WO2015146173A1 - High-carbon hot-rolled steel sheet and method for producing same - Google Patents

High-carbon hot-rolled steel sheet and method for producing same Download PDF

Info

Publication number
WO2015146173A1
WO2015146173A1 PCT/JP2015/001712 JP2015001712W WO2015146173A1 WO 2015146173 A1 WO2015146173 A1 WO 2015146173A1 JP 2015001712 W JP2015001712 W JP 2015001712W WO 2015146173 A1 WO2015146173 A1 WO 2015146173A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
content
cementite
ferrite
Prior art date
Application number
PCT/JP2015/001712
Other languages
French (fr)
Japanese (ja)
Inventor
友佳 宮本
崇 小林
金晴 奥田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201580016876.8A priority Critical patent/CN106133170B/en
Priority to JP2015537042A priority patent/JP6065120B2/en
Priority to EP15770102.0A priority patent/EP3091098B1/en
Priority to KR1020167029879A priority patent/KR101892524B1/en
Priority to US15/129,520 priority patent/US20170121787A1/en
Publication of WO2015146173A1 publication Critical patent/WO2015146173A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a high carbon hot rolled steel sheet and a method for producing the same.
  • the present invention relates to a high-carbon hot-rolled steel sheet to which B is added, which has a high effect of suppressing nitriding in the surface layer, is excellent in workability and hardenability, and a method for producing the same.
  • automotive parts such as gears, transmission parts, seat recliner parts, etc. are manufactured by processing hot-rolled steel sheets, which are carbon steel materials for machine structures specified in JIS G 4051, into desired shapes by cold working. In many cases, it is manufactured by quenching in order to ensure the desired hardness. For this reason, the hot-rolled steel sheet used as a raw material is required to have excellent cold workability and hardenability, and various steel sheets have been proposed so far.
  • Patent Document 1 discloses that hardness is increased when induction hardening is performed by heating at an average heating rate of 100 ° C./second, holding at 1000 ° C. for 10 seconds, and rapidly cooling to room temperature at an average cooling rate of 200 ° C./second.
  • Patent Document 1 discloses, as a method for producing such a cold-working medium carbon steel sheet, a hot steel in which the steel having the above-described chemical composition is kept at 1050 to 1300 ° C. and then rolled at 750 to 1000 ° C. Rolled, then cooled to 500 to 700 ° C. at a cooling rate of 20 to 50 ° C./s, cooled to a predetermined temperature at a cooling rate of 5 to 30 ° C./s, wound up, and held under predetermined conditions Thereafter, annealing at a temperature of 600 ° C. or higher and Ac 1 ⁇ 10 ° C. or lower is disclosed.
  • Patent Document 2 by mass, C: 0.20% to 0.45%, Si: 0.05% to 0.8%, Mn: 0.5% to 2.0% P: 0.001% to 0.04%, S: 0.0001% to 0.006%, Al: 0.005% to 0.1%, Ti: 0.005% to 0.2 %: B: 0.001% or more and 0.01% or less and N: 0.0001% or more and 0.01% or less, or Cr: 0.05% or more and 0.35% or less, Ni: 0.01% to 1.0%, Cu: 0.05% to 0.5%, Mo: 0.01% to 1.0%, Nb: 0.01% to 0.5%
  • V 0.01% to 0.5%
  • Ta 0.01% to 0.5%
  • W 0.01% to 0.5%
  • Sn 0.00%.
  • Patent Document 2 in order to ensure hardenability, the solid solution B in the region from the surface layer to a depth of 100 ⁇ m needs to be 10 ppm or more, and for that purpose, heating and annealing processes in the manufacturing process are required. It is disclosed that it is important to suppress the influence of the atmosphere.
  • Patent Document 2 discloses, as a method for producing such a boron-added steel sheet, a steel having the above component composition is heated at 1200 ° C. or less, hot-rolled at a finish rolling temperature of 800 to 940 ° C., and then cooled. After cooling at 20 ° C./s to 650 ° C.
  • Patent Document 2 further describes cold rolling after the pickling, or cold rolling after the annealing, and further annealing at a temperature of Ac 1 to Ac 1 + 50 ° C. to Ac 1 -30 ° C. Slow cooling and the like are disclosed.
  • the high carbon hot rolled steel sheet is required to have relatively low hardness and high elongation.
  • the hardness is 73 or less in Rockwell hardness HRB, The characteristic that the total elongation (El) is 39% or more is required.
  • excellent hardenability is desired for such a high carbon hot-rolled steel sheet having relatively low hardness and high elongation and good workability, for example, Vickers hardness of HV440 or higher after water quenching. Is desired.
  • the average diameter of the carbide is set to 0.6 ⁇ m or less in order to ensure quench hardening ability in induction hardening at an average heating rate of 100 ° C./second, but the C content is 0.3 to 0.00.
  • the average particle size of carbides is made as fine as 0.6 ⁇ m or less, so the density of carbides tends to increase, the strength tends to increase, and workability may be reduced.
  • the manufacturing method includes two-stage cooling, such as cooling to 500 to 700 ° C. at a cooling rate of 20 to 50 ° C./s after hot rolling and then cooling to a cooling rate of 5 to 30 ° C./s. There is a problem that it is difficult to manage the cooling control because of the control.
  • B is known as an element that improves hardenability by adding a small amount.
  • annealing is performed in an atmosphere mainly composed of nitrogen, which is generally used as an atmospheric gas. Then, there was a problem that the solid solution B decreased and the effect of improving the hardenability by B could not be obtained.
  • Patent Document 2 such a problem is solved by annealing in an atmosphere containing 95% or more of hydrogen or an atmosphere in which the hydrogen is replaced with an inert gas such as Ar. The cost of heat treatment using is increased. Moreover, it is unclear whether this technique alone can suppress nitrogen absorption by annealing in a nitrogen atmosphere.
  • the present invention uses a steel with a Mn content lower than that of conventional steel and added with B, and even if annealing is performed in a nitrogen atmosphere, excellent quenching can be achieved. It is an object of the present invention to provide a high carbon hot-rolled steel sheet having excellent workability such that the hardness is 73 or less in HRB and the total elongation is 39% or more before quenching, and a method for producing the same. .
  • the inventors of the present invention made an intensive study on the relationship between the manufacturing conditions, workability, and hardenability of high carbon hot-rolled steel sheets containing B, with a Mn content of 0.50% or less and a lower Mn content than conventional steel. As a result, the following knowledge was obtained. i) The hardness and total elongation (hereinafter also simply referred to as elongation) of the high carbon hot-rolled steel sheet before quenching are greatly affected by the cementite density in the ferrite grains, with a hardness of 73 or less in HRB and 39% or more. In order to obtain the total elongation (El), the cementite density in the ferrite grains needs to be 0.08 pieces / ⁇ m 2 or less.
  • the cementite density in the ferrite grains is greatly affected by the finish rolling temperature in the hot rolling finish rolling and the cooling rate from 700 to 700 ° C. after the finish rolling. If the finish rolling temperature is too high or the cooling rate is too low, in the steel sheet after hot rolling, a steel sheet having a structure with pearlite and a predetermined proeutectoid ferrite volume fraction cannot be obtained, and spheroidizing annealing is performed. It becomes difficult to reduce the cementite density later.
  • the present invention has been made on the basis of such knowledge, and the gist thereof is as follows.
  • 700 Is cooled at an average cooling rate of 25 ° C./s or more and 150 ° C./s or less, and coiled at a winding temperature of 500 ° C. or more and 700 ° C. or less, so that pearlite and pro-eutectoid ferrite with a volume ratio of 5% or more can be obtained.
  • a high carbon hot rolled steel sheet having excellent hardenability and workability can be produced.
  • the high carbon hot-rolled steel sheet of the present invention is suitable for automotive parts such as gears, transmission parts, and seat recliner parts, which require cold workability for the raw steel sheet.
  • % which is a unit of component content, means “% by mass” unless otherwise specified.
  • Composition C 0.20 to 0.40% C is an important element for obtaining strength after quenching.
  • C content is less than 0.20%, HV440 or more cannot be obtained with the desired hardness, specifically the hardness after water quenching, by heat treatment after forming into a part. For this reason, C content needs to be 0.20% or more.
  • the C content is set to 0.40% or less.
  • the C content is preferably 0.26% or more.
  • Si 0.10% or less
  • Si is an element that increases the strength by solid solution strengthening. As the Si content increases, it hardens and the cold workability deteriorates, so the Si content is made 0.10% or less.
  • the Si content is 0.05% or less, more preferably 0.03% or less. Since Si lowers the cold workability, the lower the Si content, the better. However, since excessively reducing Si increases the refining cost, the Si content is preferably 0.005% or more.
  • Mn 0.50% or less
  • Mn content is 0.50% or less.
  • the Mn content is 0.45% or less, more preferably 0.40% or less.
  • the lower limit is not specified, in order to suppress the precipitation of graphite and obtain a predetermined quenching hardness by solid solution of all C in the steel sheet during quenching heating, the Mn content is 0.20% or more. It is preferable that
  • P 0.03% or less
  • P is an element that increases the strength by solid solution strengthening. If the P content exceeds 0.03%, the steel sheet becomes too hard and cold workability is reduced. Moreover, since the strength of the grain boundary is lowered, the toughness after quenching deteriorates. Therefore, the P content is 0.03% or less. In order to obtain excellent toughness after quenching, the P content is preferably 0.02% or less. P decreases the cold workability and toughness after quenching, so the lower the P content, the better. However, if P is reduced more than necessary, the refining cost increases, so the P content is 0.005% or more. preferable.
  • S 0.010% or less
  • S is an element that has to be reduced in order to form sulfides and to reduce the cold workability of the high carbon hot-rolled steel sheet and the toughness after quenching. If the S content exceeds 0.010%, the cold workability and the toughness after quenching of the high carbon hot-rolled steel sheet are significantly deteriorated. Therefore, the S content is set to 0.010% or less. In order to obtain excellent cold workability and toughness after quenching, the S content is preferably 0.005% or less. Since S decreases cold workability and toughness after quenching, the S content is preferably as low as possible. However, if S is reduced more than necessary, the refining cost increases, so the S content is 0.0005% or more. preferable.
  • sol. Al 0.10% or less sol.
  • sol. Al content shall be 0.10% or less.
  • sol. Al content is 0.06% or less.
  • Al has a deoxidizing effect, and in order to sufficiently deoxidize, sol.
  • the Al content is preferably 0.005% or more.
  • N 0.0050% or less
  • the N content exceeds 0.0050%, BN is formed more than necessary, so that the amount of dissolved B decreases.
  • the formation of BN and AlN more than necessary causes the austenite grains to become too fine during heating in the quenching process, and the formation of a ferrite phase is promoted during cooling, so the hardness after quenching decreases. Therefore, the N content is 0.0050% or less.
  • the N content is 0.0045% or less.
  • the lower limit is not particularly defined, but N forms BN and AlN as described above. If appropriate amounts of BN and AlN are formed, these nitrides moderately suppress austenite grain coarsening during heating in the quenching process and improve toughness after quenching, so the N content is 0.0005% or more. Is preferred.
  • B 0.0005 to 0.0050% B is an important element that enhances hardenability.
  • the B content needs to be 0.0005% or more, and is preferably 0.0010% or more.
  • the B content exceeds 0.0050%, the recrystallization of austenite after finish rolling is delayed. As a result, the rolling texture of the hot-rolled steel sheet develops and the in-plane anisotropy of the mechanical property value of the steel sheet after annealing increases.
  • the B content is preferably 0.0035% or less. Therefore, the B content is set to 0.0005 to 0.0050%. More preferably, the B content is 0.0010 to 0.0035%.
  • the ratio of the solid solution B amount in the B content is set to 70% or more.
  • the ratio of the solid solution B content to the B content is 75% or more.
  • the ratio of the solid solution B amount in the B content means ⁇ (solid solution B amount (mass%)) / (total B content (mass%)) ⁇ ⁇ 100 (%).
  • Sb, Sn, Bi, Ge, Te, Se are all elements that have an effect of suppressing nitriding from the steel sheet surface.
  • one of Sb, Sn, Bi, Ge, Te, Se is used. It is necessary to contain the above. Further, when the total content of these elements is less than 0.002%, a sufficient nitriding suppression effect is not recognized. For this reason, one or more of Sb, Sn, Bi, Ge, Te and Se are contained in a total amount of 0.002% or more.
  • the total content of Sb, Sn, Bi, Ge, Te, Se is 0.005% or more.
  • Sb, Sn, Bi, Ge, Te, and Se are contained in a total amount of 0.030% or less.
  • the contents of Sb, Sn, Bi, Ge, Te and Se are preferably 0.020% or less in total.
  • the N content is 0.0050% or less, and at least one of Sb, Sn, Bi, Ge, Te, and Se is contained by 0.002 to 0.030% in total.
  • the nitriding from the steel sheet surface is suppressed, the increase in the nitrogen concentration in the steel sheet surface layer is suppressed, and the average amount of nitrogen contained in the range of 150 ⁇ m depth from the steel sheet surface in the sheet thickness direction, The difference from the average amount of nitrogen contained in the entire steel sheet can be 30 ppm by mass or less.
  • the ratio of the solid solution B content in the B content in the steel sheet after annealing can be 70% or more. .
  • the remainder other than the above is Fe and inevitable impurities, but in order to further improve the hardenability, one or more of Ni, Cr, and Mo may be contained. In order to obtain such an effect, it is preferable that at least one of Ni, Cr, and Mo is contained and the total content is 0.01% or more. On the other hand, since these elements are expensive, when one or more of Ni, Cr, and Mo are contained, the total content needs to be 0.50% or less. Preferably, the content of these elements is 0.20% or less in total.
  • spheroidization refers to a state in which cementite having an aspect ratio (major axis / minor axis) ⁇ 3 occupies 90% or more by volume with respect to the total cementite.
  • the cementite density in the ferrite grains needs to be 0.08 pieces / ⁇ m 2 or less.
  • the cementite density is also referred to as the number density of cementite grains.
  • the steel sheet of the present invention comprises ferrite and cementite. If the number density of cementite grains in the ferrite grains is high, it becomes hard due to dispersion strengthening and the elongation decreases. In order to set the hardness to a predetermined value or less and the elongation to a predetermined value or more, the number density of cementite grains in the ferrite grains needs to be set to 0.08 particles / ⁇ m 2 or less.
  • the number density of cementite grains in the ferrite grains is preferably 0.07 / ⁇ m 2 or less, and more preferably 0.06 / ⁇ m 2 or less.
  • the cementite diameter present in the ferrite grains is about 0.15 to 1.8 ⁇ m in the major axis, and is a size that has a slight effect on the precipitation strengthening of the steel sheet. Therefore, by reducing the number density of the cementite grains in the ferrite grains The strength can be reduced. Since cementite at the ferrite grain boundary hardly contributes to dispersion strengthening, the number density of cementite grains in the ferrite grain is defined as 0.08 / ⁇ m 2 or less. In addition to the above ferrite and cementite, even if the remaining structure such as pearlite is inevitably generated, the effect of the present invention is not impaired as long as the total volume ratio of the remaining structure is about 5% or less. , It may be contained.
  • Average diameter of all cementite 0.60 ⁇ m or more and 1.00 ⁇ m or less and average diameter of cementite in ferrite grains: 0.40 ⁇ m or more
  • Steel sheets whose average diameter of cementite in ferrite grains is less than 0.40 ⁇ m are cementite in ferrite grains Since the number density of grains increases, the hardness of the steel sheet after annealing may increase.
  • the average diameter of cementite in the ferrite grains is preferably 0.40 ⁇ m or more. More preferably, the average diameter of cementite in the ferrite grains is 0.45 ⁇ m or more.
  • the cementite at the ferrite grain boundary tends to be coarser than the cementite in the ferrite grain, and in order to make the average diameter of the cementite in the ferrite grain 0.40 ⁇ m or more, the average diameter of the entire cementite is 0.60 ⁇ m or more. There is a need.
  • the average diameter of all cementite is 0.65 ⁇ m or more.
  • the cementite may not be melted during heating in a short time such as induction hardening, and the hardness may not be less than the desired value.
  • the average diameter of all cementite is preferably 1.00 ⁇ m or less.
  • the average diameter of all cementite is 0.95 ⁇ m or less.
  • the average diameter of the cementite can be determined by observing the microstructure by SEM, measuring the long diameter and short diameter of the cementite grains, and measuring the average diameter of all cementite and the average diameter of cementite in the ferrite grains.
  • the average grain size of ferrite in the structure composed of ferrite and cementite should be 12 ⁇ m or less. Is preferable, and 9 ⁇ m or less is more preferable.
  • the average particle diameter of ferrite is less than 6 ⁇ m, the steel sheet may be hardened, so the average particle diameter of ferrite is preferably 6 ⁇ m or more. The particle size of the ferrite can be measured by observing the microstructure with an SEM.
  • the steel sheet of the present invention requires excellent workability in order to form automotive parts such as gears, transmission parts, and sheet recliner parts by cold pressing. In addition, it is necessary to increase the hardness by quenching to impart wear resistance to the parts. For that purpose, in addition to improving hardenability, it is necessary to reduce the hardness of the steel sheet to HRB 73 or less and increase the elongation to make the total elongation (El) 39% or more. The lower the hardness of the steel sheet, the better from the viewpoint of workability, but there are parts that are partially quenched, and the strength of the original sheet may affect the fatigue characteristics. For this reason, as for the hardness of a steel plate, HRB60 excess is preferable.
  • said HRB can be measured using a Rockwell hardness meter (B scale).
  • the total elongation is 10 mm / min with a tensile tester of Shimadzu AG10TB AG / XR using a JIS No. 5 tensile test piece cut in a direction of 0 ° (L direction) with respect to the rolling direction. It can be done by measuring the broken sample.
  • the high carbon hot-rolled steel sheet of the present invention is made of steel having the above composition, and is desired by hot rolling after hot rough rolling and finish rolling at a finish rolling temperature of Ar 3 transformation point or higher and 870 ° C. or lower. After finishing rolling, the steel sheet is cooled to 700 ° C. at an average cooling rate of 25 ° C./s to 150 ° C./s, and the winding temperature is 500 ° C. to 700 ° C. A steel sheet having 5% or more pro-eutectoid ferrite is produced, and then subjected to spheroidizing annealing at an Ac 1 transformation point or less. In addition, it is preferable that the rolling reduction in finish rolling shall be 85% or more.
  • Final rolling temperature Ar 3 transformation point or more and 870 ° C. or less
  • pearlite and pro-eutectoid ferrite with a volume ratio of 5% or more are used. It is necessary to spheroidize the hot-rolled steel sheet having a microstructure.
  • finish rolling temperature when the finish rolling temperature is higher than 870 ° C., the proportion of pro-eutectoid ferrite decreases, and the number density of predetermined cementite grains cannot be obtained after spheroidizing annealing. .
  • finish rolling temperature shall be 870 degrees C or less.
  • the finish rolling temperature is preferably 850 ° C. or lower.
  • the finish rolling temperature is 820 ° C or higher.
  • the finish rolling temperature is the surface temperature of the steel sheet.
  • Average cooling rate from the finish rolling temperature to 700 ° C . 25 ° C./s or more and 150 ° C./s or less
  • the cooling rate from the finish rolling temperature to 700 ° C. is an important factor. If the average cooling rate in the temperature range from finish rolling to 700 ° C. is less than 25 ° C./s, the ferrite transformation hardly progresses in a short time, and the paride fraction becomes higher than necessary. The fraction of precipitated ferrite cannot be obtained. In addition, the formation of coarse pearlite makes it difficult to obtain a desired steel sheet structure after spheroidizing annealing. Therefore, the average cooling rate in the temperature range from finish rolling to 700 ° C. is set to 25 ° C./s or more.
  • the pro-eutectoid ferrite fraction is preferably 10% or more by volume.
  • the average cooling rate is preferably 30 ° C./s or more. More preferably, the average cooling rate is 40 ° C./s or more.
  • the average cooling rate exceeds 150 ° C./s, it is difficult to obtain pro-eutectoid ferrite. Therefore, the average cooling rate from 700 ° C. after finish rolling is set to 150 ° C./s or less.
  • the average cooling rate is 120 ° C./s or less. More preferably, the average cooling rate is 100 ° C./s or less.
  • the temperature is the surface temperature of the steel sheet.
  • Winding temperature 500 ° C. or higher and 700 ° C. or lower
  • the steel sheet after finish rolling is wound into a coil shape at a winding temperature of 500 ° C. or higher and 700 ° C. or lower after cooling as described above.
  • the coiling temperature exceeds 700 ° C., the structure of the hot-rolled steel sheet becomes coarse and a desired steel sheet structure cannot be obtained after annealing, and the strength of the steel sheet becomes too low to be coiled into a coil shape. It may be deformed by its own weight, which is not preferable for operation. Therefore, the coiling temperature is 700 ° C. or less. Preferably, the coiling temperature is 650 ° C. or lower.
  • the coiling temperature is 500 ° C. or higher.
  • the winding temperature is 550 ° C. or higher.
  • the winding temperature is the surface temperature of the steel plate.
  • Microstructure of steel sheet after hot rolling Structure having pearlite and pro-eutectoid ferrite of 5% or more in volume ratio
  • it consists of ferrite and cementite, and the cementite grains in the ferrite grains
  • a steel sheet having a microstructure with a number density of 0.08 pieces / ⁇ m 2 or less is obtained.
  • the microstructure after spheroidizing annealing is greatly affected by the microstructure of the steel sheet after hot rolling.
  • the microstructure of the steel sheet after hot rolling into a structure having pearlite and 5% or more pro-eutectoid ferrite in volume ratio it can be made a desired structure after spheroidizing annealing, Become.
  • a predetermined number density of cementite grains can be obtained after spheroidizing annealing below the Ac 1 transformation point. Therefore, the steel sheet strength is increased.
  • the microstructure of the steel sheet (hot-rolled steel sheet) obtained by hot rolling, cooling and winding under the above-described conditions is a structure having pearlite and a pro-eutectoid ferrite of 5% or more by volume ratio.
  • the structure is composed of pearlite and pro-eutectoid ferrite with a volume ratio of 10% or more.
  • the fraction of pro-eutectoid ferrite is preferably 50% or less by volume.
  • Annealing temperature Ac 1 transformation point or less Annealing (spheroidizing annealing) is performed on the hot-rolled steel sheet obtained as described above.
  • the annealing temperature exceeds the Ac 1 transformation point, austenite precipitates, and a coarse pearlite structure is formed in the cooling process after annealing, resulting in a non-uniform structure. Therefore, the annealing temperature is less Ac 1 transformation point.
  • the annealing temperature is preferably 600 ° C. or higher, more preferably 700 ° C. or higher, in order to obtain the desired number density of cementite grains in the ferrite grains.
  • the atmospheric gas any of nitrogen, hydrogen, and a mixed gas of nitrogen and hydrogen can be used, and these gases are preferably used, but Ar may be used and is not particularly limited.
  • the annealing time is preferably 0.5 to 40 hours. By setting the annealing time to 0.5 hours or more, the target structure can be stably obtained, the hardness of the steel sheet can be set to a predetermined value or less, and the elongation can be set to a predetermined value or more.
  • the annealing time is preferably 0.5 hours or longer. More preferably, it is 8 hours or more. Further, if the annealing time exceeds 40 hours, the productivity is lowered and the manufacturing cost is likely to be excessive. Therefore, the annealing time is preferably 40 hours or less.
  • the annealing temperature is the surface temperature of the steel sheet.
  • the annealing time is a time during which a predetermined temperature is maintained.
  • both a converter and an electric furnace can be used. Further, the high carbon steel thus melted is made into a slab by ingot-bundling rolling or continuous casting.
  • the slab is usually heated and then hot rolled.
  • slab heating temperature 1280 degrees C or less it is preferable to make slab heating temperature 1280 degrees C or less in order to avoid the deterioration of the surface state by a scale.
  • the material to be rolled may be heated by a heating means such as a sheet bar heater during hot rolling.
  • Hot rolled annealed sheet hardness A sample was taken from the center of the plate width of the steel sheet after annealing, and measured at five points using a Rockwell hardness meter (B scale) to obtain an average value.
  • Total elongation of hot-rolled annealed sheet (El) Using a JIS No. 5 tensile test piece cut from the annealed steel sheet in a direction of 0 ° (L direction) with respect to the rolling direction, a tensile test was performed at 10 mm / min with a Shimadzu AG10TB AG / XR tensile tester. The fractured samples were butted together to determine the elongation (total elongation).
  • microstructure of the hot-rolled steel sheet before annealing was observed by SEM, and the type of the structure and the fraction of proeutectoid ferrite were determined.
  • the fraction of pro-eutectoid ferrite was divided into locations other than the ferrite region and the ferrite region, and the area ratio was determined by determining the proportion of the ferrite region, and this value was defined as the volume fraction of the pro-eutectoid ferrite.
  • the hot-rolled steel sheet before annealing shown in Table 2 the presence of pearlite is confirmed by the above SEM observation.
  • the microstructure of the steel sheet after annealing (the microstructure of the hot-rolled annealed sheet) is obtained by cutting and polishing a sample taken from the center part of the sheet width, applying nital corrosion, and using a scanning electron microscope, 1/4 of the sheet thickness. Using structure photographs taken at a magnification of 3000 at five locations, the type of the structure was observed, and the number of cementites that were not on the grain boundaries and whose major axis was 0.15 ⁇ m or more was measured. Dividing by the area of the field of view of the photograph, the cementite density in the ferrite grains (number density of cementite grains) was determined.
  • the cementite diameter was determined by measuring the long diameter and short diameter of each cementite grain using the above structure photograph, and determining the average diameter of all cementite and cementite within the grain. For the ferrite grain size, the average grain size was calculated by obtaining the grain size using the above structure photograph.
  • the difference between the average N amount of the surface layer 150 ⁇ m and the average N amount in the steel sheet Using a sample taken from the center of the sheet width of the steel sheet after annealing, the average N amount of the surface layer 150 ⁇ m and the average N amount in the steel sheet were measured, and the surface layer 150 ⁇ m The difference between the average N amount and the average N amount in the steel sheet was determined.
  • the average N amount of the surface layer of 150 ⁇ m is the average N amount contained in the range from the steel plate surface to the depth of 150 ⁇ m in the plate thickness direction.
  • the average amount of N in the surface layer of 150 ⁇ m was determined as follows.
  • the cutting was started from the surface of the collected steel sheet, the steel sheet was cut to a depth of 150 ⁇ m from the surface, and the cut piece generated at this time was collected as a sample.
  • the amount of N in this sample was measured and used as the average amount of N on the surface layer of 150 ⁇ m.
  • the average N amount of the surface layer of 150 ⁇ m and the average N amount in the steel sheet were determined by measurement by an inert gas melting-thermal conductivity method.
  • the difference between the average N content of the surface layer 150 ⁇ m obtained in this way (the N content in the range of 150 ⁇ m depth from the surface to the surface) and the average N content in the steel sheet (N content in the steel) is 30 ppm by mass or less. If it is, it can be evaluated that the nitrification can be suppressed.
  • the ratio of the amount of solute B in the B content A sample was taken from the center of the plate width of the steel plate after annealing. BN in the steel was extracted with 10% by volume Br methanol, and the B content precipitated as BN was subtracted from the total B content in the steel to obtain the solid solution B amount.
  • the ratio of the solute B amount to the total B content (B content) contained in the steel is ⁇ (solid solution B amount (mass%)) / (total B content (mass%)) ⁇ ⁇ It calculated
  • a flat plate test piece (width 15 mm ⁇ length 40 mm ⁇ plate thickness 4 mm) is taken from the center of the plate width of the steel plate (original plate) after annealing, and is immediately cooled with water by holding the plate test piece at 870 ° C. for 30 s. Quenching was performed by a method (water cooling), a method of holding at 870 ° C. for 30 s and immediately cooling with 120 ° C. oil (120 ° C. oil cooling). For the quenching characteristics, the hardness of the cut surface of the test piece after the quenching treatment was measured with a Vickers hardness tester under the condition of a load of 1 kgf to obtain an average hardness, which was defined as the quenching hardness.
  • a disk test piece (55 mm ⁇ ⁇ plate thickness 4 mm) is taken from the center of the width of the steel plate (original plate) after annealing, and induction-quenched (heated at a heating rate of 200 ° C./s, water-cooled after reaching 1000 ° C.) Also quenching treatment was performed.
  • the hardness of the cut surface of the test piece at the outermost peripheral portion of the test piece was measured at two points with a Vickers hardness tester under a load of 0.2 kgf to obtain the average hardness, and this was set as quenching hardness.
  • the quenching hardness which was kept at 870 ° C. for 30 s and was water-cooled and 120 ° C.
  • Table 3 represents the quenching hardness according to the C content that can be evaluated as having sufficient quenchability from experience.
  • the hot-rolled steel sheet of the present invention example has a microstructure composed of ferrite and cementite, and the cementite density in the ferrite grains is 0.08 pieces / ⁇ m 2 or less, and the hardness is 73 or less in HRB. It can be seen that since the total elongation is 39% or more, the cold workability is excellent and the hardenability is also excellent.

Abstract

The present invention provides a high-carbon hot-rolled steel sheet in which a steel having B added thereto is used as a raw material, said steel sheet exhibiting consistently excellent hardenability even when annealing is carried out in a nitrogen atmosphere, and exhibiting excellent workability having, prior to hardening treatment, a hardness of HRB 73 or less and a total elongation of 39% or more. Provided is a high-carbon hot-rolled steel sheet that: has a composition containing, by mass%, C: 0.20-0.40%, Si: 0.10% or less, Mn: 0.50% or less, P: 0.03% or less, S: 0.010% or less, sol.Al: 0.10% or less, N: 0.0050% or less, and B: 0.0005-0.0050%, and further containing 0.002-0.030%, in total, of one or more of Sb, Sn, Bi, Ge, Te, and Se, wherein the proportion of the B content taken up by solid-solution B is 70% or more; has a microstructure comprising ferrite and cementite, wherein the cementite density within the ferrite grains is 0.08/µm2 or less; and has a hardness of HRB 73 or less and a total elongation of 39% or more.

Description

高炭素熱延鋼板およびその製造方法High carbon hot rolled steel sheet and manufacturing method thereof
 本発明は、高炭素熱延鋼板およびその製造方法に関する。特にBを添加した高炭素熱延鋼板であって、表層における浸窒抑制効果が高い、加工性と焼入れ性に優れる高炭素熱延鋼板およびその製造方法に関する。 The present invention relates to a high carbon hot rolled steel sheet and a method for producing the same. In particular, the present invention relates to a high-carbon hot-rolled steel sheet to which B is added, which has a high effect of suppressing nitriding in the surface layer, is excellent in workability and hardenability, and a method for producing the same.
 現在、ギア類、トランスミッション部品、シートリクライナー部品などの自動車用部品は、JIS G 4051に規定された機械構造用炭素鋼鋼材である熱延鋼板を、冷間加工によって所望の形状に加工した後、所望の硬さを確保するために焼入れ処理を施して製造されることが多い。このため、素材となる熱延鋼板には優れた冷間加工性や焼入れ性が必要とされ、これまでに種々の鋼板が提案されている。 Currently, automotive parts such as gears, transmission parts, seat recliner parts, etc. are manufactured by processing hot-rolled steel sheets, which are carbon steel materials for machine structures specified in JIS G 4051, into desired shapes by cold working. In many cases, it is manufactured by quenching in order to ensure the desired hardness. For this reason, the hot-rolled steel sheet used as a raw material is required to have excellent cold workability and hardenability, and various steel sheets have been proposed so far.
 例えば、特許文献1には、100℃/秒の平均加熱速度で昇温後、1000℃で10秒保持し、200℃/秒の平均冷却速度で室温まで急冷する高周波焼入れを行った場合に硬度が500HV以上かつ900HV以下になる冷間加工用中炭素鋼板であって、質量%で、C:0.30~0.60%、Si:0.06~0.30%、Mn:0.3~2.0%、P:0.030%以下、S:0.0075%以下、Al:0.005~0.10%、N:0.001~0.01%、Cr:0.001~0.10%を含有し、あるいはさらに、Ni:0.01~0.5%、Cu:0.05~0.5%、Mo:0.01~0.5%、Nb:0.01~0.5%、Ti:0.001~0.05%、V:0.01~0.5%、Ta:0.01~0.5%、B:0.001~0.01%、W:0.01~0.5%、Sn:0.003~0.03%、Sb:0.003~0.03%、As:0.003~0.03%の1種以上を含有し、炭化物の平均径dが0.6μm以下、炭化物の球状化率pが70%以上かつ90%未満であり、前記炭化物の平均径dμmと前記炭化物の球状化率p%とがd≦0.04×p-2.6を満足する冷間加工用中炭素鋼板、あるいはさらに冷間加工前の硬度が120HV以上かつ170HV未満である冷間加工用中炭素鋼板が開示されている。また、特許文献1には、このような冷間加工用中炭素鋼板の製造方法として、上記の化学成分の鋼を、1050~1300℃に保持後、750~1000℃で圧延を終了する熱間圧延を行い、次いで20~50℃/sの冷却速度で500~700℃まで冷却した後、5~30℃/sの冷却速度で所定の温度まで冷却して巻取り、所定の条件で保持した後、600℃以上Ac-10℃以下の温度で焼鈍することが開示されている。 For example, Patent Document 1 discloses that hardness is increased when induction hardening is performed by heating at an average heating rate of 100 ° C./second, holding at 1000 ° C. for 10 seconds, and rapidly cooling to room temperature at an average cooling rate of 200 ° C./second. Is a medium carbon steel sheet for cold working, having a mass ratio of 500 HV to 900 HV, C: 0.30 to 0.60%, Si: 0.06 to 0.30%, Mn: 0.3 -2.0%, P: 0.030% or less, S: 0.0075% or less, Al: 0.005-0.10%, N: 0.001-0.01%, Cr: 0.001- 0.10%, or Ni: 0.01 to 0.5%, Cu: 0.05 to 0.5%, Mo: 0.01 to 0.5%, Nb: 0.01 to 0.5%, Ti: 0.001 to 0.05%, V: 0.01 to 0.5%, Ta: 0.01 to 0.5%, B: 0 001-0.01%, W: 0.01-0.5%, Sn: 0.003-0.03%, Sb: 0.003-0.03%, As: 0.003-0.03% In which the average diameter d of the carbide is 0.6 μm or less, the spheroidization rate p of the carbide is 70% or more and less than 90%, the average diameter dμm of the carbide and the spheroidization rate p of the carbide Disclosed is a medium carbon steel sheet for cold work that satisfies d ≦ 0.04 × p-2.6, or a medium carbon steel sheet for cold work whose hardness before cold work is 120 HV or more and less than 170 HV. Has been. Patent Document 1 discloses, as a method for producing such a cold-working medium carbon steel sheet, a hot steel in which the steel having the above-described chemical composition is kept at 1050 to 1300 ° C. and then rolled at 750 to 1000 ° C. Rolled, then cooled to 500 to 700 ° C. at a cooling rate of 20 to 50 ° C./s, cooled to a predetermined temperature at a cooling rate of 5 to 30 ° C./s, wound up, and held under predetermined conditions Thereafter, annealing at a temperature of 600 ° C. or higher and Ac 1 −10 ° C. or lower is disclosed.
 また、特許文献2には、質量%で、C:0.20%以上0.45%以下、Si:0.05%以上0.8%以下、Mn:0.5%以上2.0%以下、P:0.001%以上0.04%以下、S:0.0001%以上0.006%以下、Al:0.005%以上0.1%以下、Ti:0.005%以上0.2%以下、B:0.001%以上0.01%以下、及びN:0.0001%以上0.01%以下の成分を含有し、あるいはさらにCr:0.05%以上0.35%以下、Ni:0.01%以上1.0%以下、Cu:0.05%以上0.5%以下、Mo:0.01%以上1.0%以下、Nb:0.01%以上0.5%以下、V:0.01%以上0.5%以下、Ta:0.01%以上0.5%以下、W:0.01%以上0.5%以下、Sn:0.003%以上0.03%以下、Sb:0.003%以上0.03%以下、及びAs:0.003%以上0.03%以下の1種又は2種以上の成分を含有し、表層から深さ100μmまでの領域における固溶Bの平均濃度が10ppm以上であるボロン添加鋼板が開示されている。また、特許文献2には、窒素を主体とする雰囲気中で焼鈍すると、吸窒という現象が発現し、焼入れ性の観点から重要な元素であるBが、焼鈍中に鋼中のNと結合してBNを形成し、固溶Bが減少してBによる焼入れ性向上効果を確保できないことが開示されている。特許文献2には、焼入れ性確保のためには、表層から深さ100μmまでの領域における固溶Bを10ppm以上とすることが必要であり、そのためには、製造工程中の加熱や焼鈍工程の雰囲気の影響を抑制することが重要であることが開示されている。また、特許文献2には、このようなボロン添加鋼板の製造方法として、上記成分組成の鋼を、1200℃以下で加熱後、800~940℃の仕上げ圧延温度で熱間圧延し、次いで冷却速度20℃/s以上で650℃以下になるまで冷却後、20℃/s以下で冷却して400~650℃で巻取り、酸洗後、水素95%以上で、且つ400℃までの露点を-20℃以下、400℃以上の露点を-40℃以下の雰囲気で660℃以上Ac以下の温度で焼鈍することが開示されている。また、特許文献2には、さらに前記酸洗の後に冷間圧延することや、前記焼鈍後に冷間圧延を施し、さらにAc~Ac+50℃の温度で焼鈍し、Ac-30℃まで緩冷却すること等が開示されている。 Further, in Patent Document 2, by mass, C: 0.20% to 0.45%, Si: 0.05% to 0.8%, Mn: 0.5% to 2.0% P: 0.001% to 0.04%, S: 0.0001% to 0.006%, Al: 0.005% to 0.1%, Ti: 0.005% to 0.2 %: B: 0.001% or more and 0.01% or less and N: 0.0001% or more and 0.01% or less, or Cr: 0.05% or more and 0.35% or less, Ni: 0.01% to 1.0%, Cu: 0.05% to 0.5%, Mo: 0.01% to 1.0%, Nb: 0.01% to 0.5% Hereinafter, V: 0.01% to 0.5%, Ta: 0.01% to 0.5%, W: 0.01% to 0.5%, Sn: 0.00%. Contains one or more components of 03% to 0.03%, Sb: 0.003% to 0.03%, and As: 0.003% to 0.03%, from the surface layer A boron-added steel sheet having an average solid solution B concentration of 10 ppm or more in a region up to a depth of 100 μm is disclosed. Further, in Patent Document 2, when annealing is performed in an atmosphere mainly composed of nitrogen, a phenomenon called nitrogen absorption occurs, and B, which is an important element from the viewpoint of hardenability, binds to N in steel during annealing. Thus, it is disclosed that BN is formed and the solid solution B is reduced, and the effect of improving the hardenability by B cannot be ensured. In Patent Document 2, in order to ensure hardenability, the solid solution B in the region from the surface layer to a depth of 100 μm needs to be 10 ppm or more, and for that purpose, heating and annealing processes in the manufacturing process are required. It is disclosed that it is important to suppress the influence of the atmosphere. Patent Document 2 discloses, as a method for producing such a boron-added steel sheet, a steel having the above component composition is heated at 1200 ° C. or less, hot-rolled at a finish rolling temperature of 800 to 940 ° C., and then cooled. After cooling at 20 ° C./s to 650 ° C. or less, cooling at 20 ° C./s or less, winding at 400 to 650 ° C., pickling, and after dehydration at 95% or more of hydrogen and up to 400 ° C. It is disclosed that annealing is performed at a temperature of 660 ° C. or higher and Ac 1 or lower in an atmosphere of −40 ° C. or lower with a dew point of 20 ° C. or lower and 400 ° C. or higher. Further, Patent Document 2 further describes cold rolling after the pickling, or cold rolling after the annealing, and further annealing at a temperature of Ac 1 to Ac 1 + 50 ° C. to Ac 1 -30 ° C. Slow cooling and the like are disclosed.
特許第5048168号公報Japanese Patent No. 5048168 特許第4782243号公報Japanese Patent No. 4782243
 良好な冷間加工性を得る上では、高炭素熱延鋼板には、比較的低い硬さと高い伸びが要求される。例えば、従来、熱間鍛造、切削、溶接などの複数工程で製造していたものを冷間プレスで一体成形化した自動車部品等に向けては、硬さがロックウェル硬さHRBで73以下、全伸び(El)が39%以上といった特性が要求される。また、このように比較的低い硬さと高い伸びを有し、加工性を良好とした高炭素熱延鋼板には、優れた焼入れ性が望まれており、例えば水焼入れ後にHV440以上のビッカース硬さを得ることが望まれている。 In order to obtain good cold workability, the high carbon hot rolled steel sheet is required to have relatively low hardness and high elongation. For example, for automotive parts and the like that have been manufactured in a plurality of processes such as hot forging, cutting and welding in the past and integrally formed with a cold press, the hardness is 73 or less in Rockwell hardness HRB, The characteristic that the total elongation (El) is 39% or more is required. Moreover, excellent hardenability is desired for such a high carbon hot-rolled steel sheet having relatively low hardness and high elongation and good workability, for example, Vickers hardness of HV440 or higher after water quenching. Is desired.
 特許文献1の技術では、平均加熱速度100℃/秒の高周波焼入れにおける焼入れ硬化能を確保するため、炭化物の平均径を、0.6μm以下としているが、C含有量が0.3~0.6%といった多量のCを含有する鋼において、炭化物の平均粒径を0.6μm以下と細かくしているため、炭化物の密度が大きくなり、高強度化しやすく、加工性の低下が懸念される。また、その製造方法としては、熱間圧延後に20~50℃/sの冷却速度で500~700℃まで冷却した後、5~30℃/sの冷却速度で冷却するといった、2段での冷却制御を行っており、冷却制御の管理が難しいという問題があった。 In the technique of Patent Document 1, the average diameter of the carbide is set to 0.6 μm or less in order to ensure quench hardening ability in induction hardening at an average heating rate of 100 ° C./second, but the C content is 0.3 to 0.00. In steels containing a large amount of C, such as 6%, the average particle size of carbides is made as fine as 0.6 μm or less, so the density of carbides tends to increase, the strength tends to increase, and workability may be reduced. In addition, the manufacturing method includes two-stage cooling, such as cooling to 500 to 700 ° C. at a cooling rate of 20 to 50 ° C./s after hot rolling and then cooling to a cooling rate of 5 to 30 ° C./s. There is a problem that it is difficult to manage the cooling control because of the control.
 特許文献2の技術でも、熱間圧延後、冷却速度20℃/s以上で650℃以下になるまで冷却後、20℃/s以下で冷却するという、2段での冷却制御を行っており、冷却制御の管理が難しいという問題があった。さらに、特許文献2の技術では、焼入れ性を向上させるため、Mnを0.5%以上添加している。Mnは、焼入れ性を向上させるものの、固溶強化により熱延鋼板自体の強度を上昇させ、硬さを大きくしてしまう。 Even in the technology of Patent Document 2, after the hot rolling, cooling is performed in two stages of cooling at a cooling rate of 20 ° C./s or more until 650 ° C. or less, and then cooling at 20 ° C./s or less. There was a problem that it was difficult to manage the cooling control. Furthermore, in the technique of Patent Document 2, 0.5% or more of Mn is added to improve the hardenability. Although Mn improves hardenability, it increases the strength of the hot-rolled steel sheet itself by solid solution strengthening and increases the hardness.
 一方、微量の添加で焼入れ性を向上させる元素として、Bが知られているが、特許文献2にも記載されるように、一般に雰囲気ガスとして使用されている窒素を主体とする雰囲気中で焼鈍すると、固溶Bが減少してBによる焼入れ性の向上効果を得られないという問題があった。特許文献2では、このような問題に対して、95%以上の水素を含む雰囲気、もしくは該水素をAr等の不活性ガスに置き換えた雰囲気中で焼鈍することで解決しており、これらのガスを用いた熱処理はコストが高くなる。また、この技術のみでは、窒素雰囲気での焼鈍で、吸窒を抑制できるかどうかは不明である。 On the other hand, B is known as an element that improves hardenability by adding a small amount. However, as described in Patent Document 2, annealing is performed in an atmosphere mainly composed of nitrogen, which is generally used as an atmospheric gas. Then, there was a problem that the solid solution B decreased and the effect of improving the hardenability by B could not be obtained. In Patent Document 2, such a problem is solved by annealing in an atmosphere containing 95% or more of hydrogen or an atmosphere in which the hydrogen is replaced with an inert gas such as Ar. The cost of heat treatment using is increased. Moreover, it is unclear whether this technique alone can suppress nitrogen absorption by annealing in a nitrogen atmosphere.
 本発明は、上記した問題を解決するために、Mn含有量を従来の鋼よりも少なくしてBを添加した鋼を素材とし、窒素雰囲気中で焼鈍を行っても、安定して優れた焼入れ性が得られ、かつ、焼入れ処理前に、硬さがHRBで73以下、全伸びが39%以上といった優れた加工性を有する高炭素熱延鋼板およびその製造方法を提供することを目的とする。 In order to solve the above-mentioned problems, the present invention uses a steel with a Mn content lower than that of conventional steel and added with B, and even if annealing is performed in a nitrogen atmosphere, excellent quenching can be achieved. It is an object of the present invention to provide a high carbon hot-rolled steel sheet having excellent workability such that the hardness is 73 or less in HRB and the total elongation is 39% or more before quenching, and a method for producing the same. .
 本発明者らは、Mn含有量を0.50%以下と従来の鋼よりも少ないMn量とし、Bを添加した高炭素熱延鋼板の製造条件と加工性、焼入れ性との関係について鋭意検討した結果、以下の知見を得た。
i)焼入れ前の高炭素熱延鋼板の硬さ、全伸び(以下、単に伸びともいう)には、フェライト粒内のセメンタイト密度が大きく影響し、HRBで73以下の硬さ、39%以上の全伸び(El)を得るためには、フェライト粒内のセメンタイト密度を0.08個/μm以下とする必要がある。
ii)フェライト粒内のセメンタイト密度には、熱間圧延の仕上げ圧延における仕上げ圧延温度と仕上げ圧延後から700℃までの冷却速度が大きく影響する。仕上げ圧延温度が高すぎたり、冷却速度が小さすぎたりすると、熱間圧延後の鋼板において、パーライトと所定の初析フェライト体積分率を有する組織を有する鋼板を得ることができず、球状化焼鈍後にセメンタイト密度を小さくすることが困難となる。
iii)Sb、Sn、Bi、Ge、Te、Seの少なくとも1種を鋼中に添加することで、窒素雰囲気で焼鈍を施す場合でも、浸窒を防止し、固溶B量の低下を抑制して高い焼入れ性が得られる。
The inventors of the present invention made an intensive study on the relationship between the manufacturing conditions, workability, and hardenability of high carbon hot-rolled steel sheets containing B, with a Mn content of 0.50% or less and a lower Mn content than conventional steel. As a result, the following knowledge was obtained.
i) The hardness and total elongation (hereinafter also simply referred to as elongation) of the high carbon hot-rolled steel sheet before quenching are greatly affected by the cementite density in the ferrite grains, with a hardness of 73 or less in HRB and 39% or more. In order to obtain the total elongation (El), the cementite density in the ferrite grains needs to be 0.08 pieces / μm 2 or less.
ii) The cementite density in the ferrite grains is greatly affected by the finish rolling temperature in the hot rolling finish rolling and the cooling rate from 700 to 700 ° C. after the finish rolling. If the finish rolling temperature is too high or the cooling rate is too low, in the steel sheet after hot rolling, a steel sheet having a structure with pearlite and a predetermined proeutectoid ferrite volume fraction cannot be obtained, and spheroidizing annealing is performed. It becomes difficult to reduce the cementite density later.
iii) By adding at least one of Sb, Sn, Bi, Ge, Te, and Se to the steel, even when annealing is performed in a nitrogen atmosphere, nitriding is prevented and a decrease in the amount of dissolved B is suppressed. High hardenability.
 本発明はこのような知見に基づいてなされたものであり、以下を要旨とする。 The present invention has been made on the basis of such knowledge, and the gist thereof is as follows.
 [1]質量%で、C:0.20~0.40%、Si:0.10%以下、Mn:0.50%以下、P:0.03%以下、S:0.010%以下、sol.Al:0.10%以下、N:0.0050%以下、B:0.0005~0.0050%を含有し、さらにSb、Sn、Bi、Ge、Te、Seのうち1種以上を合計で0.002~0.030%含有し、残部がFeおよび不可避的不純物からなる組成を有し、B含有量に占める固溶B量の割合が70%以上であり、フェライトとセメンタイトからなり、前記フェライト粒内のセメンタイト密度が0.08個/μm以下であるミクロ組織を有し、硬さがHRBで73以下、全伸びが39%以上である高炭素熱延鋼板。 [1] By mass%, C: 0.20 to 0.40%, Si: 0.10% or less, Mn: 0.50% or less, P: 0.03% or less, S: 0.010% or less, sol. Al: 0.10% or less, N: 0.0050% or less, B: 0.0005 to 0.0050%, and one or more of Sb, Sn, Bi, Ge, Te, Se in total 0.002 to 0.030% content, the balance is composed of Fe and inevitable impurities, the proportion of the solid solution B content in the B content is 70% or more, and consists of ferrite and cementite, A high carbon hot-rolled steel sheet having a microstructure with a cementite density of 0.08 pieces / μm 2 or less in ferrite grains, a hardness of 73 or less in HRB, and a total elongation of 39% or more.
 [2]さらに、質量%で、Ni、Cr、Moのうち1種以上を合計で0.50%以下含有する前記[1]に記載の高炭素熱延鋼板。 [2] The high-carbon hot-rolled steel sheet according to [1], further containing, by mass%, one or more of Ni, Cr, and Mo in a total amount of 0.50% or less.
 [3]前記フェライトとセメンタイトからなる組織における全セメンタイトの平均径が0.60μm以上1.00μm以下であり、フェライト粒内のセメンタイトの平均径が0.40μm以上である前記[1]または[2]に記載の高炭素熱延鋼板。 [3] The above [1] or [2] wherein the average diameter of all cementite in the structure composed of ferrite and cementite is 0.60 μm or more and 1.00 μm or less, and the average diameter of cementite in the ferrite grains is 0.40 μm or more. ] The high carbon hot-rolled steel sheet described in any one of the above.
 [4]質量%で、C:0.20~0.40%、Si:0.10%以下、Mn:0.50%以下、P:0.03%以下、S:0.010%以下、sol.Al:0.10%以下、N:0.0050%以下、B:0.0005~0.0050%を含有し、さらにSb、Sn、Bi、Ge、Te、Seのうち1種以上を合計で0.002~0.030%含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼を、熱間粗圧延後、仕上げ圧延温度:Ar変態点以上870℃以下で仕上げ圧延し、700℃までを25℃/s以上150℃/s以下の平均冷却速度で冷却し、巻取温度:500℃以上700℃以下で巻き取ることにより、パーライトと体積率で5%以上の初析フェライトを有する鋼板とし、次いで、該鋼板をAc変態点以下で焼鈍する高炭素熱延鋼板の製造方法。 [4] By mass%, C: 0.20 to 0.40%, Si: 0.10% or less, Mn: 0.50% or less, P: 0.03% or less, S: 0.010% or less, sol. Al: 0.10% or less, N: 0.0050% or less, B: 0.0005 to 0.0050%, and one or more of Sb, Sn, Bi, Ge, Te, Se in total A steel containing 0.002 to 0.030% and the balance being composed of Fe and inevitable impurities, after hot rough rolling, finish rolling at finish rolling temperature: Ar 3 transformation point or more and 870 ° C. or less, 700 Is cooled at an average cooling rate of 25 ° C./s or more and 150 ° C./s or less, and coiled at a winding temperature of 500 ° C. or more and 700 ° C. or less, so that pearlite and pro-eutectoid ferrite with a volume ratio of 5% or more can be obtained. A method for producing a high carbon hot-rolled steel sheet, in which the steel sheet is annealed below the Ac 1 transformation point.
 [5]前記鋼が、さらに、質量%で、Ni、Cr、Moのうち1種以上を合計で0.50%以下含有する前記[4]に記載の高炭素熱延鋼板の製造方法。 [5] The method for producing a high carbon hot-rolled steel sheet according to the above [4], wherein the steel further contains, in mass%, one or more of Ni, Cr, and Mo in a total amount of 0.50% or less.
 本発明により焼入れ性および加工性に優れた高炭素熱延鋼板を製造できるようになった。本発明の高炭素熱延鋼板は、素材鋼板に冷間加工性が必要とされる、ギア類、トランスミッション部品、シートリクライナー部品などの自動車用部品に好適である。 According to the present invention, a high carbon hot rolled steel sheet having excellent hardenability and workability can be produced. The high carbon hot-rolled steel sheet of the present invention is suitable for automotive parts such as gears, transmission parts, and seat recliner parts, which require cold workability for the raw steel sheet.
 以下に、本発明である高炭素熱延鋼板およびその製造方法について詳細に説明する。なお、成分の含有量の単位である「%」は特に断らない限り「質量%」を意味するものとする。 Hereinafter, the high carbon hot-rolled steel sheet and the manufacturing method thereof according to the present invention will be described in detail. Note that “%”, which is a unit of component content, means “% by mass” unless otherwise specified.
 1)組成
 C:0.20~0.40%
 Cは、焼入れ後の強度を得るために重要な元素である。C含有量が0.20%未満の場合、部品に成形した後の熱処理によって所望の硬さ、具体的には水焼入れ後の硬さでHV440以上が得られない。このため、C含有量を0.20%以上にする必要がある。一方、C含有量が0.40%を超えると鋼板が硬質化し、冷間加工性が劣化する。よって、C含有量を0.40%以下とする。高い焼入れ硬さを得るには、C含有量を0.26%以上とすることが好ましい。C含有量を0.32%以上とすることで、安定して水焼入れ硬さでHV440以上を得ることができるため、さらに好ましい。
1) Composition C: 0.20 to 0.40%
C is an important element for obtaining strength after quenching. When the C content is less than 0.20%, HV440 or more cannot be obtained with the desired hardness, specifically the hardness after water quenching, by heat treatment after forming into a part. For this reason, C content needs to be 0.20% or more. On the other hand, if the C content exceeds 0.40%, the steel sheet becomes hard and cold workability deteriorates. Therefore, the C content is set to 0.40% or less. In order to obtain high quenching hardness, the C content is preferably 0.26% or more. By setting the C content to 0.32% or more, HV440 or more can be stably obtained with water quenching hardness, which is more preferable.
 Si:0.10%以下
 Siは固溶強化により強度を上昇させる元素である。Si含有量の増加とともに硬質化し、冷間加工性が劣化するため、Si含有量を0.10%以下とする。好ましくは、Si含有量は0.05%以下であり、より好ましくは0.03%以下である。Siは冷間加工性を低下させるため、Si含有量は少ないほど好ましいが、過度にSiを低減すると精錬コストが増大するため、Si含有量は0.005%以上が好ましい。
Si: 0.10% or less Si is an element that increases the strength by solid solution strengthening. As the Si content increases, it hardens and the cold workability deteriorates, so the Si content is made 0.10% or less. Preferably, the Si content is 0.05% or less, more preferably 0.03% or less. Since Si lowers the cold workability, the lower the Si content, the better. However, since excessively reducing Si increases the refining cost, the Si content is preferably 0.005% or more.
 Mn:0.50%以下
 Mnは焼入れ性を向上させる元素であるが、一方、固溶強化により強度を上昇させる元素でもある。Mn含有量が0.50%を超えると、鋼板が硬質化しすぎて冷間加工性が低下する。またMnの偏析に起因したバンド組織が発達し、組織が不均一になるため、硬さや伸びのばらつきが大きくなる傾向にある。したがって、Mn含有量を0.50%以下とする。好ましくは、Mn含有量は0.45%以下であり、より好ましくは0.40%以下である。なお、下限はとくに指定しないが、グラファイトの析出を抑制し、焼入れ処理加熱時に鋼板中の全Cを固溶して所定の焼入れ硬さを得るためには、Mn含有量を0.20%以上とすることが好ましい。
Mn: 0.50% or less Although Mn is an element that improves hardenability, it is also an element that increases strength by solid solution strengthening. If the Mn content exceeds 0.50%, the steel sheet becomes too hard and cold workability is lowered. In addition, since a band structure due to segregation of Mn develops and the structure becomes non-uniform, variations in hardness and elongation tend to increase. Therefore, the Mn content is 0.50% or less. Preferably, the Mn content is 0.45% or less, more preferably 0.40% or less. Although the lower limit is not specified, in order to suppress the precipitation of graphite and obtain a predetermined quenching hardness by solid solution of all C in the steel sheet during quenching heating, the Mn content is 0.20% or more. It is preferable that
 P:0.03%以下
 Pは固溶強化により強度を上昇させる元素である。P含有量が0.03%を超えると、鋼板が硬質化しすぎて冷間加工性が低下する。また、粒界の強度を低くするので、焼入れ後の靭性が劣化する。したがって、P含有量を0.03%以下とする。優れた焼入れ後の靭性を得るには、P含有量を0.02%以下とすることが好ましい。Pは冷間加工性および焼入れ後の靭性を低下させるため、P含有量は少ないほど好ましいが、必要以上にPを低減させると精錬コストが増大するため、P含有量は0.005%以上が好ましい。
P: 0.03% or less P is an element that increases the strength by solid solution strengthening. If the P content exceeds 0.03%, the steel sheet becomes too hard and cold workability is reduced. Moreover, since the strength of the grain boundary is lowered, the toughness after quenching deteriorates. Therefore, the P content is 0.03% or less. In order to obtain excellent toughness after quenching, the P content is preferably 0.02% or less. P decreases the cold workability and toughness after quenching, so the lower the P content, the better. However, if P is reduced more than necessary, the refining cost increases, so the P content is 0.005% or more. preferable.
 S:0.010%以下
 Sは硫化物を形成し、高炭素熱延鋼板の冷間加工性および焼入れ後の靭性を低下させるため、低減しなければならない元素である。S含有量が0.010%を超えると、高炭素熱延鋼板の冷間加工性および焼入れ後の靭性が著しく劣化する。したがって、S含有量を0.010%以下とする。優れた冷間加工性および焼入れ後の靭性を得るには、S含有量は0.005%以下が好ましい。Sは冷間加工性および焼入れ後の靭性を低下させるため、S含有量は少ないほど好ましいが、必要以上にSを低減させると精錬コストが増大するため、S含有量は0.0005%以上が好ましい。
S: 0.010% or less S is an element that has to be reduced in order to form sulfides and to reduce the cold workability of the high carbon hot-rolled steel sheet and the toughness after quenching. If the S content exceeds 0.010%, the cold workability and the toughness after quenching of the high carbon hot-rolled steel sheet are significantly deteriorated. Therefore, the S content is set to 0.010% or less. In order to obtain excellent cold workability and toughness after quenching, the S content is preferably 0.005% or less. Since S decreases cold workability and toughness after quenching, the S content is preferably as low as possible. However, if S is reduced more than necessary, the refining cost increases, so the S content is 0.0005% or more. preferable.
 sol.Al:0.10%以下
 sol.Al含有量が0.10%を超えると、焼入れ処理の加熱時にAlNが生成してオーステナイト粒が微細化し過ぎ、冷却時にフェライト相の生成が促進され、組織がフェライトとマルテンサイトとなり、焼入れ後の硬さが低下する。したがって、sol.Al含有量を0.10%以下とする。好ましくは、sol.Al含有量は0.06%以下である。なお、Alは脱酸の効果を有しており、十分に脱酸するためには、sol.Al含有量を0.005%以上とすることが好ましい。
sol. Al: 0.10% or less sol. When the Al content exceeds 0.10%, AlN is generated during the heating of the quenching process, the austenite grains are excessively refined, the generation of the ferrite phase is promoted during cooling, the structure becomes ferrite and martensite, and after the quenching Hardness decreases. Therefore, sol. Al content shall be 0.10% or less. Preferably, sol. Al content is 0.06% or less. Note that Al has a deoxidizing effect, and in order to sufficiently deoxidize, sol. The Al content is preferably 0.005% or more.
 N:0.0050%以下
 N含有量が0.0050%を超えると、BNが必要以上に形成されることにより固溶B量が低下する。また、必要以上のBN、AlNの形成により焼入れ処理の加熱時にオーステナイト粒が微細化し過ぎ、冷却時にフェライト相の生成が促進されるため、焼入れ後の硬さが低下する。したがって、N含有量を0.0050%以下とする。好ましくは、N含有量は0.0045%以下である。なお、下限はとくに規定しないが、上記したように、NはBN、AlNを形成する。BN、AlNが適正量形成されれば、これらの窒化物が焼入れ処理の加熱時にオーステナイト粒の粗大化を適度に抑制し、焼入れ後の靭性を向上させるため、N含有量は0.0005%以上が好ましい。
N: 0.0050% or less When the N content exceeds 0.0050%, BN is formed more than necessary, so that the amount of dissolved B decreases. In addition, the formation of BN and AlN more than necessary causes the austenite grains to become too fine during heating in the quenching process, and the formation of a ferrite phase is promoted during cooling, so the hardness after quenching decreases. Therefore, the N content is 0.0050% or less. Preferably, the N content is 0.0045% or less. The lower limit is not particularly defined, but N forms BN and AlN as described above. If appropriate amounts of BN and AlN are formed, these nitrides moderately suppress austenite grain coarsening during heating in the quenching process and improve toughness after quenching, so the N content is 0.0005% or more. Is preferred.
 B:0.0005~0.0050%
 Bは焼入れ性を高める重要な元素である。本発明の熱間圧延における仕上げ圧延後の冷却速度の条件のもとでは、B含有量が0.0005%未満の場合、フェライト変態を遅延させる固溶B量が不足するため、十分な焼入れ性向上効果が得られない。よって、B含有量を0.0005%以上とする必要があり、0.0010%以上とすることが好ましい。一方、B含有量が0.0050%超えの場合、仕上げ圧延後のオーステナイトの再結晶が遅延する。この結果、熱延鋼板の圧延集合組織が発達し、焼鈍後の鋼板の機械特性値の面内異方性が大きくなる。これにより、絞り成形において耳が発生しやすくなり、また真円度が低下して、成形時に不具合を引き起こしやすくなる。このため、B含有量を0.0050%以下とする必要がある。焼入れ性を向上させ、また、異方性を小さくする観点から、好ましくは、B含有量は0.0035%以下である。したがって、B含有量を0.0005~0.0050%とする。より好ましくは、B含有量は0.0010~0.0035%である。
B: 0.0005 to 0.0050%
B is an important element that enhances hardenability. Under the condition of the cooling rate after finish rolling in the hot rolling of the present invention, when the B content is less than 0.0005%, the amount of solid solution B that delays the ferrite transformation is insufficient, so that sufficient hardenability is achieved. Improvement effect cannot be obtained. Therefore, the B content needs to be 0.0005% or more, and is preferably 0.0010% or more. On the other hand, when the B content exceeds 0.0050%, the recrystallization of austenite after finish rolling is delayed. As a result, the rolling texture of the hot-rolled steel sheet develops and the in-plane anisotropy of the mechanical property value of the steel sheet after annealing increases. As a result, ears are liable to occur in the drawing, and the roundness is lowered, which tends to cause problems during molding. For this reason, it is necessary to make B content 0.0050% or less. From the viewpoint of improving hardenability and reducing anisotropy, the B content is preferably 0.0035% or less. Therefore, the B content is set to 0.0005 to 0.0050%. More preferably, the B content is 0.0010 to 0.0035%.
 B含有量に占める固溶B量の割合が70%以上
 本発明では、前記したB含有量の適正化に加えて、焼入れ性向上に寄与する固溶B量の制御が重要である。鋼板中に含有されるBのうち固溶状態にあるBが70%以上、すなわち、鋼板中の全B含有量(B含有量)に占める固溶B量の割合が70%以上の場合に、本発明で意図する優れた焼入れ性が得られる。よって、B含有量に占める固溶B量の割合を70%以上とする。好ましくは、B含有量に占める固溶B量の割合は75%以上である。なお、B含有量に占める固溶B量の割合とは、{(固溶B量(質量%))/(全B含有量(質量%))}×100(%)をいう。
In the present invention, in addition to the above-described optimization of the B content, it is important to control the amount of the solid solution B that contributes to improving the hardenability. When B contained in the steel plate is in a solid solution state of 70% or more, that is, when the ratio of the solid solution B content in the total B content (B content) in the steel plate is 70% or more, The excellent hardenability intended by the present invention is obtained. Therefore, the ratio of the solid solution B amount in the B content is set to 70% or more. Preferably, the ratio of the solid solution B content to the B content is 75% or more. In addition, the ratio of the solid solution B amount in the B content means {(solid solution B amount (mass%)) / (total B content (mass%))} × 100 (%).
 Sb、Sn、Bi、Ge、Te、Seのうち1種以上を合計で0.002~0.030%
 Sb、Sn、Bi、Ge、Te、Seは、いずれも、鋼板表面からの浸窒抑制の効果を有する元素であり、本発明では、Sb、Sn、Bi、Ge、Te、Seのうち1種以上を含有させる必要がある。また、これら元素の含有量の合計が0.002%未満の場合、十分な浸窒抑制効果が認められない。このため、Sb、Sn、Bi、Ge、Te、Seのうち1種以上を合計で0.002%以上含有させる。好ましくは、Sb、Sn、Bi、Ge、Te、Seの含有量の合計は0.005%以上である。一方、これらの元素の含有量が合計で0.030%を超えても、浸窒抑制効果は飽和する。また、これらの元素は粒界に偏析する傾向があるため、これらの元素の含有量が合計で0.030%を超えると、粒界脆化を引き起こす可能性がある。このため、本発明では、Sb、Sn、Bi、Ge、Te、Seのうち1種以上を合計で0.030%以下含有させる。Sb、Sn、Bi、Ge、Te、Seの含有量は、好ましくは合計で0.020%以下である。
0.002 to 0.030% in total of one or more of Sb, Sn, Bi, Ge, Te, Se
Sb, Sn, Bi, Ge, Te, Se are all elements that have an effect of suppressing nitriding from the steel sheet surface. In the present invention, one of Sb, Sn, Bi, Ge, Te, Se is used. It is necessary to contain the above. Further, when the total content of these elements is less than 0.002%, a sufficient nitriding suppression effect is not recognized. For this reason, one or more of Sb, Sn, Bi, Ge, Te and Se are contained in a total amount of 0.002% or more. Preferably, the total content of Sb, Sn, Bi, Ge, Te, Se is 0.005% or more. On the other hand, even if the content of these elements exceeds 0.030% in total, the nitriding suppression effect is saturated. Moreover, since these elements tend to segregate at the grain boundaries, if the total content of these elements exceeds 0.030%, grain boundary embrittlement may occur. For this reason, in the present invention, one or more of Sb, Sn, Bi, Ge, Te, and Se are contained in a total amount of 0.030% or less. The contents of Sb, Sn, Bi, Ge, Te and Se are preferably 0.020% or less in total.
 上記のように、N含有量を0.0050%以下にすると共に、Sb、Sn、Bi、Ge、Te、Seのうち1種以上を合計で0.002~0.030%含有させることで、窒素雰囲気で焼鈍した場合でも鋼板表面からの浸窒を抑制し、鋼板表層における窒素濃度の増加を抑制して、鋼板表面から板厚方向に150μm深さの範囲に含有される平均窒素量と、鋼板全体に含有される平均窒素量との差を30質量ppm以下とすることができる。また、このように浸窒を抑制できるため、窒素雰囲気で焼鈍した場合であっても、焼鈍後の鋼板中において、B含有量に占める固溶B量の割合を70%以上とすることができる。 As described above, the N content is 0.0050% or less, and at least one of Sb, Sn, Bi, Ge, Te, and Se is contained by 0.002 to 0.030% in total. Even when annealed in a nitrogen atmosphere, the nitriding from the steel sheet surface is suppressed, the increase in the nitrogen concentration in the steel sheet surface layer is suppressed, and the average amount of nitrogen contained in the range of 150 μm depth from the steel sheet surface in the sheet thickness direction, The difference from the average amount of nitrogen contained in the entire steel sheet can be 30 ppm by mass or less. Moreover, since nitriding can be suppressed in this way, even in the case of annealing in a nitrogen atmosphere, the ratio of the solid solution B content in the B content in the steel sheet after annealing can be 70% or more. .
 鋼板表面から板厚方向に150μm深さの範囲に含有される平均窒素量と、鋼板全体に含有される平均窒素量との差が30質量ppmを超えて大きくなると、鋼板表層部に形成されるBN、AlN量と、鋼板板厚中心付近に形成されるBN、AlN量との差が大きくなる。その場合、焼入れ処理後に均一な硬さが得られなくなるなどの不具合が発生する。したがって、鋼板表面から板厚方向に150μm深さの範囲に含有される平均窒素量と、鋼板全体に含有される平均窒素量との差を30質量ppm以下に抑える必要がある。 When the difference between the average nitrogen content contained in the range of 150 μm depth from the steel sheet surface in the thickness direction and the average nitrogen content contained in the whole steel sheet exceeds 30 mass ppm, it is formed in the steel sheet surface layer portion. The difference between the amount of BN and AlN and the amount of BN and AlN formed near the center of the steel plate thickness increases. In that case, troubles such as the inability to obtain uniform hardness after quenching occur. Therefore, it is necessary to suppress the difference between the average nitrogen content contained in the range of 150 μm depth from the steel plate surface to the plate thickness direction and the average nitrogen content contained in the whole steel plate to 30 mass ppm or less.
 上記以外の残部はFeおよび不可避的不純物とするが、焼入れ性のさらなる向上のために、Ni、Cr、Moのうち1種以上を含有させてもよい。このような効果を得る上では、Ni、Cr、Moのうち1種以上を含有させ、その含有量の合計を0.01%以上とすることが好ましい。一方、これら元素は高価であるため、Ni、Cr、Moのうち1種以上を含有させる場合、その含有量の合計は0.50%以下とする必要がある。好ましくは、これら元素の含有量は合計で0.20%以下である。 The remainder other than the above is Fe and inevitable impurities, but in order to further improve the hardenability, one or more of Ni, Cr, and Mo may be contained. In order to obtain such an effect, it is preferable that at least one of Ni, Cr, and Mo is contained and the total content is 0.01% or more. On the other hand, since these elements are expensive, when one or more of Ni, Cr, and Mo are contained, the total content needs to be 0.50% or less. Preferably, the content of these elements is 0.20% or less in total.
 2)ミクロ組織
 本発明では、冷間加工性を向上させるため、熱間圧延後にセメンタイトを球状化させる焼鈍(球状化焼鈍)を行い、フェライトとセメンタイトからなるミクロ組織とする必要がある。なお、球状化とはアスペクト比(長径/短径)≦3のセメンタイトが全セメンタイトに対して体積率で90%以上を占める状態を表す。特にロックウェル硬さがHRBで73以下、全伸びを39%以上とするには、フェライト粒内のセメンタイト密度を0.08個/μm以下とする必要がある。以下では、セメンタイト密度は、セメンタイト粒の個数密度とも記す。
2) Microstructure In the present invention, in order to improve cold workability, it is necessary to perform annealing (spheroidizing annealing) to spheroidize cementite after hot rolling to obtain a microstructure composed of ferrite and cementite. Note that spheroidization refers to a state in which cementite having an aspect ratio (major axis / minor axis) ≦ 3 occupies 90% or more by volume with respect to the total cementite. In particular, in order that the Rockwell hardness is 73 or less in HRB and the total elongation is 39% or more, the cementite density in the ferrite grains needs to be 0.08 pieces / μm 2 or less. Hereinafter, the cementite density is also referred to as the number density of cementite grains.
 フェライト粒内のセメンタイト粒の個数密度:0.08個/μm以下
 本発明の鋼板は、フェライトとセメンタイトからなる。フェライト粒内のセメンタイト粒の個数密度が高いと分散強化により硬質化し、伸びが低下する。硬さを所定の値以下とし、伸びを所定の値以上とするために、フェライト粒内のセメンタイト粒の個数密度を0.08個/μm以下とする必要がある。フェライト粒内のセメンタイト粒の個数密度は、好ましくは0.07個/μm以下であり、さらに好ましくは0.06個/μm以下である。フェライト粒内に存在するセメンタイト径は長径で0.15~1.8μm程度であり、鋼板の析出強化に若干効果を及ぼすサイズであるため、フェライト粒内のセメンタイト粒の個数密度を低下させることで強度低下を図ることができる。フェライト粒界のセメンタイトは分散強化にほとんど寄与しないので、フェライト粒内のセメンタイト粒の個数密度を0.08個/μm以下と規定する。なお、上記したフェライトとセメンタイト以外に、不可避的にパーライトなどの残部組織が生成しても、残部組織の合計の体積率が5%程度以下であれば、本発明の効果を損ねるものではないため、含有されていてもかまわない。
Number density of cementite grains in ferrite grains: 0.08 / μm 2 or less The steel sheet of the present invention comprises ferrite and cementite. If the number density of cementite grains in the ferrite grains is high, it becomes hard due to dispersion strengthening and the elongation decreases. In order to set the hardness to a predetermined value or less and the elongation to a predetermined value or more, the number density of cementite grains in the ferrite grains needs to be set to 0.08 particles / μm 2 or less. The number density of cementite grains in the ferrite grains is preferably 0.07 / μm 2 or less, and more preferably 0.06 / μm 2 or less. The cementite diameter present in the ferrite grains is about 0.15 to 1.8 μm in the major axis, and is a size that has a slight effect on the precipitation strengthening of the steel sheet. Therefore, by reducing the number density of the cementite grains in the ferrite grains The strength can be reduced. Since cementite at the ferrite grain boundary hardly contributes to dispersion strengthening, the number density of cementite grains in the ferrite grain is defined as 0.08 / μm 2 or less. In addition to the above ferrite and cementite, even if the remaining structure such as pearlite is inevitably generated, the effect of the present invention is not impaired as long as the total volume ratio of the remaining structure is about 5% or less. , It may be contained.
 全セメンタイトの平均径:0.60μm以上1.00μm以下およびフェライト粒内のセメンタイトの平均径:0.40μm以上
 フェライト粒内のセメンタイトの平均径が0.40μm未満となる鋼板はフェライト粒内のセメンタイト粒の個数密度が多くなるため焼鈍後の鋼板の硬さが上昇する場合がある。硬さを所望の値以下にするために、フェライト粒内のセメンタイトの平均径は0.40μm以上とすることが好ましい。より好ましくは、フェライト粒内のセメンタイトの平均径は0.45μm以上である。
Average diameter of all cementite: 0.60 μm or more and 1.00 μm or less and average diameter of cementite in ferrite grains: 0.40 μm or more Steel sheets whose average diameter of cementite in ferrite grains is less than 0.40 μm are cementite in ferrite grains Since the number density of grains increases, the hardness of the steel sheet after annealing may increase. In order to make the hardness below a desired value, the average diameter of cementite in the ferrite grains is preferably 0.40 μm or more. More preferably, the average diameter of cementite in the ferrite grains is 0.45 μm or more.
 フェライト粒界のセメンタイトはフェライト粒内のセメンタイトに比べて粗大化しやすく、フェライト粒内のセメンタイトの平均径を0.40μm以上にするためには、全体のセメンタイトの平均径を0.60μm以上とする必要がある。好ましくは、全セメンタイトの平均径は0.65μm以上である。一方、全セメンタイトの平均径が1.00μm超えになると、高周波焼入れ処理のような短時間での加熱時にセメンタイトが溶けきれず、硬さを所望の値以下にすることができない場合があるため、全セメンタイトの平均径を1.00μm以下とすることが好ましい。より好ましくは、全セメンタイトの平均径は0.95μm以下である。上記のセメンタイトの平均径は、ミクロ組織をSEMにより観察し、セメンタイト粒の長径と短径を測定し、全セメンタイトの平均径およびフェライト粒内のセメンタイトの平均径を測定することができる。 The cementite at the ferrite grain boundary tends to be coarser than the cementite in the ferrite grain, and in order to make the average diameter of the cementite in the ferrite grain 0.40 μm or more, the average diameter of the entire cementite is 0.60 μm or more. There is a need. Preferably, the average diameter of all cementite is 0.65 μm or more. On the other hand, if the average diameter of all cementite exceeds 1.00 μm, the cementite may not be melted during heating in a short time such as induction hardening, and the hardness may not be less than the desired value. The average diameter of all cementite is preferably 1.00 μm or less. More preferably, the average diameter of all cementite is 0.95 μm or less. The average diameter of the cementite can be determined by observing the microstructure by SEM, measuring the long diameter and short diameter of the cementite grains, and measuring the average diameter of all cementite and the average diameter of cementite in the ferrite grains.
 なお、フェライトの粒径が粗大になりすぎると、硬さは低下するものの、伸びの向上が飽和する場合があるため、前記フェライトとセメンタイトからなる組織におけるフェライトの平均粒径は12μm以下とすることが好ましく、9μm以下がより好ましい。一方、フェライトの平均粒径が6μm未満となると、鋼板が硬質化する場合があるため、フェライトの平均粒径は6μm以上が好ましい。上記のフェライトの粒径は、ミクロ組織をSEMにより観察し、測定することができる。 If the ferrite grain size becomes too coarse, the hardness decreases, but the improvement in elongation may be saturated. Therefore, the average grain size of ferrite in the structure composed of ferrite and cementite should be 12 μm or less. Is preferable, and 9 μm or less is more preferable. On the other hand, if the average particle diameter of ferrite is less than 6 μm, the steel sheet may be hardened, so the average particle diameter of ferrite is preferably 6 μm or more. The particle size of the ferrite can be measured by observing the microstructure with an SEM.
 3)機械特性
 本発明の鋼板では、ギア類、トランスミッション部品、シートリクライナー部品などの自動車用部品を冷間プレスで成形するため、優れた加工性が必要である。また、焼入れ処理により硬さを大きくして、部品に耐磨耗性を付与する必要がある。そのためには、焼入れ性を向上させることに加えて、鋼板の硬さを小さくしてHRB73以下とし、伸びを大きくして全伸び(El)を39%以上とする必要がある。鋼板の硬さは、低いほど加工性の観点から望ましいが、部分的に焼入れする部品もあり、原板の強度が疲労特性に影響する場合がある。このため、鋼板の硬さはHRB60超えが好ましい。なお、上記のHRBは、ロックウェル硬度計(Bスケール)を用いて測定することができる。また、全伸びは、圧延方向に対して0°の方向(L方向)に切り出したJIS5号引張試験片を用いて、島津製作所AG10TB AG/XRの引張試験機にて10mm/分で引張試験を行い、破断したサンプルを突き合わせて測定することができる。
3) Mechanical properties The steel sheet of the present invention requires excellent workability in order to form automotive parts such as gears, transmission parts, and sheet recliner parts by cold pressing. In addition, it is necessary to increase the hardness by quenching to impart wear resistance to the parts. For that purpose, in addition to improving hardenability, it is necessary to reduce the hardness of the steel sheet to HRB 73 or less and increase the elongation to make the total elongation (El) 39% or more. The lower the hardness of the steel sheet, the better from the viewpoint of workability, but there are parts that are partially quenched, and the strength of the original sheet may affect the fatigue characteristics. For this reason, as for the hardness of a steel plate, HRB60 excess is preferable. In addition, said HRB can be measured using a Rockwell hardness meter (B scale). The total elongation is 10 mm / min with a tensile tester of Shimadzu AG10TB AG / XR using a JIS No. 5 tensile test piece cut in a direction of 0 ° (L direction) with respect to the rolling direction. It can be done by measuring the broken sample.
 4)製造条件
 本発明の高炭素熱延鋼板は、上記した組成の鋼を素材とし、熱間粗圧延後に仕上げ圧延温度:Ar変態点以上870℃以下で仕上げ圧延を施す熱間圧延により所望の板厚とし、仕上げ圧延後、700℃までを25℃/s以上150℃/s以下の平均冷却速度で冷却し、巻取温度:500℃以上700℃以下で巻き取り、パーライトと体積率で5%以上の初析フェライトを有する鋼板とし、次いでAc変態点以下で球状化焼鈍を施して製造される。なお、仕上げ圧延における圧下率は85%以上とすることが好ましい。
4) Manufacturing conditions The high carbon hot-rolled steel sheet of the present invention is made of steel having the above composition, and is desired by hot rolling after hot rough rolling and finish rolling at a finish rolling temperature of Ar 3 transformation point or higher and 870 ° C. or lower. After finishing rolling, the steel sheet is cooled to 700 ° C. at an average cooling rate of 25 ° C./s to 150 ° C./s, and the winding temperature is 500 ° C. to 700 ° C. A steel sheet having 5% or more pro-eutectoid ferrite is produced, and then subjected to spheroidizing annealing at an Ac 1 transformation point or less. In addition, it is preferable that the rolling reduction in finish rolling shall be 85% or more.
 以下、本発明の高炭素熱延鋼板の製造方法における限定理由について説明する。 Hereinafter, the reasons for limitation in the method for producing a high carbon hot-rolled steel sheet of the present invention will be described.
 仕上げ圧延温度:Ar変態点以上870℃以下
 焼鈍後にフェライト粒内のセメンタイト粒の個数密度を0.08個/μm以下とするには、パーライトと体積率で5%以上の初析フェライトを有するミクロ組織の熱延鋼板に球状化焼鈍を施す必要がある。熱間粗圧延後に仕上げ圧延を施す熱間圧延において、仕上げ圧延温度が870℃を超えて高くなると、初析フェライトの割合が小さくなり、球状化焼鈍後所定のセメンタイト粒の個数密度が得られない。また、球状化焼鈍後のセメンタイト粒径やフェライト粒径も粗大化しやすい。このため、仕上げ圧延温度は870℃以下とする。初析フェライトの割合を十分に大きくするためには、仕上げ圧延温度を850℃以下とすることが好ましい。一方、仕上げ圧延温度がAr変態点未満では、熱間圧延後および焼鈍後に粗大なフェライト粒が形成され、伸びが著しく低下する。このため、仕上げ圧延温度はAr変態点以上とする。好ましくは、仕上げ圧延温度は820℃以上である。なお、仕上げ圧延温度は鋼板の表面温度とする。
Final rolling temperature: Ar 3 transformation point or more and 870 ° C. or less In order to reduce the number density of cementite grains in the ferrite grains after annealing to 0.08 particles / μm 2 or less, pearlite and pro-eutectoid ferrite with a volume ratio of 5% or more are used. It is necessary to spheroidize the hot-rolled steel sheet having a microstructure. In hot rolling in which finish rolling is performed after hot rough rolling, when the finish rolling temperature is higher than 870 ° C., the proportion of pro-eutectoid ferrite decreases, and the number density of predetermined cementite grains cannot be obtained after spheroidizing annealing. . Moreover, the cementite particle diameter and the ferrite particle diameter after spheroidizing annealing are likely to be coarsened. For this reason, finish rolling temperature shall be 870 degrees C or less. In order to sufficiently increase the proportion of pro-eutectoid ferrite, the finish rolling temperature is preferably 850 ° C. or lower. On the other hand, if the finish rolling temperature is less than the Ar 3 transformation point, coarse ferrite grains are formed after hot rolling and after annealing, and the elongation is significantly reduced. Therefore, the finish rolling temperature and Ar 3 transformation point or more. Preferably, the finish rolling temperature is 820 ° C or higher. The finish rolling temperature is the surface temperature of the steel sheet.
 仕上げ圧延温度から700℃までの平均冷却速度:25℃/s以上150℃/s以下
 焼鈍後にフェライト粒内のセメンタイト粒の個数密度を0.08個/μm以下とするには、パーライトと、体積率で5%以上の初析フェライトを有するミクロ組織の熱延鋼板に球状化焼鈍を施す必要がある。熱間圧延における仕上げ圧延後から700℃までの温度域は、フェライトおよびパーライト変態開始温度が存在する温度域にあたるため、熱間圧延後の鋼板中の初析フェライト分率を体積率で5%以上とするには、仕上げ圧延温度から700℃までの冷却速度が重要な因子となる。仕上げ圧延後から700℃までの温度域の平均冷却速度が25℃/s未満ではフェライト変態が短時間では進行しにくく、パーライド分率が必要以上に高くなるため、体積率で5%以上の初析フェライト分率が得られない。また、粗大なパーライトが生成することによって、球状化焼鈍後に所望の鋼板組織を得にくくなる。よって、仕上げ圧延後から700℃までの温度域の平均冷却速度を25℃/s以上とする。また、球状化焼鈍後のフェライト粒内のセメンタイト粒の個数密度0.07個/μm以下を得るには、初析フェライト分率を体積率で10%以上とすることが好ましく、この場合、該平均冷却速度を30℃/s以上とすることが好ましい。より好ましくは、該平均冷却速度は40℃/s以上である。一方、該平均冷却速度が150℃/sを超えると、初析フェライトを得ることが難しくなるため、仕上げ圧延後から700℃までの平均冷却速度は150℃/s以下とする。好ましくは、該平均冷却速度は、120℃/s以下である。より好ましくは、該平均冷却速度は100℃/s以下である。なお、温度は鋼板の表面温度とする。
Average cooling rate from the finish rolling temperature to 700 ° C .: 25 ° C./s or more and 150 ° C./s or less To make the number density of cementite grains in the ferrite grains after annealing 0.08 pieces / μm 2 or less, pearlite, It is necessary to spheroidize the hot-rolled steel sheet having a microstructure having pro-eutectoid ferrite of 5% or more by volume ratio. Since the temperature range from finish rolling to 700 ° C. in hot rolling corresponds to the temperature range where ferrite and pearlite transformation start temperatures exist, the proeutectoid ferrite fraction in the steel sheet after hot rolling is 5% or more by volume. In order to achieve this, the cooling rate from the finish rolling temperature to 700 ° C. is an important factor. If the average cooling rate in the temperature range from finish rolling to 700 ° C. is less than 25 ° C./s, the ferrite transformation hardly progresses in a short time, and the paride fraction becomes higher than necessary. The fraction of precipitated ferrite cannot be obtained. In addition, the formation of coarse pearlite makes it difficult to obtain a desired steel sheet structure after spheroidizing annealing. Therefore, the average cooling rate in the temperature range from finish rolling to 700 ° C. is set to 25 ° C./s or more. Further, in order to obtain the number density of cementite grains in the ferrite grains after spheroidizing annealing of 0.07 / μm 2 or less, it is preferable to set the pro-eutectoid ferrite fraction to 10% or more by volume. The average cooling rate is preferably 30 ° C./s or more. More preferably, the average cooling rate is 40 ° C./s or more. On the other hand, when the average cooling rate exceeds 150 ° C./s, it is difficult to obtain pro-eutectoid ferrite. Therefore, the average cooling rate from 700 ° C. after finish rolling is set to 150 ° C./s or less. Preferably, the average cooling rate is 120 ° C./s or less. More preferably, the average cooling rate is 100 ° C./s or less. The temperature is the surface temperature of the steel sheet.
 巻取温度:500℃以上700℃以下
 仕上げ圧延後の鋼板は、上記した冷却を施した後、500℃以上700℃以下の巻取温度でコイル形状に巻き取る。巻取温度が700℃を超えると、熱延鋼板の組織が粗大化して焼鈍後に所望の鋼板組織が得られない上、鋼板の強度が低くなり過ぎて、コイル形状に巻き取られた際、コイルの自重で変形する場合があるため、操業上好ましくない。したがって巻取温度は700℃以下とする。好ましくは、巻取温度は650℃以下である。一方、巻取温度が500℃未満であると、鋼板組織が微細になって鋼板が硬質化し、伸びが小さくなり加工性が低下する。したがって巻取温度は500℃以上とする。好ましくは、巻取温度は550℃以上である。なお、巻取り温度は鋼板の表面温度とする。
Winding temperature: 500 ° C. or higher and 700 ° C. or lower The steel sheet after finish rolling is wound into a coil shape at a winding temperature of 500 ° C. or higher and 700 ° C. or lower after cooling as described above. When the coiling temperature exceeds 700 ° C., the structure of the hot-rolled steel sheet becomes coarse and a desired steel sheet structure cannot be obtained after annealing, and the strength of the steel sheet becomes too low to be coiled into a coil shape. It may be deformed by its own weight, which is not preferable for operation. Therefore, the coiling temperature is 700 ° C. or less. Preferably, the coiling temperature is 650 ° C. or lower. On the other hand, when the coiling temperature is less than 500 ° C., the steel sheet structure becomes fine, the steel sheet becomes hard, the elongation becomes small, and the workability decreases. Therefore, the coiling temperature is 500 ° C. or higher. Preferably, the winding temperature is 550 ° C. or higher. The winding temperature is the surface temperature of the steel plate.
 熱間圧延後の鋼板のミクロ組織:パーライトと体積率で5%以上の初析フェライトを有する組織
 本発明では、後述する球状化焼鈍後に、フェライトとセメンタイトからなり、前記フェライト粒内のセメンタイト粒の個数密度が0.08個/μm以下であるミクロ組織を有する鋼板を得る。球状化焼鈍後のミクロ組織には、熱間圧延後の鋼板のミクロ組織の影響が大きい。熱間圧延後の鋼板のミクロ組織を、パーライトと体積率で5%以上の初析フェライトを有する組織とすることにより、球状化焼鈍後に所望の組織とすることができ、加工性の高い鋼となる。また、パーライトを有さない、あるいは、初析フェライトの分率が体積率で5%未満である鋼板では、Ac変態点以下での球状化焼鈍後、所定のセメンタイト粒の個数密度が得られず、鋼板強度が高くなる。よって、上記した条件で熱間圧延、冷却および巻取りを行って得られる鋼板(熱延鋼板)のミクロ組織を、パーライトと体積率で5%以上の初析フェライトを有する組織とする。好ましくは、パーライトと体積率で10%以上の初析フェライトからなる組織とする。なお、焼鈍後より均一な組織を得るためには、初析フェライトの分率は、好ましくは体積率で50%以下である。
Microstructure of steel sheet after hot rolling: Structure having pearlite and pro-eutectoid ferrite of 5% or more in volume ratio In the present invention, after spheroidizing annealing described later, it consists of ferrite and cementite, and the cementite grains in the ferrite grains A steel sheet having a microstructure with a number density of 0.08 pieces / μm 2 or less is obtained. The microstructure after spheroidizing annealing is greatly affected by the microstructure of the steel sheet after hot rolling. By making the microstructure of the steel sheet after hot rolling into a structure having pearlite and 5% or more pro-eutectoid ferrite in volume ratio, it can be made a desired structure after spheroidizing annealing, Become. In addition, in a steel sheet that does not have pearlite or has a pro-eutectoid ferrite fraction of less than 5% by volume, a predetermined number density of cementite grains can be obtained after spheroidizing annealing below the Ac 1 transformation point. Therefore, the steel sheet strength is increased. Therefore, the microstructure of the steel sheet (hot-rolled steel sheet) obtained by hot rolling, cooling and winding under the above-described conditions is a structure having pearlite and a pro-eutectoid ferrite of 5% or more by volume ratio. Preferably, the structure is composed of pearlite and pro-eutectoid ferrite with a volume ratio of 10% or more. In order to obtain a more uniform structure after annealing, the fraction of pro-eutectoid ferrite is preferably 50% or less by volume.
 焼鈍温度:Ac変態点以下
 上記のようにして得た熱延鋼板に、焼鈍(球状化焼鈍)を施す。焼鈍温度がAc変態点を超えると、オーステナイトが析出し、焼鈍後の冷却過程において粗大なパーライト組織が形成され、不均一な組織となる。このため、焼鈍温度はAc変態点以下とする。なお、下限はとくに定めないが、フェライト粒内のセメンタイト粒の個数密度を所望の値とする上で、焼鈍温度は600℃以上が好ましく、より好ましくは700℃以上である。なお、雰囲気ガスは窒素、水素、窒素と水素の混合ガスのいずれも使用でき、これらのガスを使用することが好ましいが、Arを使用してもよく、特に限定されない。また、焼鈍時間は0.5~40時間とすることが好ましい。焼鈍時間を0.5時間以上とすることで、目標とする組織を安定して得ることができ、鋼板の硬さを所定の値以下とし、伸びを所定の値以上とすることができるため、焼鈍時間は0.5時間以上とすることが好ましい。さらに好ましくは、8時間以上である。また、焼鈍時間が40時間を超えると、生産性が低下し、製造コストが過大となりやすいため、焼鈍時間は40時間以下とすることが好ましい。なお、焼鈍温度は鋼板の表面温度とする。また焼鈍時間は、所定の温度を維持している時間とする。
Annealing temperature: Ac 1 transformation point or less Annealing (spheroidizing annealing) is performed on the hot-rolled steel sheet obtained as described above. When the annealing temperature exceeds the Ac 1 transformation point, austenite precipitates, and a coarse pearlite structure is formed in the cooling process after annealing, resulting in a non-uniform structure. Therefore, the annealing temperature is less Ac 1 transformation point. Although the lower limit is not particularly defined, the annealing temperature is preferably 600 ° C. or higher, more preferably 700 ° C. or higher, in order to obtain the desired number density of cementite grains in the ferrite grains. As the atmospheric gas, any of nitrogen, hydrogen, and a mixed gas of nitrogen and hydrogen can be used, and these gases are preferably used, but Ar may be used and is not particularly limited. The annealing time is preferably 0.5 to 40 hours. By setting the annealing time to 0.5 hours or more, the target structure can be stably obtained, the hardness of the steel sheet can be set to a predetermined value or less, and the elongation can be set to a predetermined value or more. The annealing time is preferably 0.5 hours or longer. More preferably, it is 8 hours or more. Further, if the annealing time exceeds 40 hours, the productivity is lowered and the manufacturing cost is likely to be excessive. Therefore, the annealing time is preferably 40 hours or less. The annealing temperature is the surface temperature of the steel sheet. The annealing time is a time during which a predetermined temperature is maintained.
 なお、本発明の高炭素鋼を溶製するには、転炉、電気炉どちらも使用可能である。また、こうして溶製された高炭素鋼は、造塊-分塊圧延または連続鋳造によりスラブとされる。スラブは、通常、加熱された後、熱間圧延される。なお、連続鋳造で製造されたスラブの場合は、そのままあるいは温度低下を抑制する目的で保熱して、圧延する直送圧延を適用してもよい。また、スラブを加熱して熱間圧延する場合は、スケールによる表面状態の劣化を避けるためにスラブ加熱温度を1280℃以下とすることが好ましい。熱間圧延では、所定の温度で仕上げ圧延を行うため、熱間圧延中にシートバーヒーター等の加熱手段により被圧延材の加熱を行ってもよい。 In addition, in order to melt the high carbon steel of the present invention, both a converter and an electric furnace can be used. Further, the high carbon steel thus melted is made into a slab by ingot-bundling rolling or continuous casting. The slab is usually heated and then hot rolled. In addition, in the case of the slab manufactured by continuous casting, you may apply the direct feed rolling which heats as it is or keeps heat in order to suppress a temperature fall. Moreover, when heating and rolling a slab, it is preferable to make slab heating temperature 1280 degrees C or less in order to avoid the deterioration of the surface state by a scale. In hot rolling, since finish rolling is performed at a predetermined temperature, the material to be rolled may be heated by a heating means such as a sheet bar heater during hot rolling.
 表1に示す鋼番AからHの化学成分組成を有する鋼を溶製し、次いで表2に示す熱延条件で、仕上げ圧延後、冷却し、巻き取り、熱延鋼板とした。なお、表2に示す冷却速度は、仕上げ圧延後から700℃までの平均冷却速度である。次いで、酸洗し、表2に示す焼鈍条件で、窒素雰囲気(雰囲気ガス:窒素)中にて焼鈍(球状化焼鈍)を施して、板厚4.0mm、板幅1000mmの熱延鋼板(熱延焼鈍板)を製造した。このようにして製造した熱延焼鈍板について、硬さ、伸び、ミクロ組織を調査した。また、焼鈍前の熱延鋼板のミクロ組織についても調査した。結果を表2に示す。なお、表1に示すAr変態点およびAc変態点は、フォーマスターにより求めたものである。 Steels having chemical composition compositions of steel numbers A to H shown in Table 1 were melted and then cooled under the hot rolling conditions shown in Table 2 and then cooled, wound, and made into hot rolled steel sheets. In addition, the cooling rate shown in Table 2 is an average cooling rate from after finish rolling to 700 ° C. Next, pickling and annealing (spheroidizing annealing) in a nitrogen atmosphere (atmosphere gas: nitrogen) under the annealing conditions shown in Table 2, a hot rolled steel sheet having a thickness of 4.0 mm and a width of 1000 mm (heat (Annealed sheet) was manufactured. The hot rolled annealed sheet thus manufactured was examined for hardness, elongation, and microstructure. Moreover, the microstructure of the hot rolled steel sheet before annealing was also investigated. The results are shown in Table 2. The Ar 3 transformation point and the Ac 1 transformation point shown in Table 1 were obtained by Formaster.
 熱延焼鈍板の硬さ(HRB)
 焼鈍後の鋼板の板幅中央部から試料を採取し、ロックウェル硬度計(Bスケール)を用いて5点測定し、平均値を求めた。
Hot rolled annealed sheet hardness (HRB)
A sample was taken from the center of the plate width of the steel sheet after annealing, and measured at five points using a Rockwell hardness meter (B scale) to obtain an average value.
 熱延焼鈍板の全伸び(El)
 焼鈍後の鋼板から、圧延方向に対して0°の方向(L方向)に切り出したJIS5号引張試験片を用いて、島津製作所AG10TB AG/XRの引張試験機にて10mm/分で引張試験を行い、破断したサンプルを突き合わせて伸び(全伸び)を求めた。
Total elongation of hot-rolled annealed sheet (El)
Using a JIS No. 5 tensile test piece cut from the annealed steel sheet in a direction of 0 ° (L direction) with respect to the rolling direction, a tensile test was performed at 10 mm / min with a Shimadzu AG10TB AG / XR tensile tester. The fractured samples were butted together to determine the elongation (total elongation).
 ミクロ組織
 焼鈍前の熱延鋼板のミクロ組織(熱延板のミクロ組織)は、SEMにより観察し、その組織の種類および初析フェライトの分率を求めた。初析フェライトの分率は、フェライト域とフェライト域以外の箇所に分けて、フェライト域の割合を求めることにより面積率を求め、この値を初析フェライトの体積率とした。なお、表2に示す焼鈍前の熱延鋼板において、パーライトが存在していることを、上記のSEM観察により、確認している。
Microstructure The microstructure of the hot-rolled steel sheet before annealing (the microstructure of the hot-rolled sheet) was observed by SEM, and the type of the structure and the fraction of proeutectoid ferrite were determined. The fraction of pro-eutectoid ferrite was divided into locations other than the ferrite region and the ferrite region, and the area ratio was determined by determining the proportion of the ferrite region, and this value was defined as the volume fraction of the pro-eutectoid ferrite. In addition, in the hot-rolled steel sheet before annealing shown in Table 2, the presence of pearlite is confirmed by the above SEM observation.
 焼鈍後の鋼板のミクロ組織(熱延焼鈍板のミクロ組織)は、板幅中央部から採取した試料を切断研磨後、ナイタール腐食を施し、走査型電子顕微鏡を用いて、板厚の1/4位置の5箇所で3000倍の倍率で撮影した組織写真を用いて、その組織の種類を観察するとともに、粒界上になく、長径が0.15μm以上のセメンタイトの個数を測定し、この個数を写真の視野の面積で除して、フェライト粒内のセメンタイト密度(セメンタイト粒の個数密度)を求めた。セメンタイト径は、上記組織写真を用いて各セメンタイト粒の長径と短径を測定し、すべてのセメンタイトおよび粒内のセメンタイトの平均径を求めた。フェライトの粒径は、上記組織写真を用いて結晶粒度を求め、平均結晶粒径を算出した。 The microstructure of the steel sheet after annealing (the microstructure of the hot-rolled annealed sheet) is obtained by cutting and polishing a sample taken from the center part of the sheet width, applying nital corrosion, and using a scanning electron microscope, 1/4 of the sheet thickness. Using structure photographs taken at a magnification of 3000 at five locations, the type of the structure was observed, and the number of cementites that were not on the grain boundaries and whose major axis was 0.15 μm or more was measured. Dividing by the area of the field of view of the photograph, the cementite density in the ferrite grains (number density of cementite grains) was determined. The cementite diameter was determined by measuring the long diameter and short diameter of each cementite grain using the above structure photograph, and determining the average diameter of all cementite and cementite within the grain. For the ferrite grain size, the average grain size was calculated by obtaining the grain size using the above structure photograph.
 また、焼鈍後の鋼板(熱延焼鈍板)について、以下のようにして表層150μmのN量と鋼板中平均N量の差、B含有量に占める固溶B量の割合を求めた。結果を表2に示す。 In addition, regarding the steel sheet after annealing (hot rolled annealed sheet), the difference between the N content of the surface layer of 150 μm and the average N content in the steel sheet and the ratio of the solid solution B content in the B content were determined as follows. The results are shown in Table 2.
 表層150μmの平均N量と鋼板中平均N量の差
 焼鈍後の鋼板の板幅中央部から採取した試料を用い、表層150μmの平均N量および鋼板中平均N量を測定して、表層150μmの平均N量と鋼板中の平均N量の差を求めた。なおここで表層150μmの平均N量とは、鋼板表面から板厚方向に150μm深さまでの範囲に含有される平均のN量である。また、表層150μmの平均N量は次のように求めた。すなわち、採取した鋼板の表面から切削を開始し、表面から150μmの深さまで鋼板を切削し、この際に発生した切削片をサンプルとして採取した。このサンプル中のN量を測定し表層150μmの平均N量とした。表層150μmの平均N量と鋼板中平均N量は、不活性ガス融解-熱伝導度法により測定して求めた。このようにして求めた表層150μmの平均N量(表面~表面から150μm深さの範囲のN量)と鋼板中の平均N量(鋼中のN含有量)の差が30質量ppm以下であれば、浸窒を抑制できていると評価できる。
The difference between the average N amount of the surface layer 150 μm and the average N amount in the steel sheet Using a sample taken from the center of the sheet width of the steel sheet after annealing, the average N amount of the surface layer 150 μm and the average N amount in the steel sheet were measured, and the surface layer 150 μm The difference between the average N amount and the average N amount in the steel sheet was determined. Here, the average N amount of the surface layer of 150 μm is the average N amount contained in the range from the steel plate surface to the depth of 150 μm in the plate thickness direction. The average amount of N in the surface layer of 150 μm was determined as follows. That is, the cutting was started from the surface of the collected steel sheet, the steel sheet was cut to a depth of 150 μm from the surface, and the cut piece generated at this time was collected as a sample. The amount of N in this sample was measured and used as the average amount of N on the surface layer of 150 μm. The average N amount of the surface layer of 150 μm and the average N amount in the steel sheet were determined by measurement by an inert gas melting-thermal conductivity method. The difference between the average N content of the surface layer 150 μm obtained in this way (the N content in the range of 150 μm depth from the surface to the surface) and the average N content in the steel sheet (N content in the steel) is 30 ppm by mass or less. If it is, it can be evaluated that the nitrification can be suppressed.
 B含有量に占める固溶B量の割合
 焼鈍後の鋼板の板幅中央部から試料を採取した。鋼中のBNを10体積%Brメタノールで抽出し、鋼中の全B含有量からBNとして析出しているB含有量を差し引き、固溶B量を求めた。固溶B量が、鋼中に含有される全B含有量(B含有量)に占める割合を、{(固溶B量(質量%))/(全B含有量(質量%))}×100(%)により求めた。この割合が70(%)以上であれば、固溶B量の低下を抑制できていると評価できる。
The ratio of the amount of solute B in the B content A sample was taken from the center of the plate width of the steel plate after annealing. BN in the steel was extracted with 10% by volume Br methanol, and the B content precipitated as BN was subtracted from the total B content in the steel to obtain the solid solution B amount. The ratio of the solute B amount to the total B content (B content) contained in the steel is {(solid solution B amount (mass%)) / (total B content (mass%))} × It calculated | required by 100 (%). If this ratio is 70 (%) or more, it can be evaluated that the fall of the amount of solute B can be suppressed.
 焼入れ後の鋼板硬さ(焼入れ硬さ)
 また、焼鈍後の鋼板を原板として、以下のようにして3種類の焼入れ処理を施し、焼入れ後の鋼板硬さ(焼入れ硬さ)を調査し、焼入れ性を評価した。結果を表2に示す。
Steel plate hardness after quenching (quenching hardness)
Moreover, the steel plate after annealing was made into the original plate, the three types of quenching processes were performed as follows, the steel plate hardness (quenching hardness) after quenching was investigated, and hardenability was evaluated. The results are shown in Table 2.
 焼鈍後の鋼板(原板)の板幅中央部から平板試験片(幅15mm×長さ40mm×板厚4mm)を採取し、前記平板試験片を用いて、870℃で30s保持して直ちに水冷する方法(水冷)、870℃で30s保持して直ちに120℃の油で冷却する方法(120℃油冷)で焼入れ処理した。焼入れ特性は焼入れ処理後の試験片の切断面について、ビッカース硬さ試験機で荷重1kgfの条件下で硬さを5点測定して平均硬さを求め、これを焼入れ硬さとした。 A flat plate test piece (width 15 mm × length 40 mm × plate thickness 4 mm) is taken from the center of the plate width of the steel plate (original plate) after annealing, and is immediately cooled with water by holding the plate test piece at 870 ° C. for 30 s. Quenching was performed by a method (water cooling), a method of holding at 870 ° C. for 30 s and immediately cooling with 120 ° C. oil (120 ° C. oil cooling). For the quenching characteristics, the hardness of the cut surface of the test piece after the quenching treatment was measured with a Vickers hardness tester under the condition of a load of 1 kgf to obtain an average hardness, which was defined as the quenching hardness.
 さらに、焼鈍後の鋼板(原板)の板幅中央部から円盤試験片(55mmφ×板厚4mm)を採取し、高周波焼入れ(加熱速度200℃/sで加熱し、1000℃に到達後水冷)によっても焼入れ処理を実施した。このとき、試験片最外周部の試験片の切断面についてビッカース硬さ試験機で荷重0.2kgfの条件下で硬さを2点測定して平均硬さを求め、これを焼入れ硬さとした。
 870℃で30s保持して水冷および120℃油冷した焼入れ硬さはが、表3の条件をにおける水冷後硬さ、120℃油冷後硬さをともに満足し、かつ、高周波焼入した焼入硬さが表3の高周波焼入硬さを満足した場合に合格(○)と判定し、焼入れ性に優れると評価した。また、870℃で30s保持後水冷および120℃で油冷した硬さおよび高周波焼入水冷後の硬さのいずれかが表3に示す条件を満足しない場合、不合格(×)とし、焼入れ性に劣ると評価した。なお、表3は、経験上、焼入れ性が十分であると評価できる、C含有量に応じた焼入れ硬さを表したものである。
Further, a disk test piece (55 mmφ × plate thickness 4 mm) is taken from the center of the width of the steel plate (original plate) after annealing, and induction-quenched (heated at a heating rate of 200 ° C./s, water-cooled after reaching 1000 ° C.) Also quenching treatment was performed. At this time, the hardness of the cut surface of the test piece at the outermost peripheral portion of the test piece was measured at two points with a Vickers hardness tester under a load of 0.2 kgf to obtain the average hardness, and this was set as quenching hardness.
The quenching hardness which was kept at 870 ° C. for 30 s and was water-cooled and 120 ° C. oil-cooled satisfied both the water-cooled hardness and the 120 ° C. oil-cooled hardness in the conditions of Table 3 and was induction-hardened. When the hardness satisfied the induction hardening hardness shown in Table 3, it was determined to be acceptable (◯) and evaluated as having excellent hardenability. Also, if any of the hardness after holding at 870 ° C. for 30 s after water cooling, oil cooling at 120 ° C., and hardness after induction quenching water cooling does not satisfy the conditions shown in Table 3, it will be rejected (×) and hardenability It was evaluated as inferior. In addition, Table 3 represents the quenching hardness according to the C content that can be evaluated as having sufficient quenchability from experience.
 表2から、本発明例の熱延鋼板では、フェライトとセメンタイトからなり、前記フェライト粒内のセメンタイト密度が0.08個/μm以下であるミクロ組織を有し、硬さがHRBで73以下、全伸びが39%以上であるため、冷間加工性に優れるとともに、焼入れ性にも優れていることがわかる。 From Table 2, the hot-rolled steel sheet of the present invention example has a microstructure composed of ferrite and cementite, and the cementite density in the ferrite grains is 0.08 pieces / μm 2 or less, and the hardness is 73 or less in HRB. It can be seen that since the total elongation is 39% or more, the cold workability is excellent and the hardenability is also excellent.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 
 
Figure JPOXMLDOC01-appb-T000003
 
 

Claims (5)

  1.  質量%で、C:0.20~0.40%、Si:0.10%以下、Mn:0.50%以下、P:0.03%以下、S:0.010%以下、sol.Al:0.10%以下、N:0.0050%以下、B:0.0005~0.0050%を含有し、さらにSb、Sn、Bi、Ge、Te、Seのうち1種以上を合計で0.002~0.030%含有し、残部がFeおよび不可避的不純物からなる組成を有し、B含有量に占める固溶B量の割合が70%以上であり、フェライトとセメンタイトからなり、前記フェライト粒内のセメンタイト密度が0.08個/μm以下であるミクロ組織を有し、硬さがHRBで73以下、全伸びが39%以上である高炭素熱延鋼板。 C. 0.20 to 0.40%, Si: 0.10% or less, Mn: 0.50% or less, P: 0.03% or less, S: 0.010% or less, sol. Al: 0.10% or less, N: 0.0050% or less, B: 0.0005 to 0.0050%, and one or more of Sb, Sn, Bi, Ge, Te, Se in total 0.002 to 0.030% content, the balance is composed of Fe and inevitable impurities, the proportion of the solid solution B content in the B content is 70% or more, and consists of ferrite and cementite, A high carbon hot-rolled steel sheet having a microstructure with a cementite density of 0.08 pieces / μm 2 or less in ferrite grains, a hardness of 73 or less in HRB, and a total elongation of 39% or more.
  2.  さらに、質量%で、Ni、Cr、Moのうち1種以上を合計で0.50%以下含有する請求項1に記載の高炭素熱延鋼板。 Furthermore, the high carbon hot-rolled steel sheet according to claim 1, further comprising 0.50% or less in total of one or more of Ni, Cr, and Mo in mass%.
  3.  前記フェライトとセメンタイトからなる組織における全セメンタイトの平均径が0.60μm以上1.00μm以下であり、フェライト粒内のセメンタイトの平均径が0.40μm以上である請求項1または2に記載の高炭素熱延鋼板。 3. The high carbon according to claim 1, wherein an average diameter of all cementites in the structure composed of ferrite and cementite is 0.60 μm or more and 1.00 μm or less, and an average diameter of cementite in the ferrite grains is 0.40 μm or more. Hot rolled steel sheet.
  4.  質量%で、C:0.20~0.40%、Si:0.10%以下、Mn:0.50%以下、P:0.03%以下、S:0.010%以下、sol.Al:0.10%以下、N:0.0050%以下、B:0.0005~0.0050%を含有し、さらにSb、Sn、Bi、Ge、Te、Seのうち1種以上を合計で0.002~0.030%含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼を、熱間粗圧延後、仕上げ圧延温度:Ar変態点以上870℃以下で仕上げ圧延し、700℃までを25℃/s以上150℃/s以下の平均冷却速度で冷却し、巻取温度:500℃以上700℃以下で巻き取ることにより、パーライトと体積率で5%以上の初析フェライトを有する鋼板とし、次いで、該鋼板をAc変態点以下で焼鈍する高炭素熱延鋼板の製造方法。 C. 0.20 to 0.40%, Si: 0.10% or less, Mn: 0.50% or less, P: 0.03% or less, S: 0.010% or less, sol. Al: 0.10% or less, N: 0.0050% or less, B: 0.0005 to 0.0050%, and one or more of Sb, Sn, Bi, Ge, Te, Se in total A steel containing 0.002 to 0.030% and the balance being composed of Fe and inevitable impurities, after hot rough rolling, finish rolling at finish rolling temperature: Ar 3 transformation point or more and 870 ° C. or less, 700 Is cooled at an average cooling rate of 25 ° C./s or more and 150 ° C./s or less, and coiled at a winding temperature of 500 ° C. or more and 700 ° C. or less, so that pearlite and pro-eutectoid ferrite with a volume ratio of 5% or more can be obtained. A method for producing a high carbon hot-rolled steel sheet, in which the steel sheet is annealed below the Ac 1 transformation point.
  5.  前記鋼が、さらに、質量%で、Ni、Cr、Moのうち1種以上を合計で0.50%以下含有する請求項4に記載の高炭素熱延鋼板の製造方法。 The method for producing a high carbon hot-rolled steel sheet according to claim 4, wherein the steel further contains, by mass%, one or more of Ni, Cr, and Mo in a total amount of 0.50% or less.
PCT/JP2015/001712 2014-03-28 2015-03-26 High-carbon hot-rolled steel sheet and method for producing same WO2015146173A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580016876.8A CN106133170B (en) 2014-03-28 2015-03-26 High-carbon hot-rolled steel sheet and its manufacture method
JP2015537042A JP6065120B2 (en) 2014-03-28 2015-03-26 High carbon hot rolled steel sheet and manufacturing method thereof
EP15770102.0A EP3091098B1 (en) 2014-03-28 2015-03-26 High-carbon hot-rolled steel sheet and method for producing same
KR1020167029879A KR101892524B1 (en) 2014-03-28 2015-03-26 High-carbon hot-rolled steel sheet and method for manufacturing the same
US15/129,520 US20170121787A1 (en) 2014-03-28 2015-03-26 High-carbon hot-rolled steel sheet and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-068737 2014-03-28
JP2014068737 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015146173A1 true WO2015146173A1 (en) 2015-10-01

Family

ID=54194717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001712 WO2015146173A1 (en) 2014-03-28 2015-03-26 High-carbon hot-rolled steel sheet and method for producing same

Country Status (7)

Country Link
US (1) US20170121787A1 (en)
EP (1) EP3091098B1 (en)
JP (1) JP6065120B2 (en)
KR (1) KR101892524B1 (en)
CN (1) CN106133170B (en)
TW (1) TWI557239B (en)
WO (1) WO2015146173A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151048A1 (en) 2018-01-30 2019-08-08 Jfeスチール株式会社 High-carbon hot-rolled steel sheet and method for manufacturing same
WO2020158356A1 (en) 2019-01-30 2020-08-06 Jfeスチール株式会社 High carbon hot-rolled steel sheet and method for production thereof
WO2020158357A1 (en) 2019-01-30 2020-08-06 Jfeスチール株式会社 High-carbon hot-rolled steel sheet and method for manufacturing same
JP2020143367A (en) * 2019-02-28 2020-09-10 Jfeスチール株式会社 Steel plate, members and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155254A1 (en) * 2017-02-21 2018-08-30 Jfeスチール株式会社 Hot-rolled high carbon steel sheet and method for producing same
KR102597734B1 (en) * 2019-02-28 2023-11-02 제이에프이 스틸 가부시키가이샤 Steel plates, members and their manufacturing methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291495A (en) * 2006-03-28 2007-11-08 Jfe Steel Kk Hot-rolled ultrasoft high-carbon steel plate and process for production thereof
JP2008156712A (en) * 2006-12-25 2008-07-10 Jfe Steel Kk High-carbon hot-rolled steel sheet and production method therefor
JP2009068081A (en) * 2007-09-14 2009-04-02 Jfe Steel Kk Extremely soft high-carbon hot rolled steel sheet
WO2010106748A1 (en) * 2009-03-16 2010-09-23 新日本製鐵株式会社 Boron-containing steel sheet with excellent hardenability and method of manufacturing same
WO2013102986A1 (en) * 2012-01-05 2013-07-11 Jfeスチール株式会社 High carbon hot-rolled steel sheet and method for producing same
WO2013102982A1 (en) * 2012-01-05 2013-07-11 Jfeスチール株式会社 High carbon hot-rolled steel sheet with excellent hardenability and minimal in-plane anisotropy, and method for producing same
WO2015004906A1 (en) * 2013-07-09 2015-01-15 Jfeスチール株式会社 High-carbon hot-rolled steel sheet and production method for same
WO2015004902A1 (en) * 2013-07-09 2015-01-15 Jfeスチール株式会社 High-carbon hot-rolled steel sheet and production method for same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317661B2 (en) 1973-08-31 1978-06-09
KR100673422B1 (en) * 2003-08-28 2007-01-24 제이에프이 스틸 가부시키가이샤 High carbon hot rolled steel sheet, cold rolled steel sheet and method for production thereof
US20050199322A1 (en) * 2004-03-10 2005-09-15 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same
JP5458649B2 (en) * 2009-04-28 2014-04-02 Jfeスチール株式会社 High carbon hot rolled steel sheet and manufacturing method thereof
JP5056876B2 (en) * 2010-03-19 2012-10-24 Jfeスチール株式会社 Hot-rolled steel sheet with excellent cold workability and hardenability and method for producing the same
JP5594226B2 (en) * 2011-05-18 2014-09-24 Jfeスチール株式会社 High carbon steel sheet and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291495A (en) * 2006-03-28 2007-11-08 Jfe Steel Kk Hot-rolled ultrasoft high-carbon steel plate and process for production thereof
JP2008156712A (en) * 2006-12-25 2008-07-10 Jfe Steel Kk High-carbon hot-rolled steel sheet and production method therefor
JP2009068081A (en) * 2007-09-14 2009-04-02 Jfe Steel Kk Extremely soft high-carbon hot rolled steel sheet
WO2010106748A1 (en) * 2009-03-16 2010-09-23 新日本製鐵株式会社 Boron-containing steel sheet with excellent hardenability and method of manufacturing same
WO2013102986A1 (en) * 2012-01-05 2013-07-11 Jfeスチール株式会社 High carbon hot-rolled steel sheet and method for producing same
WO2013102982A1 (en) * 2012-01-05 2013-07-11 Jfeスチール株式会社 High carbon hot-rolled steel sheet with excellent hardenability and minimal in-plane anisotropy, and method for producing same
WO2015004906A1 (en) * 2013-07-09 2015-01-15 Jfeスチール株式会社 High-carbon hot-rolled steel sheet and production method for same
WO2015004902A1 (en) * 2013-07-09 2015-01-15 Jfeスチール株式会社 High-carbon hot-rolled steel sheet and production method for same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200097806A (en) 2018-01-30 2020-08-19 제이에프이 스틸 가부시키가이샤 High carbon hot-rolled steel sheet and its manufacturing method
JP6569845B1 (en) * 2018-01-30 2019-09-04 Jfeスチール株式会社 High carbon hot rolled steel sheet and manufacturing method thereof
US11434542B2 (en) 2018-01-30 2022-09-06 Jfe Steel Corporation High-carbon hot-rolled steel sheet and method for producing the same
WO2019151048A1 (en) 2018-01-30 2019-08-08 Jfeスチール株式会社 High-carbon hot-rolled steel sheet and method for manufacturing same
JPWO2020158356A1 (en) * 2019-01-30 2021-02-18 Jfeスチール株式会社 High carbon hot-rolled steel sheet and its manufacturing method
WO2020158357A1 (en) 2019-01-30 2020-08-06 Jfeスチール株式会社 High-carbon hot-rolled steel sheet and method for manufacturing same
JPWO2020158357A1 (en) * 2019-01-30 2021-02-18 Jfeスチール株式会社 High carbon hot-rolled steel sheet and its manufacturing method
KR20210105417A (en) 2019-01-30 2021-08-26 제이에프이 스틸 가부시키가이샤 High carbon hot rolled steel sheet and manufacturing method thereof
KR20210107106A (en) 2019-01-30 2021-08-31 제이에프이 스틸 가부시키가이샤 High carbon hot rolled steel sheet and manufacturing method thereof
CN113366136A (en) * 2019-01-30 2021-09-07 杰富意钢铁株式会社 High carbon hot-rolled steel sheet and method for producing same
WO2020158356A1 (en) 2019-01-30 2020-08-06 Jfeスチール株式会社 High carbon hot-rolled steel sheet and method for production thereof
CN113366136B (en) * 2019-01-30 2023-10-31 杰富意钢铁株式会社 High-carbon hot-rolled steel sheet and method for producing same
JP2020143367A (en) * 2019-02-28 2020-09-10 Jfeスチール株式会社 Steel plate, members and manufacturing method thereof
JP7067578B2 (en) 2019-02-28 2022-05-16 Jfeスチール株式会社 Manufacturing method of steel plate and steel plate and members

Also Published As

Publication number Publication date
JPWO2015146173A1 (en) 2017-04-13
JP6065120B2 (en) 2017-01-25
US20170121787A1 (en) 2017-05-04
CN106133170B (en) 2017-12-26
EP3091098A4 (en) 2017-04-05
CN106133170A (en) 2016-11-16
EP3091098A1 (en) 2016-11-09
EP3091098B1 (en) 2018-07-11
TWI557239B (en) 2016-11-11
KR101892524B1 (en) 2018-08-28
KR20160138230A (en) 2016-12-02
TW201538744A (en) 2015-10-16

Similar Documents

Publication Publication Date Title
JP5812048B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP6065120B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP2007162128A (en) Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
JP6244701B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP2005290547A (en) High carbon hot-rolled steel sheet having excellent ductility and stretch-flange formability, and production method therefor
KR102570145B1 (en) High-carbon hot-rolled steel sheet and manufacturing method thereof
WO2020209275A1 (en) Steel sheet and method for manufacturing same
US11434542B2 (en) High-carbon hot-rolled steel sheet and method for producing the same
WO2013102982A1 (en) High carbon hot-rolled steel sheet with excellent hardenability and minimal in-plane anisotropy, and method for producing same
JPWO2019131099A1 (en) Hot rolled steel sheet and method for producing the same
JP7125923B2 (en) High-carbon hot-rolled steel sheet for vacuum carburizing, its manufacturing method, and carburized steel parts
JPWO2020158356A1 (en) High carbon hot-rolled steel sheet and its manufacturing method
JP5884781B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP7444097B2 (en) Hot rolled steel sheet and its manufacturing method
JP7067578B2 (en) Manufacturing method of steel plate and steel plate and members
JP7444096B2 (en) Hot rolled steel sheet and its manufacturing method
KR102597734B1 (en) Steel plates, members and their manufacturing methods

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015537042

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770102

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015770102

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015770102

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15129520

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167029879

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201607244

Country of ref document: ID