JP2015190015A - High strength hot rolled steel sheet and manufacturing method therefor - Google Patents
High strength hot rolled steel sheet and manufacturing method therefor Download PDFInfo
- Publication number
- JP2015190015A JP2015190015A JP2014068622A JP2014068622A JP2015190015A JP 2015190015 A JP2015190015 A JP 2015190015A JP 2014068622 A JP2014068622 A JP 2014068622A JP 2014068622 A JP2014068622 A JP 2014068622A JP 2015190015 A JP2015190015 A JP 2015190015A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- less
- phase
- rolled steel
- area ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 213
- 239000010959 steel Substances 0.000 title claims abstract description 213
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 69
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000013078 crystal Substances 0.000 claims abstract description 22
- 230000000717 retained effect Effects 0.000 claims abstract description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 6
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 238000001816 cooling Methods 0.000 claims description 64
- 238000005096 rolling process Methods 0.000 claims description 48
- 229910001566 austenite Inorganic materials 0.000 claims description 28
- 229910001563 bainite Inorganic materials 0.000 claims description 25
- 230000009467 reduction Effects 0.000 claims description 11
- 238000004804 winding Methods 0.000 claims description 9
- 238000001953 recrystallisation Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 229910052748 manganese Inorganic materials 0.000 abstract description 5
- 229910052804 chromium Inorganic materials 0.000 abstract description 2
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 2
- 239000002245 particle Substances 0.000 abstract 2
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 239000002344 surface layer Substances 0.000 description 24
- 230000000694 effects Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 238000005098 hot rolling Methods 0.000 description 11
- 230000002411 adverse Effects 0.000 description 9
- 238000005452 bending Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 229910001562 pearlite Inorganic materials 0.000 description 7
- 229910000859 α-Fe Inorganic materials 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- 238000003303 reheating Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910001567 cementite Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000007542 hardness measurement Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 239000003129 oil well Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000005266 casting Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、パイプラインや油井管、或いは土木・建築等の分野で用いられる鋼管の素材として好適な、曲げ、低温靭性および強度のバランスに優れた高強度熱延鋼板およびその製造方法に関する。 The present invention relates to a high-strength hot-rolled steel sheet excellent in the balance of bending, low-temperature toughness and strength, and a method for producing the same, suitable as a material for steel pipes used in the fields of pipelines, oil well pipes, civil engineering and construction.
近年、コスト削減の観点から、厚板素材のUOE鋼管に代わり熱延鋼板素材の電縫鋼管やスパイラル鋼管のニーズが高まっている。また、構造物の大型化に伴い、鋼管素材の高強度化、大径化、厚肉化のニーズが高まっている。更に、鋼管の使用環境が寒冷地の場合は低温靭性、敷設時または敷設後に変形をする場合には曲げ性が要求される。このような状況下、低温靭性や曲げ性を兼ね備えた鋼管用の高強度熱延鋼板に関しては、数多くの研究が為され、各種技術が提案されている。 In recent years, from the viewpoint of cost reduction, there is a growing need for ERW steel pipes and spiral steel pipes made of hot-rolled steel sheets instead of UOE steel pipes made of thick plate materials. In addition, with the increase in size of structures, there is an increasing need for increasing the strength, diameter, and thickness of steel pipe materials. Furthermore, low temperature toughness is required when the steel pipe is used in a cold region, and bendability is required when it is deformed during or after laying. Under such circumstances, many studies have been made on high-strength hot-rolled steel sheets for steel pipes having both low temperature toughness and bendability, and various techniques have been proposed.
例えば、特許文献1には、質量%で、C:0.05〜0.15%、Si:0.05〜0.5%、Mn:1.0〜2.0%、P:0.02%以下、S:0.01%以下、Al:0.005〜0.045%、Nb:0.005〜0.08%を含有し、残部鉄および不可避的不純物からなる鋼片に、所定の条件で加熱、熱間圧延および冷却を施すことで、板厚1/4位置における全組織に対するベイナイト面積率が80%以上である高強度鋼板とする技術が提案されている。そして、特許文献1には、ベイナイト分率が80%以上である鋼板組織とすることにより、強度と低温靭性のバランスに優れた高強度鋼板が得られると記載されている。 For example, Patent Document 1 includes mass%, C: 0.05 to 0.15%, Si: 0.05 to 0.5%, Mn: 1.0 to 2.0%, P: 0.02% or less, S: 0.01% or less, Al: 0.005 to 0.045. %, Nb: 0.005 to 0.08%, and the steel slab composed of the remaining iron and inevitable impurities is heated, hot-rolled and cooled under predetermined conditions, so that the entire structure at the 1/4 thickness position can be obtained. A technique for producing a high-strength steel sheet having a bainite area ratio of 80% or more has been proposed. Patent Document 1 describes that a high-strength steel sheet having an excellent balance between strength and low-temperature toughness can be obtained by forming a steel sheet structure having a bainite fraction of 80% or more.
また、特許文献2には、高強度熱延鋼板に関し、質量%でC:0.08〜0.25%、Si:0.01〜1.0%、Mn:0.8〜2.1%、P:0.025%以下、S:0.005%以下、Al:0.005〜0.10%を含有し、残部Feおよび不可避的不純物からなる組成とし、ベイナイト相または焼戻マルテンサイト相を主相とし、旧オーステナイト粒の平均粒径が、圧延方向に平行な断面で20μm以下で、かつ圧延方向に直交する断面で15μm以下である組織とする技術が提案されている。そして、特許文献2には、ベイナイト相または焼戻マルテンサイト相を主相とし、旧オーステナイト粒の平均粒径を上記の如く制御することにより、曲げ性と低温靭性に優れた高強度熱延鋼板が得られると記載されている。 Further, Patent Document 2 relates to a high-strength hot-rolled steel sheet in terms of mass%: C: 0.08 to 0.25%, Si: 0.01 to 1.0%, Mn: 0.8 to 2.1%, P: 0.025% or less, S: 0.005% or less. , Al: 0.005 to 0.10%, a composition comprising the balance Fe and inevitable impurities, a bainite phase or a tempered martensite phase as a main phase, and a cross section in which the average grain size of prior austenite grains is parallel to the rolling direction And a structure having a structure of 20 μm or less and 15 μm or less in a cross section perpendicular to the rolling direction has been proposed. Patent Document 2 discloses a high-strength hot-rolled steel sheet having excellent bendability and low-temperature toughness by controlling the average grain size of prior austenite grains as described above, with the bainite phase or tempered martensite phase as the main phase. Is obtained.
更に、特許文献3には、質量%で、C:0.02〜0.08%、Si:0.01〜0.50%、Mn:0.5〜1.8%、P:0.025%以下、S:0.005%以下、Al:0.005〜0.10%、Nb:0.01〜0.10%、Ti:0.001〜0.05%を含み、かつC、Ti、Nbを(Ti+(Nb/2))/C<4を満足するように含有し、残部Feおよび不可避的不純物からなる組成の鋼素材を、加熱し、熱間圧延を施した後、表面から板厚方向に1mmの位置の平均冷却速度で80℃/s超で、表面から板厚方向に1mmの位置の温度で、Ms点以下の温度域の冷却停止温度まで冷却する第一段の冷却と、30s以下の空冷を行う第二段の冷却とからなる冷却工程を少なくとも2回行い、表面から板厚方向に1mmの位置の平均冷却速度で80℃/s超で所定の冷却停止温度まで冷却する第三段の冷却と、を順次施し、所定の巻取温度で巻き取ることにより、板厚11mm以上の熱延鋼板を製造する技術が提案されている。 Further, in Patent Document 3, in mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.5 to 1.8%, P: 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10 %, Nb: 0.01 to 0.10%, Ti: 0.001 to 0.05%, and C, Ti and Nb are contained so as to satisfy (Ti + (Nb / 2)) / C <4, the balance being Fe and inevitable After heating and hot rolling a steel material composed of impurities, the average cooling rate at a position 1 mm from the surface to the plate thickness direction is over 80 ° C / s, and the position from the surface to the plate thickness direction is 1 mm. At least twice the cooling process consisting of the first stage cooling that cools to the cooling stop temperature in the temperature range below the Ms point and the second stage cooling that performs air cooling for 30 s or less. Thickness of 11mm or more is obtained by sequentially applying the third stage of cooling at an average cooling rate of 1mm in the direction at a temperature exceeding 80 ° C / s to the specified cooling stop temperature and winding at the specified winding temperature. Made of hot rolled steel sheet A technique has been proposed.
また、特許文献3には、上記方法に従い熱延鋼板を製造することで、表面から板厚方向に1mmの位置における組織が焼戻マルテンサイト単相組織またはベイナイトと焼戻マルテンサイトの混合組織のいずれかであり、板厚中央位置における組織がベイナイトおよび/またはベイニティックフェライトを主相とし、体積%で2%以下の第二相からなる組織を有し、表面から板厚方向に1mmの位置におけるビッカース硬さHV1mmと板厚中央位置におけるビッカース硬さHV1/2tとの差ΔHVが50ポイント以下である厚肉高張力熱延鋼板が得られると記載されている。更に、特許文献3には、上記の如く熱延鋼板の組織を板厚方向に均一な組織とすることにより、板厚が11mm以上であり且つ低温靭性に優れた厚肉高張力熱延鋼板が得られると記載されている。 Further, in Patent Document 3, by producing a hot-rolled steel sheet according to the above method, the structure at a position of 1 mm in the thickness direction from the surface is a tempered martensite single phase structure or a mixed structure of bainite and tempered martensite. The structure at the center of the sheet thickness is bainite and / or bainitic ferrite as the main phase, and has a structure composed of a second phase of 2% or less by volume. The surface is 1 mm from the surface in the sheet thickness direction. It is described that a thick high-tensile hot-rolled steel sheet having a difference ΔHV between the Vickers hardness HV 1 mm at the position and the Vickers hardness HV1 / 2t at the center position of the sheet thickness of 50 points or less can be obtained. Furthermore, Patent Document 3 discloses a thick-walled high-tensile hot-rolled steel sheet having a thickness of 11 mm or more and excellent low-temperature toughness by making the structure of the hot-rolled steel sheet uniform in the thickness direction as described above. It is described that it is obtained.
しかしながら、上記の従来技術ではいずれも、鋼管用素材として好適な高強度熱延鋼板、すなわち高強度であり且つ低温靭性に優れ、更に造管時の成形条件や敷設後の地殻変動などによる変形に耐え得る十分な曲げ性をも兼ね備えた高強度熱延鋼板を得ることは極めて困難である。
特許文献1に提案された技術では、低温靭性に優れた高強度熱延鋼板が得られるものの、その加工性、特に曲げ性の確保に課題がある。具体的には、曲げ成形時に、鋼板の最表層側において大きな変形を受け、割れ発生などの懸念がある。
However, any of the above prior arts is a high-strength hot-rolled steel sheet suitable as a material for steel pipes, that is, high strength and excellent low-temperature toughness, and further deformed due to molding conditions during pipe making or crustal deformation after laying. It is extremely difficult to obtain a high-strength hot-rolled steel sheet that has sufficient bendability to withstand.
In the technique proposed in Patent Document 1, although a high-strength hot-rolled steel sheet excellent in low-temperature toughness can be obtained, there is a problem in securing workability, particularly bendability. Specifically, at the time of bending, there is a concern that the outermost layer side of the steel plate is greatly deformed and cracks are generated.
特許文献2に提案された技術では、熱延鋼板のC含有量が多く、低温靭性や溶接性を確保できない可能性がある。また、熱延鋼板の引張強さTSが過度に高く、十分な曲げ性が得られない。特許文献3に提案された技術では、熱延鋼板の製造工程、特に熱間圧延後の冷却工程が複雑となり、量産安定性に課題がある。また、鋼板の曲げ性向上には、板厚方向での特性の均一性よりも寧ろ表層特性の均一性の寄与が大きいが、特許文献3に提案された技術では、熱延鋼板のコイル幅、長手方向において、冷却ムラに起因する特性バラツキの懸念がある。そのため、特許文献3に提案された技術では、熱延鋼板の曲げ性の確保に課題がある。 In the technique proposed in Patent Document 2, the C content of the hot-rolled steel sheet is large, and low temperature toughness and weldability may not be ensured. Moreover, the tensile strength TS of the hot-rolled steel sheet is excessively high, and sufficient bendability cannot be obtained. In the technique proposed in Patent Document 3, the manufacturing process of the hot-rolled steel sheet, particularly the cooling process after hot rolling becomes complicated, and there is a problem in mass production stability. In addition, the improvement in the bendability of the steel sheet contributes greatly to the uniformity of the surface layer characteristics rather than the uniformity of the characteristics in the thickness direction, but in the technique proposed in Patent Document 3, the coil width of the hot-rolled steel sheet, In the longitudinal direction, there is a concern about characteristic variation due to uneven cooling. Therefore, the technique proposed in Patent Document 3 has a problem in ensuring the bendability of the hot-rolled steel sheet.
本発明は、従来技術が抱える上記の問題を解決し、鋼管用素材として好適な熱延鋼板、すなわち高強度であり且つ低温靭性に優れ、更に曲げ性にも優れた高強度熱延鋼板およびその製造方法を提供することを目的とする。 The present invention solves the above-mentioned problems of the prior art, and is a hot-rolled steel sheet suitable as a steel pipe material, that is, a high-strength hot-rolled steel sheet having high strength and excellent low-temperature toughness, and also excellent bendability, and its An object is to provide a manufacturing method.
本発明者らは、熱延鋼板の強度を確保しつつ、曲げ性および低温靭性を大幅に向上させる手段について鋭意検討した。
先述のとおり、熱延鋼板の曲げ性向上を図るうえでは、表層特性を均一化することが極めて重要である。また、熱延鋼板の曲げ性向上には、表層をある程度軟質化する必要がある。しかし、熱延鋼板を製造する際には、熱間圧延後の冷却工程において冷却ムラが生じ、板幅方向および長手方向で冷却ムラに起因する特性バラツキが発生する。また、鋼板表層は、板厚中央位置に比べて冷却され易いため、マルテンサイトが生成して硬さが上昇し易い。
The present inventors diligently studied means for significantly improving the bendability and the low temperature toughness while ensuring the strength of the hot rolled steel sheet.
As described above, to improve the bendability of the hot-rolled steel sheet, it is extremely important to make the surface layer characteristics uniform. Moreover, in order to improve the bendability of the hot-rolled steel sheet, it is necessary to soften the surface layer to some extent. However, when manufacturing a hot-rolled steel sheet, cooling unevenness occurs in the cooling step after hot rolling, and characteristic variations due to cooling unevenness occur in the sheet width direction and the longitudinal direction. Moreover, since the steel sheet surface layer is more easily cooled than the plate thickness center position, martensite is generated and the hardness is likely to increase.
そこで、本発明者らは先ず、上記冷却ムラを抑制して鋼板表層の特性バラツキを低減するとともに、硬さ上昇を抑制する手段について検討した。その結果、熱延、冷却条件を制御し、鋼板表面の酸化鉄皮膜の厚さを10μm以下に抑えて厚さを均一にすることで、熱延鋼板のコイル幅、長手方向に均一な冷却が可能となり、鋼板表層において均一な硬さ特性が得られるという知見を得た。また、熱延、冷却条件を制御し、鋼板表層を微細な焼戻マルテンサイトとすることで、鋼板表層の硬さ上昇が抑制され、靭性低下を伴うことなく曲げ性が向上することを見出した。更に、鋼板内部において残留オーステナイトを活用することにより、延性が向上し、熱延鋼板の曲げ性がより一層向上することを明らかとした。 Therefore, the present inventors first studied a means for suppressing the above-mentioned cooling unevenness to reduce the characteristic variation of the steel sheet surface layer and to suppress the increase in hardness. As a result, by controlling the hot rolling and cooling conditions and keeping the thickness of the iron oxide film on the steel sheet surface to 10 μm or less and making the thickness uniform, the coil width and the longitudinal direction of the hot rolled steel sheet can be uniformly cooled. It became possible, and the knowledge that uniform hardness characteristics were obtained in the steel sheet surface layer was obtained. In addition, by controlling the hot rolling and cooling conditions and making the steel sheet surface layer fine tempered martensite, it was found that the increase in the hardness of the steel sheet surface layer is suppressed and the bendability is improved without accompanied by a decrease in toughness. . Furthermore, it has been clarified that by utilizing the retained austenite inside the steel plate, the ductility is improved and the bendability of the hot-rolled steel plate is further improved.
一方、熱延鋼板の低温靭性を確保するうえでは、鋼板内部を、強度−靭性バランスに優れたベイナイトを主相とする組織とすることが有効である。また、熱延鋼板の高強度化には、鋼板内部においてマルテンサイト相を活用することが有効である。このようにマルテンサイト相を活用すれば、省合金成分で熱延鋼板の高強度化が可能である。また、一般に、残留オーステナイト相およびマルテンサイト相は靭性に好ましくないが、これらの組織分率を最適化し、更にマルテンサイト相の結晶粒径を制御することにより、優れた低温靭性を得ることが可能であることを明らかとした。 On the other hand, in order to ensure the low temperature toughness of the hot-rolled steel sheet, it is effective to make the inside of the steel sheet have a structure mainly composed of bainite having an excellent strength-toughness balance. In order to increase the strength of a hot-rolled steel sheet, it is effective to use a martensite phase inside the steel sheet. By utilizing the martensite phase in this way, it is possible to increase the strength of the hot-rolled steel sheet with an alloy-saving component. In general, the retained austenite phase and martensite phase are not preferable for toughness, but it is possible to obtain excellent low-temperature toughness by optimizing the structure fraction and controlling the crystal grain size of the martensite phase. It was made clear.
本発明は上記の知見に基づき為されたものであり、その要旨は次のとおりである。
[1] 質量%で、C:0.020%以上0.080%以下、Si:0.05%以上0.50%以下、Mn:1.20%以上2.20%以下、P:0.001%以上0.020%以下、S:0.0001%以上0.0050%以下、Al:0.005%以上0.050%以下、N:0.0010%以上0.0060%以下、Nb:0.040%以上0.080%以下、Mo:0.01%以上0.50%以下、Ti:0.005%以上0.050%以下、Cr:0.01%以上0.50%以下、Ca:0.0005%以上0.0050%以下を含有し、残部がFeおよび不可避的不純物からなる組成を有し、鋼板表面から板厚方向1.5mmの位置において、焼戻マルテンサイト相の面積比率が90%以上100%以下かつ該焼戻マルテンサイト相の平均結晶粒径が1.0μm以上5.0μm以下である組織を有し、鋼板表面から板厚方向1.5mmの位置において、板幅方向のビッカース硬さの変動量ΔHvが50以下であり、鋼板の板厚中央位置において、ベイナイト相の面積比率が90%以上98%以下、マルテンサイト相の面積比率が1%以上5%以下かつ該マルテンサイト相の平均結晶粒径が0.5μm以上5.0μm以下、残留オーステナイト相の面積比率が1%以上5%以下である組織を有し、鋼板表面の酸化鉄皮膜の厚さが0.1μm以上10μm以下であることを特徴とする高強度熱延鋼板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] By mass%, C: 0.020% to 0.080%, Si: 0.05% to 0.50%, Mn: 1.20% to 2.20%, P: 0.001% to 0.020%, S: 0.0001% to 0.0050% Below, Al: 0.005% to 0.050%, N: 0.0010% to 0.0060%, Nb: 0.040% to 0.080%, Mo: 0.01% to 0.50%, Ti: 0.005% to 0.050%, Cr: 0.01 % And 0.50% or less, Ca: 0.0005% or more and 0.0050% or less, and the balance is composed of Fe and inevitable impurities, and the tempered martensite phase at a position 1.5mm from the steel sheet surface in the sheet thickness direction. It has a structure in which the area ratio is 90% or more and 100% or less and the average crystal grain size of the tempered martensite phase is 1.0 μm or more and 5.0 μm or less. Vickers hardness variation ΔHv of the steel sheet is 50 or less, and the area ratio of the bainite phase is 90% or less at the center of the plate thickness of the steel sheet. 98% or less, the area ratio of the martensite phase is 1% or more and 5% or less, the average crystal grain size of the martensite phase is 0.5 μm or more and 5.0 μm or less, and the area ratio of the retained austenite phase is 1% or more and 5% or less. A high-strength hot-rolled steel sheet having a structure, wherein the thickness of the iron oxide film on the steel sheet surface is 0.1 μm or more and 10 μm or less.
[2] 前記[1]において、前記組成に加えて更に、質量%で、V:0.001%以上0.100%以下、Cu:0.01%以上0.50%以下、Ni:0.01%以上0.50%以下、B:0.0001%以上0.0040%以下のうちから選ばれる1種以上を含有することを特徴とする高強度熱延鋼板。 [2] In the above [1], in addition to the above composition, by mass%, V: 0.001% to 0.100%, Cu: 0.01% to 0.50%, Ni: 0.01% to 0.50%, B: 0.0001 A high-strength hot-rolled steel sheet containing at least one selected from% to 0.0040%.
[3] 前記[1]または[2]に記載の組成からなる連続鋳造鋳片を、1050℃以上1300℃以下の温度域に再加熱し、粗圧延後、仕上げ圧延前に衝突圧力0.1MPa以上10.0MPa以下の高圧水によりデスケーリングを施し、デスケーリング後0.1s以上5.0s以内に仕上げ圧延を開始し、未再結晶温度域での圧下率を40%以上90%以下、仕上げ圧延終了温度を700℃以上900℃以下の温度域とする仕上げ圧延を施し、該仕上げ圧延終了後1s以上10s以内に冷却を開始し、鋼板表面において、750℃以下650℃以上の温度域の平均冷却速度を50℃/s以上500℃/s以下、かつ(750℃以下650℃以上の温度域の平均冷却速度)/(冷却開始温度から冷却終了温度までの平均冷却速度)≧1.10で200℃以上400℃以下の冷却停止温度まで冷却し、その後400℃以上600℃以下の温度域で巻取ることを特徴とする高強度熱延鋼板の製造方法。 [3] The continuous cast slab having the composition described in [1] or [2] is reheated to a temperature range of 1050 ° C. or more and 1300 ° C. or less, and after rough rolling and before finish rolling, the impact pressure is 0.1 MPa or more. Descaling is performed with high-pressure water of 10.0 MPa or less, finish rolling is started within 0.1 s to 5.0 s after descaling, the reduction rate in the non-recrystallization temperature range is 40% to 90%, and the finish rolling finish temperature is Finish rolling in the temperature range of 700 ° C or more and 900 ° C or less is started, and cooling is started within 1 s or more and 10 seconds after the finish rolling is finished. On the steel sheet surface, the average cooling rate in the temperature range of 750 ° C or less and 650 ° C or more is 50 ℃ / s or more and 500 ℃ / s or less, and (average cooling rate in the temperature range of 750 ° C or less and 650 ° C or more) / (average cooling rate from the cooling start temperature to the cooling end temperature)> 1.10, 200 ° C or more and 400 ° C or less It is cooled to the cooling stop temperature of 1, and then wound in a temperature range of 400 ° C to 600 ° C Process for producing a high strength hot rolled steel sheet.
本発明によれば、パイプラインや油井管、或いは土木・建築等の分野で用いられる鋼管素材として好適な、曲げ、低温靭性に優れた高強度熱延鋼板が従来の熱延設備により得られ、工業的に極めて有用である。 According to the present invention, a high-strength hot-rolled steel sheet excellent in bending and low-temperature toughness suitable for steel pipe materials used in the fields of pipelines, oil well pipes, civil engineering and construction, etc. is obtained by conventional hot rolling equipment, It is extremely useful industrially.
以下、本発明について具体的に説明する。
まず、本発明高強度熱延鋼板の成分組成の限定理由について説明する。なお、以下の成分組成を表す%は、特に断らない限り質量%(mass%)を意味するものとする。
Hereinafter, the present invention will be specifically described.
First, the reason for limiting the component composition of the high-strength hot-rolled steel sheet of the present invention will be described. In addition,% showing the following component composition shall mean the mass% (mass%) unless there is particular notice.
C :0.020%以上0.080%以下
Cは、鋼板の強度向上に寄与する。本発明の所望の鋼板強度、例えば650MPa以上の引張強さを確保するには、C含有量を0.020%以上とする必要がある。一方、C含有量が0.080%を超えると、マルテンサイト相または残留オーステナイト相が過度に生成し、鋼板の靭性または曲げ性に悪影響を及ぼす。したがって、C含有量は0.020%以上0.080%以下とする。好ましくは0.035%以上0.065%以下である。
C: 0.020% or more and 0.080% or less
C contributes to improving the strength of the steel sheet. In order to secure the desired steel sheet strength of the present invention, for example, a tensile strength of 650 MPa or more, the C content needs to be 0.020% or more. On the other hand, when the C content exceeds 0.080%, a martensite phase or a retained austenite phase is excessively generated, which adversely affects the toughness or bendability of the steel sheet. Therefore, the C content is 0.020% or more and 0.080% or less. Preferably they are 0.035% or more and 0.065% or less.
Si:0.05%以上0.50%以下
Siは、固溶強化により鋼板の強度向上に寄与し、その含有量を0.05%以上とすることで強度向上効果が認められる。しかし、Si含有量が0.50%を超えると、鋼板の溶接性が低下する。また、酸化鉄皮膜が厚くなり、鋼板を均一に冷却することが困難となり、曲げ性が低下する。したがって、Si含有量は0.05%以上0.50%以下とする。好ましくは0.10%以上0.40%以下である。
Si: 0.05% or more and 0.50% or less
Si contributes to the strength improvement of the steel sheet by solid solution strengthening, and the strength improvement effect is recognized when the content is 0.05% or more. However, when the Si content exceeds 0.50%, the weldability of the steel sheet decreases. In addition, the iron oxide film becomes thick, it becomes difficult to cool the steel plate uniformly, and the bendability decreases. Therefore, the Si content is 0.05% or more and 0.50% or less. Preferably it is 0.10% or more and 0.40% or less.
Mn:1.20%以上2.20%以下
Mnは、焼き入れ性向上を介して鋼板の高強度化に寄与する。パーライト、フェライト生成を抑制し、後述する所望のベイナイトまたはマルテンサイトを有する鋼板を得るためには、Mn含有量を1.20%以上とする必要がある。一方、Mn含有量が2.20%を超えると、中心偏析が顕著になり、鋼板の曲げ性が大幅に低下する。また、Mn含有量が2.20%を超えると、鋼板の低温靭性も低下する。したがって、Mn含有量は1.20%以上2.20%以下とする。好ましくは1.40%以上2.00%以下である。
Mn: 1.20% to 2.20%
Mn contributes to increasing the strength of the steel sheet through improving hardenability. In order to suppress the formation of pearlite and ferrite and to obtain a steel sheet having desired bainite or martensite described later, the Mn content needs to be 1.20% or more. On the other hand, when the Mn content exceeds 2.20%, the center segregation becomes remarkable, and the bendability of the steel sheet is greatly reduced. Moreover, when the Mn content exceeds 2.20%, the low temperature toughness of the steel sheet also decreases. Therefore, the Mn content is 1.20% or more and 2.20% or less. Preferably it is 1.40% or more and 2.00% or less.
P :0.001%以上0.020%以下
Pは、鋼板の靭性および溶接性に悪影響を及ぼすため、その含有量が低ければ低いほど好ましいが、0.020%以下であれば許容できる。一方、Pの過度の低減は生産性を阻害するので、P含有量の下限は0.001%とする。
P: 0.001% to 0.020%
P has an adverse effect on the toughness and weldability of the steel sheet, so the lower the content, the better. However, 0.020% or less is acceptable. On the other hand, excessive reduction of P hinders productivity, so the lower limit of P content is 0.001%.
S :0.0001%以上0.0050%以下
Sは、鋼中でMnSとして存在し、延性に悪影響を及ぼし、鋼板の曲げ性を低下させる。S含有量は少なければ少ないほど好ましいが、0.0050%以下であれば許容できる。一方、Sの過度の低減は生産性を阻害するので、S含有量の下限は0.0001%とする。
S: 0.0001% or more and 0.0050% or less
S exists as MnS in the steel, adversely affects the ductility, and lowers the bendability of the steel sheet. The smaller the S content, the better. However, 0.0050% or less is acceptable. On the other hand, since excessive reduction of S inhibits productivity, the lower limit of the S content is set to 0.0001%.
Al:0.005%以上0.050%以下
Alは、脱酸を目的として添加され、0.005%以上の含有で脱酸効果を発現する。一方、Al含有量が0.050%を超えると、介在物として鋼中に存在し、鋼板の曲げ性、靭性に悪影響を及ぼす。したがって、Al含有量は0.005%以上0.050%以下とする。好ましくは0.020%以上0.045%以下である。
Al: 0.005% to 0.050%
Al is added for the purpose of deoxidation, and when it is contained in an amount of 0.005% or more, it exhibits a deoxidation effect. On the other hand, if the Al content exceeds 0.050%, it is present in the steel as inclusions, which adversely affects the bendability and toughness of the steel sheet. Therefore, the Al content is 0.005% or more and 0.050% or less. Preferably they are 0.020% or more and 0.045% or less.
N :0.0010%以上0.0060%以下
Nは、鋼中で窒化物として存在し、0.0060%を超えて含有するとスラブ鋳造時に割れが発生し、また、鋼板の曲げ性に悪影響を及ぼす。N含有量は少なければ少ないほど好ましいが、その一方で過度の低減は生産性を低下させる。したがって、N含有量は0.0010以上0.0060%以下とする。
N: 0.0010% or more and 0.0060% or less
N exists as a nitride in steel, and if it exceeds 0.0060%, cracks occur during slab casting, and adversely affects the bendability of the steel sheet. The lower the N content, the better. On the other hand, excessive reduction reduces productivity. Therefore, the N content is 0.0010 or more and 0.0060% or less.
Nb:0.040%以上0.080%以下
Nbは、析出強化により鋼板の強度向上に寄与する。また、Nbは、結晶粒径の細粒化により鋼板の強度向上および靭性向上に寄与する。これらの効果を発現させるために、Nb含有量を0.040%以上とする。一方、Nb含有量が0.080%を超えると、微細析出物量が過度に多くなり、鋼板の靭性が劣化する。したがって、Nb含有量は0.040%以上0.080%以下とする。好ましくは0.050%以上0.070%以下である。
Nb: 0.040% to 0.080%
Nb contributes to improving the strength of the steel sheet by precipitation strengthening. Moreover, Nb contributes to the improvement of the strength and toughness of the steel sheet by reducing the crystal grain size. In order to express these effects, the Nb content is set to 0.040% or more. On the other hand, if the Nb content exceeds 0.080%, the amount of fine precipitates is excessively increased and the toughness of the steel sheet is deteriorated. Therefore, the Nb content is 0.040% or more and 0.080% or less. Preferably it is 0.050% or more and 0.070% or less.
Mo:0.01%以上0.50%以下
Moは、焼き入れ性向上を介して鋼板の強度向上に寄与する。パーライト、フェライト生成を抑制し、後述する所望のマルテンサイトおよび残留オーステナイトを有する鋼板を得るためには、Mo含有量を0.01%以上とする必要がある。一方、Mo含有量が0.50%を超えると、過度にマルテンサイト相が生成し、鋼板の曲げ性および靭性が大幅に低下する。したがって、Mo含有量は0.01%以上0.50%以下とする。好ましくは0.05%以上0.25%以下である。
Mo: 0.01% or more and 0.50% or less
Mo contributes to improving the strength of the steel sheet through improving hardenability. In order to suppress the formation of pearlite and ferrite and to obtain a steel sheet having desired martensite and retained austenite described later, the Mo content needs to be 0.01% or more. On the other hand, when the Mo content exceeds 0.50%, a martensite phase is excessively generated, and the bendability and toughness of the steel sheet are greatly reduced. Therefore, the Mo content is 0.01% or more and 0.50% or less. Preferably they are 0.05% or more and 0.25% or less.
Ti:0.005%以上0.050%以下
Tiは、析出強化により鋼板の強度向上に寄与する。その効果の発現には、Ti含有量を0.005%以上とする必要がある。一方、Ti含有量が0.050%を超えて過剰になると、鋼板の靭性および溶接性が劣化する。したがって、Ti含有量は0.005%以上0.050%以下とする。好ましくは0.010%以上0.030%以下である。
Ti: 0.005% to 0.050%
Ti contributes to improving the strength of the steel sheet by precipitation strengthening. In order to realize the effect, the Ti content needs to be 0.005% or more. On the other hand, if the Ti content exceeds 0.050% and becomes excessive, the toughness and weldability of the steel sheet deteriorate. Therefore, Ti content shall be 0.005% or more and 0.050% or less. Preferably it is 0.010% or more and 0.030% or less.
Cr:0.01%以上0.50%以下
Crは、焼き入れ性向上を介して鋼板の高強度化に寄与する。パーライト、フェライト生成を抑制し、後述する所望のマルテンサイトまたは残留オーステナイトを有する鋼板を得るためには、Cr含有量を0.01%以上とする必要がある。一方、Cr含有量が0.50%を超えると、過剰にマルテンサイトが生成し、鋼板の靭性および曲げ性が大幅に低下する。したがって、Cr含有量は0.01%以上0.50%以下とする。好ましくは0.10%以上0.35%以下である。
Cr: 0.01% to 0.50%
Cr contributes to increasing the strength of the steel sheet through improving hardenability. In order to suppress the formation of pearlite and ferrite and obtain a steel sheet having desired martensite or retained austenite described later, the Cr content needs to be 0.01% or more. On the other hand, when the Cr content exceeds 0.50%, martensite is excessively generated, and the toughness and bendability of the steel sheet are greatly reduced. Therefore, the Cr content is 0.01% or more and 0.50% or less. Preferably it is 0.10% or more and 0.35% or less.
Ca:0.0005%以上0.0050%以下
Caは、板状S介在物の形態を粒状化し、鋼板の曲げ性および靭性の向上に寄与する。この効果の発現には、Ca含有量を0.0005%以上とする必要がある。一方、Ca含有量が0.0050%を超えると、鋼中にCa系介在物が過剰に存在し、鋼板の曲げ性に悪影響を及ぼす。したがって、Caは0.0005%以上0.0050%以下とする。好ましくは0.0010%以上0.0030%以下である。
Ca: 0.0005% or more and 0.0050% or less
Ca granulates the form of the plate-like S inclusions and contributes to improvement of the bendability and toughness of the steel plate. In order to achieve this effect, the Ca content needs to be 0.0005% or more. On the other hand, if the Ca content exceeds 0.0050%, excessive Ca-based inclusions are present in the steel, which adversely affects the bendability of the steel sheet. Therefore, Ca is 0.0005% or more and 0.0050% or less. Preferably it is 0.0010% or more and 0.0030% or less.
以上の成分が基本の成分であるが、本発明の高強度熱延鋼板は、上記成分に加えて更に、選択元素として必要に応じて、V:0.001%以上0.100%以下、Cu:0.01%以上0.50%以下、Ni:0.01%以上0.50%以下、B:0.0001%以上0.0040%以下のうちから選ばれる1種以上を含有してもよい。 Although the above components are basic components, the high-strength hot-rolled steel sheet according to the present invention may further include V: 0.001% or more and 0.100% or less, Cu: 0.01% or more, as necessary, in addition to the above components. 0.50% or less, Ni: 0.01% or more and 0.50% or less, B: 0.0001% or more and 0.0040% or less may be included.
V :0.001%以上0.100%以下
Vは、析出強化により鋼板の強度向上に寄与し、その効果の発現にはV含有量を0.001%以上とすることが好ましい。一方、V含有量が0.100%を超えて過剰になると、鋼板の靭性および溶接性が劣化するおそれがある。したがって、Vを含有する場合には、その含有量を0.001%以上0.100%以下とすることが好ましい。より好ましくは0.020%以上0.070%以下である。
V: 0.001% or more and 0.100% or less
V contributes to improving the strength of the steel sheet by precipitation strengthening, and the V content is preferably 0.001% or more in order to achieve the effect. On the other hand, if the V content exceeds 0.100% and becomes excessive, the toughness and weldability of the steel sheet may be deteriorated. Therefore, when V is contained, the content is preferably 0.001% or more and 0.100% or less. More preferably, it is 0.020% or more and 0.070% or less.
Cu:0.01%以上0.50%以下
Cuは、鋼板の強度向上に寄与し、この効果を発現させるためにはCu含有量を0.01%以上とすることが好ましい。一方、Cu含有量が0.50%を超えると、熱間脆性の要因となる。したがって、Cuを含有する場合には、その含有量を0.01%以上0.50%以下とすることが好ましい。より好ましくは0.10%以上0.30%以下である。
Cu: 0.01% to 0.50%
Cu contributes to improving the strength of the steel sheet, and in order to exhibit this effect, the Cu content is preferably 0.01% or more. On the other hand, when Cu content exceeds 0.50%, it becomes a factor of hot brittleness. Therefore, when it contains Cu, it is preferable to make the content into 0.01% or more and 0.50% or less. More preferably, it is 0.10% or more and 0.30% or less.
Ni:0.01%以上0.50%以下
Niは、鋼板の強度向上および靭性向上に寄与する。このような効果を発現させるためには、Ni含有量を0.01%以上とすることが好ましい。一方、Ni含有量は、0.50%を超えても構わないが、0.50%を超えるとその効果が飽和する傾向にある。したがって、Niを含有する場合には、その含有量を0.01%以上0.50%以下とすることが好ましい。より好ましくは0.10%以上0.30%以下である。
Ni: 0.01% or more and 0.50% or less
Ni contributes to improving the strength and toughness of the steel sheet. In order to exhibit such an effect, the Ni content is preferably 0.01% or more. On the other hand, the Ni content may exceed 0.50%, but if it exceeds 0.50%, the effect tends to be saturated. Therefore, when it contains Ni, it is preferable that the content shall be 0.01% or more and 0.50% or less. More preferably, it is 0.10% or more and 0.30% or less.
B :0.0001%以上0.0040%以下
Bは、焼き入れ性向上を介して鋼板の高強度化に寄与する。このような効果を発現させるためには、B含有量を0.0001%以上とすることが好ましい。一方、B含有量が0.0040%を超えると、鋼板を溶接する際、溶接部の靭性に悪影響を及ぼすおそれがある。したがって、Bを含有する場合には、その含有量を0.0001%以上0.0040%以下とすることが好ましい。より好ましくは0.0005%以上0.0020%以下である。
B: 0.0001% or more and 0.0040% or less
B contributes to increasing the strength of the steel sheet through improving hardenability. In order to exhibit such an effect, the B content is preferably 0.0001% or more. On the other hand, if the B content exceeds 0.0040%, there is a risk of adversely affecting the toughness of the welded portion when welding the steel sheet. Therefore, when it contains B, it is preferable to make the content into 0.0001% or more and 0.0040% or less. More preferably, it is 0.0005% or more and 0.0020% or less.
なお、本発明の高強度熱延鋼板において、上記以外の成分は、Feおよび不可避的不純物である。不可避的不純物としては、例えばCo、W、Pb、Sn等が挙げられ、これらの元素の含有量はそれぞれ0.0050%以下であれば許容することができる。 In the high-strength hot-rolled steel sheet of the present invention, components other than the above are Fe and inevitable impurities. Inevitable impurities include, for example, Co, W, Pb, Sn and the like, and the content of these elements can be allowed if it is 0.0050% or less.
次に、本発明高強度熱延鋼板の組織、表層硬さ特性および酸化鉄皮膜厚さの限定理由について説明する。
本発明の高強度熱延鋼板は、鋼板表面から板厚方向1.5mmの位置において、焼戻マルテンサイト相の面積比率が90%以上100%以下かつ該焼戻マルテンサイト相の平均結晶粒径が1.0μm以上5.0μm以下である組織を有する。また、本発明の高強度熱延鋼板は、鋼板表面から板厚方向1.5mmの位置において、板幅方向のビッカース硬さの変動量ΔHvが50以下である。
Next, the reasons for limiting the structure, surface layer hardness characteristics, and iron oxide film thickness of the high-strength hot-rolled steel sheet of the present invention will be described.
In the high-strength hot-rolled steel sheet of the present invention, the area ratio of the tempered martensite phase is 90% or more and 100% or less and the average grain size of the tempered martensite phase is 1.5 mm from the steel sheet surface. It has a tissue that is 1.0 μm or more and 5.0 μm or less. In the high-strength hot-rolled steel sheet of the present invention, the fluctuation amount ΔHv of the Vickers hardness in the sheet width direction is 50 or less at a position 1.5 mm from the sheet surface in the sheet thickness direction.
焼戻マルテンサイト相の面積比率:90%以上100%以下
焼戻マルテンサイト相の平均結晶粒径:1.0μm以上5.0μm以下
本発明においては、鋼板表層を、実質的に微細な焼戻マルテンサイト単相組織とし、硬さがある程度抑制された均一な組織とすることで、鋼板の曲げ性向上を図る。鋼板表面から板厚方向1.5mmの位置において、焼戻マルテンサイト相の面積比率が90%未満になると、鋼板表層において焼戻マルテンサイト相と硬さが異なるその他の相が混在し、硬さが不均一となり、鋼板の曲げ性は劣化する。したがって、鋼板表面から板厚方向1.5mmの位置において、焼戻マルテンサイト相の面積比率は90%以上100%以下とする。好ましくは95%以上100%以下である。
Area ratio of tempered martensite phase: 90% or more and 100% or less Average crystal grain size of tempered martensite phase: 1.0 μm or more and 5.0 μm or less In the present invention, the steel sheet surface layer is substantially fine tempered martensite. By adopting a single-phase structure and a uniform structure in which the hardness is suppressed to some extent, the bendability of the steel sheet is improved. When the area ratio of the tempered martensite phase is less than 90% at a position 1.5 mm from the steel sheet surface, other phases different in hardness from the tempered martensite phase are mixed in the steel sheet surface layer, and the hardness is It becomes non-uniform and the bendability of the steel sheet deteriorates. Therefore, the area ratio of the tempered martensite phase is 90% or more and 100% or less at a position 1.5 mm away from the steel sheet surface. Preferably they are 95% or more and 100% or less.
また、鋼板表面から板厚方向1.5mmの位置において、焼戻マルテンサイト相の平均結晶粒径が5.0μmを超えると、鋼板の靭性に悪影響を及ぼす。更に、粗大粒が混在することになり、鋼板表層の均一性を阻害し、鋼板の曲げ性にも悪影響を及ぼす。したがって、鋼板表面から板厚方向1.5mmの位置において、焼戻マルテンサイト相の平均結晶粒径は5.0μm以下とする。一方、上記平均結晶粒径は細かくても構わないが、生産性、コストの観点から下限は1.0μmとする。 Further, when the average crystal grain size of the tempered martensite phase exceeds 5.0 μm at a position 1.5 mm from the steel sheet surface in the thickness direction, the toughness of the steel sheet is adversely affected. Furthermore, coarse grains are mixed, which inhibits the uniformity of the steel sheet surface layer and adversely affects the bendability of the steel sheet. Accordingly, the average crystal grain size of the tempered martensite phase is 5.0 μm or less at a position 1.5 mm from the steel plate surface in the plate thickness direction. On the other hand, the average crystal grain size may be fine, but the lower limit is 1.0 μm from the viewpoint of productivity and cost.
なお、鋼板表面から板厚方向1.5mmの位置における組織は、上記の微細な焼戻マルテンサイト相のほかに、フェライト相、ベイニティックフェライト相、ベイナイト相、残留オーステナイト相等を含有し得る。これらの相の合計面積比率は、5%以下とすることが好ましく、3%以下とすることがより好ましく、0%(すなわち焼戻マルテンサイト単相)とすることがより一層好ましい。 Note that the structure at a position 1.5 mm from the surface of the steel sheet may contain a ferrite phase, bainitic ferrite phase, bainite phase, residual austenite phase, and the like in addition to the fine tempered martensite phase. The total area ratio of these phases is preferably 5% or less, more preferably 3% or less, and even more preferably 0% (that is, tempered martensite single phase).
板幅方向のビッカース硬さの変動量ΔHv:50以下
本発明においては、鋼板表層の組織を上記の如く実質的に微細な焼戻マルテンサイト単相とし、更に鋼板表層の硬さ分布を均一にすることにより、曲げ性のより一層の向上を図る。鋼板表層の硬さ分布を均一にすることにより、曲げ変形時に鋼板表層において均一な変形が可能となり、優れた曲げ性を確保することができる。鋼板表面から板厚方向1.5mmの位置において、板幅方向のビッカース硬さの変動量ΔHvが50を超えると、鋼板表層における硬度ムラが大きくなり、局所的に延性が異なる領域が存在し、鋼板表層が不均一な組織となり、鋼板の曲げ性が劣化する。したがって、上記ΔHvは50以下とする。好ましくは40以下である。
Vickers hardness fluctuation amount in the plate width direction ΔHv: 50 or less In the present invention, the structure of the steel sheet surface layer is a substantially fine tempered martensite single phase as described above, and the hardness distribution of the steel sheet surface layer is made uniform. By doing so, the bendability is further improved. By making the hardness distribution of the steel sheet surface layer uniform, uniform deformation is possible in the steel sheet surface layer during bending deformation, and excellent bendability can be ensured. When the fluctuation amount ΔHv of the Vickers hardness in the plate width direction exceeds 50 at a position 1.5 mm from the steel plate surface, the hardness unevenness in the steel plate surface layer becomes large, and there is a region where the ductility is locally different. The surface layer has a non-uniform structure, and the bendability of the steel sheet deteriorates. Therefore, the ΔHv is set to 50 or less. Preferably it is 40 or less.
本発明の高強度熱延鋼板は、鋼板表層において上記の組織および硬さ特性を備えることに加えて、鋼板の板厚中央位置において、ベイナイト相の面積比率が90%以上98%以下、マルテンサイト相の面積比率が1%以上5%以下かつ該マルテンサイト相の平均結晶粒径が0.5μm以上5.0μm以下、残留オーステナイト相の面積比率が1%以上5%以下である組織を有する。 The high-strength hot-rolled steel sheet of the present invention has the above structure and hardness characteristics in the steel sheet surface layer, and the area ratio of the bainite phase is 90% or more and 98% or less at the center of the sheet thickness of the steel sheet. It has a structure in which the area ratio of the phase is 1% to 5%, the average crystal grain size of the martensite phase is 0.5 μm to 5.0 μm, and the area ratio of the residual austenite phase is 1% to 5%.
ベイナイト相の面積比率:90%以上98%以下
本発明においては、鋼板内部の組織を強度−靭性バランスに優れたベイナイト相主体の組織とし、鋼板内部を均一な組織とすることで、鋼板の靭性を確保する。鋼板の板厚中央位置において、ベイナイト相の面積比率が90%に満たない場合、他の相、例えばベイナイト相より強度が高いマルテンサイト相などが大量に混在し、鋼板の靭性が劣化する。一方、鋼板の板厚中央位置において、ベイナイト相の面積比率が98%を超えると、後述する所望のマルテンサイト相や残留オーステナイト相を確保することができず、鋼板の強度や曲げ性が低下する。したがって、鋼板の板厚中央位置において、ベイナイト相の面積比率は90%以上98%以下とする。好ましくは95%以上97%以下である。
Area ratio of bainite phase: 90% or more and 98% or less In the present invention, the toughness of the steel sheet is made by making the structure inside the steel sheet a structure mainly composed of the bainite phase having an excellent strength-toughness balance and making the inside of the steel sheet a uniform structure. Secure. When the area ratio of the bainite phase is less than 90% at the plate thickness center position of the steel plate, other phases, for example, a martensite phase having higher strength than the bainite phase are mixed in a large amount, and the toughness of the steel plate is deteriorated. On the other hand, if the area ratio of the bainite phase exceeds 98% at the plate thickness center position of the steel plate, the desired martensite phase and residual austenite phase described later cannot be secured, and the strength and bendability of the steel plate are reduced. . Therefore, the area ratio of the bainite phase is 90% or more and 98% or less at the center position of the thickness of the steel sheet. Preferably they are 95% or more and 97% or less.
マルテンサイト相の面積比率:1%以上5%以下
マルテンサイト相は、硬質であり鋼板の強度向上に寄与する。本効果を発揮させるためには、鋼板の板厚中央位置において、マルテンサイト相の面積比率を1%以上とする必要がある。一方、鋼板の板厚中央位置において、マルテンサイト相の面積比率が5%を超えると、鋼板の靭性が劣化する。したがって、鋼板の板厚中央位置において、マルテンサイト相の面積比率は1%以上5%以下とする。好ましくは1.5%以上3.0%以下である。
Martensite phase area ratio: 1% or more and 5% or less The martensite phase is hard and contributes to improving the strength of the steel sheet. In order to exhibit this effect, the area ratio of the martensite phase needs to be 1% or more at the center of the plate thickness of the steel plate. On the other hand, when the area ratio of the martensite phase exceeds 5% at the plate thickness center position of the steel plate, the toughness of the steel plate deteriorates. Therefore, the area ratio of the martensite phase is 1% or more and 5% or less at the center position of the steel sheet thickness. Preferably they are 1.5% or more and 3.0% or less.
マルテンサイト相の平均結晶粒径:0.5μm以上5.0μm以下
鋼板の板厚中央位置において、マルテンサイト相の平均結晶粒径が5.0μmを超えると、粗大なマルテンサイト相が粗に分布することになり、鋼板の曲げ性および靭性が劣化する。したがって、鋼板の板厚中央位置において、マルテンサイト相の平均結晶粒径は5.0μm以下とする。好ましくは2.5μm以下である。なお、上記平均結晶粒径は小さければ小さいほど好ましいが、生産性、コストの観点から下限は0.5μmとする。
Average grain size of martensite phase: 0.5 μm or more and 5.0 μm or less If the average grain size of the martensite phase exceeds 5.0 μm at the center of the plate thickness of the steel sheet, the coarse martensite phase will be distributed roughly. As a result, the bendability and toughness of the steel sheet deteriorate. Therefore, the average crystal grain size of the martensite phase is 5.0 μm or less at the center of the plate thickness of the steel plate. Preferably it is 2.5 μm or less. The average crystal grain size is preferably as small as possible, but the lower limit is set to 0.5 μm from the viewpoint of productivity and cost.
残留オーステナイト相の面積比率:1%以上5%以下
残留オーステナイト相は、延性向上を通じ、鋼板の曲げ性など加工性向上に寄与する。本効果を発揮するためには、鋼板の板厚中央位置において、残留オーステナイト相の面積比率を1%以上とする必要がある。一方、鋼板の板厚中央位置において、残留オーステナイト相の面積比率が5%を超えると、亀裂の伝播経路として働き、鋼板の靭性が劣化する。したがって、鋼板の板厚中央位置において、残留オーステナイト相の面積比率は1%以上5%以下とする。好ましくは1.5%以上2.5%以下である。
Area ratio of retained austenite phase: 1% or more and 5% or less The retained austenite phase contributes to improving workability such as bendability of the steel sheet by improving ductility. In order to exert this effect, the area ratio of the retained austenite phase needs to be 1% or more at the center position of the steel sheet thickness. On the other hand, if the area ratio of the retained austenite phase exceeds 5% at the center of the thickness of the steel sheet, it acts as a propagation path for cracks and the toughness of the steel sheet deteriorates. Therefore, the area ratio of the retained austenite phase is 1% or more and 5% or less at the center of the plate thickness of the steel plate. Preferably they are 1.5% or more and 2.5% or less.
なお、鋼板の板厚中央位置における組織には、上記したベイナイト相、残留オーステナイト相およびマルテンサイト相のほか、パーライト、セメンタイト等を含んでもよい。パーライト、セメンタイト等の合計面積比率は、3%以下とすることが好ましい。 In addition, the structure in the center position of the plate thickness of the steel sheet may include pearlite, cementite, and the like in addition to the bainite phase, the retained austenite phase, and the martensite phase. The total area ratio of pearlite, cementite, etc. is preferably 3% or less.
鋼板表面の酸化鉄皮膜の厚さ:0.1μm以上10μm以下
鋼板表面酸化鉄皮膜の厚みの均一化は、熱間圧延における鋼板の冷却を均一に行うことを通じ、板幅方向に均一な組織を達成し、優れた曲げ性に寄与する。酸化鉄皮膜の厚みが10μmを超えた領域が存在すると、鋼板の冷却を均一に行うことが困難となり、板幅方向における強度が不均一となり、曲げ性が低下する。一方、酸化鉄皮膜は薄ければ薄いほど好ましいが、生産性、コストの観点から下限は0.1μmとする。
Thickness of iron oxide film on steel sheet surface: 0.1 μm or more and 10 μm or less Uniform thickness of steel sheet iron oxide film achieves a uniform structure in the sheet width direction by uniformly cooling the steel sheet in hot rolling. And contributes to excellent bendability. If there is a region where the thickness of the iron oxide film exceeds 10 μm, it is difficult to cool the steel plate uniformly, the strength in the plate width direction becomes non-uniform, and the bendability decreases. On the other hand, the thinner the iron oxide film, the better, but the lower limit is set to 0.1 μm from the viewpoint of productivity and cost.
次に、本発明の高強度熱延鋼板の製造方法について説明する。
本発明の高強度熱延鋼板は、連続鋳造によって得られた上記組成を有するスラブ(鋳片)を再加熱後、粗圧延、仕上げ圧延を行ったのち、所定の条件にて冷却を行い、所定温度でコイルに巻き取ることにより製造することができる。
Next, the manufacturing method of the high intensity | strength hot-rolled steel plate of this invention is demonstrated.
The high-strength hot-rolled steel sheet of the present invention is subjected to rough rolling and finish rolling after reheating a slab (slab) having the above composition obtained by continuous casting, and then cooled under predetermined conditions, It can be manufactured by winding it around a coil at temperature.
連続鋳造鋳片の再加熱温度:1050℃以上1300℃以下
連続鋳造鋳片の再加熱温度が1300℃を超えると、加熱中のオーステナイト粒が粗大化する結果、熱延後の最終結晶粒径が粗大化し、鋼板の曲げ性、靭性が劣化する。一方、連続鋳造鋳片の再加熱温度が1050℃未満では、Ti、Nbなど析出強化元素の固溶が不十分となり、所望の鋼板強度を確保することが困難となる。また、所定の仕上げ圧延終了温度を確保することが困難となる。したがって、上記再加熱温度は1050℃以上1300℃以下とする。好ましくは1100℃以上1250℃以下である。
Reheating temperature of continuous cast slab: 1050 ° C or higher and 1300 ° C or lower If the reheating temperature of continuous cast slab exceeds 1300 ° C, the austenite grains during heating become coarse, resulting in the final crystal grain size after hot rolling It becomes coarse and the bendability and toughness of the steel sheet deteriorate. On the other hand, when the reheating temperature of the continuous cast slab is less than 1050 ° C., precipitation strengthening elements such as Ti and Nb are not sufficiently dissolved, and it becomes difficult to secure a desired steel plate strength. In addition, it is difficult to ensure a predetermined finish rolling end temperature. Therefore, the reheating temperature is set to 1050 ° C. or higher and 1300 ° C. or lower. Preferably they are 1100 degreeC or more and 1250 degrees C or less.
熱間圧延は、通常、粗圧延と仕上げ圧延からなるが、本発明において粗圧延の条件は特に限定されない。粗圧延後、以下の条件で高圧水によるデスケーリングを施したのち、以下の条件で仕上げ圧延を施す。 Hot rolling is usually composed of rough rolling and finish rolling, but the conditions for rough rolling are not particularly limited in the present invention. After rough rolling, after descaling with high-pressure water under the following conditions, finish rolling is performed under the following conditions.
粗圧延後仕上げ圧延前のデスケーリング:衝突圧力0.1MPa以上10.0MPa以下の高圧水
高圧水の衝突圧力が10.0MPaを超えると、鋼板表面の粗度が大きくなり、表面性状が劣化し、曲げ性が低下する。一方、高圧水の衝突圧力が0.1MPa未満では、鋼板表面の酸化鉄皮膜の厚みが厚くなり、板幅方向に均一な組織が得られず、曲げ性が低下する。したがって、高圧水の衝突圧力は0.1MPa以上10.0MPa以下とする。好ましくは1.0MPa以上8.0MPa以下である。
Descaling after rough rolling and before finish rolling: high pressure water with impact pressure of 0.1MPa or more and 10.0MPa or less If the impact pressure of high pressure water exceeds 10.0MPa, the surface roughness of the steel sheet increases, surface properties deteriorate, and bendability Decreases. On the other hand, when the collision pressure of the high-pressure water is less than 0.1 MPa, the thickness of the iron oxide film on the surface of the steel sheet becomes thick, a uniform structure cannot be obtained in the sheet width direction, and bendability decreases. Therefore, the collision pressure of the high pressure water is set to 0.1 MPa or more and 10.0 MPa or less. Preferably, it is 1.0 MPa or more and 8.0 MPa or less.
デスケーリング後、仕上げ圧延を開始するまでの時間:0.1s以上5.0s以内
仕上げ圧延前に適切なデスケーリングを実施しても、時間の経過と共に新たな酸化鉄皮膜が生成する。デスケーリング後、仕上げ圧延を開始するまでの時間が5.0秒を超えると、鋼板表面の酸化鉄皮膜の厚みが厚くなり、板幅方向に均一な組織が得られず、曲げ性が低下する。したがって、デスケーリング後、仕上げ圧延を開始するまでの時間は5.0秒以内とする。なお、デスケーリング後、仕上げ圧延を開始するまでの時間は短ければ短いほど好ましいが、生産性、コストの観点から下限は0.1秒とする。
Time to start finish rolling after descaling: 0.1 s or more and within 5.0 s Even if appropriate descaling is performed before finish rolling, a new iron oxide film is formed over time. If the time until descaling starts after descaling exceeds 5.0 seconds, the thickness of the iron oxide film on the surface of the steel sheet increases, a uniform structure cannot be obtained in the sheet width direction, and the bendability decreases. Therefore, the time from descaling to the start of finish rolling should be within 5.0 seconds. Note that the shorter the time from descaling to the start of finish rolling, the better. However, the lower limit is set to 0.1 seconds from the viewpoint of productivity and cost.
未再結晶温度域での圧下率:40%以上90%以下
仕上げ圧延において、未再結晶温度域での圧下率が40%に満たない場合、圧延再結晶による結晶粒微細化が不十分となり、結晶粒が粗大化し、鋼板の曲げ性、靭性が劣化する。微細粒を得るには未再結晶温度域での圧下率が高いほうが好ましいが、上記圧下率が90%を超えると変形抵抗が高くなり、圧延が困難となる。したがって、仕上げ圧延において、未再結晶温度域での圧下率は40%以上90%以下とする。好ましくは60%以上85%以下である。
Reduction ratio in non-recrystallization temperature range: 40% or more and 90% or less In finish rolling, if the reduction ratio in non-recrystallization temperature range is less than 40%, grain refinement by rolling recrystallization becomes insufficient, Crystal grains become coarse and the bendability and toughness of the steel sheet deteriorate. In order to obtain fine grains, it is preferable that the rolling reduction in the non-recrystallization temperature range is high. However, if the rolling reduction exceeds 90%, the deformation resistance becomes high and rolling becomes difficult. Therefore, in the finish rolling, the rolling reduction in the non-recrystallization temperature range is 40% or more and 90% or less. Preferably they are 60% or more and 85% or less.
仕上げ圧延終了温度:700℃以上900℃以下
仕上げ圧延終了温度が700℃に満たない場合、展伸粒、粗大粒と微細粒の混粒組織となり、組織が不均一となる、または表層においてフェライト相が生成し、所望の面積比率の焼戻マルテンサイト相を得ることが困難となり、鋼板の曲げ性、靭性が劣化する。一方、仕上げ圧延終了温度が900℃を超えると、結晶粒が粗大化し、鋼板の曲げ性、靭性が劣化する。したがって、仕上げ圧延終了温度は700℃以上900℃以下とする。好ましくは740℃以上840℃以下である。なお、これらの温度は、鋼板表面における温度である。
仕上げ圧延終了後、以下の条件で加速冷却する。
Finish rolling finish temperature: 700 ° C or more and 900 ° C or less If the finish rolling finish temperature is less than 700 ° C, it becomes a mixed grain structure of expanded, coarse and fine grains, and the structure becomes non-uniform, or the ferrite phase in the surface layer It becomes difficult to obtain a tempered martensite phase having a desired area ratio, and the bendability and toughness of the steel sheet deteriorate. On the other hand, when the finish rolling finish temperature exceeds 900 ° C., the crystal grains become coarse, and the bendability and toughness of the steel sheet deteriorate. Accordingly, the finish rolling finish temperature is set to 700 ° C. or more and 900 ° C. or less. Preferably they are 740 degreeC or more and 840 degrees C or less. These temperatures are temperatures on the steel sheet surface.
After finishing rolling, accelerated cooling is performed under the following conditions.
仕上げ圧延終了後、冷却を開始するまでの時間:1s以上10s以内
仕上げ圧延終了後、加速冷却を開始するまでの時間が10秒を超えると、鋼板表面の酸化鉄皮膜の厚みが厚くなり、板幅方向に均一な組織が得られず、曲げ性が低下する。したがって、仕上げ圧延終了後、加速冷却を開始するまでの時間は10秒以内とする。なお、仕上げ圧延終了後の冷却開始時間は早ければ早いほど好ましいが、生産性、コストの観点から下限は1秒とする。
Time after finishing rolling until cooling starts: 1 s or more and within 10 s If the time until finishing accelerated cooling after finishing rolling exceeds 10 seconds, the thickness of the iron oxide film on the surface of the steel sheet increases, and the plate A uniform structure cannot be obtained in the width direction, and the bendability decreases. Therefore, the time from the end of finish rolling to the start of accelerated cooling is within 10 seconds. The earlier the cooling start time after finish rolling is, the better. However, the lower limit is set to 1 second from the viewpoint of productivity and cost.
750℃以下650℃以上の温度域の平均冷却速度:50℃/s以上500℃/s以下
転位密度の少ないポリゴナルフェライト相およびパーライト相の生成を抑制し、表層では焼戻マルテンサイト相、板厚中央ではベイナイト相を所望量確保して曲げ性と靭性の両立を図るには、750℃以下650℃以上の温度域の平均冷却速度を50℃/s以上とする必要がある。好ましくは100℃/s以上である。一方、上記温度域における冷却速度は速くても構わないが、平均冷却速度が500℃/sを超えると上記の効果は飽和する傾向にある。
なお、上記温度域および平均冷却速度は、鋼板表面における値である。
Average cooling rate in the temperature range of 750 ° C or lower and 650 ° C or higher: 50 ° C / s or higher and 500 ° C / s or lower Suppresses the formation of polygonal ferrite phase and pearlite phase with low dislocation density, and tempered martensite phase and plate on the surface layer In order to secure a desired amount of bainite phase at the thickness center and to achieve both bendability and toughness, the average cooling rate in the temperature range of 750 ° C. or lower and 650 ° C. or higher needs to be 50 ° C./s or higher. Preferably, it is 100 ° C./s or more. On the other hand, the cooling rate in the temperature range may be high, but the above effect tends to be saturated when the average cooling rate exceeds 500 ° C./s.
In addition, the said temperature range and average cooling rate are the values in the steel plate surface.
(750℃以下650℃以上の温度域の平均冷却速度)/(冷却開始温度から冷却終了温度までの平均冷却速度)≧1.10
本発明においては、加速冷却開始温度から加速冷却終了温度までの平均冷却速度CR2に対し、750℃以下650℃以上の温度域の平均冷却速度CR1を速くする。
冷却初期の高温域の冷却速度(CR1)を速くすることにより、結晶粒の粗大化を抑制し、鋼板表層の焼戻マルテンサイト相および板厚中央位置のマルテンサイト相を所望の平均結晶粒径に制御し、優れた曲げ性、靭性を得ることができる。このような効果を発現させるためには、上記平均冷却速度CR1およびCR2を、(CR1/CR2)≧1.10となるように制御する必要がある。好ましくは、(CR1/CR2)≧1.12である。なお、これらの平均冷却速度は、鋼板表面における冷却速度である。
(Average cooling rate in the temperature range of 750 ° C or lower and 650 ° C or higher) / (Average cooling rate from the cooling start temperature to the cooling end temperature) ≧ 1.10
In the present invention, the average cooling rate CR1 in the temperature range of 750 ° C. or lower and 650 ° C. or higher is increased with respect to the average cooling rate CR2 from the accelerated cooling start temperature to the accelerated cooling end temperature.
By increasing the cooling rate (CR1) in the high temperature range in the initial stage of cooling, coarsening of the crystal grains is suppressed, and the tempered martensite phase of the steel sheet surface layer and the martensite phase at the center of the sheet thickness are set to the desired average crystal grain size. And bendability and toughness can be obtained. In order to exhibit such an effect, it is necessary to control the average cooling rates CR1 and CR2 so that (CR1 / CR2) ≧ 1.10. Preferably, (CR1 / CR2) ≧ 1.12. In addition, these average cooling rates are the cooling rates in the steel plate surface.
冷却停止温度:200℃以上400℃以下
冷却停止温度が400℃を超えると、表層において所望量の焼戻マルテンサイト相を得ることができず、板厚中央位置においても所望量のベイナイト相を得ることができない。一方、冷却停止温度が200℃より低くなると、表層においては所望の焼戻マルテンサイト相が得られるが、板厚中央位置において所望のベイナイト相または残留オーステナイト相が得られない。したがって、冷却停止温度は200℃以上400℃以下とする。好ましくは220℃以上350℃以下である。なお、これらの冷却停止温度は、鋼板表面における温度である。
Cooling stop temperature: 200 ° C or more and 400 ° C or less If the cooling stop temperature exceeds 400 ° C, a desired amount of tempered martensite phase cannot be obtained on the surface layer, and a desired amount of bainite phase is obtained even at the center position of the plate thickness. I can't. On the other hand, when the cooling stop temperature is lower than 200 ° C., a desired tempered martensite phase is obtained in the surface layer, but a desired bainite phase or residual austenite phase cannot be obtained at the plate thickness center position. Therefore, the cooling stop temperature is set to 200 ° C. or more and 400 ° C. or less. Preferably they are 220 degreeC or more and 350 degrees C or less. In addition, these cooling stop temperature is the temperature in the steel plate surface.
巻取り温度:400℃以上600℃以下
巻取り温度が600℃を超えると、ポリゴナルフェライト相およびパーライト相が生成し、鋼板を所望の組織とすることができず、優れた曲げ性、靭性が得られない。一方、巻取り温度が400℃未満の場合、ベイナイト変態が不十分となり、また残留オーステナイト相が残存せず、所望のベイナイト相、残留オーステナイト相の確保が困難となる結果、優れた曲げ性、靭性が得られない。したがって、巻取り温度は400℃以上600℃以下とする。好ましくは460℃以上560℃以下である。なお、これらの巻取り温度は、鋼板表面における温度である。また、冷却停止後の鋼板は、所定時間放置することで、復熱により鋼板表面が冷却停止温度(200℃以上400℃以下)から巻取り温度(400℃以上600℃以下)に昇温する。
Winding temperature: 400 ° C or more and 600 ° C or less If the winding temperature exceeds 600 ° C, polygonal ferrite phase and pearlite phase are generated, and the steel sheet cannot be formed into the desired structure, and excellent bendability and toughness are achieved. I can't get it. On the other hand, when the coiling temperature is less than 400 ° C., the bainite transformation is insufficient, the residual austenite phase does not remain, and it becomes difficult to secure the desired bainite phase and the residual austenite phase, resulting in excellent bendability and toughness. Cannot be obtained. Therefore, the winding temperature is set to 400 ° C. or more and 600 ° C. or less. Preferably they are 460 degreeC or more and 560 degrees C or less. In addition, these winding temperature is the temperature in the steel plate surface. In addition, the steel plate after the cooling stop is allowed to stand for a predetermined time, so that the surface of the steel plate is raised from the cooling stop temperature (200 ° C. to 400 ° C.) to the coiling temperature (400 ° C. to 600 ° C.) by reheating.
表1に示す組成のスラブ(連続鋳造鋳片、肉厚:220mm)を、表2に示す温度に再加熱し、粗圧延後、表2に示す条件でデスケーリングし、表2に示す仕上げ圧延条件で熱間圧延を施し、熱間圧延終了後、表2に示す冷却条件で冷却し、表2に示す巻取り温度で所定の寸法(幅:1500mm)のコイルに巻取り、表2に示す板厚の熱延鋼板(鋼帯)とした。
得られた熱延鋼板から試験片を採取し、以下に記載の組織観察、鋼板表面酸化鉄皮膜の厚さ測定、硬さ試験、引張試験、衝撃試験および曲げ試験を実施した。
A slab having the composition shown in Table 1 (continuous cast slab, wall thickness: 220 mm) is reheated to the temperature shown in Table 2, rough-rolled, descaled under the conditions shown in Table 2, and finish-rolled as shown in Table 2. Hot rolling is performed under the conditions, and after the hot rolling is finished, the steel is cooled under the cooling conditions shown in Table 2, wound up in a coil having a predetermined dimension (width: 1500 mm) at the winding temperature shown in Table 2, and shown in Table 2. A hot-rolled steel sheet (steel strip) having a thickness was used.
Test specimens were collected from the obtained hot-rolled steel sheet, and the following structure observation, thickness measurement of the iron oxide film on the steel sheet surface, hardness test, tensile test, impact test, and bending test were performed.
(1)組織観察
熱延鋼板の表面下1.5mm位置、板厚中央位置における組織を、走査型電子顕微鏡SEM(倍率:2000倍)を用いて各板厚位置で3視野以上観察して撮像し、主相である焼戻マルテンサイト(鋼板表面下1.5mm位置)およびベイナイト(板厚中央位置)、板厚中央位置の第二相であるマルテンサイト、残留オーステナイトの面積比率を測定した。
なお、板厚中央位置における残留オーステナイトの面積比率は、X線回折により求めた。具体的には、熱延鋼板から、板面に平行にX線回折用試験片を採取し、研削および研磨(化学研磨)し、研磨後の試験片表面を鋼板の板厚(1/2)t位置とした。その後、研磨後の試験片について、X線回折装置でMoのKα線を用いてbcc鉄の(200)、(211)、(220)面とfcc鉄の(200)、(220)、(311)面の積分強度を測定し、bcc鉄各面からの積分反射強度に占めるfcc鉄各面からの積分反射強度の強度比を求め、これを残留オーステナイトの面積比率とした。
また、板厚中央位置におけるマルテンサイト面積比率は、走査型電子顕微鏡の画像上で塊状かつ表面が平滑な領域をマルテンサイトと残留オーステナイトの合計とし、マルテンサイトと残留オーステナイトの合計面積比率を求め、この合計面積比率からX線回折により求めた残留オーステナイトの面積比率を差し引くことにより求めた。
焼戻マルテンサイト(鋼板表面下1.5mm位置)の平均結晶粒径は、撮像したSEM写真を用いて焼戻マルテンサイトの面積を測定するとともに焼戻マルテンサイトの粒を数え、焼戻マルテンサイトの面積と粒数から平均粒面積aを算出し、粒径d=√aとする求積法により求めた。また、マルテンサイト(板厚中央位置)の平均結晶粒径も上記と同じ手法により求めた。
(1) Microstructure observation The microstructure at the position 1.5mm below the surface of the hot-rolled steel sheet and the central position of the plate thickness is imaged by observing three or more fields of view at each plate thickness position using a scanning electron microscope SEM (magnification: 2000 times). The area ratios of tempered martensite (1.5 mm position below the steel sheet surface) and bainite (plate thickness center position) as the main phase, martensite as the second phase at the sheet thickness center position, and retained austenite were measured.
The area ratio of retained austenite at the center of the plate thickness was determined by X-ray diffraction. Specifically, a specimen for X-ray diffraction is taken from a hot-rolled steel sheet parallel to the plate surface, ground and polished (chemical polishing), and the surface of the polished specimen is the thickness of the steel sheet (1/2) t position. Then, for the specimen after polishing, the (200), (211), (220) face of bcc iron and (200), (220), (311) of fcc iron using Mo Kα ray with an X-ray diffractometer. ) The integrated intensity of the surface was measured, the intensity ratio of the integrated reflection intensity from each surface of fcc iron to the integrated reflection intensity from each surface of bcc iron was determined, and this was defined as the area ratio of residual austenite.
In addition, the martensite area ratio at the center position of the plate thickness is the sum of martensite and retained austenite in a massive and smooth surface area on the scanning electron microscope image, and the total area ratio of martensite and retained austenite is obtained. The total area ratio was determined by subtracting the area ratio of retained austenite determined by X-ray diffraction.
The average crystal grain size of tempered martensite (1.5mm below the surface of the steel sheet) was measured by measuring the area of tempered martensite using an SEM photograph taken and counting the tempered martensite grains. The average grain area a was calculated from the area and the number of grains, and was obtained by a quadrature method with a grain size d = √a. The average crystal grain size of martensite (plate thickness center position) was also determined by the same method as described above.
(2)鋼板表面の酸化鉄皮膜の厚さ測定
熱延鋼板表面のうち、酸化鉄皮膜の欠損、剥離、皮膜と地鉄界面に空隙の認められない表面位置における組織を、走査型電子顕微鏡SEM(倍率:2000倍)を用いて各板厚位置で10視野観察して撮像し、それぞれの像において酸化鉄皮膜の最大厚さを測定し、測定された最大厚さの10点単純平均として求め、これを熱延鋼板表面の酸化鉄皮膜の厚さとした。
(2) Measurement of the thickness of the iron oxide film on the surface of the steel sheet Scanning electron microscope SEM shows the structure of the surface of the hot-rolled steel sheet where the iron oxide film is deficient, peeled, or where no voids are observed at the interface between the film and the ground iron. (Magnification: 2000 times) using 10 field observations at each plate thickness position, imaged, measured the maximum thickness of the iron oxide film in each image, and determined as the 10-point simple average of the measured maximum thickness This was the thickness of the iron oxide film on the surface of the hot rolled steel sheet.
(3)硬さ測定
熱延鋼板の圧延方向断面について、ビッカース硬さ計(試験力9.8N、荷重1kgf)を用いて硬さHvを測定した。測定位置は、熱延鋼板の表面から板厚方向に1.5mmの位置とした。各位置での硬さ測定はN=5で実施し、得られた測定結果を単純平均して硬さとした。板幅方向測定位置は、片側エッジから25mm位置、板幅方向の1/16、1/8、1/4、1/2、3/4、7/8、15/16位置、および反対側エッジから25mm位置とした。板幅方向のビッカース硬さの変動量ΔHvは、測定された硬さの最大値から最小値を差し引くことにより求めた。
(3) Hardness measurement About the rolling direction cross section of a hot-rolled steel sheet, hardness Hv was measured using the Vickers hardness meter (test force 9.8N, load 1kgf). The measurement position was 1.5 mm in the thickness direction from the surface of the hot-rolled steel sheet. Hardness measurement at each position was performed at N = 5, and the obtained measurement results were simply averaged to obtain hardness. Sheet width direction measurement position is 25mm from one edge, 1/16, 1/8, 1/4, 1/2, 3/4, 7/8, 15/16 position in the sheet width direction, and opposite edge The position was 25 mm. The fluctuation amount ΔHv of the Vickers hardness in the sheet width direction was obtained by subtracting the minimum value from the maximum value of the measured hardness.
(4)引張試験
熱延鋼板の板厚中央位置から、圧延方向に直交する方向(C方向)が長手方向となるように、平板状の全厚引張試験片(板厚:全厚、平行部長さ:60mm、ゲージ間距離:50mm、ゲージ部幅:38mm)を採取し、ASTM E8M−04の規定に準拠して、室温で引張試験を実施し、引張強さTSを求めた。熱延鋼板の引張強さが650MPa以上である場合を、「高強度熱延鋼板」と評価した。
(4) Tensile test Flat full thickness tensile test piece (plate thickness: full thickness, parallel part length) so that the direction perpendicular to the rolling direction (C direction) is the longitudinal direction from the plate thickness center position of the hot rolled steel plate (60 mm, distance between gauges: 50 mm, gauge width: 38 mm), and a tensile test was carried out at room temperature in accordance with the provisions of ASTM E8M-04 to determine the tensile strength TS. The case where the tensile strength of the hot-rolled steel sheet was 650 MPa or more was evaluated as “high-strength hot-rolled steel sheet”.
(5)シャルピー衝撃試験
熱延鋼板の板厚中央位置から、圧延方向に直交する方向(C方向)が長手方向となるようにVノッチ試験片(長さ55mm×高さ10mm×幅10mm)を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、延性−脆性破面遷移温度(℃)を求めた。なお、試験片は3本とし、得られた延性−脆性破面遷移温度の算術平均を求め、その鋼板の延性−脆性破面遷移温度vTrsとした。vTrsが−80℃以下である場合を「靭性が良好である」と評価した。
(5) Charpy impact test V-notch test piece (length 55mm x height 10mm x width 10mm) so that the direction perpendicular to the rolling direction (C direction) is the longitudinal direction from the center of the thickness of the hot-rolled steel sheet The sample was collected and subjected to a Charpy impact test in accordance with the provisions of JIS Z 2242 to obtain a ductile-brittle fracture surface transition temperature (° C.). In addition, the test piece was set to three, the arithmetic average of the obtained ductility-brittle fracture surface transition temperature was calculated | required, and it was set as the ductility-brittle fracture surface transition temperature vTrs of the steel plate. The case where vTrs was −80 ° C. or less was evaluated as “good toughness”.
(6)曲げ試験
熱延鋼板の幅1/4位置から、圧延方向に直交する方向(C方向)が長手方向となるようにJIS Z 2248の1号曲げ試験片を採取し、曲げ半径/板厚=2.0の180°U曲げ試験を実施した。曲げ外表面を目視で観察し、割れ(クラック、毛割れ)の発生が観察されない場合を「曲げ性が良好である」と評価した。
以上により得られた結果を、表3に示す。
(6) Bending test JIS Z 2248 No. 1 bending test piece was taken from the 1/4 position of the width of the hot-rolled steel sheet so that the direction perpendicular to the rolling direction (C direction) was the longitudinal direction, and the bending radius / plate A 180 ° U bending test with a thickness of 2.0 was performed. The outer surface of the bend was visually observed, and the case where no occurrence of cracks (cracks, hair cracks) was observed was evaluated as “bendability was good”.
The results obtained as described above are shown in Table 3.
表3に示すように、発明例の熱延鋼板は、曲げ性および靭性(低温靭性)がいずれも良好であった。これに対し、比較例の熱延鋼板は、曲げ性および靭性(低温靭性)のいずれか一方、或いは双方において、十分な特性が得られなかった。 As shown in Table 3, the hot-rolled steel sheet of the invention example was good in both bendability and toughness (low temperature toughness). On the other hand, the hot rolled steel sheet of the comparative example could not obtain sufficient characteristics in either one or both of bendability and toughness (low temperature toughness).
Claims (3)
C :0.020%以上0.080%以下、 Si:0.05%以上0.50%以下、
Mn:1.20%以上2.20%以下、 P :0.001%以上0.020%以下、
S :0.0001%以上0.0050%以下、 Al:0.005%以上0.050%以下、
N :0.0010%以上0.0060%以下、 Nb:0.040%以上0.080%以下、
Mo:0.01%以上0.50%以下、 Ti:0.005%以上0.050%以下、
Cr:0.01%以上0.50%以下、 Ca:0.0005%以上0.0050%以下
を含有し、残部がFeおよび不可避的不純物からなる組成を有し、
鋼板表面から板厚方向1.5mmの位置において、焼戻マルテンサイト相の面積比率が90%以上100%以下かつ該焼戻マルテンサイト相の平均結晶粒径が1.0μm以上5.0μm以下である組織を有し、
鋼板表面から板厚方向1.5mmの位置において、板幅方向のビッカース硬さの変動量ΔHvが50以下であり、
鋼板の板厚中央位置において、ベイナイト相の面積比率が90%以上98%以下、マルテンサイト相の面積比率が1%以上5%以下かつ該マルテンサイト相の平均結晶粒径が0.5μm以上5.0μm以下、残留オーステナイト相の面積比率が1%以上5%以下である組織を有し、
鋼板表面の酸化鉄皮膜の厚さが0.1μm以上10μm以下であることを特徴とする高強度熱延鋼板。 % By mass
C: 0.020% to 0.080%, Si: 0.05% to 0.50%,
Mn: 1.20% or more and 2.20% or less, P: 0.001% or more and 0.020% or less,
S: 0.0001% to 0.0050%, Al: 0.005% to 0.050%,
N: 0.0010% to 0.0060%, Nb: 0.040% to 0.080%,
Mo: 0.01% to 0.50%, Ti: 0.005% to 0.050%,
Cr: 0.01% or more and 0.50% or less, Ca: 0.0005% or more and 0.0050% or less, with the balance being composed of Fe and inevitable impurities,
A structure in which the area ratio of the tempered martensite phase is 90% or more and 100% or less and the average crystal grain size of the tempered martensite phase is 1.0 μm or more and 5.0 μm or less at a position 1.5 mm from the steel sheet surface. Have
At a position 1.5 mm from the steel sheet surface in the plate thickness direction, the fluctuation amount ΔHv of the Vickers hardness in the plate width direction is 50 or less,
At the center of the thickness of the steel sheet, the area ratio of the bainite phase is 90% to 98%, the area ratio of the martensite phase is 1% to 5%, and the average crystal grain size of the martensite phase is 0.5 μm to 5.0 μm. Hereinafter, it has a structure in which the area ratio of the retained austenite phase is 1% or more and 5% or less,
A high-strength hot-rolled steel sheet, wherein the thickness of the iron oxide film on the steel sheet surface is 0.1 μm or more and 10 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014068622A JP6135577B2 (en) | 2014-03-28 | 2014-03-28 | High strength hot rolled steel sheet and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014068622A JP6135577B2 (en) | 2014-03-28 | 2014-03-28 | High strength hot rolled steel sheet and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015190015A true JP2015190015A (en) | 2015-11-02 |
JP6135577B2 JP6135577B2 (en) | 2017-05-31 |
Family
ID=54424783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014068622A Active JP6135577B2 (en) | 2014-03-28 | 2014-03-28 | High strength hot rolled steel sheet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6135577B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017512905A (en) * | 2014-03-25 | 2017-05-25 | ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG | Method for producing high strength flat steel products |
WO2018117509A1 (en) * | 2016-12-21 | 2018-06-28 | 주식회사 포스코 | Ultra-high strength steel having low yield ratio and method for manufacturing same |
KR20180085754A (en) * | 2015-12-22 | 2018-07-27 | 제이에프이 스틸 가부시키가이샤 | High-strength steel plate and production method for same |
CN109680129A (en) * | 2019-02-22 | 2019-04-26 | 武汉钢铁有限公司 | A kind of 500MPa grades of cold rolling micro-alloy high-strength steel and preparation method thereof |
KR20190109459A (en) * | 2017-02-17 | 2019-09-25 | 제이에프이 스틸 가부시키가이샤 | High strength hot rolled steel sheet and its manufacturing method |
JP2020525652A (en) * | 2017-07-06 | 2020-08-27 | ポスコPosco | Ultra-high-strength hot-rolled steel sheet with excellent surface quality with little material variation and method for producing the same |
JP2021507107A (en) * | 2017-12-22 | 2021-02-22 | ポスコPosco | High-strength hot-rolled steel sheet with excellent bendability and low-temperature toughness and its manufacturing method |
KR20220066348A (en) * | 2019-12-09 | 2022-05-24 | 닛폰세이테츠 가부시키가이샤 | hot rolled steel |
CN114599813A (en) * | 2019-12-09 | 2022-06-07 | 日本制铁株式会社 | Hot rolled steel plate |
WO2022209839A1 (en) * | 2021-03-31 | 2022-10-06 | Jfeスチール株式会社 | High-strength steel sheet and method for manufacturing same |
CN115244204A (en) * | 2020-03-11 | 2022-10-25 | 日本制铁株式会社 | Hot rolled steel plate |
CN115896637A (en) * | 2022-12-28 | 2023-04-04 | 浦项(张家港)不锈钢股份有限公司 | Preparation method of super austenitic stainless steel hot-rolled coil |
WO2023090735A1 (en) * | 2021-11-22 | 2023-05-25 | 주식회사 포스코 | Hot-rolled steel sheet and method for manufacturing same |
US12134811B2 (en) | 2017-12-22 | 2024-11-05 | Posco Co., Ltd | High-strength hot-rolled steel sheet having excellent bendability and low-temperature and method for manufacturing same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0967648A (en) * | 1995-08-31 | 1997-03-11 | Kawasaki Steel Corp | Hot rolled steel sheet and its production |
JP2003293075A (en) * | 2002-04-09 | 2003-10-15 | Jfe Steel Kk | High strength steel pipe stock having low surface hardness and yield ratio after pipe making and production method thereof |
JP2010196155A (en) * | 2009-01-30 | 2010-09-09 | Jfe Steel Corp | Thick, high tensile-strength hot-rolled steel sheet having excellent low temperature toughness and manufacturing method therefor |
JP2010196164A (en) * | 2009-01-30 | 2010-09-09 | Jfe Steel Corp | Thick, high-tension, hot-rolled steel sheet excellent in low-temperature toughness, and manufacturing method therefor |
JP2013007101A (en) * | 2011-06-24 | 2013-01-10 | Kobe Steel Ltd | Method for manufacturing high strength steel plate excelling in balance of low-temperature toughness and strength, and control method for the same |
-
2014
- 2014-03-28 JP JP2014068622A patent/JP6135577B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0967648A (en) * | 1995-08-31 | 1997-03-11 | Kawasaki Steel Corp | Hot rolled steel sheet and its production |
JP2003293075A (en) * | 2002-04-09 | 2003-10-15 | Jfe Steel Kk | High strength steel pipe stock having low surface hardness and yield ratio after pipe making and production method thereof |
JP2010196155A (en) * | 2009-01-30 | 2010-09-09 | Jfe Steel Corp | Thick, high tensile-strength hot-rolled steel sheet having excellent low temperature toughness and manufacturing method therefor |
JP2010196164A (en) * | 2009-01-30 | 2010-09-09 | Jfe Steel Corp | Thick, high-tension, hot-rolled steel sheet excellent in low-temperature toughness, and manufacturing method therefor |
JP2013007101A (en) * | 2011-06-24 | 2013-01-10 | Kobe Steel Ltd | Method for manufacturing high strength steel plate excelling in balance of low-temperature toughness and strength, and control method for the same |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017512905A (en) * | 2014-03-25 | 2017-05-25 | ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG | Method for producing high strength flat steel products |
KR102054608B1 (en) * | 2015-12-22 | 2019-12-10 | 제이에프이 스틸 가부시키가이샤 | High-strength steel plate and production method for same |
KR20180085754A (en) * | 2015-12-22 | 2018-07-27 | 제이에프이 스틸 가부시키가이샤 | High-strength steel plate and production method for same |
US11085107B2 (en) | 2015-12-22 | 2021-08-10 | Jfe Steel Corporation | High-strength steel sheet and method of manufacturing the same |
WO2018117509A1 (en) * | 2016-12-21 | 2018-06-28 | 주식회사 포스코 | Ultra-high strength steel having low yield ratio and method for manufacturing same |
KR20180072500A (en) * | 2016-12-21 | 2018-06-29 | 주식회사 포스코 | Ultra high strength steel having low yield ratio method for manufacturing the same |
KR101879082B1 (en) * | 2016-12-21 | 2018-07-16 | 주식회사 포스코 | Ultra high strength steel having low yield ratio method for manufacturing the same |
US11603571B2 (en) | 2017-02-17 | 2023-03-14 | Jfe Steel Corporation | High-strength hot-rolled steel sheet and method for producing the same |
CN110312814A (en) * | 2017-02-17 | 2019-10-08 | 杰富意钢铁株式会社 | High tensile hot rolled steel sheet and its manufacturing method |
EP3584337A4 (en) * | 2017-02-17 | 2019-12-25 | JFE Steel Corporation | High strength hot-rolled steel sheet and method for producing same |
CN110312814B (en) * | 2017-02-17 | 2021-10-01 | 杰富意钢铁株式会社 | High-strength hot-rolled steel sheet and method for producing same |
KR20190109459A (en) * | 2017-02-17 | 2019-09-25 | 제이에프이 스틸 가부시키가이샤 | High strength hot rolled steel sheet and its manufacturing method |
KR102258320B1 (en) | 2017-02-17 | 2021-05-28 | 제이에프이 스틸 가부시키가이샤 | High-strength hot rolled steel sheet and its manufacturing method |
JP2020525652A (en) * | 2017-07-06 | 2020-08-27 | ポスコPosco | Ultra-high-strength hot-rolled steel sheet with excellent surface quality with little material variation and method for producing the same |
US11421295B2 (en) | 2017-07-06 | 2022-08-23 | Posco | Ultra high strength hot rolled steel sheet having low deviation of mechanical property and excellent surface quality, and method for manufacturing same |
JP2021507107A (en) * | 2017-12-22 | 2021-02-22 | ポスコPosco | High-strength hot-rolled steel sheet with excellent bendability and low-temperature toughness and its manufacturing method |
JP7032537B2 (en) | 2017-12-22 | 2022-03-08 | ポスコ | High-strength hot-rolled steel sheet with excellent bendability and low-temperature toughness and its manufacturing method |
US12134811B2 (en) | 2017-12-22 | 2024-11-05 | Posco Co., Ltd | High-strength hot-rolled steel sheet having excellent bendability and low-temperature and method for manufacturing same |
US11732339B2 (en) | 2017-12-22 | 2023-08-22 | Posco Co., Ltd | High-strength hot-rolled steel sheet having excellent bendability and low-temperature and method for manufacturing same |
CN109680129A (en) * | 2019-02-22 | 2019-04-26 | 武汉钢铁有限公司 | A kind of 500MPa grades of cold rolling micro-alloy high-strength steel and preparation method thereof |
KR20220066348A (en) * | 2019-12-09 | 2022-05-24 | 닛폰세이테츠 가부시키가이샤 | hot rolled steel |
CN114599813A (en) * | 2019-12-09 | 2022-06-07 | 日本制铁株式会社 | Hot rolled steel plate |
KR102714884B1 (en) | 2019-12-09 | 2024-10-11 | 닛폰세이테츠 가부시키가이샤 | hot rolled steel plate |
EP4074855A4 (en) * | 2019-12-09 | 2023-01-04 | Nippon Steel Corporation | Hot-rolled steel sheet |
EP4074854A4 (en) * | 2019-12-09 | 2023-01-04 | Nippon Steel Corporation | Hot-rolled steel sheet |
CN115244204A (en) * | 2020-03-11 | 2022-10-25 | 日本制铁株式会社 | Hot rolled steel plate |
CN115244204B (en) * | 2020-03-11 | 2023-05-12 | 日本制铁株式会社 | Hot rolled steel sheet |
JP7168137B1 (en) * | 2021-03-31 | 2022-11-09 | Jfeスチール株式会社 | High-strength steel plate and its manufacturing method |
WO2022209839A1 (en) * | 2021-03-31 | 2022-10-06 | Jfeスチール株式会社 | High-strength steel sheet and method for manufacturing same |
WO2023090735A1 (en) * | 2021-11-22 | 2023-05-25 | 주식회사 포스코 | Hot-rolled steel sheet and method for manufacturing same |
CN115896637A (en) * | 2022-12-28 | 2023-04-04 | 浦项(张家港)不锈钢股份有限公司 | Preparation method of super austenitic stainless steel hot-rolled coil |
CN115896637B (en) * | 2022-12-28 | 2024-03-19 | 浦项(张家港)不锈钢股份有限公司 | Preparation method of super austenitic stainless steel hot rolled coil |
Also Published As
Publication number | Publication date |
---|---|
JP6135577B2 (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6135577B2 (en) | High strength hot rolled steel sheet and method for producing the same | |
JP5783229B2 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
EP3246427B1 (en) | High strength electric resistance welded steel pipe and manufacturing method therefor | |
JP6146358B2 (en) | High strength hot rolled steel sheet and method for producing the same | |
EP2799575B1 (en) | Hot rolled high tensile strength steel sheet and method for manufacturing same | |
JP6354910B2 (en) | Hot-rolled steel sheet for thick-walled high-strength line pipe, welded steel pipe for thick-walled, high-strength line pipe, and manufacturing method thereof | |
JP5605526B2 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
EP2871254B1 (en) | Hot-rolled steel sheet and method for manufacturing same | |
KR20190084092A (en) | As-rolled steel pipe for line pipe | |
JP6682785B2 (en) | Steel plate having excellent sour resistance and method of manufacturing the same | |
JP6070642B2 (en) | Hot-rolled steel sheet having high strength and excellent low-temperature toughness and method for producing the same | |
JPWO2018235244A1 (en) | Azroll ERW pipe for line pipe and hot rolled steel sheet | |
JP5742123B2 (en) | High-tensile hot-rolled steel sheet for high-strength welded steel pipe for line pipe and method for producing the same | |
JP2012132088A (en) | Thick hot-rolled steel sheet for square steel tube for building structure member, and method for manufacturing the same | |
JP2015190026A (en) | Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor | |
JP2010084171A (en) | High toughness welded steel pipe having high crushing strength and method for producing the same | |
JP2013049895A (en) | High-strength welded steel pipe having high uniform elongation characteristic and excellent in weld zone low-temperature toughness and method for manufacturing the same | |
JP6237920B2 (en) | Welded steel pipe, thick steel plate and method for producing them | |
JP2005314796A (en) | High strength hot rolled steel sheet having excellent elongation property, stretch flange property and tensile fatigue property, and its production method | |
JP5640792B2 (en) | High toughness UOE steel pipe excellent in crushing strength and manufacturing method thereof | |
JP6123734B2 (en) | Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and method for manufacturing the same | |
WO2021038632A1 (en) | Electric-resistance-welded steel pipe for line pipes | |
WO2024100939A1 (en) | Hot-rolled steel sheet, electric resistance welded steel pipe, rectangular steel pipe, line pipe, and building structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151027 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170410 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6135577 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |