JP5064525B2 - High carbon steel sheet with low anisotropy and excellent hardenability and method for producing the same - Google Patents

High carbon steel sheet with low anisotropy and excellent hardenability and method for producing the same Download PDF

Info

Publication number
JP5064525B2
JP5064525B2 JP2010033978A JP2010033978A JP5064525B2 JP 5064525 B2 JP5064525 B2 JP 5064525B2 JP 2010033978 A JP2010033978 A JP 2010033978A JP 2010033978 A JP2010033978 A JP 2010033978A JP 5064525 B2 JP5064525 B2 JP 5064525B2
Authority
JP
Japan
Prior art keywords
steel sheet
carbon steel
anisotropy
rolling
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010033978A
Other languages
Japanese (ja)
Other versions
JP2011168842A (en
Inventor
阿部  雅之
健悟 竹田
修治 山本
保嗣 塚野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010033978A priority Critical patent/JP5064525B2/en
Publication of JP2011168842A publication Critical patent/JP2011168842A/en
Application granted granted Critical
Publication of JP5064525B2 publication Critical patent/JP5064525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、異方性が小さく焼入性に優れた高炭素鋼板とその製造方法に関する。   The present invention relates to a high carbon steel sheet having small anisotropy and excellent hardenability and a method for producing the same.

近年、地球環境保護の観点から、自動車のCO2排出量の低減などを目的に、自動車車体の軽量化が進められていて、高強度鋼板の使用が促進されている。また、自動車会社や部品メーカーでは、従来、熱間鍛造で製造していた部品を冷間プレスで製造するなど、工程の簡省略化による製造プロセス自体の省エネルギーや、低コスト化を進めて、製造プロセスの効率化をより図っている。 In recent years, from the viewpoint of protecting the global environment, the weight reduction of automobile bodies has been promoted for the purpose of reducing CO 2 emissions of automobiles, and the use of high-strength steel sheets has been promoted. In addition, automobile companies and parts manufacturers have manufactured parts that have been manufactured by hot forging with cold presses, such as by manufacturing processes by simplifying the process and saving energy and reducing costs. The process is more efficient.

特に、製造プロセスの効率化の観点では、従来、棒鋼等の材料を熱間鍛造し、次いで、切削加工で部品精度を確保していた部品を、熱間鍛造を省略し、板材を冷間鍛造プレスで製造する、いわゆる、板鍛造プレス化が進められていて、厚み2mm以上の鋼板が被鍛造材として用いられるようになってきている。   In particular, from the viewpoint of increasing the efficiency of the manufacturing process, hot forging of parts such as steel bars that have been used in the past and then ensuring the accuracy of the parts by cutting is omitted, and the plate material is cold forged. The so-called plate forging press production, which is manufactured by pressing, has been promoted, and a steel plate having a thickness of 2 mm or more has been used as a material to be forged.

ところが、板材の冷間鍛造プレスにおいては、(a)材料の割れが、熱間鍛造に比較して顕著になり、また、(b)棒鋼のような軸対象材では発生し難かった、圧延に起因する板面内の異方性による成形性の不均一性が見られ、結局、特定方向での割れの発生や、プレス後の形状の不均一性等、解決すべき課題が多い。   However, in the cold forging press of the plate material, (a) material cracking becomes more noticeable than in hot forging, and (b) The non-uniformity of formability due to the anisotropy in the plate surface is observed, and as a result, there are many problems to be solved such as the occurrence of cracks in a specific direction and the non-uniformity of the shape after pressing.

現状では、割れが発生しないような形状に変更することや、絞り加工後に発生した不均一部(所謂、耳)を切除するなどの処理が必要となり、加工性がより優れ、均一な特性を有する材料が求められている。   At present, it is necessary to change the shape so that cracks do not occur, or to remove non-uniform parts (so-called ears) that have occurred after drawing, which has better workability and uniform characteristics. There is a need for materials.

また、部品によっては、素材強度ではなく、プレス後の焼入れ焼戻しにより、ビッカース硬度で400以上の高強度が必要なものもあり、そのため、焼入性を必要とする材料も望まれている。   In addition, depending on the part, there are some parts that require a high Vickers hardness of 400 or more by quenching and tempering after pressing rather than material strength. Therefore, materials that require hardenability are also desired.

このように、部品成形後の焼入性も確保するためには、高炭素鋼の成分組成を、異方性が小さく、かつ、焼入性を確保できるように設計することが必要であるが、現在、これらの特性を兼ね備えた高炭素鋼板とその製造方法は開示されていない。   Thus, in order to ensure the hardenability after forming the part, it is necessary to design the component composition of the high carbon steel so that the anisotropy is small and the hardenability can be ensured. Currently, there is no disclosure of a high carbon steel sheet having these characteristics and a method for producing the same.

本発明は、上記現状に鑑み、従来は熱間鍛造等で製造していた、自動車のトランスミッション等に使用する部品を、板鍛造プレス(冷間成形)で製造するための高炭素鋼板であって、プレス成形後、焼入れ焼戻しに供する、例えば、厚さ2mm以上の高炭素鋼板において、加工時の割れを防止するとともに、圧延方向とその直角方向における加工性の異方性を低減することを課題とする。   In view of the above situation, the present invention is a high-carbon steel plate for manufacturing parts used for automobile transmissions, etc., which have been conventionally manufactured by hot forging, etc., with a plate forging press (cold forming). For press-molding and quenching and tempering, for example, in a high-carbon steel sheet having a thickness of 2 mm or more, it is possible to prevent cracking during processing and to reduce workability anisotropy in the rolling direction and its perpendicular direction And

本発明者らは、上記課題を解決する手法について鋭意検討した。その結果、本発明者らは、上記加工性の異方性は、単に、圧延条件を変更しただけでは低減できず、成分組成とそれに関連する組織制御を、熱間圧延工程まで一貫して最適化することが重要であることを知見した。   The present inventors diligently studied a method for solving the above problems. As a result, the present inventors cannot reduce the anisotropy of the workability simply by changing the rolling conditions, and consistently optimize the component composition and the related structure control up to the hot rolling process. It was found that it is important to make it.

具体的には、製錬時の酸化物量とS量を規定し、熱間圧延条件の最適化を加え、組織制御を行うことで、上記課題を解決し、上記異方性を顕著に改善できることが判明した。   Specifically, the amount of oxide and S during smelting are specified, the hot rolling conditions are optimized, and the structure is controlled to solve the above problems and to significantly improve the anisotropy. There was found.

即ち、本発明者らは、(i-1)圧延方向とその直角方向における加工性の異方性の原因は、特に、板厚中心領域に存在する非金属介在物や、パーライトバンドに起因する炭化物(セメンタイト)の密集状態及びその大きさによる塑性変形能の低下であり、さらに、(i-2)上記密集状態及びその大きさの形態が、圧延により、圧延方向に長く連なる形態となることが、塑性変形能の異方性を助長していることを明確にし、(ii-1)成分組成との関係によって、加工性の異方性の増大を抑制できること、また、(ii-2)熱間圧延の圧延条件、冷却条件、及び、巻取条件を、一連の条件として制御することで、圧延方向への展伸度や比率を制御できることを知見した。   That is, the inventors of the present invention (i-1) the cause of the workability anisotropy in the rolling direction and the direction perpendicular thereto is particularly due to non-metallic inclusions present in the center region of the plate thickness and pearlite bands. It is a decrease in plastic deformability due to the dense state of carbide (cementite) and its size, and (i-2) the form of the dense state and its size becomes a continuous form in the rolling direction by rolling. Clarifies that the anisotropy of plastic deformability is promoted, and (ii-1) the increase in workability anisotropy can be suppressed by the relationship with the component composition, and (ii-2) It has been found that the degree of expansion and ratio in the rolling direction can be controlled by controlling the rolling conditions, the cooling conditions, and the winding conditions of the hot rolling as a series of conditions.

本発明は、上記知見に基づいてなされたもので、その要旨は以下の通りである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)質量%で、C:0.2超〜0.70%、Si:0.01〜0.8%、Mn:0.1〜2.0%未満、P:0.003〜0.030%、S:0.0001〜0.008%、Al:0.005〜0.07%、N:0.0001〜0.02%、O:0.0001〜0.0030%、及び、残部不可避的不純物からなり、かつ、下記(1)式で示すA値が0.008以下の鋼板であって、圧延方向に平行な板厚断面内の板厚をtとした時、
(i)4/10t〜6/10tの断面で、長さ100μm以上の非金属介在物の面積率が0.1%以下であり、また、
(ii)同断面領域で、炭化物径が下記(2)式で示す値を超える炭化物の面積率が、領域中の炭化物の10%以下である、
ことを特徴とする異方性が小さく焼入性に優れた高炭素鋼板。
A値=O+S+0.033Al ・・・(1)
O、S、Al:各元素の含有量
B値(μm)=1.5×C%+0.5 ・・・(2)
(1) By mass%, C: more than 0.2 to 0.70%, Si: 0.01 to 0.8%, Mn: 0.1 to less than 2.0%, P: 0.003 to 0. 030%, S: 0.0001 to 0.008%, Al: 0.005 to 0.07%, N: 0.0001 to 0.02%, O: 0.0001 to 0.0030%, and the balance A steel plate consisting of inevitable impurities and having an A value of 0.008 or less represented by the following formula (1), where t is the plate thickness in the plate thickness section parallel to the rolling direction,
(I) In a cross section of 4 / 10t to 6 / 10t, the area ratio of non-metallic inclusions having a length of 100 μm or more is 0.1% or less,
(Ii) at the same cross-sectional area, the area ratio of carbide carbide diameter exceeds the value indicated by the following equation (2) is not more than 10% of the carbides in the region,
A high carbon steel sheet with small anisotropy and excellent hardenability.
A value = O + S + 0.033Al (1)
O, S, Al: Content of each element B value (μm) = 1.5 × C% + 0.5 (2)

(2)前記鋼板が、質量%で、Nb:0.003〜0.1%、Ti:0.001〜0.05%、V:0.001〜0.05%、Ta:0.01〜0.5%、W:0.01〜0.5%の1種又は2種以上を含有することを特徴とする前記(1)に記載の異方性が小さく焼入性に優れた高炭素鋼板。   (2) The said steel plate is the mass%, Nb: 0.003-0.1%, Ti: 0.001-0.05%, V: 0.001-0.05%, Ta: 0.01- High carbon having low anisotropy and excellent hardenability as described in (1) above, containing 0.5%, W: 0.01-0.5% or two or more steel sheet.

(3)前記鋼板が、質量%で、Cr:0.1〜2.0%、Ni:0.01〜1.0%、Cu:0.01〜1.0%、Mo:0.005〜0.5%、B:0.0005〜0.01%の1種又は2種以上を含有することを特徴とする前記(1)又は(2)に記載の異方性が小さく焼入性に優れた高炭素鋼板。   (3) The said steel plate is the mass%, Cr: 0.1-2.0%, Ni: 0.01-1.0%, Cu: 0.01-1.0%, Mo: 0.005- 0.5%, B: 0.0005 to 0.01% of one type or two or more types are contained, and the anisotropy according to (1) or (2) is small and hardenability is achieved. Excellent high carbon steel plate.

(4)前記鋼板が、質量%で、Mg:0.0005〜0.003%、Ca:0.0005〜0.003%、Y:0.001〜0.03%、Zr:0.001〜0.03%、La:0.001〜0.03%、Ce:0.001〜0.03%の1種又は2種以上を含有することを特徴とする前記(1)〜(3)のいずれかに記載の異方性が小さく焼入性に優れた高炭素鋼板。   (4) The said steel plate is the mass%, Mg: 0.0005-0.003%, Ca: 0.0005-0.003%, Y: 0.001-0.03%, Zr: 0.001- One or more of 0.03%, La: 0.001 to 0.03%, Ce: 0.001 to 0.03%, containing (1) to (3) above A high carbon steel sheet having small anisotropy and excellent hardenability.

(5)前記(1)〜(4)のいずれかに記載の異方性が小さく焼入性に優れた高炭素鋼板を製造する製造方法において、
(i)前記(1)〜(4)のいずれかに記載の成分組成の連続鋳造鋳片又は鋼塊を1150℃以上1300℃以下で加熱し、次いで、
(ii-1)粗圧延を1000℃以上1150℃以下で終了し、仕上圧延温度をAe3以上とする熱間圧延を行い、その後、
(ii-2)1〜10秒の空冷時間をとり、10〜70℃/sの冷却速度で巻取温度まで冷却して450〜650℃で巻き取り、
(ii-3)巻取り後、酸洗し、焼鈍する
ことを特徴とする異方性が小さく焼入性に優れた高炭素鋼板の製造方法。
(5) In the production method for producing a high carbon steel sheet having small anisotropy and excellent hardenability according to any one of (1) to (4),
(I) The continuous cast slab or the steel ingot having the component composition according to any one of (1) to (4) is heated at 1150 ° C. or higher and 1300 ° C. or lower, and then
(Ii-1) Finish the rough rolling at 1000 ° C. or higher and 1150 ° C. or lower, perform hot rolling with a finish rolling temperature of Ae 3 or higher, and then
(Ii-2) Take an air cooling time of 1 to 10 seconds, cool to a winding temperature at a cooling rate of 10 to 70 ° C./s, and wind at 450 to 650 ° C.
(Ii-3) A method for producing a high carbon steel sheet having small anisotropy and excellent hardenability, characterized by pickling and annealing after winding.

(6)前記焼鈍を、600℃以上Ac1以下の温度で、8時間以上行うことを特徴とする前記(5)に記載の異方性が小さく焼入性に優れた高炭素鋼板の製造方法。 (6) The method for producing a high carbon steel sheet having low anisotropy and excellent hardenability according to (5), wherein the annealing is performed at a temperature of 600 ° C. or higher and Ac 1 or lower for 8 hours or longer. .

(7)前記焼鈍を、Ac1〜Ac1+50℃の温度で行い、その後、5℃/時間以下の冷却速度で、Ac1−30℃の温度以下まで冷却することを特徴とする前記(5)に記載の異方性が小さく焼入性に優れた高炭素鋼板の製造方法。 (7) said annealing is performed at a temperature of Ac 1 ~Ac 1 + 50 ℃, then at 5 ° C. / time less cooling rate above, wherein the cooling to a temperature below the Ac 1 -30 ° C. (5 The method for producing a high carbon steel sheet having small anisotropy and excellent hardenability.

(8)前記焼鈍を、水素95%以上で、かつ、400℃までの露点が−20℃未満、400℃以上の露点が−40℃未満の雰囲気中で行うことを特徴とする前記(5)〜(7)のいずれかに記載の異方性が小さく焼入性に優れた高炭素鋼板の製造方法。   (8) The annealing is performed in an atmosphere of 95% or more of hydrogen, a dew point of up to 400 ° C. of less than −20 ° C., and a dew point of 400 ° C. or more of less than −40 ° C. The manufacturing method of the high carbon steel plate with small anisotropy in any one of-(7), and excellent in hardenability.

(9)前記酸洗の後、焼鈍の前に、高炭素鋼板に、圧下率10%以上の冷間圧延を施すことを特徴とする前記(5)〜(8)のいずれかに記載の異方性が小さく焼入性に優れた高炭素鋼板の製造方法。   (9) After the pickling, before the annealing, the high carbon steel sheet is subjected to cold rolling with a reduction rate of 10% or more, and the difference according to any one of (5) to (8), A method for producing a high-carbon steel sheet having low isotropic and excellent hardenability.

(10)前記圧下率10%以上の冷間圧延を施した高炭素鋼板を焼鈍した後、該高炭素鋼板に、再度、圧下率10%以上の冷間圧延を施し、次いで、前記(6)〜(8)のいずれかに記載の焼鈍を施すことを特徴とする異方性が小さく焼入性に優れた高炭素鋼板の製造方法。   (10) After annealing the high-carbon steel sheet subjected to cold rolling with a rolling reduction of 10% or more, the high-carbon steel sheet is again subjected to cold rolling with a rolling reduction of 10% or more, and then (6) A method for producing a high carbon steel sheet having small anisotropy and excellent hardenability, characterized by performing annealing according to any one of to (8).

本発明によれば、自動車部品の材料として使用する高強度鋼板の異方性を改善し、加工性に優れた鋼板を製造することが可能となる。その結果、自動車部品の製造において、製造工程の簡略化、及び/又は、製造コストの低減が可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to improve the anisotropy of the high strength steel plate used as a material of automobile parts, and to manufacture the steel plate excellent in workability. As a result, in the manufacture of automobile parts, it is possible to simplify the manufacturing process and / or reduce the manufacturing cost.

(O+S+0.033Al)と、極限変形能の異方性(φc/φL)の関係を示す図である。It is a figure which shows the relationship between (O + S + 0.033Al) and the anisotropy ((phi) c / (phi) L) of ultimate deformability. 極限変形能の異方性(φc/φL)に及ぼす非金属介在物及び炭化物の影響を示す図である。It is a figure which shows the influence of a nonmetallic inclusion and carbide | carbonized_material on the anisotropy ((phi) c / (phi) L) of ultimate deformability.

以下に、本発明について詳細に説明する。本発明者らは、前述したように、加工性の異方性は、単に、圧延条件を変更しただけでは低減できず、成分組成とそれに関連する組織制御を、熱間圧延工程まで一貫して最適化することが重要であることを知見した。   The present invention is described in detail below. As described above, the present inventors cannot reduce the anisotropy of workability simply by changing the rolling conditions, and consistently control the component composition and the related structure control up to the hot rolling process. We found that it is important to optimize.

そこで、成分組成の影響を調査することとし、0.54%C−0.2%Si−0.6%Mnを基本の成分組成とし、S、O、及び、Alを変化させた50kg鋼塊を実験室にて真空溶解し、1200℃で加熱した後、100mm厚みから4mmまで圧延した。   Therefore, we decided to investigate the influence of the component composition, 50kg steel ingot with 0.54% C-0.2% Si-0.6% Mn as the basic component composition and S, O and Al changed. Was melted under vacuum in a laboratory, heated at 1200 ° C., and then rolled from 100 mm thickness to 4 mm.

熱間圧延は900℃で終了し、3秒の空冷後、30℃/sで500℃まで冷却して、600℃の炉に1時間保定後、炉冷して巻取りをシミュレートした。熱延板を、酸洗後、水素100%、露点−55℃の雰囲気にて、700℃で24時間焼鈍し、炉冷した鋼板の圧延方向及びその直角方向から、直径3.5mmの丸棒引張試験片を作製して引張試験を行った。   The hot rolling was finished at 900 ° C., air cooled for 3 seconds, cooled to 500 ° C. at 30 ° C./s, held in a furnace at 600 ° C. for 1 hour, and then cooled in the furnace to simulate winding. A hot rolled sheet is pickled, annealed at 700 ° C. for 24 hours in an atmosphere of 100% hydrogen and dew point −55 ° C., and a round bar having a diameter of 3.5 mm from the rolling direction of the steel plate cooled in the furnace and the direction perpendicular thereto. Tensile test pieces were prepared and subjected to a tensile test.

引張試験後の試験片の断面収縮率から、極限変形能を算出し、圧延方向の極限変形能をφL、圧延方向に直角な方向の極限変形能をφcとして、比(φc/φL)と成分組成との関係を調査した。   The ultimate deformability is calculated from the cross-sectional shrinkage of the specimen after the tensile test, the ultimate deformability in the rolling direction is φL, the ultimate deformability in the direction perpendicular to the rolling direction is φc, and the ratio (φc / φL) and components The relationship with composition was investigated.

極限変形能は下式で示される。
極限変形能φ=ln(A0/A)
ここでA0:引張試験前の試験片の断面積
A:引張試験後の破断部の断面積
The ultimate deformability is shown by the following formula.
Ultimate deformability φ = ln (A0 / A)
Where A0: cross-sectional area of the specimen before the tensile test
A: Cross-sectional area of fractured part after tensile test

図1に示すように、極限変形能の異方性(φc/φL)と(O+S+0.033Al)の間には、よい相関関係があり、(O+S+0.033Al)が0.008以下になると、圧延方向に直角な方向の断面収縮率が、圧延方向の断面収縮率に近づき、比率0.9以上となって、異方性が小さくなる。   As shown in FIG. 1, there is a good correlation between the anisotropy of ultimate deformability (φc / φL) and (O + S + 0.033Al). When (O + S + 0.033Al) is 0.008 or less, rolling The cross-sectional shrinkage rate in the direction perpendicular to the direction approaches the cross-sectional shrinkage rate in the rolling direction, becomes a ratio of 0.9 or more, and anisotropy decreases.

この理由は、酸素を低減すると、非金属介在物の総量が減り、また、Alを過剰に添加しないことで、粗大なアルミナ系非金属介在物が低減し、さらに、SによるMnS等の影響が、O及びAlの影響と併せて抑制されたからであるといえる。この知見に従えば、異方性の小さい鋼板を製造することができる。   The reason for this is that when oxygen is reduced, the total amount of non-metallic inclusions is reduced, and by not adding excessive Al, coarse alumina-based non-metallic inclusions are reduced. It can be said that this is because it was suppressed together with the influence of O and Al. If this knowledge is followed, a steel plate with small anisotropy can be manufactured.

また、実機で製造した0.53%C−0.18%Si−0.31%Mn−0.022%P−0.0015%S−0.027%Al−0.0016%Oの成分組成を有するスラブを用いて、成分組成と製造条件の関係を調査した。その結果、極限変形能の異方性に対して、非金属介在物や熱延板焼鈍時の炭化物の存在状態が影響を及ぼすことが判明した。   Moreover, the component composition of 0.53% C-0.18% Si-0.31% Mn-0.022% P-0.0015% S-0.027% Al-0.0016% O manufactured by an actual machine The relationship between the component composition and the production conditions was investigated using a slab having As a result, it has been found that the presence of non-metallic inclusions and carbides during hot-rolled sheet annealing affects the anisotropy of ultimate deformability.

特に、実機で製造したスラブでは、板厚中心部において、鋳造に起因する高C領域が生成したり、Mnの偏析によるパーライトの比率が表層部に比べて多くなり、そのため、焼鈍後の球状化セメンタイトが粗大化したり、MnS等の非金属介在物の存在比率が高くなり易い。   In particular, in a slab manufactured by an actual machine, a high C region resulting from casting is generated at the center of the plate thickness, or the ratio of pearlite due to segregation of Mn is larger than that of the surface layer, so that spheroidization after annealing is performed. Cementite is coarsened and the abundance ratio of non-metallic inclusions such as MnS tends to be high.

そこで、本発明者らは、極限変形能の異方性と、上記炭化物の大きさや、非金属介在物の存在状態との関係を詳細に調査した。その結果、圧延方向に平行な板厚断面内の板厚をtとした時、4/10t〜6/10tの断面において、(x)長さ100μm以上の非金属介在物の面積率が0.1%以下で、(y)1.3μm以上の炭化物の面積率が10%以上になると、極限変形能の異方性(φc/φL)が0.9を下回って異方性が大きくなることが判明した。   Therefore, the present inventors have investigated in detail the relationship between the anisotropy of ultimate deformability, the size of the carbide, and the existence state of non-metallic inclusions. As a result, when the sheet thickness in the sheet thickness section parallel to the rolling direction is t, the area ratio of nonmetallic inclusions having a length of 100 μm or more in the section of 4 / 10t to 6 / 10t is 0. If the area ratio of carbides of 1% or less and (y) 1.3 μm or more is 10% or more, the anisotropy of ultimate deformability (φc / φL) is less than 0.9 and the anisotropy increases. There was found.

粗大な炭化物が多くなるほど、炭化物は、焼入前の加熱時にて溶体化し難くなり、高周波焼入れ等において、熱処理時間を短縮することは難しくなるので、粗大な炭化物の比率を低減することは有効な手法である。   As the amount of coarse carbides increases, carbides are less likely to form a solution during heating before quenching, and it is difficult to shorten the heat treatment time in induction hardening, etc., so it is effective to reduce the proportion of coarse carbides. It is a technique.

図2に、極限変形能の異方性と、炭化物の大きさや、非金属介在物の存在状態との関係を示す。図2から、圧延方向に100μ以上に長く伸びたMnS等の非金属介在物を低減するとともに、粗大炭化物の面積率を一定値以下に保つことが重要であることが解る。   FIG. 2 shows the relationship between the anisotropy of ultimate deformability, the size of carbides, and the existence state of nonmetallic inclusions. From FIG. 2, it is understood that it is important to reduce the non-metallic inclusions such as MnS extending in the rolling direction to 100 μm or more and to keep the area ratio of coarse carbides below a certain value.

さらに、成分組成の影響について調査したところ、上記炭化物の径は、C量と相関し、上記炭化物の臨界径(B)は、次式で求めることができることが判明した。その結果、C量に応じて、影響を及ぼす炭化物の径を求めることができるようになった。
B値(μm)=1.5×C%+0.5
Furthermore, when the influence of the component composition was investigated, it was found that the diameter of the carbide correlates with the amount of C, and the critical diameter (B) of the carbide can be obtained by the following equation. As a result, it has become possible to determine the diameter of the influential carbide according to the amount of C.
B value (μm) = 1.5 × C% + 0.5

上記介在物及び炭化物の測定は、圧延方向に平行な板厚断面組織を観察して行う。非金属介在物については、研磨したままの状態を、光学顕微鏡を用いて100〜1000倍で観察し、その面積率を求めた。炭化物については、ナイタールエッチング液で軽くエッチングし、走査型電子顕微鏡(SEM)にて、板厚4/10t〜6/10tの領域を、1000〜3000倍で、10〜20枚撮影し、画像解析装置で面積率を求めた。   The inclusions and carbides are measured by observing a plate thickness cross-sectional structure parallel to the rolling direction. About the nonmetallic inclusion, the state as grind | polished was observed by 100 to 1000 times using the optical microscope, and the area ratio was calculated | required. For carbide, lightly etched with a nital etchant, and a scanning electron microscope (SEM), 10 to 20 shots were taken at 1000 to 3000 times in an area with a plate thickness of 4 / 10t to 6 / 10t. The area ratio was obtained with an analyzer.

まず、本発明の熱延鋼板(以下「本発明鋼板」ということがある。)の成分組成に係る限定理由について説明する。なお、「%」は「質量%」を意味する。   First, the reason for limitation related to the component composition of the hot-rolled steel sheet of the present invention (hereinafter sometimes referred to as “the present steel sheet”) will be described. “%” Means “% by mass”.

C:0.2超〜0.70%
Cは、鋼板の強度を確保するために重要な元素であるが、本発明が対象とする自動車部材は、部品加工後に焼入れ焼戻しを行うことが必要であるので、焼入性及び焼入れ後の硬度の観点から、0.2超%必要である。必要とする硬度に応じ、C量を増加するが、0.70%を超えると、焼入れ時の割れや、部品組み立て時の溶接部での割れが顕著となるので、上限は0.70%とした。好ましくは0.2〜0.6%である。
C: Over 0.2 to 0.70%
C is an important element for securing the strength of the steel sheet. However, since the automobile member targeted by the present invention requires quenching and tempering after parts processing, hardenability and hardness after quenching are required. From the viewpoint of, it is necessary to exceed 0.2%. Depending on the required hardness, the amount of C is increased, but if it exceeds 0.70%, cracks during quenching and cracks at the welded parts during assembly become prominent, so the upper limit is 0.70%. did. Preferably it is 0.2 to 0.6%.

Si:0.01〜0.8%
Siは、固溶強化元素であり、比較的安価に、鋼板の強度を上昇させることができる。また、Siは、スケール疵との関係から微量の添加が必要であるので、0.01%以上添加するが、0.8%を超えて添加しても、添加効果が飽和するだけであるので、Siは、0.01〜0.8%とした。好ましくは0.05〜0.6%である。
Si: 0.01 to 0.8%
Si is a solid solution strengthening element and can increase the strength of the steel sheet relatively inexpensively. In addition, Si needs to be added in a very small amount due to the relationship with scale wrinkles, so 0.01% or more is added, but adding more than 0.8% only saturates the addition effect. , Si was set to 0.01 to 0.8%. Preferably it is 0.05 to 0.6%.

Mn:0.1〜2.0未満%
Mnは、固溶強化元素であり、また、焼入性向上元素であり、鋼板の熱処理条件等の関係で、熱延鋼板に所望の高張力を確保するために重要な元素である。Mnが0.1%未満では、必要な強度や焼入性を確保するために、他の元素の添加が必要となり、コスト高となり、一方、2.0%を超えて添加しても、強度や、焼入性が飽和するだけであるので、Mnは、0.1〜2.0%とした。好ましくは0.3〜1.5%である。
Mn: 0.1 to less than 2.0%
Mn is a solid solution strengthening element and a hardenability improving element, and is an important element for ensuring a desired high tension in the hot-rolled steel sheet in relation to the heat treatment conditions of the steel sheet. If Mn is less than 0.1%, it is necessary to add other elements in order to ensure the required strength and hardenability, resulting in high costs. On the other hand, even if added over 2.0%, the strength Or, since the hardenability is only saturated, Mn is set to 0.1 to 2.0%. Preferably it is 0.3 to 1.5%.

P:0.003〜0.030%
Pは、固溶強化元素であり、比較的安価に鋼板の強度を上昇させることができる元素であるが、焼入れ焼戻し後の靱性の観点から、過剰に添加することは好ましくないので、Pは、0.03%以下とした。精錬の観点で、Pを0.003%未満に低減することはコストの上昇を招くので、Pは、0.003〜0.030%とした。
P: 0.003-0.030%
P is a solid solution strengthening element and is an element that can increase the strength of the steel sheet relatively inexpensively. However, from the viewpoint of toughness after quenching and tempering, it is not preferable to add P excessively. 0.03% or less. From the viewpoint of refining, reducing P to less than 0.003% causes an increase in cost, so P was made 0.003 to 0.030%.

S:0.0001〜0.008%
Sは、冷間で成形する鋼板においては、延性や靭性を低下させる原因となり、特に、異方性を大きくするMnS量を低減する観点からも、低減する必要があるので、0.008%以下とした。Sを、0.0001%未満に低減することは、精錬コストを大幅に上昇させるので、Sは、0.0001〜0.008%とした。好ましくは0.0001〜0.003%である。
S: 0.0001 to 0.008%
S is a cause of lowering ductility and toughness in a steel sheet that is cold-formed, and in particular, from the viewpoint of reducing the amount of MnS that increases anisotropy, it needs to be reduced, so 0.008% or less. It was. Reducing S to less than 0.0001% significantly increases the refining cost, so S was made 0.0001 to 0.008%. Preferably it is 0.0001 to 0.003%.

Al:0.005〜0.07%
Alは、鋼の脱酸のために添加する元素であるが、0.005%未満では、脱酸効果が十分でなく、一方、0.07%を超えて含有させても、脱酸効果は飽和するだけでなく、湾曲型の連続鋳造時における鋳片曲げ矯正時、AlNの析出による割れを助長し、かつ、経済的に不利になるので、Alは、0.005〜0.07%とした。好ましくは0.01〜0.04%である。
Al: 0.005 to 0.07%
Al is an element added for deoxidation of steel. However, if it is less than 0.005%, the deoxidation effect is not sufficient. On the other hand, even if it exceeds 0.07%, the deoxidation effect is not enough. Not only is it saturated, but also at the time of slab bending correction during curved continuous casting, it promotes cracking due to precipitation of AlN and is economically disadvantageous, so Al is 0.005 to 0.07% did. Preferably it is 0.01 to 0.04%.

N:0.0001〜0.02%
Nは、湾曲型の連続鋳造時における鋳片曲げ矯正時に、窒化物として析出すると、鋳片の割れの原因となるので、Nは、0.02%以下とした。Nを、0.0001%未満に低減することは、精錬コストの上昇を招くので、Nは、0.0001〜0.02%とした。
N: 0.0001 to 0.02%
When N precipitates as a nitride during slab bending correction during curved-type continuous casting, it causes cracking of the slab, so N is set to 0.02% or less. Reducing N to less than 0.0001% increases the refining cost, so N is set to 0.0001 to 0.02%.

O:0.0001〜0.0030%
Oは、一部、酸化物として存在するので、冷間での加工性に影響し、延性や靭性を低下させる原因となる。O量が増大すると、介在物も大きくなり、介在物が凝集すると、著しく延性が低下する。Oは、極力、低減することが望ましいので、0.0030%とするが、不可避的に、0.0001%以上は存在するので、Oは、0.0001〜0.0030%とした。本発明では、下記式を満足することで加工性の低下を抑制することができる。
A値=O+S+0.033Al≦0.008
O: 0.0001 to 0.0030%
Since O partially exists as an oxide, it affects the workability in the cold and causes the ductility and toughness to decrease. Increasing the amount of O also increases the inclusions, and when the inclusions aggregate, the ductility is significantly reduced. Since O is desirably reduced as much as possible, it is set to 0.0030%, but unavoidably 0.0001% or more exists, so O was set to 0.0001 to 0.0030%. In this invention, the fall of workability can be suppressed by satisfying the following formula.
A value = O + S + 0.033Al ≦ 0.008

Nb:0.003〜0.1%
Nbは、鋼板の強度を高めるとともに、細粒化作用によって、鋼板の靱性を改善する元素であり、選択元素として添加する。Nbが0.003%未満では、添加効果が十分に現れず、一方、0.1%を超えると、添加効果は飽和し、経済的に不利となり、また、熱間圧延時の再結晶挙動が遅延するので、Nbは、0.003〜0.1%とした。
Nb: 0.003 to 0.1%
Nb is an element that increases the strength of the steel sheet and improves the toughness of the steel sheet by the fine graining action, and is added as a selective element. If Nb is less than 0.003%, the effect of addition does not sufficiently appear. On the other hand, if it exceeds 0.1%, the effect of addition becomes saturated and economically disadvantageous, and the recrystallization behavior during hot rolling is not good. Because of the delay, Nb was set to 0.003 to 0.1%.

Ti:0.001〜0.05%
Tiは、N固定の観点から、必要に応じ添加する。Tiは、鋳片の脆化や材質の安定化に寄与するが、0.05%を超えると、添加効果は飽和し、一方、0.001%未満では、添加効果が得られないので、Tiは、0.001〜0.05%とした。
Ti: 0.001 to 0.05%
Ti is added as necessary from the viewpoint of N fixation. Ti contributes to embrittlement of the slab and stabilization of the material, but if it exceeds 0.05%, the effect of addition is saturated, while if it is less than 0.001%, the effect of addition cannot be obtained. Was 0.001 to 0.05%.

V:0.001〜0.05%
Vは、炭窒化物の析出により、熱延鋼板を強化するため、必要に応じ添加する。0.001%未満では、添加効果が小さく、一方、0.05%を超えると、添加効果は飽和するので、Vは、0.001〜0.05%とした。
V: 0.001 to 0.05%
V is added as necessary to strengthen the hot-rolled steel sheet by precipitation of carbonitride. If it is less than 0.001%, the effect of addition is small. On the other hand, if it exceeds 0.05%, the effect of addition is saturated, so V is set to 0.001 to 0.05%.

Ta:0.01〜0.5%
Taは、Nb、Vと同様に、炭窒化物を形成し、結晶粒の粗大化防止や靭性改善等に有効な元素であり、必要に応じて添加する。0.01%未満では、添加効果が小さく、一方、0.5%を超えると、添加効果が飽和し、また、コスト増や過剰な炭化物形成による再結晶の遅延等が生じて、異方性が増大するので、Taは、0.01〜0.5%とする。
Ta: 0.01 to 0.5%
Ta, like Nb and V, forms carbonitrides and is an element effective for preventing coarsening of crystal grains and improving toughness, and is added as necessary. If the content is less than 0.01%, the effect of addition is small. On the other hand, if the content exceeds 0.5%, the effect of addition is saturated, and the recrystallization is delayed due to an increase in cost or excessive carbide formation. Therefore, Ta is set to 0.01 to 0.5%.

W:0.01〜0.5%
Wは、Nb、V、Taと同様に、炭窒化物を形成し、結晶粒の粗大化防止や靭性の改善等に有効な元素であり、必要に応じて添加する。0.01%未満では、添加効果が小さく、一方、0.5%を超えると、添加効果が飽和し、また、コスト増や、過剰な炭化物形成による再結晶の遅延等が生じて、異方性が増大するので、Wは、0.01〜0.5%とした。
W: 0.01-0.5%
W, like Nb, V, and Ta, is an element that forms carbonitride and is effective in preventing coarsening of crystal grains and improving toughness, and is added as necessary. If the content is less than 0.01%, the effect of addition is small. On the other hand, if the content exceeds 0.5%, the effect of addition is saturated, and the cost is increased and recrystallization is delayed due to excessive carbide formation. Since W increases, W was made 0.01 to 0.5%.

Cr:0.1〜2.0%
Crは、鋼板の強化に有効であり、特に、Mnの代替元素として使うことが可能な元素であり、選択元素として添加する。0.1%未満では、添加効果がなく、一方、2.0%を超えると、添加効果が飽和するので、Crは、0.1〜2.0%とした。
Cr: 0.1 to 2.0%
Cr is effective for strengthening steel sheets, and is an element that can be used as an alternative element for Mn, and is added as a selective element. If it is less than 0.1%, there is no effect of addition, whereas if it exceeds 2.0%, the effect of addition is saturated, so Cr was made 0.1 to 2.0%.

Ni:0.01〜1.0%
Niは、鋼板の靭性や強化に有効な元素であり、選択元素として添加する。0.01%未満では、添加効果がなく、一方、1.0%を超えると、添加効果が飽和するので、Niは、0.01〜1.0%とした。
Ni: 0.01 to 1.0%
Ni is an element effective for toughness and strengthening of the steel sheet, and is added as a selective element. If it is less than 0.01%, there is no effect of addition. On the other hand, if it exceeds 1.0%, the effect of addition is saturated, so Ni was made 0.01 to 1.0%.

Cu:0.01〜1.0%
Cuは、Cr、Niと同様に、鋼板の強度確保に有効な元素であり、選択元素として添加する。0.01%未満では、添加効果がなく、一方、1.0%を超えると、添加効果が飽和するので、Cuは、0.01〜1.0%とした。
Cu: 0.01 to 1.0%
Cu, like Cr and Ni, is an element effective for securing the strength of the steel sheet, and is added as a selective element. If it is less than 0.01%, there is no effect of addition. On the other hand, if it exceeds 1.0%, the effect of addition is saturated, so Cu was made 0.01 to 1.0%.

Mo:0.005〜0.5%
Moは、組織強化や靭性改善に効果的な元素であり、選択元素として添加する。0.005%未満では、添加効果は小さく、一方、0.5%を超えると、添加効果は飽和するので、Moは、0.001〜0.05%とした。
Mo: 0.005-0.5%
Mo is an element effective for strengthening the structure and improving toughness, and is added as a selective element. If it is less than 0.005%, the effect of addition is small. On the other hand, if it exceeds 0.5%, the effect of addition is saturated, so Mo was made 0.001 to 0.05%.

B:0.0005〜0.01%
Bは、微量の添加で、焼入性を向上させるので、高価な合金元素を低減して、コストを下げるのに有効な元素であり、必要に応じて添加する。0.0005%未満では、添加効果がなく、一方、0.01%を超えると、鋳造性が低下し鋳片の割れを助長するので、Bは、0.0005〜0.01%とした。
B: 0.0005 to 0.01%
B is hard to improve hardenability when added in a small amount. Therefore, B is an element effective in reducing expensive alloy elements and lowering costs, and is added as necessary. If it is less than 0.0005%, there is no effect of addition. On the other hand, if it exceeds 0.01%, the castability deteriorates and promotes cracking of the slab, so B is set to 0.0005 to 0.01%.

Mg:0.0005〜0.003%
Mgは、微量の添加で、酸化物、硫化物の形態制御に有効な元素であり、必要に応じて添加する。0.0005%未満では、添加効果は得られず、一方、0.003%を超えると、添加効果は飽和するので、Mgは、0.0005〜0.003%とした。
Mg: 0.0005 to 0.003%
Mg is an element that is effective for controlling the form of oxides and sulfides in a small amount, and is added as necessary. If it is less than 0.0005%, the effect of addition cannot be obtained. On the other hand, if it exceeds 0.003%, the effect of addition is saturated, so Mg was made 0.0005 to 0.003%.

Ca:0.0005〜0.003%
Caは、Mgと同様に、微量の添加で、酸化物、硫化物の形態制御に有効な元素であり、必要に応じて添加する。0.0005%未満では、添加効果は得られず、一方、0.003%を超えると、添加効果は飽和するので、Caは、0.0005〜0.003%とした。
Ca: 0.0005 to 0.003%
Ca, like Mg, is an element that is effective for controlling the form of oxides and sulfides with a small amount of addition, and is added as necessary. If it is less than 0.0005%, the effect of addition cannot be obtained. On the other hand, if it exceeds 0.003%, the effect of addition is saturated, so Ca is set to 0.0005 to 0.003%.

Y:0.001〜0.03%
Yは、Ca、Mgと同様に、酸化物、硫化物の形態制御に有効な元素であり、必要に応じて添加する。0.001%未満では、添加効果は得られず、一方、0.03%を超えると、添加効果は飽和し、鋳造性が劣化するので、Yは、0.001〜0.03%とした。
Y: 0.001 to 0.03%
Y, like Ca and Mg, is an element effective for controlling the form of oxides and sulfides, and is added as necessary. If it is less than 0.001%, the effect of addition cannot be obtained. On the other hand, if it exceeds 0.03%, the effect of addition is saturated and the castability deteriorates, so Y is set to 0.001 to 0.03%. .

Zr:0.001〜0.03%
Zrは、Y、Ca、Mgと同様に、酸化物、硫化物の形態制御に有効な元素であり、必要に応じて添加する。0.001%未満では、添加効果は得られず、一方、0.03%を超えると、添加効果は飽和し、鋳造性が劣化するので、Zrは、0.001〜0.03%とした。
Zr: 0.001 to 0.03%
Zr is an element effective for controlling the form of oxides and sulfides, as with Y, Ca, and Mg, and is added as necessary. If it is less than 0.001%, the effect of addition cannot be obtained. On the other hand, if it exceeds 0.03%, the effect of addition is saturated and the castability deteriorates, so Zr is set to 0.001 to 0.03%. .

La:0.001〜0.03%
Laは、Zr、Y、Ca、Mgと同様に、酸化物、硫化物の形態制御に有効な元素であり、必要に応じて添加する。0.001%未満では、添加効果は得られず、一方、0.03%を超えると、添加効果は飽和し、鋳造性が劣化するので、Laは、0.001〜0.03%とした。
La: 0.001 to 0.03%
La, like Zr, Y, Ca, and Mg, is an element effective for controlling the form of oxides and sulfides, and is added as necessary. If it is less than 0.001%, the effect of addition cannot be obtained. On the other hand, if it exceeds 0.03%, the effect of addition is saturated and castability deteriorates, so La is set to 0.001 to 0.03%. .

Ce:0.001〜0.03%
Ceは、La、Zr、Y、Ca、Mgと同様に、酸化物、硫化物の形態制御に有効な元素であり、必要に応じて添加する。0.001%未満では、添加効果は得られず、一方、0.03%を超えると、添加効果は飽和し、鋳造性が劣化するので、Ceは、0.001〜0.03%とした。
Ce: 0.001 to 0.03%
Ce, like La, Zr, Y, Ca, and Mg, is an element effective for controlling the form of oxides and sulfides, and is added as necessary. If it is less than 0.001%, the effect of addition cannot be obtained. On the other hand, if it exceeds 0.03%, the effect of addition is saturated and the castability deteriorates, so Ce is set to 0.001 to 0.03%. .

その他の元素については、特に規定しないが、Sn、Sb、Zn、Zr、As等の元素がスクラップから不可避的不純物として混入する場合がある。これらの元素が、不純物量程度の量で混入しても、本発明鋼の特性に著しい影響を与えない。   Other elements are not particularly defined, but elements such as Sn, Sb, Zn, Zr, As may be mixed as inevitable impurities from scrap. Even if these elements are mixed in an amount of about the amount of impurities, the characteristics of the steel of the present invention are not significantly affected.

以下に、本発明鋼板を製造する方法(以下「本発明製造方法」ということがある。)について説明する。   Below, the method (henceforth "the manufacturing method of this invention") which manufactures this invention steel plate is demonstrated.

本発明製造方法は、本発明の成分組成を満たす連続鋳造鋳片又は鋼塊を、直接、又は、冷却後に、加熱炉に装入し、(i)1150℃以上に加熱し、次いで、(ii-1)粗圧延を1000℃以上で終了し、仕上温度をAe3以上とする熱間圧延を行い、その後、(ii-2)1〜10秒の空冷時間をとり、10〜70℃/sの冷却速度で巻取温度まで冷却して400〜650℃で巻き取り、(ii-3)巻取り後、酸洗、焼鈍することを特徴とする。 In the production method of the present invention, a continuous cast slab or a steel ingot satisfying the composition of the present invention is charged directly or after cooling into a heating furnace, (i) heated to 1150 ° C. or higher, and (ii -1) Finish the rough rolling at 1000 ° C. or higher, perform hot rolling with a finishing temperature of Ae 3 or higher, and then (ii-2) take an air cooling time of 1 to 10 seconds to obtain 10 to 70 ° C./s The steel sheet is cooled to a coiling temperature at a cooling rate of 4 to 650 ° C. and (ii-3) picked and annealed after winding.

熱間圧延に供する連続鋳造鋳片又は鋼塊は、1150℃以上1300℃以下で加熱する。加熱温度が1150℃未満(低温加熱)であると、熱間圧延時の圧延温度が低下し、粗圧延時の再結晶挙動や、連続熱間圧延後の空冷中での再結晶挙動が進行せず、鋼板組織中に展伸粒が残存して、異方性が増大する。   The continuous cast slab or steel ingot used for hot rolling is heated at 1150 ° C or higher and 1300 ° C or lower. When the heating temperature is less than 1150 ° C. (low temperature heating), the rolling temperature during hot rolling decreases, and the recrystallization behavior during rough rolling and the recrystallization behavior during air cooling after continuous hot rolling proceed. However, expanded grains remain in the steel sheet structure and anisotropy increases.

したがって、連続鋳造鋳片又は鋼塊の加熱温度は1150℃以上とするが、加熱温度が1300℃を超えると、結晶粒が粗大化し、異方性が増大するので、加熱温度は、1300℃以下が好ましい。好ましい加熱温度範囲は1150〜1270℃である。   Therefore, the heating temperature of the continuous cast slab or the steel ingot is 1150 ° C. or higher, but if the heating temperature exceeds 1300 ° C., crystal grains become coarse and anisotropy increases, so the heating temperature is 1300 ° C. or lower. Is preferred. A preferable heating temperature range is 1150 to 1270 ° C.

なお、連続鋳造鋳片又は鋼塊を、直接、又は、再加熱して熱間圧延に供する場合、熱間圧延は、通常の熱間圧延でもよく、仕上圧延にてスラブを接合する連続熱間圧延でもよく、鋼板の特性に差は殆ど生じない。   In addition, when continuously cast slabs or steel ingots are directly or reheated and subjected to hot rolling, the hot rolling may be normal hot rolling, or continuous hot joining the slab by finish rolling. It may be rolled, and there is almost no difference in the properties of the steel sheet.

本発明製造方法においては、圧延による異方性を低減するため、熱間圧延中の再結晶挙動を活用することが望ましい。通常のリバース圧延において、5パス以上行う粗圧延での再結晶挙動を促進するため、粗圧延の終了温度を1000℃以上とし、仕上圧延前の再結晶により、異方性の低減を行う。粗圧延の終了温度が1000℃未満であると、再結晶後の粒成長が不十分となり、仕上圧延開始時の長手方向の組織に不均一が生じ、異方性にばらつきが生じる。   In the production method of the present invention, it is desirable to utilize the recrystallization behavior during hot rolling in order to reduce the anisotropy due to rolling. In normal reverse rolling, in order to promote recrystallization behavior in rough rolling performed for 5 passes or more, the end temperature of rough rolling is set to 1000 ° C. or more, and anisotropy is reduced by recrystallization before finish rolling. When the end temperature of the rough rolling is less than 1000 ° C., the grain growth after recrystallization becomes insufficient, the longitudinal structure at the start of finish rolling becomes uneven, and the anisotropy varies.

粗圧延の終了温度は、再結晶の観点から、高いほど望ましいが、高すぎると、再結晶後の結晶粒成長が顕著となりすぎるので、逆に、粒径が粗大化する。粒径が粗大化しすぎると、仕上げ圧延時の展伸粒の発達等に悪影響を及ぼすので、1150℃以下で、粗圧延を終了することが必要である。粗圧延の終了温度は、1000〜1100℃が好ましい。   The higher the end temperature of the rough rolling, the better from the viewpoint of recrystallization. However, when the temperature is too high, crystal grain growth after recrystallization becomes excessively significant, and conversely, the grain size becomes coarse. If the particle size is too coarse, it adversely affects the development of expanded grains during finish rolling, and therefore it is necessary to finish rough rolling at 1150 ° C. or lower. The end temperature of rough rolling is preferably 1000 to 1100 ° C.

仕上圧延において、仕上圧延温度を、Ae3以上として、再結晶を促進する。Ar3を、圧延終了温度の目安とした場合、オーステナイト組織で圧延を終了しても、組織が過冷状態にあると、再結晶が十分に進行せず、異方性が助長される。それ故、本発明製造方法では、連続熱間圧延の終了温度をAe3以上とし、再結晶の進行状況との兼ね合いで1〜10秒の空冷時間をとり、次いで、冷却する。空冷時間が10秒を超えると、鋼板温度の低下が著しくなり、再結晶挙動が緩慢となり、異方性改善効果が飽和する。 In finish rolling, recrystallization is promoted by setting the finish rolling temperature to Ae 3 or higher. When Ar 3 is used as a standard for the rolling end temperature, even if rolling is finished with an austenite structure, if the structure is in an undercooled state, recrystallization does not proceed sufficiently and anisotropy is promoted. Therefore, in the production method of the present invention, the end temperature of continuous hot rolling is set to Ae 3 or more, an air cooling time of 1 to 10 seconds is taken in consideration of the progress of recrystallization, and then cooling is performed. When the air cooling time exceeds 10 seconds, the temperature of the steel sheet is remarkably lowered, the recrystallization behavior becomes slow, and the anisotropy improving effect is saturated.

空冷後、鋼板を、冷却速度10〜70℃/sで冷却し、450〜650℃で巻き取るが、冷却速度が10℃/s未満では、粗大なフェライトと粗大なパーライトが生成して、焼鈍後の炭化物が粗大になり、塑性変形能自体が低下して、極限変形能の異方性が大きくなるので、冷却速度は10℃/s以上とする。   After air cooling, the steel sheet is cooled at a cooling rate of 10 to 70 ° C./s and wound at 450 to 650 ° C. When the cooling rate is less than 10 ° C./s, coarse ferrite and coarse pearlite are generated and annealed. Subsequent carbides become coarse, the plastic deformability itself decreases, and the anisotropy of the ultimate deformability increases, so the cooling rate is set to 10 ° C./s or more.

冷却速度が70℃/s超であると、鋼板の幅方向において冷却むらが生じる。特に、熱延鋼板のエッジ近傍が過冷されて硬質化して、熱延鋼板の材質にばらつきが生じ、鋼板エッジのトリム作業が必要になり、歩留まりが低下するので、冷却速度は70℃/s以下とする。   When the cooling rate is more than 70 ° C./s, uneven cooling occurs in the width direction of the steel sheet. In particular, the vicinity of the edge of the hot-rolled steel sheet is supercooled and hardened, causing variations in the material of the hot-rolled steel sheet, requiring trimming of the steel sheet edge, and reducing the yield, so the cooling rate is 70 ° C./s. The following.

熱延鋼板の冷却後の巻取りは、450〜650℃で行う。巻取温度が450℃未満であると、マルテンサイト変態が生じて、鋼板強度が上昇し、加工性が低下するとともに、巻戻し時のハンドリングが困難になる。   Winding after the hot-rolled steel sheet is cooled is performed at 450 to 650 ° C. When the coiling temperature is less than 450 ° C., martensitic transformation occurs, the steel sheet strength increases, the workability decreases, and handling during rewinding becomes difficult.

一方、巻取温度が650℃を超えると、フェライト変態時に排出されたCが、オーステナイト中に濃縮し、フェライトと炭化物が濃縮したパーライト組織が生成し、焼鈍後の炭化物の分布が不均一となり、塑性変形能にばらつきが生じるので、巻取温度は650℃以下にする。   On the other hand, when the coiling temperature exceeds 650 ° C., C discharged during ferrite transformation is concentrated in austenite, and a pearlite structure in which ferrite and carbide are concentrated is generated, and the distribution of carbide after annealing becomes non-uniform, Since the plastic deformability varies, the winding temperature is set to 650 ° C. or lower.

また、巻き取った熱延鋼板は、その後、製品板厚や必要な軟質化レベルに応じて、酸洗が施され、次いで、焼鈍や、冷間圧延が施される。その際の条件について説明する。   The wound hot-rolled steel sheet is then pickled according to the product sheet thickness and the required softening level, and then subjected to annealing and cold rolling. The conditions at that time will be described.

熱延鋼板を巻き取った後、該鋼板に酸洗を施し、次いで、焼鈍を施して、パーライト組織を球状化し、軟質化させる。焼鈍は、600℃以上で8時間以上、行うことが必要である。この焼鈍により、炭化物の球状化を進めるとともに、フェライト粒の粒成長を促して、軟質化を行う。焼鈍温度が600℃未満、又は、焼鈍時間が8時間未満であると、炭化物の球状化やフェライト粒の成長が進まず、加工性を確保することができない。   After winding the hot-rolled steel sheet, the steel sheet is pickled and then annealed to spheroidize and soften the pearlite structure. The annealing needs to be performed at 600 ° C. or more for 8 hours or more. By this annealing, spheroidization of the carbide is promoted and ferrite grain growth is promoted to soften. If the annealing temperature is less than 600 ° C. or the annealing time is less than 8 hours, carbide spheroidization or ferrite grain growth does not proceed and workability cannot be ensured.

焼鈍時間の上限は、鋼種により異なるので、特定の時間に限定できないが、焼鈍時間が長すぎると、軟質化は進むものの、炭化物が粗大になり、極限変形能が低下する。そのため、実用上、焼鈍温度が600℃以上の場合、焼鈍時間は200時間以下が好ましい。   Since the upper limit of the annealing time varies depending on the steel type, it cannot be limited to a specific time. However, if the annealing time is too long, the softening progresses, but the carbide becomes coarse and the ultimate deformability decreases. Therefore, practically, when the annealing temperature is 600 ° C. or higher, the annealing time is preferably 200 hours or less.

焼鈍、Ac1以下の温度で行うのが好ましいが、設備的に高温加熱や冷却制御が可能であれば、短時間で、より軟質化を進めるため、Ac1以上の温度で高温焼鈍を施すことも可能である。なお、Ac1以上で行う高温焼鈍については後述する。 Annealing is preferably performed at a temperature of Ac 1 or lower, but if high-temperature heating or cooling control is possible in equipment, high-temperature annealing is performed at a temperature of Ac 1 or higher in order to promote softening in a short time. Is also possible. The high temperature annealing performed at Ac 1 or higher will be described later.

焼鈍雰囲気は、窒素を主体とする雰囲気でも可能であるが、水素を95%以上含む雰囲気が好ましいが、鋼材に要求される軟質化レベルと、焼入性を考慮して、雰囲気を選択することが可能である。   The annealing atmosphere can be an atmosphere mainly composed of nitrogen, but an atmosphere containing 95% or more of hydrogen is preferable, but the atmosphere should be selected in consideration of the softening level required for the steel material and hardenability. Is possible.

ただし、焼入性の観点からBを添加した成分組成の鋼板を、窒素を主体とする雰囲気中で焼鈍すると、吸窒により、鋼板表層部の焼入性が劣化する可能性があるので、B含有鋼板を焼鈍する場合は、水素を95%以上含む雰囲気、望ましくは100%水素を用いるのが好ましい。   However, from the viewpoint of hardenability, if the steel sheet having the component composition to which B is added is annealed in an atmosphere mainly composed of nitrogen, the hardenability of the steel sheet surface layer portion may be deteriorated due to nitrogen absorption. When annealing the steel sheet, it is preferable to use an atmosphere containing 95% or more of hydrogen, desirably 100% hydrogen.

水素を主体とする雰囲気で焼鈍する場合、昇温時、安全性の観点から、雰囲気を、一旦、窒素主体の雰囲気にし、その後、水素で置換して昇温するが、400℃までは、露点を−20℃以下とし、400℃以上及び保定時には、露点を−40℃以下にする。   In the case of annealing in an atmosphere mainly composed of hydrogen, from the viewpoint of safety at the time of raising the temperature, the atmosphere is temporarily changed to an atmosphere mainly composed of nitrogen, and then the temperature is increased by substituting with hydrogen. Is −20 ° C. or lower, and the dew point is −40 ° C. or lower at 400 ° C. or higher and during holding.

このことは、鋼板の表層部の酸化による固溶Bの低減や、脱炭による表層部の成分組成の変動を防止する観点から重要である。焼入性向上のためBを添加した鋼材では、軟質化のため、660℃以上で焼鈍するが、雰囲気の露点は−40℃以下とする。   This is important from the viewpoint of reducing the solid solution B due to oxidation of the surface layer portion of the steel plate and preventing fluctuations in the composition of the surface layer portion due to decarburization. In order to improve the hardenability, the steel added with B is annealed at 660 ° C. or higher for softening, but the dew point of the atmosphere is −40 ° C. or lower.

本発明製造方法は、以下に説明するように、種々の態様をとることができる。   The manufacturing method of the present invention can take various modes as described below.

冷間圧延は、製品板厚を確保するためや、焼鈍と組み合わせて軟質化を効率的に実施するために用いるが、圧下率が10%以上であると、炭化物の球状化が促進され、核生成を伴わない再結晶や、再結晶完了時の粒成長で結晶粒の粗大化が起こり易く、軟質化が促進される。   Cold rolling is used to secure the product thickness and to efficiently perform softening in combination with annealing. When the rolling reduction is 10% or more, the spheroidization of carbide is promoted, The recrystallization without generation and the grain growth upon completion of recrystallization are likely to cause the coarsening of the crystal grains, and the softening is promoted.

圧下率の上限は特に定めないが、圧下率が60%を超えると、冷間圧延による鋼板組織の均一性が、さらに向上するが、一方、焼鈍時の再結晶粒が微細になり、軟質化のために、長時間、焼鈍しなければならず、また、冷間圧延で生じた異方性が発達するので、圧下率は、60%以下が好ましい。ただし、圧下率は、製造コストと特性の均質化の観点から適宜決定する。   The upper limit of the rolling reduction is not particularly defined, but if the rolling reduction exceeds 60%, the uniformity of the steel sheet structure by cold rolling is further improved, but on the other hand, the recrystallized grains during annealing become finer and softened. For this reason, it must be annealed for a long time, and the anisotropy produced by cold rolling develops, so the rolling reduction is preferably 60% or less. However, the rolling reduction is appropriately determined from the viewpoint of manufacturing cost and homogenization of characteristics.

本発明製造方法においては、上記焼鈍の後、鋼板に、再度、圧下率10%以上の冷間圧延を施し、次いで、再度、焼鈍を施してもよい。   In the manufacturing method of the present invention, after the annealing, the steel sheet may be cold-rolled again with a reduction rate of 10% or more, and then annealed again.

前述したように、本発明では、焼鈍設備が高温焼鈍やその後の冷却制御が可能であれば、水素を95%以上含む雰囲気中で、鋼板に焼鈍を施す場合、Ac1〜Ac1+50℃の温度で焼鈍し、焼鈍後、5℃/hr以下の冷却速度で、Ac1−30℃まで緩冷却する。 As described above, in the present invention, if the annealing equipment is capable of high-temperature annealing and subsequent cooling control, when the steel sheet is annealed in an atmosphere containing hydrogen of 95% or more, the range of Ac 1 to Ac 1 + 50 ° C. annealing at a temperature, after annealing, following cooling rate 5 ° C. / hr, to slow cooling to Ac 1 -30 ° C..

Ac1〜Ac1+50℃の温度で焼鈍する理由は、フェライト相とオーステナイト相を共存する温度範囲とし、フェライト相に炭化物を残存させるためである。上記温度範囲より温度を上げて、焼鈍温度がオーステナイト単相域に近くなると、冷却時のパーライト変態を防止できず、硬質化させてしまう可能性があるので、上記温度範囲で焼鈍する。 The reason for annealing at a temperature of Ac 1 ~Ac 1 + 50 ℃ is a temperature range which coexist ferrite phase and austenite phase, in order to leave the carbide in the ferrite phase. If the temperature is raised from the above temperature range and the annealing temperature is close to the austenite single phase region, the pearlite transformation during cooling cannot be prevented and it may be hardened, so annealing is performed in the above temperature range.

焼鈍後、5℃/hr以下の冷却速度で、Ac1−30℃まで緩冷却する理由は、上記焼鈍時に、フェライト相に存在する炭化物を起点として炭化物の球状化を促進、フェライト粒のオーステナイト相への成長を進展させ、軟質化を進めるためである。 The reason for slow cooling to Ac 1 -30 ° C. at a cooling rate of 5 ° C./hr or less after annealing is to promote carbide spheroidization starting from the carbides present in the ferrite phase during the annealing, and the austenite phase of ferrite grains This is in order to promote growth and further softening.

冷却速度が5℃/hr以下より速いと、冷却時に、パーライト変態が生じて硬質化したり、フェライト相のオーステナイト相への粒成長が進まないで、軟質化しないからである。   When the cooling rate is faster than 5 ° C./hr or less, pearlite transformation occurs during cooling, and it hardens, and the grain growth of the ferrite phase to the austenite phase does not proceed, so that it does not soften.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例)
表1及び表2(表1の続き)に示す成分組成を有する50kg鋼塊を、実験室にて、真空溶解して溶製し、表3及び表4(表3の続き)に示す熱延条件で、板厚4mmの鋼板を製造した。得られた鋼板より、組織観察用のサンプルと、極限変形能測定用の丸棒引張試験片及び焼入れ用のサンプルを採取した。表5及び表6(表5の続き)に、サンプルに施した冷延条件及び焼鈍条件を示した。
(Example)
A 50 kg steel ingot having the composition shown in Table 1 and Table 2 (continuation of Table 1) was melted in a laboratory by vacuum melting and hot rolling shown in Table 3 and Table 4 (continuation of Table 3). Under the conditions, a steel plate having a thickness of 4 mm was manufactured. From the obtained steel sheet, a sample for observing the structure, a round bar tensile test piece for measuring the ultimate deformability, and a sample for quenching were collected. Tables 5 and 6 (continuation of Table 5) show the cold rolling conditions and annealing conditions applied to the samples.

Figure 0005064525
Figure 0005064525

Figure 0005064525
Figure 0005064525

Figure 0005064525
Figure 0005064525

Figure 0005064525
Figure 0005064525

Figure 0005064525
Figure 0005064525

Figure 0005064525
Figure 0005064525

組織観察は、圧延方向に平行な板厚方向断面を研磨した後、研磨したままの状態を光学顕微鏡で観察して行い、4/10t〜6/10t部に存在する長さ100μm以上の非金属介在物の面積率をポイントカウントで求めた。   The structure observation is performed by polishing a cross section in the thickness direction parallel to the rolling direction, and then observing the polished state with an optical microscope, and a non-metal having a length of 100 μm or more existing in a 4 / 10t to 6 / 10t portion. The area ratio of inclusions was determined by point count.

また、同断面領域に存在する炭化物の状態を観察するため、該領域を、ナイタールで軽くエッチングし、光学顕微鏡及び走査型電子顕微鏡を用いて、上記中心部に存在する炭化物の面積率、及び、炭化物径を求め、B値との関係を調査した。   Further, in order to observe the state of carbides present in the same cross-sectional area, the area is lightly etched with nital, using an optical microscope and a scanning electron microscope, and the area ratio of carbides present in the center, and The carbide diameter was determined and the relationship with the B value was investigated.

丸棒引張試験片は、直径3.5mmの試験片とし、引張試験を行って破断した後の破断部の面積を求め、先に示した極限変形能の式に従い、圧延方向の極限変形能をφL、圧延方向に直角な方向の極限変形をφcとして、その比φc/φLを求めた。上記の非金属介在物の面積率、B値以上の炭化物径を有する炭化物の上記4/10〜6/10t部内の炭化物に対する面積率、及び、極限変形能比を求めた。   The round bar tensile test piece is a test piece having a diameter of 3.5 mm, the area of the fractured portion after the tensile test is broken, and the ultimate deformability in the rolling direction is determined according to the formula of the ultimate deformability shown above. The ratio φc / φL was determined with φL as the ultimate deformation in the direction perpendicular to the rolling direction as φc. The area ratio of the non-metallic inclusions, the area ratio of carbides having a carbide diameter equal to or greater than the B value to the carbides in the 4/10 to 6/10 t part, and the ultimate deformability ratio were determined.

焼入れ実験は、サンプルを高周波加熱にて、100℃/secの加熱速度で1000℃まで昇温し、2秒保定後、水冷した。サンプルを切断後、断面の組織観察を行って、焼入れ状態を観察した。表層部にパーライト等の不良組織が観察されるものを、表7及び表8(表7の続き)に、焼入れ特性不良として示した。   In the quenching experiment, the sample was heated to 1000 ° C. at a heating rate of 100 ° C./sec by high-frequency heating, held for 2 seconds, and then cooled with water. After cutting the sample, the structure of the cross section was observed to observe the quenched state. Those in which a defective structure such as pearlite is observed in the surface layer portion are shown in Table 7 and Table 8 (continuation of Table 7) as poor quenching characteristics.

以上の結果をまとめて、表7及び表8(表7の続き)に示す。   The above results are summarized and shown in Table 7 and Table 8 (continuation of Table 7).

Figure 0005064525
Figure 0005064525

Figure 0005064525
Figure 0005064525

表7及び表8に示すように、本発明の成分組成、及び、製造条件を満足するものは、極限変形比0.9以上の良好な値を示し、板鍛造プレス時の特定方向の割れ発生防止に有効な加工性の指標である塑性変形能において異方性が小さくなる結果が得られている。また焼入性も良好であり、異方性が小さく、焼入性も良好な結果となっている。   As shown in Table 7 and Table 8, those satisfying the composition of the present invention and the production conditions show a good value of an ultimate deformation ratio of 0.9 or more, and cracks are generated in a specific direction during plate forging press. As a result, anisotropy is reduced in the plastic deformability, which is an index of workability effective for prevention. Also, the hardenability is good, the anisotropy is small, and the hardenability is also good.

これに対し、成分組成が本発明の範囲を外れたり、成分組成が本発明の範囲内であっても、製造条件が本発明の範囲を満足しない鋼板は、極限変形能比が0.9以下となって、異方性を改善できないし、また、雰囲気が、本発明条件を外れる場合には、鋼板表層部の脱炭や脱ボロンにより焼入性が低下して、所望の鋼板特性が得られないことが解る。   On the other hand, even if the component composition is out of the scope of the present invention or the component composition is within the scope of the present invention, the steel sheet whose manufacturing conditions do not satisfy the scope of the present invention has an ultimate deformability ratio of 0.9 or less. Thus, the anisotropy cannot be improved, and when the atmosphere deviates from the conditions of the present invention, the hardenability is reduced by decarburization or deboronation of the steel sheet surface layer, and the desired steel sheet characteristics are obtained. I can't understand.

前述したように、本発明によれば、自動車部品の材料として使用する高強度鋼板の異方性を改善し、加工性に優れた鋼板を製造することが可能となる。その結果、自動車部品の製造において、製造工程の簡略化、及び/又は、製造コストの低減が可能となる。したがって、本発明は、省エネルギーにも貢献するので、鉄鋼産業において利用可能性が大きいものである。   As described above, according to the present invention, it is possible to improve the anisotropy of a high-strength steel plate used as a material for automobile parts and to manufacture a steel plate having excellent workability. As a result, in the manufacture of automobile parts, it is possible to simplify the manufacturing process and / or reduce the manufacturing cost. Therefore, the present invention also contributes to energy saving, and thus has a great applicability in the steel industry.

Claims (10)

質量%で、C:0.2超〜0.70%、Si:0.01〜0.8%、Mn:0.1〜2.0%未満、P:0.003〜0.030%、S:0.0001〜0.008%、Al:0.005〜0.07%、N:0.0001〜0.02%、O:0.0001〜0.0030%、及び、残部不可避的不純物からなり、かつ、下記(1)式で示すA値が0.008以下の鋼板であって、圧延方向に平行な板厚断面内の板厚をtとした時、
(i)4/10t〜6/10tの断面で、長さ100μm以上の非金属介在物の面積率が0.1%以下であり、また、
(ii)同断面領域で、炭化物径が下記(2)式で示す値を超える炭化物の面積率が、領域中の炭化物の10%以下である、
ことを特徴とする異方性が小さく焼入性に優れた高炭素鋼板。
A値=O+S+0.033Al ・・・(1)
O、S、Al:各元素の含有量
B値(μm)=1.5×C%+0.5 ・・・(2)
In mass%, C: more than 0.2 to 0.70%, Si: 0.01 to 0.8%, Mn: less than 0.1 to 2.0%, P: 0.003 to 0.030%, S: 0.0001 to 0.008%, Al: 0.005 to 0.07%, N: 0.0001 to 0.02%, O: 0.0001 to 0.0030%, and the balance unavoidable impurities And the A value shown by the following formula (1) is 0.008 or less, and when the thickness in the thickness section parallel to the rolling direction is t,
(I) In a cross section of 4 / 10t to 6 / 10t, the area ratio of non-metallic inclusions having a length of 100 μm or more is 0.1% or less,
(Ii) at the same cross-sectional area, the area ratio of carbide carbide diameter exceeds the value indicated by the following equation (2) is not more than 10% of the carbides in the region,
A high carbon steel sheet with small anisotropy and excellent hardenability.
A value = O + S + 0.033Al (1)
O, S, Al: Content of each element B value (μm) = 1.5 × C% + 0.5 (2)
前記鋼板が、質量%で、Nb:0.003〜0.1%、Ti:0.001〜0.05%、V:0.001〜0.05%、Ta:0.01〜0.5%、W:0.01〜0.5%の1種又は2種以上を含有することを特徴とする請求項1に記載の異方性が小さく焼入性に優れた高炭素鋼板。   The said steel plate is the mass%, Nb: 0.003-0.1%, Ti: 0.001-0.05%, V: 0.001-0.05%, Ta: 0.01-0.5 %, W: 0.01-0.5% of 1 type or 2 types or more, The high-carbon steel plate having low anisotropy and excellent hardenability according to claim 1. 前記鋼板が、質量%で、Cr:0.1〜2.0%、Ni:0.01〜1.0%、Cu:0.01〜1.0%、Mo:0.005〜0.5%、B:0.0005〜0.01%の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の異方性が小さく焼入性に優れた高炭素鋼板。   The said steel plate is the mass%, Cr: 0.1-2.0%, Ni: 0.01-1.0%, Cu: 0.01-1.0%, Mo: 0.005-0.5 %, B: 0.0005-0.01% of 1 type or 2 types or more, The high-carbon steel plate having low anisotropy and excellent hardenability according to claim 1 or 2. 前記鋼板が、質量%で、Mg:0.0005〜0.003%、Ca:0.0005〜0.003%、Y:0.001〜0.03%、Zr:0.001〜0.03%、La:0.001〜0.03%、Ce:0.001〜0.03%の1種又は2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の異方性が小さく焼入性に優れた高炭素鋼板。   The said steel plate is the mass%, Mg: 0.0005-0.003%, Ca: 0.0005-0.003%, Y: 0.001-0.03%, Zr: 0.001-0.03. %, La: 0.001-0.03%, Ce: 0.001-0.03% 1 type or 2 types or more are contained, The any one of Claims 1-3 characterized by the above-mentioned. High carbon steel sheet with low anisotropy and excellent hardenability. 請求項1〜4のいずれか1項に記載の異方性が小さく焼入性に優れた高炭素鋼板を製造する製造方法において、
(i)請求項1〜4のいずれか1項に記載の成分組成を有する連続鋳造鋳片又は鋼塊を1150℃以上1300℃以下で加熱し、次いで、
(ii-1)粗圧延を1000℃以上1150℃以下で終了し、仕上圧延温度をAe3以上とする熱間圧延を行い、その後、
(ii-2)1〜10秒の空冷時間をとり、10〜70℃/sの冷却速度で巻取温度まで冷却して450〜650℃で巻き取り、
(ii-3)巻取り後、酸洗し、焼鈍する
ことを特徴とする異方性が小さく焼入性に優れた高炭素鋼板の製造方法。
In the manufacturing method which manufactures the high carbon steel plate which the anisotropy of any one of Claims 1-4 was small and excellent in hardenability,
(I) A continuous cast slab or a steel ingot having the component composition according to any one of claims 1 to 4 is heated at 1150 ° C or higher and 1300 ° C or lower, and then
(Ii-1) Finish the rough rolling at 1000 ° C. or higher and 1150 ° C. or lower, perform hot rolling with a finish rolling temperature of Ae 3 or higher, and then
(Ii-2) Take an air cooling time of 1 to 10 seconds, cool to a winding temperature at a cooling rate of 10 to 70 ° C./s, and wind at 450 to 650 ° C.
(Ii-3) A method for producing a high carbon steel sheet having small anisotropy and excellent hardenability, characterized by pickling and annealing after winding.
前記焼鈍を、600℃以上Ac1以下の温度で、8時間以上行うことを特徴とする請求項5に記載の異方性が小さく焼入性に優れた高炭素鋼板の製造方法。 The annealing at 600 ° C. or higher Ac 1 temperature below method for producing a high-carbon steel sheets anisotropy described excellent small hardenability to claim 5, characterized in that more than 8 hours. 前記焼鈍を、Ac1〜Ac1+50℃の温度で行い、その後、5℃/時間以下の冷却速度で、Ac1−30℃の温度以下まで冷却することを特徴とする請求項5に記載の異方性が小さく焼入性に優れた高炭素鋼板の製造方法。 Said annealing is performed at a temperature of Ac 1 ~Ac 1 + 50 ℃, then at 5 ° C. / time less cooling rate, according to claim 5, wherein the cooling to a temperature below the Ac 1 -30 ° C. A method for producing a high carbon steel sheet having small anisotropy and excellent hardenability. 前記焼鈍を、水素95%以上で、かつ、400℃までの露点が−20℃未満、400℃以上の露点が−40℃未満の雰囲気中で行うことを特徴とする請求項5〜7のいずれか1項に記載の異方性が小さく焼入性に優れた高炭素鋼板の製造方法。   The annealing is performed in an atmosphere of 95% or more of hydrogen, a dew point of up to 400 ° C of less than -20 ° C, and a dew point of 400 ° C or more of less than -40 ° C. A method for producing a high carbon steel sheet having small anisotropy and excellent hardenability according to claim 1. 前記酸洗の後、焼鈍の前に、高炭素鋼板に、圧下率10%以上の冷間圧延を施すことを特徴とする請求項5〜8のいずれか1項に記載の異方性が小さく焼入性に優れた高炭素鋼板の製造方法。   The anisotropy according to any one of claims 5 to 8, wherein after the pickling and before annealing, the high carbon steel sheet is subjected to cold rolling with a rolling reduction of 10% or more. A method for producing a high carbon steel sheet with excellent hardenability. 前記圧下率10%以上の冷間圧延を施した高炭素鋼板を焼鈍した後、該高炭素鋼板に、再度、圧下率10%以上の冷間圧延を施し、次いで、請求項6〜8のいずれか1項に記載の焼鈍を施すことを特徴とする異方性が小さく焼入性に優れた高炭素鋼板の製造方法。   After annealing the high-carbon steel sheet subjected to cold rolling with a reduction rate of 10% or more, the high-carbon steel sheet is again subjected to cold rolling with a reduction ratio of 10% or more, and then any one of claims 6-8. A method for producing a high-carbon steel sheet having low anisotropy and excellent hardenability, characterized by performing annealing according to claim 1.
JP2010033978A 2010-02-18 2010-02-18 High carbon steel sheet with low anisotropy and excellent hardenability and method for producing the same Active JP5064525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033978A JP5064525B2 (en) 2010-02-18 2010-02-18 High carbon steel sheet with low anisotropy and excellent hardenability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033978A JP5064525B2 (en) 2010-02-18 2010-02-18 High carbon steel sheet with low anisotropy and excellent hardenability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011168842A JP2011168842A (en) 2011-09-01
JP5064525B2 true JP5064525B2 (en) 2012-10-31

Family

ID=44683254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033978A Active JP5064525B2 (en) 2010-02-18 2010-02-18 High carbon steel sheet with low anisotropy and excellent hardenability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5064525B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035848A1 (en) * 2011-09-09 2013-03-14 新日鐵住金株式会社 Medium carbon steel sheet, quenched member, and method for manufacturing medium carbon steel sheet and quenched member
JP5640931B2 (en) * 2011-09-09 2014-12-17 新日鐵住金株式会社 Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method
WO2013102982A1 (en) 2012-01-05 2013-07-11 Jfeスチール株式会社 High carbon hot-rolled steel sheet with excellent hardenability and minimal in-plane anisotropy, and method for producing same
KR101629594B1 (en) * 2012-03-07 2016-06-13 신닛테츠스미킨 카부시키카이샤 Steel sheet for hot stamping, method for producing same, and hot-stamped steel material
KR101669374B1 (en) * 2012-10-19 2016-10-25 신닛테츠스미킨 카부시키카이샤 Induction-hardening steel having excellent fatigue characteristics
JP6361279B2 (en) * 2014-05-16 2018-07-25 新日鐵住金株式会社 Medium and high carbon steel
CN107614727B (en) * 2015-05-26 2020-01-14 日本制铁株式会社 Steel sheet and method for producing same
TWI612154B (en) * 2015-05-26 2018-01-21 Nippon Steel & Sumitomo Metal Corp Steel plate and method of manufacturing same
CN107614728B (en) 2015-05-26 2020-04-21 日本制铁株式会社 Steel sheet and method for producing same
KR101830551B1 (en) 2016-12-14 2018-02-20 주식회사 포스코 High-carbon hot-rolled steel sheet having excellent surface quality and method for manufacturing same
JP7513916B2 (en) * 2020-09-29 2024-07-10 日本製鉄株式会社 Hot rolled steel plate
KR102485008B1 (en) * 2020-12-21 2023-01-04 주식회사 포스코 High carbon cold rolled steel sheet having high toughness and method of manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3910242B2 (en) * 1996-11-25 2007-04-25 日新製鋼株式会社 High carbon steel sheet with small in-plane anisotropy
JP2002060888A (en) * 2000-08-17 2002-02-28 Nisshin Steel Co Ltd Steel sheet for blanking
JP4094473B2 (en) * 2003-04-18 2008-06-04 新日本製鐵株式会社 Steel sheet for hot forming process with excellent post-high temperature forming ability and method for using the same
JP5292698B2 (en) * 2006-03-28 2013-09-18 Jfeスチール株式会社 Extremely soft high carbon hot-rolled steel sheet and method for producing the same
JP4448525B2 (en) * 2007-03-14 2010-04-14 日新製鋼株式会社 Mowing blade substrate
JP5031644B2 (en) * 2008-04-04 2012-09-19 新日本製鐵株式会社 Steel pipe excellent in workability and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011168842A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP5064525B2 (en) High carbon steel sheet with low anisotropy and excellent hardenability and method for producing the same
CN110088326B (en) Hot-rolled flat steel product and method for the production thereof
JP5292698B2 (en) Extremely soft high carbon hot-rolled steel sheet and method for producing the same
KR102643398B1 (en) hot stamp molding body
JP5598225B2 (en) High-strength hot-rolled steel sheet with excellent bending characteristics and low-temperature toughness and method for producing the same
KR101485237B1 (en) High-strength steel sheet with excellent processability and process for producing same
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
JP5387073B2 (en) Steel plate for hot pressing, method for manufacturing the same, and method for manufacturing steel plate member for hot pressing
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
CN111406124B (en) High-strength cold-rolled steel sheet and method for producing same
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP4600196B2 (en) High carbon cold-rolled steel sheet with excellent workability and manufacturing method thereof
KR100673422B1 (en) High carbon hot rolled steel sheet, cold rolled steel sheet and method for production thereof
JP2013057114A (en) Medium carbon steel plate having excellent workability and hardenability and method for producing the same
KR20130046941A (en) High strength steel sheet and method of manufacturing the steel sheet
WO2020195009A1 (en) Hot-stamp-molded article
WO2015146174A1 (en) High-carbon hot-rolled steel sheet and method for producing same
CN105102659A (en) Steel sheet for nitriding and production method therefor
JP2005213603A (en) High workability high strength cold rolled steel plate and its manufacturing method
KR20100076073A (en) Steel sheets and process for manufacturing the same
JP4687554B2 (en) Steel plate for quenched member, quenched member and method for producing the same
CN114641587A (en) Thick composite structure steel having excellent durability and method for producing same
JP4846476B2 (en) Method for producing pearlitic rails with excellent wear resistance and ductility
WO2016194273A1 (en) Hot-rolled steel sheet, full hard cold-rolled steel sheet, and method for producing hot-rolled steel sheet
JP4403925B2 (en) High carbon cold-rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R151 Written notification of patent or utility model registration

Ref document number: 5064525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350