JP5640931B2 - Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method - Google Patents

Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method Download PDF

Info

Publication number
JP5640931B2
JP5640931B2 JP2011197423A JP2011197423A JP5640931B2 JP 5640931 B2 JP5640931 B2 JP 5640931B2 JP 2011197423 A JP2011197423 A JP 2011197423A JP 2011197423 A JP2011197423 A JP 2011197423A JP 5640931 B2 JP5640931 B2 JP 5640931B2
Authority
JP
Japan
Prior art keywords
cold
less
steel sheet
carbide
hardenability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011197423A
Other languages
Japanese (ja)
Other versions
JP2013057114A (en
Inventor
荒牧 高志
高志 荒牧
健悟 竹田
健悟 竹田
保嗣 塚野
保嗣 塚野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011197423A priority Critical patent/JP5640931B2/en
Publication of JP2013057114A publication Critical patent/JP2013057114A/en
Application granted granted Critical
Publication of JP5640931B2 publication Critical patent/JP5640931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、冷間加工性、特に、冷間鍛造性に優れ、さらには、焼入性に優れた中炭素冷延鋼板と、その製造方法に関するものである。 The present invention relates to a medium carbon cold-rolled steel sheet excellent in cold workability, in particular, cold forgeability, and excellent in hardenability, and a manufacturing method thereof.

中炭素冷延鋼板は、チェーン、ギヤ、クラッチ、鋸、刃物等の素材として広く用いられている。中炭素鋼板を、これらの素材として適用するに際しては、成形し、その後に、焼入れ・焼戻しの熱処理により硬質化させるので、成形性と焼入性を両立させる必要性がある。 Medium carbon cold rolled steel sheets are widely used as materials for chains, gears, clutches, saws, blades and the like. When the medium carbon steel sheet is applied as such a material, it is formed and then hardened by a heat treatment such as quenching and tempering. Therefore, it is necessary to achieve both formability and hardenability.

特に、近年、加工技術が発達し、鋼板を鍛造のような、従来よりも加工度の高い成形法が採用されるようなったことや、環境への配慮から、省エネルギー化の社会的ニーズの高まりにより、焼入れ・焼戻し工程も、より短時間化、低温化へ変更する動きが加速している。   In particular, in recent years, the development of processing technology has led to the rise of social needs for energy saving due to the adoption of forming methods with a higher degree of processing than conventional methods, such as forging steel sheets, and due to environmental considerations. As a result, the quenching / tempering process is also being accelerated to change to shorter and lower temperatures.

このように、二つの要求特性は、さらに厳格化が進んでいるとともに、2mm以上の板厚材を主体として、厳しい加工などが施されるので、全幅、全長にわたり、極めて高い板厚精度が求められるようになってきている。   In this way, the two required characteristics are becoming more stringent and severe processing is performed mainly on sheet thickness materials of 2 mm or more, so extremely high sheet thickness accuracy is required over the entire width and length. It is getting to be.

以上のようなニーズの変化に対応するためには、軟質でかつ冷間時の加工に耐え、焼入性に優れ、かつ、板厚の精度にも優れた中炭素冷延鋼板を開発することが急務である。ここで、加工とは、曲げ、増肉、絞り等である。 In order to respond to the above changes in needs, a medium-carbon cold-rolled steel sheet that is soft, can withstand cold working, has excellent hardenability, and has excellent thickness accuracy is developed. Is an urgent need. Here, the processing includes bending, thickening, drawing, and the like.

従来、中炭素鋼板の加工性と焼入性の関係については、多くの調査がなされてきた(例えば、特許文献1〜5、参照)。   Conventionally, many investigations have been made on the relationship between workability and hardenability of medium carbon steel sheets (for example, see Patent Documents 1 to 5).

例えば、特許文献1には、C:0.1〜0.8質量%、S:0.01質量%以下の亜共析鋼からなり、炭化物球状化率が90%以上であるように炭化物がフェライト中に分散しており、かつ、平均炭化物粒径は0.4〜1.0μmであり、必要に応じてフェライト結晶粒径が20μm以上に調整される中・高炭素鋼板が開示されている。   For example, Patent Document 1 is made of hypoeutectoid steel with C: 0.1 to 0.8% by mass and S: 0.01% by mass or less, and carbides have a carbide spheroidization rate of 90% or more. A medium-high carbon steel sheet is disclosed which is dispersed in ferrite and has an average carbide particle size of 0.4 to 1.0 μm, and the ferrite crystal particle size is adjusted to 20 μm or more as necessary. .

しかし、これまでの鋼板については、伸びフランジといった局所的な加工に対しての組織影響を調査し、その関係を整理している場合が主で、冷間加工時に必要とされる具体的なYR(降伏比)やTS(引張強度)という機械的な諸特性との関係を整理しているものはなく、加えて、その製造方法については、実機による製造方法として確立されたものとなっていないのが実情である。   However, with regard to conventional steel sheets, the structural influence on local processing such as stretch flanges is mainly investigated and the relationship is organized. The specific YR required during cold working (Yield ratio) and TS (tensile strength) are not related to mechanical properties, and in addition, the manufacturing method has not been established as a manufacturing method using actual equipment. Is the actual situation.

特開平11−80884号公報Japanese Patent Laid-Open No. 11-80884 特開2003−89846号公報JP 2003-89846 A 特開平9−268344号公報JP-A-9-268344 特開2001−329333号公報JP 2001-329333 A 特開2001−355047号公報JP 2001-355047 A

本発明は、上記実情に鑑み、自動車分野に適用し得る冷間加工性及び焼入性に優れた中炭素冷延鋼板とその製造方法を提供することを課題とする。 In view of the above circumstances, an object of the present invention is to provide a medium carbon cold-rolled steel sheet excellent in cold workability and hardenability that can be applied to the automobile field, and a method for producing the same.

本発明者らは、上記課題を解決する手法について鋭意研究した。その結果、冷間加工時にもっとも必要なことは、軟質化を達成することであるが、そのためには、鋼板を低YR(降伏比)型鋼板とし、材料自体のYR(降伏比)を低下させ、これに併せ、炭化物の平均径が0.4μm以下で、90%以上の球状化率とすれば、歪伝播の均一性を確保でき、微細な割れ対策をとることができることを知見した。 The inventors of the present invention have intensively studied a method for solving the above-described problems. As a result, what is most necessary at the time of cold working is to achieve softening. For that purpose, the steel sheet is made a low YR (yield ratio) type steel sheet, and the YR (yield ratio) of the material itself is lowered. , together with this, carbide flat Hitoshi径 is at 0.4μm or less, if more than 90% spheroidization ratio, it is possible to ensure the uniformity of strain propagation was found that it is possible to take a microscopic cracks measures.

また、加工性を向上させた鋼板は、もう一つの特徴として、炭化物径が非常に小さく制御されていて、特に、どのような条件でも、焼入性を満足できることも知見した。 Furthermore, steel sheets with improved workability, as a further feature, the carbide Mono径 has been controlled very small, particularly, in any conditions, and also finding that satisfactory hardenability.

さらに、これを満足する鋼板の製造は、単に、圧延条件や焼鈍条件などを工夫しても困難であり、熱延・冷延・焼鈍の一貫工程にて最適化を達成することでしか製造できないことも、種々の研究の積重ねで知見した。   Furthermore, it is difficult to manufacture steel sheets that satisfy this requirement, simply by devising rolling conditions and annealing conditions, and can only be achieved by achieving optimization in an integrated process of hot rolling, cold rolling, and annealing. I also learned through the accumulation of various studies.

本発明は、上記知見に基づいてなされたもので、その要旨は、以下の通りである。   This invention was made | formed based on the said knowledge, The summary is as follows.

(1)質量%で、C:0.10〜0.80%、Si:0.01〜0.35%、Mn:0.3〜2.0%、P:0.005〜0.03%、S:0.0001〜0.01%、Al:0.005〜0.10%、及び、N:0.001〜0.01%を含有し、さらに、Cr:0.02〜1.0%、Ni:0.01〜0.5%、Cu:0.05〜0.5%、Mo:0.01〜0.5%、Nb:0.01〜0.5%、V:0.01〜0.5%、Ta:0.01〜0.5%、B:0.001〜0.01%、W:0.01〜0.5%の1種又は2種以上を含有し、残部がFe及び不可避的不純物からなり、炭化物の平均炭化物径が0.4μm以下(但し、0.05μm以下を除く)、炭化物の球状化率が90%以上で、かつ、降伏比が60%以下であって、冷間加工前の引張強度が500MPa以下であり、さらに、焼入れ後に500HV以上に硬化する焼入硬化能を備えることを特徴とする冷間加工性及び焼入性に優れた中炭素冷延鋼板。 (1) By mass%, C: 0.10 to 0.80%, Si: 0.01 to 0.35%, Mn: 0.3 to 2.0%, P: 0.005 to 0.03% , S: 0.0001 to 0.01%, Al: 0.005 to 0.10%, and N: 0.001 to 0.01%, and Cr : 0.02 to 1.0% %, Ni: 0.01 to 0.5%, Cu: 0.05 to 0.5%, Mo: 0.01 to 0.5%, Nb: 0.01 to 0.5%, V: 0.0. Containing one or more of 01-0.5%, Ta: 0.01-0.5%, B: 0.001-0.01%, W: 0.01-0.5%, The balance consists of Fe and inevitable impurities, the average carbide diameter of the carbide is 0.4 μm or less (excluding 0.05 μm or less) , the spheroidization rate of the carbide is 90% or more, and the yield ratio is 60% or less. there is, cold Tensile strength before processing is not more than 500 MPa, furthermore, the carbon cold-rolled steel sheet in which excellent cold workability and hardenability, characterized in that it comprises a quench-hardening ability to cure over 500HV after quenching.

)前記中炭素冷延鋼板が、さらに、質量%で、Mg:0.0005〜0.003%、Ca:0.0005〜0.003%、Y:0.001〜0.03%、Zr:0.001〜0.03%、La:0.001〜0.03%、Ce:0.001〜0.03%の1種又は2種以上を含有することを特徴とする前記(1)に記載の冷間加工性及び焼入性に優れた中炭素冷延鋼板。 ( 2 ) The medium-carbon cold-rolled steel sheet is further in mass%, Mg: 0.0005-0.003%, Ca: 0.0005-0.003%, Y: 0.001-0.03%, One or more of Zr: 0.001 to 0.03%, La: 0.001 to 0.03%, and Ce: 0.001 to 0.03% are contained (1) The medium carbon cold-rolled steel sheet having excellent cold workability and hardenability as described in 1 ) .

)前記(1)又は)のいずれかに記載の成分組成を有する連続鋳造鋳片を、直接、熱間圧延する際、又は、該鋳片を1100℃以上に加熱して熱間圧延する際、熱間圧延をAe3以上で行い、その後、2〜10秒の空冷時間を確保し、次いで、強冷開始から終了までを、10〜80℃/秒の冷却速度で、480〜600℃のパーライト領域まで冷却し、その後、400〜580℃の温度域で巻き取ることにより、初析フェライト5〜10%、ベイナイト50%未満の熱延板組織を有する熱延板を得、該熱延板に、圧下率5〜30%未満にて1回の冷延を施し、前記冷延の後、650〜720℃、40時間以下の焼鈍を施す1回焼鈍の処理を施すことを特徴とする前記(1)又は(2)のいずれかに記載の冷間加工性及び焼入性に優れた中炭素冷延鋼板の製造方法。 (3) the continuous casting slab having the component composition according to any one of (1) or (2), directly during the hot rolling, or hot to heat the said template piece over 1100 ° C. At the time of rolling, hot rolling is performed at Ae3 or more, and then an air cooling time of 2 to 10 seconds is secured, and then from the start to the end of strong cooling at a cooling rate of 10 to 80 ° C./second, 480 to 600. After cooling to a pearlite region of ℃, and then winding in a temperature range of 400 to 580 ℃, a hot rolled sheet having a hot rolled sheet structure of 5-10% proeutectoid ferrite and less than 50% bainite is obtained, and the heat The cold-rolled sheet is subjected to one cold rolling at a rolling reduction of less than 5 to 30% , and after the cold rolling, a single annealing treatment is performed to perform annealing at 650 to 720 ° C. for 40 hours or less. excellent (1) or cold workability and hardenability according to any one of (2) to Method for producing a medium-carbon cold-rolled steel sheet.

本発明によれば、軽圧下率の冷間圧延によって、熱延板で得た組織に歪を加えることで、粒成長・再結晶を促進し、降伏比が低く極めて軟質なために、冷間加工性に優れ、かつ、微細で球状化率の高い炭化物を析出させることで、どのような焼入条件においても、十分な焼入硬化能を有する中炭素鋼板を提供することができる。   According to the present invention, by applying strain to the structure obtained by hot rolling by cold rolling at a light reduction rate, grain growth and recrystallization are promoted, and the yield ratio is extremely low and extremely soft. By precipitating fine carbide with excellent workability and fine spheroidization rate, it is possible to provide a medium carbon steel sheet having sufficient quench hardening ability under any quenching condition.

本発明の冷間加工性及び焼入性に優れた中炭素鋼板(以下「本発明鋼板」ということがある。)は、質量%で、C:0.10〜0.80%、Si:0.01〜0.35%、Mn:0.3〜2.0%、P:0.005〜0.03%、S:0.0001〜0.01%、Al:0.005〜0.10%、及び、N:0.001〜0.01%を含有し、残部がFe及び不可避的不純物からなり、炭化物の平均炭化物径が0.4μm以下、炭化物の球状化率が90%以上で、かつ、降伏比が60%以下であって、さらに、焼入れ後に500Hv以上に硬化する焼入硬化能を備えることを特徴とするものである。   The medium carbon steel sheet excellent in cold workability and hardenability of the present invention (hereinafter sometimes referred to as “the present invention steel sheet”) is mass%, C: 0.10 to 0.80%, Si: 0. 0.01 to 0.35%, Mn: 0.3 to 2.0%, P: 0.005 to 0.03%, S: 0.0001 to 0.01%, Al: 0.005 to 0.10 %, And N: 0.001 to 0.01%, the balance is made of Fe and inevitable impurities, the average carbide diameter of the carbide is 0.4 μm or less, the spheroidization rate of the carbide is 90% or more, In addition, the yield ratio is 60% or less, and further, it has quench hardening ability to harden to 500 Hv or more after quenching.

そして、本発明鋼板の製造方法における特徴は、以下の通りである。   And the characteristics in the manufacturing method of this invention steel plate are as follows.

(i)熱延板の特徴
熱延板の冷却パターンを工夫して、400〜580℃の温度域で巻き取り、初析フェライト5〜10%、ベイナイト50%未満(0は含まない)の熱延板とし、その後、酸洗して、冷延する。
(I) Characteristics of hot-rolled sheet The heat-rolled sheet is devised in a cooling pattern, wound in a temperature range of 400 to 580 ° C., and heat of pro-eutectoid ferrite 5 to 10% and bainite less than 50% (excluding 0). It is made into a sheet, then pickled and cold-rolled.

(ii)冷延板の特徴
圧下率5〜30%未満で、冷延を1回のみ行う。冷延を実施して、板厚の精度を、熱延板よりもよくする。
(Ii) Characteristics of cold-rolled sheet Cold rolling is performed only once at a rolling reduction of less than 5 to 30%. Cold rolling is performed so that the accuracy of the plate thickness is better than that of the hot rolled plate.

(iii)熱処理の特徴
冷延板に、Ac1以下で、比較的短時間の焼鈍を1回施す。この焼鈍で、炭化物が微細に分散した状態で、球状化が進行して、目標とする球状化径と球状化率が得られる。炭化物の分散析出効果により、粒界・粒内でのCの析出が促進されて、降伏点が低下する。この降伏点の低下と、フェライト組織への軽歪付与による粒径拡大を利用して、軟質化し、加工性を確保する。
(Iii) Characteristics of heat treatment The cold-rolled sheet is subjected to annealing in Ac1 or less for a relatively short time. With this annealing, spheroidization proceeds with finely dispersed carbides, and the target spheroidizing diameter and spheroidizing ratio are obtained. The precipitation effect of carbide promotes the precipitation of C at the grain boundaries and within the grains, thereby lowering the yield point. Utilizing this lowering of the yield point and the increase in particle size due to the application of light strain to the ferrite structure, it becomes soft and secures workability.

以下、個々の要件の必要性について説明する。   The necessity of each requirement will be described below.

本発明鋼板は、JISG4051(機械構造用炭素鋼)、JISG4401(炭素工具鋼材)、又は、JISG4802(ばね用冷間圧延鋼帯)で規定される成分系を基本とし、製品・製造関連の調査を繰り返すことで知見したものである。それ故、本発明鋼板の基本成分は、JIS規格に準ずるが、成分組成をさらに限定する理由について説明する。なお、以下、成分組成に係る%は、質量%を意味する。   The steel sheet of the present invention is based on the component system defined by JISG4051 (carbon steel for machine structural use), JISG4401 (carbon tool steel), or JISG4802 (cold rolled steel strip for springs), and conducts research related to products and manufacturing. It was discovered by repeating. Therefore, the basic components of the steel sheet of the present invention conform to JIS standards, but the reason for further limiting the component composition will be described. Hereinafter, “%” relating to the component composition means “% by mass”.

C:0.10〜0.80%
Cは、鋼板の焼入れ強度を確保するうえで重要な元素である。0.10%以上を添加して所要の強度を確保する。0.10%未満では、焼入性が低下し、機械構造用高強度鋼板としての強度が得られないので、下限を0.10%とする。0.80%を超えると、破壊の起点となる炭化物の割合が増加し、冷間鍛造性が低下するので、上限を0.80%とする。好ましくは、0.35〜0.70%である。
C: 0.10 to 0.80%
C is an important element in securing the quenching strength of the steel sheet. Add 0.10% or more to ensure the required strength. If it is less than 0.10%, the hardenability is lowered and the strength as a high-strength steel sheet for machine structures cannot be obtained, so the lower limit is made 0.10%. If it exceeds 0.80%, the proportion of carbide that becomes the starting point of fracture increases and the cold forgeability decreases, so the upper limit is made 0.80%. Preferably, it is 0.35 to 0.70%.

Si:0.01〜0.35%
Siは、脱酸剤として作用し、また、焼入性の向上に有効な元素である。0.01%未満では、添加効果が得られないので、下限を0.01%とする。0.35%を超えると、熱間圧延時のスケール疵に起因する表面性状の劣化を招くので、上限を0.35%とする。好ましくは、0.15%以下である。
Si: 0.01 to 0.35%
Si acts as a deoxidizer and is an element effective for improving hardenability. If it is less than 0.01%, the effect of addition cannot be obtained, so the lower limit is made 0.01%. If it exceeds 0.35%, the surface properties are deteriorated due to scale wrinkling during hot rolling, so the upper limit is made 0.35%. Preferably, it is 0.15% or less.

Mn:0.3〜2.0%
Mnは、焼入性の向上に有効な元素である。0.3%未満では、添加効果が得られないので、下限を0.3%とする。2.0%を超えると、焼入れ・焼戻し後の衝撃特性が低下するので、上限を2.0%とする。好ましくは、0.5〜1.5%である。
Mn: 0.3 to 2.0%
Mn is an element effective for improving hardenability. If it is less than 0.3%, the effect of addition cannot be obtained, so the lower limit is made 0.3%. If it exceeds 2.0%, the impact properties after quenching and tempering will deteriorate, so the upper limit is made 2.0%. Preferably, it is 0.5 to 1.5%.

P:0.005〜0.03%
Pは、固溶強化元素であり、比較的安価に鋼板の強度に有効に作用する元素である。ただし、過剰な含有は、靭性を阻害するので、上限を0.03%とする。0.005%未満に低減することは、精錬コストの上昇を招くので、下限を0.005%とする。
P: 0.005 to 0.03%
P is a solid solution strengthening element and is an element that effectively acts on the strength of the steel sheet at a relatively low cost. However, excessive content inhibits toughness, so the upper limit is made 0.03%. Reduction to less than 0.005% causes an increase in refining cost, so the lower limit is made 0.005%.

S:0.0001〜0.01%
Sは、MnSなどの非金属介在物を形成し、加工性や、熱処理後の靭性を阻害する原因となるので、上限を0.01%とする。0.0001%未満に低減することは、精錬コストの大幅な上昇を招くので、下限を0.0001%とする。
S: 0.0001 to 0.01%
Since S forms non-metallic inclusions such as MnS and becomes a cause of hindering workability and toughness after heat treatment, the upper limit is made 0.01%. Reducing to less than 0.0001% causes a significant increase in refining costs, so the lower limit is made 0.0001%.

Al:0.005〜0.10%
Alは、脱酸剤として作用し、また、Nの固定に有効な元素である。0.005%未満では、添加効果が十分に得られないので、下限を0.005%とする。0.10%を超えると、添加効果が飽和し、また、表面疵が発生し易くなるので、上限を0.10%とする。好ましくは、0.01〜0.04%である。
Al: 0.005-0.10%
Al acts as a deoxidizing agent and is an element effective for fixing N. If it is less than 0.005%, the effect of addition cannot be sufficiently obtained, so the lower limit is made 0.005%. If it exceeds 0.10%, the effect of addition is saturated and surface defects are likely to occur, so the upper limit is made 0.10%. Preferably, it is 0.01 to 0.04%.

N:0.001〜0.01%
Nは、窒化物を形成する元素である。湾曲型連続鋳造における鋳片曲げ矯正時に窒化物が析出すると、鋳片が割れることがあるので、上限を0.01%とする。Nは、少ないほど好ましいが、0.001%未満に低減するのは、精錬コストの増加を招くので、下限を0.001%とする。好ましくは、0.001〜0.006%である。
N: 0.001 to 0.01%
N is an element that forms nitrides. If nitride precipitates during slab bending correction in curved continuous casting, the slab may crack, so the upper limit is made 0.01%. N is preferably as small as possible, but reducing it to less than 0.001% leads to an increase in refining costs, so the lower limit is made 0.001%. Preferably, it is 0.001 to 0.006%.

本発明鋼板の機械特性を強化するため、Cr、Ni、Cu、及び、Moの1種又は2種以上を、所要量、添加してもよい。   In order to enhance the mechanical properties of the steel sheet of the present invention, a required amount of one or more of Cr, Ni, Cu, and Mo may be added.

Cr:0.02〜1.0%
Crは、焼入性の向上に有効な元素である。0.02%未満では、大きな添加効果がないので、下限を0.02%とする。1.0%を超えると、添加効果は飽和するので、上限を1.0%とする。好ましくは、0.05〜0.6%である。
Cr: 0.02-1.0%
Cr is an element effective for improving hardenability. If it is less than 0.02%, there is no significant effect of addition, so the lower limit is made 0.02%. If it exceeds 1.0%, the effect of addition is saturated, so the upper limit is made 1.0%. Preferably, it is 0.05 to 0.6%.

Ni:0.01〜0.5%
Niは、靭性の向上や、焼入性の向上に有効な元素である。0.01%未満では、添加効果がないので、下限を0.01%とする。0.5%を超えると、添加効果は飽和し、コスト増を招くので、上限を0.5%とする。好ましくは、0.05〜0.3%である。
Ni: 0.01 to 0.5%
Ni is an element effective for improving toughness and hardenability. If it is less than 0.01%, there is no effect of addition, so the lower limit is made 0.01%. If it exceeds 0.5%, the effect of addition is saturated and the cost is increased, so the upper limit is made 0.5%. Preferably, it is 0.05 to 0.3%.

Cu:0.05〜0.5%
Cuは、焼入性の確保に有効な元素である。0.05%未満では、添加効果が不十分であるので、下限を0.05%とする。0.5%を超えると、硬くなり過ぎ、冷間加工性が劣化するので、上限を0.5%とする。好ましくは、0.05〜0.3%である。
Cu: 0.05 to 0.5%
Cu is an element effective for ensuring hardenability. If it is less than 0.05%, the effect of addition is insufficient, so the lower limit is made 0.05%. If it exceeds 0.5%, it becomes too hard and the cold workability deteriorates, so the upper limit is made 0.5%. Preferably, it is 0.05 to 0.3%.

Mo:0.01〜0.5%
Moは、焼入性の向上と、焼戻し軟化抵抗性の向上に有効な元素である。0.01%未満では、添加効果が小さいので、下限を0.01%とする。0.5%を超えると、添加効果が飽和するので、上限を0.5%とする。好ましくは、0.05〜0.3%である。
Mo: 0.01 to 0.5%
Mo is an element effective for improving hardenability and improving resistance to temper softening. If it is less than 0.01%, the effect of addition is small, so the lower limit is made 0.01%. If it exceeds 0.5%, the effect of addition is saturated, so the upper limit is made 0.5%. Preferably, it is 0.05 to 0.3%.

本発明鋼板の機械特性を、さらに強化するため、Nb、V、Ta、B、W、Mg、Ca、Y、Ce、及び、Laの1種又は2種以上を、所要量、添加してもよい。   In order to further enhance the mechanical properties of the steel sheet of the present invention, a required amount of one or more of Nb, V, Ta, B, W, Mg, Ca, Y, Ce, and La may be added. Good.

Nb:0.01〜0.5%
Nbは、炭窒化物を形成し、結晶粒の粗大化防止や靭性改善に有効な元素である。0.01%未満では、添加効果は充分に発現しないので、下限を0.01%とする。0.5%を超えると、添加効果が飽和するので、上限を0.5%とする。好ましくは、0.07〜0.2%である。
Nb: 0.01 to 0.5%
Nb is an element that forms carbonitride and is effective in preventing coarsening of crystal grains and improving toughness. If it is less than 0.01%, the effect of addition is not sufficiently exhibited, so the lower limit is made 0.01%. If it exceeds 0.5%, the effect of addition is saturated, so the upper limit is made 0.5%. Preferably, it is 0.07 to 0.2%.

V:0.01〜0.5%
Vは、Nbと同様に、炭窒化物を形成し、結晶粒の粗大化防止や靭性改善に有効な元素である。0.01%未満では、添加効果が小さいので、下限を0.01%とする。0.5%を超えると、炭化物が生成し焼入れ硬度が低下するので、上限を0.5%とする。好ましくは、0.07〜0.2%である。
V: 0.01 to 0.5%
V, like Nb, is an element that forms carbonitride and is effective in preventing coarsening of crystal grains and improving toughness. If it is less than 0.01%, the effect of addition is small, so the lower limit is made 0.01%. If it exceeds 0.5%, carbides are generated and the quenching hardness is lowered, so the upper limit is made 0.5%. Preferably, it is 0.07 to 0.2%.

Ta:0.01〜0.5%
Taは、Nb、Vと同様に、炭窒化物を形成し、結晶粒の粗大化防止や靭性改善に有効な元素である。0.01%未満では、添加効果が小さいので、下限を0.01%とする。0.5%を超えると、炭化物が生成し焼入れ硬度が低下するので、上限を0.5%とする。好ましくは、0.05〜0.3%である。
Ta: 0.01 to 0.5%
Ta, like Nb and V, is an element that forms carbonitrides and is effective in preventing coarsening of crystal grains and improving toughness. If it is less than 0.01%, the effect of addition is small, so the lower limit is made 0.01%. If it exceeds 0.5%, carbides are generated and the quenching hardness is lowered, so the upper limit is made 0.5%. Preferably, it is 0.05 to 0.3%.

B:0.001〜0.01%
Bは、微量添加で、焼入性を高めるのに有効な元素である。0.001%未満では、添加効果がないので、下限を0.001%とする。0.01%を超えると、鋳造性が低下し、B系化合物が生成して靭性が低下するので、上限を0.01%とする。好ましくは、0.0015〜0.005%である。
W:0.01〜0.5%
Wは、鋼板強化に有効な元素である。0.01%未満では、添加効果が発現しないので、下限を0.01%とする。0.5%を超えると、加工性が低下するので、上限を0.5%とする。好ましくは、0.05〜0.3%である。
B: 0.001 to 0.01%
B is an element effective for enhancing hardenability by adding a small amount. If it is less than 0.001%, there is no effect of addition, so the lower limit is made 0.001%. If it exceeds 0.01%, the castability is reduced, and a B-based compound is generated and the toughness is reduced. Therefore, the upper limit is made 0.01%. Preferably, it is 0.0015 to 0.005%.
W: 0.01-0.5%
W is an element effective for strengthening the steel sheet. If it is less than 0.01%, the effect of addition does not appear, so the lower limit is made 0.01%. If it exceeds 0.5%, the workability deteriorates, so the upper limit is made 0.5%. Preferably, it is 0.05 to 0.3%.

Mg:0.0005〜0.003%
Mgは、微量の添加で、酸化物及び硫化物の形態を制御するのに有効な元素である。0.0005%未満では、添加効果は得られないので、下限を0.0005%とする。0.003%を超えると、添加効果が飽和するので、上限を0.003%とする。好ましくは、0.0007〜0.002%である。
Mg: 0.0005 to 0.003%
Mg is an element effective for controlling the form of oxides and sulfides with a small amount of addition. If it is less than 0.0005%, the effect of addition cannot be obtained, so the lower limit is made 0.0005%. If it exceeds 0.003%, the effect of addition is saturated, so the upper limit is made 0.003%. Preferably, it is 0.0007 to 0.002%.

Ca: 0.0005〜0.003%
Caは、Mgと同様に、微量添加で、酸化物及び硫化物の形態を制御するのに有効な元素である。0.0005%未満では、添加効果が得られないので、下限を0.0005%とする。0.003%を超えると、添加効果が飽和するので、上限を0.003%とする。好ましくは、0.0010〜0.003%である。
Ca: 0.0005 to 0.003%
Ca, like Mg, is an element effective for controlling the form of oxides and sulfides by addition in a small amount. If it is less than 0.0005%, the effect of addition cannot be obtained, so the lower limit is made 0.0005%. If it exceeds 0.003%, the effect of addition is saturated, so the upper limit is made 0.003%. Preferably, it is 0.0010 to 0.003%.

Y:0.001〜0.03%
Yは、Ca、Mgと同様に、微量添加で、酸化物及び硫化物の形態を制御するのに有効な元素である。0.001%未満では、添加効果が得られないので、下限を0.001%とする。0.03%を超えると、添加効果が飽和するので、上限を0.03%とする。好ましくは、0.0015〜0.004%である。
Y: 0.001 to 0.03%
Y, like Ca and Mg, is an element that is effective for controlling the form of oxides and sulfides by adding a small amount. If it is less than 0.001%, the effect of addition cannot be obtained, so the lower limit is made 0.001%. If it exceeds 0.03%, the effect of addition is saturated, so the upper limit is made 0.03%. Preferably, it is 0.0015 to 0.004%.

Ce:0.001〜0.03%
Ceは、Mg、Ca、Yと同様に、微量添加で、酸化物及び硫化物の形態を制御するのに有効な元素である。0.001%未満では、添加効果は得られないので、下限を0.001%とする。0.03%を超えると、添加効果が飽和するので、上限を0.03%とする。好ましくは、0.0015〜0.004%である。
Ce: 0.001 to 0.03%
Ce, like Mg, Ca, and Y, is an element effective for controlling the form of oxides and sulfides by adding a small amount. If it is less than 0.001%, the effect of addition cannot be obtained, so the lower limit is made 0.001%. If it exceeds 0.03%, the effect of addition is saturated, so the upper limit is made 0.03%. Preferably, it is 0.0015 to 0.004%.

La:0.001〜0.03%
Laは、Mg、Ca、Y、Ceと同様に、微量添加で、酸化物及び硫化物の形態を制御するのに有効な元素である。0.001%未満では、添加効果は得られないので、下限を0.001%とする。0.03%を超えると、添加効果が飽和するので、上限を0.03%とする。
La: 0.001 to 0.03%
La, like Mg, Ca, Y, and Ce, is an element that is effective for controlling the form of oxides and sulfides by adding a small amount. If it is less than 0.001%, the effect of addition cannot be obtained, so the lower limit is made 0.001%. If it exceeds 0.03%, the effect of addition is saturated, so the upper limit is made 0.03%.

Zr:0.001〜0.03%
Zrは、鋼板強化に有効な元素である。0.001%未満では、添加効果が発現しないので、下限を0.001%とする。0.03%を超えると、加工性が低下するので、上限を0.03%とする。好ましくは、0.005〜0.01%である。
Zr: 0.001 to 0.03%
Zr is an element effective for strengthening steel sheets. If it is less than 0.001%, the effect of addition does not appear, so the lower limit is made 0.001%. If it exceeds 0.03%, the workability deteriorates, so the upper limit is made 0.03%. Preferably, it is 0.005 to 0.01%.

本発明鋼板の原料としてスクラップを用いた場合、不可避的に、Sn、Sb、及び、Asの1種又は2種以上が、0.003%以上混入するが、いずれも、0.03%以下であれば、本発明鋼板の焼入性を阻害しないので、本発明鋼板においては、Sn:0.003〜0.03%、Sb:0.003〜0.03%、及び、As:0.003〜0.03%の1種又は2種以上の含有を許容する。   When scrap is used as a raw material for the steel sheet of the present invention, inevitably, one or more of Sn, Sb, and As are mixed in by 0.003% or more, both of which are 0.03% or less. If present, the hardenability of the steel sheet of the present invention is not hindered. Therefore, in the steel sheet of the present invention, Sn: 0.003 to 0.03%, Sb: 0.003 to 0.03%, and As: 0.003. The content of 1 type or 2 types or more of -0.03% is allowed.

本発明鋼板において、O量は規定していないが、酸化物が凝集して粗大化すると、冷間加工性が低下するので、Oは、0.0025%以下が好ましい。Oは、少ないほうが好ましいが、0.0001%未満に低減することは、技術的に困難であるので、0.0001%以上の含有は許容される。   In the steel sheet of the present invention, the amount of O is not specified, but when the oxide aggregates and coarsens, the cold workability deteriorates, so O is preferably 0.0025% or less. A smaller amount of O is preferable, but since it is technically difficult to reduce it to less than 0.0001%, a content of 0.0001% or more is allowed.

本発明鋼板は、前述した成分組成に加え、冷間加工前に、降伏比(YR)が60%以下で、かつ、引張強度が500MPa以下であり、炭化物の平均球径:0.4μm未満、球状化率:90%以上で、焼入れ後に500Hv以上に硬化する焼入硬化能を有することを特徴とする。   In addition to the component composition described above, the steel sheet of the present invention has a yield ratio (YR) of 60% or less and a tensile strength of 500 MPa or less before cold working, and an average sphere diameter of carbide: less than 0.4 μm, Spheroidization rate: 90% or more, characterized by having quenching and hardening ability to harden to 500 Hv or more after quenching.

ここでいう冷間加工前の強度は、加工前の強度を指す。成分組成に加え、冷間加工前の引張強度が500MPa以下で、かつ、降伏比が60%以下であり、炭化物の平均炭化物径が0.4μm未満、炭化物の球状化率が90%以上であることにより、鋼板の冷間加工性が改善され、冷間加工性と焼入性を両立させることができる。このことは、本発明者らが見いだした新規な知見である。   The strength before cold processing here refers to the strength before processing. In addition to the component composition, the tensile strength before cold working is 500 MPa or less, the yield ratio is 60% or less, the average carbide diameter of the carbide is less than 0.4 μm, and the spheroidization rate of the carbide is 90% or more. Thus, the cold workability of the steel sheet is improved, and both cold workability and hardenability can be achieved. This is a new finding found by the present inventors.

冷間加工前の強度は、引張強度(TS)で500MPa以下とする。引張強度(TS)で500MPaを超えると、降伏比が60%未満であっても、延性が低下し、加工時の成形量を十分に確保できなくなる。   The strength before cold working is 500 MPa or less in terms of tensile strength (TS). When the tensile strength (TS) exceeds 500 MPa, even if the yield ratio is less than 60%, the ductility is lowered, and a sufficient amount of molding during processing cannot be ensured.

強度が低くなれば、延性が改善され、加工性は良好となるが、打抜き加工時のダレが増加する場合がある。近年、打抜き・曲げ・増肉加工を一体化した鋼板の鍛造技術が普及しつつあるので、製造工程に応じて、引張強度(TS)を400MPa以上とすることが場合によっては好ましい。   If the strength is lowered, ductility is improved and workability is improved, but sagging during punching may increase. In recent years, forging technology for steel sheets integrated with punching, bending, and thickening has become widespread, and it is preferable in some cases to have a tensile strength (TS) of 400 MPa or more depending on the manufacturing process.

降伏比(YR)を60%以下とす理由は、加工時の応力歪の集中を避けるためである。鋼板を加工する場合、鋼板が、金型になじみながら変形してゆくためには、金型の動きに同調し、歪が均一に伝播して変形すること、又は、鋼板の塑性流動が均一であることが必要である。   The reason for setting the yield ratio (YR) to 60% or less is to avoid stress strain concentration during processing. When processing steel sheets, in order for the steel sheets to be deformed while conforming to the mold, the deformation of the steel sheets is uniformly propagated and deformed in synchronization with the movement of the mold, or the plastic flow of the steel sheet is uniform. It is necessary to be.

特に、近年は、圧縮荷重を多方向から、同時に、異なった方向へ加圧する、加工精度の向上と、短時間化を狙ったプレス方式も出現しつつあり、より均一に、材料変形を実現し、かつ、割れ起点を生じさせないことが重要になってきている。   In particular, in recent years, press methods aiming at improving processing accuracy and reducing the time required to pressurize compressive loads from multiple directions at the same time are also appearing, realizing more uniform material deformation. In addition, it has become important not to generate a crack starting point.

そのためには、低降伏点として、均一に加工硬化が開始し易い状況を形成することが必要であることを、本発明者らは知見した。降伏比が60%超の場合は、歪伝播性が劣り、それが原因で、冷間加工時、一か所に応力集中が生じ、その結果、流入不良や、割れが発生する。   For this purpose, the present inventors have found that it is necessary to form a situation in which work hardening is easily started as a low yield point. When the yield ratio is more than 60%, the strain propagation property is inferior, which causes stress concentration in one place during cold working, resulting in inflow failure and cracking.

炭化物の平均粒径を0.4μm未満とし、球状化率を90%以上とする必要がある。粗大な炭化物は溶解完了までに時間を要し、焼入性を阻害するだけでなく、割れ発生の原因となる、これまで、伸びフランジ加工における炭化物の径と球状化率に関する調査と知見はあったが、加工度が大きい場合において、局所変形をしない場合における炭化物の径と球状化率を評価した知見はなかった。   It is necessary that the average particle size of the carbide is less than 0.4 μm and the spheroidization rate is 90% or more. Coarse carbides require time to complete dissolution, which not only impairs hardenability but also causes cracking. There has been no investigation and knowledge of carbide diameter and spheroidization rate in stretch flange processing. However, when the degree of processing was large, there was no knowledge that evaluated the carbide diameter and spheroidization rate when local deformation was not performed.

本発明者らは、炭化物の影響調査を行い、炭化物の径と球状化率を改善する手段を検討した。通常、加工時に歪集積が起こらないように、鋼を低降伏比とするが、加工歪量が非常に大きいので、マイクロボイドが生成する。マイクロボイドは、炭化物近傍に生成するので、起点となる炭化物を微細に分散させると、歪が集中しないことが判明した。   The present inventors investigated the influence of carbides and examined means for improving the diameter and spheroidization rate of carbides. Normally, the steel is made to have a low yield ratio so that strain accumulation does not occur during processing, but since the amount of processing strain is very large, microvoids are generated. Since microvoids are generated in the vicinity of carbides, it has been found that strains do not concentrate when the starting carbide is finely dispersed.

即ち、本発明者らは、従来考えられている炭化物よりも、さらに小さい0.4μm未満の炭化物を微細に分散させ、球状化析出させなければならないことを見いだした。ただし、針状炭化物の周辺では、冷間加工時に応力が局所化し易くなり、割れの発生起点となり易い。   That is, the present inventors have found that carbides smaller than 0.4 μm, which are smaller than conventionally considered carbides, must be finely dispersed and spheroidized. However, in the vicinity of the needle-shaped carbide, stress is likely to be localized during cold working, and is likely to be a starting point of cracking.

球状化率が90%未満であると、炭化物が0.4μm未満であっても、局所的な応力により、割れの起点となり、冷間鍛造性が悪化する場合があるので、球状化率は90%以上が好ましい。   If the spheroidization rate is less than 90%, even if the carbide is less than 0.4 μm, it becomes a starting point of cracking due to local stress, and the cold forgeability may deteriorate. % Or more is preferable.

球状炭化物は、母材と接する表面積が針状炭化物に比べて小さく、炭化物から母材への炭素の拡散経路が狭い。特に、球状化率が90%以上の場合、焼入れ効果を得るためには、従来の炭化物径より小さい径の炭化物である必要がある。加工性と焼入性を両立するためには、炭化物径0.4μm未満と球状化率90%以上は、必須条件である。   Spherical carbide has a smaller surface area in contact with the base material than that of acicular carbide, and has a narrow carbon diffusion path from the carbide to the base material. In particular, when the spheroidization ratio is 90% or more, in order to obtain a quenching effect, the carbide needs to have a diameter smaller than that of the conventional carbide. In order to achieve both workability and hardenability, a carbide diameter of less than 0.4 μm and a spheroidization rate of 90% or more are essential conditions.

組織観察は、走査型電子顕微鏡で行なう。非常に微細に析出した炭化物の個数が、焼入性に大きく影響するので、3000〜10000倍、場合によっては、30000倍程度の倍率にて、組織観察面上に炭化物が500個以上含まれる視野を4個所以上選択し、その領域中に含まれる各炭化物の面積を詳細に測定する。その後、1個当りの平均面積を円形で近似した際の直径を平均炭化物粒径として求める。   Tissue observation is performed with a scanning electron microscope. Since the number of very finely precipitated carbides greatly affects the hardenability, a field of view containing 500 or more carbides on the structure observation surface at a magnification of 3000 to 10000 times, or in some cases about 30000 times 4 or more are selected, and the area of each carbide contained in the region is measured in detail. Thereafter, the diameter when the average area per piece is approximated by a circle is determined as the average carbide particle diameter.

炭化物の長軸長と短軸長の比が3以上の場合を針状炭化物とし、3未満の場合を球状炭化物とする。球状炭化物の個数を全炭化物の個数で除した値を、炭化物球状化率とする。   A case where the ratio of the major axis length to the minor axis length of the carbide is 3 or more is referred to as acicular carbide, and a case where the ratio is less than 3 is referred to as spherical carbide. A value obtained by dividing the number of spherical carbides by the number of total carbides is defined as a carbide spheroidization rate.

焼入後の硬度は500HV以上が好ましい。500HV以上であると、焼入鋼の高強度化に伴い、耐摩耗性が向上する。特に、自動車用部品のクラッチプレートやギヤのような、耐摩耗性が主特性として求められる部材については、この特性は非常に重要であるので、焼入後の硬度500HV以上を満足することが重要である。   The hardness after quenching is preferably 500 HV or more. When it is 500 HV or more, the wear resistance is improved as the strength of the hardened steel is increased. In particular, for members that require wear resistance as a main characteristic, such as clutch plates and gears for automobile parts, this characteristic is very important, so it is important to satisfy a hardness of 500 HV or higher after quenching. It is.

100℃/秒の加熱速度にて950℃まで加熱した後、3秒保持し、300℃/秒以上の冷却速度で急冷した供試材の硬さを、焼入硬度として評価した結果、球状化率の上昇に伴い炭化物は溶け難くなるので、焼入硬度を確保するための平均球径は、小さくしなければならないという結果を得た。一方、球状化率が増加するほど、加工性は大きくなる。   After heating to 950 ° C. at a heating rate of 100 ° C./second, the hardness of the specimen that was held for 3 seconds and rapidly cooled at a cooling rate of 300 ° C./second or more was evaluated as the quenching hardness. As the rate increases, the carbide becomes difficult to dissolve, and the average sphere diameter for securing the quenching hardness must be reduced. On the other hand, the workability increases as the spheroidization rate increases.

本発明鋼板は、相反する加工性と焼入性の両因子を両立させることを特徴とするものである。   The steel sheet according to the present invention is characterized by satisfying both factors of conflicting workability and hardenability.

次に、本発明鋼板の製造方法について説明する。本発明の技術的思想は、上述した成分組成の鋼材において、熱延仕上圧延と冷却条件を工夫することで、最適熱延板組織を形成し、次いで、軽冷延率と低温短時間焼鈍(1回冷延・1回焼鈍)により、本発明鋼板を製造すること、特に、冷間鍛造性に優れ、さらには短時間の低温加熱焼入処置においても、目標とする硬度を確保できる焼入性に優れた中炭素鋼板を製造することである。   Next, the manufacturing method of this invention steel plate is demonstrated. The technical idea of the present invention is to form the optimum hot-rolled sheet structure by devising the hot-rolling finish rolling and cooling conditions in the steel material having the above-described component composition, and then the light cold-rolling rate and low-temperature short-time annealing ( (1) Cold rolling and 1 annealing) Manufacturing the steel sheet of the present invention, in particular, excellent cold forgeability, and quenching that can ensure the target hardness even in a short time low temperature heating and quenching treatment It is to produce a medium carbon steel plate having excellent properties.

以下に、本発明鋼板の製造方法(以下「本発明製造方法」ということがある。)について具体的に説明する。   Hereinafter, a method for producing the steel sheet of the present invention (hereinafter sometimes referred to as “the present invention production method”) will be specifically described.

[熱間圧延]
熱間圧延は、成分組成の範囲を満たす連続鋳造鋳片を、直接、又は、鋳片を冷却後に加熱炉に装入して1100℃以上に加熱し、Ae3以上で圧延する。この際の冷却パターンが特徴的である。まず、仕上圧延後2秒以上10秒以下の空冷を実施し、その後、強冷開始から終了までを10〜80℃/秒の冷却速度で、480〜600℃のパーライト領域まで冷却し、次いで、400〜580℃の温度域で巻き取ることが特徴である。
[Hot rolling]
In the hot rolling, a continuous cast slab satisfying the component composition range is charged directly or after cooling the slab into a heating furnace, heated to 1100 ° C. or higher, and rolled at Ae 3 or higher. The cooling pattern at this time is characteristic. First, after finishing rolling, air cooling is performed for 2 seconds or more and 10 seconds or less, and thereafter cooling from the start to the end of strong cooling to a pearlite region of 480 to 600 ° C. at a cooling rate of 10 to 80 ° C./second, It is characterized by winding in a temperature range of 400 to 580 ° C.

以下に、それぞれの熱間圧延での条件を規定する理由について説明する。   Below, the reason for prescribing the conditions in each hot rolling will be described.

[仕上圧延の圧延終了温度と冷却開始点]
仕上圧延の温度はAe3以上として、再結晶を促進する。通常、Ar3を、圧延終了温度の目安とし、オーステナイト組織で圧延を終了するが、その場合、鋼板は過冷状態にあり、再結晶が十分に起きず、冷却速度の影響が、圧延終了温度などで変化するので、熱延板において得られる組織に、多大なバラツキが生じる。
[Finish rolling finish temperature and cooling start point]
The temperature of finish rolling is set to Ae3 or higher to promote recrystallization. Usually, Ar3 is used as a guideline for the end temperature of rolling, and the rolling is finished with an austenite structure. In this case, the steel sheet is in a supercooled state, recrystallization does not occur sufficiently, and the influence of the cooling rate is affected by the rolling end temperature, etc. Therefore, a great variation occurs in the structure obtained in the hot-rolled sheet.

したがって、本発明製造方法では、連続熱延の終了温度はAe3以上とし、冷却開始まで、冷却開始温度との兼ね合いで、2〜10秒の空冷時間をとり、その後、鋼板の冷却を開始する。   Therefore, in the manufacturing method of the present invention, the end temperature of continuous hot rolling is set to Ae3 or more, and the air cooling time of 2 to 10 seconds is taken in consideration of the cooling start temperature until the start of cooling, and then the cooling of the steel sheet is started.

空冷時間が10秒を超えると、温度の低下が著しくなり、再結晶挙動が緩慢となって、改善効果が飽和する。空冷時間は7秒以下が好ましい。連続熱延の終了温度は1000℃以下が好ましい。熱延終了温度が1000℃を超えると、スケール厚が増加し、酸洗性が極めて悪くなり、工業生産が困難となる。   When the air cooling time exceeds 10 seconds, the temperature is remarkably lowered, the recrystallization behavior becomes slow, and the improvement effect is saturated. The air cooling time is preferably 7 seconds or less. The end temperature of continuous hot rolling is preferably 1000 ° C. or less. When the hot rolling end temperature exceeds 1000 ° C., the scale thickness increases, the pickling property becomes extremely poor, and industrial production becomes difficult.

また、粗圧延後、シートバーとした後に、シートバーを接合し、連続圧延を行ってもよい。シートバーを加熱し、上記の温度で圧延しても、材質・組織への影響はない。   Further, after rough rolling, after forming a sheet bar, the sheet bar may be joined and continuous rolling may be performed. Even if the sheet bar is heated and rolled at the above temperature, there is no influence on the material and structure.

[冷却速度と強冷却終了温度]
冷却速度と終了温度を規定する理由は、目標組織を得るためである。ここでの組織制御が十分でないと、その後の冷延・焼鈍を目標範囲で実施しても目標組織を得ることができない。
[Cooling rate and strong cooling end temperature]
The reason for defining the cooling rate and end temperature is to obtain the target tissue. If the structure control is not sufficient here, the target structure cannot be obtained even if the subsequent cold rolling and annealing are performed within the target range.

上述した圧延後の空冷を行った後、冷却速度10〜80℃/秒で、480〜600℃のパーライト領域まで冷却する。冷却速度が10℃/秒未満であると、この温度領域まで冷却した場合、変態が完了し、粗大なフェライトと粗大なパーライトの組織となってしまい、その後の冷延・焼鈍後で、目標とする炭化物を得ることができない。よって、冷却速度は10℃/秒以上とする。好ましくは20℃/秒以上である。   After performing the air cooling after rolling described above, it is cooled to a pearlite region of 480 to 600 ° C. at a cooling rate of 10 to 80 ° C./second. If the cooling rate is less than 10 ° C./second, the transformation is completed when cooling to this temperature range, resulting in a coarse ferrite and coarse pearlite structure. After the subsequent cold rolling and annealing, the target Carbide that can not be obtained. Therefore, the cooling rate is set to 10 ° C./second or more. Preferably, it is 20 ° C./second or more.

冷却速度が80℃/秒超であると、鋼板の幅方向において冷却むらが生じる。特に、鋼板の端部近傍は過冷され、その後の巻取りまでの処理で、ベイナイト比率が高くなりすぎて、目標とする組織を得ることができなくなる。鋼板の端部を、トリム等で除去すると、歩留が低下するので、本発明製造方法では、冷却速度を80℃/秒以下とする。好ましくは70℃/秒以下である。   When the cooling rate is more than 80 ° C./second, uneven cooling occurs in the width direction of the steel sheet. In particular, the vicinity of the end of the steel sheet is supercooled, and the bainite ratio becomes too high in the subsequent processing until winding, making it impossible to obtain the target structure. If the end of the steel plate is removed by trim or the like, the yield is lowered. Therefore, in the manufacturing method of the present invention, the cooling rate is set to 80 ° C./second or less. Preferably it is 70 degrees C / sec or less.

[強冷却後の冷却終了後の巻取温度]
冷却後の巻取りは400〜580℃の温度域で行う。巻取温度が400℃未満であると、マルテンサイト変態が一部生じて、酸洗、巻戻し時に割れが発生する懸念が大きくなる。割れは絶対に避ける必要がある。また、割れが発生しなくても、材質にバラツキが生じるので、この点からも、マルテンサイト変態の一部発生は避けるべきである。巻取温度は430℃以上が好ましい。
[Taking temperature after cooling after strong cooling]
Winding after cooling is performed in a temperature range of 400 to 580 ° C. If the coiling temperature is less than 400 ° C., a part of martensitic transformation occurs, and there is a greater concern that cracking will occur during pickling and rewinding. It is absolutely necessary to avoid cracking. In addition, even if no cracking occurs, the material will vary, and from this point also, some occurrence of martensitic transformation should be avoided. The winding temperature is preferably 430 ° C. or higher.

巻取温度を580℃以下とするのは、強冷却後の変態完了していない組織を、ベイナイト化するためである。巻取温度が580℃を超えると、変態未完了組織もパーライト組織へ変態するので、目標とする組織が得られない。巻取温度は550℃以下が好ましい。   The reason why the coiling temperature is set to 580 ° C. or lower is to bainite a structure that has not been transformed after strong cooling. When the coiling temperature exceeds 580 ° C., the untransformed structure is transformed into a pearlite structure, so that the target structure cannot be obtained. The winding temperature is preferably 550 ° C. or lower.

これらの熱延・冷却条件によって得られた熱延組織は、初析フェライト5〜10%、ベイナイト50%未満の組織である。この組織に制御する理由は、冷延条件と焼鈍条件に深くかかわってくる。   The hot-rolled structure obtained by these hot-rolling / cooling conditions is a structure of 5-10% pro-eutectoid ferrite and less than 50% bainite. The reason for controlling this structure is deeply related to cold rolling conditions and annealing conditions.

その後の冷延・焼鈍処理の狙いは、冷延歪を加え、組織別の歪集積量の差を利用し、粒成長を促進することにある。熱延板の組織中には、冷却時と変態時に歪が導入されるが、組織によって歪量が異なり、ベイナイト組織での歪集積量が大きい。   The aim of the subsequent cold rolling and annealing treatments is to add cold rolling strain and utilize the difference in strain accumulation by structure to promote grain growth. Although strain is introduced into the structure of the hot-rolled sheet during cooling and transformation, the amount of strain differs depending on the structure, and the strain accumulation amount in the bainite structure is large.

ただし、ベイナイト比率が50%以上の場合は、全体に占めるベイナイト組織が多すぎて、歪差が生じず、再結晶・粒成長が不均一になるので不適切である。また、歪差を大きくし、粒成長・再結晶を促進するためには、熱延板において生成した歪量の少ない初析フェライトを用いる必要があり、この量を、5〜10%に制御する必要がある。   However, when the bainite ratio is 50% or more, there are too many bainite structures in the whole, so that a strain difference does not occur and recrystallization and grain growth become nonuniform, which is inappropriate. Further, in order to increase the strain difference and promote grain growth and recrystallization, it is necessary to use proeutectoid ferrite with a small amount of strain generated in the hot-rolled sheet, and this amount is controlled to 5 to 10%. There is a need.

初析フェライトの量が5%未満であれば、ベイナイト比率が低くても、粒成長が十分できないし、10%超であれば、歪集積が生じ難く、粒成長が起こり難い。よって、初析フェライトの量は、5〜10%に制御する必要がある。好ましくは、6〜9%である。   If the amount of pro-eutectoid ferrite is less than 5%, even if the bainite ratio is low, the grain growth cannot be sufficiently performed, and if it exceeds 10%, strain accumulation hardly occurs and grain growth hardly occurs. Therefore, the amount of pro-eutectoid ferrite needs to be controlled to 5 to 10%. Preferably, it is 6 to 9%.

巻き取った熱延板を、酸洗又はショットブラストなどで、表面の酸化スケールを除去した後、冷延に供する。   The wound hot-rolled sheet is subjected to cold rolling after removing surface oxide scale by pickling or shot blasting.

[冷間圧延率:圧下率5〜30%未満]
上述した熱間圧延方法により、狙い通りの組織とした熱延板を、圧下率5〜30%未満で冷間圧延を実施する。この処理は、熱延板で得た組織に歪を加えることで、組織別の歪差をより顕著にし、粒成長・再結晶を促進するためである。このような効果を得るためには、圧下率を5%以上とする必要がある。好ましくは、7%以上である。
[Cold rolling ratio: Reduction ratio of less than 5-30%]
The hot-rolled sheet having a desired structure is cold-rolled at a reduction rate of less than 5 to 30% by the hot rolling method described above. This treatment is for imparting strain to the structure obtained with the hot-rolled sheet, thereby making the difference in strain for each structure more prominent and promoting grain growth and recrystallization. In order to obtain such an effect, the rolling reduction needs to be 5% or more. Preferably, it is 7% or more.

また、圧下率の下限のもう一つの意味は、炭化物を微細化することである、圧下率が5%未満であれば、熱延にて析出した炭化物が十分に破壊されず残存して、炭化物の平均粒径が大きくなるので、好ましくない。また、圧下率が30%以上の場合は、再結晶後のフェライトが細粒化して、強度が上昇するので、圧下率は30%未満とする。好ましくは27%以下である。   Further, another meaning of the lower limit of the rolling reduction is to refine the carbide. If the rolling reduction is less than 5%, the carbide precipitated by hot rolling remains without being destroyed, and the carbide Since the average particle diameter of becomes large, it is not preferable. Further, when the rolling reduction is 30% or more, the ferrite after recrystallization becomes finer and the strength increases, so the rolling reduction is set to less than 30%. Preferably it is 27% or less.

[冷延板焼鈍の焼鈍温度と時間]
熱延・酸洗と冷延を施した鋼板を焼鈍し、目標とする炭化物組織と低YR型の鋼板とする。焼鈍により、各組織に集積した歪量の差を利用し、初析フェライトを再結晶・粒成長させ、粗大な粒とすることで、軟質化を図る。
[Annealing temperature and time for cold rolled sheet annealing]
The steel sheet subjected to hot rolling, pickling and cold rolling is annealed to obtain a target carbide structure and low YR type steel sheet. By annealing, the difference in strain accumulated in each structure is utilized, and pro-eutectoid ferrite is recrystallized and grain-grown to make coarse grains, thereby softening.

炭化物は、比較的低い巻取温度で分散した状態となっていることに加えて、冷延が施されているため、冷延完了時の状態では、非常に微細となっている。その結果、焼鈍を開始すると、直ぐに、炭化物は溶解を開始し、球状化が進行する。   Since the carbide is cold-rolled in addition to being dispersed at a relatively low coiling temperature, the carbide is very fine when the cold-rolling is completed. As a result, as soon as annealing is started, the carbide starts to dissolve and spheroidization proceeds.

ただし、前述した製造条件により、非常に均一に、小さく分散しているので、一気に球状化が進行し、非常に微細なものが一斉に多数生成する。その結果、鋼中に固溶して残存するC量は極めて少ない状況となる。   However, since the dispersion is very uniform and small due to the manufacturing conditions described above, spheroidization progresses at once, and a large number of very fine ones are generated simultaneously. As a result, the amount of C remaining in solid solution in the steel is extremely small.

これまで、降伏点(YP)を上昇させていた固溶C量の低下により、YPが低下し、併せて、目標とする球状化率と炭化物径を得ることができる。この製造方法の冷延板焼鈍においては、低温・短時間が好ましく、650〜720℃、40時間以下とする。好ましくは、690℃で、20〜40時間である。   Up to now, due to the decrease in the amount of solid solution C that has increased the yield point (YP), YP is decreased, and at the same time, the target spheroidization rate and carbide diameter can be obtained. In the cold-rolled sheet annealing of this manufacturing method, a low temperature and a short time are preferable, and 650 to 720 ° C. and 40 hours or less are set. Preferably, it is 20 to 40 hours at 690 ° C.

なお、ここでの焼鈍は、箱焼鈍を指しており、水素95%以上で、かつ、400℃までの露点が−20℃未満で、400℃超における露点が−40℃未満の雰囲気で行うことが、鋼材幅方向における特性のバラツキを抑制する点で好ましいが、窒素雰囲気下においても、目標とする特性の鋼材を製造することは可能である。   Note that annealing here refers to box annealing, and is performed in an atmosphere of 95% or more of hydrogen, a dew point of less than -20 ° C up to 400 ° C, and a dew point of more than 400 ° C of less than -40 ° C. However, it is preferable in terms of suppressing variation in characteristics in the width direction of the steel material, but it is possible to manufacture a steel material having target characteristics even in a nitrogen atmosphere.

次に、実施例について説明する。実施例の水準は、本発明の実施可能性及び効果を確認するために採用した実行条件の一例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明要旨を逸脱せず、本発明目的を達する限りにおいては、種々の条件を採用可能とするものである。   Next, examples will be described. The level of the embodiment is an example of execution conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is not limited to this one condition example. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

表1に示す成分組成を有する鋼板を用い、表2に示す熱延条件と表3に示す冷延条件を組み合せ、かつ、焼鈍条件を2水準(690℃×35時間、710℃×35時間)として、鋼板の硬さと、鋼板中の炭化物の径を制御し、焼入硬度と冷間曲げ性により、鋼板の加工性を評価した。焼鈍後の冷却は、保定完了後、炉冷とした。   Using steel sheets having the composition shown in Table 1, the hot rolling conditions shown in Table 2 and the cold rolling conditions shown in Table 3 were combined, and the annealing conditions were two levels (690 ° C. × 35 hours, 710 ° C. × 35 hours). As described above, the hardness of the steel sheet and the diameter of the carbide in the steel sheet were controlled, and the workability of the steel sheet was evaluated by quenching hardness and cold bendability. Cooling after annealing was furnace cooling after completion of holding.

Figure 0005640931
Figure 0005640931

Figure 0005640931
Figure 0005640931

Figure 0005640931
Figure 0005640931

また、焼入試験は、板厚5tの供試材を、周波数78kHzにて、常温より100℃/秒の加熱速度で昇温後、950℃で10秒保持し、直ちに100℃/秒以上の冷却速度で常温まで急冷する条件で実施し、焼入材のビッカーズ硬度を測定した。   In addition, the quenching test was performed by heating a test material having a thickness of 5 t at a frequency of 78 kHz at a heating rate of 100 ° C./second from room temperature, holding at 950 ° C. for 10 seconds, and immediately increasing the temperature to 100 ° C./second or more. The test was carried out under the condition of rapidly cooling to room temperature at the cooling rate, and the Vickers hardness of the quenched material was measured.

曲げ試験は、板厚5tの焼鈍ままの供試材を、曲げ半径5mmにて90°板長さ方向に曲げる条件にて評価し、従来評価していた外曲げ部の微細な亀裂や粗度不良以外にも、加工時の圧縮を考慮し、内曲げ側での微細な亀裂や粗度不良が認められたものについては、冷間加工性が劣位と判断し、評価×とした。評価結果を、表4及び表5に示す。   The bending test was performed under the condition that a specimen with an annealing thickness of 5 t was bent in a 90 ° plate length direction with a bending radius of 5 mm, and the fine cracks and roughness of the outer bending portion, which were conventionally evaluated, were evaluated. In addition to the defects, considering the compression during processing, those in which fine cracks and roughness defects on the inner bending side were observed were judged to be inferior in cold workability and were evaluated as x. The evaluation results are shown in Tables 4 and 5.

Figure 0005640931
Figure 0005640931

Figure 0005640931
Figure 0005640931

表4及び表5中の連番1〜6、11、12、13、24〜29は、冷間加工性と焼入性が両立する開発鋼(発明鋼)である。連番7〜10は、焼入後の硬度が、目標に達しておらず、焼入性が劣位な比較鋼である。連番30と31は、炭化物の平均径が大きいため、軟質ではあるが、焼入性が劣位な比較鋼である。連番34は、YRが高いため、冷間加工性が目標に達せず、かつ、炭化物の平均径が大きいため、焼入後の硬度が目標に達していない劣位な比較鋼である。   Serial numbers 1 to 6, 11, 12, 13, 24 to 29 in Tables 4 and 5 are developed steels (invention steels) that have both cold workability and hardenability. Serial numbers 7 to 10 are comparative steels whose hardness after quenching does not reach the target and inferior in hardenability. Serial numbers 30 and 31 are comparative steels that are soft but have poor hardenability due to the large average diameter of carbides. The serial number 34 is an inferior comparative steel whose YR is high, the cold workability does not reach the target, and the average diameter of the carbide is large, so the hardness after quenching does not reach the target.

連番17、18、20、22、23、32、33、35、及び、36は、TS及びYRとも、目標に達しておらず、冷間加工性が劣位な比較鋼である。連番14〜16、19、及び、21は、炭化物の球状化率が低く、TS及びYRともに高いため、冷間加工性が劣位な比較鋼である。   Serial numbers 17, 18, 20, 22, 23, 32, 33, 35, and 36 are comparative steels that do not reach the target for both TS and YR and have poor cold workability. Serial numbers 14 to 16, 19, and 21 are comparative steels with low cold workability because the spheroidization rate of carbide is low and both TS and YR are high.

前述したように、本発明によれば、軽圧下率の冷間圧延によって、熱延板で得た組織に歪を加えることで、粒成長・再結晶を促進し、降伏比が低く極めて軟質なために、冷間加工性に優れ、かつ、微細で球状化率の高い炭化物を析出させることで、どのような焼入条件においても、十分な焼入硬化能を有する中炭素冷延鋼板を提供することができる。よって、本発明は、鉄鋼産業において利用可能性が高いものである。 As described above, according to the present invention, grain growth / recrystallization is promoted by applying strain to the structure obtained by hot rolling by cold rolling at a light reduction rate, and the yield ratio is low and extremely soft. Therefore, by providing carbide with excellent cold workability and fine and high spheroidization rate, we provide medium-carbon cold-rolled steel sheets with sufficient quench-hardening ability under any quenching conditions. can do. Therefore, the present invention has high applicability in the steel industry.

Claims (3)

質量%で、C:0.10〜0.80%、Si:0.01〜0.35%、Mn:0.3〜2.0%、P:0.005〜0.03%、S:0.0001〜0.01%、Al:0.005〜0.10%、及び、N:0.001〜0.01%を含有し、さらに、Cr:0.02〜1.0%、Ni:0.01〜0.5%、Cu:0.05〜0.5%、Mo:0.01〜0.5%、Nb:0.01〜0.5%、V:0.01〜0.5%、Ta:0.01〜0.5%、B:0.001〜0.01%、W:0.01〜0.5%の1種又は2種以上を含有し、残部がFe及び不可避的不純物からなり、炭化物の平均炭化物径が0.4μm以下(但し、0.05μm以下を除く)、炭化物の球状化率が90%以上で、かつ、降伏比が60%以下であって、冷間加工前の引張強度が500MPa以下であり、さらに、焼入れ後に500HV以上に硬化する焼入硬化能を備えることを特徴とする冷間加工性及び焼入性に優れた中炭素冷延鋼板。 In mass%, C: 0.10 to 0.80%, Si: 0.01 to 0.35%, Mn: 0.3 to 2.0%, P: 0.005 to 0.03%, S: 0.0001 to 0.01%, Al: 0.005 to 0.10%, and N: 0.001 to 0.01%, Cr : 0.02 to 1.0%, Ni : 0.01-0.5%, Cu: 0.05-0.5%, Mo: 0.01-0.5%, Nb: 0.01-0.5%, V: 0.01-0 0.5%, Ta: 0.01 to 0.5%, B: 0.001 to 0.01%, W: 0.01 to 0.5%, or one or more, and the balance is Fe And the average carbide diameter of the carbide is 0.4 μm or less (excluding 0.05 μm or less) , the spheroidization rate of the carbide is 90% or more, and the yield ratio is 60% or less. , cold working Tensile strength is not more than 500 MPa, furthermore, the carbon cold-rolled steel sheet in which excellent cold workability and hardenability, characterized in that it comprises a quench-hardening ability to cure after quenching above 500 HV. 前記中炭素冷延鋼板が、さらに、質量%で、Mg:0.0005〜0.003%、Ca:0.0005〜0.003%、Y:0.001〜0.03%、Zr:0.001〜0.03%、La:0.001〜0.03%、Ce:0.001〜0.03%の1種又は2種以上を含有することを特徴とする請求項1に記載の冷間加工性及び焼入性に優れた中炭素冷延鋼板。 The medium carbon cold-rolled steel sheet is further mass%, Mg: 0.0005-0.003%, Ca: 0.0005-0.003%, Y: 0.001-0.03%, Zr: 0. It contains 1 type or 2 types or more of 0.001-0.03%, La: 0.001-0.03%, Ce: 0.001-0.03% of Claim 1 characterized by the above-mentioned. Medium carbon cold rolled steel sheet with excellent cold workability and hardenability . 請求項1又は2のいずれかに記載の成分組成を有する連続鋳造鋳片を、直接、熱間圧延する際、又は、該鋳片を1100℃以上に加熱して熱間圧延する際、熱間圧延をAe3以上で行い、その後、2〜10秒の空冷時間を確保し、次いで、強冷開始から終了までを、10〜80℃/秒の冷却速度で、480〜600℃のパーライト領域まで冷却し、その後、400〜580℃の温度域で巻き取ることにより、初析フェライト5〜10%、ベイナイト50%未満の熱延板組織を有する熱延板を得、該熱延板に、圧下率5〜30%未満にて1回冷延を施し、前記冷延の後、650〜720℃、40時間以下の焼鈍を施す1回焼鈍の処理を施すことを特徴とする請求項1又は2のいずれかに記載の冷間加工性及び焼入性に優れた中炭素冷延鋼板の製造方法。 The continuous casting slab having the component composition of any crab according to claim 1 or 2, directly, when the hot rolling, or, when the hot rolling by heating the template pieces above 1100 ° C., hot Rolling is performed at Ae3 or higher, and then an air cooling time of 2 to 10 seconds is secured, and then from the start to the end of strong cooling to a pearlite region of 480 to 600 ° C. at a cooling rate of 10 to 80 ° C./second. and, then, by winding in a temperature range of from 400 to 580 ° C., the pro-eutectoid ferrite 5-10%, to obtain a hot rolled sheet having a hot-rolled sheet structure is less than 50% bainite, the heat-rolled plate, reduction ratio subjected to one cold rolling at less than 5-30%, the after cold-rolled, from 650 to 720 ° C., according to claim 1 or 2, characterized by applying the processing of single annealing subjected to annealing below 40 hours manufactured carbon cold-rolled steel sheet in which excellent cold workability and hardenability according to any one of Method.
JP2011197423A 2011-09-09 2011-09-09 Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method Active JP5640931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011197423A JP5640931B2 (en) 2011-09-09 2011-09-09 Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011197423A JP5640931B2 (en) 2011-09-09 2011-09-09 Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2013057114A JP2013057114A (en) 2013-03-28
JP5640931B2 true JP5640931B2 (en) 2014-12-17

Family

ID=48133217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011197423A Active JP5640931B2 (en) 2011-09-09 2011-09-09 Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5640931B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193041A (en) * 2014-03-26 2015-11-05 株式会社神戸製鋼所 Cooling method of casting piece of spring steel
JP6600996B2 (en) * 2015-06-02 2019-11-06 日本製鉄株式会社 High carbon steel sheet and method for producing the same
KR102327930B1 (en) * 2019-12-20 2021-11-17 주식회사 포스코 High carbon steel and manufacturing method thereof
CN111518995A (en) * 2020-03-30 2020-08-11 安徽绩溪徽山链传动有限公司 Heat treatment method for raw materials for chain assembly production
CN115029618B (en) * 2021-03-03 2023-10-13 宝山钢铁股份有限公司 Cold forging gear steel with narrow hardenability and manufacturing method thereof
CN113430358A (en) * 2021-05-19 2021-09-24 西北工业大学 Method for regulating and controlling carbide of large-size gun steel bar
CN114058947B (en) * 2021-10-15 2022-10-21 首钢集团有限公司 Multi-element composite high-carbon low-alloy tool steel and preparation method and application thereof
CN114150210B (en) * 2021-11-24 2022-06-28 北京科技大学 Preparation method of multi-element small-amount low-alloying ledge steel casting
CN114622064B (en) * 2022-02-23 2023-10-03 大冶特殊钢有限公司 Spheroidizing annealing method of MnCr series low-carbon gear steel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269619A (en) * 1995-03-31 1996-10-15 Kawasaki Steel Corp High carbon hot rolled steel sheet excellent in hardenability and cold workability
JP3848444B2 (en) * 1997-09-08 2006-11-22 日新製鋼株式会社 Medium and high carbon steel plates with excellent local ductility and hardenability
JP2001220643A (en) * 2000-02-04 2001-08-14 Nisshin Steel Co Ltd Medium or high carbon steel sheet excellent in local ductility
JP5280324B2 (en) * 2009-09-08 2013-09-04 日新製鋼株式会社 High carbon steel sheet for precision punching
JP5064525B2 (en) * 2010-02-18 2012-10-31 新日本製鐵株式会社 High carbon steel sheet with low anisotropy and excellent hardenability and method for producing the same

Also Published As

Publication number Publication date
JP2013057114A (en) 2013-03-28

Similar Documents

Publication Publication Date Title
JP5640931B2 (en) Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method
JP5040197B2 (en) Hot-rolled thin steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
JP6341214B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
JP5292698B2 (en) Extremely soft high carbon hot-rolled steel sheet and method for producing the same
JP5655986B2 (en) Steel wire rod or bar
KR101515730B1 (en) High strength cold rolled steel sheet having excellent stretch flangeability and method for manufacturing the same
MXPA97008775A (en) Process to produce steel pipe without seams of great strength having excellent resistance to the fissure by tensions by sulf
JP2020509208A (en) Tempered martensitic steel with low yield ratio and excellent uniform elongation and method for producing the same
JP2011202195A (en) Ultrahigh strength cold rolled steel sheet and method for producing same
JP2011195882A (en) Hot rolled steel sheet having excellent cold workability and hardenability, and method for producing the same
KR20150048885A (en) High-strength cold-rolled steel sheet and method for manufacturing same
US11401569B2 (en) High-strength cold-rolled steel sheet and method for manufacturing same
WO2013180180A1 (en) High strength cold-rolled steel plate and manufacturing method therefor
JP2009007652A (en) Thick hot-rolled steel sheet excellent in workability and excellent in strength and toughness after heat-treatment, and method for producing the same
JP5358914B2 (en) Super soft high carbon hot rolled steel sheet
JP4901623B2 (en) High-strength steel sheet with excellent punching hole expandability and manufacturing method thereof
KR20130046941A (en) High strength steel sheet and method of manufacturing the steel sheet
JP5630523B2 (en) Steel sheet for nitriding treatment and method for producing the same
JP3899680B2 (en) Paint bake-hardening type high-tensile steel sheet and manufacturing method thereof
JP2005213603A (en) High workability high strength cold rolled steel plate and its manufacturing method
KR20100076073A (en) Steel sheets and process for manufacturing the same
JP4696853B2 (en) Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
KR102209555B1 (en) Hot rolled and annealed steel sheet having low strength-deviation, formed member, and manufacturing method of therefor
JP4964492B2 (en) Medium carbon steel sheet and method for producing the same
JP7186229B2 (en) Ultra-high-strength hot-rolled steel sheet, steel pipe, member, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

R151 Written notification of patent or utility model registration

Ref document number: 5640931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350