JP4319948B2 - High carbon cold-rolled steel sheet with excellent stretch flangeability - Google Patents

High carbon cold-rolled steel sheet with excellent stretch flangeability Download PDF

Info

Publication number
JP4319948B2
JP4319948B2 JP2004168059A JP2004168059A JP4319948B2 JP 4319948 B2 JP4319948 B2 JP 4319948B2 JP 2004168059 A JP2004168059 A JP 2004168059A JP 2004168059 A JP2004168059 A JP 2004168059A JP 4319948 B2 JP4319948 B2 JP 4319948B2
Authority
JP
Japan
Prior art keywords
less
grain size
ferrite
crystal grain
stretch flangeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004168059A
Other languages
Japanese (ja)
Other versions
JP2005344196A (en
Inventor
良久 高田
志郎 佐柳
一行 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004168059A priority Critical patent/JP4319948B2/en
Publication of JP2005344196A publication Critical patent/JP2005344196A/en
Application granted granted Critical
Publication of JP4319948B2 publication Critical patent/JP4319948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は自動車の駆動系等の機械構造部品に用いられる伸びフランジ性の優れた高炭素冷延鋼板に関する。   The present invention relates to a high carbon cold-rolled steel sheet having excellent stretch flangeability used for machine structural parts such as a drive system of an automobile.

高炭素鋼板は、通常、切削や、打ち抜き、曲げ、絞り等の加工により、所定の寸法形状に成形後、焼き入れ、焼き戻し等の熱処理を行い、必要とする強度に調質してから、目的の用途に適用することが多い。また、複数の部品を溶接等で接合して製作していた部品を転造加工、FCF加工等による一体で成形する方法が広まりつつある。これらの部品の中には伸びフランジ性が要求されるものがある。高炭素鋼板は焼き入れ焼き戻し等の熱処理により、硬さ等の必要特性を調質するため、必然的にC添加量が高くなる。加工性を向上させるのに一般に炭化物の球状化する方法が用いられているが、しかし、高炭素のため、鋼中に硬い炭化物が多数存在するので、伸びフランジ加工には向いていない。このため、伸びフランジ性の優れた高炭素鋼板の要求がある。同時に、焼き入れ・焼き戻しを行なって用いられるので、焼入れ後の靭性、焼き入れ・焼き戻しによる寸法変化の少ないことも要求される。   High carbon steel sheet is usually processed by cutting, punching, bending, drawing, etc. to a predetermined size and shape, then subjected to heat treatment such as quenching and tempering, and tempered to the required strength. It is often applied to the intended use. In addition, a method of integrally forming parts produced by joining a plurality of parts by welding or the like by rolling or FCF processing is becoming widespread. Some of these parts require stretch flangeability. The high carbon steel sheet is tempered with necessary characteristics such as hardness by heat treatment such as quenching and tempering, and therefore the amount of C added is inevitably high. In order to improve the workability, a method of spheroidizing carbide is generally used. However, due to high carbon, a large number of hard carbides are present in the steel, so that it is not suitable for stretch flange processing. For this reason, there exists a request | requirement of the high carbon steel plate excellent in stretch flangeability. At the same time, since it is used after quenching and tempering, it is also required that the toughness after quenching and the dimensional change due to quenching and tempering be small.

高炭素冷延鋼板の伸びフランジ加工性を良好にする技術として、特許文献1、特許文献2、特許文献3が開示されている。特許文献1は熱延板を冷延、焼鈍、冷延、焼鈍する工程において、最初の冷延条件、中間焼鈍条件を規定したもので、冷延、焼鈍を繰り返し行う必要があり、製造コストが高くなる。特許文献2は特殊な焼鈍サイクルを採用することで、伸びフランジ性を改善する技術である。この技術は若干の伸びフランジを改善する効果があるが、厳しい伸びフランジ加工や、伸びフランジ加工した部分を更に増肉等の加工を行うような製品には適用できない。特許文献3は炭化物の分散度と炭化物平均粒径を特定したもので、その技術思想は、炭化物粒径を大きくし、均一に分散させ、加工時の炭化物に起因するマクロクラックを少なくしようとするもので、従来技術の範疇にあり、厳しい伸びフランジ加工や、伸びフランジ加工した部分を更に増肉等の加工を行うような製品には適用できない。このように従来の開示技術は、炭化物のサイズを制御し、伸びフランジ性を改良させようとする技術で、抜本的に伸びフランジ性を向上させる技術でないため、厳しい伸びフランジ加工や、伸びフランジ加工した部分を更に増肉等の二次加工を行うような製品には適用できなく、加工工程を抜本的に省略するまでに至っていない、このため、伸びフランジ性の優れた高炭素鋼板の新しい技術の開発が望まれている。
特開平7−166243号公報 特開平11−140544号公報 特開2001−220643号公報
Patent Document 1, Patent Document 2, and Patent Document 3 are disclosed as techniques for improving stretch flange workability of a high-carbon cold-rolled steel sheet. Patent Document 1 defines the initial cold rolling conditions and intermediate annealing conditions in the steps of cold rolling, annealing, cold rolling, and annealing a hot-rolled sheet, and it is necessary to repeat cold rolling and annealing, and the manufacturing cost is low. Get higher. Patent Document 2 is a technique for improving stretch flangeability by adopting a special annealing cycle. Although this technique has an effect of slightly improving the stretch flange, it cannot be applied to a product that is subjected to severe stretch flange processing or further processing such as increasing the thickness of the stretch flange processed portion. Patent Document 3 specifies the degree of dispersion of carbide and the average particle size of carbide, and its technical idea is to increase the particle size of the carbide, disperse it uniformly, and to reduce macro cracks caused by the carbide during processing. However, it is in the category of the prior art, and cannot be applied to products that are subjected to severe stretch flange processing or further processing such as increasing the thickness of stretch flange processed portions. As described above, the conventional disclosed technique is a technique for controlling the size of carbide and improving stretch flangeability, and is not a technique for drastically improving stretch flangeability. This is not applicable to products that are subjected to secondary processing such as thickening, and the processing process has not been drastically omitted. Therefore, a new technology for high-carbon steel sheets with excellent stretch flangeability Development is desired.
JP-A-7-166243 Japanese Patent Laid-Open No. 11-140544 JP 2001-220463 A

本発明が解決しようとする課題は、焼き入れ前には伸びフランジ性が優れ、焼き入れ後には所定の硬さと靭性が得られ、しかも焼き入れ歪の小さな高炭素冷延鋼板を提供することにある。   The problem to be solved by the present invention is to provide a high-carbon cold-rolled steel sheet that has excellent stretch flangeability before quenching, can obtain a predetermined hardness and toughness after quenching, and has low quenching strain. is there.

本発明者らは高炭素鋼板の伸びフランジ性と焼き入れ性について鋭意検討した結果、鋼の組成およびフェライト粒径、介在物の形状を制御することにより、伸びフランジ性が優れ、かつ焼入れ性にも優れた高炭素冷延鋼板が得られることを知見した。
その要旨は
)「質量%でC:0.20〜0.60%、S:0.005%以下、Ti:0.001〜0.050%、B:0.0003〜0.0050%、Si:0.50%以下、Mn:2.0%以下、P:0.03%以下、Al:0.08%以下、N:0.010%以下、Cr:1.0%以内、残部Feおよび不可避的不純物の組成で、フェライト平均結晶粒径が5μm以上18.3μm以下で、フェライト結晶粒径の標準偏差を平均粒径で割った値が0.14以上0.50以下であることを特徴とする伸びフランジ性の優れた高炭素冷延鋼板。」、
)「質量%でC:0.20〜0.60%、S:0.005%以下、Ti:0.001〜0.050%、B:0.0003〜0.0050%、Si:0.50%以下、Mn:2.0%以下、P:0.03%以下、Al:0.08%以下、N:0.010%以下、Cr:1.0%以内、残部Feおよび不可避的不純物の組成で、フェライト平均結晶粒径が5μm以上18.3μm以下で、フェライト結晶粒径の標準偏差を平均粒径で割った値が0.14以上0.50以下、かつ介在物の形状比が2.0以下であることを特徴とする伸びフランジ性の優れた高炭素冷延鋼板。」にある。
As a result of intensive studies on the stretch flangeability and hardenability of the high carbon steel sheet, the inventors of the present invention have excellent stretch flangeability and hardenability by controlling the steel composition, ferrite grain size, and inclusion shape. It was also found that an excellent high carbon cold rolled steel sheet can be obtained.
The gist is ( 1 ) "mass% C: 0.20-0.60%, S: 0.005% or less, Ti: 0.001-0.050 %, B: 0.0003-0.0050% , Si: 0.50% or less, Mn: 2.0% or less, P: 0.03% or less, Al: 0.08% or less, N: 0.010% or less, Cr: within 1.0%, balance The composition of Fe and inevitable impurities, the ferrite average crystal grain size is 5 μm or more and 18.3 μm or less, and the value obtained by dividing the standard deviation of the ferrite crystal grain size by the average grain size is 0.14 or more and 0.50 or less. High carbon cold-rolled steel sheet with excellent stretch flangeability, characterized by
( 2 ) "C: 0.20 to 0.60% by mass, S: 0.005% or less, Ti: 0.001 to 0.050%, B: 0.0003 to 0.0050%, Si: 0.50% or less, Mn: 2.0% or less, P: 0.03% or less, Al: 0.08% or less, N: 0.010% or less, Cr: within 1.0%, remaining Fe and inevitable The average grain size of the ferrite is 5 μm or more and 18.3 μm or less, the value obtained by dividing the standard deviation of the ferrite crystal grain size by the average grain size is 0.14 or more and 0.50 or less, and the shape of the inclusion A high carbon cold-rolled steel sheet with excellent stretch flangeability, characterized in that the ratio is 2.0 or less. "

まず、本発明の重要な構成要因であるフェライト平均結晶粒径が5.0μm以上で、フェライト結晶粒の標準偏差度を0.50以下にすることにより、優れた伸びフランジ性が得られることを知見した事実について説明する。
S45C(C:0.45%、Si:0.17%、Mn:0.78%、P:0.012%、S:0.003%、Cr:0.08%、Al:0.032%、N:0.0035%、なお、%表示は全て質量%であり、以下同じ。)のスラブを1250℃に加熱後、6.0mm厚に圧下スケジュール、仕上げ温度、熱延後の冷却条件を種々に変えて熱延した。この熱延板を酸洗後に600〜720℃×24hrの焼鈍後に冷延後の板厚が2.0mmになるように冷間圧延率に見合った板厚まで、表面から研削した鋼板を、2.0mm厚まで冷延した。この冷延板に対し680℃×12hrの焼鈍を行った。この鋼板から、150角の穴広げ試験片、および断面のミクロ組織観察用試験片を採取した。穴広げ試験片は板の中央部にクリアランス12%で10φの穴を打ち抜き、この穴に60度の円錐ポンチで押し上げ、打ち抜き面に板厚を貫通するクラックが生じた時に試験を止め、そのときの穴径と初期穴径の差を初期穴径で割り、100分率表示したものを穴広げ率とした。フェライト平均粒径はJISで規定される結晶粒度番号を求め、フェライト粒が球であると仮定し、その直径をフェライト平均結晶粒径(dm)とした。フェライト結晶粒径の標準偏差はフェライト結晶粒径を測定した同一観察面とし、各々のフェライト結晶粒の面積を求め、フェライトが円と仮定し、その直径に4/πをかけ、その標準偏差(σ)を求め、標準偏差を平均粒径で割ったものを標準偏差度(σ/dm)とした。図1にフェライト平均結晶粒径が7〜9μmと16〜18μmの標準偏差度と穴広げ率の関係を示した。
First, it is possible to obtain excellent stretch flangeability by setting the ferrite average crystal grain size, which is an important constituent factor of the present invention, to 5.0 μm or more and the standard deviation degree of ferrite crystal grains to 0.50 or less. Explain the findings.
S45C (C: 0.45%, Si: 0.17%, Mn: 0.78%, P: 0.012%, S: 0.003%, Cr: 0.08%, Al: 0.032% , N: 0.0035%, and all the% indications are mass%, and the same shall apply hereinafter.) After heating the slab to 1250 ° C, the reduction schedule to 6.0 mm thickness, finishing temperature, and cooling conditions after hot rolling It was hot rolled with various changes. After this hot-rolled sheet was pickled, it was annealed at 600 to 720 ° C. for 24 hours, and after cold-rolling, a steel plate ground from the surface to a sheet thickness suitable for the cold rolling rate was 2.0 mm. Cold-rolled to a thickness of 0.0 mm. The cold rolled sheet was annealed at 680 ° C. × 12 hours. From this steel plate, a 150-square hole-expanding test piece and a cross-sectional microstructure observation specimen were collected. The hole-expanded test piece was punched with a 10φ hole at the center of the plate with a clearance of 12%, and the hole was pushed up with a conical punch of 60 degrees, and the test was stopped when a crack penetrating the plate thickness occurred on the punched surface. The difference between the hole diameter and the initial hole diameter was divided by the initial hole diameter, and the ratio expressed as 100 minutes was defined as the hole expansion ratio. The average grain size of ferrite was determined by obtaining the grain size number defined by JIS, assuming that the ferrite grains were spheres, and the diameter was defined as the average ferrite grain size (dm). The standard deviation of the ferrite crystal grain size is the same observation plane where the ferrite crystal grain size was measured, the area of each ferrite crystal grain was obtained, the ferrite was assumed to be a circle, the diameter was multiplied by 4 / π, and the standard deviation ( σ) was determined, and the standard deviation obtained by dividing the standard deviation by the average particle diameter was defined as the standard deviation degree (σ / dm). FIG. 1 shows the relationship between the standard deviation degree of the ferrite average crystal grain size of 7 to 9 μm and 16 to 18 μm and the hole expansion rate.

フェライト結晶粒径の標準偏差度が小さくなると、同一フェライト結晶粒径でも穴広げ率が大きくなる。標準偏差度が同じであれば、フェライト平均結晶粒径が大きい鋼板の穴広げ率が高くなる。フェライト結晶平均粒径が5.0μm以上のものについて、フェライト結晶粒径の標準偏差度と穴広げ率の関係を図2に示した。フェライト結晶粒径のバラツキが小さくなると穴広げ率が良好になり、σ/dmが0.50以下で優れた穴広げ率の鋼板が得られる。このことから、良好な伸びフランジ性が得る目的で標準偏差度(σ/dm)を0.50以下に規定した。標準偏差度の好ましい範囲は、同様の理由から0.30以下である。   When the standard deviation degree of the ferrite crystal grain size becomes small, the hole expansion rate becomes large even with the same ferrite crystal grain size. If the standard deviation degree is the same, the hole expansion rate of a steel plate having a large ferrite average crystal grain size is increased. FIG. 2 shows the relationship between the standard deviation degree of the ferrite crystal grain size and the hole expansion rate when the ferrite crystal average grain size is 5.0 μm or more. When the variation in the ferrite crystal grain size becomes small, the hole expansion ratio becomes good, and a steel sheet having an excellent hole expansion ratio when σ / dm is 0.50 or less is obtained. From this, the standard deviation degree (σ / dm) was specified to be 0.50 or less for the purpose of obtaining good stretch flangeability. A preferable range of the standard deviation is 0.30 or less for the same reason.

以下本発明を構成する要件について説明する。
Cは加工性を劣化させる元素であるが、焼き入れ・焼き戻しをすることを目的とするために、最低限、0.20%は必要である。一方、C量が0.60%を超えると硬質になる上に、炭化物量が多くなりすぎ、十分な伸びフランジ性が得られなくなる。
SはMnS等の介在物となり、伸びフランジ性を劣化させるので、0.005%以下にする必要がある。
Hereinafter, requirements constituting the present invention will be described.
C is an element that deteriorates workability, but is 0.20% at a minimum for the purpose of quenching and tempering. On the other hand, if the amount of C exceeds 0.60%, it becomes hard, and the amount of carbide becomes too large, and sufficient stretch flangeability cannot be obtained.
Since S becomes an inclusion such as MnS and deteriorates stretch flangeability, it is necessary to make it 0.005% or less.

Bは焼き入れ性を高める元素であることが良く知られている。本発明でも、C量が低い鋼や、特に焼き入れ性を必要とする場合に、0.0003〜0.0050%の範囲で添加する。0.0003%未満では焼き入れ性を高める効果を安定して発揮できない。一方、0.0050%を超える添加は鋼を製造するときに、鋼板の欠陥、疵の原因となり、製品歩留りを低下させ製造コストの上昇をまねく。好ましい範囲は、同様の理由から、0.0005から0.0030%である。
TiはBを添加する場合に、Bの添加効果を発揮させるため、0.01〜0.050%の範囲で添加する。
It is well known that B is an element that enhances hardenability. Also in the present invention, the steel is added in a range of 0.0003 to 0.0050% when steel with a low amount of C, or particularly when hardenability is required. If it is less than 0.0003%, the effect of improving the hardenability cannot be stably exhibited. On the other hand, addition over 0.0050% causes defects and flaws in the steel sheet when it is produced, which lowers the product yield and increases the production cost. A preferable range is 0.0005 to 0.0030% for the same reason.
Ti is added in the range of 0.01 to 0.050% in order to exhibit the effect of adding B when B is added.

介在物は鋼板組織と同様に伸びフランジ性に影響する要因である。介在物の伸びフランジ性に及ぽす影響は介在物の投影長さで、この長さが大きいほど伸びフランジ性は悪くなる。したがって、同一介在物でも伸展度の大きいものほど伸びフランジが劣化する。このため、介在物の長軸と短軸の比で表される形状比を介在物数100個以上の平均値で2.0以下にする必要がある。   Inclusions are factors that affect stretch flangeability as well as the steel sheet structure. The influence of the inclusion on the stretch flangeability is the projected length of the inclusion, and the longer this length, the worse the stretch flangeability. Therefore, even with the same inclusion, the greater the degree of extension, the worse the stretch flange. For this reason, it is necessary to make the shape ratio represented by the ratio of the major axis and minor axis of inclusions 2.0 or less with an average value of 100 or more inclusions.

フェライト結晶粒径の標準偏差を小さくする制御をすれば、伸びフランジ性が良好になる理由は定かでないが、本発明者等は次のように考えている。伸びフランジ加工前の打ち抜き面は剪断変形され、加工硬化し、伸びフランジ加工前に既にミクロクラックが生じる。これを伸びフランジ加工するとミクロクラックを起点に、大きな割れが生じ、これが伸びフランジ加工限界である。したがって、第一には剪断面のマクロクラックの多少、大小に伸びフランジ性が依存する。第二には、剪断面のマクロクラックがない場合は、伸びフランジは加工の歪をいかに均一に分担するかによって、左右され、不均一な歪分布になると伸びフランジ性は劣化し、均一に歪を分担すると、伸びフランジ性が良好になる。打ち抜き面のマクロクラックは変形量の大きな部分および、変形能の劣る個所から生じる。変形単位はフェライト粒径であり、フェライト粒径が不均一であると小さな応力で変形する大きなフェライト粒部に変形が集中し、変形が変形能を超えるとクラックが生じる。均一な組織では各結晶粒が均等に歪を分担し、クラックの発生を抑制する。同様の挙動が伸びフランジ成型時にも起こり、均一なフェライト粒組織を有する鋼板は、各結晶粒が変形を均一に担い、クラックを生じる歪を高くする。   The reason why the stretch flangeability is improved by controlling the standard deviation of the ferrite crystal grain size to be small is not clear, but the present inventors consider as follows. The punched surface before stretch flange processing is sheared and hardened, and microcracks are already generated before stretch flange processing. When this is stretch-flange processed, a large crack is generated starting from a microcrack, which is the stretch flange processing limit. Therefore, firstly, the stretch flangeability depends on the degree of macro cracks on the shear surface. Second, when there is no macro crack on the shear surface, the stretch flange depends on how uniformly the processing strain is shared, and when the strain distribution becomes uneven, the stretch flangeability deteriorates and the strain is uniformly strained. If this is shared, stretch flangeability becomes good. The macro cracks on the punched surface are generated from a portion having a large deformation amount and a portion having a poor deformability. The deformation unit is a ferrite particle size. If the ferrite particle size is not uniform, the deformation concentrates on a large ferrite grain portion that deforms with a small stress, and if the deformation exceeds the deformability, a crack occurs. In a uniform structure, each crystal grain equally distributes strain and suppresses the generation of cracks. A similar behavior also occurs during stretch flange molding, and in a steel sheet having a uniform ferrite grain structure, each crystal grain uniformly bears deformation and increases the strain causing cracks.

この発明は、伸びフランジ性の優れた高炭素冷延鋼板を得るにあたって、フェライト結晶粒径とその標準偏差度を制御し、併せて、介在物の形状比を特定することで、穴広げ加工でのクラックの発生を抑制できる。穴広げ加工後の据え込み加工を行なっても割れが生じなく、優れた伸びフランジ性を有すると共に、焼入れ後の衝撃性、高周波焼入れ性も優れた高炭素冷延鋼板が提供可能となる。このような高炭素冷延鋼板を用いることにより、自動車の変速機部品等の加工において、加工度を高く取ることができ、その結果、製造工程を省略して低コストで部品等が製造することが可能となり、工業的に極めて有用な発明である。   In this invention, in obtaining a high carbon cold-rolled steel sheet having excellent stretch flangeability, the ferrite crystal grain size and the standard deviation degree are controlled, and at the same time, the shape ratio of inclusions is specified, so that the hole expanding process can be performed. Generation of cracks can be suppressed. It is possible to provide a high-carbon cold-rolled steel sheet that does not crack even if it is subjected to upsetting after hole expansion, has excellent stretch flangeability, and has excellent impact properties after quenching and high-frequency quenchability. By using such a high-carbon cold-rolled steel sheet, it is possible to obtain a high degree of processing in the processing of automobile transmission parts and the like, and as a result, the manufacturing process can be omitted and parts and the like can be manufactured at low cost. This is an industrially extremely useful invention.

この発明に用いる鋼は、C:0.20〜0.60%、S:0.005%以下、Ti:0.010〜0.050%、B:0.0003〜0.0050%のほか、フェライト結晶粒径とその分散、介在物の形状比が2.0以下となるのものであれば良く、他の化学成分のSi、Mn、P、Al、N、Crは通常の範囲で添加すればよく、特に規定する必要はない。これらの元素は他の特性との関係で添加量を決めればよく、特に規定する必要はない。但し、好ましくは、以下のように添加すれば良い。   Steel used in the present invention includes C: 0.20 to 0.60%, S: 0.005% or less, Ti: 0.010 to 0.050%, B: 0.0003 to 0.0050%, The ferrite crystal grain size, its dispersion, and the inclusion shape ratio may be 2.0 or less, and other chemical components such as Si, Mn, P, Al, N, and Cr should be added within a normal range. There is no need to specify it. The amount of these elements may be determined in relation to other characteristics, and need not be specified. However, preferably, it may be added as follows.

Siは添加量が多くなると鋼板を硬質化するので、0.50%以下にすることが好ましい。Mnは、焼き入れ性を高める元素として良く知られているが、過剰に添加すると延性を損なうので、2.0%以下で添加することが好ましい。Pは、加工性を損なうだけでなく、焼き入れ・焼き戻し後の靭性を劣化させるので0.03%以下とすることが好ましい。Alは脱酸元素であるが、添加量が多くなると表面欠陥の原因となりやすいので、0.08%以下とすることが好ましい。Nは、過剰に添加すると延性が劣化するだけでなく、焼き入れ・焼き戻し後の靭性を劣化させるので、0.010%以下とすることが好ましい。Crは焼き入れ性を高める元素であることが知られている。焼き入れ性を特に必要とする場合や、浸炭、窒化処理を行う場合は、1.0%以内で添加することが好ましい。さらに、目的に応じ、通常添加される範囲で、Cu、Ni、Mo、Nb、V、Zr、Ca、Mg等の元素を添加しても良い。また、製造過程で他の不純物が混入しても本発明の特徴を損なわない。   Since Si hardens the steel sheet when the addition amount is large, it is preferable to make it 0.50% or less. Mn is well known as an element that enhances hardenability, but if added excessively, ductility is impaired, so it is preferable to add it at 2.0% or less. P not only impairs workability, but also deteriorates toughness after quenching and tempering, so 0.03% or less is preferable. Al is a deoxidizing element, but if it is added in an increased amount, it tends to cause surface defects. Therefore, it is preferably 0.08% or less. When N is added excessively, not only ductility deteriorates, but also toughness after quenching and tempering deteriorates. Therefore, N is preferably made 0.010% or less. It is known that Cr is an element that enhances hardenability. When hardenability is particularly required, or when carburizing or nitriding is performed, it is preferable to add within 1.0%. Furthermore, elements such as Cu, Ni, Mo, Nb, V, Zr, Ca, and Mg may be added in a range that is usually added according to the purpose. Even if other impurities are mixed in the manufacturing process, the characteristics of the present invention are not impaired.

フェライト粒の標準偏差度を0.50以下に制御することは、言い換えると組織を均一に制御することである。通常の条件で製造しても本発明の鋼板は得られない、したがって、鋼板の製造工程で細心の注意をはらって製造条件を選択する必要がある。
本発明の鋼は転炉あるいは電気炉、必要に応じ、真空脱ガス処理を用いて、成分調整して溶製される。このようにして、成分調整された高炭素鋼は、造塊・分塊圧延または連続鋳造により、スラブとする。このスラブに成分の偏析が大きいと注意深く製造条件を選んで製造しても、組織に不均一が生じ、本発明の要件を満足する鋼板を得ることは困難である。このため、スラブの製造に際しては、電磁攪拌、未凝固域での軽圧下等の偏析を低減する方法を採用することが好ましい。このスラブは熱間圧延に供されるが、通常の熱間圧延を行っても、本発明の特徴である、フェライト結晶粒径の分散を小さくすることは困難である。熱延加熱温度は特に本発明の特徴に大きく影響しないので、1050℃以上で行う。冷延・焼鈍後のフェライト結晶粒径のバラツキを小さくするためには、熱延板の組織を均一にすることが重要である。熱延板の組織の均一化は、例えば、仕上熱延前のオーステナイト粒を可能な限り細粒の圧延と温度履歴を選択する、仕上熱延では、Ar3点温度直上温度域で累積圧下量を大きくする、鋼板内部と表面層の組織差を小さくするために仕上げ熱延を潤滑圧延する等がある。また、熱延後の冷却条件も熱延組織の均一化、ひいては冷延焼鈍後の組織のバラツキを小さくするのに重要な要因である。例えば、フェライト変態温度域は急冷し、パーライト変態温度域は変態発熱と注水による抜熱の熱量をバランスさせ、パーライト変態を一定温度で行う温度履歴の冷却の方法が選ばれる。
Controlling the standard deviation degree of the ferrite grains to 0.50 or less is, in other words, controlling the structure uniformly. Even if manufactured under normal conditions, the steel sheet of the present invention cannot be obtained. Therefore, it is necessary to select manufacturing conditions with great care in the manufacturing process of the steel sheet.
The steel of the present invention is melted by adjusting the components using a converter or electric furnace, and if necessary, vacuum degassing. In this way, the component-adjusted high carbon steel is made into a slab by ingot-making, ingot rolling or continuous casting. If the segregation of components in the slab is large, even if the manufacturing conditions are carefully selected, the structure becomes uneven and it is difficult to obtain a steel sheet that satisfies the requirements of the present invention. For this reason, when manufacturing a slab, it is preferable to employ a method of reducing segregation such as electromagnetic stirring and light pressure in an unsolidified region. This slab is subjected to hot rolling. However, even if normal hot rolling is performed, it is difficult to reduce the dispersion of the ferrite crystal grain size, which is a feature of the present invention. Since the hot rolling heating temperature does not particularly affect the characteristics of the present invention, it is performed at 1050 ° C. or higher. In order to reduce the variation in the ferrite crystal grain size after cold rolling and annealing, it is important to make the structure of the hot rolled sheet uniform. The structure of the hot-rolled sheet is made uniform by, for example, selecting as fine a rolling and temperature history as possible for the austenite grains before finish hot rolling. In finish hot rolling, the cumulative reduction amount is in the temperature range immediately above the Ar3 point temperature. In order to reduce the difference in structure between the steel plate interior and the surface layer, the hot rolling finish is lubricated and rolled. Moreover, the cooling conditions after hot rolling are also an important factor for making the hot rolled structure uniform and thus reducing the variation of the structure after cold rolling annealing. For example, a method of cooling the temperature history in which the ferrite transformation temperature region is rapidly cooled, the pearlite transformation temperature region balances the amount of heat generated by transformation heat generation and heat removal by water injection, and the pearlite transformation is performed at a constant temperature is selected.

熱延コイルは脱スケール後に球状化焼鈍し、冷延、焼鈍するか、脱スケール後の熱延コイルを冷間圧延し、焼鈍する、あるいは、球状化焼鈍後に冷延し、再結晶焼鈍、冷延、最終焼鈍を行う工程で製造してもかまわない。
しかし、冷間圧延率と焼鈍条件の組合せに細心の注意を払って選択しないと、フェライト結晶粒径のバラツキを小さくすることが出来ない。鋼成分、熱延板の組織、球状化焼鈍の有無等により、冷間圧延率、焼鈍条件の最適条件が異なるので、それぞれの条件に合わせて最適な条件を選ぶことが好ましい。
このようにして製造された鋼板は必要に応じ、調質圧延して、製品に供される。
Hot-rolled coil is spheroidized and annealed after descaling, cold-rolled and annealed, or hot-rolled coil after descaling is cold-rolled and annealed, or cold-rolled after spheroidizing and annealed, recrystallized and cooled. It may be manufactured in the process of performing the final annealing.
However, unless careful attention is paid to the combination of the cold rolling rate and the annealing conditions, the variation in the ferrite crystal grain size cannot be reduced. The optimum conditions for the cold rolling rate and the annealing conditions differ depending on the steel components, the structure of the hot-rolled sheet, the presence or absence of spheroidizing annealing, and it is preferable to select the optimum conditions according to the respective conditions.
The steel sheet produced in this way is subjected to temper rolling as needed and provided to the product.

S45Cのスラブを用い、種々の条件で熱間圧延し、冷延、焼鈍し、1.6mm厚みの鋼板を造った。一部の鋼は球状化焼鈍を行なった後に、冷延、焼鈍して鋼板を製造した。この鋼板から、150角のサンプルを採取し、中央部に10.0φの穴をクリアランス12%の工具で打ち抜き、60度の円錐ポンチで押し上げ、打ち抜き面に板厚を貫通するクラックが生じた時点で、試験を止め、そのときの穴径を測定し、初期穴径との差を初期穴径で割り、%表示で穴広げ率とした。また、鋼板の圧延方向断面を顕微鏡で観察し、介在物100個の長軸と短軸の比をとり、これの平均値を介在物形状比として測定した。同一観察面から、フェライト結晶粒を観察し、フェライト平均結晶粒径その結晶粒径の標準偏差を測定した。フェライト平均結晶粒径はJISで規定されるフェライト結晶粒度Noを測定し、結晶粒が球と仮定したときの直径を求めた。結晶粒の標準偏差は観察面のフェライト結晶粒の面積を測定し、観察面のフェライト結晶粒が円と仮定し、その直径に4/πをかけ直径とし、その標準偏差を求めて、標準偏差を平均フェライト粒径で割り、標準偏差度とした。これらの値を表1に示した。   Using a slab of S45C, it was hot-rolled under various conditions, cold-rolled and annealed to produce a steel plate having a thickness of 1.6 mm. Some steels were spheroidized and then cold rolled and annealed to produce steel sheets. A sample of 150 squares was taken from this steel plate, and a hole of 10.0φ was punched in the center with a tool with a clearance of 12%, pushed up with a 60-degree conical punch, and when a crack penetrating the plate thickness occurred on the punched surface Then, the test was stopped, the hole diameter at that time was measured, the difference from the initial hole diameter was divided by the initial hole diameter, and the hole expansion rate was expressed in%. Moreover, the rolling direction cross section of the steel plate was observed with a microscope, the ratio of the long axis to the short axis of 100 inclusions was taken, and the average value thereof was measured as the inclusion shape ratio. From the same observation plane, ferrite crystal grains were observed, and the standard deviation of the ferrite average crystal grain diameter was measured. The ferrite average crystal grain size was determined by measuring the ferrite crystal grain size No defined by JIS and determining the diameter when the crystal grains were assumed to be spheres. The standard deviation of the crystal grain is measured by measuring the area of the ferrite crystal grain on the observation surface, assuming that the ferrite crystal grain on the observation surface is a circle, and multiplying the diameter by 4 / π to obtain the standard deviation. Was divided by the average ferrite grain size to obtain the standard deviation. These values are shown in Table 1.

Figure 0004319948
Figure 0004319948

鋼No.1は、フェライト粒径が12.5μm、粒径の偏差度が0.17、介在物の形状比が1.15であり、本発明範囲内の実施例である。また、穴広げ率が93.4%と優れた伸びフランジ性を有する。鋼No.2はフェライト粒径が9・8μm、粒径の偏差度が0.18、介在物の形状比が1.21と共に、本発明範囲内の実施例である。穴広げ率が89.3%と優れた伸びフランジ性を有する。鋼No.3は、フェライト粒径が18μm、粒径の偏差度が0.19、介在物の形状比が1.05と共に、本発明範囲内の実施例である。穴広げ率が103.2%と優れた伸びフランジ性を有する。鋼No.4は、フェライト粒径は14.5μm、介在物形状比は1.23で本発明範囲であるが、フェライト粒径の偏差度が0.57で本発明範囲から外れた比較鋼である。この鋼板は、穴広げ率が38.5%と大幅に劣る。鋼No.5はフェライト結晶粒径が2.5μmと本発明範囲から外れた比較例である。フェライト粒が細粒になり過ぎると穴広げ率が悪くなり、伸びフランジ性が劣化する。本発明の鋼板を製造する方法は種々あるが、一例として、鋼No.1の製造条件を説明する。連続鋳造の冷却速度を通常のものに比し、1.5倍に早めて、電磁攪拌で等軸晶率が90%のスラブを造った。熱延は、仕上げスタンドの後段3スタンドは850℃以下で等歪の圧下配分で、潤滑しながら、仕上げ温度が815℃で熱延した。熱延後の冷却は、仕上げ圧延直後を20℃/秒で冷却し、パーライト変態温度範囲が15℃以内となるように冷却を制御し、巻取り温度が605℃で行なった。この熱延板を酸洗後に、680℃×14時間の焼鈍をした後、50%の冷間圧延率で冷延し、700℃×3分の保定後に冷却した。冷却の途中で400℃×5分の保定を行った。鋼No.2は、未凝固域軽圧下を加えて連続鋳造しスラブを造った。熱延加熱温度:1200℃、仕上温度:800℃、巻取り温度:580℃の条件で熱間圧延し、3.2mm厚の熱延鋼帯を造った。熱延の仕上圧延後段3スタンドは等歪の圧下配分で熱延した。熱延後の冷却はパーライト変態が590〜600℃間で進行するように注水制御をしながら冷却した。冷延は、冷延率:50%、焼鈍は630℃×18時間で行った。鋼No.3は、鋼No.1とほぽ同じ方法で熱延まで行い、冷間圧延率を30%とし、最終焼鈍を640℃×12時間で製造した。   Steel No. No. 1 has an ferrite grain size of 12.5 μm, a grain size deviation of 0.17, and an inclusion shape ratio of 1.15, which is an example within the scope of the present invention. Moreover, it has excellent stretch flangeability with a hole expansion ratio of 93.4%. Steel No. No. 2 is an example within the scope of the present invention, with a ferrite grain size of 9.8 μm, a grain size deviation of 0.18, and an inclusion shape ratio of 1.21. It has excellent stretch flangeability with a hole expansion ratio of 89.3%. Steel No. 3 is an example within the scope of the present invention, with a ferrite grain size of 18 μm, a grain size deviation of 0.19, and an inclusion shape ratio of 1.05. It has excellent stretch flangeability with a hole expansion ratio of 103.2%. Steel No. No. 4 is a comparative steel having a ferrite grain size of 14.5 μm and an inclusion shape ratio of 1.23, which is within the scope of the present invention, but having a deviation degree of ferrite grain size of 0.57 and deviating from the scope of the present invention. This steel plate has a significantly low hole expansion rate of 38.5%. Steel No. 5 is a comparative example in which the ferrite crystal grain size is 2.5 μm, which is out of the scope of the present invention. If the ferrite grains become too fine, the hole expansion rate will deteriorate and the stretch flangeability will deteriorate. There are various methods for producing the steel sheet of the present invention. 1 will be described. The cooling rate of continuous casting was increased to 1.5 times that of a normal one, and a slab having an equiaxed crystal ratio of 90% was made by electromagnetic stirring. Hot rolling was performed at a finishing temperature of 815 ° C. while lubrication was performed at the lower three stands of the finishing stand at 850 ° C. or less with equal strain distribution. Cooling after hot rolling was performed at 20 ° C./second immediately after finish rolling, cooling was controlled so that the pearlite transformation temperature range was within 15 ° C., and the winding temperature was 605 ° C. The hot-rolled sheet was pickled, annealed at 680 ° C. for 14 hours, cold-rolled at a cold rolling rate of 50%, and cooled after holding at 700 ° C. for 3 minutes. During the cooling, holding was performed at 400 ° C. for 5 minutes. Steel No. In No. 2, slabs were made by continuous casting under light pressure in the unsolidified region. Hot-rolling heating temperature: 1200 ° C, finishing temperature: 800 ° C, winding temperature: 580 ° C was hot-rolled to produce a 3.2 mm-thick hot-rolled steel strip. The three stands after the hot-rolling finish rolling were hot-rolled with equal strain reduction distribution. Cooling after hot rolling was performed while controlling water injection so that the pearlite transformation progressed between 590 and 600 ° C. Cold rolling was performed at a cold rolling rate of 50%, and annealing was performed at 630 ° C. for 18 hours. Steel No. 3 is steel No. 3. The hot rolling was performed in the same manner as in No. 1, the cold rolling rate was 30%, and the final annealing was produced at 640 ° C. × 12 hours.

表2に示す組成の鋼を転炉で溶製し、連続鋳造でスラブを造った。このスラブを種々の条件で熱間圧延、酸洗後に冷間圧延し、焼鈍を行った。一部については冷延前の酸洗コイルを690℃×18hrの焼鈍を行った後に冷間圧延に供した。これらの鋼板から150角のサンプルを採取し、中央部に10.0φの穴をクリアランス12%の工具で打ち抜き、60度の円錐ポンチで押し上げ、打ち抜き面に板厚を貫通したクラックが生じた時点で、試験を止め、そのときの穴径を測定し、初期穴径との差を初期穴径で割り、%表示で穴広げ率とした。据え込み試験は、100角の中心部にクリアランス12%にして、15mmφの穴を打ち抜き、径が20mmφの平底ポンチで穴径がポンチ径と同一になるまで押し上げた。これを圧縮試験機で穴広げの頭部を圧縮し、高さが50%になった時点で頭部にクラックが生じるかどうかで評価した。クラックが観察されないものを○、クラックがわずかに観察されるものを△、クラックが存在するものを×の評点とした。また、鋼板の圧延方向断面で測定した介在物100個の長軸と短軸の比をとり、これの平均値を形状比として測定した。同一観察面から、フェライト結晶粒を観察し、フェライト平均結晶粒径その結晶粒径の標準偏差を測定した。フェライト平均結晶粒径はJISで規定されるフェライト結晶粒度Noを測定し、結晶粒が球と仮定したときの直径を求めた、結晶粒の標準偏差は観察面のフェライト結晶粒の面積を測定し、観察面のフェライト結晶粒が円と仮定し、その直径に4/πをかけ直径とし、その標準偏差を求め、平均フェライト粒径で割り、標準偏差度とした。これらの測定値を表3に示した。   Steels having the compositions shown in Table 2 were melted in a converter and slabs were made by continuous casting. This slab was annealed by hot rolling under various conditions, cold rolling after pickling, and annealing. Some of the pickled coils before cold rolling were subjected to cold rolling after annealing at 690 ° C. × 18 hours. A sample of 150 squares was taken from these steel plates, and a 10.0φ hole was punched in the center with a 12% clearance tool, pushed up with a 60 ° conical punch, and a crack that penetrated the thickness of the punched surface occurred. Then, the test was stopped, the hole diameter at that time was measured, the difference from the initial hole diameter was divided by the initial hole diameter, and the hole expansion rate was expressed in%. In the upsetting test, a hole of 15 mmφ was punched out with a clearance of 12% at the center of 100 corners, and it was pushed up with a flat bottom punch with a diameter of 20 mmφ until the hole diameter became the same as the punch diameter. The head of the hole expansion was compressed with a compression tester, and it was evaluated whether or not a crack occurred in the head when the height reached 50%. A case where no crack was observed was evaluated as “◯”, a case where a crack was slightly observed as “Δ”, and a case where a crack was present as “×”. Moreover, the ratio of the major axis and the minor axis of 100 inclusions measured in the rolling direction cross section of the steel sheet was taken, and the average value thereof was measured as the shape ratio. From the same observation plane, ferrite crystal grains were observed, and the standard deviation of the ferrite average crystal grain diameter was measured. The ferrite average grain size was measured by measuring the ferrite grain size No. stipulated in JIS, and the diameter when the crystal grain was assumed to be a sphere was obtained. The standard deviation of the crystal grain was the area of the ferrite crystal grain on the observation surface. Assuming that the ferrite crystal grains on the observation surface are circles, the diameter is multiplied by 4 / π to obtain the standard deviation, and the standard deviation is obtained by dividing by the average ferrite grain diameter. These measured values are shown in Table 3.

鋼AはS35C相当の組成の鋼で、A−1はフェライト平均粒径が10.5μm、結晶粒径の偏差度が0.18で、介在物の形状比が1.10でこれらの構成要件のすべてが、本発明範囲内である実施例の鋼板である。この鋼板の穴広げ率は、98.5%と高く、穴広げ後の据え込みを行ってもクラックが生じない。一方、A−2は平均フェライト結晶粒径:13.5μm、介在物の形状比:1.25であるが、結晶粒径の偏差度が0.55と本発明範囲から外れている鋼板である。結晶粒径の大きさにバラツキが大きいと、穴広率が大幅に本発明範囲内の鋼より劣り、穴広げ後に据え込み試験でクラックが生じ、伸びフランジ性が劣ることが分かる。   Steel A is a steel having a composition equivalent to S35C. A-1 has an average ferrite grain size of 10.5 μm, a deviation degree of crystal grain size of 0.18, and an inclusion shape ratio of 1.10. All of these are the steel plates of the examples within the scope of the present invention. The hole expansion rate of this steel plate is as high as 98.5%, and no cracks are generated even after upsetting after the hole expansion. On the other hand, A-2 is an average ferrite crystal grain size: 13.5 μm and inclusion shape ratio: 1.25, but the deviation degree of the crystal grain size is 0.55, which is out of the scope of the present invention. . It can be seen that when the crystal grain size varies greatly, the hole area ratio is significantly inferior to that of the steel within the scope of the present invention, cracks are generated in the upsetting test after hole expansion, and the stretch flangeability is inferior.

Figure 0004319948
Figure 0004319948

Figure 0004319948
Figure 0004319948

鋼BはS35C成分からMn量を低め、Crを添加した鋼板である。B−1はフェライト平均結晶粒径:8.9μm、結晶粒径の偏差度:0.19、介在物の形状比:1.15で、いずれも本発明範囲内である実施例である。この鋼板の穴広げ率は105.2%、据え込み試験でもクラックが観察されなく、優れた伸びフランジ性を有する。B−2はB−1と同一組成の鋼であるが、結晶粒径の偏差度が0.83と大きいと穴広げ率が大幅に悪くなることが分かる。   Steel B is a steel plate in which the amount of Mn is reduced from the S35C component and Cr is added. B-1 is an example in which the ferrite average crystal grain size: 8.9 μm, the degree of deviation of crystal grain size: 0.19, and the shape ratio of inclusions: 1.15, all within the scope of the present invention. The hole expansion ratio of this steel sheet is 105.2%, no cracks are observed in the upsetting test, and it has excellent stretch flangeability. B-2 is a steel having the same composition as B-1, but it can be seen that when the deviation degree of the crystal grain size is as large as 0.83, the hole expansion rate is greatly deteriorated.

鋼C−1,2はC:0.28%、Cr0.25%、Mn:0.78%にTi、Bを添加した実施例である。この二つ鋼板はフェライト平均結晶粒径、介在物の形状比がほとんど同じであり、硬度はC−2の方が若干軟質であるにもかかわらず、穴広げ率は逆にC−1より大幅に劣る。この両鋼板の違いは結晶粒径の偏差度に依存し、結晶粒径にバラツキが大きいと伸びフランジ性が劣化することが分かる。   Steels C-1 and C-2 are examples in which Ti and B were added to C: 0.28%, Cr 0.25%, and Mn: 0.78%. These two steel plates have almost the same average ferrite grain size and inclusion shape ratio, and the hardness of C-2 is slightly softer, but the hole expansion rate is significantly larger than C-1. Inferior to The difference between the two steel plates depends on the degree of deviation of the crystal grain size, and it can be seen that the stretch flangeability deteriorates if the crystal grain size varies greatly.

鋼D−1,2はSCM435相当の組成の鋼板である。D−1は結晶粒径、その偏差度、介在物の形状比ともに、本発明範囲内の鋼板である。この鋼板の穴広げ率は良好で、優れた伸びフランジ性を有することが分かる。一方、結晶粒径、その偏差度、介在物の形状比の内、フェライト粒径が本発明範囲外の鋼板であるD−2は、伸びフランジ性が本発明範囲内の実施例より大幅に劣ることが分かる。   Steels D-1 and D2 are steel plates having a composition corresponding to SCM435. D-1 is a steel sheet within the scope of the present invention in terms of crystal grain size, degree of deviation thereof, and inclusion shape ratio. It can be seen that the hole expansion rate of this steel sheet is good and has excellent stretch flangeability. On the other hand, among the crystal grain size, the degree of deviation thereof, and the shape ratio of inclusions, D-2, which is a steel sheet having a ferrite grain size outside the scope of the present invention, has a stretch flangeability significantly inferior to the examples within the scope of the present invention. I understand that.

鋼E−1,2はC量が0.50%の鋼板である。この鋼も、フェライト粒のバラツキの小さなE−1は優れた伸びフランジ性を有し、フェライト粒のバラツキが大きなE−2は穴広げ率が劣ることが分かる。   Steels E-1 and E-2 are steel plates with a C content of 0.50%. This steel also shows that E-1 with a small variation in ferrite grains has excellent stretch flangeability, and E-2 with a large variation in ferrite grains has a poor hole expansion rate.

表2に示す化学組成の鋼を転炉で溶製し、連続鋳造でスラブを造り、種々の条件で熱間圧延、酸洗、冷延、焼鈍を行い、1.6mm厚みの鋼帯を製造した。一部の熱延コイルは、酸洗後に690℃×18時間の焼鈍後に冷間圧延、焼鈍を行なった。この鋼板のフェライト平均結晶粒径、フェライト結晶粒径の標準偏差度、介在物の形状比を測定した。これらの測定方法は実施例1と同じである。組織調査を行なった100φの鋼板を880℃×50分加熱後に60℃の油中に焼入れし、種々の温度で焼き戻しを行い、硬さをHv:420、またはHv:440に調整した。この鋼板の熱処理前後の寸法差を測定した。この焼き入れ・焼き戻し材から、JIS4号衝撃試験片を採取し、20℃の衝撃値を測定した。また高周波焼き入れ性を調査するため、850℃×1秒の加熱後に水冷して、硬さを測定した。これらの測定結果を表4に示した。   Steel with the chemical composition shown in Table 2 is melted in a converter, slabs are made by continuous casting, and hot rolling, pickling, cold rolling and annealing are performed under various conditions to produce a steel strip with a thickness of 1.6 mm did. Some hot rolled coils were cold rolled and annealed after annealing at 690 ° C. for 18 hours after pickling. The ferrite average crystal grain size, the standard deviation degree of the ferrite crystal grain size, and the shape ratio of inclusions were measured. These measurement methods are the same as those in Example 1. The 100φ steel plate subjected to the structure investigation was heated at 880 ° C. for 50 minutes and then quenched in oil at 60 ° C., tempered at various temperatures, and the hardness was adjusted to Hv: 420 or Hv: 440. The dimensional difference before and after heat treatment of this steel sheet was measured. From this quenched / tempered material, a JIS No. 4 impact test piece was sampled and measured for an impact value at 20 ° C. Further, in order to investigate the induction hardenability, the sample was heated at 850 ° C. for 1 second and then cooled with water to measure the hardness. These measurement results are shown in Table 4.

鋼A−3と鋼A−4はS35C相当成分で、A−3は本発明範囲内の実施例、A−4は比較例である。比較例のA−4に対し、本発明内の実施例のA−3は衝撃値、高周波焼き入れ性が良いことが分かる。B−3,B−4は、Mn:0.45%、Cr:0.30%の鋼である。フェライト結晶粒径、その標準偏差度、介在物形状比が共に本発明範囲内のB−3は優れた耐衝撃性、高周波焼き入れ性を有することが分かる。C−3,C−4はTi、Bを添加した鋼で、C−3は本発明範囲内の実施例、C−4はフェライト結晶粒径の標準偏差度が本発明範囲から外れた比較例であるが、C−3に比較して衝撃値、高周波焼入れ時の硬さが低い。鋼の種類によらず、結晶粒径の標準偏差度が小さい本発明範囲内の実施例の鋼は、焼き入れ・焼き戻しによる寸法変化が、結晶粒径のバラツキの大きい比較例より小さいことが分かる。   Steel A-3 and Steel A-4 are S35C equivalent components, A-3 is an example within the scope of the present invention, and A-4 is a comparative example. It can be seen that A-3 of the example in the present invention has better impact value and high frequency hardenability than A-4 of the comparative example. B-3 and B-4 are steels of Mn: 0.45% and Cr: 0.30%. It can be seen that B-3, in which the ferrite crystal grain size, the standard deviation, and the inclusion shape ratio are both within the scope of the present invention, has excellent impact resistance and high-frequency hardenability. C-3 and C-4 are steels to which Ti and B are added, C-3 is an example within the scope of the present invention, and C-4 is a comparative example in which the standard deviation degree of the ferrite crystal grain size is out of the scope of the present invention. However, compared with C-3, the impact value and hardness during induction hardening are low. Regardless of the type of steel, the steels of the examples within the scope of the present invention having a small standard deviation degree of the crystal grain size are smaller in the dimensional change due to quenching and tempering than the comparative examples having large crystal grain size variations. I understand.

上記の実施例で述べたように、成分が同じだけでは、必ずしも良好な伸びフランジ性が得られなく、フェライト粒径が5μm以上でとフェライト粒径のバラツキを小さくすることにより、初めて目的の特性が得られる。実施例の説明において、一部、個々の製造条件の説明を省略したが、前述の[発明を実施するための最良の形態]の製造条件で述べた偏析を少なくする手段、熱延組織を均一にする手段、成分−冷延−焼鈍条件の組み合わせで決まる冷延焼鈍条件の最適化等を組み合わせて、初めて、フェライト粒径のバラツキを少なくすることが出来る。実施例2、3の本発明実施例は、これらを組み合わせて製造したもので、比較材は上記の条件を全く含まない条件か、一部のみの条件を採用して製造されたものである。   As described in the above examples, it is not always possible to obtain good stretch flangeability with the same components, and it is not possible to obtain desired properties for the first time by reducing the variation in ferrite grain size when the ferrite grain size is 5 μm or more. Is obtained. In the description of the examples, a part of the description of the individual manufacturing conditions is omitted, but the means for reducing the segregation described in the above-mentioned [Best Mode for Carrying Out the Invention] and the hot-rolled structure are uniform. The variation in ferrite grain size can be reduced for the first time only by combining the means, the component-cold rolling-annealing conditions, and the optimization of the cold rolling annealing conditions determined by the combination. The inventive examples of Examples 2 and 3 were manufactured by combining these, and the comparative material was manufactured under conditions that did not include the above conditions at all or only some of the conditions.

Figure 0004319948
Figure 0004319948

この発明は、伸びフランジ性の優れた高炭素冷延鋼板を得るにあたって、フェライト結晶粒径とその標準偏差度を制御し、併せて、介在物の形状比を特定することで、穴広げ加工でのクラックの発生を抑制できる。穴広げ加工後の据え込み加工を行なっても割れが生じなく、優れた伸びフランジ性を有すると共に、焼入れ後の衝撃性、高周波焼入れ性も優れた高炭素冷延鋼板が提供可能となる。このような高炭素冷延鋼板を用いることにより、自動車の変速機部品等の加工において、加工度を高く取ることができ、その結果、製造工程を省略して低コストで部品等が製造することが可能となり、工業的に極めて有用な発明である。   In this invention, in obtaining a high carbon cold-rolled steel sheet with excellent stretch flangeability, the ferrite crystal grain size and its standard deviation degree are controlled, and by specifying the shape ratio of inclusions, Generation of cracks can be suppressed. It is possible to provide a high-carbon cold-rolled steel sheet that does not crack even if it is subjected to upsetting after hole expansion, has excellent stretch flangeability, and has excellent impact properties after quenching and high-frequency quenchability. By using such a high-carbon cold-rolled steel sheet, it is possible to obtain a high degree of processing in the processing of automobile transmission parts and the like, and as a result, the manufacturing process can be omitted and parts and the like can be manufactured at low cost. This is an industrially extremely useful invention.

フェライト粒径の標準偏差と穴広げ率の関係を示す図。The figure which shows the relationship between the standard deviation of a ferrite particle size, and a hole expansion rate. フェライト粒径の偏差度と穴広げ率の関係を示す図。The figure which shows the relationship between the deviation degree of a ferrite particle size, and a hole expansion rate.

Claims (2)

質量%で
C :0.20〜0.60%、
S :0.005%以下、
Ti:0.001〜0.050%、
B :0.0003〜0.0050%、
Si:0.50%以下、
Mn:2.0%以下、
P :0.03%以下、
Al:0.08%以下、
N :0.010%以下、
Cr:1.0%以内、
残部Feおよび不可避的不純物の組成で、
フェライト平均結晶粒径が5μm以上18.3μm以下で、
フェライト結晶粒径の標準偏差を平均粒径で割った値が0.14以上0.50以下であることを特徴とする伸びフランジ性の優れた高炭素冷延鋼板。
C: 0.20 to 0.60% by mass%,
S: 0.005% or less,
Ti: 0.001 to 0.050%,
B: 0.0003 to 0.0050%,
Si: 0.50% or less,
Mn: 2.0% or less,
P: 0.03% or less,
Al: 0.08% or less,
N: 0.010% or less,
Cr: within 1.0%,
In the composition of the balance Fe and inevitable impurities,
The ferrite average crystal grain size is 5 μm or more and 18.3 μm or less,
A high carbon cold-rolled steel sheet having excellent stretch flangeability, wherein a value obtained by dividing the standard deviation of the ferrite crystal grain size by the average grain size is 0.14 or more and 0.50 or less.
質量%で
C :0.20〜0.60%、
S :0.005%以下、
Ti:0.001〜0.050%、
B :0.0003〜0.0050%、
Si:0.50%以下、
Mn:2.0%以下、
P :0.03%以下、
Al:0.08%以下、
N :0.010%以下、
Cr:1.0%以内、
残部Feおよび不可避的不純物の組成で、
フェライト平均結晶粒径が5μm以上18.3μm以下で、
フェライト結晶粒径の標準偏差を平均粒径で割った値が0.14以上0.50以下、
かつ介在物の形状比が2.0以下であることを特徴とする伸びフランジ性の優れた高炭素冷延鋼板。
C: 0.20 to 0.60% by mass%,
S: 0.005% or less,
Ti: 0.001 to 0.050%,
B: 0.0003 to 0.0050%,
Si: 0.50% or less,
Mn: 2.0% or less,
P: 0.03% or less,
Al: 0.08% or less,
N: 0.010% or less,
Cr: within 1.0%,
In the composition of the balance Fe and inevitable impurities,
The ferrite average crystal grain size is 5 μm or more and 18.3 μm or less,
The value obtained by dividing the standard deviation of the ferrite crystal grain size by the average grain size is 0.14 or more and 0.50 or less,
A high carbon cold-rolled steel sheet having excellent stretch flangeability, wherein the inclusion has a shape ratio of 2.0 or less.
JP2004168059A 2004-06-07 2004-06-07 High carbon cold-rolled steel sheet with excellent stretch flangeability Active JP4319948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168059A JP4319948B2 (en) 2004-06-07 2004-06-07 High carbon cold-rolled steel sheet with excellent stretch flangeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168059A JP4319948B2 (en) 2004-06-07 2004-06-07 High carbon cold-rolled steel sheet with excellent stretch flangeability

Publications (2)

Publication Number Publication Date
JP2005344196A JP2005344196A (en) 2005-12-15
JP4319948B2 true JP4319948B2 (en) 2009-08-26

Family

ID=35496840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168059A Active JP4319948B2 (en) 2004-06-07 2004-06-07 High carbon cold-rolled steel sheet with excellent stretch flangeability

Country Status (1)

Country Link
JP (1) JP4319948B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11413272B2 (en) 2017-05-26 2022-08-16 Oxford University Innovation Limited Inhibitors of metallo-beta-lactamases

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803077B2 (en) * 2007-03-06 2011-10-26 住友金属工業株式会社 Steel plate for carburizing and quenching and method for manufacturing the same
JP5619668B2 (en) * 2011-04-18 2014-11-05 本田技研工業株式会社 Cold stamping steel and steel belt element using the same
KR101417260B1 (en) 2012-04-10 2014-07-08 주식회사 포스코 High carbon rolled steel sheet having excellent uniformity and mehtod for production thereof
KR101630951B1 (en) 2014-10-21 2016-06-16 주식회사 포스코 High carbon rolled steel sheet with solid diffusion bonding properties, and method for producing the same
CN105568149B (en) 2014-10-30 2018-03-27 Posco公司 The excellent high-carbon hot-rolled steel sheet of anti-temper brittleness and its manufacture method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11413272B2 (en) 2017-05-26 2022-08-16 Oxford University Innovation Limited Inhibitors of metallo-beta-lactamases

Also Published As

Publication number Publication date
JP2005344196A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
KR101288701B1 (en) Ultra high strength cold rolled steel sheet and method for producing same
US6736910B2 (en) High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP2014080665A (en) High strength cold rolled steel sheet and its manufacturing method
JP5640931B2 (en) Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method
JP2007270331A (en) Steel sheet superior in fine blanking workability, and manufacturing method therefor
JP2007291514A (en) Hot-rolled steel sheet with small in-plane anisotropy after cold rolling and recrystallization annealing, cold-rolled steel sheet with small in-plane anisotropy and production method therefor
JP4901623B2 (en) High-strength steel sheet with excellent punching hole expandability and manufacturing method thereof
JP2012237044A (en) High-strength cold-rolled steel sheet excellent in elongation and stretch flanging property and method for production thereof
WO2015146174A1 (en) High-carbon hot-rolled steel sheet and method for producing same
JP5194454B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
KR20100076073A (en) Steel sheets and process for manufacturing the same
JP2010229514A (en) Cold rolled steel sheet and method for producing the same
JP2013064172A (en) Cold rolled high tensile strength steel sheet excellent in resistance to surface distortion, bake hardenability, and stretch flange formability, and method for producing the same
JP2007270327A (en) Steel sheet having excellent fine blanking workability and its production method
JP4905031B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP2007270330A (en) Steel plate superior in fine blanking workability, and manufacturing method therefor
JP4319948B2 (en) High carbon cold-rolled steel sheet with excellent stretch flangeability
JP2007119883A (en) Method for manufacturing high-carbon cold-rolled steel sheet superior in workability, and high-carbon cold-rolled steel sheet
JP6098537B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP2016216809A (en) Low carbon steel sheet excellent in cold moldability and toughness after heat treatment and manufacturing method therefor
JP6575733B1 (en) High carbon cold-rolled steel sheet and method for producing the same
US11434555B2 (en) Hot-rolled steel sheet
JP4280202B2 (en) High carbon steel plate with excellent hardenability and stretch flangeability
JP2023504150A (en) Heavy-duty composite structure steel with excellent durability and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4319948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350