WO2022209839A1 - High-strength steel sheet and method for manufacturing same - Google Patents

High-strength steel sheet and method for manufacturing same Download PDF

Info

Publication number
WO2022209839A1
WO2022209839A1 PCT/JP2022/011493 JP2022011493W WO2022209839A1 WO 2022209839 A1 WO2022209839 A1 WO 2022209839A1 JP 2022011493 W JP2022011493 W JP 2022011493W WO 2022209839 A1 WO2022209839 A1 WO 2022209839A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
strength
surface layer
thickness
Prior art date
Application number
PCT/JP2022/011493
Other languages
French (fr)
Japanese (ja)
Inventor
ティーフィン ドアン
寛 長谷川
英之 木村
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP22780060.4A priority Critical patent/EP4282993A4/en
Priority to US18/282,304 priority patent/US20240158881A1/en
Priority to CN202280023929.9A priority patent/CN117043381A/en
Priority to MX2023011353A priority patent/MX2023011353A/en
Priority to JP2022543074A priority patent/JP7168137B1/en
Priority to KR1020237032361A priority patent/KR20230148352A/en
Publication of WO2022209839A1 publication Critical patent/WO2022209839A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength steel sheet and its manufacturing method.
  • tensile strength 980 MPa or more and uniform elongation of 6% or more
  • it has excellent bending workability, and is suitable as a material for trucks and passenger car frames, suspension parts, etc. It relates to a high strength steel sheet and a method for producing the same. .
  • Patent Documents 1 to 6 have the following problems.
  • Patent Documents 1 and 2 a tensile strength of 980 MPa or more cannot be obtained.
  • hot-rolled steel sheets are considered to have excellent workability, and "elongation" is used as an index of workability.
  • This "elongation” is also called total elongation (El), and represents the elongation at the time when the test piece breaks in the tensile test.
  • El total elongation
  • necking occurs before breakage occurs. If necking occurs, the plate thickness becomes thin locally, resulting in product defects during press molding. Therefore, high total elongation alone is not sufficient to achieve excellent press formability.
  • Patent Documents 1 and 2 do not refer to bending workability.
  • Patent Documents 3 to 5 are said to yield high-strength steel sheets with excellent bending workability, but all of them focus only on cracks that occur on the outside of bending. If cracks occur during bending, regardless of whether they are on the outside or inside of the bend, the cracks will become fatigue crack initiation points, which may reduce the durability of the part. It cannot be said that ensuring sexuality is sufficient.
  • Patent Document 6 With the technology described in Patent Document 6, it is said that a high-strength steel sheet with excellent bending workability can be obtained, but attention is focused only on cracks that occur on the inner side of bending. If cracks occur during bending, regardless of whether they are on the outside or inside of the bend, those cracks can become fatigue crack initiation points, reducing the durability of the part. Otherwise, the performance of parts cannot be ensured.
  • the present invention has been made in view of the above-mentioned actual situation, and an object thereof is to provide a high-strength steel sheet having tensile strength, press formability, and bending workability, and a method for manufacturing the same.
  • the present inventors have found that a tensile strength of 980 MPa or more and a virtual stress-strain curve of steel sheets having various yield stresses and uniform elongations are created, and the stress-strain curve is used.
  • the inventors studied the optimal steel sheet structure in order to obtain a tensile strength of 980 MPa or more and a uniform elongation of 6% or more.
  • the main phase is upper bainite, and a microstructure containing an appropriate amount of a hard secondary phase containing fresh martensite and/or retained austenite results in a high strength of 980 MPa or more and a uniform elongation of 6% or more. It has been shown that it is possible to combine
  • the upper bainite referred to here is an aggregate of lath-shaped ferrite with an orientation difference of less than 15°, and a structure having Fe-based carbides and/or retained austenite between lath-shaped ferrites (however, between lath-shaped ferrites (including the case of not having Fe-based carbides and/or retained austenite).
  • lath-like ferrite has a lath-like shape and a relatively high dislocation density inside. electron microscopy).
  • Fresh martensite is martensite that does not contain Fe-based carbides.
  • Fresh martensite and retained austenite have similar contrast in SEM, but are distinguishable using electron backscatter diffraction (EBSD) methods.
  • the inventors investigated the bending workability of high-strength steel sheets having a tensile strength of 980 MPa or more and a uniform elongation of 6% or more. Specifically, steel sheets with a tensile strength of 980 MPa or more and a uniform elongation of 6% or more, manufactured by different manufacturing methods, were subjected to a 90° V bending test to observe the fracture surface of bending cracks and the microstructure in the vicinity of the cracks. On the outside of the bending, the fracture surface of the crack was ductile fracture, and many voids were observed in the microstructure near the crack.
  • the crack fracture surface is brittle fracture surface, and voids are not observed in the microstructure near the crack. Therefore, an improvement in ductility can suppress external bending cracks, and an improvement in compression embrittlement resistance can suppress internal bending cracks. Therefore, it was found that it is necessary to control the microstructure of the surface layer region and its neighboring region where bending cracks can occur.
  • the present invention has been made based on further studies based on the above findings, and the gist thereof is as follows. [1] % by mass, C: 0.05 to 0.20%, Si: 0.5 to 1.2%, Mn: 1.5-4.0%, P: 0.10% or less, S: 0.03% or less, Al: 0.001 to 2.0%, N: 0.01% or less, O: 0.01% or less and B: 0.0005 to 0.010% or less, with the balance being Fe and unavoidable impurities,
  • the microstructure includes upper bainite with an area ratio of 80% or more and fresh martensite and/or retained austenite with a total area ratio of 2% or more in the surface layer region from the steel plate surface to the position of 1/10 of the plate thickness,
  • the internal region from the plate thickness 1/10 position to the plate thickness 3/10 position contains upper bainite with an area ratio of 70% or more and fresh martensite and / or retained austenite with a total area ratio of 3% or more,
  • the component composition further contains, in % by mass, Cr: 1.0% or less, and Mo: 1.0% or less, The high-strength steel sheet according to [1], containing at least one of [3]
  • the component composition further contains, in % by mass, Cu: 2.0% or less, Ni: 2.0% or less, Ti: 0.3% or less, The high-strength steel sheet according to [1] or [2], containing at least one of Nb: 0.3% or less and V: 0.3% or less.
  • the component composition further contains, in % by mass, Sb: 0.005-0.020% The high-strength steel sheet according to any one of [1] to [3], containing [5]
  • the component composition further contains, in % by mass, Ca: 0.01% or less, The high-strength steel sheet according to any one of [1] to [4], containing at least one of Mg: 0.01% or less and REM: 0.01% or less.
  • a hot-rolled steel sheet is obtained by hot rolling under the conditions that the total rolling reduction in the temperature range of RC1 or less is 25% or more and 80% or less, and the finish rolling end temperature is (RC2-50°C) or more (RC2 + 120°C) or less, Time from the end of hot rolling to the start of cooling of the hot-rolled steel sheet: within 2.0 s, average cooling rate at 3/10 thickness position: 15 ° C./s or more, cooling stop temperature: Trs or more, (Trs + 250 ° C.
  • the hot-rolled steel sheet after cooling is coiled at a coiling temperature of Trs or more and (Trs + 250 ° C.) or less, A method for producing a high-strength steel sheet by cooling to 100°C or less at an average cooling rate of 20°C/s or less.
  • Trs a coiling temperature of Trs or more and (Trs + 250 ° C.) or less
  • Trs a coiling temperature of Trs or more and (Trs + 250 ° C.) or less
  • Trs a high-strength steel sheet by cooling to 100°C or less at an average cooling rate of 20°C/s or less.
  • RC1, RC2, and Trs are defined by the following formulas (1), (2), and (3), respectively.
  • RC1 (°C) 900 + 100 x C + 100 x N + 10 x Mn + 700 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 2000 x Nb + 150 x V
  • RC2 (°C) 750 + 100 x C + 100 x N + 10 x Mn + 350 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 1000 x Nb + 150 x V
  • Trs (° C.) 500-450 ⁇ C-35 ⁇ Mn-15 ⁇ Cr-10 ⁇ Ni-20 ⁇ Mo (3)
  • each element symbol in the above formulas (1), (2), and (3) represents the content (% by mass) of each element, and is set to 0 when the element is not contained.
  • a high-strength steel sheet having a tensile strength of 980 MPa or more, press formability, and bending workability can be obtained.
  • the high-strength steel sheet of the present invention has high tensile strength, it is excellent in press formability and can be press-formed without forming defects such as necking and cracking.
  • the high-strength steel sheet of the present invention is applied to members of trucks and passenger cars, it is possible to reduce the weight of automobile bodies by reducing the amount of steel used while ensuring safety, thereby contributing to the reduction of environmental load.
  • excellent press formability means having a uniform elongation of 6% or more.
  • excellent bending workability means that R/t, which is the ratio of the limit bending radius R and the plate thickness t at which cracks of 50 ⁇ m or more in depth do not occur on both the outer side and the inner side of the bend in the 90° V bending test, is 1.5. 5 or less.
  • C 0.05-0.20%
  • C is an element that has the effect of improving the strength of steel.
  • C promotes the formation of bainite by improving hardenability and contributes to high strength.
  • C also contributes to high strength by increasing the strength of martensite.
  • the C content In order to obtain a tensile strength of 980 MPa or more, the C content must be 0.05% or more. Therefore, the C content should be 0.05% or more, preferably 0.06% or more.
  • the C content should be 0.20% or less, preferably 0.18% or less.
  • Si 0.5-1.2% Si has the effect of suppressing the formation of Fe-based carbides and suppresses precipitation of cementite during upper bainite transformation.
  • C is distributed in untransformed austenite, and by cooling after coiling in the hot rolling process, untransformed austenite becomes fresh martensite and/or retained austenite, and the desired fresh martensite and/or retained austenite are obtained. be able to.
  • the Si content should be 0.5% or more.
  • the Si content is 0.6% or more.
  • the Si content exceeds 1.2%, fresh martensite and/or retained austenite are formed more than the desired area ratio, and as a result, the desired upper bainite area ratio cannot be obtained. may worsen sexuality. Therefore, the Si content should be 1.2% or less, preferably 1.1% or less.
  • Mn 1.5-4.0% Mn stabilizes austenite and contributes to the generation of fresh martensite and/or retained austenite. In order to obtain such effects, the Mn content must be 1.5% or more. Therefore, the Mn content is set to 1.5% or more, preferably 1.7% or more. On the other hand, when the Mn content exceeds 4.0%, fresh martensite and/or retained austenite are excessively generated, and as a result, the desired area ratio of upper bainite cannot be obtained, resulting in deterioration of bendability. Therefore, the Mn content should be 4.0% or less, preferably 3.8% or less.
  • P 0.10% or less
  • P is an element that forms a solid solution and contributes to an increase in the strength of steel.
  • P is also an element that causes slab cracks during hot rolling by segregating at austenite grain boundaries during hot rolling. In addition, it segregates at grain boundaries to reduce uniform elongation. For this reason, it is preferable to keep the P content as low as possible, but the P content up to 0.10% is permissible. Therefore, the P content should be 0.10% or less.
  • the lower limit is not particularly limited, but if the P content is less than 0.0002%, production efficiency is lowered, so 0.0002% or more is preferable.
  • S 0.03% or less S combines with Ti and Mn to form coarse sulfides, which hasten the generation of voids, thereby lowering the uniform elongation. Therefore, it is preferable to keep the S content as low as possible, but an S content of up to 0.03% is permissible. Therefore, the S content is made 0.03% or less.
  • the lower limit is not particularly limited, but if the S content is less than 0.0002%, production efficiency is lowered, so 0.0002% or more is preferable.
  • Al 0.001-2.0%
  • Al is an element that acts as a deoxidizing agent and is effective in improving the cleanliness of steel. If the Al content is less than 0.001%, the effect is not sufficient, so the Al content should be 0.001% or more, preferably 0.005% or more, and more preferably 0.010% or more.
  • Al, like Si, has the effect of suppressing the formation of Fe-based carbides and suppresses precipitation of cementite during upper bainite transformation. This contributes to the generation of fresh martensite and/or retained austenite during cooling after winding.
  • an excessive content of Al causes an increase in oxide-based inclusions and lowers the uniform elongation. Therefore, the Al content should be 2.0% or less, preferably 1.0% or less, and more preferably 0.1% or less.
  • N 0.01% or less N precipitates as a nitride by combining with a nitride-forming element, and generally contributes to grain refinement.
  • N combines with Ti at high temperatures to form coarse nitrides, a content exceeding 0.01% causes a decrease in uniform elongation. Therefore, the N content is set to 0.01% or less.
  • the lower limit is not particularly limited, but if the N content is less than 0.0002%, production efficiency is lowered, so 0.0002% or more is preferable.
  • O 0.01% or less O forms oxides and deteriorates moldability, so the content must be suppressed. In particular, when O exceeds 0.01%, this tendency becomes remarkable. Therefore, the O content should be 0.01% or less, preferably 0.005%, more preferably 0.003%.
  • the lower limit is not specified, but if it is less than 0.00005%, production efficiency may be remarkably lowered, so 0.00005% or more is preferable.
  • B 0.0005 to 0.010%
  • B is an element that segregates at prior austenite grain boundaries, suppresses the formation of ferrite, promotes the formation of upper bainite, and contributes to the improvement of the strength of the steel sheet.
  • the B content In order to develop these effects, the B content must be 0.0005% or more. Therefore, the B content is set to 0.0005% or more, preferably 0.0006%, and more preferably 0.0007%.
  • the B content exceeds 0.010%, the above effects are saturated. Therefore, the B content is 0.010% or less, preferably 0.009% or less, more preferably 0.008% or less.
  • the balance consists of Fe and unavoidable impurities.
  • unavoidable impurities include Zr, Co, Sn, Zn, and W.
  • the component composition contains at least one of Zr, Co, Sn, Zn, and W as unavoidable impurities, the total content of these elements is preferably 0.5% or less.
  • the chemical composition of the high-strength steel sheet of the present invention can optionally contain at least one of the elements listed below.
  • Cr 1.0% or less
  • Cr is a carbide-forming element that segregates at the interface between the upper bainite and the untransformed austenite during the upper bainite transformation after winding, thereby reducing the driving force of the bainite transformation and causing the upper bainite to segregate. It has the effect of stopping metamorphosis. Untransformed austenite remaining after the transformation to upper bainite stops becomes fresh martensite and/or retained austenite by cooling after winding. Therefore, when Cr is added, Cr also contributes to the formation of a desired area ratio of fresh martensite and/or retained austenite. This effect is obtained when Cr is preferably 0.1% or more.
  • the Cr content exceeds 1.0%, fresh martensite and/or retained austenite are excessively generated, and as a result, the desired area ratio of upper bainite cannot be obtained, resulting in deterioration of bendability. Therefore, when Cr is added, the Cr content is 1.0% or less, preferably 0.9% or less, and more preferably 0.8% or less.
  • Mo 1.0% or less Mo promotes formation of bainite through improvement of hardenability and contributes to strength improvement of the steel sheet.
  • Mo like Cr, is a carbide-forming element, and segregates at the interface between the upper bainite and the untransformed austenite during the upper bainite transformation after winding, thereby reducing the transformation driving force of the bainite and cooling the winding. It contributes to the later generation of fresh martensite and/or retained austenite.
  • Mo exceeds 1.0%, fresh martensite and/or retained austenite are excessively generated, and as a result, the desired area ratio of upper bainite cannot be obtained, which deteriorates uniform elongation. .
  • This effect is obtained when Mo is preferably 0.1% or more. Therefore, when Mo is added, the Mo content is 1.0% or less, preferably 0.9% or less, and more preferably 0.8% or less.
  • the chemical composition of the high-strength steel sheet of the present invention can optionally contain at least one of the elements listed below.
  • Cu 2.0% or less
  • Cu is an element that forms a solid solution and contributes to increasing the strength of steel. Further, Cu promotes the formation of bainite through improvement of hardenability and contributes to strength improvement. This effect is obtained when Cu is preferably 0.01% or more.
  • the Cu content exceeds 2.0%, the surface properties of the high-strength steel sheet are deteriorated, and the bendability of the high-strength steel sheet is deteriorated. Therefore, when Cu is added, the Cu content is 2.0% or less, preferably 1.9% or less, and more preferably 1.8% or less.
  • Ni 2.0% or less
  • Ni is an element that forms a solid solution and contributes to increasing the strength of steel.
  • Ni promotes the formation of bainite through improvement of hardenability and contributes to strength improvement. This effect is obtained when Ni is preferably 0.01% or more.
  • the Ni content exceeds 2.0%, fresh martensite and/or retained austenite excessively increase, and as a result, the desired area ratio of upper bainite cannot be obtained. deteriorate. Therefore, when Ni is added, the Ni content should be 2.0% or less, preferably 1.9% or less, and more preferably 1.8% or less.
  • Ti 0.3% or less
  • Ti is an element that acts to improve the strength of the steel sheet by precipitation strengthening or solid solution strengthening. Ti forms nitrides in the high temperature range of austenite. As a result, precipitation of BN is suppressed, and B becomes a solid solution. Therefore, when Ti is added, Ti also contributes to ensuring the hardenability necessary for forming upper bainite, and the strength is improved. This effect is obtained when Ti is preferably 0.01% or more. However, when the Ti content exceeds 0.3%, a large amount of Ti nitrides are formed, which reduces the uniform elongation. Therefore, when Ti is added, the Ti content should be 0.3% or less, preferably 0.28% or less, and more preferably 0.25% or less.
  • Nb 0.3% or less
  • Nb is an element that has the effect of improving the strength of the steel sheet by precipitation strengthening or solid solution strengthening.
  • Nb like Ti, raises the recrystallization temperature of austenite during hot rolling, enabling rolling in the austenite unrecrystallized region, refining the grain size of upper bainite, fresh martensite and / Or contribute to an increase in the area ratio of retained austenite.
  • Nb like Cr, is a carbide-forming element, and segregates at the interface between upper bainite and untransformed austenite during the upper bainite transformation after winding, thereby reducing the transformation driving force of bainite and untransformed austenite.
  • Nb it is an element that has the effect of stopping the upper bainite transformation while leaving the The untransformed austenite is then cooled to become fresh martensite and/or retained austenite. Therefore, when Nb is added, Nb also contributes to the formation of a desired area ratio of fresh martensite and/or retained austenite. This effect is obtained when Nb is preferably 0.01% or more. However, when the Nb content exceeds 0.3%, fresh martensite and/or retained austenite excessively increase, and as a result, the desired area ratio of upper bainite cannot be obtained, resulting in a decrease in uniform elongation. Therefore, when Nb is added, the Nb content should be 0.3% or less, preferably 0.28% or less, and more preferably 0.25% or less.
  • V 0.3% or less
  • V is an element that acts to improve the strength of the steel sheet by precipitation strengthening and solid solution strengthening. Further, similarly to Ti, V raises the recrystallization temperature of austenite during hot rolling, thereby enabling rolling in the austenite non-recrystallization region and contributing to refinement of the grain size of upper bainite.
  • V is a carbide-forming element, and segregates at the interface between upper bainite and untransformed austenite during upper bainite transformation after winding, thereby reducing the transformation driving force of bainite and untransformed austenite.
  • V is an element that has the effect of stopping the upper bainite transformation while leaving the The untransformed austenite is then cooled to become fresh martensite and/or retained austenite. Therefore, when V is added, V also contributes to the formation of a desired area ratio of fresh martensite and/or retained austenite. This effect is obtained when V is preferably 0.01% or more. However, when the V content exceeds 0.3%, fresh martensite and/or retained austenite excessively increase, and as a result, the desired area ratio of upper bainite cannot be obtained, resulting in a decrease in uniform elongation. Therefore, when V is added, the V content is 0.3% or less, preferably 0.28% or less, and more preferably 0.25% or less.
  • the chemical composition of the high-strength steel sheet of the present invention can optionally contain the following elements.
  • Sb is an element that has the effect of suppressing nitridation of the surface of the steel material (slab) when the steel material (slab) is heated.
  • Sb precipitation of BN in the surface layer of the steel material can be suppressed.
  • the remaining solid solution B contributes to ensuring the hardenability necessary for the formation of bainite and thereby improving the strength of the steel sheet.
  • the Sb content is 0.005% or more, preferably 0.006% or more, more preferably 0.007% or more, in order to obtain the above effect.
  • the Sb content exceeds 0.020%, the toughness of the steel is lowered, and slab cracks and hot rolling cracks may occur. Therefore, when Sb is added, the Sb content is 0.020% or less, preferably 0.019% or less, and more preferably 0.018% or less.
  • the chemical composition of the high-strength steel sheet in the present invention can optionally contain at least one of the elements listed below.
  • the elements listed below contribute to further improvement of properties such as press formability.
  • Ca 0.01% or less Ca controls the shape of oxide- and sulfide-based inclusions, and contributes to the suppression of cracking at sheared edge surfaces of steel sheets and the further improvement of bending workability. This effect is obtained when Ca is preferably 0.001% or more. However, if the Ca content exceeds 0.01%, the amount of Ca-based inclusions increases and the cleanliness of the steel deteriorates, which may rather cause shear edge cracks and bending cracks. Therefore, when Ca is added, the Ca content is set to 0.01% or less.
  • Mg 0.01% or less Like Ca, Mg controls the shape of oxide- and sulfide-based inclusions, and contributes to the suppression of cracking at sheared edge surfaces of steel sheets and the further improvement of bending workability. This effect is obtained when Mg is preferably 0.001% or more. However, if the Mg content exceeds 0.01%, the cleanliness of the steel deteriorates, which may rather cause shear edge cracks and bending cracks. Therefore, when Mg is added, the Mg content is made 0.01% or less.
  • REM 0.01% or less Like Ca, REM (rare earth metal) controls the shape of oxide- and sulfide-based inclusions, and contributes to the suppression of cracking at sheared edge surfaces of steel sheets and the further improvement of bending workability. do. This effect is obtained when REM is preferably 0.001% or more. However, if the REM content exceeds 0.01%, the cleanliness of the steel deteriorates, which may rather cause shear edge cracks and bending cracks. Therefore, when REM is added, the REM content is made 0.01% or less.
  • the high-strength steel sheet of the present invention includes upper bainite with an area ratio of 80% or more and fresh martensite with a total area ratio of 2% or more and / or residual Top bainite with an area ratio of 70% or more and fresh martensite with a total area ratio of 3% or more and/or residual It contains austenite and has an average crystal grain size of 6 ⁇ m or less in the surface layer region from the steel plate surface to the plate thickness 1/10 position, and the hardness (HV1) of the surface layer region from the steel plate surface to the plate thickness 1/10 position.
  • the difference (HV2-HV1) in the hardness (HV2) of the inner region from the 1/10th thickness position to the 3/10th thickness position is 5% or more and 15% or less with respect to [0.3 ⁇ tensile strength (MPa)] It has a certain microstructure.
  • the soft upper part By finely dispersing hard fresh martensite and/or retained austenite in bainite, ductility can be improved and external bending cracks can be suppressed.
  • the surface layer should have an area fraction of upper bainite of 80% or more and an area fraction of fresh martensite and/or retained austenite of 2% or more.
  • the area ratio of upper bainite is 85% or more, and the area ratio of fresh martensite and/or retained austenite is 3% or more.
  • the bendability may decrease, so the total area ratio of fresh martensite and/or retained austenite is It is preferable to make it 20% or less. It is more preferably 18% or less, still more preferably 15% or less.
  • the bainite transformation progresses quickly, and the concentration of C for forming fresh martensite and/or retained austenite is less than in the interior. If the concentration of C is small, martensite transformation is suppressed. As a result, the area ratio of fresh martensite and/or retained austenite in the surface layer region of the steel sheet is smaller than that in the interior.
  • upper bainite is included as a main phase in the inner region from the 1/10 thickness position to the 3/10 thickness position. If the area ratio of upper bainite is less than 70%, a tensile strength of 980 MPa or more and a uniform elongation of 6% or more cannot be achieved. Therefore, the area ratio of upper bainite is set to 70% or more, preferably 80% or more.
  • fresh martensite and/or retained austenite are included in the internal region from the 1/10 thickness position to the 3/10 thickness position.
  • Fresh martensite has the effect of improving uniform elongation by promoting work hardening and delaying the onset of plastic instability.
  • Retained austenite can increase uniform elongation by TRIP (Transformation Induced Plasticity) effect.
  • the total area ratio of fresh martensite and/or retained austenite is set to 3% or more, preferably 4% or more.
  • the microstructure near the center of the plate thickness after the 3/10th position of the plate thickness has little effect on bendability, but from the viewpoint of ductility, the area ratio of upper bainite is preferably 60% or more.
  • Fresh martensite/tempered martensite/retained austenite and the like may be contained up to 40% due to Mn segregation at the thickness center.
  • Average crystal grain size in the surface layer region from the steel plate surface to the position of 1/10 of the plate thickness 6 ⁇ m or less
  • Bending inner cracks are brittle fractures due to strong compression. That is, if the resistance to compression embrittlement is improved, internal bending cracks can be suppressed. Compression embrittlement is less likely to occur due to the refinement of crystal grains.
  • the average crystal grain size in the surface layer region should be 6 ⁇ m or less, preferably 5 ⁇ m or less. As the average grain size becomes smaller, the effect of improving resistance to compression embrittlement can be obtained. Therefore, the average crystal grain size in the surface layer region is preferably 2 ⁇ m or more.
  • the effect of improving the uniform elongation of fresh martensite and/or retained austenite and the control of the surface layer microstructure can only be achieved by combining inhibitory effects.
  • the difference (HV2-HV1) between the hardness (HV1) of the surface layer region from the steel plate surface to the 1/10 thickness position and the hardness (HV2) of the inner region from the 1/10 thickness position to the 3/10 thickness position 5% or more and 15% or less with respect to [0.3 ⁇ tensile strength (MPa)]
  • MPa tensile strength
  • the difference between the hardness of the surface layer region (HV1) and the hardness of the inner region (HV2) (HV2-HV1) is 0.3 ⁇ tensile strength (MPa ) to 5% or more. It is preferably 6% or more, more preferably 7% or more.
  • MPa tensile strength
  • the difference between the hardness of the surface layer region and the hardness of the inner region is set to 15% or less with respect to 0.3 ⁇ tensile strength (MPa). It is preferably 14% or less, more preferably 13% or less.
  • MPa tensile strength
  • the microstructure can further contain any structure (hereinafter referred to as "other structures") other than upper bainite, fresh martensite, and retained austenite.
  • other structures such structure
  • the total area ratio of other structures is preferably 3% or less.
  • the total area ratio of upper bainite, fresh martensite, and retained austenite in the microstructure is preferably 97% or more.
  • Other structures include, for example, cementite, polygonal ferrite, pearlite, tempered martensite, and lower bainite.
  • the high-strength steel sheet of the present invention has a tensile strength of 980 MPa or more, a uniform elongation of 6% or more, and R / t (limit bending radius R and plate thickness t at which cracks with a depth of 50 ⁇ m or more do not occur on both the outside and inside of the bend. ratio) is 1.5 or less. Therefore, the high-strength steel sheet of the present invention has excellent press formability despite its high tensile strength, and can be press-formed without causing forming defects such as necking and cracking. The durability of the part can be ensured without large cracks occurring on both the outside and inside of the bend. Therefore, safety can be ensured when applied to members of trucks and passenger cars.
  • microstructure, hardness, and mechanical properties of the present invention can be determined by the measurement methods described in Examples below.
  • the high-strength steel sheet of the present invention can be produced by sequentially subjecting a steel material to the following treatments (1) to (5). Each step will be described below. (1) heating (2) hot rolling (3) cooling (first cooling) (4) Winding (5) Cooling (second cooling)
  • the steel material any material can be used as long as it has the chemical composition described above.
  • the chemical composition of the finally obtained high-strength steel sheet is the same as the chemical composition of the steel material used.
  • a steel slab can be used as the steel material.
  • the manufacturing method of the steel material is not particularly limited. For example, molten steel having the above chemical composition can be melted by a known method such as a converter, and a steel material can be obtained by a casting method such as continuous casting.
  • a method other than the continuous casting method such as an ingot casting-blooming rolling method, can also be used.
  • scrap may be used as a raw material.
  • the steel material may be directly subjected to the next heating step after being manufactured by a method such as a continuous casting method, or may be subjected to the heating step after being cooled into a hot piece or a cold piece. good.
  • the steel material is heated to a heating temperature of 1150°C or higher.
  • a heating temperature 1150°C or higher.
  • carbonitride-forming elements such as Ti exist as coarse carbonitrides in steel materials.
  • the presence of this coarse and non-uniform precipitates is generally required for high-strength steel sheets for truck and passenger car parts (e.g. shear edge crack resistance, bending workability, burring workability, etc.). aggravate. Therefore, it is necessary to heat the steel material prior to hot rolling to dissolve coarse precipitates.
  • the heating temperature of the steel material must be 1150° C. or higher in order to sufficiently dissolve the coarse precipitates.
  • the heating temperature of the steel material becomes too high, slab flaws will occur and the yield will decrease due to scale off.
  • the heating temperature of the steel material it is preferable to set the heating temperature of the steel material to 1350° C. or lower.
  • the lower limit of the heating temperature of the steel material is more preferably 1180°C or higher, and still more preferably 1200°C or higher.
  • the upper limit of the heating temperature of the steel material is more preferably 1300° C. or lower, and still more preferably 1280° C. or lower.
  • the heating from the viewpoint of uniforming the temperature of the steel material, it is preferable to raise the temperature of the steel material to the heating temperature and then maintain it at the heating temperature.
  • the time for which the heating temperature is maintained (holding time) is not particularly limited, but from the viewpoint of improving the temperature uniformity of the steel material, it is preferably 1800 seconds or longer.
  • the holding time exceeds 10000 seconds, the amount of scale generation increases. As a result, entrapment of scales and the like is likely to occur in subsequent hot rolling, leading to a decrease in yield due to defective surface defects. Therefore, the retention time is preferably 10000 seconds or less, more preferably 8000 seconds or less.
  • Hot rolling Next, the heated steel material is hot rolled to form a hot rolled steel sheet.
  • Hot rolling may consist of rough rolling and finish rolling.
  • the conditions are not particularly limited.
  • descaling is preferably performed prior to finish rolling in order to remove surface scales. Descaling may be performed between stands in the finish rolling.
  • the total rolling reduction in the temperature range of RC1 or less is 25% or more and 80% or less
  • the finishing temperature of finish rolling should be (RC2-50°C) or more and (RC2+120°C) or less.
  • RC1 is the austenite 50% recrystallization temperature estimated from the component composition
  • RC2 is the austenite lower limit recrystallization temperature estimated from the component composition. If the total rolling reduction of RC1 or less is less than 25%, the average crystal grain size becomes large and good bending workability cannot be obtained. On the other hand, when the total rolling reduction in the temperature range of RC1 or less exceeds 80%, the dislocation density of austenite is high, the ductility of the bainite structure transformed from austenite in a state of high dislocation density is poor, and the uniform elongation is 6% or more. is not obtained. Therefore, the total rolling reduction in the temperature range of RC1 or less is set to 25% or more and 80% or less.
  • finish rolling finish temperature (RC2-50°C) or more and (RC2+120°C) or less. If the finish rolling finish temperature is lower than (RC2-50° C.), bainite transformation occurs from austenite in a state of high dislocation density. Since upper bainite transformed from austenite with a high dislocation density has a high dislocation density and poor ductility, the uniform elongation decreases. Also, when the rolling end temperature is low and the rolling is performed at the two-phase region temperature of ferrite + austenite, the uniform elongation decreases. Therefore, the finishing temperature of finish rolling should be (RC2-50° C.) or higher.
  • the finish rolling finish temperature is set to (RC2+120° C.) or less.
  • RC1 and RC2 are defined by the following formulas (1) and (2).
  • RC1 (°C) 900 + 100 x C + 100 x N + 10 x Mn + 700 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 2000 x Nb + 150 x V
  • RC2 (°C) 750 + 100 x C + 100 x N + 10 x Mn + 350 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 1000 x Nb + 150 x V (2)
  • each element symbol in the above formulas (1) and (2) represents the content (% by mass) of each element, and is set to 0 when the element is not contained.
  • Cooling (first cooling) Next, the obtained hot-rolled steel sheet is cooled (first cooling). At that time, the time from the end of hot rolling (end of finish rolling) to the start of cooling (cooling start time) is set within 2.0 seconds. If the cooling start time exceeds 2.0 seconds, grain growth of austenite grains occurs and a tensile strength of 980 MPa or more cannot be secured. The cooling start time is preferably within 1.5 seconds.
  • the average cooling rate at the plate thickness 3/10 position shall be 15°C/s or more.
  • different microstructures are created between the surface layer and the inside. Due to the rapid cooling of the surface layer, the bainite transformation of the surface layer starts early, and the formation of martensite and retained austenite due to the enrichment of C is less than in the inside. If the average cooling rate in cooling is less than 15 ° C. / s, the surface layer is not cooled sufficiently rapidly, and the upper bainite with an area ratio of 80% or more and the total area ratio of 2% or more fresh martensite and / or residual An austenite surface layer structure cannot be obtained.
  • the average cooling rate is set to 15° C./s or higher, preferably 20° C./s or higher, more preferably 50° C./s or higher.
  • the upper limit of the average cooling rate is not particularly limited, but if the average cooling rate is too high, it becomes difficult to manage the cooling stop temperature. Therefore, the average cooling rate is preferably 200° C./s or less.
  • the average cooling rate is defined based on the average cooling rate on the surface of the steel sheet.
  • the average cooling rate of the surface layer - the average cooling rate at the plate thickness 3/10 position of 10 ° C./s or more by satisfying the average cooling rate of the surface layer - the average cooling rate at the plate thickness 3/10 position of 10 ° C./s or more, the formation of martensite and retained austenite due to the enrichment of C in the surface layer is reduced to the plate thickness. Less than the 3/10 position. As a result, a soft surface layer structure can be created.
  • the cooling rate is slower than the surface layer, and the progress of bainite transformation is slower than that in the surface layer. be able to. That is, a difference in hardness between the surface layer and the inside can be realized.
  • the average cooling rate of the plate thickness 3/10 position surface layer is less than 10 ° C / s, the above effect is not observed, so the average cooling rate of the surface layer - plate thickness
  • the average cooling rate at the 3/10 position is 10° C./s or more.
  • the average cooling rate is obtained by (temperature at the start of cooling - temperature at the end of cooling)/cooling time.
  • the temperature of the surface layer is actually measured with a thermometer.
  • the temperature at the 3/10 thickness position is obtained by calculating the temperature distribution in the cross section of the steel sheet by heat transfer analysis and correcting the result with the actual surface temperature of the steel sheet.
  • cooling forced cooling may be performed so as to achieve the above average cooling rate.
  • the cooling method is not particularly limited, but for example, water cooling is preferable.
  • the cooling stop temperature shall be Trs or higher and (Trs + 250°C) or lower.
  • Trs When the cooling stop temperature is less than Trs, the microstructure becomes tempered martensite or lower bainite. Tempered martensite and lower bainite are both high-strength structures, but their uniform elongation is remarkably low. Therefore, the cooling stop temperature is set to Trs or higher.
  • the cooling stop temperature is set to (Trs+250° C.) or less.
  • each element symbol in the above formula (3) represents the content (% by mass) of each element, and is set to 0 when the element is not contained.
  • the cooled hot-rolled steel sheet is coiled under the conditions of a coiling temperature of Trs or more and (Trs+250° C.) or less. If the coiling temperature is lower than Trs, martensite transformation or lower bainite transformation proceeds after coiling, and desired fresh martensite and/or retained austenite cannot be obtained. Therefore, the winding temperature should be Trs or higher. On the other hand, if the coiling temperature is higher than (Trs+250° C.), ferrite is generated, and a tensile strength of 980 MPa cannot be obtained. Therefore, the winding temperature is set to (Trs+250° C.) or less.
  • Cooling After winding, it is further cooled to 100° C. or lower at an average cooling rate of 20° C./s or lower (second cooling).
  • the average cooling rate affects the formation of fresh martensite and/or retained austenite.
  • the average cooling rate is set to 20° C./s or less, preferably 2° C./s or less, more preferably 0.02° C./s or less.
  • the lower limit of the average cooling rate is not particularly limited, it is preferably 0.0001° C./s or more.
  • Cooling can be performed to any temperature below 100°C, but cooling to about 10 to 30°C (for example, room temperature) is preferable. It should be noted that the cooling can be performed in any form, for example, it may be performed in the state of a wound coil.
  • the high-strength steel sheet of the present invention can be manufactured by the above procedure.
  • the winding and subsequent cooling may be carried out in accordance with a conventional method. For example, temper rolling may be applied, or pickling may be applied to remove scales formed on the surface.
  • Molten steel having the composition shown in Table 1 was melted in a converter, and a steel slab was produced as a steel material by continuous casting.
  • the obtained steel material was heated to the heating temperature shown in Table 2, and then the heated steel material was subjected to hot rolling consisting of rough rolling and finish rolling to obtain a hot-rolled steel sheet.
  • Table 2 shows the finishing temperature of hot rolling.
  • the obtained hot-rolled steel sheet was cooled under the conditions of the average cooling rate and the cooling stop temperature shown in Table 2 (first cooling).
  • the cooled hot-rolled steel sheet was coiled at the coiling temperature shown in Table 2, and the coiled steel sheet was cooled at the average cooling rate shown in Table 2 (second cooling) to obtain a high-strength steel sheet.
  • skin-pass rolling and pickling were performed as post-treatments. The pickling was carried out at a temperature of 85° C. using an aqueous solution of hydrochloric acid having a concentration of 10% by mass.
  • a test piece was taken from the obtained high-strength steel sheet, and the microstructure, surface roughness, and mechanical properties were evaluated according to the procedure described below.
  • a test piece for microstructure observation was taken from the obtained high-strength steel sheet so that the thickness cross-section parallel to the rolling direction was the observation surface.
  • the surface of the obtained test piece was polished, and the surface was corroded using an etchant (3 vol.% nital solution) to expose the microstructure.
  • the obtained SEM images were analyzed by image processing to quantify the area ratios of upper bainite (UB), polygonal ferrite (F), and tempered martensite (TM).
  • UB upper bainite
  • F polygonal ferrite
  • TM tempered martensite
  • fresh martensite (M) and retained austenite ( ⁇ ) are difficult to distinguish by SEM, so they were identified using an electron backscatter diffraction (EBSD) method, and each area ratio and average crystal Particle size was determined.
  • Table 3 shows the measured area ratio of each microstructure and the average crystal grain size of the surface layer structure. Table 3 also shows the total area ratio (M+ ⁇ ) of fresh martensite and retained austenite.
  • Hardness measurement From the obtained high-strength steel sheet, a sample for hardness measurement is taken so that the thickness cross section parallel to the rolling direction becomes the hardness measurement cross section, and the surface layer region from the steel plate surface to the thickness 1/10 position and the thickness 1/ The hardness of the internal region from the 10th position to the plate thickness 3/10th position was measured. The hardness of the surface layer region from the surface of the steel plate to the position of 1/10 of the plate thickness was measured at a position 50 ⁇ m away from the surface with an indentation interval of 250 ⁇ m. The hardness of the inner region from the 1/10 thickness position to the 3/10 thickness position was measured at the 1/5 thickness position with an indentation interval of 250 ⁇ m. All hardness measurement conditions were a load of 100 g, a holding time of 10 s, and an average of 5 measurement points.
  • Test test A JIS No. 5 test piece (gauge length, GL: 50 mm) was taken from the obtained high-strength steel sheet so that the tensile direction was perpendicular to the rolling direction. Using the obtained test piece, a tensile test was performed in accordance with the provisions of JIS Z 2241, yield strength (yield point, YP), tensile strength (TS), yield ratio (YR), total elongation (El), Similar elongation (u-El) was determined. The tensile test was performed twice for each high-strength steel sheet, and the average of the obtained measured values is shown in Table 3 as the mechanical properties of the high-strength steel sheet. In the present invention, when TS was 980 MPa or more, it was evaluated as high strength. Moreover, when the uniform elongation was 6% or more, the press formability was evaluated as good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

The purpose of the present invention is to provide a high-strength steel sheet having tensile strength, press formability, and bendability, and to provide a method for manufacturing the same. The high-strength steel sheet has a predetermined component composition, and the mircostructure thereof has a specific structure in a surface layer region from the steel sheet surface to a position 1/10 of the sheet thickness and in an inner region from the position 1/10 of the sheet thickness to a position 3/10 of the sheet thickness. The average crystal grain size in the surface layer region from the steel sheet surface to a position 1/10 of the sheet thickness is at most 6 μm. The difference (HV2-HV1) between the hardness (HV1) of the surface layer region from the steel sheet surface to the position 1/10 of the sheet thickness and the hardness (HV2) of the inner region from the position 1/10 of the sheet thickness to the position 3/10 of the sheet thickness is 5-15% of [0.3 × tensile strength (Mpa)]. The high-strength steel sheet has a tensile strength of at least 980 Mpa, a uniform elongation of at least 6%, and the ratio R/t of the critical bending radius R and the sheet thickness t thereof is at most 1.5.

Description

高強度鋼板およびその製造方法High-strength steel plate and its manufacturing method
 本発明は、高強度鋼板およびその製造方法に関する。特に、980MPa以上の引張強度と6%以上の一様伸びに加えて、優れた曲げ加工性を兼ね備え、トラックや乗用車のフレーム、サスペンション部品などの素材として好適である高強度鋼板およびその製造方法に関する。 The present invention relates to a high-strength steel sheet and its manufacturing method. In particular, in addition to tensile strength of 980 MPa or more and uniform elongation of 6% or more, it has excellent bending workability, and is suitable as a material for trucks and passenger car frames, suspension parts, etc. It relates to a high strength steel sheet and a method for producing the same. .
 温暖化抑制を目的とした自動車排ガス規制を背景に、自動車の軽量化が求められている。自動車の軽量化には、自動車部品の素材として使用される材料を高強度化し、薄肉化することで同じ自動車部品に使用する材料の量を低減することが有効である。そのため、高強度鋼板の適用が年々増加している。特に、980MPa以上の引張強度を有する高強度鋼板は、軽量化によって自動車の燃費を飛躍的に向上し得る素材として期待されている。 Against the backdrop of automobile exhaust gas regulations aimed at curbing global warming, there is a demand for lighter automobiles. In order to reduce the weight of automobiles, it is effective to reduce the amount of materials used for the same automobile parts by increasing the strength of the materials used as the raw materials for automobile parts and making them thinner. Therefore, the application of high-strength steel sheets is increasing year by year. In particular, a high-strength steel sheet having a tensile strength of 980 MPa or more is expected as a material that can dramatically improve the fuel efficiency of automobiles by reducing weight.
 一方で、鋼板の引張強度を高めると延性が低下するため、該鋼板のプレス成形性が悪化する。自動車部品、特にサスペンション部品などの足回り部品は剛性確保のために複雑な形状とする必要がある。そのため、自動車部品の素材には高いプレス成形性、すなわち延性が必要となる。 On the other hand, if the tensile strength of the steel sheet is increased, the ductility of the steel sheet is lowered, so the press formability of the steel sheet is deteriorated. Automobile parts, especially underbody parts such as suspension parts, need to have complicated shapes to ensure rigidity. Therefore, high press formability, that is, ductility is required for materials for automobile parts.
 さらに、鋼板の引張強度を高めると曲げ加工の際に割れが発生しやすくなる。曲げ加工部に割れが発生すると、割れが疲労き裂の発生起点となり、設計上想定していた部品耐久性が得られなくなる可能性がある。そのため、自動車部品などに用いる素材には優れた曲げ加工性が必要となる。 Furthermore, if the tensile strength of the steel plate is increased, cracks are more likely to occur during bending. If a crack occurs in the bent portion, the crack may become a starting point for fatigue cracking, and the durability of the part assumed in the design may not be obtained. Therefore, excellent bending workability is required for materials used for automobile parts and the like.
 これまでにも、鋼板の引張強度を高めつつ、延性と曲げ加工性を向上させるための様々な技術が提案されている。 Various techniques have been proposed to improve ductility and bendability while increasing the tensile strength of steel sheets.
特開2012-012701号公報Japanese Unexamined Patent Application Publication No. 2012-012701 国際公開第2016/010004号WO2016/010004 特開2013-117068号公報JP 2013-117068 A 特開2017-115191号公報JP 2017-115191 A 国際公開第2020/110855号WO2020/110855 国際公開第2020/110843号WO2020/110843
 しかし、特許文献1~6に記載されているような従来技術には、以下に述べる問題があった。 However, the conventional techniques as described in Patent Documents 1 to 6 have the following problems.
 特許文献1、2に記載の技術では、980MPa以上の引張強度を得られない。また、いずれも熱延鋼板が優れた加工性を有するとされているが、加工性の指標として「伸び」が使用されている。この「伸び」とは、全伸び(El)とも呼ばれ、引張試験において試験片が破断した時点における伸びを表す。しかし、実際には、破断が生じるよりも前の段階でネッキング(くびれ)が生じる。ネッキングが生じると板厚が局所的に薄くなるため、プレス成形時に製品不良となる。そのため、優れたプレス成形性を実現するためには全伸びが高いだけでは十分とはいえない。また、特許文献1、2では、曲げ加工性について言及していない。 With the techniques described in Patent Documents 1 and 2, a tensile strength of 980 MPa or more cannot be obtained. In both cases, hot-rolled steel sheets are considered to have excellent workability, and "elongation" is used as an index of workability. This "elongation" is also called total elongation (El), and represents the elongation at the time when the test piece breaks in the tensile test. In practice, however, necking occurs before breakage occurs. If necking occurs, the plate thickness becomes thin locally, resulting in product defects during press molding. Therefore, high total elongation alone is not sufficient to achieve excellent press formability. Further, Patent Documents 1 and 2 do not refer to bending workability.
 特許文献3~5に記載の技術では、曲げ加工性に優れた高強度鋼板が得られるとされているが、いずれも曲げ外側に発生する割れのみ注目している。曲げの外側・内側を問わず、曲げ加工時に割れが発生する場合、その割れが疲労き裂発生起点となり、部品の耐久性が低下する恐れがあるため、曲げ内側の割れを抑制しないと曲げ加工性の確保が十分であるとは言えない。 The techniques described in Patent Documents 3 to 5 are said to yield high-strength steel sheets with excellent bending workability, but all of them focus only on cracks that occur on the outside of bending. If cracks occur during bending, regardless of whether they are on the outside or inside of the bend, the cracks will become fatigue crack initiation points, which may reduce the durability of the part. It cannot be said that ensuring sexuality is sufficient.
 特許文献6に記載の技術では、曲げ加工性に優れた高強度鋼板が得られるとされているが、曲げ内側に発生する割れのみ注目している。曲げの外側・内側を問わず、曲げ加工時に割れが発生する場合、その割れが疲労き裂発生起点となり、部品の耐久性が低下する恐れがあるため、曲げ内側と曲げ外側の割れ抑制を両立しないと部品の性能を確保できない。 With the technology described in Patent Document 6, it is said that a high-strength steel sheet with excellent bending workability can be obtained, but attention is focused only on cracks that occur on the inner side of bending. If cracks occur during bending, regardless of whether they are on the outside or inside of the bend, those cracks can become fatigue crack initiation points, reducing the durability of the part. Otherwise, the performance of parts cannot be ensured.
 このように、引張強度、プレス成形性、および曲げ加工性を高い水準で兼ね備えた高強度鋼板を得るための技術は依然として確立されていないのが実状である。 As described above, the actual situation is that the technology for obtaining high-strength steel sheets with high levels of tensile strength, press formability, and bending workability has not yet been established.
 本発明は、上記実状に鑑みてなされたものであり、引張強度、プレス成形性、および曲げ加工性を兼ね備えた高強度鋼板およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned actual situation, and an object thereof is to provide a high-strength steel sheet having tensile strength, press formability, and bending workability, and a method for manufacturing the same.
 本発明者らは、上記課題を解決するために、980MPa以上の引張強度と、様々な降伏応力と一様伸びを有する鋼板の仮想的な応力-ひずみ曲線を作成し、応力-ひずみ曲線を用いてサスペンション部品のプレス成形シミュレーションを行なった。そして、シミュレーションの結果に基づいて、優れたプレス成形性を得るために必要な鋼板の特性を検討した。 In order to solve the above problems, the present inventors have found that a tensile strength of 980 MPa or more and a virtual stress-strain curve of steel sheets having various yield stresses and uniform elongations are created, and the stress-strain curve is used. We conducted press forming simulations for suspension parts. Then, based on the simulation results, the properties of the steel sheet required to obtain excellent press formability were examined.
 その結果、引張強度980MPa以上の鋼板では、一様伸びを6%以上確保すると、プレス成形時の減肉が最小限に抑えられ、プレス成形不良を抑制できることがわかった。 As a result, it was found that in steel sheets with a tensile strength of 980 MPa or more, if a uniform elongation of 6% or more is secured, the thickness reduction during press forming can be minimized and press forming defects can be suppressed.
 また、本発明者らは、引張強度980MPa以上と一様伸び6%以上を得るために、最適な鋼板組織の検討を行った。その結果、主相が上部ベイナイトであり、フレッシュマルテンサイトおよび/または残留オーステナイトを含む硬質第2相を適正量含有するミクロ組織とすることにより、980MPa以上の高強度と6%以上の一様伸びを両立できることを明らかにした。 In addition, the inventors studied the optimal steel sheet structure in order to obtain a tensile strength of 980 MPa or more and a uniform elongation of 6% or more. As a result, the main phase is upper bainite, and a microstructure containing an appropriate amount of a hard secondary phase containing fresh martensite and/or retained austenite results in a high strength of 980 MPa or more and a uniform elongation of 6% or more. It has been shown that it is possible to combine
 なお、ここでいう上部ベイナイトとは、方位差が15°未満のラス状フェライトの集合体であり、ラス状フェライト間にFe系炭化物および/または残留オーステナイトを有する組織(ただし、ラス状フェライト間にFe系炭化物および/または残留オーステナイトを有しない場合も含む)を意味する。ラス状フェライトは、パーライト中のラメラ状(層状)フェライトやポリゴナルフェライトと異なり、形状がラス状でかつ内部に比較的高い転位密度を有するため、両者はSEM(走査電子顕微鏡)やTEM(透過電子顕微鏡)を用いて区別可能である。なお、ラス間に残留オーステナイトを有する場合は、ラス状フェライト部のみを上部ベイナイトとみなし、残留オーステナイトとは区別する。また、フレッシュマルテンサイトとは、Fe系炭化物を有しないマルテンサイトである。フレッシュマルテンサイトと残留オーステナイトは、SEMでは同様のコントラストを有するが、電子線反射回折(Electron Backscatter Diffraction Patterns:EBSD)法を用いて区別可能である。 The upper bainite referred to here is an aggregate of lath-shaped ferrite with an orientation difference of less than 15°, and a structure having Fe-based carbides and/or retained austenite between lath-shaped ferrites (however, between lath-shaped ferrites (including the case of not having Fe-based carbides and/or retained austenite). Unlike lamellar (layered) ferrite in pearlite and polygonal ferrite, lath-like ferrite has a lath-like shape and a relatively high dislocation density inside. electron microscopy). When there is retained austenite between laths, only the lath-shaped ferrite portion is regarded as upper bainite and is distinguished from retained austenite. Fresh martensite is martensite that does not contain Fe-based carbides. Fresh martensite and retained austenite have similar contrast in SEM, but are distinguishable using electron backscatter diffraction (EBSD) methods.
 次に、本発明者らは、980MPa以上の引張強度と6%以上の一様伸びを有する高強度鋼板の曲げ加工性について検討を行なった。具体的には、製造方法の異なる引張強度980MPa以上、一様伸び6%以上の鋼板を用いて、90°V曲げ試験を行い、曲げ割れの破面と割れ近傍のミクロ組織を観察した。曲げ外側では、割れ破面が延性破面であり、割れ近傍のミクロ組織にボイドが多く観察されたことから、曲げ外割れは延性破壊であることが分かった。一方、曲げ内側では、割れ破面が脆性破面であり、割れ近傍のミクロ組織にボイドが観察されないことから、曲げ内割れは強圧縮による脆性破壊であることが分かった。したがって、延性の向上は曲げ外割れを抑制でき、耐圧縮脆化特性の向上は曲げ内割れを抑制できる。そのために曲げ割れが発生し得る表層領域とその近傍領域のミクロ組織を制御する必要があることもわかった。 Next, the inventors investigated the bending workability of high-strength steel sheets having a tensile strength of 980 MPa or more and a uniform elongation of 6% or more. Specifically, steel sheets with a tensile strength of 980 MPa or more and a uniform elongation of 6% or more, manufactured by different manufacturing methods, were subjected to a 90° V bending test to observe the fracture surface of bending cracks and the microstructure in the vicinity of the cracks. On the outside of the bending, the fracture surface of the crack was ductile fracture, and many voids were observed in the microstructure near the crack. On the other hand, on the inner side of the bend, the crack fracture surface is brittle fracture surface, and voids are not observed in the microstructure near the crack. Therefore, an improvement in ductility can suppress external bending cracks, and an improvement in compression embrittlement resistance can suppress internal bending cracks. Therefore, it was found that it is necessary to control the microstructure of the surface layer region and its neighboring region where bending cracks can occur.
 本発明は、以上の知見をもとにさらに検討を加えてなされたものであり、以下を要旨とする。
[1]質量%で、
C:0.05~0.20%、
Si:0.5~1.2%、
Mn:1.5~4.0%、
P:0.10%以下、
S:0.03%以下、
Al:0.001~2.0%、
N:0.01%以下、
O:0.01%以下、および
B:0.0005~0.010%以下
を含有し、残部Feおよび不可避的不純物からなる成分組成を有し、
ミクロ組織は、鋼板表面から板厚1/10位置までの表層領域において、面積率で80%以上の上部ベイナイトと、合計の面積率で2%以上のフレッシュマルテンサイトおよび/または残留オーステナイトを含み、
板厚1/10位置から板厚3/10位置までの内部領域において、面積率で70%以上の上部ベイナイトと、合計の面積率で3%以上のフレッシュマルテンサイトおよび/または残留オーステナイトを含み、
鋼板表面から板厚1/10位置までの表層領域での平均結晶粒径が6μm以下であり、
鋼板表面から板厚1/10位置までの表層領域の硬度(HV1)と、板厚1/10位置から板厚3/10位置までの内部領域の硬度(HV2)の差(HV2-HV1)が[0.3×引張強度(MPa)]に対して5%以上15%以下であり、
引張強度が980MPa以上、一様伸びが6%以上、かつ限界曲げ半径Rと板厚tの比R/tが1.5以下である、高強度鋼板。
[2]前記成分組成が、さらに、質量%で、
Cr:1.0%以下、および
Mo:1.0%以下、
の少なくとも1種を含有する、[1]に記載の高強度鋼板。
[3]前記成分組成が、さらに、質量%で、
Cu:2.0%以下、
Ni:2.0%以下、
Ti:0.3%以下、
Nb:0.3%以下、および
V:0.3%以下
の少なくとも1種を含有する、[1]または[2]に記載の高強度鋼板。
[4]前記成分組成が、さらに、質量%で、
Sb:0.005~0.020%
を含有する、[1]~[3]のいずれかに記載の高強度鋼板。
[5]前記成分組成が、さらに、質量%で、
Ca:0.01%以下、
Mg:0.01%以下、および
REM:0.01%以下
の少なくとも1種を含有する、[1]~[4]のいずれかに記載の高強度鋼板。
[6][1]~[5]のいずれかに記載の高強度鋼板の製造方法であって、
前記成分組成を有する鋼素材を1150℃以上の加熱温度に加熱し、
次いで、粗圧延を施した後、
RC1以下の温度範囲での合計圧下率が25%以上80%以下で、かつ仕上圧延終了温度:(RC2-50℃)以上(RC2+120℃)以下の条件で熱間圧延して熱延鋼板とし、
前記熱延鋼板を、熱間圧延終了から冷却開始までの時間:2.0s以内、板厚3/10位置での平均冷却速度:15℃/s以上、冷却停止温度:Trs以上、(Trs+250℃)以下の条件で冷却し、
前記冷却後の熱延鋼板を、巻取温度:Trs以上、(Trs+250℃)以下の条件で巻取り、
20℃/s以下の平均冷却速度で100℃以下まで冷却する、高強度鋼板の製造方法。
なお、RC1、RC2、Trsは、下記(1)、(2)、(3)式でそれぞれ定義される。
RC1(℃)=900+100×C+100×N+10×Mn+700×Ti+5000×B+10×Cr+50×Mo+2000×Nb+150×V…(1)
RC2(℃)=750+100×C+100×N+10×Mn+350×Ti+5000×B+10×Cr+50×Mo+1000×Nb+150×V…(2)
Trs(℃)=500-450×C-35×Mn-15×Cr-10×Ni-20×Mo…(3)
ここで、上記(1)、(2)、(3)式における各元素記号は各元素の含有量(質量%)を表し、含有されていない元素の場合は0とする。
[7]前記熱間圧延終了後の冷却工程において、表層の平均冷却速度と板厚3/10位置での平均冷却速度が(4)式をする、[6]に記載の高強度鋼板の製造方法。
表層の平均冷却速度-板厚3/10位置での平均冷却速度≧10℃/s…(4)
The present invention has been made based on further studies based on the above findings, and the gist thereof is as follows.
[1] % by mass,
C: 0.05 to 0.20%,
Si: 0.5 to 1.2%,
Mn: 1.5-4.0%,
P: 0.10% or less,
S: 0.03% or less,
Al: 0.001 to 2.0%,
N: 0.01% or less,
O: 0.01% or less and B: 0.0005 to 0.010% or less, with the balance being Fe and unavoidable impurities,
The microstructure includes upper bainite with an area ratio of 80% or more and fresh martensite and/or retained austenite with a total area ratio of 2% or more in the surface layer region from the steel plate surface to the position of 1/10 of the plate thickness,
The internal region from the plate thickness 1/10 position to the plate thickness 3/10 position contains upper bainite with an area ratio of 70% or more and fresh martensite and / or retained austenite with a total area ratio of 3% or more,
The average grain size in the surface layer region from the steel plate surface to the position of 1/10 of the plate thickness is 6 μm or less,
The difference (HV2-HV1) between the hardness (HV1) of the surface layer region from the steel plate surface to the 1/10 thickness position and the hardness (HV2) of the inner region from the 1/10 thickness position to the 3/10 thickness position 5% or more and 15% or less with respect to [0.3 × tensile strength (MPa)],
A high-strength steel sheet having a tensile strength of 980 MPa or more, a uniform elongation of 6% or more, and a ratio R/t of limit bending radius R to plate thickness t of 1.5 or less.
[2] The component composition further contains, in % by mass,
Cr: 1.0% or less, and Mo: 1.0% or less,
The high-strength steel sheet according to [1], containing at least one of
[3] The component composition further contains, in % by mass,
Cu: 2.0% or less,
Ni: 2.0% or less,
Ti: 0.3% or less,
The high-strength steel sheet according to [1] or [2], containing at least one of Nb: 0.3% or less and V: 0.3% or less.
[4] The component composition further contains, in % by mass,
Sb: 0.005-0.020%
The high-strength steel sheet according to any one of [1] to [3], containing
[5] The component composition further contains, in % by mass,
Ca: 0.01% or less,
The high-strength steel sheet according to any one of [1] to [4], containing at least one of Mg: 0.01% or less and REM: 0.01% or less.
[6] A method for manufacturing a high-strength steel sheet according to any one of [1] to [5],
Heating a steel material having the above composition to a heating temperature of 1150 ° C. or higher,
Then, after rough rolling,
A hot-rolled steel sheet is obtained by hot rolling under the conditions that the total rolling reduction in the temperature range of RC1 or less is 25% or more and 80% or less, and the finish rolling end temperature is (RC2-50°C) or more (RC2 + 120°C) or less,
Time from the end of hot rolling to the start of cooling of the hot-rolled steel sheet: within 2.0 s, average cooling rate at 3/10 thickness position: 15 ° C./s or more, cooling stop temperature: Trs or more, (Trs + 250 ° C. ) cooled under the following conditions,
The hot-rolled steel sheet after cooling is coiled at a coiling temperature of Trs or more and (Trs + 250 ° C.) or less,
A method for producing a high-strength steel sheet by cooling to 100°C or less at an average cooling rate of 20°C/s or less.
Note that RC1, RC2, and Trs are defined by the following formulas (1), (2), and (3), respectively.
RC1 (°C) = 900 + 100 x C + 100 x N + 10 x Mn + 700 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 2000 x Nb + 150 x V (1)
RC2 (°C) = 750 + 100 x C + 100 x N + 10 x Mn + 350 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 1000 x Nb + 150 x V (2)
Trs (° C.)=500-450×C-35×Mn-15×Cr-10×Ni-20×Mo (3)
Here, each element symbol in the above formulas (1), (2), and (3) represents the content (% by mass) of each element, and is set to 0 when the element is not contained.
[7] Manufacture of the high-strength steel sheet according to [6], wherein in the cooling step after the hot rolling is completed, the average cooling rate of the surface layer and the average cooling rate at the 3/10th thickness position satisfy the formula (4). Method.
Average cooling rate of the surface layer - Average cooling rate at the position of 3/10 of the plate thickness ≥ 10 ° C./s (4)
 本発明によれば、980MPa以上の引張強度、プレス成形性、および曲げ加工性を兼ね備えた高強度鋼板を得ることができる。本発明の高強度鋼板は、引張強度が高いにもかかわらず、プレス成形性に優れており、ネッキングや割れ等の成形不良を生じることなくプレス成形することができる。また、本発明の高強度鋼板をトラックや乗用車の部材に適用した場合、安全性を確保しつつ使用鋼材を減らすことで自動車車体の重量軽減が可能となり、環境負荷低減に寄与できる。 According to the present invention, a high-strength steel sheet having a tensile strength of 980 MPa or more, press formability, and bending workability can be obtained. Although the high-strength steel sheet of the present invention has high tensile strength, it is excellent in press formability and can be press-formed without forming defects such as necking and cracking. In addition, when the high-strength steel sheet of the present invention is applied to members of trucks and passenger cars, it is possible to reduce the weight of automobile bodies by reducing the amount of steel used while ensuring safety, thereby contributing to the reduction of environmental load.
 なお、本発明において、プレス成形性に優れるとは、6%以上の一様伸びを有することを意味する。また、曲げ加工性に優れるとは、90°V曲げ試験において、曲げ外側と曲げ内側とも深さ50μm以上の割れが発生しない限界曲げ半径Rと板厚tの比であるR/tが1.5以下であることをいう。 In the present invention, excellent press formability means having a uniform elongation of 6% or more. In addition, excellent bending workability means that R/t, which is the ratio of the limit bending radius R and the plate thickness t at which cracks of 50 μm or more in depth do not occur on both the outer side and the inner side of the bend in the 90° V bending test, is 1.5. 5 or less.
 以下、本発明について具体的に説明する。なお、以下の説明は、本発明の好適な実施形態の例を示すものであって、本発明はこれに限定されない。 The present invention will be specifically described below. In addition, the following description shows examples of preferred embodiments of the present invention, and the present invention is not limited thereto.
 [成分組成]
 はじめに、本発明の高強度鋼板の成分組成の限定理由について説明する。なお、含有量の単位としての「%」は、特に断らない限り「質量%」を意味するものとする。
[Component composition]
First, the reasons for limiting the chemical composition of the high-strength steel sheet of the present invention will be described. In addition, "%" as a unit of content means "% by mass" unless otherwise specified.
 C:0.05~0.20%
 Cは、鋼の強度を向上させる作用を有する元素である。Cは、焼入れ性を向上させることによってベイナイトの生成を促進し、高強度化に寄与する。また、Cは、マルテンサイトの強度を高めることによっても高強度化に寄与する。980MPa以上の引張強度を得るためには、C含有量を0.05%以上とする必要がある。そのため、C含有量は0.05%以上とし、好ましくは0.06%以上とする。一方、C含有量が0.20%を超えると、マルテンサイトの強度が過度に上昇し、主相としての上部ベイナイト、フレッシュマルテンサイトおよび/または残留オーステナイトとの強度差が大きくなり、その結果、一様伸びが低下する。そのため、C含有量は0.20%以下とし、好ましくは0.18%以下とする。
C: 0.05-0.20%
C is an element that has the effect of improving the strength of steel. C promotes the formation of bainite by improving hardenability and contributes to high strength. In addition, C also contributes to high strength by increasing the strength of martensite. In order to obtain a tensile strength of 980 MPa or more, the C content must be 0.05% or more. Therefore, the C content should be 0.05% or more, preferably 0.06% or more. On the other hand, when the C content exceeds 0.20%, the strength of martensite increases excessively, and the difference in strength from upper bainite, fresh martensite and/or retained austenite as the main phase increases, resulting in Uniform elongation is reduced. Therefore, the C content should be 0.20% or less, preferably 0.18% or less.
 Si:0.5~1.2%
 Siは、Fe系炭化物の形成を抑制する作用を有し、上部ベイナイト変態時のセメンタイトの析出を抑制する。これにより未変態オーステナイトにCが分配され、熱間圧延工程での巻取後の冷却で、未変態オーステナイトがフレッシュマルテンサイトおよび/または残留オーステナイトとなり、所望のフレッシュマルテンサイトおよび/または残留オーステナイトを得ることができる。これらの効果を得るためには、Si含有量を0.5%以上とする必要がある。好ましくは、Si含有量を0.6%以上とする。一方、Siの含有量が1.2%を超えるとフレッシュマルテンサイトおよび/または残留オーステナイトが所望の面積率よりも多く形成し、その結果、所望の上部ベイナイトの面積率が得られないため、曲げ性を悪化させる可能性がある。したがって、Si含有量は1.2%以下とし、好ましくは1.1%以下とする。
Si: 0.5-1.2%
Si has the effect of suppressing the formation of Fe-based carbides and suppresses precipitation of cementite during upper bainite transformation. As a result, C is distributed in untransformed austenite, and by cooling after coiling in the hot rolling process, untransformed austenite becomes fresh martensite and/or retained austenite, and the desired fresh martensite and/or retained austenite are obtained. be able to. In order to obtain these effects, the Si content should be 0.5% or more. Preferably, the Si content is 0.6% or more. On the other hand, when the Si content exceeds 1.2%, fresh martensite and/or retained austenite are formed more than the desired area ratio, and as a result, the desired upper bainite area ratio cannot be obtained. may worsen sexuality. Therefore, the Si content should be 1.2% or less, preferably 1.1% or less.
 Mn:1.5~4.0%
 Mnは、オーステナイトを安定化させ、フレッシュマルテンサイトおよび/または残留オーステナイトの生成に寄与する。このような効果を得るためには、Mn含有量を1.5%以上とする必要がある。そのため、Mn含有量を1.5%以上とし、好ましくは1.7%以上とする。一方、Mn含有量が4.0%を超えると、フレッシュマルテンサイトおよび/または残留オーステナイトが過剰に生成し、その結果、所望の上部ベイナイトの面積率が得られないため、曲げ性が低下する。したがって、Mn含有量は4.0%以下とし、好ましくは3.8%以下とする。
Mn: 1.5-4.0%
Mn stabilizes austenite and contributes to the generation of fresh martensite and/or retained austenite. In order to obtain such effects, the Mn content must be 1.5% or more. Therefore, the Mn content is set to 1.5% or more, preferably 1.7% or more. On the other hand, when the Mn content exceeds 4.0%, fresh martensite and/or retained austenite are excessively generated, and as a result, the desired area ratio of upper bainite cannot be obtained, resulting in deterioration of bendability. Therefore, the Mn content should be 4.0% or less, preferably 3.8% or less.
 P:0.10%以下
 Pは、固溶して鋼の強度増加に寄与する元素である。しかし、Pは、熱間圧延時のオーステナイト粒界に偏析することで、熱間圧延時のスラブ割れを発生させる元素でもある。また、粒界に偏析して一様伸びを低下させる。このため、P含有量を極力低くすることが好ましいが、0.10%までのPの含有は許容できる。したがって、P含有量は0.10%以下とする。下限については特に限定されるものではないがP含有量が0.0002%未満では生産能率の低下を招くため、0.0002%以上が好ましい。
P: 0.10% or less P is an element that forms a solid solution and contributes to an increase in the strength of steel. However, P is also an element that causes slab cracks during hot rolling by segregating at austenite grain boundaries during hot rolling. In addition, it segregates at grain boundaries to reduce uniform elongation. For this reason, it is preferable to keep the P content as low as possible, but the P content up to 0.10% is permissible. Therefore, the P content should be 0.10% or less. The lower limit is not particularly limited, but if the P content is less than 0.0002%, production efficiency is lowered, so 0.0002% or more is preferable.
 S:0.03%以下
 Sは、TiやMnと結合して粗大な硫化物を形成し、これがボイドの発生を早めることで一様伸びが低下する。そのため、S含有量は極力低くすることが好ましいが、0.03%までのSの含有は許容できる。したがって、S含有量を0.03%以下とする。下限については特に限定されるものではないが、S含有量が0.0002%未満では生産能率の低下を招くため、0.0002%以上が好ましい。
S: 0.03% or less S combines with Ti and Mn to form coarse sulfides, which hasten the generation of voids, thereby lowering the uniform elongation. Therefore, it is preferable to keep the S content as low as possible, but an S content of up to 0.03% is permissible. Therefore, the S content is made 0.03% or less. The lower limit is not particularly limited, but if the S content is less than 0.0002%, production efficiency is lowered, so 0.0002% or more is preferable.
 Al:0.001~2.0%
 Alは、脱酸剤として作用し、鋼の清浄度を向上させるのに有効な元素である。Al含有量が0.001%未満ではその効果が十分ではないため、Al含有量は0.001%以上、好ましくは0.005%以上、より好ましくは0.010%以上とする。また、Alは、Siと同様に、Fe系炭化物の形成を抑制する効果があり、上部ベイナイト変態時のセメンタイトの析出を抑制する。これにより、巻取り後の冷却でのフレッシュマルテンサイトおよび/または残留オーステナイトの生成に寄与する。一方、Alの過剰な含有は、酸化物系介在物の増加を招き、一様伸びを低下させる。したがって、Al含有量は2.0%以下、好ましくは1.0%以下、より好ましくは0.1%以下とする。
Al: 0.001-2.0%
Al is an element that acts as a deoxidizing agent and is effective in improving the cleanliness of steel. If the Al content is less than 0.001%, the effect is not sufficient, so the Al content should be 0.001% or more, preferably 0.005% or more, and more preferably 0.010% or more. Al, like Si, has the effect of suppressing the formation of Fe-based carbides and suppresses precipitation of cementite during upper bainite transformation. This contributes to the generation of fresh martensite and/or retained austenite during cooling after winding. On the other hand, an excessive content of Al causes an increase in oxide-based inclusions and lowers the uniform elongation. Therefore, the Al content should be 2.0% or less, preferably 1.0% or less, and more preferably 0.1% or less.
 N:0.01%以下
 Nは、窒化物形成元素と結合することにより窒化物として析出し、一般に結晶粒微細化に寄与する。しかし、Nは高温でTiと結合して粗大な窒化物を形成するため、0.01%超の含有は一様伸び低下の原因になる。このため、N含有量を0.01%以下とする。下限については特に限定されるものではないが、N含有量が0.0002%未満では生産能率の低下を招くため、0.0002%以上が好ましい。
N: 0.01% or less N precipitates as a nitride by combining with a nitride-forming element, and generally contributes to grain refinement. However, since N combines with Ti at high temperatures to form coarse nitrides, a content exceeding 0.01% causes a decrease in uniform elongation. Therefore, the N content is set to 0.01% or less. The lower limit is not particularly limited, but if the N content is less than 0.0002%, production efficiency is lowered, so 0.0002% or more is preferable.
 O:0.01%以下
Oは、酸化物を生成し、成形性を劣化させることから、含有量を抑える必要がある。特に、Oが0.01%を超えると、この傾向が顕著となる。このことから、O含有量は0.01%以下、好ましくは0.005%、より好ましくは0.003%とする。下限は特に規定しないが、0.00005%未満では生産能率の著しい低下を招く場合があるため、0.00005%以上が好ましい。
O: 0.01% or less O forms oxides and deteriorates moldability, so the content must be suppressed. In particular, when O exceeds 0.01%, this tendency becomes remarkable. Therefore, the O content should be 0.01% or less, preferably 0.005%, more preferably 0.003%. The lower limit is not specified, but if it is less than 0.00005%, production efficiency may be remarkably lowered, so 0.00005% or more is preferable.
 B:0.0005~0.010%
 Bは、旧オーステナイト粒界に偏析し、フェライトの生成を抑制することで、上部ベイナイトの生成を促進し、鋼板の強度向上に寄与する元素である。これらの効果を発現させるためには、B含有量を0.0005%以上とする必要がある。そのため、B含有量を0.0005%以上とし、好ましくは0.0006%とし、より好ましくは0.0007%とする。一方、B含有量が0.010%を超えると、上記した効果が飽和する。したがって、B含有量を0.010%以下とし、好ましくは0.009%以下とし、より好ましくは0.008%以下とする。
B: 0.0005 to 0.010%
B is an element that segregates at prior austenite grain boundaries, suppresses the formation of ferrite, promotes the formation of upper bainite, and contributes to the improvement of the strength of the steel sheet. In order to develop these effects, the B content must be 0.0005% or more. Therefore, the B content is set to 0.0005% or more, preferably 0.0006%, and more preferably 0.0007%. On the other hand, when the B content exceeds 0.010%, the above effects are saturated. Therefore, the B content is 0.010% or less, preferably 0.009% or less, more preferably 0.008% or less.
 残部はFeおよび不可避的不純物からなる。なお、不可避的不純物としては、例えば、Zr、Co、Sn、Zn、およびWが挙げられる。成分組成がZr、Co、Sn、Zn、およびWのうち少なくとも1つを不可避的不純物として含有する場合、これらの元素の合計含有量を0.5%以下とすることが好ましい。 The balance consists of Fe and unavoidable impurities. Incidentally, examples of unavoidable impurities include Zr, Co, Sn, Zn, and W. When the component composition contains at least one of Zr, Co, Sn, Zn, and W as unavoidable impurities, the total content of these elements is preferably 0.5% or less.
 本発明の高強度鋼板の成分組成は、さらに以下に挙げる元素の少なくとも1種を任意に含有することができる。 The chemical composition of the high-strength steel sheet of the present invention can optionally contain at least one of the elements listed below.
 Cr:1.0%以下
 Crは炭化物形成元素であり、巻取り後の上部ベイナイト変態時に、上部ベイナイトと未変態オーステナイトとの間の界面に偏析してベイナイト変態の駆動力を低下させ、上部ベイナイト変態を停留させる効果を有する。上部ベイナイトへの変態が停留することで残存した未変態オーステナイトは、巻取り後の冷却によりフレッシュマルテンサイトおよび/または残留オーステナイトとなる。したがって、Crを添加した場合、Crも所望の面積率のフレッシュマルテンサイトおよび/または残留オーステナイトの形成に寄与する。この効果は、Crが好ましくは0.1%以上で得られる。しかし、CrはCr含有量が1.0%を超えると、フレッシュマルテンサイトおよび/または残留オーステナイトが過剰に生成し、その結果、所望の上部ベイナイトの面積率が得られないため、曲げ性が悪化するため、Crを添加する場合、Cr含有量を1.0%以下とし、好ましくは0.9%以下とし、より好ましくは0.8%以下とする。
Cr: 1.0% or less Cr is a carbide-forming element that segregates at the interface between the upper bainite and the untransformed austenite during the upper bainite transformation after winding, thereby reducing the driving force of the bainite transformation and causing the upper bainite to segregate. It has the effect of stopping metamorphosis. Untransformed austenite remaining after the transformation to upper bainite stops becomes fresh martensite and/or retained austenite by cooling after winding. Therefore, when Cr is added, Cr also contributes to the formation of a desired area ratio of fresh martensite and/or retained austenite. This effect is obtained when Cr is preferably 0.1% or more. However, when the Cr content exceeds 1.0%, fresh martensite and/or retained austenite are excessively generated, and as a result, the desired area ratio of upper bainite cannot be obtained, resulting in deterioration of bendability. Therefore, when Cr is added, the Cr content is 1.0% or less, preferably 0.9% or less, and more preferably 0.8% or less.
 Mo:1.0%以下
 Moは、焼入れ性の向上を通じてベイナイトの形成を促進し、鋼板の強度向上に寄与する。また、Moは、Crと同様に、炭化物形成元素であり、巻取り後の上部ベイナイト変態時に上部ベイナイトと未変態オーステナイトの界面に偏析することで、ベイナイトの変態駆動力を低下させ、巻取り冷却後のフレッシュマルテンサイトおよび/または残留オーステナイトの生成に寄与する。しかし、Mo含有量が1.0%を超えると、フレッシュマルテンサイトおよび/または残留オーステナイトが過度に生成してその結果、所望の上部ベイナイトの面積率が得られないため、一様伸びを悪化させる。この効果は、Moが好ましくは0.1%以上で得られる。したがって、Moを添加する場合、Mo含有量を1.0%以下とし、好ましくは0.9%以下とし、より好ましくは0.8%以下とする。
Mo: 1.0% or less Mo promotes formation of bainite through improvement of hardenability and contributes to strength improvement of the steel sheet. In addition, Mo, like Cr, is a carbide-forming element, and segregates at the interface between the upper bainite and the untransformed austenite during the upper bainite transformation after winding, thereby reducing the transformation driving force of the bainite and cooling the winding. It contributes to the later generation of fresh martensite and/or retained austenite. However, when the Mo content exceeds 1.0%, fresh martensite and/or retained austenite are excessively generated, and as a result, the desired area ratio of upper bainite cannot be obtained, which deteriorates uniform elongation. . This effect is obtained when Mo is preferably 0.1% or more. Therefore, when Mo is added, the Mo content is 1.0% or less, preferably 0.9% or less, and more preferably 0.8% or less.
 また、本発明の高強度鋼板の成分組成は、さらに以下に挙げる元素の少なくとも1つを任意に含有することができる。 In addition, the chemical composition of the high-strength steel sheet of the present invention can optionally contain at least one of the elements listed below.
 Cu:2.0%以下
 Cuは、固溶して鋼の強度増加に寄与する元素である。また、Cuは、焼入れ性の向上を通じてベイナイトの形成を促進し、強度向上に寄与する。この効果は、Cuが好ましくは0.01%以上で得られる。しかし、Cu含有量が2.0%を超えると、高強度鋼板の表面性状の低下を招き、高強度鋼板の曲げ性を劣化させる。したがって、Cuを添加する場合、Cu含有量を2.0%以下とし、好ましくは1.9%以下とし、より好ましくは1.8%以下とする。
Cu: 2.0% or less Cu is an element that forms a solid solution and contributes to increasing the strength of steel. Further, Cu promotes the formation of bainite through improvement of hardenability and contributes to strength improvement. This effect is obtained when Cu is preferably 0.01% or more. However, when the Cu content exceeds 2.0%, the surface properties of the high-strength steel sheet are deteriorated, and the bendability of the high-strength steel sheet is deteriorated. Therefore, when Cu is added, the Cu content is 2.0% or less, preferably 1.9% or less, and more preferably 1.8% or less.
 Ni:2.0%以下
 Niは、固溶して鋼の強度増加に寄与する元素である。また、Niは、焼入れ性の向上を通じてベイナイトの形成を促進し、強度向上に寄与する。この効果は、Niが好ましくは0.01%以上で得られる。しかし、Ni含有量が2.0%を超えると、フレッシュマルテンサイトおよび/または残留オーステナイトが過度に増加して、その結果、所望の上部ベイナイトの面積率が得られないため、高強度鋼板の延性を劣化させる。したがって、Niを添加する場合、Ni含有量を2.0%以下とし、好ましくは1.9%以下とし、より好ましくは1.8%以下とする。
Ni: 2.0% or less Ni is an element that forms a solid solution and contributes to increasing the strength of steel. In addition, Ni promotes the formation of bainite through improvement of hardenability and contributes to strength improvement. This effect is obtained when Ni is preferably 0.01% or more. However, when the Ni content exceeds 2.0%, fresh martensite and/or retained austenite excessively increase, and as a result, the desired area ratio of upper bainite cannot be obtained. deteriorate. Therefore, when Ni is added, the Ni content should be 2.0% or less, preferably 1.9% or less, and more preferably 1.8% or less.
 Ti:0.3%以下
 Tiは、析出強化または固溶強化により鋼板の強度を向上させる作用を有する元素である。Tiは、オーステナイトの高温域で窒化物を形成する。これにより、BNの析出が抑制され、Bが固溶状態になる。したがって、Tiを添加した場合、Tiも上部ベイナイトの生成に必要な焼入れ性の確保に寄与し、強度が向上する。この効果は、Tiが好ましくは0.01%以上で得られる。しかし、Ti含有量が0.3%を超えると、Ti窒化物が多量に生成し、一様伸びを低下させる。したがって、Tiを添加する場合、Ti含有量を0.3%以下とし、好ましくは0.28%以下とし、より好ましくは0.25%以下とする。
Ti: 0.3% or less Ti is an element that acts to improve the strength of the steel sheet by precipitation strengthening or solid solution strengthening. Ti forms nitrides in the high temperature range of austenite. As a result, precipitation of BN is suppressed, and B becomes a solid solution. Therefore, when Ti is added, Ti also contributes to ensuring the hardenability necessary for forming upper bainite, and the strength is improved. This effect is obtained when Ti is preferably 0.01% or more. However, when the Ti content exceeds 0.3%, a large amount of Ti nitrides are formed, which reduces the uniform elongation. Therefore, when Ti is added, the Ti content should be 0.3% or less, preferably 0.28% or less, and more preferably 0.25% or less.
 Nb:0.3%以下
 Nbは、析出強化または固溶強化により鋼板の強度を向上させる作用を有する元素である。また、Nbは、Tiと同様に、熱間圧延時のオーステナイトの再結晶温度を上昇させることで、オーステナイト未再結晶域での圧延を可能とし、上部ベイナイトの粒径微細化とフレッシュマルテンサイトおよび/または残留オーステナイトの面積率の増加に寄与する。また、Nbは、Crと同様に、炭化物形成元素であり、巻取り後の上部ベイナイト変態時に上部ベイナイトと未変態オーステナイトの界面に偏析することで、ベイナイトの変態駆動力を低下させ、未変態オーステナイトを残したまま上部ベイナイト変態を停止させる効果を有する元素である。未変態オーステナイトは、その後冷却されることでフレッシュマルテンサイトおよび/または残留オーステナイトとなる。したがって、Nbを添加した場合、Nbも所望の面積率のフレッシュマルテンサイトおよび/または残留オーステナイトの形成に寄与する。この効果は、Nbが好ましくは0.01%以上で得られる。しかし、Nb含有量が0.3%を超えるとフレッシュマルテンサイトおよび/または残留オーステナイトが過度に増加し、その結果、所望の上部ベイナイトの面積率が得られないため、一様伸びが低下する。したがって、Nbを添加する場合、Nb含有量を0.3%以下とし、好ましくは0.28%以下とし、より好ましくは0.25%以下とする。
Nb: 0.3% or less Nb is an element that has the effect of improving the strength of the steel sheet by precipitation strengthening or solid solution strengthening. In addition, Nb, like Ti, raises the recrystallization temperature of austenite during hot rolling, enabling rolling in the austenite unrecrystallized region, refining the grain size of upper bainite, fresh martensite and / Or contribute to an increase in the area ratio of retained austenite. Nb, like Cr, is a carbide-forming element, and segregates at the interface between upper bainite and untransformed austenite during the upper bainite transformation after winding, thereby reducing the transformation driving force of bainite and untransformed austenite. It is an element that has the effect of stopping the upper bainite transformation while leaving the The untransformed austenite is then cooled to become fresh martensite and/or retained austenite. Therefore, when Nb is added, Nb also contributes to the formation of a desired area ratio of fresh martensite and/or retained austenite. This effect is obtained when Nb is preferably 0.01% or more. However, when the Nb content exceeds 0.3%, fresh martensite and/or retained austenite excessively increase, and as a result, the desired area ratio of upper bainite cannot be obtained, resulting in a decrease in uniform elongation. Therefore, when Nb is added, the Nb content should be 0.3% or less, preferably 0.28% or less, and more preferably 0.25% or less.
 V:0.3%以下
 Vは、析出強化および固溶強化により鋼板の強度を向上させる作用を有する元素である。また、Vは、Tiと同様に、熱間圧延時のオーステナイトの再結晶温度を上昇させることで、オーステナイト未再結晶域での圧延を可能とし、上部ベイナイトの粒径微細化に寄与する。また、Vは、Crと同様に、炭化物形成元素であり、巻取り後の上部ベイナイト変態時に上部ベイナイトと未変態オーステナイトの界面に偏析することで、ベイナイトの変態駆動力を低下させ、未変態オーステナイトを残したまま上部ベイナイト変態を停止させる効果を有する元素である。未変態オーステナイトは、その後冷却されることでフレッシュマルテンサイトおよび/または残留オーステナイトとなる。したがって、Vを添加した場合、Vも所望の面積率のフレッシュマルテンサイトおよび/または残留オーステナイトの形成に寄与する。この効果は、Vが好ましくは0.01%以上で得られる。しかし、V含有量が0.3%を超えるとフレッシュマルテンサイトおよび/または残留オーステナイトが過度に増加し、その結果、所望の上部ベイナイトの面積率が得られないため、一様伸びが低下する。したがって、Vを添加する場合、V含有量を0.3%以下とし、好ましくは0.28%以下とし、より好ましくは0.25%以下とする。
V: 0.3% or less V is an element that acts to improve the strength of the steel sheet by precipitation strengthening and solid solution strengthening. Further, similarly to Ti, V raises the recrystallization temperature of austenite during hot rolling, thereby enabling rolling in the austenite non-recrystallization region and contributing to refinement of the grain size of upper bainite. In addition, like Cr, V is a carbide-forming element, and segregates at the interface between upper bainite and untransformed austenite during upper bainite transformation after winding, thereby reducing the transformation driving force of bainite and untransformed austenite. It is an element that has the effect of stopping the upper bainite transformation while leaving the The untransformed austenite is then cooled to become fresh martensite and/or retained austenite. Therefore, when V is added, V also contributes to the formation of a desired area ratio of fresh martensite and/or retained austenite. This effect is obtained when V is preferably 0.01% or more. However, when the V content exceeds 0.3%, fresh martensite and/or retained austenite excessively increase, and as a result, the desired area ratio of upper bainite cannot be obtained, resulting in a decrease in uniform elongation. Therefore, when V is added, the V content is 0.3% or less, preferably 0.28% or less, and more preferably 0.25% or less.
 また、本発明の高強度鋼板の成分組成は、さらに以下に挙げる元素を任意に含有することができる。 In addition, the chemical composition of the high-strength steel sheet of the present invention can optionally contain the following elements.
 Sb:0.005~0.020%
 Sbは、鋼素材(スラブ)を加熱する際に鋼素材表面の窒化を抑制する効果を有する元素である。Sbを添加することにより、鋼素材の表層部におけるBNの析出を抑制することができる。その結果、残存する固溶Bはベイナイトの生成に必要な焼入れ性の確保と、それによる鋼板の強度向上に寄与する。Sbを添加する場合、前記効果を得るためにSb含有量を0.005%以上とし、好ましくは0.006%以上とし、より好ましくは0.007%以上する。一方、Sb含有量が0.020%を超えると、鋼の靭性が低下し、スラブ割れおよび熱間圧延割れを引き起こす場合がある。したがって、Sbを添加する場合、Sb含有量を0.020%以下とし、好ましくは0.019%以下とし、より好ましくは0.018%以下とする。
Sb: 0.005-0.020%
Sb is an element that has the effect of suppressing nitridation of the surface of the steel material (slab) when the steel material (slab) is heated. By adding Sb, precipitation of BN in the surface layer of the steel material can be suppressed. As a result, the remaining solid solution B contributes to ensuring the hardenability necessary for the formation of bainite and thereby improving the strength of the steel sheet. When Sb is added, the Sb content is 0.005% or more, preferably 0.006% or more, more preferably 0.007% or more, in order to obtain the above effect. On the other hand, when the Sb content exceeds 0.020%, the toughness of the steel is lowered, and slab cracks and hot rolling cracks may occur. Therefore, when Sb is added, the Sb content is 0.020% or less, preferably 0.019% or less, and more preferably 0.018% or less.
 また、本発明における高強度鋼板の成分組成は、さらに以下に挙げる元素の少なくとも1種を任意に含有することができる。以下に挙げる元素は、プレス成形性等の特性のさらなる向上に寄与する。 In addition, the chemical composition of the high-strength steel sheet in the present invention can optionally contain at least one of the elements listed below. The elements listed below contribute to further improvement of properties such as press formability.
 Ca:0.01%以下
 Caは、酸化物や硫化物系の介在物の形状を制御し、鋼板のせん断端面の割れ抑制および曲げ加工性のさらなる向上に寄与する。この効果は、Caが好ましくは0.001%以上で得られる。しかし、Ca含有量が0.01%を超えると、Ca系介在物が増加して鋼の清浄度が悪化し、かえってせん断端面割れや曲げ加工割れの原因となる場合がある。したがって、Caを添加する場合、Ca含有量を0.01%以下とする。
Ca: 0.01% or less Ca controls the shape of oxide- and sulfide-based inclusions, and contributes to the suppression of cracking at sheared edge surfaces of steel sheets and the further improvement of bending workability. This effect is obtained when Ca is preferably 0.001% or more. However, if the Ca content exceeds 0.01%, the amount of Ca-based inclusions increases and the cleanliness of the steel deteriorates, which may rather cause shear edge cracks and bending cracks. Therefore, when Ca is added, the Ca content is set to 0.01% or less.
 Mg:0.01%以下
 Mgは、Caと同様に、酸化物や硫化物系の介在物の形状を制御し、鋼板のせん断端面の割れ抑制および曲げ加工性のさらなる向上に寄与する。この効果は、Mgが好ましくは0.001%以上で得られる。しかし、Mg含有量が0.01%を超えると、鋼の清浄度が悪化し、かえってせん断端面割れや曲げ加工割れの原因となる場合がある。したがって、Mgを添加する場合、Mg含有量を0.01%以下とする。
Mg: 0.01% or less Like Ca, Mg controls the shape of oxide- and sulfide-based inclusions, and contributes to the suppression of cracking at sheared edge surfaces of steel sheets and the further improvement of bending workability. This effect is obtained when Mg is preferably 0.001% or more. However, if the Mg content exceeds 0.01%, the cleanliness of the steel deteriorates, which may rather cause shear edge cracks and bending cracks. Therefore, when Mg is added, the Mg content is made 0.01% or less.
 REM:0.01%以下
 REM(希土類金属)は、Caと同様に、酸化物や硫化物系の介在物の形状を制御し、鋼板のせん断端面の割れ抑制および曲げ加工性のさらなる向上に寄与する。この効果は、REMが好ましくは0.001%以上で得られる。しかし、REM含有量が0.01%を超えると、鋼の清浄度が悪化し、かえってせん断端面割れや曲げ加工割れの原因となる場合がある。したがって、REMを添加する場合、REM含有量を0.01%以下とする。
REM: 0.01% or less Like Ca, REM (rare earth metal) controls the shape of oxide- and sulfide-based inclusions, and contributes to the suppression of cracking at sheared edge surfaces of steel sheets and the further improvement of bending workability. do. This effect is obtained when REM is preferably 0.001% or more. However, if the REM content exceeds 0.01%, the cleanliness of the steel deteriorates, which may rather cause shear edge cracks and bending cracks. Therefore, when REM is added, the REM content is made 0.01% or less.
 [ミクロ組織]
 次に、本発明の高強度鋼板のミクロ組織の限定理由について説明する。
[Microstructure]
Next, reasons for limiting the microstructure of the high-strength steel sheet of the present invention will be described.
 本発明の高強度鋼板は、鋼板表面から板厚1/10位置までの表層領域において、面積率で80%以上の上部ベイナイトと、合計の面積率で2%以上のフレッシュマルテンサイトおよび/または残留オーステナイトを含み、板厚1/10位置から板厚3/10位置までの内部領域において、面積率で70%以上の上部ベイナイトと、合計の面積率で3%以上のフレッシュマルテンサイトおよび/または残留オーステナイトを含み、鋼板表面から板厚1/10位置までの表層領域での平均結晶粒径が6μm以下であり、鋼板表面から板厚1/10位置までの表層領域の硬度(HV1)と、板厚1/10位置から板厚3/10位置までの内部領域の硬度(HV2)の差(HV2-HV1)が[0.3×引張強度(MPa)]に対して5%以上15%以下である、ミクロ組織を有する。 The high-strength steel sheet of the present invention includes upper bainite with an area ratio of 80% or more and fresh martensite with a total area ratio of 2% or more and / or residual Top bainite with an area ratio of 70% or more and fresh martensite with a total area ratio of 3% or more and/or residual It contains austenite and has an average crystal grain size of 6 μm or less in the surface layer region from the steel plate surface to the plate thickness 1/10 position, and the hardness (HV1) of the surface layer region from the steel plate surface to the plate thickness 1/10 position. The difference (HV2-HV1) in the hardness (HV2) of the inner region from the 1/10th thickness position to the 3/10th thickness position is 5% or more and 15% or less with respect to [0.3 × tensile strength (MPa)] It has a certain microstructure.
 鋼板表面から板厚1/10位置までの表層領域において、上部ベイナイト:80%以上、フレッシュマルテンサイトおよび/または残留オーステナイト:合計の面積率で2%以上
 本発明の高強度鋼板では、軟質の上部ベイナイトに硬質なフレッシュマルテンサイトおよび/または残留オーステナイトを微細分散させることによって、延性を向上させ、曲げ外割れを抑制できる。この効果を得るために、表層での上部ベイナイトの面積分率を80%以上とし、フレッシュマルテンサイトおよび/または残留オーステナイトの面積率を2%以上とする。好ましくは、上部ベイナイトの面積率を85%以上とし、フレッシュマルテンサイトおよび/または残留オーステナイトの面積率を3%以上とする。なお、一方、フレッシュマルテンサイトおよび/または残留オーステナイトの合計の面積率が20%以上になると、曲げ性が低下する可能性がある理由から、フレッシュマルテンサイトおよび/または残留オーステナイトの合計の面積率を20%以下とすることが好ましい。より好ましくは18%以下、さらに好ましくは15%以下とする。
Upper bainite: 80% or more, fresh martensite and/or retained austenite: 2% or more in total area ratio in the surface layer region from the steel plate surface to the plate thickness 1/10 position In the high-strength steel plate of the present invention, the soft upper part By finely dispersing hard fresh martensite and/or retained austenite in bainite, ductility can be improved and external bending cracks can be suppressed. In order to obtain this effect, the surface layer should have an area fraction of upper bainite of 80% or more and an area fraction of fresh martensite and/or retained austenite of 2% or more. Preferably, the area ratio of upper bainite is 85% or more, and the area ratio of fresh martensite and/or retained austenite is 3% or more. On the other hand, if the total area ratio of fresh martensite and/or retained austenite is 20% or more, the bendability may decrease, so the total area ratio of fresh martensite and/or retained austenite is It is preferable to make it 20% or less. It is more preferably 18% or less, still more preferably 15% or less.
 鋼板の表層領域では、冷却速度が速いため、ベイナイト変態の進行が速く、フレッシュマルテンサイトおよび/または残留オーステナイトを形成するためのCの濃化が内部より少ない。Cの濃化が少ないと、マルテンサイト変態が抑制される。その結果、鋼板の表層領域のフレッシュマルテンサイトおよび/または残留オーステナイトの面積率が内部より少ない。  Because the cooling rate is high in the surface layer region of the steel sheet, the bainite transformation progresses quickly, and the concentration of C for forming fresh martensite and/or retained austenite is less than in the interior. If the concentration of C is small, martensite transformation is suppressed. As a result, the area ratio of fresh martensite and/or retained austenite in the surface layer region of the steel sheet is smaller than that in the interior.
 板厚1/10位置から板厚3/10位置までの内部領域において、面積率で70%以上の上部ベイナイトと、合計の面積率で3%以上のフレッシュマルテンサイトおよび/または残留オーステナイト
 本発明では、板厚1/10位置から板厚3/10位置までの内部領域において、上部ベイナイトを主相として含む。上部ベイナイトの面積率が70%未満であると、980MPa以上の引張強度と6%以上の一様伸びを実現することができない。そのため、上部ベイナイトの面積率を70%以上とし、好ましくは80%以上とする。また、本発明では、板厚1/10位置から板厚3/10位置までの内部領域において、フレッシュマルテンサイトおよび/または残留オーステナイトを含む。フレッシュマルテンサイトは、加工硬化を促進して塑性不安定(plastic instability)の開始を遅らせることにより一様伸びを向上させる効果を有している。残留オーステナイトはTRIP(Transformation Induced Plasticity)効果により一様伸びを上げることができる。これらの効果を得るために、フレッシュマルテンサイトおよび/または残留オーステナイトの合計の面積率を3%以上とし、好ましくは4%以上とする。
また、本発明では、板厚3/10位置以降の板厚中央付近のミクロ組織について、曲げ性への影響が小さいが、延性の観点から上部ベイナイトの面積率60%以上が好ましい。板厚中心のMn偏析によりフレッシュマルテンサイト/焼き戻しマルテンサイト/残留オーステナイトなどが40%まで含んでもよい。
Upper bainite with an area ratio of 70% or more and fresh martensite and/or retained austenite with a total area ratio of 3% or more in the inner region from the plate thickness 1/10 position to the plate thickness 3/10 position. , upper bainite is included as a main phase in the inner region from the 1/10 thickness position to the 3/10 thickness position. If the area ratio of upper bainite is less than 70%, a tensile strength of 980 MPa or more and a uniform elongation of 6% or more cannot be achieved. Therefore, the area ratio of upper bainite is set to 70% or more, preferably 80% or more. In addition, in the present invention, fresh martensite and/or retained austenite are included in the internal region from the 1/10 thickness position to the 3/10 thickness position. Fresh martensite has the effect of improving uniform elongation by promoting work hardening and delaying the onset of plastic instability. Retained austenite can increase uniform elongation by TRIP (Transformation Induced Plasticity) effect. In order to obtain these effects, the total area ratio of fresh martensite and/or retained austenite is set to 3% or more, preferably 4% or more.
Further, in the present invention, the microstructure near the center of the plate thickness after the 3/10th position of the plate thickness has little effect on bendability, but from the viewpoint of ductility, the area ratio of upper bainite is preferably 60% or more. Fresh martensite/tempered martensite/retained austenite and the like may be contained up to 40% due to Mn segregation at the thickness center.
 鋼板表面から板厚1/10位置までの表層領域での平均結晶粒径:6μm以下
 曲げ内割れは強圧縮による脆性破壊である。すなわち、耐圧縮脆化特性を向上させると曲げ内割れを抑制することができる。そして、結晶粒微細化によって圧縮脆化が起こりにくくなる。この効果を得るためには、表層領域での平均結晶粒径を6μm以下、好ましくは5μm以下とする。平均結晶粒径が小さくなるほど耐圧縮脆化向上の効果が得られるが、平均結晶粒径が小さくなりすぎると、強度が高くなるとともに伸びが低下し、外曲げの割れを抑制できない恐れがある。このため、表層領域での平均結晶粒径2μm以上が好ましい。
Average crystal grain size in the surface layer region from the steel plate surface to the position of 1/10 of the plate thickness: 6 μm or less Bending inner cracks are brittle fractures due to strong compression. That is, if the resistance to compression embrittlement is improved, internal bending cracks can be suppressed. Compression embrittlement is less likely to occur due to the refinement of crystal grains. In order to obtain this effect, the average crystal grain size in the surface layer region should be 6 μm or less, preferably 5 μm or less. As the average grain size becomes smaller, the effect of improving resistance to compression embrittlement can be obtained. Therefore, the average crystal grain size in the surface layer region is preferably 2 μm or more.
 すなわち、980MPa以上の引張強度と6%以上の一様伸びおよび良好な曲げ加工性を得るためには、フレッシュマルテンサイトおよび/または残留オーステナイトの一様伸び向上効果と表層ミクロ組織のコントロールによる曲げ割れ抑制効果を組み合わせることによって初めて達成することができる。 That is, in order to obtain a tensile strength of 980 MPa or more, a uniform elongation of 6% or more, and good bending workability, the effect of improving the uniform elongation of fresh martensite and/or retained austenite and the control of the surface layer microstructure. It can only be achieved by combining inhibitory effects.
 鋼板表面から板厚1/10位置までの表層領域の硬度(HV1)と、板厚1/10位置から板厚3/10位置までの内部領域の硬度(HV2)の差(HV2-HV1)が[0.3×引張強度(MPa)]に対して5%以上15%以下
 本発明の高強度鋼板では、軟質な表層によって曲げ外側の割れを抑制し、その表層と隣接する硬質な内部によって曲げ割れの板厚方向の成長を抑制する。このような曲げ割れの発生と成長を抑制する効果を得るには、表層領域の硬度(HV1)と内部領域(HV2)の硬度の差(HV2-HV1)が、0.3×引張強度(MPa)に対して5%以上とする。好ましくは6%以上とし、より好ましくは7%以上とする。一方、表層領域の硬度と内部領域の硬度の差が大きいと、引張試験において表層と内部との間にひずみ不整合が生じ、目標の引張特性を得られない。したがって、表層領域の硬度と内部領域の硬度の差を0.3×引張強度(MPa)に対して15%以下とする。好ましくは14%以下とし、より好ましくは13%以下とする。なお、上記の効果は鋼板の表面と板厚内部の冷却速度制御を実施することで得られる。
The difference (HV2-HV1) between the hardness (HV1) of the surface layer region from the steel plate surface to the 1/10 thickness position and the hardness (HV2) of the inner region from the 1/10 thickness position to the 3/10 thickness position 5% or more and 15% or less with respect to [0.3 × tensile strength (MPa)] In the high-strength steel sheet of the present invention, the soft surface layer suppresses cracking on the outside of bending, and the hard inside adjacent to the surface layer prevents bending. Suppresses the growth of cracks in the plate thickness direction. In order to obtain the effect of suppressing the occurrence and growth of such bending cracks, the difference between the hardness of the surface layer region (HV1) and the hardness of the inner region (HV2) (HV2-HV1) is 0.3 × tensile strength (MPa ) to 5% or more. It is preferably 6% or more, more preferably 7% or more. On the other hand, if the hardness difference between the surface layer region and the inner region is large, a strain mismatch occurs between the surface layer and the inner region in the tensile test, making it impossible to obtain the target tensile properties. Therefore, the difference between the hardness of the surface layer region and the hardness of the inner region is set to 15% or less with respect to 0.3×tensile strength (MPa). It is preferably 14% or less, more preferably 13% or less. The above effect can be obtained by controlling the cooling rate on the surface and inside the thickness of the steel sheet.
 上記ミクロ組織は、上部ベイナイト、フレッシュマルテンサイト、および残留オーステナイト以外の任意の組織(以下、「その他の組織」という)をさらに含有することができる。ミクロ組織制御の効果を高めるという観点からは、その他の組織の合計の面積率を3%以下とすることが好ましい。言い換えると、上記ミクロ組織における上部ベイナイト、フレッシュマルテンサイト、および残留オーステナイトの合計面積率を97%以上とすることが好ましい。その他の組織としては、例えば、セメンタイト、ポリゴナルフェライト、パーライト、焼き戻しマルテンサイト、および下部ベイナイトなどが挙げられる。 The microstructure can further contain any structure (hereinafter referred to as "other structures") other than upper bainite, fresh martensite, and retained austenite. From the viewpoint of enhancing the effect of microstructure control, the total area ratio of other structures is preferably 3% or less. In other words, the total area ratio of upper bainite, fresh martensite, and retained austenite in the microstructure is preferably 97% or more. Other structures include, for example, cementite, polygonal ferrite, pearlite, tempered martensite, and lower bainite.
 [機械的特性]
 本発明の高強度鋼板は、980MPa以上の引張強度と6%以上の一様伸びおよびR/t(曲げ外側と曲げ内側ともに深さ50μm以上の割れが発生しない限界曲げ半径Rと板厚tの比)が1.5以下を兼ね備えている。そのため、本発明の高強度鋼板は、引張強度が高いにもかかわらず、プレス成形性に優れており、ネッキングや割れ等の成形不良を生じることなくプレス成形することができるとともに、曲げ加工部において曲げ外側も曲げ内側も大きな割れが発生することなく部品の耐久性を確保できる。したがって、トラックや乗用車の部材に適用した場合、安全性を確保できる。
[Mechanical properties]
The high-strength steel sheet of the present invention has a tensile strength of 980 MPa or more, a uniform elongation of 6% or more, and R / t (limit bending radius R and plate thickness t at which cracks with a depth of 50 μm or more do not occur on both the outside and inside of the bend. ratio) is 1.5 or less. Therefore, the high-strength steel sheet of the present invention has excellent press formability despite its high tensile strength, and can be press-formed without causing forming defects such as necking and cracking. The durability of the part can be ensured without large cracks occurring on both the outside and inside of the bend. Therefore, safety can be ensured when applied to members of trucks and passenger cars.
 なお、本発明のミクロ組織、硬度、機械的特性については、後述の実施例に記載の測定方法により求めることができる。 The microstructure, hardness, and mechanical properties of the present invention can be determined by the measurement methods described in Examples below.
 [製造方法]
 次に、本発明の一実施形態における高強度鋼板の製造方法について説明する。なお、以下の説明における温度は、とくに断らない限り、対象物(鋼素材または鋼板)の表面温度を表すものとする。
[Production method]
Next, a method for manufacturing a high-strength steel sheet according to one embodiment of the present invention will be described. In addition, the temperature in the following description represents the surface temperature of the object (steel material or steel plate) unless otherwise specified.
 本発明の高強度鋼板は、鋼素材に対して、下記(1)~(5)の処理を順次施すことにより製造することができる。以下、各工程について説明する。
(1)加熱
(2)熱間圧延
(3)冷却(第1の冷却)
(4)巻取り
(5)冷却(第2の冷却)
 なお、鋼素材としては、上述した成分組成を有するものであれば任意のものを用いることができる。最終的に得られる高強度鋼板の成分組成は、使用した鋼素材の成分組成と同じである。鋼素材としては、例えば、鋼スラブを用いることができる。また、鋼素材の製造方法は、特に限定されない。例えば、上記成分組成を有する溶鋼を、転炉等の公知の方法で溶製し、連続鋳造等の鋳造方法で鋼素材を得ることができる。造塊-分塊圧延方法など、連続鋳造法以外の方法を用いることもできる。また、原料としてスクラップを使用しても構わない。鋼素材は、連続鋳造法などの方法によって製造された後、直接、次の加熱工程に供してもよく、また、冷却して温片または冷片となった鋼素材を加熱工程に供してもよい。
The high-strength steel sheet of the present invention can be produced by sequentially subjecting a steel material to the following treatments (1) to (5). Each step will be described below.
(1) heating (2) hot rolling (3) cooling (first cooling)
(4) Winding (5) Cooling (second cooling)
As the steel material, any material can be used as long as it has the chemical composition described above. The chemical composition of the finally obtained high-strength steel sheet is the same as the chemical composition of the steel material used. For example, a steel slab can be used as the steel material. Moreover, the manufacturing method of the steel material is not particularly limited. For example, molten steel having the above chemical composition can be melted by a known method such as a converter, and a steel material can be obtained by a casting method such as continuous casting. A method other than the continuous casting method, such as an ingot casting-blooming rolling method, can also be used. Moreover, scrap may be used as a raw material. The steel material may be directly subjected to the next heating step after being manufactured by a method such as a continuous casting method, or may be subjected to the heating step after being cooled into a hot piece or a cold piece. good.
 (1)加熱
 まず、鋼素材を、1150℃以上の加熱温度に加熱する。通常、鋼素材中では、Tiなどの炭窒化物形成元素のほとんどが、粗大な炭窒化物として存在している。この粗大で不均一な析出物の存在は、一般的にトラック用、乗用車用部品向けの高強度鋼板に求められる諸特性(例えば、耐せん断端面割れ性、曲げ加工性、バーリング加工性など)の悪化を招く。そのため、熱間圧延に先だって鋼素材を加熱し、粗大な析出物を固溶する必要がある。具体的には、粗大な析出物を十分に固溶させるためには、鋼素材の加熱温度を1150℃以上とする必要がある。一方、鋼素材の加熱温度が高くなりすぎるとスラブ疵の発生や、スケールオフによる歩留まり低下を招く。そのため、歩留まりの向上という観点からは、鋼素材の加熱温度を1350℃以下とすることが好ましい。鋼素材の加熱温度の下限は、より好ましくは1180℃以上であり、さらに好ましくは1200℃以上以下である。鋼素材の加熱温度の上限は、より好ましくは1300℃以下であり、さらに好ましくは1280℃以下である。
(1) Heating First, the steel material is heated to a heating temperature of 1150°C or higher. Usually, most carbonitride-forming elements such as Ti exist as coarse carbonitrides in steel materials. The presence of this coarse and non-uniform precipitates is generally required for high-strength steel sheets for truck and passenger car parts (e.g. shear edge crack resistance, bending workability, burring workability, etc.). aggravate. Therefore, it is necessary to heat the steel material prior to hot rolling to dissolve coarse precipitates. Specifically, the heating temperature of the steel material must be 1150° C. or higher in order to sufficiently dissolve the coarse precipitates. On the other hand, if the heating temperature of the steel material becomes too high, slab flaws will occur and the yield will decrease due to scale off. Therefore, from the viewpoint of improving the yield, it is preferable to set the heating temperature of the steel material to 1350° C. or lower. The lower limit of the heating temperature of the steel material is more preferably 1180°C or higher, and still more preferably 1200°C or higher. The upper limit of the heating temperature of the steel material is more preferably 1300° C. or lower, and still more preferably 1280° C. or lower.
 加熱においては、鋼素材の温度を均一化するという観点からは、鋼素材を前記加熱温度まで昇温した後、当該加熱温度に保持することが好ましい。加熱温度に保持する時間(保持時間)は特に限定されないが、鋼素材の温度の均一性を高めるという観点からは、1800秒以上とすることが好ましい。一方、保持時間が10000秒を超えると、スケール発生量が増大する。その結果、続く熱間圧延においてスケール噛み込み等が発生し易くなり、表面疵不良による歩留まりの低下を招く。そのため、保持時間は10000秒以下とすることが好ましく、8000秒以下とすることがより好ましい。 In the heating, from the viewpoint of uniforming the temperature of the steel material, it is preferable to raise the temperature of the steel material to the heating temperature and then maintain it at the heating temperature. The time for which the heating temperature is maintained (holding time) is not particularly limited, but from the viewpoint of improving the temperature uniformity of the steel material, it is preferably 1800 seconds or longer. On the other hand, when the holding time exceeds 10000 seconds, the amount of scale generation increases. As a result, entrapment of scales and the like is likely to occur in subsequent hot rolling, leading to a decrease in yield due to defective surface defects. Therefore, the retention time is preferably 10000 seconds or less, more preferably 8000 seconds or less.
(2)熱間圧延
 次いで、加熱された鋼素材を熱間圧延して熱延鋼板とする。熱間圧延は、粗圧延と仕上圧延とからなるものであってよい。粗圧延を行う場合、その条件は特に限定されない。また、粗圧延後、表面スケールを除去するために、仕上げ圧延に先立ってデスケーリングを行うことが好ましい。なお、仕上圧延においてスタンド間でデスケーリングを行ってもよい。
(2) Hot rolling Next, the heated steel material is hot rolled to form a hot rolled steel sheet. Hot rolling may consist of rough rolling and finish rolling. When rough rolling is performed, the conditions are not particularly limited. After rough rolling, descaling is preferably performed prior to finish rolling in order to remove surface scales. Descaling may be performed between stands in the finish rolling.
 つぎに、本発明では、仕上げ圧延において、温度RC1、温度RC2を下記式(1)、(2)で定義したとき、RC1以下の温度範囲での合計圧下率が25%以上80%以下で、かつ仕上圧延終了温度が(RC2-50℃)以上(RC2+120℃)以下とする。 Next, in the present invention, in the finish rolling, when the temperature RC1 and the temperature RC2 are defined by the following formulas (1) and (2), the total rolling reduction in the temperature range of RC1 or less is 25% or more and 80% or less, In addition, the finishing temperature of finish rolling should be (RC2-50°C) or more and (RC2+120°C) or less.
 RC1は、成分組成から推定されるオーステナイト50%再結晶温度、RC2は成分組成から推定されるオーステナイト再結晶下限温度である。RC1以下の合計圧下率が25%未満では、平均結晶粒径が大きくなり、良好な曲げ加工性を得られなくなる。一方、RC1以下の温度範囲での合計圧下率が80%を超えると、オーステナイトの転位密度が高く、転位密度の高い状態のオーステナイトから変態したベイナイト組織の延性が乏しく、6%以上の一様伸びが得られない。そのため、RC1以下の温度範囲での合計圧下率は25%以上80%以下とする。 RC1 is the austenite 50% recrystallization temperature estimated from the component composition, and RC2 is the austenite lower limit recrystallization temperature estimated from the component composition. If the total rolling reduction of RC1 or less is less than 25%, the average crystal grain size becomes large and good bending workability cannot be obtained. On the other hand, when the total rolling reduction in the temperature range of RC1 or less exceeds 80%, the dislocation density of austenite is high, the ductility of the bainite structure transformed from austenite in a state of high dislocation density is poor, and the uniform elongation is 6% or more. is not obtained. Therefore, the total rolling reduction in the temperature range of RC1 or less is set to 25% or more and 80% or less.
 また、仕上圧延終了温度:(RC2-50℃)以上(RC2+120℃)以下の条件で熱間圧延する。仕上圧延終了温度が(RC2-50℃)未満であると、転位密度の高い状態のオーステナイトからベイナイト変態が生じることになる。転位密度の高い状態のオーステナイトから変態した上部ベイナイトは転位密度が高く延性に乏しいので、一様伸びが低下する。また、圧延終了温度が低く、フェライト+オーステナイトの二相域温度で圧延が行われた場合にも、一様伸びが低下する。そのため、仕上圧延終了温度は(RC2-50℃)以上とする。一方、仕上圧延終了温度が(RC2+120℃)より高いと、オーステナイト粒が粗大化し、上部ベイナイトの平均粒径が大きくなるため、強度が低下する。また、フレッシュマルテンサイトおよび/または残留オーステナイトも粗大となり、その結果、一様伸びが低下する。そのため、仕上圧延終了温度は(RC2+120℃)以下とする。
なお、RC1、RC2は下記(1)、(2)式で定義される。
RC1(℃)=900+100×C+100×N+10×Mn+700×Ti+5000×B+10×Cr+50×Mo+2000×Nb+150×V…(1)
RC2(℃)=750+100×C+100×N+10×Mn+350×Ti+5000×B+10×Cr+50×Mo+1000×Nb+150×V…(2)
ここで、上記(1)、(2)式における各元素記号は各元素の含有量(質量%)を表し、含有されていない元素の場合は0とする。
Further, hot rolling is performed under the conditions of finish rolling finish temperature: (RC2-50°C) or more and (RC2+120°C) or less. If the finish rolling finish temperature is lower than (RC2-50° C.), bainite transformation occurs from austenite in a state of high dislocation density. Since upper bainite transformed from austenite with a high dislocation density has a high dislocation density and poor ductility, the uniform elongation decreases. Also, when the rolling end temperature is low and the rolling is performed at the two-phase region temperature of ferrite + austenite, the uniform elongation decreases. Therefore, the finishing temperature of finish rolling should be (RC2-50° C.) or higher. On the other hand, if the finishing temperature of the finish rolling is higher than (RC2+120°C), the austenite grains become coarse and the average grain size of the upper bainite becomes large, resulting in a decrease in strength. Fresh martensite and/or retained austenite also become coarser, resulting in lower uniform elongation. Therefore, the finish rolling finish temperature is set to (RC2+120° C.) or less.
RC1 and RC2 are defined by the following formulas (1) and (2).
RC1 (°C) = 900 + 100 x C + 100 x N + 10 x Mn + 700 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 2000 x Nb + 150 x V (1)
RC2 (°C) = 750 + 100 x C + 100 x N + 10 x Mn + 350 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 1000 x Nb + 150 x V (2)
Here, each element symbol in the above formulas (1) and (2) represents the content (% by mass) of each element, and is set to 0 when the element is not contained.
(3)冷却(第1の冷却)
 次いで、得られた熱延鋼板を冷却する(第1の冷却)。その際、熱間圧延終了(仕上圧延の終了)から冷却開始までの時間(冷却開始時間)を2.0s以内とする。冷却開始時間が2.0sを超えると、オーステナイト粒の粒成長が生じ、980MPa以上の引張強度を確保できない。冷却開始時間は、1.5s以内とすることが好ましい。
(3) Cooling (first cooling)
Next, the obtained hot-rolled steel sheet is cooled (first cooling). At that time, the time from the end of hot rolling (end of finish rolling) to the start of cooling (cooling start time) is set within 2.0 seconds. If the cooling start time exceeds 2.0 seconds, grain growth of austenite grains occurs and a tensile strength of 980 MPa or more cannot be secured. The cooling start time is preferably within 1.5 seconds.
 板厚3/10位置での平均冷却速度は15℃/s以上とする。本発明では、表層を内部より急速に冷却することによって表層と内部とで異なるミクロ組織を作りこむ。表層の急速冷却により、表層のベイナイト変態開始が早く、Cの濃化によるマルテンサイトや残留オーステナイトの形成が内部より少ない。冷却における平均冷却速度が15℃/s未満であると、表層が十分に急速冷却されず、面積率で80%以上の上部ベイナイトと、合計面積率で2%以上のフレッシュマルテンサイトおよび/または残留オーステナイトの表層組織が得られない。したがって、平均冷却速度を15℃/s以上、好ましくは20℃/s以上、より好ましくは50℃/s以上とする。一方、平均冷却速度の上限は特に限定されないが、平均冷却速度が大きくなりすぎると、冷却停止温度の管理が困難となる。そのため、平均冷却速度は200℃/s以下とすることが好ましい。なお、平均冷却速度は、鋼板の表面における平均冷却速度をもとに規定される。 The average cooling rate at the plate thickness 3/10 position shall be 15°C/s or more. In the present invention, by rapidly cooling the surface layer from the inside, different microstructures are created between the surface layer and the inside. Due to the rapid cooling of the surface layer, the bainite transformation of the surface layer starts early, and the formation of martensite and retained austenite due to the enrichment of C is less than in the inside. If the average cooling rate in cooling is less than 15 ° C. / s, the surface layer is not cooled sufficiently rapidly, and the upper bainite with an area ratio of 80% or more and the total area ratio of 2% or more fresh martensite and / or residual An austenite surface layer structure cannot be obtained. Therefore, the average cooling rate is set to 15° C./s or higher, preferably 20° C./s or higher, more preferably 50° C./s or higher. On the other hand, the upper limit of the average cooling rate is not particularly limited, but if the average cooling rate is too high, it becomes difficult to manage the cooling stop temperature. Therefore, the average cooling rate is preferably 200° C./s or less. The average cooling rate is defined based on the average cooling rate on the surface of the steel sheet.
 本発明では、表層の平均冷却速度-板厚3/10位置での平均冷却速度を10℃/s以上を満足することで、表層のCの濃化によるマルテンサイトや残留オーステナイトの形成が板厚3/10位置より少なくなる。その結果、軟質な表層組織を作りこむことができる。一方、鋼板の内部では、表層より冷却速度が遅く、ベイナイト変態の進行が表層より遅いため、Cの濃化によるマルテンサイトや残留オーステナイトの形成が内部より多くなり、硬度の高い内部組織を作りこむことができる。つまり、表層と内部の硬度差を実現することができる。板厚3/10位置表層の平均冷却速度-板厚3/10位置での平均冷却速度を10℃/s未満であると、上記の効果は認められないため、表層の平均冷却速度-板厚3/10位置での平均冷却速度を10℃/s以上とする。なお、平均冷却速度は(冷却開始時の温度-冷却終了時の温度)/冷却時間で求められる。表層の温度は温度計により実測する。板厚3/10位置の温度は伝熱解析により鋼板断面内の温度分布を計算し、その結果を実際の鋼板の表面の温度によって補正することにより求める。 In the present invention, by satisfying the average cooling rate of the surface layer - the average cooling rate at the plate thickness 3/10 position of 10 ° C./s or more, the formation of martensite and retained austenite due to the enrichment of C in the surface layer is reduced to the plate thickness. Less than the 3/10 position. As a result, a soft surface layer structure can be created. On the other hand, inside the steel sheet, the cooling rate is slower than the surface layer, and the progress of bainite transformation is slower than that in the surface layer. be able to. That is, a difference in hardness between the surface layer and the inside can be realized. If the average cooling rate of the plate thickness 3/10 position surface layer is less than 10 ° C / s, the above effect is not observed, so the average cooling rate of the surface layer - plate thickness The average cooling rate at the 3/10 position is 10° C./s or more. The average cooling rate is obtained by (temperature at the start of cooling - temperature at the end of cooling)/cooling time. The temperature of the surface layer is actually measured with a thermometer. The temperature at the 3/10 thickness position is obtained by calculating the temperature distribution in the cross section of the steel sheet by heat transfer analysis and correcting the result with the actual surface temperature of the steel sheet.
 また、冷却においては、上記平均冷却速度となるよう強制冷却を行えばよい。冷却の方法は特に限定されないが、例えば、水冷によって行うことが好ましい。 Also, in cooling, forced cooling may be performed so as to achieve the above average cooling rate. The cooling method is not particularly limited, but for example, water cooling is preferable.
 冷却停止温度は、Trs以上、(Trs+250℃)以下とする。冷却停止温度がTrs未満であると、ミクロ組織が焼戻しマルテンサイトまたは下部ベイナイトとなる。焼戻しマルテンサイトおよび下部ベイナイトは、いずれも高強度の組織であるが、一様伸びが著しく低い。そのため、冷却停止温度はTrs以上とする。一方、冷却停止温度が(Trs+250℃)より高いと、フェライトが生成するため、980MPaの引張強度が得られない。そのため冷却停止温度は(Trs+250℃)以下とする。 The cooling stop temperature shall be Trs or higher and (Trs + 250°C) or lower. When the cooling stop temperature is less than Trs, the microstructure becomes tempered martensite or lower bainite. Tempered martensite and lower bainite are both high-strength structures, but their uniform elongation is remarkably low. Therefore, the cooling stop temperature is set to Trs or higher. On the other hand, if the cooling stop temperature is higher than (Trs+250° C.), ferrite is generated, and a tensile strength of 980 MPa cannot be obtained. Therefore, the cooling stop temperature is set to (Trs+250° C.) or less.
 なお、Trsは下記(3)式で定義される。
Trs(℃)=500-450×C-35×Mn-15×Cr-10×Ni-20×Mo…(3)
ここで、上記(3)式における各元素記号は各元素の含有量(質量%)を表し、含有されていない元素の場合は0とする。
Note that Trs is defined by the following equation (3).
Trs (° C.)=500-450×C-35×Mn-15×Cr-10×Ni-20×Mo (3)
Here, each element symbol in the above formula (3) represents the content (% by mass) of each element, and is set to 0 when the element is not contained.
 (4)巻取り
 次いで、冷却後の熱延鋼板を、巻取温度:Trs以上、(Trs+250℃)以下の条件で巻取る。巻取温度がTrs未満であると、巻取り後にマルテンサイト変態または下部ベイナイト変態が進行し、所望のフレッシュマルテンサイトおよび/または残留オーステナイトが得られない。そのため、巻取温度はTrs以上とする。一方、巻取温度が(Trs+250℃)より高いと、フェライトが生成するため、980MPaの引張強度が得られない。そのため巻取温度は(Trs+250℃)以下とする。
(4) Winding Next, the cooled hot-rolled steel sheet is coiled under the conditions of a coiling temperature of Trs or more and (Trs+250° C.) or less. If the coiling temperature is lower than Trs, martensite transformation or lower bainite transformation proceeds after coiling, and desired fresh martensite and/or retained austenite cannot be obtained. Therefore, the winding temperature should be Trs or higher. On the other hand, if the coiling temperature is higher than (Trs+250° C.), ferrite is generated, and a tensile strength of 980 MPa cannot be obtained. Therefore, the winding temperature is set to (Trs+250° C.) or less.
(5)冷却(第2の冷却)
 巻取り後、さらに20℃/s以下の平均冷却速度で100℃以下まで冷却する(第2の冷却)。平均冷却速度は、フレッシュマルテンサイトおよび/または残留オーステナイトの生成に影響を及ぼす。平均冷却速度が20℃/sを超えると、未変態オーステナイトがほとんどマルテンサイト変態し、所望の残留オーステナイトが得られず、一様伸びが低下する。そのため、平均冷却速度を20℃/s以下、好ましくは2℃/s以下、より好ましくは0.02℃/s以下とする。一方、上記平均冷却速度の下限は特に限定されないが、0.0001℃/s以上が好ましい。
(5) Cooling (second cooling)
After winding, it is further cooled to 100° C. or lower at an average cooling rate of 20° C./s or lower (second cooling). The average cooling rate affects the formation of fresh martensite and/or retained austenite. When the average cooling rate exceeds 20° C./s, most of the untransformed austenite transforms into martensite, the desired retained austenite cannot be obtained, and the uniform elongation decreases. Therefore, the average cooling rate is set to 20° C./s or less, preferably 2° C./s or less, more preferably 0.02° C./s or less. On the other hand, although the lower limit of the average cooling rate is not particularly limited, it is preferably 0.0001° C./s or more.
 冷却は、100℃以下の任意の温度まで行うことができるが、10~30℃程度(例えば室温)まで冷却することが好ましい。なお、冷却は、任意の形態で行うことができ、例えば、巻取られたコイルの状態で行ってもよい。 Cooling can be performed to any temperature below 100°C, but cooling to about 10 to 30°C (for example, room temperature) is preferable. It should be noted that the cooling can be performed in any form, for example, it may be performed in the state of a wound coil.
 以上の手順により、本発明の高強度鋼板を製造することができる。なお、巻取りとそれに続く冷却の後には、常法にしたがって行えばよい。例えば、調質圧延を施してもよく、また、酸洗を施して表面に形成されたスケールを除去してもよい。 The high-strength steel sheet of the present invention can be manufactured by the above procedure. The winding and subsequent cooling may be carried out in accordance with a conventional method. For example, temper rolling may be applied, or pickling may be applied to remove scales formed on the surface.
 表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法により鋼素材としての鋼スラブを製造した。得られた鋼素材を、表2に示す加熱温度に加熱し、次いで、加熱後の鋼素材に、粗圧延と仕上圧延からなる熱間圧延を施して熱延鋼板とした。熱間圧延における仕上圧延終了温度は表2に示したとおりとした。 Molten steel having the composition shown in Table 1 was melted in a converter, and a steel slab was produced as a steel material by continuous casting. The obtained steel material was heated to the heating temperature shown in Table 2, and then the heated steel material was subjected to hot rolling consisting of rough rolling and finish rolling to obtain a hot-rolled steel sheet. Table 2 shows the finishing temperature of hot rolling.
 次に、得られた熱延鋼板を、表2に示した平均冷却速度および冷却停止温度の条件で冷却した(第一の冷却)。冷却後の熱延鋼板を表2に示した巻取温度で巻取り、巻取られた鋼板を表2に示した平均冷却速度で冷却し(第二の冷却)、高強度鋼板を得た。なお、冷却後には、後処理としてスキンパス圧延および酸洗を行った。酸洗は、濃度10質量%の塩酸水溶液を使用し、温度85℃で実施した。 Next, the obtained hot-rolled steel sheet was cooled under the conditions of the average cooling rate and the cooling stop temperature shown in Table 2 (first cooling). The cooled hot-rolled steel sheet was coiled at the coiling temperature shown in Table 2, and the coiled steel sheet was cooled at the average cooling rate shown in Table 2 (second cooling) to obtain a high-strength steel sheet. After cooling, skin-pass rolling and pickling were performed as post-treatments. The pickling was carried out at a temperature of 85° C. using an aqueous solution of hydrochloric acid having a concentration of 10% by mass.
 得られた高強度鋼板から試験片を採取し、以下に述べる手順でミクロ組織と表面粗さおよび機械的特性を評価した。 A test piece was taken from the obtained high-strength steel sheet, and the microstructure, surface roughness, and mechanical properties were evaluated according to the procedure described below.
 (ミクロ組織)
 得られた高強度鋼板から、圧延方向に平行な板厚断面が観察面となるよう、ミクロ組織観察用試験片を採取した。得られた試験片の表面を研磨し、さらに腐食液(3vol.%ナイタール溶液)を用いて表面を腐食させることによりミクロ組織を現出させた。
(Microstructure)
A test piece for microstructure observation was taken from the obtained high-strength steel sheet so that the thickness cross-section parallel to the rolling direction was the observation surface. The surface of the obtained test piece was polished, and the surface was corroded using an etchant (3 vol.% nital solution) to expose the microstructure.
 次いで、試験片表面から板厚1/10位置までの表層領域、および、板厚1/10位置から板厚3/10位置までの内部領域を、走査電子顕微鏡(SEM)を用い、5000倍の倍率で10視野撮影してミクロ組織のSEM画像を得た。得られたSEM画像を画像処理により解析し、上部ベイナイト(UB)、ポリゴナルフェライト(F)、および焼戻しマルテンサイト(TM)の面積率を定量化した。また、フレッシュマルテンサイト(M)と残留オーステナイト(γ)はSEMでは区別が困難なため、電子線反射回折(Electron Back scatter Diffraction Patterns:EBSD)法を用いて同定し、それぞれの面積率と平均結晶粒径を求めた。測定された各ミクロ組織の面積率と表層組織の平均結晶粒径を表3に示す。なお、表3には、フレッシュマルテンサイトと残留オーステナイトの合計面積率(M+γ)も併記した。 Then, the surface layer area from the surface of the test piece to the thickness 1/10 position, and the internal area from the thickness 1/10 position to the thickness 3/10 position, using a scanning electron microscope (SEM), 5000 times SEM images of the microstructure were obtained by photographing 10 fields of view at a magnification. The obtained SEM images were analyzed by image processing to quantify the area ratios of upper bainite (UB), polygonal ferrite (F), and tempered martensite (TM). In addition, fresh martensite (M) and retained austenite (γ) are difficult to distinguish by SEM, so they were identified using an electron backscatter diffraction (EBSD) method, and each area ratio and average crystal Particle size was determined. Table 3 shows the measured area ratio of each microstructure and the average crystal grain size of the surface layer structure. Table 3 also shows the total area ratio (M+γ) of fresh martensite and retained austenite.
 (硬度測定)
 得られた高強度鋼板から、圧延方向に平行な板厚断面が硬度測定断面となるよう、硬度測定用サンプルを採取し、鋼板表面から板厚1/10位置までの表層領域および板厚1/10位置から板厚3/10位置までの内部領域の硬度を測定した。鋼板表面から板厚1/10位置までの表層領域の硬度は表面から50μm離れる位置で、圧痕間隔250μmで測定した。板厚1/10位置から板厚3/10位置までの内部領域の硬度は板厚1/5位置で圧痕間隔250μmで測定した。いずれの硬度測定条件は荷重100gで、保持時間10sで、5つの測定点で平均した。
(Hardness measurement)
From the obtained high-strength steel sheet, a sample for hardness measurement is taken so that the thickness cross section parallel to the rolling direction becomes the hardness measurement cross section, and the surface layer region from the steel plate surface to the thickness 1/10 position and the thickness 1/ The hardness of the internal region from the 10th position to the plate thickness 3/10th position was measured. The hardness of the surface layer region from the surface of the steel plate to the position of 1/10 of the plate thickness was measured at a position 50 µm away from the surface with an indentation interval of 250 µm. The hardness of the inner region from the 1/10 thickness position to the 3/10 thickness position was measured at the 1/5 thickness position with an indentation interval of 250 μm. All hardness measurement conditions were a load of 100 g, a holding time of 10 s, and an average of 5 measurement points.
 (引張試験)
 得られた高強度鋼板から、引張方向が圧延方向と直角方向になるようにJIS5号試験片(標線間距離(gauge length、GL):50mm)を採取した。得られた試験片を用い、JIS Z 2241の規定に準拠して引張試験を行い、降伏強度(降伏点、YP)、引張強度(TS)、降伏比(YR)、全伸び(El)、一様伸び(u-El)を求めた。引張試験は、各高強度鋼板につき2回行い、得られた測定値の平均をその高強度鋼板の機械特性として表3に示した。本発明においては、TSが980MPa以上の場合、高強度と評価した。また、一様伸びが6%以上の場合、プレス成形性が良好と評価した。
(Tensile test)
A JIS No. 5 test piece (gauge length, GL: 50 mm) was taken from the obtained high-strength steel sheet so that the tensile direction was perpendicular to the rolling direction. Using the obtained test piece, a tensile test was performed in accordance with the provisions of JIS Z 2241, yield strength (yield point, YP), tensile strength (TS), yield ratio (YR), total elongation (El), Similar elongation (u-El) was determined. The tensile test was performed twice for each high-strength steel sheet, and the average of the obtained measured values is shown in Table 3 as the mechanical properties of the high-strength steel sheet. In the present invention, when TS was 980 MPa or more, it was evaluated as high strength. Moreover, when the uniform elongation was 6% or more, the press formability was evaluated as good.
 (90°V曲げ試験)
 得られた熱延鋼板の幅方向1/2位置から、試験片長手方向が、圧延方向と直角方向となるように100mmx35mmの短冊形状に切り出した試験片を用いて、JIS Z 2248(2014年)(Vブロック90°V曲げ試験)に準拠して、曲げ試験を実施した。曲げポンチ半径Rが0.5mmから0.5mm刻みで板厚tの2.0倍以上までとした。曲げ割れ有無とその深さは、曲げ試験後の試験片を試験片長手方向と平行でかつ板面と垂直な面で、試験片幅の1/4位置と1/2位置および3/4位置の3カ所で切断した断面を鏡面研磨後、光学顕微鏡で試験片の曲げ外側と曲げ内側の割れを観察し、3つの断面で発生した曲げ外側と曲げ内側の最大割れ深さを測定し、曲げ外側と曲げ内側とも割れ深さが50μmを超えない限界曲げ半径(最小曲げ半径)を求めた。R/tは1.5以下を合格とした。なお、限界曲げ半径が板厚tの2.0倍以上であっても50μm以上の割れが曲げ外側もしくは曲げ内側に発生する場合、曲げ加工性が不良とし、限界曲げ半径Rを求めないとする。
(90° V bending test)
JIS Z 2248 (2014) using a test piece cut into a strip shape of 100 mm x 35 mm so that the longitudinal direction of the test piece is perpendicular to the rolling direction from the 1/2 position in the width direction of the obtained hot-rolled steel sheet. (V block 90° V bending test), a bending test was performed. The bending punch radius R is set from 0.5 mm to 2.0 times or more of the plate thickness t in increments of 0.5 mm. The presence or absence of bending cracks and their depth were measured at 1/4 position, 1/2 position and 3/4 position of the test piece width in a plane parallel to the longitudinal direction of the test piece and perpendicular to the plate surface after the bending test. After mirror-polishing the cross-sections cut at three locations, the cracks on the outside and inside of the bend of the test piece were observed with an optical microscope, and the maximum crack depths on the outside and inside of the bend that occurred in the three cross-sections were measured. A limit bending radius (minimum bending radius) was obtained in which the crack depth did not exceed 50 μm on both the outside and inside of the bend. An R/t of 1.5 or less was considered acceptable. Even if the critical bending radius is 2.0 times or more the sheet thickness t, if a crack of 50 μm or more occurs on the outside or inside of the bending, the bending workability is considered to be poor, and the critical bending radius R is not required. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、本発明例はいずれも、980MPa以上の引張強度、プレス成形性、曲げ加工性を兼ね備えている。 From the results in Table 3, all the invention examples have a tensile strength of 980 MPa or more, press formability, and bending workability.

Claims (7)

  1.  質量%で、
    C:0.05~0.20%、
    Si:0.5~1.2%、
    Mn:1.5~4.0%、
    P:0.10%以下、
    S:0.03%以下、
    Al:0.001~2.0%、
    N:0.01%以下、
    O:0.01%以下、および
    B:0.0005~0.010%
    を含有し、残部Feおよび不可避的不純物からなる成分組成を有し、
    ミクロ組織は、鋼板表面から板厚1/10位置までの表層領域において、面積率で80%以上の上部ベイナイトと、合計の面積率で2%以上のフレッシュマルテンサイトおよび/または残留オーステナイトを含み、
    板厚1/10位置から板厚3/10位置までの内部領域において、面積率で70%以上の上部ベイナイトと、合計の面積率で3%以上のフレッシュマルテンサイトおよび/または残留オーステナイトを含み、
    鋼板表面から板厚1/10位置までの表層領域での平均結晶粒径が6μm以下であり、
    鋼板表面から板厚1/10位置までの表層領域の硬度(HV1)と、板厚1/10位置から板厚3/10位置までの内部領域の硬度(HV2)の差(HV2-HV1)が[0.3×引張強度(MPa)]に対して5%以上15%以下であり、
    引張強度が980MPa以上、一様伸びが6%以上、かつ限界曲げ半径Rと板厚tの比R/tが1.5以下である、高強度鋼板。
    in % by mass,
    C: 0.05 to 0.20%,
    Si: 0.5 to 1.2%,
    Mn: 1.5-4.0%,
    P: 0.10% or less,
    S: 0.03% or less,
    Al: 0.001 to 2.0%,
    N: 0.01% or less,
    O: 0.01% or less, and B: 0.0005 to 0.010%
    and has a component composition consisting of the balance Fe and unavoidable impurities,
    The microstructure includes upper bainite with an area ratio of 80% or more and fresh martensite and/or retained austenite with a total area ratio of 2% or more in the surface layer region from the steel plate surface to the position of 1/10 of the plate thickness,
    The internal region from the plate thickness 1/10 position to the plate thickness 3/10 position contains upper bainite with an area ratio of 70% or more and fresh martensite and / or retained austenite with a total area ratio of 3% or more,
    The average grain size in the surface layer region from the steel plate surface to the position of 1/10 of the plate thickness is 6 μm or less,
    The difference (HV2-HV1) between the hardness (HV1) of the surface layer region from the steel plate surface to the 1/10 thickness position and the hardness (HV2) of the inner region from the 1/10 thickness position to the 3/10 thickness position 5% or more and 15% or less with respect to [0.3 × tensile strength (MPa)],
    A high-strength steel sheet having a tensile strength of 980 MPa or more, a uniform elongation of 6% or more, and a ratio R/t of limit bending radius R to plate thickness t of 1.5 or less.
  2.  前記成分組成が、さらに、質量%で、
    Cr:1.0%以下、および
    Mo:1.0%以下、
    の少なくとも1種を含有する、請求項1に記載の高強度鋼板。
    The component composition further, in mass %,
    Cr: 1.0% or less, and Mo: 1.0% or less,
    The high-strength steel sheet according to claim 1, containing at least one of
  3.  前記成分組成が、さらに、質量%で、
    Cu:2.0%以下、
    Ni:2.0%以下、
    Ti:0.3%以下、
    Nb:0.3%以下、および
    V:0.3%以下
    の少なくとも1種を含有する、請求項1または2に記載の高強度鋼板。
    The component composition further, in mass %,
    Cu: 2.0% or less,
    Ni: 2.0% or less,
    Ti: 0.3% or less,
    The high-strength steel sheet according to claim 1 or 2, containing at least one of Nb: 0.3% or less and V: 0.3% or less.
  4.  前記成分組成が、さらに、質量%で、
    Sb:0.005~0.020%
    を含有する、請求項1~3のいずれか一項に記載の高強度鋼板。
    The component composition further, in mass %,
    Sb: 0.005-0.020%
    The high-strength steel sheet according to any one of claims 1 to 3, containing
  5.  前記成分組成が、さらに、質量%で、
    Ca:0.01%以下、
    Mg:0.01%以下、および
    REM:0.01%以下
    の少なくとも1種を含有する、請求項1~4のいずれか一項に記載の高強度鋼板。
    The component composition further, in mass %,
    Ca: 0.01% or less,
    The high-strength steel sheet according to any one of claims 1 to 4, containing at least one of Mg: 0.01% or less and REM: 0.01% or less.
  6.  請求項1~5のいずれか一項に記載の高強度鋼板の製造方法であって、
    前記成分組成を有する鋼素材を1150℃以上の加熱温度に加熱し、
    次いで、粗圧延を施した後、
    RC1以下の温度範囲での合計圧下率が25%以上80%以下で、かつ仕上圧延終了温度:(RC2-50℃)以上(RC2+120℃)以下の条件で熱間圧延して熱延鋼板とし、
    前記熱延鋼板を、熱間圧延終了から冷却開始までの時間:2.0s以内、板厚3/10位置での平均冷却速度:15℃/s以上、冷却停止温度:Trs以上、(Trs+250℃)以下の条件で冷却し、
    前記冷却後の熱延鋼板を、巻取温度:Trs以上、(Trs+250℃)以下の条件で巻取り、
    20℃/s以下の平均冷却速度で100℃以下まで冷却する、
    高強度鋼板の製造方法。
    なお、RC1、RC2、Trsは、下記(1)、(2)、(3)式でそれぞれ定義される。
    RC1(℃)=900+100×C+100×N+10×Mn+700×Ti+5000×B+10×Cr+50×Mo+2000×Nb+150×V…(1)
    RC2(℃)=750+100×C+100×N+10×Mn+350×Ti+5000×B+10×Cr+50×Mo+1000×Nb+150×V…(2)
    Trs(℃)=500-450×C-35×Mn-15×Cr-10×Ni-20×Mo…(3)
    ここで、上記(1)、(2)、(3)式における各元素記号は各元素の含有量(質量%)を表し、含有されていない元素の場合は0とする。
    A method for producing a high-strength steel sheet according to any one of claims 1 to 5,
    Heating a steel material having the above composition to a heating temperature of 1150 ° C. or higher,
    Then, after rough rolling,
    A hot-rolled steel sheet is obtained by hot rolling under the conditions that the total rolling reduction in the temperature range of RC1 or less is 25% or more and 80% or less, and the finish rolling end temperature is (RC2-50°C) or more (RC2 + 120°C) or less,
    Time from the end of hot rolling to the start of cooling of the hot-rolled steel sheet: within 2.0 s, average cooling rate at 3/10 thickness position: 15 ° C./s or more, cooling stop temperature: Trs or more, (Trs + 250 ° C. ) cooled under the following conditions,
    The hot-rolled steel sheet after cooling is coiled at a coiling temperature of Trs or more and (Trs + 250 ° C.) or less,
    cooling to 100° C. or less at an average cooling rate of 20° C./s or less;
    A method for producing a high-strength steel plate.
    Note that RC1, RC2, and Trs are defined by the following formulas (1), (2), and (3), respectively.
    RC1 (°C) = 900 + 100 x C + 100 x N + 10 x Mn + 700 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 2000 x Nb + 150 x V (1)
    RC2 (°C) = 750 + 100 x C + 100 x N + 10 x Mn + 350 x Ti + 5000 x B + 10 x Cr + 50 x Mo + 1000 x Nb + 150 x V (2)
    Trs (° C.)=500-450×C-35×Mn-15×Cr-10×Ni-20×Mo (3)
    Here, each element symbol in the above formulas (1), (2), and (3) represents the content (% by mass) of each element, and is set to 0 when the element is not contained.
  7.  熱間圧延後の前記冷却において、表層の平均冷却速度と板厚3/10位置での平均冷却速度が(4)式を満足する、請求項6に記載の高強度鋼板の製造方法。
    表層の平均冷却速度-板厚3/10位置での平均冷却速度≧10℃/s…(4)
    7. The method for producing a high-strength steel sheet according to claim 6, wherein in the cooling after hot rolling, the average cooling rate of the surface layer and the average cooling rate at the 3/10 thickness position satisfy the formula (4).
    Average cooling rate of the surface layer - Average cooling rate at the position of 3/10 of the plate thickness ≥ 10 ° C./s (4)
PCT/JP2022/011493 2021-03-31 2022-03-15 High-strength steel sheet and method for manufacturing same WO2022209839A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP22780060.4A EP4282993A4 (en) 2021-03-31 2022-03-15 High-strength steel sheet and method for manufacturing same
US18/282,304 US20240158881A1 (en) 2021-03-31 2022-03-15 High-strength steel sheet and method for manufacturing the same
CN202280023929.9A CN117043381A (en) 2021-03-31 2022-03-15 High-strength steel sheet and method for producing same
MX2023011353A MX2023011353A (en) 2021-03-31 2022-03-15 High-strength steel sheet and method for manufacturing same.
JP2022543074A JP7168137B1 (en) 2021-03-31 2022-03-15 High-strength steel plate and its manufacturing method
KR1020237032361A KR20230148352A (en) 2021-03-31 2022-03-15 High-strength steel plate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021062132 2021-03-31
JP2021-062132 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209839A1 true WO2022209839A1 (en) 2022-10-06

Family

ID=83458933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011493 WO2022209839A1 (en) 2021-03-31 2022-03-15 High-strength steel sheet and method for manufacturing same

Country Status (7)

Country Link
US (1) US20240158881A1 (en)
EP (1) EP4282993A4 (en)
JP (1) JP7168137B1 (en)
KR (1) KR20230148352A (en)
CN (1) CN117043381A (en)
MX (1) MX2023011353A (en)
WO (1) WO2022209839A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100190A (en) * 2005-10-06 2007-04-19 Kobe Steel Ltd High-strength steel sheet and manufacturing method therefor
JP2012012701A (en) 2010-05-31 2012-01-19 Jfe Steel Corp High-strength hot-rolled steel plate exhibiting superior stretch flange workability and fatigue resistance properties, and method of manufacturing the same
JP2013117068A (en) 2011-11-01 2013-06-13 Jfe Steel Corp High-strength hot-rolled steel sheet having excellent bending characteristic and low-temperature toughness and method for producing the same
JP2015190015A (en) * 2014-03-28 2015-11-02 Jfeスチール株式会社 High strength hot rolled steel sheet and manufacturing method therefor
WO2016010004A1 (en) 2014-07-14 2016-01-21 新日鐵住金株式会社 Hot-rolled steel sheet
JP2016050335A (en) * 2014-08-29 2016-04-11 新日鐵住金株式会社 Hot rolled steel sheet
JP2017115191A (en) 2015-12-22 2017-06-29 Jfeスチール株式会社 High strength steel sheet excellent in bendability and production method therefor
WO2018150955A1 (en) * 2017-02-17 2018-08-23 Jfeスチール株式会社 High strength hot-rolled steel sheet and method for producing same
WO2020110855A1 (en) 2018-11-28 2020-06-04 日本製鉄株式会社 Hot-rolled steel sheet
WO2020110843A1 (en) 2018-11-28 2020-06-04 日本製鉄株式会社 Hot-rolled steel sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129286A (en) * 2000-10-30 2002-05-09 Nippon Steel Corp Steel sheet with strain induced transformation type composite structure having excellent burring workability and its production method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100190A (en) * 2005-10-06 2007-04-19 Kobe Steel Ltd High-strength steel sheet and manufacturing method therefor
JP2012012701A (en) 2010-05-31 2012-01-19 Jfe Steel Corp High-strength hot-rolled steel plate exhibiting superior stretch flange workability and fatigue resistance properties, and method of manufacturing the same
JP2013117068A (en) 2011-11-01 2013-06-13 Jfe Steel Corp High-strength hot-rolled steel sheet having excellent bending characteristic and low-temperature toughness and method for producing the same
JP2015190015A (en) * 2014-03-28 2015-11-02 Jfeスチール株式会社 High strength hot rolled steel sheet and manufacturing method therefor
WO2016010004A1 (en) 2014-07-14 2016-01-21 新日鐵住金株式会社 Hot-rolled steel sheet
JP2016050335A (en) * 2014-08-29 2016-04-11 新日鐵住金株式会社 Hot rolled steel sheet
JP2017115191A (en) 2015-12-22 2017-06-29 Jfeスチール株式会社 High strength steel sheet excellent in bendability and production method therefor
WO2018150955A1 (en) * 2017-02-17 2018-08-23 Jfeスチール株式会社 High strength hot-rolled steel sheet and method for producing same
WO2020110855A1 (en) 2018-11-28 2020-06-04 日本製鉄株式会社 Hot-rolled steel sheet
WO2020110843A1 (en) 2018-11-28 2020-06-04 日本製鉄株式会社 Hot-rolled steel sheet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4282993A4

Also Published As

Publication number Publication date
US20240158881A1 (en) 2024-05-16
KR20230148352A (en) 2023-10-24
EP4282993A4 (en) 2024-07-24
CN117043381A (en) 2023-11-10
JP7168137B1 (en) 2022-11-09
JPWO2022209839A1 (en) 2022-10-06
EP4282993A1 (en) 2023-11-29
MX2023011353A (en) 2023-10-05

Similar Documents

Publication Publication Date Title
KR101706485B1 (en) High-strength cold-rolled steel sheet and method for producing the same
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
KR101744429B1 (en) Hot-rolled steel sheet and production method therefor
CN113166866B (en) Hot rolled steel plate
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
WO2021149676A1 (en) Steel sheet and method for producing same
WO2012036308A1 (en) High-strength hot-rolled steel sheet having superior punchability and method for producing same
US20090223609A1 (en) High-strength hot rolled steel plate and manufacturing method thereof
JP6973694B1 (en) High-strength steel plate and its manufacturing method
WO2020026593A1 (en) High-strength hot-rolled steel sheet and method for manufacturing same
JP4600196B2 (en) High carbon cold-rolled steel sheet with excellent workability and manufacturing method thereof
JP6152782B2 (en) Hot rolled steel sheet
WO2023063010A1 (en) Hot-rolled steel plate
JP4696853B2 (en) Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
KR20230041055A (en) hot rolled steel
JP7192819B2 (en) High-strength steel plate and its manufacturing method
JP7192818B2 (en) High-strength steel plate and its manufacturing method
JP4867338B2 (en) Ultra-high strength steel sheet and method for manufacturing the same
JP4403925B2 (en) High carbon cold-rolled steel sheet and method for producing the same
JP7168137B1 (en) High-strength steel plate and its manufacturing method
JP4412094B2 (en) High carbon cold-rolled steel sheet and method for producing the same
KR20230040349A (en) hot rolled steel
KR20230035624A (en) hot rolled steel
JP7168136B1 (en) High-strength steel plate and its manufacturing method
JP5157417B2 (en) Steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022543074

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780060

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022780060

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202317058712

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2022780060

Country of ref document: EP

Effective date: 20230824

WWE Wipo information: entry into national phase

Ref document number: 18282304

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237032361

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237032361

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280023929.9

Country of ref document: CN

Ref document number: 2301006055

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/011353

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE