JP2012237042A - High-strength cold-rolled steel sheet excellent in workability and method for production thereof - Google Patents

High-strength cold-rolled steel sheet excellent in workability and method for production thereof Download PDF

Info

Publication number
JP2012237042A
JP2012237042A JP2011107605A JP2011107605A JP2012237042A JP 2012237042 A JP2012237042 A JP 2012237042A JP 2011107605 A JP2011107605 A JP 2011107605A JP 2011107605 A JP2011107605 A JP 2011107605A JP 2012237042 A JP2012237042 A JP 2012237042A
Authority
JP
Japan
Prior art keywords
phase
volume fraction
martensite phase
annealing
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011107605A
Other languages
Japanese (ja)
Other versions
JP5862051B2 (en
Inventor
Hidenao Kawabe
英尚 川邉
Takeshi Yokota
毅 横田
Reiko Sugihara
玲子 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011107605A priority Critical patent/JP5862051B2/en
Publication of JP2012237042A publication Critical patent/JP2012237042A/en
Application granted granted Critical
Publication of JP5862051B2 publication Critical patent/JP5862051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-strength cold-rolled steel sheet with a tensile strength TS of 1,180 MPa or more, which is improved in workability such as elongation, stretch flanging property, and bendability by adjusting a metal structure without containing expensive rare metals from a viewpoint of weldability and formability.SOLUTION: The high-strength cold-rolled steel sheet has a component composition including, by mass%, 0.16-0.26% C, 1.2-2.2% Si, 2.6-3.6% Mn, 0.020% or less P, 0.0040% or less S, 0.005-0.08% Al, 0.008% or less N, 0.001-0.040% Ti, and 0.0001-0.0020% B, with the balance comprising Fe and unavoidable impurities and has a structure including, by volume fraction, 40-70% ferrite phase, 15-35% bainite phase, 5-25% tempered martensite phase, and 2-20% retained austenite phase, wherein the volume fraction of a martensite phase with a long axis length of ≥10 μm accounts for 30% or less of the total volume fraction of the tempered martensite phase.

Description

本発明は、複雑な形状にプレス成形されることが要求される自動車部品などに供して好適な高強度冷延鋼板およびその製造方法に関し、特にNbやV,Cu,Ni,Cr,Moなどの高価な元素を積極的に添加させることなしに、残留オーステナイトを活用し、また金属組織をフェライト相を主体とした均一な組織とし、さらには焼戻しマルテンサイト相の粒径を制御することにより、伸び(El)、伸びフランジ性(通常、穴拡げ率(λ)で評価される)および曲げ性の有利な向上を図ると同時に、引張強度(TS)が1180MPa以上という高強度を併せて実現しようとするものである。   The present invention relates to a high-strength cold-rolled steel sheet suitable for use in automobile parts and the like that are required to be press-formed into a complicated shape, and a method for producing the same, and in particular, Nb, V, Cu, Ni, Cr, Mo Elongation is achieved by utilizing residual austenite without actively adding expensive elements, making the metal structure a uniform structure mainly composed of a ferrite phase, and controlling the grain size of the tempered martensite phase. (El), stretch flangeability (usually evaluated by the hole expansion ratio (λ)) and bendability are improved at the same time, while at the same time achieving high strength with a tensile strength (TS) of 1180 MPa or more. To do.

近年、自動車車体の軽量化による燃費向上や衝突安全性の向上を目的として引張強度(TS)が590MPa以上の鋼板の自動車車体への適用が積極的に進められているが、最近ではさらに高強度の鋼板の適用が検討されている。
従来、TS:1180MPa級以上の高強度鋼板は軽加工部品に適用されることが多かったが、最近では、より一層の衝突安全性と車体軽量化による燃費向上を両立させるべく、複雑形状のプレス部品への適用が検討されており、加工性に優れる鋼板に対するニーズは高い。
In recent years, steel plates with a tensile strength (TS) of 590 MPa or more have been actively applied to automobile bodies for the purpose of improving fuel economy and collision safety by reducing the weight of automobile bodies. Application of steel sheets is being studied.
Conventionally, high-strength steel sheets of TS: 1180 MPa class or higher were often applied to light-worked parts, but recently, presses with complex shapes are required to achieve even greater collision safety and improved fuel economy by reducing vehicle weight. Applications to parts are being studied, and there is a great need for steel sheets with excellent workability.

しかしながら、鋼板は、一般に、高強度化に伴い加工性が低下する傾向にあることから、プレス成形時における割れの回避が高強度鋼板の適用を拡大する上で大きな課題となっている。また、特にTS:1180MPa級以上に高強度化する場合、強度確保の観点からNb,V,Cu,Ni,CrおよびMoなどの極めて高価な希少元素を積極的に添加する場合が多い。   However, since steel sheets generally tend to have lower workability with higher strength, avoiding cracks during press forming is a major issue in expanding the application of high-strength steel sheets. In particular, when the strength is increased to TS: 1180 MPa class or higher, very expensive rare elements such as Nb, V, Cu, Ni, Cr and Mo are often positively added from the viewpoint of securing strength.

成形性に優れた高強度冷延鋼板に関する従来技術として、例えば特許文献1〜4に、鋼成分や組織の限定、熱延条件、焼鈍条件の最適化により、焼戻しマルテンサイト相や残留オーステナイトを主体とした高強度冷延鋼板の製造技術が開示されている。   For example, Patent Documents 1 to 4 mainly describe tempered martensite phase and retained austenite by limiting steel components and structures, optimizing hot-rolling conditions, and annealing conditions as conventional techniques related to high-strength cold-rolled steel sheets with excellent formability. The manufacturing technology of the high-strength cold-rolled steel sheet is disclosed.

特開2004−308002号公報JP 2004-308002 A 特開2005−179703号公報JP 2005-179703 A 特開2006−283130号公報JP 2006-283130 A 特開2004−359974号公報JP 2004-359974 A

しかしながら、特許文献1に記載の技術は、高価な元素を必須としていないものの、微細な塊状マルテンサイトを得るために、A3点以上1100℃以下という高温での処理を2回繰り返す必要があることから、コスト高となる。また、C量の多い成分系において高いElを得る知見が開示されているが、低いC量レベルでElに加え、伸びフランジ性および曲げ性をバランスさせることに関する知見はない。
特許文献2に記載の技術は、オーステナイト安定化元素として高価なNi,Cuを必須とする不利がある。また、残留オーステナイト相を活用してTS:780〜980MPaレベルで高いElを達成する知見は開示されているが、C量の多いTS:1180MPa以上で十分な伸びフランジ性は得られてなく、さらに曲げ性の向上に関する知見はない。
特許文献3に記載の技術は、実施例に開示される発明鋼板のAl含有量が過多であることから、溶接性に課題が残り、また焼戻しマルテンサイト相の体積分率が多すぎるために十分なTS×Elバランスを達成できない場合がある。さらに、伸びフランジ性と曲げ性の向上に関する知見はない。
特許文献4に記載の技術は、高価なMo,Vを必須としているだけでなく、加工性に関する知見はなく、実際、残留オーステナイト相の体積分率が少なく、焼戻しマルテンサイト相の体積分率が多すぎるため、加工性に問題が残る。
However, although the technique described in Patent Document 1 does not require an expensive element, in order to obtain fine massive martensite, it is necessary to repeat the treatment at a high temperature of A 3 point or more and 1100 ° C. or less twice. Therefore, the cost becomes high. Moreover, although the knowledge which obtains high El in the component system with much C amount is disclosed, in addition to El at low C amount level, there is no knowledge about balancing stretch flangeability and bendability.
The technique described in Patent Document 2 has a disadvantage in that expensive Ni and Cu are essential as an austenite stabilizing element. Moreover, although the knowledge which achieves high El in TS: 780-980MPa level using residual austenite phase is disclosed, sufficient stretch flangeability is not obtained by TS: 1180MPa or more with much C amount, There is no knowledge about improvement of bendability.
The technique described in Patent Document 3 is sufficient because the Al content of the inventive steel sheet disclosed in the Examples is excessive, so that problems remain in weldability and the volume fraction of the tempered martensite phase is too large. TS x El balance may not be achieved. Furthermore, there is no knowledge regarding the improvement of stretch flangeability and bendability.
The technique described in Patent Document 4 not only requires expensive Mo and V, but also has no knowledge about workability, and in fact has a small volume fraction of retained austenite phase and a volume fraction of tempered martensite phase. Since there are too many, a problem remains in workability.

本発明は、上記の問題を有利に解決するもので、溶接性、成形性の観点から高価な希少金属を含有させずとも、金属組織の調整によって伸び、伸びフランジ性および曲げ性などの加工性を向上させた引張強度TSが1180MPa以上の高強度冷延鋼板を、その有利な製造方法と共に提供することを目的とする。   The present invention advantageously solves the above-mentioned problems, and does not contain expensive rare metals from the viewpoint of weldability and formability, and can be stretched by adjusting the metal structure, workability such as stretch flangeability and bendability. An object of the present invention is to provide a high-strength cold-rolled steel sheet having an improved tensile strength TS of 1180 MPa or more together with its advantageous production method.

さて、発明者らは、上記の課題を解決すべく鋭意研究した結果、以下に述べる知見を得た。
すなわち、高価な合金元素であるNbやV,Cu,Ni,Cr,Moを含有させることなく、フェライト相、ベイナイト相、焼戻しマルテンサイト相および残留オーステナイト相などの金属組織を調整することによって、伸びの向上を図ることができ、また金属組織中、特にオーステナイトから低温変態生成するベイナイト相の体積分率および軟質化のために焼鈍を施して軟質化した焼戻しマルテンサイト相のサイズと体積分率を厳密に制御することによって、伸び、伸びフランジ性および曲げ性などの加工性の向上と共に、引張強度TSが1180MPa以上の高強度化が達成できることの知見を得た。
本発明は、上記の知見に立脚するものである。
As a result of intensive research to solve the above problems, the inventors have obtained the following knowledge.
That is, by adjusting the metal structure such as ferrite phase, bainite phase, tempered martensite phase and residual austenite phase without containing expensive alloying elements Nb, V, Cu, Ni, Cr, Mo In addition, the volume fraction of the bainite phase that forms low temperature transformation from austenite, and the size and volume fraction of the tempered martensite phase that has been softened by annealing for softening, can be improved. It was found that by strictly controlling, workability such as elongation, stretch flangeability and bendability can be improved, and high tensile strength TS of 1180 MPa or more can be achieved.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
(1)質量%で、
C:0.16〜0.26%、
Si:1.2〜2.2%、
Mn:2.6〜3.6%、
P:0.020%以下、
S:0.0040%以下、
Al:0.005〜0.08%、
N:0.008%以下、
Ti:0.001〜0.040%および
B:0.0001〜0.0020%
を含有し、残部はFeおよび不可避的不純物からなる成分組成を有し、体積分率で、
フェライト相:40〜70%、
ベイナイト相:15〜35%、
焼戻しマルテンサイト相:5〜25%および
残留オーステナイト相:2〜20%
を含み、かつ焼戻しマルテンサイト相の総体積分率に占める長軸長≧10μmの焼戻しマルテンサイト相の割合が30%以下(但し0%を含む)を満足することを特徴とする、加工性に優れる高強度冷延鋼板。
That is, the gist configuration of the present invention is as follows.
(1) In mass%,
C: 0.16-0.26%
Si: 1.2-2.2%
Mn: 2.6-3.6%
P: 0.020% or less,
S: 0.0040% or less,
Al: 0.005-0.08%,
N: 0.008% or less,
Ti: 0.001 to 0.040% and B: 0.0001 to 0.0020%
The balance has a component composition consisting of Fe and inevitable impurities, and in volume fraction,
Ferrite phase: 40-70%,
Baynite phase: 15-35%
Tempered martensite phase: 5-25% and residual austenite phase: 2-20%
And the ratio of the tempered martensite phase with the major axis length ≧ 10 μm in the total volume fraction of the tempered martensite phase satisfies 30% or less (including 0%), and has excellent workability High strength cold rolled steel sheet.

(2)前記1に記載の成分組成からなる鋼スラブを、熱間圧延後、400〜800℃の温度域で1回目の焼鈍を施したのち、冷間圧延し、ついで760〜860℃の温度域で2回目の焼鈍を施し、冷却速度:10〜80℃/秒で冷却停止温度:300〜500℃まで冷却し、この温度域に100〜1000秒保持したのち、冷却し、その後200〜400℃の温度域で3回目の焼鈍を施すことを特徴とする、加工性に優れる高強度冷延鋼板の製造方法。 (2) A steel slab having the composition described in 1 above is subjected to a first annealing in a temperature range of 400 to 800 ° C. after hot rolling, followed by cold rolling and then a temperature of 760 to 860 ° C. The second annealing is performed in the region, the cooling rate is 10 to 80 ° C./second, the cooling stop temperature is 300 to 500 ° C., the temperature is kept for 100 to 1000 seconds, the cooling is performed, and then 200 to 400 A method for producing a high-strength cold-rolled steel sheet having excellent workability, characterized by performing a third annealing in a temperature range of ° C.

本発明によれば、高価な合金元素を含有させることなしに、伸び、伸びフランジ性および曲げ性に優れ、しかも引張強度が1180MPa以上の高強度冷延鋼板を得ることができる。そして、本発明により得られる高強度冷延鋼板は、特に厳しい形状にプレス成形される自動車部品に供して偉効を奏する。   According to the present invention, it is possible to obtain a high-strength cold-rolled steel sheet having excellent elongation, stretch flangeability and bendability, and having a tensile strength of 1180 MPa or more, without containing an expensive alloy element. The high-strength cold-rolled steel sheet obtained by the present invention is particularly effective when used for automobile parts that are press-formed into a particularly severe shape.

以下、本発明を具体的に説明する。
さて、発明者らは、高強度冷延鋼板の加工性、特に伸び、伸びフランジ性および曲げ性などの加工性の向上に関し、鋭意検討を重ねた結果、Nb,V,Cu,Ni,Cr,Moなどの高価な合金元素を含有しない成分系においても、体積分率でそれぞれ、40〜70%のフェライト相、15〜35%のベイナイト相、5〜25%の焼戻しマルテンサイト相および2〜20%の残留オーステナイト相の相比率とし、かつ焼戻しマルテンサイト相の総体積分率に占める長軸長≧10μmの焼戻しマルテンサイト相の割合が30%以下を満たす組織とすることにより、所期した目的が有利に達成されることを見出した。
以下、本発明の成分組成および組織の限定理由について具体的に説明する。なお、鋼板中の元素の含有量の単位は何れも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
Hereinafter, the present invention will be specifically described.
Now, as a result of intensive studies on improvement of workability of high-strength cold-rolled steel sheets, particularly workability such as elongation, stretch flangeability and bendability, the inventors have studied Nb, V, Cu, Ni, Cr, Even in a component system that does not contain expensive alloy elements such as Mo, 40 to 70% ferrite phase, 15 to 35% bainite phase, 5 to 25% tempered martensite phase, and 2 to 20 by volume fraction, respectively. % Of the retained austenite phase and the ratio of the tempered martensite phase with a major axis length ≧ 10 μm in the total volume fraction of the tempered martensite phase is 30% or less. It has been found that this is advantageously achieved.
Hereinafter, the reasons for limiting the component composition and structure of the present invention will be specifically described. The unit of the element content in the steel sheet is “mass%”, but hereinafter, it is simply indicated by “%” unless otherwise specified.

まず、本発明における鋼の成分組成の適正範囲およびその限定理由は以下のとおりである。
C:0.16〜0.26%
Cは、強度に寄与する元素であり、固溶強化および低温変態相による組織強化による強度確保に有効に寄与する。しかしながら、C量が0.16%未満では必要な体積分率の低温変態相を得るのが難しく、一方0.26%を超えるとスポット溶接性が著しく劣化するだけでなく、低温変態相が過度に硬質化して成形性、特に伸びフランジ性の低下を招く。従って、C量は0.16〜0.26%の範囲とする。
First, the appropriate range of the component composition of steel in the present invention and the reasons for limitation are as follows.
C: 0.16-0.26%
C is an element that contributes to strength, and effectively contributes to securing strength by solid solution strengthening and structure strengthening by a low-temperature transformation phase. However, if the amount of C is less than 0.16%, it is difficult to obtain a low temperature transformation phase having a required volume fraction. On the other hand, if it exceeds 0.26%, not only the spot weldability is remarkably deteriorated, but the low temperature transformation phase is excessively hardened. Decreasing moldability, especially stretch flangeability. Therefore, the C content is in the range of 0.16 to 0.26%.

Si:1.2〜2.2%
Siは、オーステナイト中へのC濃化を促進させ、残留オーステナイトを安定化するのに重要な元素である。上記作用を得るには1.2%以上、好ましくは1.4%以上含有させる必要がある。一方、Si量が2.2%を超えて含有されると鋼板が脆くなって割れが生じ、成形性が低下する。従って、Si量は2.2%以下とする。好ましくは2.0%以下である。
Si: 1.2-2.2%
Si is an important element for promoting C concentration in austenite and stabilizing retained austenite. In order to obtain the above action, it is necessary to contain 1.2% or more, preferably 1.4% or more. On the other hand, if the Si content exceeds 2.2%, the steel sheet becomes brittle and cracks occur, resulting in a decrease in formability. Therefore, the Si content is 2.2% or less. Preferably it is 2.0% or less.

Mn:2.6〜3.6%
Mnは、焼入れ性を向上させる元素であり、強度に寄与する低温変態相の確保を容易にする作用がある。上記作用を得るには2.6%以上含有させる必要があるが、3.6%を超えて含有させると過度に硬質化し、熱間での延性が不足し、スラブ割れが生じるおそれがある。そのため、Mn量は2.6〜3.6%の範囲とする。好ましくは2.6〜3.0%の範囲である。
Mn: 2.6-3.6%
Mn is an element that improves hardenability and has an effect of easily ensuring a low-temperature transformation phase that contributes to strength. In order to obtain the above effect, it is necessary to contain 2.6% or more, but if it exceeds 3.6%, it becomes excessively hard, resulting in insufficient hot ductility and slab cracking. Therefore, the Mn content is in the range of 2.6 to 3.6%. Preferably it is 2.6 to 3.0% of range.

P:0.020%以下
Pは、スポット溶接性に悪影響を及ぼすため、極力低減することが好ましいが、0.020%までは許容できる。しかし、P量を過度に低減することは製鋼工程での生産能率が低下し、高コストとなるため、P量の下限は0.001%程度とすることが好ましい。
P: 0.020% or less Since P adversely affects spot weldability, it is preferable to reduce it as much as possible, but 0.020% is acceptable. However, excessively reducing the amount of P lowers the production efficiency in the steelmaking process and increases the cost, so the lower limit of the amount of P is preferably about 0.001%.

S:0.0040%以下
Sは、粒界に偏析して熱間脆性を誘発するだけでなく、MnSなどの硫化物系介在物を形成し、このMnSが冷間圧延により展伸し、変形時の割れの起点となって局部変形能を低下させるため、極力低減することが好ましいが、0.0040%までは許容できる。しかし、過度の低減は工業的に困難であり、製鋼工程における脱硫コストの増加を招くので、S量の下限は0.0001%程度とすることが好ましい。好ましくは0.0001〜0.0030%の範囲である。
S: 0.0040% or less S not only segregates at the grain boundary to induce hot brittleness, but also forms sulfide inclusions such as MnS, and this MnS expands by cold rolling, In order to reduce the local deformability as a starting point of cracking, it is preferable to reduce as much as possible, but 0.0040% is acceptable. However, excessive reduction is industrially difficult and causes an increase in desulfurization cost in the steel making process, so the lower limit of the amount of S is preferably about 0.0001%. Preferably it is 0.0001 to 0.0030% of range.

Al:0.005〜0.08%
Alは、主として脱酸の目的で添加される。また、炭化物の生成を抑制し、残留オーステナイト相を生成させるのに有効であり、強度−伸びバランスを向上させる上で有用な元素である。上記の目的を達成するには0.005%以上含有させる必要があるが、0.08%を超えて含有されると、アルミナなどの介在物増加による加工性の劣化という問題が生じる。従って、Al量は0.005〜0.08%の範囲とする。好ましくは0.02〜0.06%の範囲である。
Al: 0.005-0.08%
Al is mainly added for the purpose of deoxidation. Moreover, it is effective in suppressing the formation of carbides and generating a retained austenite phase, and is a useful element for improving the strength-elongation balance. In order to achieve the above object, it is necessary to contain 0.005% or more, but if it exceeds 0.08%, there arises a problem of deterioration of workability due to an increase in inclusions such as alumina. Therefore, the Al content is in the range of 0.005 to 0.08%. Preferably it is 0.02 to 0.06% of range.

N:0.008%以下
Nは、耐時効性を劣化させる元素であり、N量が0.008%を超えると耐時効性の劣化が顕著になる。また、含有するBと結合しBNを形成してBを消費し、固溶Bによる焼入れ性を低下させ、所定の体積分率のマルテンサイト相を確保することが困難となる。また、フェライト中で不純物元素として存在し、ひずみ時効により延性を低下させるので、N量は低いほうが好ましいが、0.008%までは許容できる。しかし、N量の過度の低減は製鋼工程における脱窒コストの増加を招くので、N量の下限は0.0001%程度とすることが好ましい。より好ましくは0.0010〜0.0060%の範囲である。
N: 0.008% or less N is an element that deteriorates aging resistance. When the N content exceeds 0.008%, deterioration of aging resistance becomes remarkable. Moreover, it combines with the contained B to form BN to consume B, lower the hardenability of the solid solution B, and it becomes difficult to secure a martensite phase having a predetermined volume fraction. Moreover, since it exists as an impurity element in ferrite and lowers the ductility by strain aging, it is preferable that the N content is low, but it is acceptable up to 0.008%. However, excessive reduction of the amount of N causes an increase in denitrification costs in the steelmaking process, so the lower limit of the amount of N is preferably about 0.0001%. More preferably, it is 0.0010 to 0.0060% of range.

Ti:0.001〜0.040%
Tiは、炭窒化物や硫化物を形成し、強度の向上に有効に寄与する。また、NをTiNとして固定することによりBNの形成を抑制し、Bによる焼入れ性を発現させる上でも有効な元素である。これらの効果を得るには0.001%以上含有させる必要があるが、Ti量が0.040%を超えると、フェライト相中に過度に析出物が生成し、過度の析出強化により、伸びの低下を招く。従って、Ti量は0.001〜0.040%の範囲とする。好ましくは0.010〜0.030%の範囲である。
Ti: 0.001 to 0.040%
Ti forms carbonitrides and sulfides and contributes effectively to improving strength. Moreover, it is an element effective in suppressing the formation of BN by fixing N as TiN and exhibiting hardenability by B. In order to obtain these effects, it is necessary to contain 0.001% or more. However, if the Ti content exceeds 0.040%, excessive precipitates are generated in the ferrite phase, and excessive precipitation strengthening causes a decrease in elongation. Therefore, the Ti amount is in the range of 0.001 to 0.040%. Preferably it is 0.010 to 0.030% of range.

B:0.0001〜0.0020%
Bは、焼入れ性を高めてマルテンサイト相および残留オーステナイト相などの低温変態相を確保するのに有効に寄与し、優れた強度−伸びバランスを得るために有効な元素である。この効果を得るためには、Bを0.0001%以上含有させる必要があるが、B量が0.0020%を超えると、上記の効果は飽和する。従って、B量は0.0001〜0.0020%の範囲とする。
B: 0.0001-0.0020%
B is an element effective for increasing the hardenability and effectively contributing to securing low-temperature transformation phases such as a martensite phase and a retained austenite phase, and obtaining an excellent strength-elongation balance. In order to obtain this effect, it is necessary to contain B in an amount of 0.0001% or more. However, if the amount of B exceeds 0.0020%, the above effect is saturated. Therefore, the B content is in the range of 0.0001 to 0.0020%.

なお、本発明の鋼板において、上記以外の成分はFeおよび不可避的不純物である。ただし、本発明の効果を損なわない範囲内であれば、上記以外の成分の含有を拒むものではない。   In the steel sheet of the present invention, components other than those described above are Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected.

次に、本発明にとって重要な要件の一つである鋼組織の適正範囲およびその限定理由について説明する。
フェライト相の体積分率:40〜70%
フェライト相は、オーステナイトからの低温変態相であるマルテンサイト相、これをさらに熱処理して得た焼戻しマルテンサイト相よりも軟質であり、延性の向上に寄与する。所望の伸びを得るには、体積分率で40%以上のフェライト相が必要であり、フェライト相が40%に満たない場合には、硬質なベイナイト相およびマルテンサイト相の体積分率が増加して過度に高強度化し、伸びおよび伸びフランジが劣化する。一方で、フェライト相が70%を超えると、強度:1180MPaの確保が難しくなるだけでなく、延性に寄与する残留オーステナイト相を所定量確保することが困難となる。従って、フェライト相の体積分率は40〜70%の範囲とする。
Next, the appropriate range of the steel structure, which is one of the important requirements for the present invention, and the reason for the limitation will be described.
Ferrite phase volume fraction: 40-70%
The ferrite phase is softer than the martensite phase, which is a low-temperature transformation phase from austenite, and the tempered martensite phase obtained by further heat-treating it, and contributes to the improvement of ductility. To obtain the desired elongation, a ferrite phase with a volume fraction of 40% or more is required. If the ferrite phase is less than 40%, the volume fraction of the hard bainite phase and martensite phase increases. The strength becomes excessively high, and the stretch and the stretch flange deteriorate. On the other hand, when the ferrite phase exceeds 70%, it is difficult not only to secure the strength: 1180 MPa, but also to secure a predetermined amount of retained austenite phase that contributes to ductility. Therefore, the volume fraction of the ferrite phase is in the range of 40 to 70%.

ベイナイト相の体積分率:15〜35%
ベイナイト相は、同じくオーステナイトからの低温変態相であるマルテンサイト相よりも高温で変態し、マルテンサイト相より軟質であるが、フェライト相よりも硬質であり、強度の向上に寄与する。また、ベイナイト変態を進行させることによりオーステナイト相中へのC濃化が促進され、最終的に伸びに寄与する残留オーステナイト相を所定量確保することが可能となる。これらの目的を達成するにはベイナイト相の体積分率を15%以上にする必要がある。一方で、ベイナイト相が35%を超えて存在すると、強度が過度に高まる結果、伸びの確保が困難となる。
Volume fraction of bainite phase: 15-35%
The bainite phase is transformed at a higher temperature than the martensite phase, which is also a low-temperature transformation phase from austenite, and is softer than the martensite phase, but is harder than the ferrite phase and contributes to an improvement in strength. Further, by proceeding with the bainite transformation, C concentration in the austenite phase is promoted, and a predetermined amount of residual austenite phase that ultimately contributes to elongation can be secured. To achieve these objectives, the volume fraction of the bainite phase needs to be 15% or more. On the other hand, if the bainite phase exceeds 35%, the strength is excessively increased, so that it is difficult to ensure elongation.

焼戻しマルテンサイト相の体積分率:5〜25%
硬質なマルテンサイト相を再加熱して得られる焼戻しマルテンサイト相は、強度の向上に寄与し、TS:1180MPa以上の引張強度を確保するためには体積分率で5%以上の焼戻しマルテンサイト相を必要とする。しかしながら、焼戻しマルテンサイト相の体積分率が大きくなると過度に高強度化し、伸びが低下するため、焼戻しマルテンサイト相の体積分率は25%以下に制限した。そして、焼戻しマルテンサイト相を体積分率で5〜25%の範囲に調整することによって、強度、伸び、伸びフランジ性および曲げ性の良好な材質バランスが得られる。
Volume fraction of tempered martensite phase: 5-25%
The tempered martensite phase obtained by reheating the hard martensite phase contributes to the improvement of strength. TS: To ensure a tensile strength of 1180 MPa or more, a tempered martensite phase with a volume fraction of 5% or more. Need. However, when the volume fraction of the tempered martensite phase increases, the strength increases excessively and the elongation decreases, so the volume fraction of the tempered martensite phase is limited to 25% or less. And by adjusting the tempered martensite phase in the range of 5 to 25% in terms of volume fraction, a material balance with good strength, elongation, stretch flangeability and bendability can be obtained.

残留オーステナイト相の体積分率:2〜20%
残留オーステナイト相は、歪誘起変態、すなわち材料が変形する場合に歪を受けた部分がマルテンサイト相に変態することで変形部が硬質化し、歪の集中を防ぐことにより延性を向上させる効果があり、高延性化するためには2%以上の残留オーステナイト相を含有させる必要がある。しかしながら、残留オーステナイト相はC濃度が高く、硬質なため、鋼板中に20%を超えて過度に存在すると局所的に硬質な部分が存在するようになるため、伸びフランジ成形時における材料の均一変形を阻害する要因となることから、優れた伸びおよび伸びフランジ性の確保が困難となる。特に伸びフランジ性の観点からは、残留オーステナイトは少ない方が好ましい。よって、残留オーステナイト相の体積分率は2〜20%の範囲とする。
Volume fraction of retained austenite phase: 2-20%
Residual austenite phase has strain-induced transformation, that is, when the material is deformed, the strained portion transforms into the martensite phase, the deformed portion becomes hard, and has the effect of improving the ductility by preventing strain concentration. In order to increase ductility, it is necessary to contain 2% or more of retained austenite phase. However, since the residual austenite phase has a high C concentration and is hard, if it exceeds 20% excessively in the steel sheet, a local hard part will be present, so that the uniform deformation of the material during stretch flange molding Therefore, it is difficult to ensure excellent elongation and stretch flangeability. In particular, from the viewpoint of stretch flangeability, it is preferable that the retained austenite is small. Therefore, the volume fraction of the retained austenite phase is in the range of 2 to 20%.

焼戻しマルテンサイト相の総体積分率に占める長軸長≧10μmの焼戻しマルテンサイト相の割合:30%以下(但し、0%を含む)
焼戻しマルテンサイト相は、ベース組織であるフェライト相より硬質である。焼戻しマルテンサイト相の総体積分率が同じ場合、10μm未満の焼戻しマルテンサイト相に比較すると長軸が10μm以上の粗大な焼戻しマルテンサイト相は局在して存在することになり、均一な変形を阻害し、より均一な変形をする微細均一な組織と比較すると伸びフランジ性に不利となる。かような粗大な焼戻しマルテンサイト相の割合が30%を超えると焼戻しマルテンサイト相同士が隣接して存在し、不均一変形が顕著となり、伸びおよび伸びフランジ性に悪影響を及ぼす。それ故、長軸長が10μm以上の焼戻しマルテンサイト相の割合は少なければ少ないほど好ましい。従って、長軸長≧10μmの焼戻しマルテンサイト相の体積分率は30%以下の範囲とする。0%であってもよい。なお、焼戻しマルテンサイト相のサイズは小さいほうが好ましく、長軸長≧5μmの焼戻しマルテンサイト相の体積分率を30%以下とした方がより好ましい。
Ratio of tempered martensite phase with major axis length ≧ 10μm in total volume fraction of tempered martensite phase: 30% or less (however, including 0%)
The tempered martensite phase is harder than the ferrite phase which is the base structure. When the total volume fraction of the tempered martensite phase is the same, the coarse tempered martensite phase with a major axis of 10 μm or more is localized compared to the tempered martensite phase of less than 10 μm, which inhibits uniform deformation. However, it is disadvantageous for stretch flangeability as compared with a fine and uniform structure that deforms more uniformly. When the ratio of such a coarse tempered martensite phase exceeds 30%, the tempered martensite phases are adjacent to each other, and non-uniform deformation becomes remarkable, which adversely affects elongation and stretch flangeability. Therefore, the smaller the ratio of the tempered martensite phase whose major axis length is 10 μm or more, the better. Therefore, the volume fraction of the tempered martensite phase with the long axis length ≧ 10 μm is set to a range of 30% or less. It may be 0%. The size of the tempered martensite phase is preferably small, and the volume fraction of the tempered martensite phase having a major axis length ≧ 5 μm is more preferably 30% or less.

次に、本発明の高強度冷延鋼板の製造条件およびその限定理由について説明する。
本発明において、熱間仕上げ圧延前の工程に関しては常法に従って行えばよく、例えば、上記の成分組成範囲に調製した鋼を溶製、鋳造して得られた鋼スラブを用いることができる。また、本発明においては、連続鋳造スラブ、造塊−分塊スラブは勿論のこと、厚み:50〜100mm程度の薄スラブを用いることができ、特に薄スラブの場合は、再加熱なしに直接熱間圧延工程に供することができる。
Next, the manufacturing conditions of the high-strength cold-rolled steel sheet according to the present invention and the reasons for limitation will be described.
In the present invention, the process before hot finish rolling may be performed in accordance with a conventional method. For example, a steel slab obtained by melting and casting steel prepared in the above component composition range can be used. In the present invention, not only continuous casting slabs and ingot-splitting slabs, but also thin slabs with a thickness of about 50 to 100 mm can be used. Especially in the case of thin slabs, direct heating without reheating is possible. It can use for a hot rolling process.

熱間圧延についても特に制限はなく、従来公知の方法に従って行えばよい。好適条件を述べると次のとおりである。
熱間圧延時の加熱温度は1100℃以上にすることが好ましい。スケール生成を軽減、燃料原単位の低減の観点から上限は1300℃とすることが好ましい。熱間圧延における仕上げ温度は、フェライトとパーライトなど低温変態相の層状組織を回避すべく、850℃以上とするのが好ましい。また、スケール生成の軽減、結晶粒径粗大化の抑制による組織の微細均一化の観点から上限は950℃とするのが好ましい。
熱間圧延終了後の巻取り温度は、冷間圧延性、表面性状の観点から450〜600℃とするのが好ましく、巻取り後の鋼板である熱延板は酸洗工程を経て次の工程に供される。
The hot rolling is not particularly limited, and may be performed according to a conventionally known method. The preferred conditions are as follows.
The heating temperature during hot rolling is preferably 1100 ° C. or higher. The upper limit is preferably set to 1300 ° C. from the viewpoint of reducing scale generation and reducing fuel consumption. The finishing temperature in hot rolling is preferably 850 ° C. or higher so as to avoid a layered structure of a low-temperature transformation phase such as ferrite and pearlite. In addition, the upper limit is preferably set to 950 ° C. from the viewpoint of reduction of scale formation and fine homogenization of the structure by suppressing coarsening of the crystal grain size.
The coiling temperature after completion of hot rolling is preferably 450 to 600 ° C. from the viewpoint of cold rollability and surface properties, and the hot rolled sheet, which is a steel sheet after winding, is subjected to a pickling process and then the next process. To be served.

ついで、焼鈍後、冷間圧延を施すが、本発明では、この焼鈍工程以降が重要であり、冷間圧延を挟んで都合3回の焼鈍(熱処理)を施す。
焼鈍温度(1回目):400〜800℃
1回目の焼鈍、すなわち熱延後の熱延板の焼鈍における焼鈍温度が400℃に満たないと、熱延後の焼戻しが不十分で、最終的に得られる冷延鋼板において、熱延後の組織の影響を除去することができず、フェライト、パーライトから構成される層状の熱延板組織に起因した不均一な組織となり、十分な伸びフランジ性が得られない。また熱延板は硬質化し、冷間圧延の負荷が増大するため、高コストとなる。一方、800℃を超えた温度で焼鈍すると、焼鈍後の組織がフェライトより硬質なマルテンサイトなどの低温変態相となり、組織が不均一かつ硬質化するため、最終的に得られる冷延鋼板の伸びフランジ性は著しく低下する。従って、冷間圧延前に極めて均一な組織とするに、熱延後の焼鈍温度は400〜800℃の範囲とする。
Then, after annealing, cold rolling is performed. In the present invention, the steps after the annealing step are important, and annealing (heat treatment) is performed three times conveniently with the cold rolling in between.
Annealing temperature (first time): 400-800 ° C
If the annealing temperature in the first annealing, that is, the annealing of the hot-rolled sheet after hot rolling is less than 400 ° C., the tempering after hot-rolling is insufficient, and in the finally obtained cold-rolled steel sheet, The influence of the structure cannot be removed, and a non-uniform structure resulting from the layered hot-rolled sheet structure composed of ferrite and pearlite is obtained, and sufficient stretch flangeability cannot be obtained. Further, the hot-rolled sheet is hardened and the cold rolling load increases, resulting in high costs. On the other hand, when annealing at a temperature exceeding 800 ° C., the structure after annealing becomes a low-temperature transformation phase such as martensite, which is harder than ferrite, and the structure becomes non-uniform and hardened. Flangeability is significantly reduced. Therefore, in order to obtain a very uniform structure before cold rolling, the annealing temperature after hot rolling is in the range of 400 to 800 ° C.

冷間圧延
1回目の焼鈍後、冷間圧延を施すが、この冷延工程に格別の制限はなく、常法に従って施せば良い。
好適には、圧下率:30〜60%で冷延することが好ましい。というのは、圧下率が30%に満たないと鋼板中に不均一に歪が導入され、部分的に回復、再結晶および粒成長が進行し、不均一な組織となり、伸びフランジ性に悪影響を及ぼすからであり、一方60%を超えても、材質上は問題ないが、冷間圧延の負荷が増大するからである。
Cold rolling Cold rolling is performed after the first annealing, but this cold rolling process is not particularly limited and may be performed according to a conventional method.
Preferably, it is preferable to cold-roll at a rolling reduction of 30 to 60%. This is because if the rolling reduction is less than 30%, strain is introduced non-uniformly in the steel sheet, partial recovery, recrystallization and grain growth proceed, resulting in a non-uniform structure and adversely affecting stretch flangeability. On the other hand, even if it exceeds 60%, there is no problem in the material, but the cold rolling load increases.

焼鈍温度(2回目):760〜860℃
2回目の焼鈍、すなわち冷間圧延後の焼鈍における焼鈍温度が760℃より低いと、焼鈍中にフェライト相の体積分率が高くなり、最終的に得られる組織におけるフェライト相の体積分率が多くなるため、TS:1180MPaの確保が困難となる。また、焼鈍中にオーステナイト相へのC濃化が促進され、焼戻しをする前のマルテンサイト相が過度に硬質化し、焼戻し処理後も硬質化して、伸びフランジ性が低下する。一方、860℃を超えてオーステナイト単相の高温域まで加熱すると、オーステナイト粒径が過度に粗大化し、フェライト相や低温変態相の結晶粒径が粗大化して、伸びフランジ性が劣化する。よって2回目の焼鈍における焼鈍温度は760〜860℃の範囲とする。
Annealing temperature (second time): 760-860 ° C
If the annealing temperature in the second annealing, that is, the annealing after cold rolling is lower than 760 ° C, the volume fraction of the ferrite phase becomes high during annealing, and the volume fraction of the ferrite phase in the finally obtained structure is large. Therefore, it is difficult to secure TS: 1180 MPa. Moreover, C concentration to an austenite phase is accelerated | stimulated during annealing, the martensite phase before tempering hardens | cures excessively, it hardens also after a tempering process, and stretch flangeability falls. On the other hand, when heated to a high temperature range of austenite single phase exceeding 860 ° C., the austenite grain size becomes excessively coarse, the crystal grain size of ferrite phase and low temperature transformation phase becomes coarse, and stretch flangeability deteriorates. Therefore, the annealing temperature in the second annealing is in the range of 760 to 860 ° C.

冷却速度:10〜80℃/秒
2回目の焼鈍後における冷却速度は、所望の低温変態相の体積分率を得るために重要である。平均冷却速度が10℃/ 秒未満の場合、ベイナイト相およびマルテンサイト相の確保が困難となり、軟質化するために、強度確保が困難となる。一方、80℃/秒を超えると、逆に過度にマルテンサイト相が生成し、過度に硬質化するため、伸びおよび伸びフランジ性など加工性が低下する。従って、冷却速度は10〜80℃/秒の範囲とする。
なお、この場合の冷却は、ガス冷却とすることが好ましいが、その他、炉冷、ミスト冷却、ロール冷却および水冷などの方法を適宜用いることができ、またはそれらを組み合わせて使用することも可能である。
Cooling rate: 10 to 80 ° C./second The cooling rate after the second annealing is important for obtaining the desired volume fraction of the low-temperature transformation phase. When the average cooling rate is less than 10 ° C./second, it is difficult to secure a bainite phase and a martensite phase, and it becomes difficult to secure strength because of softening. On the other hand, when it exceeds 80 ° C./second, a martensite phase is excessively generated and hardened excessively, so that workability such as elongation and stretch flangeability deteriorates. Accordingly, the cooling rate is in the range of 10 to 80 ° C./second.
The cooling in this case is preferably gas cooling, but other methods such as furnace cooling, mist cooling, roll cooling, and water cooling can be used as appropriate, or a combination thereof can also be used. is there.

冷却停止温度:300〜500℃
2回目の焼鈍後の冷却停止温度が300℃未満の場合、残留オーステナイトの生成が抑制され、過度にマルテンサイト相が生成するため、強度が高くなりすぎ、伸びの確保が困難となる。一方、500℃を超えた場合、冷却停止後の保持中のベイナイト変態が遅延し、それに伴い残留オーステナイトの生成が抑制され、優れた延性を得ることが困難となる。フェライト相を主体とし、マルテンサイト相および残留オーステナイト相の存在比率を制御し、TS:1180MPa級以上の強度を確保すると同時に、伸びおよび伸びフランジ性をバランス良く得るためには、冷却停止温度は300〜500℃の範囲とする必要がある。
Cooling stop temperature: 300 ~ 500 ℃
When the cooling stop temperature after the second annealing is less than 300 ° C., the generation of retained austenite is suppressed and the martensite phase is excessively generated, so that the strength becomes too high and it becomes difficult to ensure elongation. On the other hand, when the temperature exceeds 500 ° C., the bainite transformation during holding after the cooling stop is delayed, and accordingly, the formation of retained austenite is suppressed, and it becomes difficult to obtain excellent ductility. In order to maintain the strength of TS: 1180MPa class or higher, and at the same time obtain a well-balanced stretch and stretch flangeability, the cooling stop temperature is 300 ° C, mainly composed of ferrite phase, controlling the ratio of martensite phase and residual austenite phase. Must be in the range of ~ 500 ° C.

保持時間:100〜1000秒
上記した冷却停止温度域(保持温度域でもある)における保持時間が100秒に満たないと、オーステナイト相へCが濃化する時間が不十分となり、最終的に所望量の残留オーステナイトを得ることが難しく、また過度にマルテンサイト相が生成して高強度化し、伸びおよび伸びフランジ性が低下する。一方、1000秒を超えて滞留させても残留オーステナイト量は増加せず、伸びの顕著な向上は認められない。従って、保持時間は100〜1000秒の範囲とする。
なお、冷却停止後の鋼板を上記滞留温度域に保持する手段としては、例えば、焼鈍後の冷却設備の下流工程に保温装置等を設けて、鋼板の温度を上記滞留温度に調整する手段等が挙げられる。また、滞留後の鋼板は、従来公知の任意の方法により所望の温度に冷却される。
Holding time: 100 to 1000 seconds If the holding time in the above-described cooling stop temperature range (also the holding temperature range) is less than 100 seconds, the time for C to concentrate in the austenite phase becomes insufficient, and finally the desired amount It is difficult to obtain the retained austenite, and the martensite phase is excessively formed to increase the strength, and the elongation and stretch flangeability are deteriorated. On the other hand, even if retained for more than 1000 seconds, the amount of retained austenite does not increase, and no significant improvement in elongation is observed. Accordingly, the holding time is in the range of 100 to 1000 seconds.
In addition, as a means for maintaining the steel plate after the cooling stop in the residence temperature range, for example, a means for adjusting a temperature of the steel plate to the residence temperature by providing a heat retaining device or the like in the downstream process of the cooling equipment after annealing, etc. Can be mentioned. Moreover, the steel plate after residence is cooled to a desired temperature by any conventionally known method.

焼鈍温度(3回目):200〜400℃
3回目の焼鈍、すなわち焼戻し焼鈍における焼鈍温度が200℃より低い場合、マルテンサイト相の軟質化が不十分となり、焼戻しマルテンサイト相が過度に硬質化する結果、伸びフランジ性および曲げ性が低下する。一方、焼鈍温度が400℃を超えた場合、2回目の焼鈍後に得られた残留オーステナイト相が分解し、最終的に所望量の残留オーステナイトが得られず、伸びに優れた鋼板を得ることが困難となる。またベイナイト相およびマルテンサイト相がフェライト相とセメンタイトに分解するため、強度の確保が困難となる。よって、3回目の焼鈍温度は200〜400℃の範囲とする。なお、焼鈍温度における均熱時間は、50秒よりも短いとマルテンサイト相の軟質化が不十分となりやすく、一方1000秒を超えると残留オーステナイト相が分解しやすいため、50秒〜1000秒とすることが好ましい。
なお、上記した3回目の焼鈍後の冷却速度については特に制限はなく、常法に従い冷却すれば良い。
Annealing temperature (third time): 200-400 ° C
If the annealing temperature in the third annealing, that is, tempering annealing is lower than 200 ° C., the martensite phase becomes insufficiently softened, and the tempered martensite phase becomes excessively hardened, resulting in reduced stretch flangeability and bendability. . On the other hand, when the annealing temperature exceeds 400 ° C., the retained austenite phase obtained after the second annealing is decomposed, and the desired amount of retained austenite is not finally obtained, making it difficult to obtain a steel sheet having excellent elongation. It becomes. Further, since the bainite phase and the martensite phase are decomposed into a ferrite phase and cementite, it is difficult to ensure strength. Therefore, the 3rd annealing temperature shall be the range of 200-400 degreeC. It should be noted that the soaking time at the annealing temperature is less than 50 seconds, the softening of the martensite phase tends to be insufficient, while if it exceeds 1000 seconds, the retained austenite phase is easily decomposed, so it is set to 50 seconds to 1000 seconds. It is preferable.
In addition, there is no restriction | limiting in particular about the cooling rate after the above-mentioned 3rd annealing, What is necessary is just to cool in accordance with a conventional method.

上記した3回目の焼鈍後、最終的に得られた冷延鋼板に、形状矯正や表面粗度調整の目的から調質圧延(スキンパス圧延)を行ってもかまわないが、過度にスキンパス圧延をすると鋼板に歪が導入されるため、結晶粒が展伸されて圧延加工組織となり、延性が低下するおそれがある。そのため、スキンパス圧延の圧下率は0.05%以上0.5%以下程度とすることが好ましい。   After the third annealing described above, the cold-rolled steel sheet finally obtained may be subjected to temper rolling (skin pass rolling) for the purpose of shape correction or surface roughness adjustment. Since strain is introduced into the steel sheet, the crystal grains are expanded to form a rolled structure, and the ductility may be reduced. Therefore, the rolling reduction of skin pass rolling is preferably about 0.05% to 0.5%.

表1に示す成分組成を有する鋼を溶製してスラブとし、1220℃に加熱後、仕上げ圧延出側温度:880℃、圧延終了直後に50℃/秒の速度で前半冷却、巻取温度:580℃の熱間圧延を行い、ついで塩酸酸洗後、表2に示す条件で焼鈍処理および冷間圧延を行って、板厚:1.6mmの冷延鋼板を製造した。
得られた冷延鋼板について、以下に示す材料試験により材料特性を調査した。
得られた結果を表3に示す。
A steel having the composition shown in Table 1 is melted to form a slab, heated to 1220 ° C., finished rolling exit temperature: 880 ° C., immediately after completion of rolling, first half cooling at a rate of 50 ° C./sec, winding temperature: Hot rolling at 580 ° C. was performed, followed by pickling with hydrochloric acid, followed by annealing and cold rolling under the conditions shown in Table 2 to produce a cold-rolled steel sheet having a thickness of 1.6 mm.
About the obtained cold-rolled steel sheet, the material characteristic was investigated by the material test shown below.
The obtained results are shown in Table 3.

(1)鋼板の組織
圧延方向断面で、板厚の1/4位置の面を走査型電子顕微鏡(SEM)で観察することにより調査した。観察はN=5(観察視野5箇所)で実施した。フェライト相の体積分率は、倍率2000倍の断面組織写真を用い、画像解析により、任意に設定した50μm×50μm四方の正方形領域内に存在する相の占有面積を求め、これをフェライト相の体積分率とした。
残留オーステナイト相の量は、MoのKα線を用いてX線回折法により求めた。すなわち、鋼板の板厚1/4付近の面を測定面とする試験片を使用し、オーステナイト相の(211)面および(220)面とフェライト相の(200)面および(220)面のピーク強度から残留オーステナイト相の体積率を算出した。
ベイナイト相と焼戻しマルテンサイト相の区別は、焼戻し後においては難しい場合があるため、焼戻し焼鈍である3回目の焼鈍前の鋼板の圧延方向に平行な板厚断面について、ナイタールによりエッチングした後の組織を2000〜3000倍でSEM観察し、観察されるマルテンサイト相、すなわち比較的平滑な表面を有し塊状な形状として観察された組織が最終的に焼戻されて焼戻しマルテンサイト相になると見做して判定した。
なお、マルテンサイト相が焼戻されていることの確認は、焼戻し焼鈍前後の板厚断面組織を、5000倍でSEM観察し、焼戻し焼鈍により、マルテンサイト相内に炭化物が析出していることを確認することにより行った。
長軸長:10μm以上の焼戻しマルテンサイト相の割合は、前記と同様の理由のため、3回目の焼鈍前の鋼板の倍率:1000倍の断面組織写真を用い、画像解析により任意に設定した100μm×100μm四方の正方形領域内に存在する長軸長が10μm以上のマルテンサイト相の占有面積を求め、これを焼戻しマルテンサイト相の占有面積と見做して、焼戻しマルテンサイト相の占有面積率を求めて体積分率とした。なお、長軸長:10μm以上のマルテンサイト相の抽出は、マルテンサイト相の長軸、すなわち最大径が、直径が10μmの円と同じかこれよりも大きい場合に、長軸長が10μm以上であるとした。
各相の体積分率は、最初にフェライト相と低温変態相を区別して、フェライト相の体積分率を決定し、次にX線により残留オーステナイト相の体積分率を決定し、残る体積分率をベイナイト相とマルテンサイト相の和とし、2つの相の区別は上記したようにSEM像による目視で判断した。
(1) Structure of steel plate The cross section in the rolling direction was examined by observing a surface at 1/4 position of the plate thickness with a scanning electron microscope (SEM). The observation was carried out at N = 5 (5 observation fields). The volume fraction of the ferrite phase was determined by calculating the area occupied by the 50μm x 50μm square area that was arbitrarily set by image analysis using a cross-sectional structure photograph with a magnification of 2000 times. It was a fraction.
The amount of residual austenite phase was determined by X-ray diffraction using Mo Kα rays. That is, using a test piece having a surface near a thickness of 1/4 of the steel sheet as a measurement surface, the peaks of the (211) surface and (220) surface of the austenite phase and the (200) surface and (220) surface of the ferrite phase The volume ratio of the retained austenite phase was calculated from the strength.
Since the distinction between the bainite phase and the tempered martensite phase may be difficult after tempering, the structure after etching with nital on the plate thickness section parallel to the rolling direction of the steel plate before the third annealing, which is tempered annealing. SEM observation at 2000 to 3000 times, the martensite phase observed, that is, the structure observed as a lump shape with a relatively smooth surface is finally tempered to become a tempered martensite phase And judged.
In addition, the confirmation that the martensite phase is tempered is that the thickness cross-sectional structure before and after temper annealing is observed by SEM at a magnification of 5000, and by temper annealing, carbide is precipitated in the martensite phase. This was done by checking.
Long axis length: The ratio of the tempered martensite phase of 10 μm or more is the same reason as described above. The magnification of the steel plate before the third annealing: 100 μm arbitrarily set by image analysis using a cross-sectional structure photograph of 1000 times Obtain the occupied area of the martensite phase with a long axis length of 10 μm or more present in the square area of × 100 μm square, and consider this as the occupied area of the tempered martensite phase to determine the occupied area ratio of the tempered martensite phase. The volume fraction was obtained. The extraction of the martensite phase with a long axis length of 10 μm or more is possible when the long axis length of the martensite phase is 10 μm or more when the long axis of the martensite phase, that is, when the maximum diameter is the same as or larger than a circle with a diameter of 10 μm. It was supposed to be.
The volume fraction of each phase is determined by first determining the volume fraction of the ferrite phase by distinguishing between the ferrite phase and the low temperature transformation phase, and then determining the volume fraction of the retained austenite phase by X-rays, and the remaining volume fraction. Was the sum of the bainite phase and the martensite phase, and the distinction between the two phases was judged visually by SEM images as described above.

(2)引張特性
圧延方向と90°の方向を長手方向(引張方向)とするJIS Z 2201に記載の5号試験片を用い、JIS Z 2241に準拠した引張試験を行って評価した。なお、引張特性の評価基準はTS×El≧20000MPa・%以上(TS:引張強度(MPa)、El:全伸び(%))を良好とした。
(2) Tensile properties Evaluation was performed by conducting a tensile test based on JIS Z 2241 using No. 5 test piece described in JIS Z 2201 with the rolling direction and 90 ° as the longitudinal direction (tensile direction). The evaluation criteria for tensile properties were TS × El ≧ 20,000 MPa ·% or more (TS: tensile strength (MPa), El: total elongation (%)).

(3)穴拡げ率
日本鉄鋼連盟規格JFST1001に基づき実施した。初期直径d0=10mmの穴を打抜き、頂角:60°の円錐ポンチを上昇させて穴を拡げた際に、亀裂が板厚を貫通したところでポンチの上昇を停止して、亀裂貫通後の打抜き穴径dを測定し、次式で算出した。
穴拡げ率(%)=((d−d0)/d0)× 100
なお、同一番号の鋼板について3回試験を実施し、穴拡げ率の平均値(λ)を求めた。ここに、穴拡げ率の評価基準はTS×λ≧36000MPa・%以上を良好とした。
(3) Hole expansion rate This was carried out based on the Japan Iron and Steel Federation standard JFST1001. When a hole with an initial diameter of d 0 = 10 mm was punched and the conical punch with an apex angle of 60 ° was raised to widen the hole, when the crack penetrated the plate thickness, the rise of the punch was stopped. The punched hole diameter d was measured and calculated by the following formula.
Hole expansion rate (%) = ((d−d 0 ) / d 0 ) × 100
In addition, the test was implemented 3 times about the steel plate of the same number, and the average value ((lambda)) of the hole expansion rate was calculated | required. Here, TS × λ ≧ 36000 MPa ·% or more was regarded as good as the evaluation standard for the hole expansion rate.

(4)曲げ特性
板厚:1.6mmの鋼板を用い、曲げ部の稜線と圧延方向が平行になるようにサンプルを採取し、サンプルサイズは40mm×100mm(サンプルの長手が圧延直角方向)とした。得られたサンプルに対し、先端曲げR=3.0mmの金型を用いて90°V曲げを行い、曲げ頂点で割れの有無を目視判定し、割れの発生がない場合を良好な曲げ性であると評価した。
(4) Bending characteristics Thickness: Using a steel plate with a thickness of 1.6 mm, a sample was taken so that the ridgeline of the bent part and the rolling direction were parallel, and the sample size was 40 mm x 100 mm (the sample length was the direction perpendicular to the rolling). . The obtained sample is bent at 90 ° V using a die with a tip bending radius of R = 3.0 mm, and the presence or absence of cracks is visually determined at the top of the bend. It was evaluated.

Figure 2012237042
Figure 2012237042

Figure 2012237042
Figure 2012237042

Figure 2012237042
Figure 2012237042

表3から明らかなように、No.1〜5の発明例はいずれも、TS≧1180MPaで、かつTS×El≧20000MPa・%、TS×λ≧36000MPa・%を満足し、さらにR/t=3.0/1.6=1.875で割れなく90°V曲げを満足する伸び、伸びフランジ性および曲げ性に優れる高強度冷延鋼板が得られている。
これに対し、鋼中C量が本発明の適正範囲外であるNo.6は、曲げ性、引張特性および伸びフランジ性に劣っている。
1回目の焼鈍温度が低いNo.7は、長軸長≧10μmの焼戻しマルテンサイト相の割合が過多となり、やはり曲げ性、引張特性および伸びフランジ性に劣っている。
また、2回目の焼鈍温度が低いNo.9、2回目の焼鈍後の冷却速度が遅いNo.11 および3回目焼鈍温度が高いNo.17はいずれも、フェライト相の体積分率が多く、TS:1180MPaを満足していない。
さらに、1回目の焼鈍温度が高いNo.8、2回目の焼鈍後の冷却速度が速いNo.12、冷却停止温度が低いNo.13、冷却停止温度が高いNo.14および冷却停止温度域での保持時間が短いNo.15はいずれも、低温変態相であるベイナイト相または焼戻しマルテンサイト相の体積分率が多すぎ、強度が過度に高く、伸びおよび伸びフランジ性に劣る。
焼鈍温度が高いNo.10はフェライト相の体積分率が少なく、強度が過度に高く、伸びおよび伸びフランジ性に劣る。
またさらに、3回目の焼鈍温度が低いNo.16は、マルテンサイト相が焼戻しされないため、強度が過度に高く、伸びフランジ性に劣る。
As is apparent from Table 3, all of the inventive examples Nos. 1 to 5 satisfy TS ≧ 1180 MPa, satisfy TS × El ≧ 20000 MPa ·%, TS × λ ≧ 36000 MPa ·%, and R / t = A high-strength cold-rolled steel sheet excellent in elongation, stretch flangeability and bendability satisfying 90 ° V bending without cracking at 3.0 / 1.6 = 1.875 has been obtained.
On the other hand, No. 6 in which the amount of C in steel is outside the proper range of the present invention is inferior in bendability, tensile properties, and stretch flangeability.
No. 7, which has a low annealing temperature for the first time, has an excessive proportion of tempered martensite phase with a long axis length ≧ 10 μm, and is also inferior in bendability, tensile properties and stretch flangeability.
In addition, No. 9, which has a low annealing temperature, No. 11, which has a slow cooling rate after the second annealing, and No. 17, which has a high third annealing temperature, both have a high volume fraction of ferrite phase. : Not satisfied with 1180MPa.
Furthermore, in No. 8 where the first annealing temperature is high, No. 12 where the cooling rate is fast after the second annealing, No. 13 where the cooling stop temperature is low, No. 14 where the cooling stop temperature is high, and the cooling stop temperature range No. 15, which has a short retention time, has a volume fraction of the bainite phase or tempered martensite phase which is a low-temperature transformation phase, is excessively high in strength, and is inferior in elongation and stretch flangeability.
No. 10 having a high annealing temperature has a low volume fraction of ferrite phase, an excessively high strength, and is inferior in elongation and stretch flangeability.
Furthermore, No. 16, which has a low third annealing temperature, has an excessively high strength and poor stretch flangeability because the martensite phase is not tempered.

本発明に従い、鋼板中にNb,V,Cu,Ni,Cr,Moなど高価な元素を積極的に含有せずとも、フェライト相、ベイナイト相、焼戻しマルテンサイト相および残留オーステナイト相各々の体積分率を適正に制御することにより、安価でかつ優れた伸び、伸びフランジ性および曲げ性を有し、しかも引張強度(TS)が1180MPa以上の高強度冷延鋼板を得ることができる。
本発明の高強度冷延鋼板は、自動車部品として好適であるだけでなく、それ以外にも、建築および家電分野など厳しい寸法精度、加工性が必要とされる用途にも好適である。
According to the present invention, the volume fraction of each of the ferrite phase, the bainite phase, the tempered martensite phase, and the retained austenite phase without actively containing expensive elements such as Nb, V, Cu, Ni, Cr, and Mo in the steel sheet. By appropriately controlling, high-strength cold-rolled steel sheets that are inexpensive and have excellent elongation, stretch flangeability, and bendability and that have a tensile strength (TS) of 1180 MPa or more can be obtained.
The high-strength cold-rolled steel sheet of the present invention is not only suitable for automobile parts, but also suitable for applications that require strict dimensional accuracy and workability, such as in the field of architecture and home appliances.

Claims (2)

質量%で、
C:0.16〜0.26%、
Si:1.2〜2.2%、
Mn:2.6〜3.6%、
P:0.020%以下、
S:0.0040%以下、
Al:0.005〜0.08%、
N:0.008%以下、
Ti:0.001〜0.040%および
B:0.0001〜0.0020%
を含有し、残部はFeおよび不可避的不純物からなる成分組成を有し、体積分率で、
フェライト相:40〜70%、
ベイナイト相:15〜35%、
焼戻しマルテンサイト相:5〜25%および
残留オーステナイト相:2〜20%
を含み、かつ焼戻しマルテンサイト相の総体積分率に占める長軸長≧10μmの焼戻しマルテンサイト相の割合が30%以下(但し0%を含む)を満足することを特徴とする、加工性に優れる高強度冷延鋼板。
% By mass
C: 0.16-0.26%
Si: 1.2-2.2%
Mn: 2.6-3.6%
P: 0.020% or less,
S: 0.0040% or less,
Al: 0.005-0.08%,
N: 0.008% or less,
Ti: 0.001 to 0.040% and B: 0.0001 to 0.0020%
The balance has a component composition consisting of Fe and inevitable impurities, and in volume fraction,
Ferrite phase: 40-70%,
Baynite phase: 15-35%
Tempered martensite phase: 5-25% and residual austenite phase: 2-20%
And the ratio of the tempered martensite phase with the major axis length ≧ 10 μm in the total volume fraction of the tempered martensite phase satisfies 30% or less (including 0%), and has excellent workability High strength cold rolled steel sheet.
請求項1に記載の成分組成からなる鋼スラブを、熱間圧延後、400〜800℃の温度域で1回目の焼鈍を施したのち、冷間圧延し、ついで760〜860℃の温度域で2回目の焼鈍を施し、冷却速度:10〜80℃/秒で冷却停止温度:300〜500℃まで冷却し、この温度域に100〜1000秒保持したのち、冷却し、その後200〜400℃の温度域で3回目の焼鈍を施すことを特徴とする、加工性に優れる高強度冷延鋼板の製造方法。   The steel slab having the component composition according to claim 1 is subjected to a first annealing in a temperature range of 400 to 800 ° C after hot rolling, followed by cold rolling, and then in a temperature range of 760 to 860 ° C. Second annealing, cooling rate: 10-80 ° C / second, cooling stop temperature: 300-500 ° C, hold in this temperature range for 100-1000 seconds, then cool, then 200-400 ° C A method for producing a high-strength cold-rolled steel sheet having excellent workability, characterized by performing a third annealing in a temperature range.
JP2011107605A 2011-05-12 2011-05-12 High-strength cold-rolled steel sheet excellent in workability and manufacturing method thereof Active JP5862051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011107605A JP5862051B2 (en) 2011-05-12 2011-05-12 High-strength cold-rolled steel sheet excellent in workability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011107605A JP5862051B2 (en) 2011-05-12 2011-05-12 High-strength cold-rolled steel sheet excellent in workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012237042A true JP2012237042A (en) 2012-12-06
JP5862051B2 JP5862051B2 (en) 2016-02-16

Family

ID=47460197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107605A Active JP5862051B2 (en) 2011-05-12 2011-05-12 High-strength cold-rolled steel sheet excellent in workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5862051B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092982A1 (en) 2013-12-18 2015-06-25 Jfeスチール株式会社 High-strength steel sheet and method for producing same
EP2980239A4 (en) * 2013-03-28 2016-03-02 Jfe Steel Corp High-strength hot-dip galvanized steel sheet and method for manufacturing same
CN105452513A (en) * 2013-08-09 2016-03-30 杰富意钢铁株式会社 High-strength cold rolled steel sheet having high yield ratio and method for producing said sheet
WO2016121388A1 (en) * 2015-01-28 2016-08-04 Jfeスチール株式会社 High-strength cold-rolled steel sheet, high-strength plated steel sheet, and method for manufacture thereof
JP6123966B1 (en) * 2016-09-21 2017-05-10 新日鐵住金株式会社 steel sheet
WO2017109540A1 (en) * 2015-12-21 2017-06-29 Arcelormittal Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet
US10240226B2 (en) 2013-03-29 2019-03-26 Jfe Steel Corporation Steel plate for thick-walled steel pipe, method for manufacturing the same, and thick-walled high-strength steel pipe
US10400300B2 (en) 2014-08-28 2019-09-03 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for manufacturing the same
US10422015B2 (en) 2014-08-28 2019-09-24 Jfe Steel Corporation High-strength galvanized steel sheet excellent in stretch-flange formability, in-plane stability of stretch-flange formability, and bendability and method for manufacturing the same
KR20190109447A (en) * 2017-02-15 2019-09-25 제이에프이 스틸 가부시키가이샤 High strength steel sheet and its manufacturing method
KR20200075359A (en) * 2018-12-18 2020-06-26 주식회사 포스코 Steel sheet having excellent strength and ductility, and method for manufacturing the same
WO2021125603A1 (en) * 2019-12-18 2021-06-24 주식회사 포스코 High-strength steel sheet having superior workability, and manufacturing method therefor
WO2021125596A1 (en) * 2019-12-18 2021-06-24 주식회사 포스코 High-strength steel sheet having superior workability, and manufacturing method therefor
KR20220087086A (en) * 2020-12-17 2022-06-24 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
CN114901852A (en) * 2019-12-18 2022-08-12 Posco公司 High-strength steel sheet having excellent workability and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2019009599A (en) 2017-02-13 2019-10-14 Jfe Steel Corp High-strength steel plate and manufacturing method therefor.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300476A (en) * 2003-03-28 2004-10-28 Jfe Steel Kk Superhigh-strength cold-rolled steel sheet and manufacturing method therefor
JP2006104532A (en) * 2004-10-06 2006-04-20 Nippon Steel Corp High strength thin steel sheet having excellent elongation and hole expansibility and method for producing the same
JP2009203550A (en) * 2008-01-31 2009-09-10 Jfe Steel Corp High-strength steel sheet and manufacturing method therefor
JP2011153336A (en) * 2010-01-26 2011-08-11 Nippon Steel Corp High strength cold rolled steel sheet having excellent formability, and method for producing the same
JP2012122093A (en) * 2010-12-08 2012-06-28 Nippon Steel Corp High strength cold-rolled steel sheet excellent in formability and method for producing the same
JP2012237044A (en) * 2011-05-12 2012-12-06 Jfe Steel Corp High-strength cold-rolled steel sheet excellent in elongation and stretch flanging property and method for production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300476A (en) * 2003-03-28 2004-10-28 Jfe Steel Kk Superhigh-strength cold-rolled steel sheet and manufacturing method therefor
JP2006104532A (en) * 2004-10-06 2006-04-20 Nippon Steel Corp High strength thin steel sheet having excellent elongation and hole expansibility and method for producing the same
JP2009203550A (en) * 2008-01-31 2009-09-10 Jfe Steel Corp High-strength steel sheet and manufacturing method therefor
JP2011153336A (en) * 2010-01-26 2011-08-11 Nippon Steel Corp High strength cold rolled steel sheet having excellent formability, and method for producing the same
JP2012122093A (en) * 2010-12-08 2012-06-28 Nippon Steel Corp High strength cold-rolled steel sheet excellent in formability and method for producing the same
JP2012237044A (en) * 2011-05-12 2012-12-06 Jfe Steel Corp High-strength cold-rolled steel sheet excellent in elongation and stretch flanging property and method for production thereof

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980239A4 (en) * 2013-03-28 2016-03-02 Jfe Steel Corp High-strength hot-dip galvanized steel sheet and method for manufacturing same
US10266906B2 (en) 2013-03-28 2019-04-23 Jfe Steel Corporation High-strength galvanized steel sheet and method for manufacturing the same
US10240226B2 (en) 2013-03-29 2019-03-26 Jfe Steel Corporation Steel plate for thick-walled steel pipe, method for manufacturing the same, and thick-walled high-strength steel pipe
KR101778643B1 (en) 2013-08-09 2017-09-14 제이에프이 스틸 가부시키가이샤 High-yield-ratio, high-strength cold rolled steel sheet and production method therefor
CN105452513A (en) * 2013-08-09 2016-03-30 杰富意钢铁株式会社 High-strength cold rolled steel sheet having high yield ratio and method for producing said sheet
EP3012339A4 (en) * 2013-08-09 2016-07-13 Jfe Steel Corp High-strength cold rolled steel sheet having high yield ratio and method for producing said sheet
US10156005B2 (en) 2013-08-09 2018-12-18 Jfe Steel Corporation High-yield-ratio, high-strength cold rolled steel sheet and production method therefor
KR20160098381A (en) 2013-12-18 2016-08-18 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and method for producing same
US10526676B2 (en) 2013-12-18 2020-01-07 Jfe Steel Corporation High-strength steel sheet and method for producing the same
WO2015092982A1 (en) 2013-12-18 2015-06-25 Jfeスチール株式会社 High-strength steel sheet and method for producing same
US10422015B2 (en) 2014-08-28 2019-09-24 Jfe Steel Corporation High-strength galvanized steel sheet excellent in stretch-flange formability, in-plane stability of stretch-flange formability, and bendability and method for manufacturing the same
US10400300B2 (en) 2014-08-28 2019-09-03 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for manufacturing the same
CN107208222A (en) * 2015-01-28 2017-09-26 杰富意钢铁株式会社 High strength cold rolled steel plate, high intensity coated steel sheet and its manufacture method
JP6052473B1 (en) * 2015-01-28 2016-12-27 Jfeスチール株式会社 High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods thereof
WO2016121388A1 (en) * 2015-01-28 2016-08-04 Jfeスチール株式会社 High-strength cold-rolled steel sheet, high-strength plated steel sheet, and method for manufacture thereof
WO2017109540A1 (en) * 2015-12-21 2017-06-29 Arcelormittal Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet
EP3910084A1 (en) * 2015-12-21 2021-11-17 ArcelorMittal Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet
WO2017108866A1 (en) * 2015-12-21 2017-06-29 Arcelormittal Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet
EP3656880A1 (en) * 2015-12-21 2020-05-27 ArcelorMittal Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet
JP6123966B1 (en) * 2016-09-21 2017-05-10 新日鐵住金株式会社 steel sheet
WO2018055687A1 (en) * 2016-09-21 2018-03-29 新日鐵住金株式会社 Steel plate
KR20190109447A (en) * 2017-02-15 2019-09-25 제이에프이 스틸 가부시키가이샤 High strength steel sheet and its manufacturing method
KR102225217B1 (en) 2017-02-15 2021-03-08 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and its manufacturing method
US11408058B2 (en) 2017-02-15 2022-08-09 Jfe Steel Corporation High-strength steel sheet and method for producing the same
KR20200075359A (en) * 2018-12-18 2020-06-26 주식회사 포스코 Steel sheet having excellent strength and ductility, and method for manufacturing the same
KR102178728B1 (en) 2018-12-18 2020-11-13 주식회사 포스코 Steel sheet having excellent strength and ductility, and method for manufacturing the same
WO2021125603A1 (en) * 2019-12-18 2021-06-24 주식회사 포스코 High-strength steel sheet having superior workability, and manufacturing method therefor
CN114846166A (en) * 2019-12-18 2022-08-02 Posco公司 High-strength steel sheet having excellent workability and method for producing same
WO2021125596A1 (en) * 2019-12-18 2021-06-24 주식회사 포스코 High-strength steel sheet having superior workability, and manufacturing method therefor
CN114901852A (en) * 2019-12-18 2022-08-12 Posco公司 High-strength steel sheet having excellent workability and method for producing same
CN114901852B (en) * 2019-12-18 2024-04-19 Posco公司 High-strength steel sheet excellent in workability and method for producing same
KR20220087086A (en) * 2020-12-17 2022-06-24 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102485012B1 (en) 2020-12-17 2023-01-04 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same

Also Published As

Publication number Publication date
JP5862051B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5862051B2 (en) High-strength cold-rolled steel sheet excellent in workability and manufacturing method thereof
JP5348268B2 (en) High-strength cold-rolled steel sheet having excellent formability and method for producing the same
US10072316B2 (en) High-strength cold-rolled steel sheet and method for producing the same
JP6341214B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
JP4947176B2 (en) Manufacturing method of ultra-high strength cold-rolled steel sheet
JP5487984B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP5321605B2 (en) High strength cold-rolled steel sheet having excellent ductility and method for producing the same
JP5126399B2 (en) High-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JP6047983B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability
JP5662903B2 (en) High-strength steel sheet with excellent formability, warm working method, and warm-worked automotive parts
JP5862052B2 (en) High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP5521444B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP5862591B2 (en) High strength steel plate and manufacturing method thereof
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP2010013700A (en) High strength hot dip galvanized steel sheet having excellent workability, and method for producing the same
JP2013245397A (en) High-strength cold-rolled steel sheet having small variation in strength and ductility, and method for manufacturing the same
JP2011080106A (en) High strength cold-rolled steel sheet excellent in balance of extension and formability for extending flange
JP3901039B2 (en) Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same
JP6098537B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
US20210040589A1 (en) Hot-rolled steel sheet
WO2013160938A1 (en) High strength cold-rolled steel plate of excellent ductility and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5862051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250