JP2012237044A - High-strength cold-rolled steel sheet excellent in elongation and stretch flanging property and method for production thereof - Google Patents

High-strength cold-rolled steel sheet excellent in elongation and stretch flanging property and method for production thereof Download PDF

Info

Publication number
JP2012237044A
JP2012237044A JP2011107671A JP2011107671A JP2012237044A JP 2012237044 A JP2012237044 A JP 2012237044A JP 2011107671 A JP2011107671 A JP 2011107671A JP 2011107671 A JP2011107671 A JP 2011107671A JP 2012237044 A JP2012237044 A JP 2012237044A
Authority
JP
Japan
Prior art keywords
phase
steel sheet
volume fraction
elongation
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011107671A
Other languages
Japanese (ja)
Other versions
JP5862052B2 (en
Inventor
Hidenao Kawabe
英尚 川邉
Takeshi Yokota
毅 横田
Reiko Sugihara
玲子 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011107671A priority Critical patent/JP5862052B2/en
Publication of JP2012237044A publication Critical patent/JP2012237044A/en
Application granted granted Critical
Publication of JP5862052B2 publication Critical patent/JP5862052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-strength cold-rolled steel sheet having a tensile strength of 1,180 MPa or more and being excellent in elongation and stretch flanging property.SOLUTION: The high-strength cold-rolled steel sheet has a component composition including, by mass%, 0.15-0.25% C, 1.0-2.0% Si, 2.5-3.5% Mn, 0.030% or less P, 0.0050% or less S, 0.005-0.1% Al, and 0.01% or less N with the balance comprising Fe and unavoidable impurities and has a structure including, by volume fraction, 50-70% bainitic ferrite phase, 15-40% martensite phase, and 5-15% retained austenite phase, wherein the volume fraction of a martensite phase with a long axis length of ≥5 μm accounts for 50% or less (inclusive of 0%) of the total volume fraction of the martensite phase.

Description

本発明は、複雑な形状にプレス成形されることが要求される自動車部品などに供して好適な高強度冷延鋼板およびその製造方法に関し、特にNbやCu,Ni,Cr,Moなどの高価な元素を積極的に添加させることなしに、残留オーステナイトを活用し、また金属組織をベイニティックフェライト相を主体とした均一な組織とし、さらにはマルテンサイト相の粒径を制御することにより、伸び(El)および伸びフランジ性(通常、穴拡げ率(λ)で評価される)の向上を図ると同時に、引張強度(TS):1180MPa以上という高強度を併せて実現しようとするものである。   The present invention relates to a high-strength cold-rolled steel sheet suitable for use in automobile parts and the like that are required to be pressed into a complicated shape, and a method for producing the same, and particularly expensive Nb, Cu, Ni, Cr, Mo, Elongation is achieved by utilizing retained austenite without actively adding elements, making the metal structure a uniform structure mainly composed of bainitic ferrite phase, and controlling the grain size of the martensite phase. (El) and stretch flangeability (usually evaluated by hole expansion ratio (λ)), and at the same time, it is intended to achieve a high strength of tensile strength (TS): 1180 MPa or more.

近年、自動車車体の軽量化による燃費向上や衝突安全性の向上を目的として引張強度(TS)が590MPa以上の鋼板の自動車車体への適用が積極的に進められているが、最近ではさらに高強度の鋼板の適用が検討されている。
従来、TS:1180MPa級以上の高強度鋼板は軽加工部品に適用されることが多かったが、最近では、より一層の衝突安全性かつ車体軽量化による燃費向上を両立させるべく、複雑形状のプレス部品への適用が検討されており、加工性に優れる鋼板に対するニーズは高い。
In recent years, steel plates with a tensile strength (TS) of 590 MPa or more have been actively applied to automobile bodies for the purpose of improving fuel economy and collision safety by reducing the weight of automobile bodies. Application of steel sheets is being studied.
Conventionally, high-strength steel sheets of TS: 1180MPa class or higher were often applied to light-worked parts. Recently, however, presses with complex shapes are required to achieve both higher collision safety and improved fuel economy by reducing vehicle weight. Applications to parts are being studied, and there is a great need for steel sheets with excellent workability.

しかしながら、鋼板は、一般に、高強度化に伴い加工性が低下する傾向にあることから、プレス成形時における割れの回避が高強度鋼板の適用を拡大する上で大きな課題となっている。また、特にTS:1180MPa級以上に高強度化する場合、強度確保の観点からNb,Cu,Ni,CrおよびMoなどの極めて高価な希少元素を積極的に添加する場合が多い。   However, since steel sheets generally tend to have lower workability with higher strength, avoiding cracks during press forming is a major issue in expanding the application of high-strength steel sheets. In particular, when the strength is increased to TS: 1180 MPa class or higher, very expensive rare elements such as Nb, Cu, Ni, Cr and Mo are often positively added from the viewpoint of securing strength.

成形性に優れた高強度冷延鋼板に関する従来技術として、例えば特許文献1〜4に、鋼成分や組織の限定、熱延条件、焼鈍条件の最適化により、ベイナイト相主体、または残留オーステナイトを活用した高強度冷延鋼板の製造技術が開示されている。   As conventional technologies related to high-strength cold-rolled steel sheets with excellent formability, for example, Patent Literatures 1 to 4 utilize mainly bainite phase or retained austenite by limiting steel components and structures, optimizing hot-rolling conditions, and annealing conditions. A technology for manufacturing a high-strength cold-rolled steel sheet is disclosed.

特開2005−179703号公報JP 2005-179703 A 特開2005−298964号公報JP 2005-298964 A 特開2009−256773号公報JP 2009-256773 A 特開2010−024497号公報JP 2010-024497 A

しかしながら、特許文献1に記載の技術は、高価なNi,Cuがオーステナイト安定化元素として必須なだけでなく、焼戻しマルテンサイト相を主相としているが、TS:1180MPa以上で十分な伸びフランジ性は得られていない。
特許文献2に記載の技術も、高価なMoを必須としており、主相はフェライト相であるが、高い伸び特性に寄与する残留オーステナイト相の体積分率が少なく、伸びフランジ性に悪影響を及ぼす硬質なマルテンサイト相を含んでいるため、やはりTS:1180MPa以上で優れた伸びと伸びフランジ特性を両立する優れた特性バランスは得られていない。さらに、Alを多量に含有していることから、溶接性、連続鋳造性の劣化が懸念される。
特許文献3に記載の技術は、Al含有量が過多であるため溶接性の低下が懸念され、また連続鋳造性の低下が懸念される。
特許文献4に記載の技術は、ベイナイト相主体で残留オーステナイト相の体積分率が少ないため、TS:1180MPa以上という高強度の場合には十分な伸びは得られていない。
However, the technology described in Patent Document 1 not only requires expensive Ni and Cu as an austenite stabilizing element but also has a tempered martensite phase as the main phase, but TS: 1180 MPa or more has sufficient stretch flangeability. Not obtained.
The technology described in Patent Document 2 also requires expensive Mo, and the main phase is a ferrite phase, but the volume fraction of the retained austenite phase that contributes to high elongation characteristics is small, and it has a negative effect on stretch flangeability. Because it contains a martensite phase, it is still impossible to obtain an excellent balance of properties that achieves both excellent elongation and stretch flange characteristics at TS: 1180 MPa or higher. Furthermore, since a large amount of Al is contained, there is a concern about deterioration of weldability and continuous castability.
In the technique described in Patent Document 3, since the Al content is excessive, there is a concern about a decrease in weldability and a concern about a decrease in continuous castability.
Since the technique described in Patent Document 4 is mainly composed of bainite phase and has a small volume fraction of retained austenite phase, sufficient elongation cannot be obtained in the case of high strength of TS: 1180 MPa or more.

本発明は、上記の問題を有利に解決するもので、高価な合金元素であるNb,Cu,Ni,Cr,Moを含有させることなく、金属組織の調整によって伸びおよび伸びフランジ性を向上させた高強度冷延鋼板を、その有利な製造方法と共に提供することを目的とする。   The present invention advantageously solves the above problems, and has improved elongation and stretch flangeability by adjusting the metal structure without containing expensive alloy elements Nb, Cu, Ni, Cr, Mo. An object is to provide a high-strength cold-rolled steel sheet together with its advantageous production method.

さて、発明者らは、上記の課題を解決すべく鋭意研究した結果、成形性、溶接性、連続鋳造性の観点から高価な希少金属の含有量を含有させずとも、ベイニティックフェライト相および残留オーステナイト相の体積分率を制御することにより、伸びの向上が図れること、また金属組織中のオーステナイトから低温変態生成するマルテンサイト相の体積分率、さらにはマルテンサイト相のサイズを厳密に制御することにより、伸びおよび伸びフランジ性の向上と共に、引張強度(TS):1180MPa以上の高強度化が達成できることの知見を得た。
本発明は、上記の知見に立脚するものである。
Now, as a result of earnest research to solve the above problems, the inventors have found that bainitic ferrite phase and the content of a rare metal that is expensive from the viewpoint of formability, weldability, and continuous castability are not included. By controlling the volume fraction of the retained austenite phase, the elongation can be improved, and the volume fraction of the martensite phase that forms low-temperature transformation from austenite in the metal structure and the size of the martensite phase are strictly controlled. As a result, it was found that the tensile strength (TS): higher than 1180 MPa can be achieved along with the improvement of stretchability and stretch flangeability.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
(1)質量%で、
C:0.15〜0.25%、
Si:1.0〜2.0%、
Mn:2.5〜3.5%、
P:0.030%以下、
S:0.0050%以下、
Al:0.005〜0.1%および
N:0.01%以下
を含有し、残部はFeおよび不可避的不純物からなる成分組成を有し、体積分率で、
ベイニティックフェライト相:50〜70%、
マルテンサイト相:15〜40%および
残留オーステナイト相:5〜15%
を含み、かつマルテンサイト相の総体積分率に占める長軸長≧5μmのマルテンサイト相の割合が50%以下(但し、0%を含む)を満足することを特徴とする、伸びおよび伸びフランジ性にれる高強度冷延鋼板。
That is, the gist configuration of the present invention is as follows.
(1) In mass%,
C: 0.15-0.25%
Si: 1.0-2.0%
Mn: 2.5-3.5%
P: 0.030% or less,
S: 0.0050% or less,
Al: 0.005 to 0.1% and N: 0.01% or less, with the balance having a component composition consisting of Fe and inevitable impurities,
Bainitic ferrite phase: 50-70%,
Martensite phase: 15-40% and residual austenite phase: 5-15%
And the ratio of the martensite phase with the major axis length ≧ 5 μm in the total volume fraction of the martensite phase satisfies 50% or less (however, 0% is included) High strength cold rolled steel sheet

(2)前記鋼板が、質量%でさらに、
Ti:0.005〜0.050%および
B:0.0001〜0.0050%
のうちから選んだ一種又は二種を含有することを特徴とする、前記(1)に記載の伸びおよび伸びフランジ性に優れる高強度冷延鋼板。
(2) The steel sheet is further in mass%,
Ti: 0.005-0.050% and B: 0.0001-0.0050%
The high-strength cold-rolled steel sheet having excellent elongation and stretch flangeability as described in (1) above, comprising one or two selected from the above.

(3)前記(1)または(2)に記載の成分組成からなる鋼スラブを、熱間圧延し、ついで圧下率:20〜50%の冷間圧延を行ったのち、800〜900℃の温度域で1回目の焼鈍を施し、冷却速度:10〜80℃/秒で冷却停止温度:300〜500℃まで冷却し、この温度域に100〜1000秒保持したのち、再度、圧下率:20〜50%の冷間圧延を行ってから、(1回目の焼鈍温度±50℃)の温度域で2回目の焼鈍を施すことを特徴とする、伸びおよび伸びフランジ性に優れる高強度冷延鋼板の製造方法。 (3) A steel slab having the composition described in (1) or (2) above is hot-rolled and then cold-rolled at a reduction ratio of 20 to 50%, and then at a temperature of 800 to 900 ° C. The first annealing is performed in the temperature range, the cooling rate is 10 to 80 ° C./sec, the cooling stop temperature is 300 to 500 ° C., and the temperature is kept in this temperature range for 100 to 1000 seconds, and then the reduction rate is 20 to A high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability, characterized by performing 50% cold rolling and then performing second annealing in a temperature range of (first annealing temperature ± 50 ° C). Production method.

本発明によれば、高価な合金元素を含有させることなしに、伸びおよび伸びフランジ性に優れ、しかも引張強度が1180MPa以上の高強度冷延鋼板を得ることができる。そして、本発明により得られる高強度冷延鋼板は、特に厳しい形状にプレス成形される自動車部品として好適である。   According to the present invention, a high-strength cold-rolled steel sheet having excellent elongation and stretch flangeability and having a tensile strength of 1180 MPa or more can be obtained without containing an expensive alloy element. The high-strength cold-rolled steel sheet obtained by the present invention is suitable as an automobile part that is press-formed into a particularly severe shape.

以下、本発明を具体的に説明する。
さて、発明者らは、高強度冷延鋼板の加工性とくに伸びおよび伸びフランジ性の向上に関し、鋭意検討を重ねた結果、Nb,Cu,Ni,Cr,Moを含有しない成分系においても、体積分率で50〜70%のベイニティックフェライト相、体積分率で15〜40%のマルテンサイト相および体積分率で5〜15%の残留オーステナイトで、かつ長軸長≧5μmのマルテンサイト相の体積分率が50%以下を満たす組織とすることにより、所期した目的が有利に達成されることを見出した。
以下、本発明の成分組成および組織の限定理由について具体的に説明する。なお、鋼板中の元素の含有量の単位は何れも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
Hereinafter, the present invention will be specifically described.
Now, as a result of intensive studies on the workability of high-strength cold-rolled steel sheets, particularly the improvement of elongation and stretch flangeability, the inventors have found that even in a component system that does not contain Nb, Cu, Ni, Cr, Mo, 50-70% bainitic ferrite phase in fraction, 15-40% martensite phase in volume fraction and 5-15% residual austenite in volume fraction, and long axis length ≧ 5 μm martensite phase It was found that the intended purpose can be advantageously achieved by making the structure satisfying a volume fraction of 50% or less.
Hereinafter, the reasons for limiting the component composition and structure of the present invention will be specifically described. The unit of the element content in the steel sheet is “mass%”, but hereinafter, it is simply indicated by “%” unless otherwise specified.

まず、本発明における鋼の成分組成の適正範囲およびその限定理由は以下のとおりである。
C:0.15〜0.25%
Cは、強度に寄与する元素であり、固溶強化および低温変態相による組織強化による強度確保に有効に寄与する。しかしながら、C量が0.15%未満では必要な体積分率の低温変態相を得るのが難しく、一方0.25%を超えるとスポット溶接性が著しく劣化するだけでなく、低温変態相が過度に硬質化して成形性、特に伸びフランジ性の低下を招く。従って、C量は0.15〜0.25%の範囲とする。
First, the appropriate range of the component composition of steel in the present invention and the reasons for limitation are as follows.
C: 0.15-0.25%
C is an element that contributes to strength, and effectively contributes to securing strength by solid solution strengthening and structure strengthening by a low-temperature transformation phase. However, if the amount of C is less than 0.15%, it is difficult to obtain a low temperature transformation phase having a required volume fraction. On the other hand, if it exceeds 0.25%, not only the spot weldability is remarkably deteriorated, but the low temperature transformation phase is excessively hardened. Decreasing moldability, especially stretch flangeability. Accordingly, the C content is in the range of 0.15 to 0.25%.

Si:1.0〜2.0%
Siは、オーステナイト中へのC濃化を促進させ、残留オーステナイトを安定化するのに重要な元素である。上記作用を得るには1.0%以上、好ましくは1.2%以上含有させる必要がある。また、マルテンサイト相を15%以上含有する本発明鋼板においては、ベイニティックフェライト相を固溶強化し、ベイニティックフェライト相とマルテンサイト相の強度差を低減することにより、伸びフランジ成形時の鋼板全体の均一な変形を可能とし、伸びフランジ性の向上にも寄与する。一方、Si量が2.0%を超えて含有されると鋼板が脆くなって割れが生じ、成形性が低下する。従って、Si量の上限は2.0%以下とする。好ましくは1.8%以下である。
Si: 1.0-2.0%
Si is an important element for promoting C concentration in austenite and stabilizing retained austenite. In order to obtain the above action, it is necessary to contain 1.0% or more, preferably 1.2% or more. Further, in the steel sheet of the present invention containing 15% or more of the martensite phase, the bainitic ferrite phase is solid solution strengthened, and the strength difference between the bainitic ferrite phase and the martensite phase is reduced. Enables uniform deformation of the entire steel sheet and contributes to the improvement of stretch flangeability. On the other hand, if the Si content exceeds 2.0%, the steel sheet becomes brittle, cracks are formed, and formability deteriorates. Therefore, the upper limit of Si content is 2.0% or less. Preferably it is 1.8% or less.

Mn:2.5〜3.5%
Mnは、焼入れ性を向上させる元素であり、強度に寄与する低温変態相の確保を容易にする作用がある。上記作用を得るには2.5%以上含有させる必要があるが、3.5%を超えて含有させると過度に硬質化し、熱間での延性が不足し、スラブ割れが生じるおそれがある。そのため、Mn量は2.5〜3.5%の範囲とする。好ましくは2.6〜3.0%の範囲である。
Mn: 2.5-3.5%
Mn is an element that improves hardenability and has an effect of easily ensuring a low-temperature transformation phase that contributes to strength. In order to obtain the above action, it is necessary to contain 2.5% or more. However, if it exceeds 3.5%, it is excessively hardened, resulting in insufficient hot ductility and slab cracking. Therefore, the Mn content is in the range of 2.5 to 3.5%. Preferably it is 2.6 to 3.0% of range.

P:0.030%以下
Pは、スポット溶接性に悪影響を及ぼすため、極力低減することが好ましいが、0.030%までは許容できる。しかし、P量を過度に低減することは製鋼工程での生産能率が低下し、高コストとなるため、P量の下限は0.001%程度とすることが好ましい。
P: 0.030% or less Since P adversely affects spot weldability, it is preferable to reduce it as much as possible, but 0.030% is acceptable. However, excessively reducing the amount of P lowers the production efficiency in the steelmaking process and increases the cost, so the lower limit of the amount of P is preferably about 0.001%.

S:0.0050%以下
Sは、粒界に偏析して熱間脆性を低下させるだけでなく、MnSなどの硫化物系介在物を形成し、このMnSが冷間圧延により展伸し、変形時の割れの起点となって局部変形能を低下させるため極力低減することが好ましいが、0.0050%までは許容できる。しかし、過度の低減は工業的に困難であり、製鋼工程における脱硫コストの増加を招くので、S量の下限は0.0001%程度とすることが好ましい。好ましくは0.0001〜0.0030%の範囲である。
S: 0.0050% or less S not only segregates at the grain boundaries to reduce hot brittleness, but also forms sulfide inclusions such as MnS, and this MnS expands by cold rolling, and is deformed. Although it is preferable to reduce as much as possible to reduce the local deformability as a starting point of cracking, it is acceptable up to 0.0050%. However, excessive reduction is industrially difficult and causes an increase in desulfurization cost in the steel making process, so the lower limit of the amount of S is preferably about 0.0001%. Preferably it is 0.0001 to 0.0030% of range.

Al:0.005〜0.1%
Alは、主として脱酸の目的で添加される。また、炭化物の生成を抑制し、残留オーステナイト相を生成させるのに有効であり、強度−伸びバランスを向上させる上で有用な元素である。上記の目的を達成するには0.005%以上の添加が必要であるが、0.1%を超えて含有されると、アルミナなどの介在物増加による加工性の劣化という問題が生じる。さらに、Al量が0.1%を超えると、連続鋳造時に、溶融スラグ中の塩基度が上昇し、潤滑性の確保が困難となり、凝固シェルと鋳型が焼き付き、ブレークアウトが発生してしまう場合がある。従って、Al量は0.005〜0.1%の範囲とする。好ましくは0.02〜0.06%の範囲である。
Al: 0.005-0.1%
Al is mainly added for the purpose of deoxidation. Moreover, it is effective in suppressing the formation of carbides and generating a retained austenite phase, and is a useful element for improving the strength-elongation balance. Addition of 0.005% or more is necessary to achieve the above object. However, if the content exceeds 0.1%, there arises a problem of deterioration of workability due to an increase in inclusions such as alumina. Furthermore, if the Al content exceeds 0.1%, the basicity in the molten slag will increase during continuous casting, making it difficult to ensure lubricity, and the solidified shell and mold will seize and breakout may occur. . Therefore, the Al content is in the range of 0.005 to 0.1%. Preferably it is 0.02 to 0.06% of range.

N:0.01%以下
Nは、耐時効性を劣化させる元素であり、N量が0.01%を超えると耐時効性の劣化が顕著になる。またBを含有する場合、Bと結合しBNを形成してBを消費し、固溶Bによる焼入れ性を低下させ、所定の体積分率のマルテンサイト相を確保することが困難となる。また、ベイニティックフェライト中で不純物元素として存在し、ひずみ時効により延性を低下させるので、N量は低いほうが好ましいが、0.01%までは許容できる。しかし、N量の過度の低減は製鋼工程における脱窒コストの増加を招くので、N量の下限は0.0001%程度とすることが好ましい。より好ましくは0.0010〜0.0050%の範囲である。
N: 0.01% or less N is an element that deteriorates aging resistance. When the N content exceeds 0.01%, deterioration of aging resistance becomes remarkable. Moreover, when it contains B, it combines with B, forms BN, consumes B, the hardenability by solid solution B falls, and it becomes difficult to ensure the martensitic phase of a predetermined | prescribed volume fraction. Moreover, since it exists as an impurity element in bainitic ferrite and lowers the ductility by strain aging, it is preferable that the N content is low, but up to 0.01% is acceptable. However, excessive reduction of the amount of N causes an increase in denitrification costs in the steelmaking process, so the lower limit of the amount of N is preferably about 0.0001%. More preferably, it is 0.0010 to 0.0050% of range.

以上、基本成分について説明したが、本発明では、以下に述べる元素を適宜含有させることもできる。
Ti:0.005〜0.050%
Tiは、炭窒化物や硫化物を形成し、強度の向上に有効に寄与する。また、Bを添加する場合、NをTiNとして固定することによりBNの形成を抑制し、Bによる焼入れ性を発現させる上でも有効な元素である。これらの効果を得るには0.005%以上のTi含有を必要とするが、Ti量が0.050%を超えると、ベイニティックフェライト相中に過度に析出物が生成し、過度の析出強化により、伸びの低下を招く。従って、Ti量は0.005〜0.050%の範囲とする。好ましくは0.010〜0.040%の範囲である。
The basic components have been described above. However, in the present invention, the elements described below can be appropriately contained.
Ti: 0.005-0.050%
Ti forms carbonitrides and sulfides and contributes effectively to improving strength. Moreover, when adding B, it is an element effective also in suppressing the formation of BN and fixing the hardenability by B by fixing N as TiN. To obtain these effects, a Ti content of 0.005% or more is required. However, if the Ti content exceeds 0.050%, excessive precipitates are generated in the bainitic ferrite phase, and elongation is caused by excessive precipitation strengthening. Cause a decline. Therefore, the Ti amount is in the range of 0.005 to 0.050%. Preferably it is 0.010 to 0.040% of range.

B:0.0001〜0.0050%
Bは、焼入れ性を高めてマルテンサイト相および残留オーステナイト相などの低温変態相を確保するのに有効に寄与し、優れた強度−伸びバランスを得るために有効な元素である。この効果を得るためには、Bを0.0001%以上含有させる必要がある。一方、B量が0.0050%を超えると、上記の効果は飽和する。従って、B量は0.0001〜0.0050%の範囲とする。好ましくは0.0005〜0.0020%の範囲である。
なお、本発明の鋼板において、上記以外の成分はFeおよび不可避的不純物である。ただし、本発明の効果を損なわない範囲内であれば、上記以外の成分の含有を拒むものではない。
B: 0.0001-0.0050%
B is an element effective for increasing the hardenability and effectively contributing to securing low-temperature transformation phases such as a martensite phase and a retained austenite phase, and obtaining an excellent strength-elongation balance. In order to acquire this effect, it is necessary to contain B 0.0001% or more. On the other hand, when the amount of B exceeds 0.0050%, the above effect is saturated. Accordingly, the B content is in the range of 0.0001 to 0.0050%. Preferably it is 0.0005 to 0.0020% of range.
In the steel sheet of the present invention, components other than those described above are Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected.

次に、本発明にとって重要な要件の一つである鋼組織の適正範囲およびその限定理由について説明する。
ベイニティックフェライト相の体積分率:50〜70%
複合組織を有する高強度鋼板では、軟質相と硬質相の硬度差に起因して伸びフランジ性が低下することが知られている。これに対し、オーステナイトからの低温変態相であるマルテンサイト相よりも軟質で、延性に寄与するベイニティックフェライト相を主体とする組織とすること、すなわち複合組織よりも単相組織に近い組織とすることによって、成形時に鋼板全体が均一に伸び、伸びフランジ性が向上する。ベイニティックフェライト相が50%に満たない場合、硬質なマルテンサイト相の体積分率が増加して過度に高強度化し、伸びおよび伸びフランジが劣化する。一方、ベイニティックフェライト相が70%を超えて存在すると、強度:1180MPaの確保が困難となるだけでなく、延性に寄与する残留オーステナイト相を所定量確保することが困難となる。従って、ベイニティックフェライト相の体積分率は50〜70%の範囲とする。
Next, the appropriate range of the steel structure, which is one of the important requirements for the present invention, and the reason for the limitation will be described.
Volume fraction of bainitic ferrite phase: 50-70%
It is known that in a high-strength steel sheet having a composite structure, stretch flangeability deteriorates due to a hardness difference between a soft phase and a hard phase. On the other hand, it is softer than the martensite phase, which is a low-temperature transformation phase from austenite, and has a structure mainly composed of a bainitic ferrite phase that contributes to ductility, that is, a structure closer to a single phase structure than a composite structure By doing so, the entire steel sheet is uniformly stretched during forming, and stretch flangeability is improved. When the bainitic ferrite phase is less than 50%, the volume fraction of the hard martensite phase is increased to increase the strength excessively, and the elongation and the stretch flange are deteriorated. On the other hand, when the bainitic ferrite phase is present in excess of 70%, it is difficult not only to secure the strength: 1180 MPa, but also to secure a predetermined amount of retained austenite phase that contributes to ductility. Accordingly, the volume fraction of the bainitic ferrite phase is in the range of 50 to 70%.

マルテンサイト相の体積分率:15〜40%
マルテンサイト相は、強度の向上に寄与し、1180MPa以上のTSを確保するためにはマルテンサイト相の体積分率を15%以上にする必要がある。しかしながら、マルテンサイト相の体積分率が多すぎると過度に高強度化し、伸びおよび伸びフランジ性が低下するため、マルテンサイト相の体積分率は40%以下にする必要がある。そして、マルテンサイト相の体積分率を15〜40%の範囲内で調整することによって、強度、伸びおよび伸びフランジ性の良好な材質バランスを得ることができる。
Martensite volume fraction: 15-40%
The martensite phase contributes to the improvement of strength, and the volume fraction of the martensite phase needs to be 15% or more in order to secure a TS of 1180 MPa or more. However, if the volume fraction of the martensite phase is too large, the strength becomes excessively high and the elongation and stretch flangeability deteriorate, so the volume fraction of the martensite phase needs to be 40% or less. And by adjusting the volume fraction of the martensite phase within a range of 15 to 40%, a material balance with good strength, elongation and stretch flangeability can be obtained.

残留オーステナイト相の体積分率:5〜15%
残留オーステナイト相は、歪誘起変態、すなわち材料が変形する場合に歪を受けた部分がマルテンサイト相に変態することで変形部が硬質化し、歪の集中を防ぐことにより延性を向上させる効果があり、高延性化のためには5%以上の残留オーステナイト相を含有させる必要がある。しかしながら、残留オーステナイト相はC濃度が高く、硬質なため、鋼板中に15%を超えて過度に存在すると局所的に硬質な部分が存在するため、伸びフランジ成形時における材料の均一な変形を阻害する要因となることから、優れた伸びおよび伸びフランジ性を確保することが困難となる。特に伸びフランジ性の観点からは、残留オーステナイトは少ない方が好ましい。よって、残留オーステナイト相の体積分率は5〜15%の範囲とする。
Volume fraction of retained austenite phase: 5-15%
Residual austenite phase has strain-induced transformation, that is, when the material is deformed, the strained portion transforms into the martensite phase, the deformed portion becomes hard, and has the effect of improving the ductility by preventing strain concentration. In order to increase ductility, it is necessary to contain 5% or more of retained austenite phase. However, since the residual austenite phase has a high C concentration and is hard, if it is excessively present in the steel sheet in excess of 15%, there is a local hard portion, which inhibits uniform deformation of the material during stretch flange forming. Therefore, it becomes difficult to ensure excellent elongation and stretch flangeability. In particular, from the viewpoint of stretch flangeability, it is preferable that the retained austenite is small. Therefore, the volume fraction of the retained austenite phase is set to a range of 5 to 15%.

マルテンサイト相の総体積分率に占める長軸長≧5μm のマルテンサイト相の割合:50%以下(但し、0%を含む)
マルテンサイト相は、ベース組織であるベイニティックフェライト相より硬質であり、マルテンサイト相の総体積分率が同じ場合、5μm未満のマルテンサイト相に比較すると長軸長が5μm以上の粗大なマルテンサイト相は局在して存在することになり、均一な変形を阻害し、より均一な変形をする微細均一な組織と比較すると伸びフランジ性に不利となる。特にかかる長軸長のマルテンサイトの割合が50%を超えるとマルテンサイト相同士が隣接して存在し、不均一変形が顕著となり、伸びおよび伸びフランジ性に悪影響を及ぼす。それ故、長軸長が5μm以上のマルテンサイト相の割合は50%以下の範囲で、少なければ少ないほど好ましい。従って、長軸長≧5μmのマルテンサイト相の体積分率は50%以下とする。0%であってもよい。
Ratio of martensite phase with major axis length ≧ 5μm in total volume fraction of martensite phase: 50% or less (including 0%)
The martensite phase is harder than the base structure bainitic ferrite phase, and if the total volume fraction of the martensite phase is the same, coarse martensite with a major axis length of 5 μm or more compared to the martensite phase of less than 5 μm The phase is present in a localized manner, which inhibits uniform deformation and is disadvantageous for stretch flangeability as compared with a fine uniform structure that performs more uniform deformation. In particular, when the ratio of the long axis length martensite exceeds 50%, the martensite phases are adjacent to each other, the non-uniform deformation becomes remarkable, and the stretch and stretch flangeability are adversely affected. Therefore, the ratio of the martensite phase having a major axis length of 5 μm or more is in the range of 50% or less, and the smaller the better. Accordingly, the volume fraction of the martensite phase with the long axis length ≧ 5 μm is set to 50% or less. It may be 0%.

次に、本発明の高強度冷延鋼板の製造条件およびその限定理由について説明する。
本発明において、熱間仕上げ圧延前の工程に関しては常法に従って行えばよく、例えば、上記の成分組成範囲に調製した鋼を溶製、鋳造して得られた鋼スラブを用いることができる。また、本発明においては、連続鋳造スラブ、造塊−分塊スラブは勿論のこと、厚み:50〜100mm程度の薄スラブを用いることができ、特に薄スラブの場合は、再加熱なしに直接熱間圧延工程に供することができる。
Next, the manufacturing conditions of the high-strength cold-rolled steel sheet according to the present invention and the reasons for limitation will be described.
In the present invention, the process before hot finish rolling may be performed in accordance with a conventional method. For example, a steel slab obtained by melting and casting steel prepared in the above component composition range can be used. In the present invention, not only continuous casting slabs and ingot-splitting slabs, but also thin slabs with a thickness of about 50 to 100 mm can be used. Especially in the case of thin slabs, direct heating without reheating is possible. It can use for a hot rolling process.

熱間圧延についても特に制限はなく、従来公知の方法に従って行えばよい。好適条件を述べると次のとおりである。
熱間圧延時の加熱温度は1100℃以上にすることが好ましい。スケール生成を軽減、燃料原単位の低減の観点から上限は1300℃とすることが好ましい。熱間圧延における仕上げ温度は、フェライトとパーライトなど低温変態相の層状組織を回避すべく、850℃以上とするのが好ましい。また、スケール生成の軽減、結晶粒径粗大化の抑制による組織の微細均一化の観点から上限は950℃とするのが好ましい。
熱間圧延終了後の巻取り温度は、冷間圧延性、表面性状の観点から450〜600℃とするのが好ましく、巻取り後の鋼板は酸洗工程を経て冷間圧延に供される。
The hot rolling is not particularly limited, and may be performed according to a conventionally known method. The preferred conditions are as follows.
The heating temperature during hot rolling is preferably 1100 ° C. or higher. The upper limit is preferably set to 1300 ° C. from the viewpoint of reducing scale generation and reducing fuel consumption. The finishing temperature in hot rolling is preferably 850 ° C. or higher so as to avoid a layered structure of a low-temperature transformation phase such as ferrite and pearlite. In addition, the upper limit is preferably set to 950 ° C. from the viewpoint of reduction of scale formation and fine homogenization of the structure by suppressing coarsening of the crystal grain size.
The winding temperature after the hot rolling is preferably 450 to 600 ° C. from the viewpoint of cold rolling property and surface properties, and the steel sheet after winding is subjected to cold rolling through a pickling process.

ついで、冷間圧延を施すが、本発明では、この冷間圧延工程以降が重要であり、2回の冷間圧延および2回の焼鈍を施す。
冷間圧下率(1回目):20〜50%
1回目の冷間圧延における圧下率が20%に満たないと、鋼板中に導入される歪が少なく、組織の均一微細化が進まず、回復、再結晶および相変態が遅延する。その結果、焼鈍時に十分なオーステナイト相を得ることができず、最終的に所定の体積分率のマルテンサイト相の確保が難しくなり、TSの確保が困難となる。また、均一な回復再結晶組織を得ることができず、熱延板組織の影響を受けた不均一な組織となるため、伸びや伸びフランジ性に悪影響を及ぼす。一方、冷延圧下率が50%を超えても材質上の問題はないが、冷間圧延の負荷が増大するので上限は50%とする。
Next, cold rolling is performed. In the present invention, the steps after the cold rolling step are important, and two cold rollings and two annealings are performed.
Cold reduction rate (first time): 20-50%
If the reduction ratio in the first cold rolling is less than 20%, the strain introduced into the steel sheet is small, the uniform refinement of the structure does not proceed, and recovery, recrystallization and phase transformation are delayed. As a result, a sufficient austenite phase cannot be obtained during annealing, and finally it becomes difficult to secure a martensite phase having a predetermined volume fraction, making it difficult to secure TS. In addition, since a uniform recovery recrystallized structure cannot be obtained and a non-uniform structure affected by the hot-rolled sheet structure is obtained, the stretch and stretch flangeability are adversely affected. On the other hand, even if the cold rolling reduction exceeds 50%, there is no problem with the material, but the upper limit is set to 50% because the cold rolling load increases.

焼鈍温度(1回目):800〜900℃
1回目の焼鈍における焼鈍温度が800℃より低いと、焼鈍中にフェライト相の体積分率が高くなり、最終的に得られる組織におけるベイニティックフェライト相の体積分率が多くなるため、TS:1180MPaの確保が困難となる。また、焼鈍中にオーステナイト相へのC濃化が促進され、マルテンサイト相が過度に硬質化し、伸びフランジ性が低下する。一方、900℃を超えてオーステナイト単相の高温域まで加熱すると、オーステナイト粒径が過度に粗大化し、ベイニティックフェライト相やマルテンサイト相などの結晶粒径が粗大化し、伸びフランジ性が低下する。よって、1回目の焼鈍における焼鈍温度は800〜900℃の範囲とする。
Annealing temperature (first time): 800 ~ 900 ℃
If the annealing temperature in the first annealing is lower than 800 ° C, the volume fraction of the ferrite phase increases during annealing, and the volume fraction of the bainitic ferrite phase in the final structure increases, so TS: It becomes difficult to secure 1180 MPa. Moreover, C concentration to an austenite phase is accelerated | stimulated during annealing, a martensite phase hardens too much, and stretch flangeability falls. On the other hand, when heated above 900 ° C to the high temperature range of the austenite single phase, the austenite grain size becomes excessively coarse, the crystal grain size of the bainitic ferrite phase and martensite phase becomes coarse, and the stretch flangeability decreases. . Therefore, the annealing temperature in the first annealing is in the range of 800 to 900 ° C.

冷却速度:10〜80℃/秒
1回目の焼鈍後における冷却速度は、所望の低温変態相の体積分率を得るために重要である。平均冷却速度が10℃/秒未満の場合、マルテンサイト相の確保が難しくなり、軟質化するため、強度確保が困難となる。一方、80℃/秒を超えると、逆に過度にマルテンサイト相が生成し、過度に硬質化するため、伸びおよび伸びフランジ性などの加工性が低下する。従って、冷却速度は10〜80℃/秒の範囲とする。
なお、この場合の冷却は、ガス冷却とすることが好ましいが、その他、炉冷、ミスト冷却、ロール冷却および水冷などの方法を用いることができ、またはそれらを組み合わせて使用することも可能である。
Cooling rate: 10 to 80 ° C./sec The cooling rate after the first annealing is important for obtaining the desired volume fraction of the low-temperature transformation phase. When the average cooling rate is less than 10 ° C./second, it is difficult to secure the martensite phase and it becomes soft, so that it is difficult to ensure the strength. On the other hand, when it exceeds 80 ° C./second, a martensite phase is excessively generated and is excessively hardened, so that workability such as elongation and stretch flangeability is deteriorated. Accordingly, the cooling rate is in the range of 10 to 80 ° C./second.
The cooling in this case is preferably gas cooling, but other methods such as furnace cooling, mist cooling, roll cooling, and water cooling can be used, or a combination thereof can also be used. .

冷却停止温度:300〜500℃
1回目の焼鈍後の冷却停止温度が300℃未満の場合、残留オーステナイトの生成が抑制され、過度にマルテンサイト相が生成するため、強度が高くなりすぎ、伸びの確保が困難となる。一方、500℃を超えた場合、冷却停止後の保持中にベイニティックフェライトおよび残留オーステナイトの生成が抑制され、保持後の冷却過程において過度のマルテンサイト相が生成するため、優れた延性を得ることが困難となる。ベイニティックフェライト相を主体とし、マルテンサイト相および残留オーステナイト相の存在比率を制御し、TS:1180MPa級以上の強度を確保すると同時に、伸びおよび伸びフランジ性をバランス良く得るためには、冷却停止温度は300〜500℃の範囲とする必要がある。
Cooling stop temperature: 300 ~ 500 ℃
When the cooling stop temperature after the first annealing is less than 300 ° C., the generation of retained austenite is suppressed and the martensite phase is excessively generated, so that the strength becomes too high and it becomes difficult to ensure the elongation. On the other hand, when the temperature exceeds 500 ° C., the formation of bainitic ferrite and retained austenite is suppressed during holding after cooling is stopped, and an excessive martensite phase is generated in the cooling process after holding, thereby obtaining excellent ductility. It becomes difficult. Mainly composed of bainitic ferrite phase, controlling the abundance ratio of martensite phase and residual austenite phase, ensuring the strength of TS: 1180MPa class or more, and at the same time, stop cooling to obtain a good balance between stretch and stretch flangeability. The temperature should be in the range of 300-500 ° C.

保持時間:100〜1000秒
上記した冷却停止温度域(滞留温度域でもある)における保持時間が100秒に満たない場合、オーステナイト相へのC濃化が進行する時間が不十分となり、最終的に所望の残留オーステナイト体積分率を得ることが難しく、また過度にマルテンサイト相が生成して高強度化し、伸びおよび伸びフランジ性が低下する。一方、1000秒を超えて滞留させても残留オーステナイト量は増加せず、伸びの顕著な向上は認められない。したがって、保持時間は100〜1000秒の範囲とする。
なお、冷却停止後の鋼板を上記滞留温度域に保持する手段としては、例えば、焼鈍後の冷却設備の下流工程に保温装置等を設けて、鋼板の温度を上記滞留温度に調整する手段等が挙げられる。また、滞留後の鋼板は、従来公知の任意の方法により所望の温度に冷却される。
Holding time: 100 to 1000 seconds When the holding time in the above-described cooling stop temperature range (which is also the residence temperature range) is less than 100 seconds, the time for the C concentration to proceed to the austenite phase becomes insufficient, and finally It is difficult to obtain a desired retained austenite volume fraction, and a martensite phase is excessively formed to increase the strength, and elongation and stretch flangeability are deteriorated. On the other hand, even if retained for more than 1000 seconds, the amount of retained austenite does not increase, and no significant improvement in elongation is observed. Accordingly, the holding time is in the range of 100 to 1000 seconds.
In addition, as a means for maintaining the steel plate after the cooling stop in the residence temperature range, for example, a means for adjusting a temperature of the steel plate to the residence temperature by providing a heat retaining device or the like in the downstream process of the cooling equipment after annealing, etc. Can be mentioned. Moreover, the steel plate after residence is cooled to a desired temperature by any conventionally known method.

冷間圧下率(2回目):20〜50%
本発明では、2回目の冷間圧延および2回目の焼鈍は、1回目の焼鈍での材料特性の造り込みに加えてさらに材質向上を目的とし実施される。2回目の冷間圧延および焼鈍は、1回目の焼鈍で制御した組織をさらに優れた特性を有する鋼板組織に制御するために重要である。また、2回の冷間圧延、焼鈍を実施することにより、添加元素の十分な拡散がより進行し、1回の冷間圧延、焼鈍後の組織よりも一層均一な組織とすることができ、その結果、優れた伸びおよび伸びフランジ性を達成することが可能となる。
1回目の冷延−焼鈍組織を有する鋼板に対し、2回目の冷間圧下率が20%に満たない場合、圧延により導入される歪が極端に少なくなるため、回復、再結晶の駆動力が小さく、核生成、粒成長が遅れ、その後の変態が遅延し、最終的に得られる鋼板において所定の体積分率を有するマルテンサイト相の確保が困難となる結果、軟質化し、強度確保が困難となる。また、均一な回復再結晶組織を得ることができず、熱延板組織の影響を受けた不均一な組織となるため、伸びや伸びフランジ性に悪影響を及ぼす。一方、冷間圧下率が50%を超えると、鋼板中に導入された歪量が多くなり、回復、再結晶が進行し、変態も進行するため、1回目の焼鈍にて制御した組織の変動が大きく、2回目の焼鈍の影響が支配的となるため、優れた伸び、伸びフランジ性を得ることが困難となる。また、冷間圧延の負荷も増大し、板形状不良が発生することもある。従って、2回目の冷間圧下率は20〜50%の範囲とする。
Cold reduction rate (second time): 20-50%
In the present invention, the second cold rolling and the second annealing are carried out for the purpose of further improving the material properties in addition to the building of the material characteristics in the first annealing. The second cold rolling and annealing are important for controlling the structure controlled by the first annealing to a steel sheet structure having more excellent characteristics. Moreover, by carrying out the cold rolling and annealing twice, sufficient diffusion of the additive elements further proceeds, and can be made a more uniform structure than the structure after the cold rolling and annealing once. As a result, excellent elongation and stretch flangeability can be achieved.
When the second cold rolling reduction is less than 20% for the steel sheet having the first cold-rolled and annealed structure, the strain introduced by rolling becomes extremely small, so that the driving force for recovery and recrystallization is Small, nucleation, grain growth is delayed, subsequent transformation is delayed, it becomes difficult to secure a martensite phase having a predetermined volume fraction in the finally obtained steel sheet, softening, it is difficult to ensure strength Become. In addition, since a uniform recovery recrystallized structure cannot be obtained and a non-uniform structure affected by the hot-rolled sheet structure is obtained, the stretch and stretch flangeability are adversely affected. On the other hand, when the cold rolling ratio exceeds 50%, the amount of strain introduced into the steel sheet increases, recovery and recrystallization progress, and transformation progresses. Therefore, the microstructure changes controlled by the first annealing. Since the influence of the second annealing is dominant, it becomes difficult to obtain excellent elongation and stretch flangeability. In addition, the cold rolling load increases and a plate shape defect may occur. Accordingly, the second cold rolling reduction is set in the range of 20 to 50%.

焼鈍温度(2回目):1回目の焼鈍温度±50℃
2回目の焼鈍温度が(1回目の焼鈍温度−50℃)を下回る場合、均熱時にオーステナイト相へのC濃化が1回目の焼鈍よりも促進され、さらに均熱時の結晶粒径が微細化し、また冷却、保持工程におけるベイニティックフェライト相の生成に伴って、オーステナイト相へのC濃化が進行し、マルテンサイト相が過度に硬質化して、伸びフランジ性が低下する。また、焼鈍温度が低い場合、焼鈍中にフェライト相の体積分率が高くなり、最終的に得られる組織におけるフェライト相の体積分率が多くなるため、TS:1180MPaの確保が困難となる場合がある。一方、2回目の焼鈍温度が(1回目の焼鈍温度+50℃)を上回ると、オーステナイト粒径が過度に粗大化し、それに伴ってベイニティックフェライト相やマルテンサイト相の結晶粒径が粗大化するため、伸びフランジ性が劣化する。また、高温に加熱されることにより、添加元素が十分に拡散して、均一なオーステナイト相単相域焼鈍となる場合では、1回目の焼鈍組織が変動し、所望の体積分率の残留オーステナイト相が得られないため、伸びに優れた鋼板を得ることが困難となる。よって、2回目の焼鈍温度は(1回目の焼鈍温度±50℃)の範囲とする。
なお、上記した2回目の焼鈍後の冷却は、特に制限はなく、常法に従い行えばよい。好ましくは、1回目の焼鈍と同様、冷却停止温度までの冷却速度:10〜80℃/秒、冷却停止温度:300〜500℃、冷却停止温度域での保持時間:100〜1000秒として冷却する。
Annealing temperature (second time): First annealing temperature ± 50 ℃
When the second annealing temperature is lower than (first annealing temperature −50 ° C.), C concentration in the austenite phase is promoted during soaking, and the crystal grain size during soaking is finer. In addition, as the bainitic ferrite phase is generated in the cooling and holding steps, C concentration in the austenite phase proceeds, the martensite phase becomes excessively hard, and stretch flangeability decreases. In addition, when the annealing temperature is low, the volume fraction of the ferrite phase becomes high during annealing, and the volume fraction of the ferrite phase in the final structure increases, so it may be difficult to secure TS: 1180 MPa. is there. On the other hand, when the second annealing temperature exceeds (first annealing temperature + 50 ° C.), the austenite grain size becomes excessively large, and the crystal grain size of the bainitic ferrite phase and martensite phase increases accordingly. Therefore, stretch flangeability deteriorates. In addition, when the additive elements are sufficiently diffused by being heated to a high temperature and uniform austenite phase single-phase annealing is performed, the first annealing structure varies, and the residual austenite phase having a desired volume fraction is obtained. Therefore, it is difficult to obtain a steel sheet having excellent elongation. Therefore, the second annealing temperature is in the range of (first annealing temperature ± 50 ° C.).
The cooling after the second annealing described above is not particularly limited, and may be performed according to a conventional method. Preferably, similarly to the first annealing, the cooling rate to the cooling stop temperature is 10 to 80 ° C./second, the cooling stop temperature is 300 to 500 ° C., and the holding time in the cooling stop temperature region is 100 to 1000 seconds. .

上記した2回目の焼鈍後、最終的に得られた冷延鋼板に、形状矯正や表面粗度調整の目的から調質圧延(スキンパス圧延)を行ってもかまわないが、過度にスキンパス圧延をすると鋼板に歪が導入されるため、結晶粒が展伸されて圧延加工組織となり、延性が低下するおそれがある。そのため、スキンパス圧延の圧下率は0.05%以上0.5%以下程度とすることが好ましい。   After the second annealing described above, the cold-rolled steel sheet finally obtained may be subjected to temper rolling (skin pass rolling) for the purpose of shape correction or surface roughness adjustment. Since strain is introduced into the steel sheet, the crystal grains are expanded to form a rolled structure, and the ductility may be reduced. Therefore, the rolling reduction of skin pass rolling is preferably about 0.05% to 0.5%.

表1に示す成分組成になる鋼を溶製してスラブとし、1200℃に加熱後、仕上げ圧延機出側温度:900℃で熱間圧延を施し、圧延終了後、70℃/秒の速度で冷却して、550℃で巻取り、ついで塩酸酸洗後、表2に示す条件で冷間圧延および焼鈍処理を施して、板厚:1.6mmの冷延鋼板を製造した。なお、2回目の焼鈍後の冷却は、前記好ましい条件である、冷却停止温度までの冷却速度:10〜80℃/秒、冷却停止温度:300〜500℃、冷却停止温度域での保持時間:100〜1000秒の範囲内とした。
得られた冷延鋼板について、以下に示す材料試験により材料特性を調査した。
得られた結果を表3に示す。
Steel with the composition shown in Table 1 is melted to form a slab, heated to 1200 ° C, hot rolled at the finish rolling mill temperature: 900 ° C, and after rolling, at a rate of 70 ° C / sec. After cooling and winding at 550 ° C., and then pickling with hydrochloric acid, cold rolling and annealing were performed under the conditions shown in Table 2 to produce a cold-rolled steel sheet having a thickness of 1.6 mm. In addition, the cooling after the second annealing is the preferable condition, the cooling rate to the cooling stop temperature: 10 to 80 ° C./second, the cooling stop temperature: 300 to 500 ° C., the holding time in the cooling stop temperature range: It was set within the range of 100 to 1000 seconds.
About the obtained cold-rolled steel sheet, the material characteristic was investigated by the material test shown below.
The obtained results are shown in Table 3.

(1)鋼板の組織
圧延方向断面で、板厚の1/4位置の面を走査型電子顕微鏡(SEM)で観察することにより調査した。観察はN=5(観察視野5箇所)で実施した。ベイニティックフェライト相の体積分率は、倍率2000倍の断面組織写真を用い、画像解析により、任意に設定した50μm×50μm四方の正方形領域内に存在するベイニティックフェライト相の占有面積を求め、これをベイニティックフェライト相の体積分率とした。また、上記観察においては、マルテンサイト相についても観察したが、後述する方法で求めたマルテンサイト相の体積分率とほぼ同等の体積分率となったため、表3に示すマルテンサイト相の体積分率については、後述の方法により求めた。 長軸長:5μm以上のマルテンサイト相の割合は、倍率1000倍の断面組織写真を用い、画像解析により任意に設定した100μm×100μm四方の正方形領域内に存在する長軸長が5μm以上のマルテンサイト相の占有面積を求めて体積分率とした。ここで、長軸長:5μm以上のマルテンサイト相の抽出は、マルテンサイト相の長軸、すなわち最大径が、直径が5μmの円と同じか、これよりも大きい場合に長軸長が5μm以上であるとした。この際、比較的平滑な表面を有し、塊状の形状として観察されたものをマルテンサイトと判定した。
残留オーステナイト相の量は、MoのKα線を用いてX線回折法により求めた。すなわち、鋼板の板厚1/4付近の面を測定面とする試験片を使用し、オーステナイト相の(211)面および(220)面とフェライト相の(200)面および(220)面のピーク強度から残留オーステナイト相の体積率を算出した。
各相の体積分率は、最初に上記したSEM像による目視判断によりベイニティックフェライト相とベイニティックフェライト相以外とに区別し、ベイニティックフェライト相の体積分率を決定し、次にX線回折法により残留オーステナイト相の体積分率を決定し、残る体積分率をマルテンサイト相と判断した。
(1) Structure of steel plate The cross section in the rolling direction was examined by observing a surface at 1/4 position of the plate thickness with a scanning electron microscope (SEM). The observation was carried out at N = 5 (5 observation fields). For the volume fraction of bainitic ferrite phase, use a cross-sectional structure photograph at a magnification of 2000 times, and by image analysis, obtain the area occupied by the bainitic ferrite phase existing in an arbitrarily set square area of 50 μm x 50 μm. This was defined as the volume fraction of the bainitic ferrite phase. In the above observation, the martensite phase was also observed, but the volume fraction of the martensite phase shown in Table 3 was obtained because the volume fraction was almost the same as the volume fraction of the martensite phase obtained by the method described later. The rate was determined by the method described later. Long axis length: The ratio of the martensite phase of 5 μm or more is a martensite with a long axis length of 5 μm or more existing in a 100 μm × 100 μm square area arbitrarily set by image analysis using a cross-sectional structure photograph at a magnification of 1000 times. The area occupied by the site phase was determined and used as the volume fraction. Here, the extraction of the martensite phase with a major axis length of 5 μm or more is performed when the major axis of the martensite phase, that is, when the maximum diameter is the same as or larger than a circle having a diameter of 5 μm, the major axis length is 5 μm or more. It was said that. Under the present circumstances, what had a comparatively smooth surface and was observed as a lump shape was determined to be martensite.
The amount of residual austenite phase was determined by X-ray diffraction using Mo Kα rays. That is, using a test piece having a surface near a thickness of 1/4 of the steel sheet as a measurement surface, the peaks of the (211) surface and (220) surface of the austenite phase and the (200) surface and (220) surface of the ferrite phase The volume ratio of the retained austenite phase was calculated from the strength.
The volume fraction of each phase is first distinguished from the bainitic ferrite phase and other than the bainitic ferrite phase by visual judgment based on the SEM image described above, and then the volume fraction of the bainitic ferrite phase is determined. The volume fraction of the retained austenite phase was determined by X-ray diffraction, and the remaining volume fraction was determined to be the martensite phase.

(2)引張特性
圧延方向と90°の方向を長手方向(引張方向)とするJIS Z 2201に記載の5号試験片を用い、JIS Z 2241に準拠した引張試験を行って評価した。なお、引張特性の評価基準はTS×El≧20000MPa・%以上(TS:引張強度(MPa)、El:全伸び(%))を良好とした。
(2) Tensile properties Evaluation was performed by conducting a tensile test based on JIS Z 2241 using No. 5 test piece described in JIS Z 2201 with the rolling direction and 90 ° as the longitudinal direction (tensile direction). The evaluation criteria for tensile properties were TS × El ≧ 20,000 MPa ·% or more (TS: tensile strength (MPa), El: total elongation (%)).

(3)穴拡げ率
日本鉄鋼連盟規格JFST1001に基づき実施した。初期直径d0=10mmの穴を打抜き、頂角:60°の円錐ポンチを上昇させて穴を拡げた際に、亀裂が板厚を貫通したところでポンチの上昇を停止して、亀裂貫通後の打抜き穴径dを測定し、次式
穴拡げ率(%)=((d−d0)/d0)× 100
で算出した。同一番号の鋼板について3回試験を実施し、穴拡げ率の平均値(λ)を求めた。なお、穴拡げ率の評価基準はTS×λ≧36000MPa・%以上を良好とした。
(3) Hole expansion rate This was carried out based on the Japan Iron and Steel Federation standard JFST1001. When a hole with an initial diameter of d 0 = 10 mm was punched and the conical punch with an apex angle of 60 ° was raised to widen the hole, when the crack penetrated the plate thickness, the rise of the punch was stopped. The punching hole diameter d is measured, and the following formula: Hole expansion rate (%) = ((d−d 0 ) / d 0 ) × 100
Calculated with Three tests were performed on the same number of steel plates, and the average value (λ) of the hole expansion rate was obtained. The evaluation standard for the hole expansion rate was TS × λ ≧ 36000 MPa ·% or higher.

Figure 2012237044
Figure 2012237044

Figure 2012237044
Figure 2012237044

Figure 2012237044
Figure 2012237044

表3から明らかなように、No.1〜7の発明例はいずれも、TS≧1180MPaで、かつTS×El≧20000MPa・%以上、TS×λ≧36000MPa・%を満足する伸びおよび伸びフランジ性に優れた高強度冷延鋼板が得られている。
これに対し、鋼成分が本発明の適正範囲外であるNo.8は、マルテンサイト相の体積分率が多すぎて所望の組織とすることができず、そのため伸びおよび伸びフランジ性に劣っている。
また、冷延圧下率が低いNo.9、焼鈍温度が低いNo.10、焼鈍後の冷却速度が遅いNo.12、2回目の冷延圧下率が低いNo.17、2回目の焼鈍温度が低いNo.18はいずれも、ベイニティックフェライト相の体積分率が多く、TS:1180MPaを満足していない。
さらに、焼鈍温度が高いNo.11、冷却速度が速いNo.13、保持時間の短いNo.16、2回目の焼鈍温度が高いNo.19はいずれも、マルテンサイト相の体積分率が多すぎ、強度が過度に高く、伸びおよび伸びフランジ性に劣る。
またさらに、冷却後の保持温度が低いNo.14、冷却後の保持温度が高いNo.15はそれぞれ、残留オーステナイト相の体積分率が少なく、伸びに劣る。
As is apparent from Table 3, all of the inventive examples No. 1 to 7 are TS ≧ 1180 MPa, TS × El ≧ 20000 MPa ·% or more, and elongation and stretch flangeability satisfying TS × λ ≧ 36000 MPa ·% A high-strength cold-rolled steel sheet having excellent strength is obtained.
On the other hand, No.8 whose steel component is outside the proper range of the present invention has too much volume fraction of the martensite phase and cannot have a desired structure, and therefore is inferior in stretch and stretch flangeability. Yes.
In addition, No. 9 with a low cold rolling reduction, No. 10 with a low annealing temperature, No. 12 with a slow cooling rate after annealing, No. 17 with a low cold rolling reduction, No. 17 with a low second rolling annealing temperature The low No. 18 has a high volume fraction of bainitic ferrite phase and does not satisfy TS: 1180 MPa.
Furthermore, No. 11 with a high annealing temperature, No. 13 with a fast cooling rate, No. 16 with a short holding time, and No. 19 with a high annealing temperature have a high volume fraction of the martensite phase. The strength is excessively high, and the elongation and stretch flangeability are poor.
Furthermore, No. 14 having a low holding temperature after cooling and No. 15 having a high holding temperature after cooling each have a small volume fraction of retained austenite phase and are inferior in elongation.

本発明に従い、鋼板中にCu,Ni,Cr,Mo,Nbなどの高価な元素を積極的に含有させずとも、ベイニティックフェライト相、マルテンサイト相および残留オーステナイト相各々の体積分率を適正に制御することにより、安価でかつ優れた伸びおよび伸びフランジ性を有し、しかも引張強度(TS)が1180MPa以上の高強度冷延鋼板を得ることができる。また、本発明の高強度冷延鋼板は、自動車部品として好適であり、それ以外にも、建築および家電分野など厳しい寸法精度、加工性が必要とされる用途にも有用である。   In accordance with the present invention, the volume fractions of the bainitic ferrite phase, martensite phase, and retained austenite phase are appropriate without actively containing expensive elements such as Cu, Ni, Cr, Mo, and Nb in the steel sheet. By controlling to, a high-strength cold-rolled steel sheet that is inexpensive, has excellent elongation and stretch flangeability, and has a tensile strength (TS) of 1180 MPa or more can be obtained. Moreover, the high-strength cold-rolled steel sheet of the present invention is suitable as an automobile part, and is also useful for applications that require strict dimensional accuracy and workability, such as in the field of architecture and home appliances.

Claims (3)

質量%で、
C:0.15〜0.25%、
Si:1.0〜2.0%、
Mn:2.5〜3.5%、
P:0.030%以下、
S:0.0050%以下、
Al:0.005〜0.1%および
N:0.01%以下
を含有し、残部はFeおよび不可避的不純物からなる成分組成を有し、体積分率で、
ベイニティックフェライト相:50〜70%、
マルテンサイト相:15〜40%および
残留オーステナイト相:5〜15%
を含み、かつマルテンサイト相の総体積分率に占める長軸長≧5μmのマルテンサイト相の割合が50%以下(但し、0%を含む)を満足することを特徴とする、伸びおよび伸びフランジ性に優れる高強度冷延鋼板。
% By mass
C: 0.15-0.25%
Si: 1.0-2.0%
Mn: 2.5-3.5%
P: 0.030% or less,
S: 0.0050% or less,
Al: 0.005 to 0.1% and N: 0.01% or less, with the balance having a component composition consisting of Fe and inevitable impurities,
Bainitic ferrite phase: 50-70%,
Martensite phase: 15-40% and residual austenite phase: 5-15%
And the ratio of the martensite phase with the major axis length ≧ 5 μm in the total volume fraction of the martensite phase satisfies 50% or less (however, 0% is included) High-strength cold-rolled steel sheet with excellent resistance.
前記鋼板が、質量%でさらに、
Ti:0.005〜0.050%および
B:0.0001〜0.0050%
のうちから選んだ一種又は二種を含有することを特徴とする、請求項1に記載の伸びおよび伸びフランジ性に優れる高強度冷延鋼板。
The steel sheet is further in mass%,
Ti: 0.005-0.050% and B: 0.0001-0.0050%
The high-strength cold-rolled steel sheet having excellent elongation and stretch flangeability according to claim 1, comprising one or two selected from among them.
請求項1又は2に記載の成分組成からなる鋼スラブを、熱間圧延し、ついで圧下率:20〜50%の冷間圧延を行ったのち、800〜900℃の温度域で1回目の焼鈍を施し、冷却速度:10〜80℃/秒で冷却停止温度:300〜500℃まで冷却し、この温度域に100〜1000秒保持したのち、再度、圧下率:20〜50%の冷間圧延を行ってから、(1回目の焼鈍温度±50℃)の温度域で2回目の焼鈍を施すことを特徴とする、伸びおよび伸びフランジ性に優れる高強度冷延鋼板の製造方法。   A steel slab having the composition according to claim 1 or 2 is hot-rolled, and then cold-rolled at a reduction ratio of 20 to 50%, and then annealed for the first time in a temperature range of 800 to 900 ° C. , Cooling rate: 10-80 ° C / second, cooling stop temperature: 300-500 ° C, hold in this temperature range for 100-1000 seconds, then cold rolling again: reduction rate: 20-50% And then performing a second annealing in a temperature range of (first annealing temperature ± 50 ° C.), a method for producing a high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability.
JP2011107671A 2011-05-12 2011-05-12 High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same Active JP5862052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011107671A JP5862052B2 (en) 2011-05-12 2011-05-12 High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011107671A JP5862052B2 (en) 2011-05-12 2011-05-12 High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012237044A true JP2012237044A (en) 2012-12-06
JP5862052B2 JP5862052B2 (en) 2016-02-16

Family

ID=47460199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107671A Active JP5862052B2 (en) 2011-05-12 2011-05-12 High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5862052B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237042A (en) * 2011-05-12 2012-12-06 Jfe Steel Corp High-strength cold-rolled steel sheet excellent in workability and method for production thereof
WO2016021193A1 (en) * 2014-08-07 2016-02-11 Jfeスチール株式会社 High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
WO2016021194A1 (en) * 2014-08-07 2016-02-11 Jfeスチール株式会社 High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
WO2017038070A1 (en) * 2015-09-04 2017-03-09 Jfeスチール株式会社 High strength thin steel sheet and method for manufacturing same
JP2017519900A (en) * 2014-05-13 2017-07-20 ポスコPosco High-strength cold-rolled steel sheet having excellent ductility, hot-dip galvanized steel sheet, and production methods thereof
EP3536818A4 (en) * 2016-11-07 2019-11-20 Posco Ultrahigh-strength steel sheet having excellent yield ratio, and manufacturing method therefor
US10662495B2 (en) 2014-08-07 2020-05-26 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10662496B2 (en) 2014-08-07 2020-05-26 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040415A (en) * 1973-07-31 1975-04-14
JP2009221555A (en) * 2008-03-17 2009-10-01 Kobe Steel Ltd Ultra-high-strength thin steel sheet excellent in workability and corrosion resistance
JP2011038120A (en) * 2009-08-06 2011-02-24 Nippon Steel Corp High-strength steel sheet superior in ductility, weldability and surface properties, and method for manufacturing the same
JP2011052271A (en) * 2009-09-01 2011-03-17 Jfe Steel Corp High-strength cold-rolled steel sheet having excellent workability, and method for producing the same
JP2012153957A (en) * 2011-01-27 2012-08-16 Jfe Steel Corp High-strength cold-rolled steel sheet with excellent ductility, and method for producing the same
JP2012188738A (en) * 2010-11-15 2012-10-04 Kobe Steel Ltd High strength steel sheet excellent in ductility and deep drawability in warm state, and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040415A (en) * 1973-07-31 1975-04-14
JP2009221555A (en) * 2008-03-17 2009-10-01 Kobe Steel Ltd Ultra-high-strength thin steel sheet excellent in workability and corrosion resistance
JP2011038120A (en) * 2009-08-06 2011-02-24 Nippon Steel Corp High-strength steel sheet superior in ductility, weldability and surface properties, and method for manufacturing the same
JP2011052271A (en) * 2009-09-01 2011-03-17 Jfe Steel Corp High-strength cold-rolled steel sheet having excellent workability, and method for producing the same
JP2012188738A (en) * 2010-11-15 2012-10-04 Kobe Steel Ltd High strength steel sheet excellent in ductility and deep drawability in warm state, and method for producing the same
JP2012153957A (en) * 2011-01-27 2012-08-16 Jfe Steel Corp High-strength cold-rolled steel sheet with excellent ductility, and method for producing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237042A (en) * 2011-05-12 2012-12-06 Jfe Steel Corp High-strength cold-rolled steel sheet excellent in workability and method for production thereof
US10519526B2 (en) 2014-05-13 2019-12-31 Posco High-strength cold rolled steel sheet having excellent ductility, hot-dip galvanized steel sheet and method for manufacturing same
JP2017519900A (en) * 2014-05-13 2017-07-20 ポスコPosco High-strength cold-rolled steel sheet having excellent ductility, hot-dip galvanized steel sheet, and production methods thereof
JP5983896B2 (en) * 2014-08-07 2016-09-06 Jfeスチール株式会社 High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP5983895B2 (en) * 2014-08-07 2016-09-06 Jfeスチール株式会社 High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
WO2016021194A1 (en) * 2014-08-07 2016-02-11 Jfeスチール株式会社 High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
WO2016021193A1 (en) * 2014-08-07 2016-02-11 Jfeスチール株式会社 High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10570475B2 (en) 2014-08-07 2020-02-25 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10662495B2 (en) 2014-08-07 2020-05-26 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10662496B2 (en) 2014-08-07 2020-05-26 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
WO2017038070A1 (en) * 2015-09-04 2017-03-09 Jfeスチール株式会社 High strength thin steel sheet and method for manufacturing same
CN107923018A (en) * 2015-09-04 2018-04-17 杰富意钢铁株式会社 High-strength steel sheet and its manufacture method
EP3346019A4 (en) * 2015-09-04 2018-09-12 JFE Steel Corporation High strength thin steel sheet and method for manufacturing same
EP3536818A4 (en) * 2016-11-07 2019-11-20 Posco Ultrahigh-strength steel sheet having excellent yield ratio, and manufacturing method therefor

Also Published As

Publication number Publication date
JP5862052B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5348268B2 (en) High-strength cold-rolled steel sheet having excellent formability and method for producing the same
JP5862051B2 (en) High-strength cold-rolled steel sheet excellent in workability and manufacturing method thereof
KR101706485B1 (en) High-strength cold-rolled steel sheet and method for producing the same
KR102000854B1 (en) High-strength cold-rolled steel sheet and method for manufacturing the same
JP5321605B2 (en) High strength cold-rolled steel sheet having excellent ductility and method for producing the same
JP5126399B2 (en) High-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JP5487984B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP5862052B2 (en) High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP6047983B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability
JP5521444B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP2010196115A (en) High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for manufacturing the same
KR101626233B1 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
JP5862591B2 (en) High strength steel plate and manufacturing method thereof
JP2010248565A (en) Ultrahigh-strength cold-rolled steel sheet superior in formability for extension flange, and method for manufacturing the same
JP2010013700A (en) High strength hot dip galvanized steel sheet having excellent workability, and method for producing the same
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP5811725B2 (en) High-tensile cold-rolled steel sheet excellent in surface distortion resistance, bake hardenability and stretch flangeability, and method for producing the same
JP6098537B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JPWO2020080339A1 (en) Thin steel sheet and its manufacturing method
JP4848722B2 (en) Method for producing ultra-high-strength cold-rolled steel sheet with excellent workability
JP5434375B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
WO2013160938A1 (en) High strength cold-rolled steel plate of excellent ductility and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5862052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250