。鋼素材としては、例えば、鋼スラブを用いることができる。また、鋼素材の製造方法は、特に限定されない。例えば、上記成分組成を有する溶鋼を、転炉等の公知の方法で溶製し、連続鋳造等の鋳造方法で鋼素材を得ることができる。造塊-分塊圧延方法など、連続鋳造法以外の方法を用いることもできる。また、原料としてスクラップを使用しても構わない。鋼素材は、連続鋳造法などの方法によって製造された後、直接、次の加熱工程に供してもよく、また、冷却して温片または冷片となった鋼素材を加熱工程に供してもよい。 The high-strength steel sheet of the present invention can be produced by sequentially subjecting a steel material to the following treatments (1) to (5). Each step will be described below.
(1) heating (2) hot rolling (3) cooling (first cooling)
(4) Winding (5) Cooling (second cooling)
As the steel material, any material can be used as long as it has the chemical composition described above. The chemical composition of the finally obtained high-strength steel sheet is the same as the chemical composition of the steel material used. For example, a steel slab can be used as the steel material. Moreover, the manufacturing method of the steel material is not particularly limited. For example, molten steel having the above chemical composition can be melted by a known method such as a converter, and a steel material can be obtained by a casting method such as continuous casting. A method other than the continuous casting method, such as an ingot casting-blooming rolling method, can also be used. Moreover, scrap may be used as a raw material. The steel material may be directly subjected to the next heating step after being manufactured by a method such as a continuous casting method, or may be subjected to the heating step after being cooled into a hot piece or a cold piece. good.
まず、鋼素材を、1150℃以上の加熱温度に加熱する。通常、鋼素材中では、Tiなどの炭窒化物形成元素のほとんどが、粗大な炭窒化物として存在している。この粗大で不均一な析出物の存在は、一般的にトラック用、乗用車用部品向けの高強度鋼板に求められる諸特性(例えば、耐せん断端面割れ性、曲げ加工性、バーリング加工性など)の悪化を招く。そのため、熱間圧延に先だって鋼素材を加熱し、粗大な析出物を固溶する必要がある。具体的には、粗大な析出物を十分に固溶させるためには、鋼素材の加熱温度を1150℃以上とする必要がある。一方、鋼素材の加熱温度が高くなりすぎるとスラブ疵の発生や、スケールオフによる歩留まり低下を招く。そのため、歩留まりの向上という観点からは、鋼素材の加熱温度を1350℃以下とすることが好ましい。鋼素材の加熱温度の下限は、より好ましくは1180℃以上であり、さらに好ましくは1200℃以上以下である。鋼素材の加熱温度の上限は、より好ましくは1300℃以下であり、さらに好ましくは1280℃以下である。 (1) Heating First, the steel material is heated to a heating temperature of 1150°C or higher. Usually, most carbonitride-forming elements such as Ti exist as coarse carbonitrides in steel materials. The presence of this coarse and non-uniform precipitates is generally required for high-strength steel sheets for truck and passenger car parts (e.g. shear edge crack resistance, bending workability, burring workability, etc.). aggravate. Therefore, it is necessary to heat the steel material prior to hot rolling to dissolve coarse precipitates. Specifically, the heating temperature of the steel material must be 1150° C. or higher in order to sufficiently dissolve the coarse precipitates. On the other hand, if the heating temperature of the steel material becomes too high, slab flaws will occur and the yield will decrease due to scale off. Therefore, from the viewpoint of improving the yield, it is preferable to set the heating temperature of the steel material to 1350° C. or lower. The lower limit of the heating temperature of the steel material is more preferably 1180°C or higher, and still more preferably 1200°C or higher. The upper limit of the heating temperature of the steel material is more preferably 1300° C. or lower, and still more preferably 1280° C. or lower.
次いで、加熱された鋼素材を熱間圧延して熱延鋼板とする。熱間圧延は、粗圧延と仕上圧延とからなるものであってよい。粗圧延を行う場合、その条件は特に限定されない。また、粗圧延後、表面スケールを除去するために、仕上げ圧延に先立ってデスケーリングを行うことが好ましい。なお、仕上圧延においてスタンド間でデスケーリングを行ってもよい。 (2) Hot rolling Next, the heated steel material is hot rolled to form a hot rolled steel sheet. Hot rolling may consist of rough rolling and finish rolling. When rough rolling is performed, the conditions are not particularly limited. After rough rolling, descaling is preferably performed prior to finish rolling in order to remove surface scales. Descaling may be performed between stands in the finish rolling.
なお、RC1、RC2は下記(1)、(2)式で定義される。
RC1(℃)=900+100×C+100×N+10×Mn+700×Ti+5000×B+10×Cr+50×Mo+2000×Nb+150×V…(1)
RC2(℃)=750+100×C+100×N+10×Mn+350×Ti+5000×B+10×Cr+50×Mo+1000×Nb+150×V…(2)
ここで、上記(1)、(2)式における各元素記号は各元素の含有量(質量%)を表し、含有されていない元素の場合は0とする。 Further, hot rolling is performed under the conditions of finish rolling finish temperature: (RC2-50°C) or more and (RC2+120°C) or less. If the finish rolling finish temperature is lower than (RC2-50° C.), bainite transformation occurs from austenite in a state of high dislocation density. Since upper bainite transformed from austenite with a high dislocation density has a high dislocation density and poor ductility, the uniform elongation decreases. Also, when the rolling end temperature is low and the rolling is performed at the two-phase region temperature of ferrite + austenite, the uniform elongation decreases. Therefore, the finishing temperature of finish rolling should be (RC2-50° C.) or higher. On the other hand, if the finishing temperature of the finish rolling is higher than (RC2+120°C), the austenite grains become coarse and the average grain size of the upper bainite becomes large, resulting in a decrease in strength. Fresh martensite and/or retained austenite also become coarser, resulting in lower uniform elongation. Therefore, the finish rolling finish temperature is set to (RC2+120° C.) or less.
RC1 and RC2 are defined by the following formulas (1) and (2).
RC1 (°C) = 900 + 100 x C + 100 x N + 10 x Mn + 700 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 2000 x Nb + 150 x V (1)
RC2 (°C) = 750 + 100 x C + 100 x N + 10 x Mn + 350 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 1000 x Nb + 150 x V (2)
Here, each element symbol in the above formulas (1) and (2) represents the content (% by mass) of each element, and is set to 0 when the element is not contained.
次いで、得られた熱延鋼板を冷却する(第1の冷却)。その際、熱間圧延終了(仕上圧延の終了)から冷却開始までの時間(冷却開始時間)を2.0s以内とする。冷却開始時間が2.0sを超えると、オーステナイト粒の粒成長が生じ、980MPa以上の引張強度を確保できない。冷却開始時間は、1.5s以内とすることが好ましい。 (3) Cooling (first cooling)
Next, the obtained hot-rolled steel sheet is cooled (first cooling). At that time, the time from the end of hot rolling (end of finish rolling) to the start of cooling (cooling start time) is set within 2.0 seconds. If the cooling start time exceeds 2.0 seconds, grain growth of austenite grains occurs and a tensile strength of 980 MPa or more cannot be secured. The cooling start time is preferably within 1.5 seconds.
Trs(℃)=500-450×C-35×Mn-15×Cr-10×Ni-20×Mo…(3)
ここで、上記(3)式における各元素記号は各元素の含有量(質量%)を表し、含有されていない元素の場合は0とする。 Note that Trs is defined by the following equation (3).
Trs (° C.)=500-450×C-35×Mn-15×Cr-10×Ni-20×Mo (3)
Here, each element symbol in the above formula (3) represents the content (% by mass) of each element, and is set to 0 when the element is not contained.
次いで、冷却後の熱延鋼板を、巻取温度:Trs以上、(Trs+250℃)以下の条件で巻取る。巻取温度がTrs未満であると、巻取り後にマルテンサイト変態または下部ベイナイト変態が進行し、所望のフレッシュマルテンサイトおよび/または残留オーステナイトが得られない。そのため、巻取温度はTrs以上とする。一方、巻取温度が(Trs+250℃)より高いと、フェライトが生成するため、980MPaの引張強度が得られない。そのため巻取温度は(Trs+250℃)以下とする。 (4) Winding Next, the cooled hot-rolled steel sheet is coiled under the conditions of a coiling temperature of Trs or more and (Trs+250° C.) or less. If the coiling temperature is lower than Trs, martensite transformation or lower bainite transformation proceeds after coiling, and desired fresh martensite and/or retained austenite cannot be obtained. Therefore, the winding temperature should be Trs or higher. On the other hand, if the coiling temperature is higher than (Trs+250° C.), ferrite is generated, and a tensile strength of 980 MPa cannot be obtained. Therefore, the winding temperature is set to (Trs+250° C.) or less.
巻取り後、さらに20℃/s以下の平均冷却速度で100℃以下まで冷却する(第2の冷却)。平均冷却速度は、フレッシュマルテンサイトおよび/または残留オーステナイトの生成に影響を及ぼす。平均冷却速度が20℃/sを超えると、未変態オーステナイトがほとんどマルテンサイト変態し、所望の残留オーステナイトが得られず、一様伸びが低下する。そのため、平均冷却速度を20℃/s以下、好ましくは2℃/s以下、より好ましくは0.02℃/s以下とする。一方、上記平均冷却速度の下限は特に限定されないが、0.0001℃/s以上が好ましい。 (5) Cooling (second cooling)
After winding, it is further cooled to 100° C. or lower at an average cooling rate of 20° C./s or lower (second cooling). The average cooling rate affects the formation of fresh martensite and/or retained austenite. When the average cooling rate exceeds 20° C./s, most of the untransformed austenite transforms into martensite, the desired retained austenite cannot be obtained, and the uniform elongation decreases. Therefore, the average cooling rate is set to 20° C./s or less, preferably 2° C./s or less, more preferably 0.02° C./s or less. On the other hand, although the lower limit of the average cooling rate is not particularly limited, it is preferably 0.0001° C./s or more.
得られた高強度鋼板から、圧延方向に平行な板厚断面が観察面となるよう、ミクロ組織観察用試験片を採取した。得られた試験片の表面を研磨し、さらに腐食液(3vol.%ナイタール溶液)を用いて表面を腐食させることによりミクロ組織を現出させた。 (Microstructure)
A test piece for microstructure observation was taken from the obtained high-strength steel sheet so that the thickness cross-section parallel to the rolling direction was the observation surface. The surface of the obtained test piece was polished, and the surface was corroded using an etchant (3 vol.% nital solution) to expose the microstructure.
得られた高強度鋼板から、圧延方向に平行な板厚断面が硬度測定断面となるよう、硬度測定用サンプルを採取し、鋼板表面から板厚1/10位置までの表層領域および板厚1/10位置から板厚3/10位置までの内部領域の硬度を測定した。鋼板表面から板厚1/10位置までの表層領域の硬度は表面から50μm離れる位置で、圧痕間隔250μmで測定した。板厚1/10位置から板厚3/10位置までの内部領域の硬度は板厚1/5位置で圧痕間隔250μmで測定した。いずれの硬度測定条件は荷重100gで、保持時間10sで、5つの測定点で平均した。 (Hardness measurement)
From the obtained high-strength steel sheet, a sample for hardness measurement is taken so that the thickness cross section parallel to the rolling direction becomes the hardness measurement cross section, and the surface layer region from the steel plate surface to the thickness 1/10 position and the thickness 1/ The hardness of the internal region from the 10th position to the plate thickness 3/10th position was measured. The hardness of the surface layer region from the surface of the steel plate to the position of 1/10 of the plate thickness was measured at a position 50 µm away from the surface with an indentation interval of 250 µm. The hardness of the inner region from the 1/10 thickness position to the 3/10 thickness position was measured at the 1/5 thickness position with an indentation interval of 250 μm. All hardness measurement conditions were a load of 100 g, a holding time of 10 s, and an average of 5 measurement points.
得られた高強度鋼板から、引張方向が圧延方向と直角方向になるようにJIS5号試験片(標線間距離(gauge length、GL):50mm)を採取した。得られた試験片を用い、JIS Z 2241の規定に準拠して引張試験を行い、降伏強度(降伏点、YP)、引張強度(TS)、降伏比(YR)、全伸び(El)、一様伸び(u-El)を求めた。引張試験は、各高強度鋼板につき2回行い、得られた測定値の平均をその高強度鋼板の機械特性として表3に示した。本発明においては、TSが980MPa以上の場合、高強度と評価した。また、一様伸びが6%以上の場合、プレス成形性が良好と評価した。 (Tensile test)
A JIS No. 5 test piece (gauge length, GL: 50 mm) was taken from the obtained high-strength steel sheet so that the tensile direction was perpendicular to the rolling direction. Using the obtained test piece, a tensile test was performed in accordance with the provisions of JIS Z 2241, yield strength (yield point, YP), tensile strength (TS), yield ratio (YR), total elongation (El), Similar elongation (u-El) was determined. The tensile test was performed twice for each high-strength steel sheet, and the average of the obtained measured values is shown in Table 3 as the mechanical properties of the high-strength steel sheet. In the present invention, when TS was 980 MPa or more, it was evaluated as high strength. Moreover, when the uniform elongation was 6% or more, the press formability was evaluated as good.
得られた熱延鋼板の幅方向1/2位置から、試験片長手方向が、圧延方向と直角方向となるように100mmx35mmの短冊形状に切り出した試験片を用いて、JIS Z 2248(2014年)(Vブロック90°V曲げ試験)に準拠して、曲げ試験を実施した。曲げポンチ半径Rが0.5mmから0.5mm刻みで板厚tの2.0倍以上までとした。曲げ割れ有無とその深さは、曲げ試験後の試験片を試験片長手方向と平行でかつ板面と垂直な面で、試験片幅の1/4位置と1/2位置および3/4位置の3カ所で切断した断面を鏡面研磨後、光学顕微鏡で試験片の曲げ外側と曲げ内側の割れを観察し、3つの断面で発生した曲げ外側と曲げ内側の最大割れ深さを測定し、曲げ外側と曲げ内側とも割れ深さが50μmを超えない限界曲げ半径(最小曲げ半径)を求めた。R/tは1.5以下を合格とした。なお、限界曲げ半径が板厚tの2.0倍以上であっても50μm以上の割れが曲げ外側もしくは曲げ内側に発生する場合、曲げ加工性が不良とし、限界曲げ半径Rを求めないとする。 (90° V bending test)
JIS Z 2248 (2014) using a test piece cut into a strip shape of 100 mm x 35 mm so that the longitudinal direction of the test piece is perpendicular to the rolling direction from the 1/2 position in the width direction of the obtained hot-rolled steel sheet. (V block 90° V bending test), a bending test was performed. The bending punch radius R is set from 0.5 mm to 2.0 times or more of the plate thickness t in increments of 0.5 mm. The presence or absence of bending cracks and their depth were measured at 1/4 position, 1/2 position and 3/4 position of the test piece width in a plane parallel to the longitudinal direction of the test piece and perpendicular to the plate surface after the bending test. After mirror-polishing the cross-sections cut at three locations, the cracks on the outside and inside of the bend of the test piece were observed with an optical microscope, and the maximum crack depths on the outside and inside of the bend that occurred in the three cross-sections were measured. A limit bending radius (minimum bending radius) was obtained in which the crack depth did not exceed 50 μm on both the outside and inside of the bend. An R/t of 1.5 or less was considered acceptable. Even if the critical bending radius is 2.0 times or more the sheet thickness t, if a crack of 50 μm or more occurs on the outside or inside of the bending, the bending workability is considered to be poor, and the critical bending radius R is not required. .
Claims (7)
- 質量%で、
C:0.05~0.20%、
Si:0.5~1.2%、
Mn:1.5~4.0%、
P:0.10%以下、
S:0.03%以下、
Al:0.001~2.0%、
N:0.01%以下、
O:0.01%以下、および
B:0.0005~0.010%
を含有し、残部Feおよび不可避的不純物からなる成分組成を有し、
ミクロ組織は、鋼板表面から板厚1/10位置までの表層領域において、面積率で80%以上の上部ベイナイトと、合計の面積率で2%以上のフレッシュマルテンサイトおよび/または残留オーステナイトを含み、
板厚1/10位置から板厚3/10位置までの内部領域において、面積率で70%以上の上部ベイナイトと、合計の面積率で3%以上のフレッシュマルテンサイトおよび/または残留オーステナイトを含み、
鋼板表面から板厚1/10位置までの表層領域での平均結晶粒径が6μm以下であり、
鋼板表面から板厚1/10位置までの表層領域の硬度(HV1)と、板厚1/10位置から板厚3/10位置までの内部領域の硬度(HV2)の差(HV2-HV1)が[0.3×引張強度(MPa)]に対して5%以上15%以下であり、
引張強度が980MPa以上、一様伸びが6%以上、かつ限界曲げ半径Rと板厚tの比R/tが1.5以下である、高強度鋼板。 in % by mass,
C: 0.05 to 0.20%,
Si: 0.5 to 1.2%,
Mn: 1.5-4.0%,
P: 0.10% or less,
S: 0.03% or less,
Al: 0.001 to 2.0%,
N: 0.01% or less,
O: 0.01% or less, and B: 0.0005 to 0.010%
and has a component composition consisting of the balance Fe and unavoidable impurities,
The microstructure includes upper bainite with an area ratio of 80% or more and fresh martensite and/or retained austenite with a total area ratio of 2% or more in the surface layer region from the steel plate surface to the position of 1/10 of the plate thickness,
The internal region from the plate thickness 1/10 position to the plate thickness 3/10 position contains upper bainite with an area ratio of 70% or more and fresh martensite and / or retained austenite with a total area ratio of 3% or more,
The average grain size in the surface layer region from the steel plate surface to the position of 1/10 of the plate thickness is 6 μm or less,
The difference (HV2-HV1) between the hardness (HV1) of the surface layer region from the steel plate surface to the 1/10 thickness position and the hardness (HV2) of the inner region from the 1/10 thickness position to the 3/10 thickness position 5% or more and 15% or less with respect to [0.3 × tensile strength (MPa)],
A high-strength steel sheet having a tensile strength of 980 MPa or more, a uniform elongation of 6% or more, and a ratio R/t of limit bending radius R to plate thickness t of 1.5 or less. - 前記成分組成が、さらに、質量%で、
Cr:1.0%以下、および
Mo:1.0%以下、
の少なくとも1種を含有する、請求項1に記載の高強度鋼板。 The component composition further, in mass %,
Cr: 1.0% or less, and Mo: 1.0% or less,
The high-strength steel sheet according to claim 1, containing at least one of - 前記成分組成が、さらに、質量%で、
Cu:2.0%以下、
Ni:2.0%以下、
Ti:0.3%以下、
Nb:0.3%以下、および
V:0.3%以下
の少なくとも1種を含有する、請求項1または2に記載の高強度鋼板。 The component composition further, in mass %,
Cu: 2.0% or less,
Ni: 2.0% or less,
Ti: 0.3% or less,
The high-strength steel sheet according to claim 1 or 2, containing at least one of Nb: 0.3% or less and V: 0.3% or less. - 前記成分組成が、さらに、質量%で、
Sb:0.005~0.020%
を含有する、請求項1~3のいずれか一項に記載の高強度鋼板。 The component composition further, in mass %,
Sb: 0.005-0.020%
The high-strength steel sheet according to any one of claims 1 to 3, containing - 前記成分組成が、さらに、質量%で、
Ca:0.01%以下、
Mg:0.01%以下、および
REM:0.01%以下
の少なくとも1種を含有する、請求項1~4のいずれか一項に記載の高強度鋼板。 The component composition further, in mass %,
Ca: 0.01% or less,
The high-strength steel sheet according to any one of claims 1 to 4, containing at least one of Mg: 0.01% or less and REM: 0.01% or less. - 請求項1~5のいずれか一項に記載の高強度鋼板の製造方法であって、
前記成分組成を有する鋼素材を1150℃以上の加熱温度に加熱し、
次いで、粗圧延を施した後、
RC1以下の温度範囲での合計圧下率が25%以上80%以下で、かつ仕上圧延終了温度:(RC2-50℃)以上(RC2+120℃)以下の条件で熱間圧延して熱延鋼板とし、
前記熱延鋼板を、熱間圧延終了から冷却開始までの時間:2.0s以内、板厚3/10位置での平均冷却速度:15℃/s以上、冷却停止温度:Trs以上、(Trs+250℃)以下の条件で冷却し、
前記冷却後の熱延鋼板を、巻取温度:Trs以上、(Trs+250℃)以下の条件で巻取り、
20℃/s以下の平均冷却速度で100℃以下まで冷却する、
高強度鋼板の製造方法。
なお、RC1、RC2、Trsは、下記(1)、(2)、(3)式でそれぞれ定義される。
RC1(℃)=900+100×C+100×N+10×Mn+700×Ti+5000×B+10×Cr+50×Mo+2000×Nb+150×V…(1)
RC2(℃)=750+100×C+100×N+10×Mn+350×Ti+5000×B+10×Cr+50×Mo+1000×Nb+150×V…(2)
Trs(℃)=500-450×C-35×Mn-15×Cr-10×Ni-20×Mo…(3)
ここで、上記(1)、(2)、(3)式における各元素記号は各元素の含有量(質量%)を表し、含有されていない元素の場合は0とする。 A method for producing a high-strength steel sheet according to any one of claims 1 to 5,
Heating a steel material having the above composition to a heating temperature of 1150 ° C. or higher,
Then, after rough rolling,
A hot-rolled steel sheet is obtained by hot rolling under the conditions that the total rolling reduction in the temperature range of RC1 or less is 25% or more and 80% or less, and the finish rolling end temperature is (RC2-50°C) or more (RC2 + 120°C) or less,
Time from the end of hot rolling to the start of cooling of the hot-rolled steel sheet: within 2.0 s, average cooling rate at 3/10 thickness position: 15 ° C./s or more, cooling stop temperature: Trs or more, (Trs + 250 ° C. ) cooled under the following conditions,
The hot-rolled steel sheet after cooling is coiled at a coiling temperature of Trs or more and (Trs + 250 ° C.) or less,
cooling to 100° C. or less at an average cooling rate of 20° C./s or less;
A method for producing a high-strength steel plate.
Note that RC1, RC2, and Trs are defined by the following formulas (1), (2), and (3), respectively.
RC1 (°C) = 900 + 100 x C + 100 x N + 10 x Mn + 700 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 2000 x Nb + 150 x V (1)
RC2 (°C) = 750 + 100 x C + 100 x N + 10 x Mn + 350 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 1000 x Nb + 150 x V (2)
Trs (° C.)=500-450×C-35×Mn-15×Cr-10×Ni-20×Mo (3)
Here, each element symbol in the above formulas (1), (2), and (3) represents the content (% by mass) of each element, and is set to 0 when the element is not contained. - 熱間圧延後の前記冷却において、表層の平均冷却速度と板厚3/10位置での平均冷却速度が(4)式を満足する、請求項6に記載の高強度鋼板の製造方法。
表層の平均冷却速度-板厚3/10位置での平均冷却速度≧10℃/s…(4) 7. The method for producing a high-strength steel sheet according to claim 6, wherein in the cooling after hot rolling, the average cooling rate of the surface layer and the average cooling rate at the 3/10 thickness position satisfy the formula (4).
Average cooling rate of the surface layer - Average cooling rate at the position of 3/10 of the plate thickness ≥ 10 ° C./s (4)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22780060.4A EP4282993A4 (en) | 2021-03-31 | 2022-03-15 | High-strength steel sheet and method for manufacturing same |
US18/282,304 US20240158881A1 (en) | 2021-03-31 | 2022-03-15 | High-strength steel sheet and method for manufacturing the same |
CN202280023929.9A CN117043381A (en) | 2021-03-31 | 2022-03-15 | High-strength steel sheet and method for producing same |
MX2023011353A MX2023011353A (en) | 2021-03-31 | 2022-03-15 | High-strength steel sheet and method for manufacturing same. |
JP2022543074A JP7168137B1 (en) | 2021-03-31 | 2022-03-15 | High-strength steel plate and its manufacturing method |
KR1020237032361A KR20230148352A (en) | 2021-03-31 | 2022-03-15 | High-strength steel plate and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021062132 | 2021-03-31 | ||
JP2021-062132 | 2021-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022209839A1 true WO2022209839A1 (en) | 2022-10-06 |
Family
ID=83458933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/011493 WO2022209839A1 (en) | 2021-03-31 | 2022-03-15 | High-strength steel sheet and method for manufacturing same |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240158881A1 (en) |
EP (1) | EP4282993A4 (en) |
JP (1) | JP7168137B1 (en) |
KR (1) | KR20230148352A (en) |
CN (1) | CN117043381A (en) |
MX (1) | MX2023011353A (en) |
WO (1) | WO2022209839A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007100190A (en) * | 2005-10-06 | 2007-04-19 | Kobe Steel Ltd | High-strength steel sheet and manufacturing method therefor |
JP2012012701A (en) | 2010-05-31 | 2012-01-19 | Jfe Steel Corp | High-strength hot-rolled steel plate exhibiting superior stretch flange workability and fatigue resistance properties, and method of manufacturing the same |
JP2013117068A (en) | 2011-11-01 | 2013-06-13 | Jfe Steel Corp | High-strength hot-rolled steel sheet having excellent bending characteristic and low-temperature toughness and method for producing the same |
JP2015190015A (en) * | 2014-03-28 | 2015-11-02 | Jfeスチール株式会社 | High strength hot rolled steel sheet and manufacturing method therefor |
WO2016010004A1 (en) | 2014-07-14 | 2016-01-21 | 新日鐵住金株式会社 | Hot-rolled steel sheet |
JP2016050335A (en) * | 2014-08-29 | 2016-04-11 | 新日鐵住金株式会社 | Hot rolled steel sheet |
JP2017115191A (en) | 2015-12-22 | 2017-06-29 | Jfeスチール株式会社 | High strength steel sheet excellent in bendability and production method therefor |
WO2018150955A1 (en) * | 2017-02-17 | 2018-08-23 | Jfeスチール株式会社 | High strength hot-rolled steel sheet and method for producing same |
WO2020110855A1 (en) | 2018-11-28 | 2020-06-04 | 日本製鉄株式会社 | Hot-rolled steel sheet |
WO2020110843A1 (en) | 2018-11-28 | 2020-06-04 | 日本製鉄株式会社 | Hot-rolled steel sheet |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002129286A (en) * | 2000-10-30 | 2002-05-09 | Nippon Steel Corp | Steel sheet with strain induced transformation type composite structure having excellent burring workability and its production method |
-
2022
- 2022-03-15 CN CN202280023929.9A patent/CN117043381A/en active Pending
- 2022-03-15 WO PCT/JP2022/011493 patent/WO2022209839A1/en active Application Filing
- 2022-03-15 US US18/282,304 patent/US20240158881A1/en active Pending
- 2022-03-15 KR KR1020237032361A patent/KR20230148352A/en active Search and Examination
- 2022-03-15 EP EP22780060.4A patent/EP4282993A4/en active Pending
- 2022-03-15 MX MX2023011353A patent/MX2023011353A/en unknown
- 2022-03-15 JP JP2022543074A patent/JP7168137B1/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007100190A (en) * | 2005-10-06 | 2007-04-19 | Kobe Steel Ltd | High-strength steel sheet and manufacturing method therefor |
JP2012012701A (en) | 2010-05-31 | 2012-01-19 | Jfe Steel Corp | High-strength hot-rolled steel plate exhibiting superior stretch flange workability and fatigue resistance properties, and method of manufacturing the same |
JP2013117068A (en) | 2011-11-01 | 2013-06-13 | Jfe Steel Corp | High-strength hot-rolled steel sheet having excellent bending characteristic and low-temperature toughness and method for producing the same |
JP2015190015A (en) * | 2014-03-28 | 2015-11-02 | Jfeスチール株式会社 | High strength hot rolled steel sheet and manufacturing method therefor |
WO2016010004A1 (en) | 2014-07-14 | 2016-01-21 | 新日鐵住金株式会社 | Hot-rolled steel sheet |
JP2016050335A (en) * | 2014-08-29 | 2016-04-11 | 新日鐵住金株式会社 | Hot rolled steel sheet |
JP2017115191A (en) | 2015-12-22 | 2017-06-29 | Jfeスチール株式会社 | High strength steel sheet excellent in bendability and production method therefor |
WO2018150955A1 (en) * | 2017-02-17 | 2018-08-23 | Jfeスチール株式会社 | High strength hot-rolled steel sheet and method for producing same |
WO2020110855A1 (en) | 2018-11-28 | 2020-06-04 | 日本製鉄株式会社 | Hot-rolled steel sheet |
WO2020110843A1 (en) | 2018-11-28 | 2020-06-04 | 日本製鉄株式会社 | Hot-rolled steel sheet |
Non-Patent Citations (1)
Title |
---|
See also references of EP4282993A4 |
Also Published As
Publication number | Publication date |
---|---|
US20240158881A1 (en) | 2024-05-16 |
KR20230148352A (en) | 2023-10-24 |
EP4282993A4 (en) | 2024-07-24 |
CN117043381A (en) | 2023-11-10 |
JP7168137B1 (en) | 2022-11-09 |
JPWO2022209839A1 (en) | 2022-10-06 |
EP4282993A1 (en) | 2023-11-29 |
MX2023011353A (en) | 2023-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101706485B1 (en) | High-strength cold-rolled steel sheet and method for producing the same | |
JP6017341B2 (en) | High strength cold-rolled steel sheet with excellent bendability | |
KR101744429B1 (en) | Hot-rolled steel sheet and production method therefor | |
CN113166866B (en) | Hot rolled steel plate | |
JP5126844B2 (en) | Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member | |
WO2021149676A1 (en) | Steel sheet and method for producing same | |
WO2012036308A1 (en) | High-strength hot-rolled steel sheet having superior punchability and method for producing same | |
US20090223609A1 (en) | High-strength hot rolled steel plate and manufacturing method thereof | |
JP6973694B1 (en) | High-strength steel plate and its manufacturing method | |
WO2020026593A1 (en) | High-strength hot-rolled steel sheet and method for manufacturing same | |
JP4600196B2 (en) | High carbon cold-rolled steel sheet with excellent workability and manufacturing method thereof | |
JP6152782B2 (en) | Hot rolled steel sheet | |
WO2023063010A1 (en) | Hot-rolled steel plate | |
JP4696853B2 (en) | Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet | |
KR20230041055A (en) | hot rolled steel | |
JP7192819B2 (en) | High-strength steel plate and its manufacturing method | |
JP7192818B2 (en) | High-strength steel plate and its manufacturing method | |
JP4867338B2 (en) | Ultra-high strength steel sheet and method for manufacturing the same | |
JP4403925B2 (en) | High carbon cold-rolled steel sheet and method for producing the same | |
JP7168137B1 (en) | High-strength steel plate and its manufacturing method | |
JP4412094B2 (en) | High carbon cold-rolled steel sheet and method for producing the same | |
KR20230040349A (en) | hot rolled steel | |
KR20230035624A (en) | hot rolled steel | |
JP7168136B1 (en) | High-strength steel plate and its manufacturing method | |
JP5157417B2 (en) | Steel sheet and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022543074 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22780060 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022780060 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317058712 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2022780060 Country of ref document: EP Effective date: 20230824 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18282304 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20237032361 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237032361 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280023929.9 Country of ref document: CN Ref document number: 2301006055 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2023/011353 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |