JP5630523B2 - Steel sheet for nitriding treatment and method for producing the same - Google Patents

Steel sheet for nitriding treatment and method for producing the same Download PDF

Info

Publication number
JP5630523B2
JP5630523B2 JP2013076824A JP2013076824A JP5630523B2 JP 5630523 B2 JP5630523 B2 JP 5630523B2 JP 2013076824 A JP2013076824 A JP 2013076824A JP 2013076824 A JP2013076824 A JP 2013076824A JP 5630523 B2 JP5630523 B2 JP 5630523B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
steel
nitriding
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013076824A
Other languages
Japanese (ja)
Other versions
JP2014201764A (en
Inventor
崇 小林
崇 小林
勇人 齋藤
勇人 齋藤
船川 義正
義正 船川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013076824A priority Critical patent/JP5630523B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to US14/781,440 priority patent/US20160032431A1/en
Priority to CN201480019178.9A priority patent/CN105102659B/en
Priority to KR1020157027610A priority patent/KR101733513B1/en
Priority to MX2015013940A priority patent/MX2015013940A/en
Priority to PCT/JP2014/001603 priority patent/WO2014162677A1/en
Priority to EP14779834.2A priority patent/EP2955242B1/en
Priority to TW103111885A priority patent/TWI548755B/en
Publication of JP2014201764A publication Critical patent/JP2014201764A/en
Application granted granted Critical
Publication of JP5630523B2 publication Critical patent/JP5630523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/36Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling

Description

本発明は、耐久性向上のために窒化処理を施して使用される機械部品の素材として好適な窒化処理用鋼板、特に窒化処理前の成形性と打抜性に優れた窒化処理用鋼板およびその製造方法に関する。   The present invention relates to a steel sheet for nitriding suitable as a material for machine parts used after nitriding for improving durability, in particular, a steel sheet for nitriding excellent in formability and punchability before nitriding and its It relates to a manufacturing method.

自動車の変速機等に用いられる機械部品は、疲労強度や耐摩耗性の向上のため、素材の鋼材を所望の部品形状に成形加工した後に、表面硬化処理を施して使用されることが多い。このような表面硬化処理の代表的なものとして、浸炭処理と窒化処理がある。   Mechanical parts used in automobile transmissions and the like are often used after being subjected to surface hardening treatment after forming a steel material as a desired part shape in order to improve fatigue strength and wear resistance. Typical examples of such surface hardening treatment include carburizing treatment and nitriding treatment.

浸炭処理は、最も一般的な表面硬化処理である。しかしながら、浸炭処理では通常、鋼のA3変態点以上で鋼の表層部に炭素を拡散・浸透(浸炭)させた後に焼入を施すため、高温からの焼入に伴って生ずる歪の影響により、部品の形状精度の低下が避けられない。また、浸炭後焼入したままの状態では、鋼の靭性が著しく低下している。そのため、焼入後、靱性回復のための焼戻および部品形状の矯正が必須となる。ゆえに、浸炭処理を採用する場合、部品の製造に必要な工程が増し、製造コストが高くなるという難点がある。 The carburizing process is the most common surface hardening process. However, the carburizing treatment usually for performing hardening after diffused-permeation carbon (carburization) in the surface layer of the steel in the A 3 transformation point or above of the steel, due to the influence of the distortion caused with the quenching from high temperature In addition, a decrease in the shape accuracy of the parts is inevitable. In addition, the toughness of the steel is significantly reduced in the state of being quenched after carburizing. Therefore, after quenching, tempering for toughness recovery and correction of part shape are essential. Therefore, when carburizing treatment is adopted, there are disadvantages that the number of processes required for manufacturing parts increases and the manufacturing cost increases.

これに対し、窒化処理は、通常、鋼をA1変態点より低い500〜600℃程度の温度に加熱し、鋼の表層部に窒素を拡散・浸透(窒化)させる処理であり、浸炭処理のように焼入することなく、鋼の表面硬化を図るものである。すなわち、窒化処理は処理温度が比較的低温であり、冷却時に鋼の相変態を伴わないため、変態歪による部品形状精度の低下が発生しないという利点がある。また、窒化による鋼材表層部の体積変化も小さく、部品の形状精度を良好に保つことが容易であるという利点もある。 In contrast, the nitriding treatment is usually a treatment in which the steel is heated to a temperature of about 500 to 600 ° C. lower than the A 1 transformation point, and nitrogen is diffused and permeated (nitriding) into the surface layer portion of the steel. Thus, the surface hardening of the steel is achieved without quenching. That is, the nitriding treatment has a relatively low processing temperature and does not involve the phase transformation of the steel at the time of cooling, and therefore has an advantage that the deterioration of the part shape accuracy due to transformation strain does not occur. Further, the volume change of the steel surface layer portion due to nitriding is small, and there is also an advantage that it is easy to keep good shape accuracy of the parts.

アンモニアガスによる窒化の場合、従来、窒化に要する時間が著しく長いため、大量生産を前提とする自動車部品等には適さなかった。しかしながら、近年では、浸炭性雰囲気を利用することによって、窒化反応を迅速に進行させる軟窒化と呼ばれる窒化処理が普及し、従来の窒化処理で課題とされていた処理時間が非常に長いという問題も解決されつつある。   In the case of nitriding with ammonia gas, conventionally, the time required for nitriding is remarkably long, so that it is not suitable for automobile parts and the like on the premise of mass production. However, in recent years, a nitriding treatment called soft nitriding that allows a nitriding reaction to proceed rapidly by using a carburizing atmosphere has become widespread, and there has been a problem that the processing time that has been a problem in the conventional nitriding treatment is very long. It is being resolved.

この軟窒化処理では、被処理物は550〜600℃の処理雰囲気中に数時間保持され、鉄炭化物の生成反応をなかだちとして、鋼材表面から鋼中に向けて窒素が拡散導入される。そして、軟窒化処理によると、処理後に得られる表面硬度は従来の窒化処理より低くなるものの、窒化に要する時間は大幅に短縮できる。以上の理由により、近年では、浸炭処理に代わる表面硬化処理として、軟窒化処理が採用される事例が多くなっている。   In this soft nitriding treatment, the object to be treated is held in a treatment atmosphere at 550 to 600 ° C. for several hours, and nitrogen is diffused and introduced from the steel material surface into the steel immediately with the formation reaction of iron carbide. According to the soft nitriding treatment, the surface hardness obtained after the treatment is lower than that of the conventional nitriding treatment, but the time required for nitriding can be greatly shortened. For these reasons, in recent years, there are many cases where soft nitriding treatment is employed as surface hardening treatment instead of carburizing treatment.

一方、自動車の変速機等に用いられる機械部品は、従来、鋳造や鍛造により得られた中間品に機械加工を施して製造されるのが一般的であった。しかし、近年、機械部品の素材として薄鋼板が積極的に用いられるようになり、薄鋼板にプレス加工等を施し所望の形状に成形して製造されるようになっている。従来、鋳造や鍛造で得られた中間品を機械加工して製造していた部品を、鋼板の板金加工品で代替することにより、製造工程の短縮と製造コストの低減が図られるからである。このような背景から、前記した機械部品の素材鋼材として、成形性に優れる窒化処理用鋼板の必要性が高まっている。   On the other hand, mechanical parts used for automobile transmissions and the like have been conventionally manufactured by machining an intermediate product obtained by casting or forging. However, in recent years, a thin steel plate has been actively used as a material for mechanical parts, and the thin steel plate is manufactured by being pressed into a desired shape. This is because the manufacturing process can be shortened and the manufacturing cost can be reduced by substituting a sheet metal processed product of a steel plate for a part that has been manufactured by machining an intermediate product obtained by casting or forging. From such a background, the necessity of the steel sheet for nitriding processing which is excellent in a formability as a raw material steel material of an above-described machine part is increasing.

成形性に優れた窒化処理用鋼板に関し、従来、様々な技術が提案されている。
例えば、特許文献1および特許文献2には、重量比でC:0.01〜0.08%未満、Si:0.005〜1.00%、Mn:0.010〜3.00%、P:0.001〜0.150%、N:0.0002〜0.0100%、Cr:0.15超〜5.00%、Al:0.060超〜2.00%を含有し、さらに、Ti、Vの1種または2種を含有する組成の鋼を、熱間圧延後500℃以上で巻き取るか、その後50%以上の圧下率で冷間圧延を施し、再結晶焼鈍を行うことで、窒化用鋼板を製造する技術が提案されている。そして、これらの技術によると、成形性に悪影響を及ぼすC含有量を0.08%未満に抑制するとともに、Al、Cr、Tiおよび/またはVの窒化促進元素を同時に含有した低炭素鋼板とすることで、成形性および窒化性に優れた窒化用鋼板が得られるとされている。
Various techniques have been proposed for nitriding steel sheets having excellent formability.
For example, in Patent Document 1 and Patent Document 2, C: 0.01 to less than 0.08%, Si: 0.005 to 1.00%, Mn: 0.010 to 3.00%, P: 0.001 to 0.150%, N: 0.0002 to 0.0100% by weight ratio , Cr: more than 0.15 to 5.00%, Al: more than 0.060 to 2.00%, and further, steel having a composition containing one or two of Ti and V, is rolled up at 500 ° C. or more after hot rolling Then, a technique for producing a steel sheet for nitriding by performing cold rolling at a reduction rate of 50% or more and performing recrystallization annealing has been proposed. And according to these technologies, by suppressing the C content which adversely affects the formability to less than 0.08%, it is possible to obtain a low carbon steel sheet containing Al, Cr, Ti and / or V nitriding promoting elements at the same time. It is said that a nitriding steel plate having excellent formability and nitriding properties can be obtained.

また、特許文献3には、軟窒化用鋼板に関し、鋼板組成をC:0.01〜0.10mass%、Si:0.1mass%以下、Mn:O.1〜l.0mass%、P:0.05mass%以下、S:0.01mass%以下、Al:0.01〜0.06mass%、Cr:0.05〜0.50mass%、V:0.01〜0.30mass%、N:0.01mass%以下を含み、残部がFeおよび不可避的不純物からなる組成とする技術が提案されている。そして、特許文献3で提案された技術によると、合金元素を低減することで低コストであり且つ成形性に優れ、しかも窒化促進元素であるCrとVを同時添加することで軟窒化処理による表面硬化特性にも優れた軟窒化用鋼板が得られるとされている。   Moreover, in patent document 3, regarding steel plate for soft nitriding, steel plate composition is C: 0.01-0.10 mass%, Si: 0.1 mass% or less, Mn: O.1 to l.0 mass%, P: 0.05 mass% or less, S: 0.01 mass% or less, Al: 0.01 to 0.06 mass%, Cr: 0.05 to 0.50 mass%, V: 0.01 to 0.30 mass%, N: 0.01 mass% or less, with the balance consisting of Fe and inevitable impurities A technology has been proposed. According to the technique proposed in Patent Document 3, the surface is obtained by nitrocarburizing treatment by simultaneously adding Cr and V, which are low in cost and excellent in formability by reducing alloy elements, and are simultaneously nitriding promoting elements. It is said that a steel sheet for soft nitriding having excellent curing characteristics can be obtained.

特開平9−25513号公報Japanese Patent Laid-Open No. 9-25513 特開平9−25543号公報Japanese Patent Laid-Open No. 9-25543 特開2005−171331号公報JP 2005-171331 A

自動車の変速機等に用いられる機械部品を、素材である薄鋼板に成形加工を施して製造する場合には、成形加工に先だって薄鋼板素材を所定の寸法にブランキングし、また、成形加工後にも種々の形状の穴をピアシングすることが多い。したがって、これらの部品の素材鋼板には、成形性に優れ、かつ打抜性にも優れることが要求される。鋼板の打抜性が劣化すると、打抜加工時、打抜端面に発生するダレやバリ等が著しくなり、機械部品の寸法精度が損なわれる。また、打抜端面に微小クラックが発生し易くなり、機械部品の強度特性にも悪影響を及ぼすことがある。   When machine parts used in automobile transmissions are manufactured by forming thin steel sheets as raw materials, the thin steel sheet materials are blanked to a predetermined dimension prior to forming, and after forming Often pierce holes of various shapes. Therefore, the material steel plates of these parts are required to have excellent formability and excellent punchability. When the punchability of the steel sheet is deteriorated, sagging and burrs generated on the punching end face during punching process become remarkable, and the dimensional accuracy of the machine parts is impaired. In addition, micro cracks are likely to occur on the punched end face, which may adversely affect the strength characteristics of mechanical parts.

しかし、前記従来技術ではいずれも、鋼板の打抜性について全く検討されていない。更に、それぞれ以下に示す問題も残されている。
特許文献1および2で提案された技術では、窒化促進元素として多量のAlを含有する。そのため、Al系介在物に起因する内部欠陥および表面欠陥の発生が懸念されるうえ、Al系スラグが多量に発生して精錬時の溶製コストが高くなる。
However, none of the above prior art studies the punchability of the steel sheet. In addition, the following problems remain.
The techniques proposed in Patent Documents 1 and 2 contain a large amount of Al as a nitriding promoting element. Therefore, there are concerns about the occurrence of internal defects and surface defects due to Al inclusions, and a large amount of Al slag is generated, resulting in an increase in smelting cost during refining.

特許文献3で提案された技術では、窒化促進のための合金元素を低減しても軟窒化用鋼板に十分な硬化特性を付与できるとされているが、得られる鋼板の強度が不足しており、高負荷部品への適用は困難である。   In the technique proposed in Patent Document 3, it is said that sufficient hardening characteristics can be imparted to the steel sheet for soft nitriding even if the alloy elements for nitriding promotion are reduced, but the strength of the obtained steel sheet is insufficient. Application to high-load parts is difficult.

本発明は、前記した従来技術の諸問題を解決し、自動車の変速機等の部品用素材として広く利用できる、窒化処理前の成形性に優れるとともに打抜性にも優れた窒化処理用鋼板およびその製造方法の提供を目的とする。   The present invention solves the above-mentioned problems of the prior art, and can be widely used as a material for parts of automobile transmissions, etc., and is excellent in formability before nitriding and has excellent punchability and It aims at providing the manufacturing method.

本発明者らは、上記した課題を解決するため、鋼板の窒化処理による表面硬化特性に加えて、鋼板の成形性および打抜性に及ぼす各種要因について鋭意研究を重ねた。その結果、鋼板の化学組成とミクロ組織を所定の範囲に調整することにより、窒化処理による良好な硬化特性を付与することができることに加えて、鋼板に十分な成形性と打抜性をも付与できることを見出した。   In order to solve the above-mentioned problems, the present inventors have intensively studied various factors affecting the formability and punchability of a steel sheet in addition to the surface hardening characteristics by nitriding of the steel sheet. As a result, by adjusting the chemical composition and microstructure of the steel sheet to a predetermined range, in addition to being able to give good hardening characteristics by nitriding treatment, the steel sheet also has sufficient formability and punchability. I found out that I can do it.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものであり、本発明の要旨は以下のとおりである。
[1] 質量%で、
C :0.02%以上0.08%以下、 Si:0.1%以下、
Mn:0.2%以上1.8%以下、 P :0.05%以下、
S :0.02%以下、 Al:0.01%以上0.06%以下、
Cr:0.5%以上1.5%以下、 N :0.01%以下
を含有し、残部がFeおよび不可避的不純物からなる組成と、フェライトを主相とし、パーライトおよび/またはベイナイトを第二相とし、前記フェライトの組織全体に占める分率が70%以上、前記フェライトの平均結晶粒径が5μm以上25μm以下、前記第二相中に存在するセメンタイトの鋼板圧延方向断面における平均長径が3.0μm以下である組織とを有することを特徴とする窒化処理用鋼板。
The present invention has been completed by further studies based on the above-described findings, and the gist of the present invention is as follows.
[1] By mass%
C: 0.02% to 0.08%, Si: 0.1% or less,
Mn: 0.2% to 1.8%, P: 0.05% or less,
S: 0.02% or less, Al: 0.01% or more and 0.06% or less,
Cr: 0.5% or more and 1.5% or less, N: 0.01% or less, with the balance consisting of Fe and inevitable impurities, ferrite as the main phase, pearlite and / or bainite as the second phase, A structure in which the fraction of the entire structure is 70% or more, the average crystal grain size of the ferrite is 5 μm or more and 25 μm or less, and the average major axis in the rolling direction section of the cementite existing in the second phase is 3.0 μm or less. A steel sheet for nitriding treatment, comprising:

[2] 前記[1]において、前記組成に加えて更に、質量%で、V :0.005%以上0.075%以下、Nb:0.005%以上0.025%以下、Ti:0.005%以上0.025%以下のうちから選ばれる1種または2種以上を含有することを特徴とする窒化処理用鋼板。 [2] In the above [1], in addition to the above composition, the mass is selected from V: 0.005% to 0.075%, Nb: 0.005% to 0.025%, Ti: 0.005% to 0.025%. A steel sheet for nitriding characterized by containing one or more kinds.

[3] 質量%で、
C :0.02%以上0.08%以下、 Si:0.1%以下、
Mn:0.2%以上1.8%以下、 P :0.05%以下、
S :0.02%以下、 Al:0.01%以上0.06%以下、
Cr:0.5%以上1.5%以下、 N :0.01%以下
を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼素材を、1050℃以上1250℃以下に加熱し、Ar3変態点以上(Ar3変態点+100℃)以下の仕上げ温度で熱間圧延を施し、前記仕上げ温度から750℃までの温度範囲を40℃/s以上80℃/s以下の冷却速度で冷却し、次いで750℃から500℃以上
650℃以下の冷却停止温度までの温度範囲を15℃/s以上35℃/s以下の冷却速度で冷却し、500℃以上650℃以下の巻取り温度で巻き取ることを特徴とする窒化処理用鋼板の製造方法。
[3] In mass%,
C: 0.02% to 0.08%, Si: 0.1% or less,
Mn: 0.2% to 1.8%, P: 0.05% or less,
S: 0.02% or less, Al: 0.01% or more and 0.06% or less,
A steel material containing Cr: 0.5% or more and 1.5% or less, N: 0.01% or less, and the balance consisting of Fe and inevitable impurities is heated to 1050 ° C or higher and 1250 ° C or lower, and Ar 3 transformation point or higher ( (Ar 3 transformation point + 100 ° C) or less, and hot rolling at a finishing temperature of 750 ° C or less, cooling the temperature range from the finishing temperature to 750 ° C at a cooling rate of 40 ° C / s to 80 ° C / s, and then from 750 ° C 500 ℃ or higher
For nitriding treatment, which is cooled at a cooling rate of 15 ° C / s to 35 ° C / s in the temperature range up to the cooling stop temperature of 650 ° C or lower and wound at a winding temperature of 500 ° C to 650 ° C. A method of manufacturing a steel sheet.

[4] 前記[3]において、前記組成に加えて更に、質量%で、V:0.005%以上0.075%以下、Nb:0.005%以上0.025%以下、Ti:0.005%以上0.025%以下のうちから選ばれる1種または2種以上を含有することを特徴とする窒化処理用鋼板の製造方法。 [4] In the above [3], in addition to the above composition, the mass is selected from V: 0.005% to 0.075%, Nb: 0.005% to 0.025%, Ti: 0.005% to 0.025%. The manufacturing method of the steel plate for nitriding processing characterized by containing 1 type, or 2 or more types.

本発明によれば、成形性と打抜性に優れ、かつ窒化処理による良好な硬化特性を備えた鋼板が得られる。本発明の鋼板は、自動車の変速機部品などのように窒化処理を施す成形部品の素材として実に好適であり、産業上格段の効果を奏する。また、本発明の鋼板は、ガス軟窒化処理や塩浴軟窒化処理用に限定されるものではなく、プラズマ窒化,ガス窒化,浸炭窒化,浸硫窒化等の各種窒化処理用鋼板としても好適に用いることができる。   According to the present invention, a steel sheet having excellent formability and punchability and having good hardening characteristics by nitriding can be obtained. The steel sheet of the present invention is indeed suitable as a material for a molded part that is subjected to nitriding treatment, such as a transmission part of an automobile, and has a remarkable industrial effect. The steel sheet of the present invention is not limited to gas soft nitriding or salt bath soft nitriding, and is also suitable as a steel sheet for various nitriding treatments such as plasma nitriding, gas nitriding, carbonitriding, and nitrosulphurizing. Can be used.

まず、本発明窒化処理用鋼板の組織について説明する。
本発明鋼板は、主相であるフェライトと、第二相からなる組織を有する。前記第二相は、パーライトおよび/またはベイナイトである。更に、前記フェライトの組織全体に占める分率が70%以上、前記フェライトの平均結晶粒径が5μm以上25μm以下、前記第二相中に存在するセメンタイトの鋼板圧延方向断面における平均長径が3.0μm以下である。
First, the structure of the nitriding steel sheet of the present invention will be described.
The steel sheet of the present invention has a structure composed of ferrite as a main phase and a second phase. The second phase is pearlite and / or bainite. Furthermore, the fraction of the entire structure of the ferrite is 70% or more, the average crystal grain size of the ferrite is 5 μm or more and 25 μm or less, the average major axis in the rolling direction section of the cementite present in the second phase is 3.0 μm or less It is.

主相:フェライト
本発明鋼板は、軟質なフェライトを主相とすることで、鋼板の成形性を確保する。フェライト以外を主相とする場合には、鋼板に良好な成形性を付与することができない。但し、フェライト単相組織の鋼板では、自動車の変速機部品等に広範に適用できる素材鋼板として十分な強度を確保することができない。したがって、本発明鋼板は、主相であるフェライトと、以下の第二相からなる組織とする。
Main Phase: Ferrite The steel sheet of the present invention ensures the formability of the steel sheet by using soft ferrite as the main phase. When the main phase is other than ferrite, good formability cannot be imparted to the steel sheet. However, a steel sheet having a ferrite single-phase structure cannot secure sufficient strength as a material steel sheet that can be widely applied to transmission parts and the like of automobiles. Therefore, this invention steel plate is taken as the structure which consists of the ferrite which is a main phase, and the following 2nd phases.

第二相:パーライトおよび/またはベイナイト
フェライト以外の残部となる第二相は、パーライト、ベイナイトのうちから選ばれる1種または2種とする。鋼板組織中の第二相は、軟質なフェライトを主相とする鋼板の強度を補強する役割を担う。ここで、第二相をマルテンサイトとした組織強化を利用する場合には、窒化処理時の昇温によってマルテンサイトが軟化し、鋼板の強度変動が大きくなる。したがって、500〜600℃程度に保持される窒化処理を経ても安定した鋼板強度を維持するには、鋼板組織中の第二相をパーライトおよび/またはベイナイトとする必要がある。
Second phase: pearlite and / or bainite The remaining second phase other than ferrite is one or two selected from pearlite and bainite. The second phase in the steel sheet structure plays a role of reinforcing the strength of the steel sheet whose main phase is soft ferrite. Here, when utilizing the structure strengthening in which the second phase is martensite, the martensite is softened by the temperature rise during the nitriding treatment, and the strength fluctuation of the steel sheet increases. Therefore, in order to maintain stable steel sheet strength even after nitriding treatment maintained at about 500 to 600 ° C., the second phase in the steel sheet structure needs to be pearlite and / or bainite.

フェライトの組織全体に占める分率:70%以上
鋼板に良好な成形性を付与するには、主相であるフェライトの分率を70%以上とする必要がある。フェライトの分率が70%未満の場合には、鋼板の成形性が不十分な水準となり易い。また、鋼板の打抜時に打抜端面の剪断面比率が低下するなど、鋼板の打抜性も低下する。一方、フェライトの分率が高すぎる場合には、鋼板の強度が必要な水準に達しない場合があるため、フェライトの分率は97%以下とするのが好ましく、95%以下とするのがより好ましい。
Percentage of ferrite in the entire structure: 70% or more In order to give good formability to the steel sheet, the fraction of ferrite as the main phase needs to be 70% or more. When the ferrite fraction is less than 70%, the formability of the steel sheet tends to be insufficient. Moreover, the punchability of the steel sheet is also reduced, for example, the shear surface ratio of the punched end face is reduced when the steel sheet is punched. On the other hand, if the ferrite fraction is too high, the strength of the steel sheet may not reach the required level, so the ferrite fraction is preferably 97% or less, more preferably 95% or less. preferable.

フェライトの平均結晶粒径:5μm以上25μm以下
フェライトの平均結晶粒径が25μmを超える場合には、成形加工時に鋼板の表面性状が悪化したり、打抜破面の平滑性が低下して鋼板の打抜性劣化にも通ずる。また、フェライトの結晶粒径が粗大化すると、結晶粒界が減少することから、窒化処理時のNの粒界拡散が抑制され、窒化処理に要する時間が長くなることも懸念される。一方、フェライトの平均結晶粒径が5μm未満となる場合には、鋼板が硬質化して成形性が低下し易い。したがって、フェライトの平均結晶粒径は5μm以上25μm以下とする。好ましくは5μm以上15μm以下である。
Average grain size of ferrite: 5 μm or more and 25 μm or less If the average grain size of ferrite exceeds 25 μm, the surface properties of the steel sheet will deteriorate during the forming process, or the smoothness of the punched surface will be reduced. It also leads to punching deterioration. Further, when the crystal grain size of ferrite is increased, the crystal grain boundaries are decreased, and therefore, there is a concern that the grain boundary diffusion of N during nitriding treatment is suppressed and the time required for nitriding treatment becomes longer. On the other hand, when the average crystal grain size of ferrite is less than 5 μm, the steel sheet is hardened and the formability tends to be lowered. Therefore, the average crystal grain size of ferrite is 5 μm or more and 25 μm or less. Preferably they are 5 micrometers or more and 15 micrometers or less.

第二相中に存在するセメンタイトの鋼板圧延方向断面における平均長径:3.0μm以下
第二相中に存在するセメンタイトの鋼板の圧延方向断面における平均長径が3.0μmを超えると、鋼板の打抜時、セメンタイトとフェライトとの界面での応力集中度が高まり、微細なクラックの発生が容易となって打抜端面での破断面比率が増加する等、鋼板の打抜性が低下する。したがって、上記平均長径は3.0μm以下とする。但し、上記セメンタイトが極端に微小になると、第二相が必要以上に硬質化し、主相であるフェライトとの硬度差が拡大して鋼板の打抜端面での微小割れが生じ易くなる。したがって、上記平均長径は1.0μm以上であることが好ましい。
Average length in the rolling direction cross section of the cementite present in the second phase: 3.0 μm or less When the average long diameter in the rolling direction cross section of the steel sheet of the cementite present in the second phase exceeds 3.0 μm, The degree of stress concentration at the interface between cementite and ferrite is increased, the occurrence of fine cracks is facilitated, and the fracture surface ratio at the punched end surface is increased. Therefore, the average major axis is 3.0 μm or less. However, when the cementite becomes extremely small, the second phase becomes harder than necessary, and the difference in hardness from ferrite as the main phase increases, so that microcracking is likely to occur at the punched end face of the steel sheet. Therefore, the average major axis is preferably 1.0 μm or more.

次に、本発明窒化処理用鋼板の化学組成の限定理由について説明する。以下、成分元素含有量の単位である%は、特に断らない限り質量%を意味するものとする。   Next, the reason for limiting the chemical composition of the steel sheet for nitriding treatment according to the present invention will be described. Hereinafter, “%” which is a unit of component element content means “% by mass” unless otherwise specified.

C :0.02%以上0.08%以下
Cは、固溶強化および第二相の形成を通じて、鋼を高強度化する作用を有する元素である。C含有量が0.02%未満では、部品素材として十分な鋼板強度が確保できない。一方、C含有量が0.08%を超えると、鋼板の強度が過度に高まり、成形性が低下する。また、第二相の分率が高まるとともに、所望の形態のセメンタイトも得難くなる。したがって、Cの含有量は0.02%以上0.08%以下とする。好ましくは0.04%以上0.06%以下である。
C: 0.02% to 0.08%
C is an element having an effect of strengthening steel through solid solution strengthening and formation of a second phase. If the C content is less than 0.02%, sufficient steel sheet strength cannot be secured as a component material. On the other hand, when the C content exceeds 0.08%, the strength of the steel sheet is excessively increased and the formability is lowered. In addition, the fraction of the second phase is increased and it is difficult to obtain a desired form of cementite. Therefore, the C content is 0.02% or more and 0.08% or less. Preferably they are 0.04% or more and 0.06% or less.

Si:0.1%以下
Siは、鋼の脱酸に有効な元素であり、固溶強化により鋼を強化する作用も有する。これらの効果を得るためには、Si含有量を0.01%以上とすることが好ましい。しかし、Si含有量が0.1%を超えると、熱間圧延の際に難剥離性スケールが生成して、鋼板の表面性状の悪化が顕著となる。したがって、Si含有量は0.1%以下とする。好ましくは0.05%以下である。
Si: 0.1% or less
Si is an element effective for deoxidation of steel, and has an effect of strengthening steel by solid solution strengthening. In order to obtain these effects, the Si content is preferably set to 0.01% or more. However, when the Si content exceeds 0.1%, a hard-peeling scale is generated during hot rolling, and the surface properties of the steel sheet are significantly deteriorated. Therefore, the Si content is 0.1% or less. Preferably it is 0.05% or less.

Mn:0.2%以上1.8%以下
Mnは、固溶強化により鋼を強化する元素である。また、鋼中に不純物として存在するSを析出物として固定し、Sに起因する悪影響を低減する作用も有する。Mn含有量が0.2%未満では、前記作用が十分に得られず、必要な鋼板強度が確保できない。一方、Mn含有量が1.8%を超えると、鋼板の強度が過度に上昇するうえ、ミクロ偏析に起因するバンド状の組織が形成され易くなり、鋼板の成形性や打抜性の低下を招く。したがって、Mn含有量は0.2%以上1.8%以下とする。好ましくは0.2%以上1.2%以下である。
Mn: 0.2% to 1.8%
Mn is an element that strengthens steel by solid solution strengthening. In addition, S present as an impurity in the steel is fixed as a precipitate, and has an effect of reducing adverse effects caused by S. If the Mn content is less than 0.2%, the above-mentioned effects cannot be obtained sufficiently, and the necessary steel sheet strength cannot be ensured. On the other hand, if the Mn content exceeds 1.8%, the strength of the steel sheet is excessively increased, and a band-like structure due to microsegregation is easily formed, resulting in a decrease in formability and punchability of the steel sheet. Therefore, the Mn content is 0.2% to 1.8%. Preferably they are 0.2% or more and 1.2% or less.

P :0.05%以下
Pは、鋼中に不純物として存在する元素であり、多量に含有すると鋼板の成形性や靱性が低下する。したがって、P含有量は0.05%以下とする。好ましくは0.03%以下である。
P: 0.05% or less
P is an element present as an impurity in steel, and if it is contained in a large amount, the formability and toughness of the steel sheet deteriorate. Therefore, the P content is 0.05% or less. Preferably it is 0.03% or less.

S :0.02%以下
Sも、鋼中に不純物として存在する元素であり、多量に含有すると鋼板の成形性や靱性が低下する。したがって、S含有量は0.02%以下とする。好ましくは0.01%以下である。
S: 0.02% or less
S is also an element present in the steel as an impurity. Therefore, the S content is 0.02% or less. Preferably it is 0.01% or less.

Al:0.01%以上0.06%以下
Alは、鋼の脱酸のために添加される元素である。鋼中のAl含有量として0.01%未満では、十分な脱酸効果が得られない。一方、鋼中のAl含有量として0.06%を超えると、脱酸効果が飽和するうえ、鋼中介在物の増加によって内部欠陥および表面欠陥が増加する可能性が高まる。したがって、Al含有量は0.01%以上0.06%以下とする。好ましくは0.02%以上0.05%以下である。
Al: 0.01% or more and 0.06% or less
Al is an element added for deoxidation of steel. If the Al content in the steel is less than 0.01%, a sufficient deoxidation effect cannot be obtained. On the other hand, if the Al content in the steel exceeds 0.06%, the deoxidation effect is saturated, and the possibility that internal defects and surface defects increase due to an increase in inclusions in the steel increases. Therefore, the Al content is 0.01% or more and 0.06% or less. Preferably they are 0.02% or more and 0.05% or less.

Cr:0.5%以上1.5%以下
Crは、窒化処理により鋼中に窒化物を形成して鋼板表層部の硬度を高める効果があり、本発明において重要な合金元素である。また、鋼中のセメンタイトを微細化する作用も有する。こうした効果を十分に発現するうえでは、Cr含有量を0.5%以上とする必要がある。但し、Cr含有量が1.5%を超えると、窒化処理によって最表層硬化部の著しい脆化を招く一方、硬化深さは逆に低下することがある。したがって、Cr含有量は0.5%以上1.5%以下とする。好ましくは0.5%以上1.0%以下である。
Cr: 0.5% to 1.5%
Cr has the effect of increasing the hardness of the steel sheet surface layer by forming nitrides in the steel by nitriding, and is an important alloying element in the present invention. Moreover, it also has the effect | action which refines | miniaturizes the cementite in steel. In order to fully exhibit such effects, the Cr content needs to be 0.5% or more. However, if the Cr content exceeds 1.5%, the hardened portion of the outermost layer is significantly embrittled by the nitriding treatment, while the hardening depth may be decreased. Therefore, the Cr content is 0.5% or more and 1.5% or less. Preferably they are 0.5% or more and 1.0% or less.

N :0.01%以下
Nは、鋼中に不純物として存在する元素である。多量のNは、鋼板の成形性を低下させるうえ、窒化処理前にCr等の窒化促進元素と化合して、窒化による硬化特性を低める可能性がある。したがって、N含有量は0.01%以下とする。好ましくは0.005%以下である。
N: 0.01% or less
N is an element present as an impurity in steel. A large amount of N reduces the formability of the steel sheet, and may combine with a nitriding promoting element such as Cr before nitriding to reduce the hardening characteristics by nitriding. Therefore, the N content is 0.01% or less. Preferably it is 0.005% or less.

本発明鋼板は、上記の成分組成に加えて、更に、V:0.005%以上0.075%以下、Nb:0.005%以上0.025%以下、Ti:0.005%以上0.025%以下のうちから選ばれる1種または2種以上を含有してもよい。   In addition to the above component composition, the steel sheet according to the present invention may further include one or two selected from V: 0.005% to 0.075%, Nb: 0.005% to 0.025%, Ti: 0.005% to 0.025%. It may contain seeds or more.

V :0.005%以上0.075%以下
Vは、窒化処理により鋼中に窒化物を形成して鋼板表層部の硬度を高める効果を有する元素である。また、Vは、炭窒化物形成元素であることから、粒子分散強化(析出強化)によって、鋼を高強度化する作用も有する。そのため、本発明鋼板では、窒化処理による硬化特性を制御したり、鋼板の強度水準を調整する目的で、Vを含有させることができる。前記の効果を十分に発現するうえでは、V含有量を0.005%以上とすることが好ましい。一方、V含有量が過剰になると、鋼板の過剰な高強度化による成形性の低下や、窒化処理による硬化部の脆化を招く他、経済的にも不利となる。したがって、V含有量は0.005%以上0.075%以下とすることが好ましい。より好ましくは0.025%以上0.075%以下である。
V: 0.005% to 0.075%
V is an element that has the effect of increasing the hardness of the steel sheet surface layer by forming nitrides in the steel by nitriding. Further, since V is a carbonitride-forming element, V also has an effect of increasing the strength of steel by particle dispersion strengthening (precipitation strengthening). Therefore, in the steel sheet of the present invention, V can be contained for the purpose of controlling the hardening characteristics by nitriding treatment or adjusting the strength level of the steel sheet. In order to sufficiently exhibit the above effects, the V content is preferably 0.005% or more. On the other hand, when the V content is excessive, it causes a decrease in formability due to an excessive increase in strength of the steel sheet, embrittlement of the hardened portion due to the nitriding treatment, and is economically disadvantageous. Therefore, the V content is preferably 0.005% or more and 0.075% or less. More preferably, it is 0.025% or more and 0.075% or less.

Nb:0.005%以上0.025%以下
Nbは、炭窒化物形成元素であり、粒子分散強化(析出強化)によって鋼を高強度化する作用を有する。Nb含有量が0.005%未満では、前記効果が十分に得られない。一方、Nb含有量が0.025%を超えると、鋼板の強度が過度に高まり、成形性が低下するおそれがある。したがって、Nb含有量は0.005%以上0.025%以下とすることが好ましい。より好ましくは0.005%以上0.015%以下である。
Nb: 0.005% to 0.025%
Nb is a carbonitride-forming element and has the effect of increasing the strength of steel by particle dispersion strengthening (precipitation strengthening). If the Nb content is less than 0.005%, the above effect cannot be obtained sufficiently. On the other hand, if the Nb content exceeds 0.025%, the strength of the steel sheet is excessively increased and the formability may be reduced. Therefore, the Nb content is preferably 0.005% or more and 0.025% or less. More preferably, it is 0.005% or more and 0.015% or less.

Ti:0.005%以上0.025%以下
Tiも、炭窒化物形成元素であり、粒子分散強化(析出強化)によって鋼を高強度化する作用を有する。Ti含有量が0.005%未満では、前記効果が十分に得られない。一方、Ti含有量が0.025%を超えると、鋼板の強度が過度に高まり、成形性が低下するおそれがある。したがって、Ti含有量は0.005%以上0.025%以下とすることが好ましい。より好ましくは0.005%以上0.015%以下である。
Ti: 0.005% to 0.025%
Ti is also a carbonitride-forming element and has the effect of increasing the strength of steel by particle dispersion strengthening (precipitation strengthening). If the Ti content is less than 0.005%, the above effects cannot be obtained sufficiently. On the other hand, if the Ti content exceeds 0.025%, the strength of the steel sheet is excessively increased and the formability may be deteriorated. Therefore, the Ti content is preferably 0.005% or more and 0.025% or less. More preferably, it is 0.005% or more and 0.015% or less.

上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、Cu:0.03%以下、Ni:0.03%以下、Mo:0.03%以下、Sn:0.003%以下、Sb:0.003%以下、O:0.005%以下等が許容できる。   The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include Cu: 0.03% or less, Ni: 0.03% or less, Mo: 0.03% or less, Sn: 0.003% or less, Sb: 0.003% or less, O: 0.005% or less.

次に、本発明窒化処理用鋼板の製造方法について説明する。
本発明鋼板は、前記の化学組成を有する鋼素材を、加熱して熱間圧延したのち、冷却して巻き取ることにより得られる。
本発明に用いる鋼の溶製は、転炉法や電炉法等、公知の溶製方法のいずれによっても可能である。溶製した鋼は、連続鋳造または造塊・分塊圧延等により鋼素材(スラブ)とする。なお、必要に応じて、各種予備処理や二次精錬、鋼素材の表面手入などを実施することができる。
Next, the manufacturing method of the steel sheet for nitriding treatment of the present invention will be described.
The steel sheet of the present invention is obtained by heating and hot rolling a steel material having the above chemical composition, and then cooling and winding it.
The steel used in the present invention can be melted by any known melting method such as a converter method or an electric furnace method. The molten steel is made into a steel material (slab) by continuous casting or ingot-making / bundling rolling. If necessary, various pretreatments, secondary refining, surface treatment of steel materials, and the like can be performed.

鋼素材の加熱温度:1050℃以上1250℃以下
鋼素材の加熱温度が1050℃未満では、熱間圧延時に所望の仕上げ温度を確保することが困難となる。一方、鋼素材の加熱温度が1250℃を超えると、加熱に要するエネルギーが増大するうえ、鋼板の表面性状の不良が生じ易くなる。したがって、熱間圧延前の鋼素材の加熱温度は1050℃以上1250℃以下とする。好ましくは1100℃以上1200℃以下である。
Heating temperature of steel material: 1050 ° C. or higher and 1250 ° C. or lower If the heating temperature of the steel material is lower than 1050 ° C., it is difficult to ensure a desired finishing temperature during hot rolling. On the other hand, when the heating temperature of the steel material exceeds 1250 ° C., the energy required for heating increases and the surface properties of the steel sheet are liable to occur. Therefore, the heating temperature of the steel material before hot rolling is set to 1050 ° C. or more and 1250 ° C. or less. Preferably they are 1100 degreeC or more and 1200 degrees C or less.

なお、鋼素材の加熱においては、常温まで冷却した鋼素材を再加熱してもよいし、鋳造後に冷却途中の鋼素材を追加加熱あるいは保熱してもよい。
本発明では、鋼素材を上記温度範囲に加熱したのち、粗圧延・仕上げ圧延(熱間圧延)を施すが、粗圧延条件については常法に従えば良く、特に限定する必要はない。
In the heating of the steel material, the steel material cooled to room temperature may be reheated, or the steel material being cooled after casting may be additionally heated or kept warm.
In this invention, after heating a steel raw material to the said temperature range, rough rolling and finish rolling (hot rolling) are performed, However About rough rolling conditions should just follow a conventional method and it does not need to specifically limit.

仕上げ温度:Ar3変態点以上(Ar3変態点+100℃)以下
熱間圧延工程での仕上げ温度がAr3変態点を下回ると、圧延方向に展伸した未再結晶フェライト組織やパンケーキ状の粗大フェライト組織が形成され、所望の粒径のフェライトが得られない上、鋼板の成形性や打抜性が低下する。また、鋼板の機械的特性の面内異方性も強まる。一方、仕上げ温度が(Ar3変態点+100℃)を超えると、鋼板の表面性状の悪化を招き易い上、フェライト組織が粗大化しやすくなり、所望の粒径のフェライトを得難くなる。したがって、仕上げ温度はAr3変態点以上(Ar3変態点+100℃)以下とする。好ましくは(Ar3変態点+20℃)以上(Ar3変態点+100℃)以下である。なお、必要な仕上げ温度を確保するために、シートバーヒーターあるいはエッヂヒーターなどの加熱装置を利用して、圧延中の鋼板を追加加熱してもよい。
Finishing temperature: Ar 3 transformation point or higher (Ar 3 transformation point + 100 ° C) or lower If the finishing temperature in the hot rolling process is lower than the Ar 3 transformation point, an unrecrystallized ferrite structure or pancake-like structure extending in the rolling direction A coarse ferrite structure is formed, ferrite having a desired particle diameter cannot be obtained, and the formability and punchability of the steel sheet are lowered. In addition, the in-plane anisotropy of the mechanical properties of the steel sheet is increased. On the other hand, when the finishing temperature exceeds (Ar 3 transformation point + 100 ° C.), the surface properties of the steel sheet are easily deteriorated, and the ferrite structure is easily coarsened, making it difficult to obtain ferrite having a desired particle diameter. Therefore, the finishing temperature should be not less than the Ar 3 transformation point and not more than (Ar 3 transformation point + 100 ° C.). It is preferably (Ar 3 transformation point + 20 ° C.) or more and (Ar 3 transformation point + 100 ° C.) or less. In order to secure a necessary finishing temperature, the steel plate being rolled may be additionally heated using a heating device such as a sheet bar heater or an edge heater.

仕上げ温度から750℃までの冷却速度:40℃/s以上80℃/s以下
熱間圧延後の鋼板は、仕上げ温度から750℃までの温度範囲を40℃/s以上80℃/s以下の冷却速度で冷却(強制冷却)する。好ましくは45℃/s以上75℃/s以下である。この温度範囲での冷却速度が40℃/s未満の場合、熱延鋼板の組織が粗大化し易く、所望の形状のフェライトやセメンタイトが得られない。一方、この温度範囲での冷却速度が80℃/sを超える場合、熱延鋼板にマルテンサイトあるいは過度に多くのベイナイトやパーライトが生成し易くなり、所望の分率のフェライトや所望の第二相が得難くなる。
Cooling rate from finishing temperature to 750 ° C: 40 ° C / s to 80 ° C / s The steel sheet after hot rolling is cooled to 40 ° C / s to 80 ° C / s in the temperature range from the finishing temperature to 750 ° C. Cool at a speed (forced cooling). Preferably, it is 45 ° C./s or more and 75 ° C./s or less. When the cooling rate in this temperature range is less than 40 ° C./s, the structure of the hot-rolled steel sheet tends to be coarsened, and ferrite or cementite having a desired shape cannot be obtained. On the other hand, when the cooling rate in this temperature range exceeds 80 ° C./s, martensite or excessively much bainite and pearlite are easily generated in the hot-rolled steel sheet, and a desired fraction of ferrite and a desired second phase are formed. Becomes difficult to obtain.

750℃から冷却停止温度までの冷却速度:15℃/s以上35℃/s以下
冷却停止温度:500℃以上650℃以下
750℃から冷却停止温度までの温度範囲は、15℃/s以上35℃/s以下の冷却速度で冷却(強制冷却)する。好ましくは15℃/s以上25℃/s以下である。この温度範囲での冷却速度が15℃/s未満の場合、熱延鋼板の組織が粗大化し易く、所望の形状のフェライトやセメンタイトが得難くなる。一方、この温度範囲での冷却速度が35℃/sを超える場合、フェライト変態の進行が抑制され、所望の分率のフェライトが得られない。
Cooling rate from 750 ° C to cooling stop temperature: 15 ° C / s to 35 ° C / s Cooling stop temperature: 500 ° C to 650 ° C
The temperature range from 750 ° C to the cooling stop temperature is cooled (forced cooling) at a cooling rate of 15 ° C / s to 35 ° C / s. Preferably, it is 15 ° C./s or more and 25 ° C./s or less. When the cooling rate in this temperature range is less than 15 ° C./s, the structure of the hot-rolled steel sheet is easily coarsened, and it becomes difficult to obtain ferrite and cementite having a desired shape. On the other hand, when the cooling rate in this temperature range exceeds 35 ° C./s, the progress of ferrite transformation is suppressed, and a ferrite having a desired fraction cannot be obtained.

冷却停止温度が500℃未満の場合には、マルテンサイトや過度に多くのベイナイトが生成することにより鋼板が硬質化して、鋼板の成形性が低下したり、窒化処理後の鋼板強度が不安定となる。一方、冷却停止温度が650℃を超える場合には、パーライトが粗大化して、所望の形状のセメンタイトが得られなくなる。したがって、冷却停止温度は500℃以上650℃以下とする。好ましくは500℃以上600℃以下である。   When the cooling stop temperature is less than 500 ° C., martensite and excessively much bainite are generated, so that the steel plate becomes hard and the formability of the steel plate is lowered, or the strength of the steel plate after nitriding is unstable. Become. On the other hand, when the cooling stop temperature exceeds 650 ° C., the pearlite becomes coarse, and a cementite having a desired shape cannot be obtained. Therefore, the cooling stop temperature is set to 500 ° C. or more and 650 ° C. or less. Preferably they are 500 degreeC or more and 600 degrees C or less.

なお、冷却停止温度に達するまで冷却された鋼板は、直ちに巻き取ってもよいし、巻取機(コイラー)で巻き取るまで短時間放冷してもよい。ここでの放冷とは、注水による強制冷却を行わない大気中での空冷をいう。ただし、鋼板上に残存する冷却水の水切りのため、放冷中の鋼板に高圧水あるいは圧縮空気をごく短時間噴射することは、これらによる鋼板の温度低下が微小であるため許容できる。   In addition, the steel plate cooled until it reaches the cooling stop temperature may be immediately wound, or may be allowed to cool for a short time until it is wound by a winder (coiler). Here, the term “cooling” refers to air cooling in the atmosphere without forced cooling by water injection. However, in order to drain the cooling water remaining on the steel plate, spraying high-pressure water or compressed air onto the steel plate being allowed to cool for a very short time is acceptable because the temperature drop of the steel plate is very small.

巻取り温度:500℃以上650℃以下
巻取り温度が500℃未満の場合には、マルテンサイトや過度に多くのベイナイトが生成することにより鋼板が硬質化して、鋼板の成形性が低下したり、窒化処理後の鋼板強度が不安定となる。一方、巻取り温度が650℃を超える場合には、パーライトが粗大化して、所望の形状のセメンタイトが得られなくなる。したがって、巻取り温度は500℃以上650℃以下とする。好ましくは500℃以上600℃以下である。
Winding temperature: 500 ° C or more and 650 ° C or less When the winding temperature is less than 500 ° C, martensite and excessively much bainite are generated, the steel plate becomes hard, and the formability of the steel plate decreases. The steel sheet strength after nitriding becomes unstable. On the other hand, when the coiling temperature exceeds 650 ° C., the pearlite is coarsened, and a cementite having a desired shape cannot be obtained. Therefore, the winding temperature is set to 500 ° C. or more and 650 ° C. or less. Preferably they are 500 degreeC or more and 600 degrees C or less.

巻取り後の鋼板は、酸洗あるいはショットピーニングにより酸化スケールを除去して使用される。また、形状矯正や表面粗度の調整のための調質圧延を施してもよい。このような酸化スケール除去や調質圧延を施すことによって、本発明の効果が損なわれることはない。   The steel sheet after winding is used after removing the oxide scale by pickling or shot peening. Moreover, you may give the temper rolling for shape correction and adjustment of surface roughness. By performing such oxide scale removal and temper rolling, the effects of the present invention are not impaired.

表1に示す成分元素を含有し、残部がFeおよび不可避的不純物よりなる鋼A〜Lを溶製して得た鋼素材に、表2に示す条件で熱間圧延を施し、板厚2.3mmの熱延鋼板とした。次いで、得られた熱延鋼板を酸洗してデスケーリングしたのち、伸長率0.5%の調質圧延を施した。調質圧延後の各熱延鋼板から試料を採取し、ミクロ組織観察、引張試験、打抜試験を行った。更に、調質圧延後の熱延鋼板に窒化処理を施し、窒化処理後の熱延鋼板について硬さ試験を行った。   A steel material obtained by melting steels A to L containing the constituent elements shown in Table 1 and the balance being Fe and inevitable impurities is hot-rolled under the conditions shown in Table 2 to obtain a sheet thickness of 2.3 mm. The hot-rolled steel sheet. Next, the obtained hot-rolled steel sheet was pickled and descaled, and then subjected to temper rolling with an elongation of 0.5%. Samples were taken from each hot-rolled steel sheet after temper rolling and subjected to microstructure observation, tensile test, and punching test. Furthermore, the hot-rolled steel sheet after temper rolling was subjected to nitriding treatment, and the hardness test was performed on the hot-rolled steel sheet after nitriding treatment.

(1)ミクロ組織観察
鋼板のミクロ組織は、窒化処理前の鋼板から、板幅1/4位置の圧延方向に平行な板厚断面の試料を採取し、鏡面研磨してナイタールで腐食した後、光学顕微鏡あるいは走査型電子顕微鏡により、板厚1/4位置を500〜5000倍の適当な倍率で撮影した画像を用いて確認した。
ミクロ組織におけるフェライトの分率は、前記画像を用い、フェライトの占める面積率を画像解析により求め、これをフェライトの分率とした。
フェライトの平均結晶粒径は、前記画像を用いて、日本工業規格JIS G 0551-2005に規定の方法に準拠して結晶粒度を求め、粒度番号から算出した。
第二相(パーライトおよび/またはベイナイト)中に存在するセメンタイトの平均長径は、前記画像を用い、観察範囲内の個々のセメンタイトの長径を求め、相加平均して算出した。これらの結果を表2にあわせて示す。
(1) Microstructure observation The microstructure of the steel sheet was obtained by taking a sample of a sheet thickness cross section parallel to the rolling direction at a 1/4 width position from the steel sheet before nitriding, mirror-polishing and corroding with nital. It confirmed with the optical microscope or the scanning electron microscope using the image which image | photographed the board thickness 1/4 position by the suitable magnification of 500-5000 times.
The ferrite fraction in the microstructure was obtained by using the above-mentioned image and obtaining the area ratio of the ferrite by image analysis, which was defined as the ferrite fraction.
The average crystal grain size of ferrite was calculated from the grain size number by obtaining the crystal grain size in accordance with the method specified in Japanese Industrial Standard JIS G 0551-2005 using the above image.
The average major axis of cementite present in the second phase (perlite and / or bainite) was calculated by calculating the major axis of each cementite within the observation range using the image and calculating the arithmetic mean. These results are also shown in Table 2.

(2)引張試験(成形性の評価)
鋼板の成形性について、引張試験による延性により評価した。引張試験は、窒化処理前の鋼板から、鋼板の板幅1/4位置にて試験方向が圧延方向となるように採取したJIS Z 2241-2011に規定の5号試験片を用いて、JIS Z 2241-2011の規定に準拠して行い、引張強さ(TS)と破断伸び(EL)を測定し、強度伸びバランス(TS×EL)を算出した。ここで、強度伸びバランスの値が16GPa・%以上である鋼板を良好な成形性を有するものと判定した。
(2) Tensile test (evaluation of formability)
The formability of the steel sheet was evaluated by the ductility by a tensile test. Tensile tests were conducted using JIS Z 2241-2011 No. 5 test specimens taken from steel sheets before nitriding so that the test direction was the rolling direction at the 1/4 width position of the steel sheet. The measurement was performed in accordance with the provisions of 2241-2011, and the tensile strength (TS) and elongation at break (EL) were measured to calculate the strength-elongation balance (TS × EL). Here, a steel sheet having a strength elongation balance value of 16 GPa ·% or more was determined to have good formability.

(3)打抜試験(打抜性の評価)
窒化処理前の鋼板から直径50mmの円板状の試験片を打ち抜いて(クリアランス:鋼板の板厚の5%)、試験片の打抜端面における剪断面比率を測定するとともに、破断面領域での微小亀裂の有無を確認した。剪断面比率が60%以上であり、破断面領域に亀裂が認められない場合を、打抜性が良好な鋼板であると判定した。
(3) Punching test (evaluation of punchability)
A 50mm-diameter disk-shaped test piece is punched from the steel sheet before nitriding (clearance: 5% of the steel plate thickness), the shear surface ratio at the punched end face of the test piece is measured, and the fracture surface area is measured. The presence or absence of microcracks was confirmed. When the shear surface ratio was 60% or more and no crack was observed in the fracture surface area, it was determined that the steel sheet had good punchability.

(4)硬さ試験(窒化処理による表面硬化特性評価)
調質圧延後の熱延鋼板にガス軟窒化処理を施し、ガス軟窒化処理後の鋼板の断面硬さ(窒化層断面硬さ)を測定した。窒化ガスにはアンモニア(NH3)と吸熱型変成ガスを等量比で混合したガスを用いた。ガス軟窒化処理温度は570℃、ガス軟窒化処理温度における保持時間は150分とし、保持後油冷した。鋼板の断面硬さは、ガス軟窒化処理後の鋼板の圧延方向に平行な板厚断面の試料を採取し、JIS Z 2244-2009の規定に準拠して、鋼板の表面から深さ0.2mm位置でのビッカース硬さ(HV0.1)を測定した。ここで測定したビッカース硬さの値が250以上の場合を、鋼板の窒化処理による表面硬化特性が良好であると判定した。
これらの結果を表3に示す。
(4) Hardness test (Evaluation of surface hardening characteristics by nitriding treatment)
The hot rolled steel sheet after temper rolling was subjected to gas soft nitriding treatment, and the cross-sectional hardness (nitrided layer cross-sectional hardness) of the steel sheet after gas soft nitriding treatment was measured. As the nitriding gas, a gas obtained by mixing ammonia (NH 3 ) and an endothermic metamorphic gas in an equal ratio was used. The gas soft nitriding temperature was 570 ° C., the holding time at the gas soft nitriding temperature was 150 minutes, and oil cooling was performed after the holding. For the cross-sectional hardness of the steel sheet, a sample with a thickness cross-section parallel to the rolling direction of the steel sheet after gas soft nitriding was taken, and a depth of 0.2 mm from the surface of the steel sheet in accordance with the provisions of JIS Z 2244-2009. Vickers hardness (HV0.1) was measured. When the value of the Vickers hardness measured here was 250 or more, it was determined that the surface hardening property of the steel sheet by nitriding treatment was good.
These results are shown in Table 3.

Figure 0005630523
Figure 0005630523

Figure 0005630523
Figure 0005630523

Figure 0005630523
Figure 0005630523

本発明に適合する各鋼板(発明例)は、良好な成形性を有し、かつ、鋼板の打抜性にも優れ、窒化処理による表面硬化特性にも優れた鋼板となっている。一方、鋼の化学組成やミクロ組織が本発明の範囲を外れるその他の各鋼板(比較例)では、成形性、打抜性、窒化処理による表面硬化特性のいずれかの特性、或いは全ての特性が、不十分な水準となっている。   Each steel plate (invention example) suitable for the present invention is a steel plate having good formability, excellent punchability of the steel plate, and excellent surface hardening characteristics by nitriding treatment. On the other hand, in each steel sheet (comparative example) in which the chemical composition and microstructure of the steel are outside the scope of the present invention, any of the characteristics of formability, punchability, surface hardening characteristics by nitriding treatment, or all characteristics The level is inadequate.

Claims (4)

質量%で、
C :0.02%以上0.08%以下、 Si:0.1%以下、
Mn:0.2%以上1.8%以下、 P :0.05%以下、
S :0.02%以下、 Al:0.01%以上0.06%以下、
Cr:0.5%以上1.5%以下、 N :0.01%以下
を含有し、残部がFeおよび不可避的不純物からなる組成と、フェライトを主相とし、パーライトおよび/またはベイナイトを第二相とし、前記フェライトの組織全体に占める分率が70%以上、前記フェライトの平均結晶粒径が5μm以上25μm以下、前記第二相中に存在するセメンタイトの鋼板圧延方向断面における平均長径が3.0μm以下である組織とを有することを特徴とする窒化処理用鋼板。
% By mass
C: 0.02% to 0.08%, Si: 0.1% or less,
Mn: 0.2% to 1.8%, P: 0.05% or less,
S: 0.02% or less, Al: 0.01% or more and 0.06% or less,
Cr: 0.5% or more and 1.5% or less, N: 0.01% or less, with the balance consisting of Fe and inevitable impurities, ferrite as the main phase, pearlite and / or bainite as the second phase, A structure in which the fraction of the entire structure is 70% or more, the average crystal grain size of the ferrite is 5 μm or more and 25 μm or less, and the average major axis in the rolling direction section of the cementite existing in the second phase is 3.0 μm or less. A steel sheet for nitriding treatment, comprising:
前記組成に加えて更に、質量%で、V:0.005%以上0.075%以下、Nb:0.005%以上0.025%以下、Ti:0.005%以上0.025%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の窒化処理用鋼板。   In addition to the above composition, the composition further contains one or more selected from the group consisting of V: 0.005% to 0.075%, Nb: 0.005% to 0.025%, Ti: 0.005% to 0.025%. The steel sheet for nitriding according to claim 1, wherein 質量%で、
C :0.02%以上0.08%以下、 Si:0.1%以下、
Mn:0.2%以上1.8%以下、 P :0.05%以下、
S :0.02%以下、 Al:0.01%以上0.06%以下、
Cr:0.5%以上1.5%以下、 N :0.01%以下
を含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼素材を、1050℃以上1250℃以下に加熱し、Ar3変態点以上(Ar3変態点+100℃)以下の仕上げ温度で熱間圧延を施し、前記仕上げ温度から750℃までの温度範囲を40℃/s以上80℃/s以下の冷却速度で冷却し、次いで750℃から500℃以上650℃以下の冷却停止温度までの温度範囲を15℃/s以上35℃/s以下の冷却速度で冷却し、500℃以上650℃以下の巻取り温度で巻き取ることを特徴とする窒化処理用鋼板の製造方法。
% By mass
C: 0.02% to 0.08%, Si: 0.1% or less,
Mn: 0.2% to 1.8%, P: 0.05% or less,
S: 0.02% or less, Al: 0.01% or more and 0.06% or less,
A steel material containing Cr: 0.5% or more and 1.5% or less, N: 0.01% or less, and the balance consisting of Fe and inevitable impurities is heated to 1050 ° C or higher and 1250 ° C or lower, and Ar 3 transformation point or higher ( (Ar 3 transformation point + 100 ° C) or less, and hot rolling at a finishing temperature of 750 ° C or less, cooling the temperature range from the finishing temperature to 750 ° C at a cooling rate of 40 ° C / s to 80 ° C / s, and then from 750 ° C Cooling at a cooling rate of 15 ° C / s or more and 35 ° C / s or less, and winding at a winding temperature of 500 ° C or more and 650 ° C or less. A method of manufacturing a steel sheet for nitriding treatment.
前記組成に加えて更に、質量%で、V:0.005%以上0.075%以下、Nb:0.005%以上0.025%以下、Ti:0.005%以上0.025%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項3に記載の窒化処理用鋼板の製造方法。   In addition to the above composition, the composition further contains one or more selected from the group consisting of V: 0.005% to 0.075%, Nb: 0.005% to 0.025%, Ti: 0.005% to 0.025%. The method for producing a steel sheet for nitriding treatment according to claim 3.
JP2013076824A 2013-04-02 2013-04-02 Steel sheet for nitriding treatment and method for producing the same Active JP5630523B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2013076824A JP5630523B2 (en) 2013-04-02 2013-04-02 Steel sheet for nitriding treatment and method for producing the same
CN201480019178.9A CN105102659B (en) 2013-04-02 2014-03-20 Nitrogen treatment steel plate and its manufacture method
KR1020157027610A KR101733513B1 (en) 2013-04-02 2014-03-20 Steel sheet for nitriding and production method therefor
MX2015013940A MX2015013940A (en) 2013-04-02 2014-03-20 Steel sheet for nitriding and production method therefor.
US14/781,440 US20160032431A1 (en) 2013-04-02 2014-03-20 Steel sheet for nitriding and production method therefor
PCT/JP2014/001603 WO2014162677A1 (en) 2013-04-02 2014-03-20 Steel sheet for nitriding and production method therefor
EP14779834.2A EP2955242B1 (en) 2013-04-02 2014-03-20 Steel sheet for nitriding and production method therefor
TW103111885A TWI548755B (en) 2013-04-02 2014-03-31 Steel plate for nitrogen treatment and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013076824A JP5630523B2 (en) 2013-04-02 2013-04-02 Steel sheet for nitriding treatment and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014201764A JP2014201764A (en) 2014-10-27
JP5630523B2 true JP5630523B2 (en) 2014-11-26

Family

ID=51657992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013076824A Active JP5630523B2 (en) 2013-04-02 2013-04-02 Steel sheet for nitriding treatment and method for producing the same

Country Status (8)

Country Link
US (1) US20160032431A1 (en)
EP (1) EP2955242B1 (en)
JP (1) JP5630523B2 (en)
KR (1) KR101733513B1 (en)
CN (1) CN105102659B (en)
MX (1) MX2015013940A (en)
TW (1) TWI548755B (en)
WO (1) WO2014162677A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152167A1 (en) * 2015-03-24 2016-09-29 Jfeスチール株式会社 Steel for soft nitriding, components, and method for manufacturing same
CN105364433A (en) * 2015-11-27 2016-03-02 昆山惠众机电有限公司 Hot-working die production technology
KR102107437B1 (en) * 2015-12-04 2020-05-07 닛폰세이테츠 가부시키가이샤 Nitride plate parts and manufacturing method
JP6576851B2 (en) * 2016-02-17 2019-09-18 学校法人大同学園 Half blanking test method
KR101917453B1 (en) * 2016-12-22 2018-11-09 주식회사 포스코 Steel plate having excellent ultra low-temperature toughness and method for manufacturing same
MX2022005855A (en) * 2019-11-18 2022-06-14 Arcelormittal Forged part of steel and a method of manufacturing thereof.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123366A1 (en) * 2007-03-27 2008-10-16 Nippon Steel Corporation High-strength hot rolled steel sheet being free from peeling and excelling in surface and burring properties and process for manufacturing the same
JP2012177167A (en) * 2011-02-28 2012-09-13 Jfe Steel Corp Steel sheet for soft nitriding treatment, and its manufacturing method
JP2012177176A (en) * 2011-02-28 2012-09-13 Jfe Steel Corp Steel sheet for soft nitriding treatment, and its manufacturing method
WO2013047755A1 (en) * 2011-09-30 2013-04-04 新日鐵住金株式会社 High-strength hot-dip galvanized steel plate having excellent impact resistance and method for producing same, and high-strength alloyed hot-dip galvanized steel sheet and method for producing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925543A (en) 1995-07-12 1997-01-28 Nippon Steel Corp Nitriding steel sheet excellent in formability and its press formed body
JPH0925513A (en) 1995-07-12 1997-01-28 Nippon Steel Corp Production of nitriding steel sheet excellent in formability
JP3477955B2 (en) * 1995-11-17 2003-12-10 Jfeスチール株式会社 Method for producing high-strength hot-rolled steel sheet having ultrafine structure
TW500809B (en) * 2000-05-31 2002-09-01 Kawasaki Steel Co Cold-rolled steel sheets with superior strain-aging hardenability, and manufacturing method thereof
JP3863818B2 (en) * 2002-07-10 2006-12-27 新日本製鐵株式会社 Low yield ratio steel pipe
JP4289139B2 (en) 2003-12-12 2009-07-01 Jfeスチール株式会社 Manufacturing method of steel sheet for soft nitriding with excellent formability
JP4962594B2 (en) * 2010-04-22 2012-06-27 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
CA2832890C (en) * 2011-04-13 2016-03-29 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet for gas nitrocarburizing and manufacturing method thereof
CN104411847A (en) * 2012-06-27 2015-03-11 杰富意钢铁株式会社 Steel sheet for soft nitriding and process for producing same
KR101701652B1 (en) * 2012-06-27 2017-02-01 제이에프이 스틸 가부시키가이샤 Steel sheet for soft-nitriding and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123366A1 (en) * 2007-03-27 2008-10-16 Nippon Steel Corporation High-strength hot rolled steel sheet being free from peeling and excelling in surface and burring properties and process for manufacturing the same
JP2012177167A (en) * 2011-02-28 2012-09-13 Jfe Steel Corp Steel sheet for soft nitriding treatment, and its manufacturing method
JP2012177176A (en) * 2011-02-28 2012-09-13 Jfe Steel Corp Steel sheet for soft nitriding treatment, and its manufacturing method
WO2013047755A1 (en) * 2011-09-30 2013-04-04 新日鐵住金株式会社 High-strength hot-dip galvanized steel plate having excellent impact resistance and method for producing same, and high-strength alloyed hot-dip galvanized steel sheet and method for producing same

Also Published As

Publication number Publication date
CN105102659A (en) 2015-11-25
MX2015013940A (en) 2015-12-08
EP2955242B1 (en) 2017-05-03
TW201500560A (en) 2015-01-01
EP2955242A1 (en) 2015-12-16
JP2014201764A (en) 2014-10-27
US20160032431A1 (en) 2016-02-04
KR101733513B1 (en) 2017-05-08
WO2014162677A1 (en) 2014-10-09
CN105102659B (en) 2017-04-05
TWI548755B (en) 2016-09-11
KR20150126661A (en) 2015-11-12
EP2955242A4 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
EP2460901A1 (en) High-strength steel sheet, and process for production thereof
KR20140064929A (en) Steel wire for bolt, bolt, and manufacturing processes therefor
JP5440203B2 (en) Manufacturing method of high carbon hot rolled steel sheet
JP5630523B2 (en) Steel sheet for nitriding treatment and method for producing the same
US9777353B2 (en) Hot-rolled steel sheet for nitriding, cold-rolled steel sheet for nitriding excellent in fatigue strength, manufacturing method thereof, and automobile part excellent in fatigue strength using the same
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP2009068057A (en) Steel sheet for nitrocarburizing treatment and manufacturing method therefor
WO2016120914A1 (en) High-strength plated steel sheet and production method for same
US10077485B2 (en) Steel sheet for soft-nitriding and method for manufacturing the same
WO2015146173A1 (en) High-carbon hot-rolled steel sheet and method for producing same
EP2868764B1 (en) Steel sheet for soft nitriding and method for manufacturing the same
CN107208207B (en) High-strength steel sheet and method for producing same
JP5614329B2 (en) Steel sheet for soft nitriding treatment and method for producing the same
JP5614330B2 (en) Steel sheet for soft nitriding treatment and method for producing the same
JP2007162138A (en) Steel sheet for nitriding treatment and its production method
JP5515949B2 (en) Low carbon steel production method with excellent material uniformity in the thickness direction
JP2005264318A (en) Soft nitriding treated steel superior in wear resistance

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R150 Certificate of patent or registration of utility model

Ref document number: 5630523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250