JP4947176B2 - Manufacturing method of ultra-high strength cold-rolled steel sheet - Google Patents

Manufacturing method of ultra-high strength cold-rolled steel sheet Download PDF

Info

Publication number
JP4947176B2
JP4947176B2 JP2010067921A JP2010067921A JP4947176B2 JP 4947176 B2 JP4947176 B2 JP 4947176B2 JP 2010067921 A JP2010067921 A JP 2010067921A JP 2010067921 A JP2010067921 A JP 2010067921A JP 4947176 B2 JP4947176 B2 JP 4947176B2
Authority
JP
Japan
Prior art keywords
mass
steel sheet
cooling
phase
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010067921A
Other languages
Japanese (ja)
Other versions
JP2011202195A (en
Inventor
正崇 吉野
浩平 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010067921A priority Critical patent/JP4947176B2/en
Priority to CN201180015404.2A priority patent/CN102822375B/en
Priority to PCT/JP2011/056128 priority patent/WO2011118459A1/en
Priority to KR1020127021878A priority patent/KR101288701B1/en
Publication of JP2011202195A publication Critical patent/JP2011202195A/en
Application granted granted Critical
Publication of JP4947176B2 publication Critical patent/JP4947176B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Description

本発明は、主としてプレス加工やロール成形等で製造される自動車のセンターピラーやドアインパクトビームなどの車体構造用部材に用いられる引張強さが980MPa以上の超高強度冷延鋼板製造方法に関するものである。
The present invention relates to a method for producing an ultra-high-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more, which is used for vehicle body structural members such as automobile center pillars and door impact beams, which are mainly produced by pressing or roll forming. It is.

近年、大気中のCO濃度の上昇に起因した地球温暖化への配慮から、COの移動発生源である自動車からのCO排出量を削減するため、自動車の燃費改善が強く求められている。自動車の燃費を改善するには車体の軽量化が有効である。しかし、乗員の安全性を確保することも必要であるため、車体重量を低減しつつ、衝突安全性を従来以上に確保することが必要とされる。そこで、車体軽量化と衝突安全性の確保の両立を図るため、高比強度材料の適用による薄肉化が進められており、最近では引張強さが980〜1180MPa級の超高強度薄鋼板がセンターピラーやドアインパクトビームに代表される車体構造用部材に適用されるようになってきている。 In recent years, in consideration of global warming caused by an increase in the CO 2 concentration in the atmosphere, in order to reduce CO 2 emissions from automobiles that are the source of CO 2 migration, there has been a strong demand for improved automobile fuel consumption. Yes. Lightening the vehicle body is an effective way to improve the fuel efficiency of automobiles. However, since it is also necessary to ensure the safety of the occupant, it is necessary to ensure the collision safety more than before while reducing the weight of the vehicle body. Therefore, in order to achieve both weight reduction of the vehicle body and ensuring of collision safety, thinning is being promoted by application of a high specific strength material. Recently, ultra high strength thin steel sheets with a tensile strength of 980 to 1180 MPa class are centered. 2. Description of the Related Art It has come to be applied to body structural members represented by pillars and door impact beams.

しかし、車体軽量化に対する要求はさらに強まりつつあり、1180MPa級よりも高強度の薄鋼板を採用することによって、さらなる車体の軽量化が検討されている。一般に、薄鋼板の強度を高める手段としては、金属組織中にマルテンサイト相を含ませることが有効であり、特に少ない合金成分の添加量で高強度を達成するためには、金属組織をマルテンサイト単相とすることが有効である。そして、このマルテンサイト単相組織鋼板は、省合金成分でありながら、高い降伏比(降伏応力/引張強度)を有し、伸びフランジ性にも優れることから、車体構造用部材として極めて有望視されている。   However, demands for reducing the weight of the vehicle body are increasing, and further weight reduction of the vehicle body has been studied by adopting a thin steel plate having a strength higher than the 1180 MPa class. In general, as a means of increasing the strength of a thin steel sheet, it is effective to include a martensite phase in the metal structure. In order to achieve high strength with a particularly small amount of added alloy components, the metal structure should be martensite. It is effective to use a single phase. This martensitic single-phase steel sheet has a high yield ratio (yield stress / tensile strength) and is excellent in stretch flangeability even though it is an alloy-saving component, and is therefore very promising as a vehicle structural member. ing.

ところで、マルテンサイト単相組織鋼板は、Ac変態点以上の温度で均熱処理してオーステナイト相単相組織とした鋼板を、フェライト相やパーライト相に代表される第二相が生成しない上部臨界冷却速度以上の冷却速度でMs点以下まで冷却する(以降、この冷却を「焼入れ」とも称する。)ことによって製造されることは一般的に理解されている。 By the way, the martensitic single-phase steel sheet is an upper critical cooling in which a second phase typified by a ferrite phase and a pearlite phase is not formed in a steel sheet having an austenite phase single-phase structure by soaking at a temperature equal to or higher than the Ac 3 transformation point. It is generally understood that it is manufactured by cooling to the Ms point or less at a cooling rate that is higher than or equal to the rate (hereinafter, this cooling is also referred to as “quenching”).

しかし、上記製造方法でマルテンサイト単相組織鋼板を得る場合には、Ac変態点以上の高温からの高速冷却に伴う体積収縮と、Ms点以下まで連続冷却された際に起こるマルテンサイト変態に伴う体積膨張によって、瞬時に鋼板内に不均一な内部応力が発生する。そして、この内部応力が鋼板の降伏応力を超えると、鋼板形状が悪化し、特に板幅方向に顕著な反りが発生するという問題がある。 However, when a martensitic single-phase steel sheet is obtained by the above production method, volume shrinkage due to rapid cooling from a high temperature above the Ac 3 transformation point and martensitic transformation that occurs when continuously cooled to below the Ms point. The accompanying volume expansion instantly generates non-uniform internal stress in the steel sheet. And when this internal stress exceeds the yield stress of a steel plate, there exists a problem that a steel plate shape deteriorates and remarkable curvature generate | occur | produces especially in a board width direction.

上記焼入れに伴う鋼板形状の悪化は、連続焼鈍工程における操業性やその後の工程での製造性を害するという問題だけでなく、当該鋼板をプレス成形やロール成形などで車体構造用部材に加工するに際しても、成形ラインでの操業トラブルや製品の寸法精度に悪影響を及ぼす等の問題を引き起こす。そのため、マルテンサイト単相組織鋼板を、自動車車体の構造部材の素材として安定して用いるには、高強度であることの他に、鋼板の平坦度にも優れていることも重要であり、例えば、製品鋼板の幅方向の反り高さは10mm以下であることが望まれている。   The deterioration of the shape of the steel sheet due to the above quenching not only affects the operability in the continuous annealing process and the manufacturability in the subsequent process, but also when the steel sheet is processed into a vehicle structural member by press forming or roll forming. However, it causes problems such as operation troubles in the molding line and adverse effects on the dimensional accuracy of the product. Therefore, in order to stably use the martensitic single-phase steel sheet as a material for the structural member of an automobile body, it is also important that the steel sheet has excellent flatness in addition to high strength. The warp height in the width direction of the product steel plate is desired to be 10 mm or less.

このような鋼板形状の悪化という問題に対しては、幾つかの改善技術が提案されている。例えば、特許文献1には、引張強さが1470MPa〜1960MPaの連続焼鈍後の鋼板の反り高さと、金属組織中のマルテンサイト体積率との関係を調査した結果に基づいて、鋼板の金属組織を体積率で80〜97%のマルテンサイト相と残部がフェライト相からなる二相組織とすることによって、所定の機械特性と、優れた鋼板形状を得る技術が開示されている。
また、特許文献2には、連続焼鈍して引張強さが1049〜1240MPaのマルテンサイト単相組織鋼板とした後、鋼板表面の平均粗さRaが1.4μm以上となるように調質圧延を施すことにより、良好な鋼板形状を得る技術が開示されている。
Several improvement techniques have been proposed for the problem of deterioration of the steel plate shape. For example, in Patent Document 1, based on the results of investigating the relationship between the warpage height of a steel sheet after continuous annealing with a tensile strength of 1470 MPa to 1960 MPa and the martensite volume ratio in the metal structure, the metal structure of the steel sheet is described. A technique for obtaining predetermined mechanical properties and an excellent steel plate shape by forming a two-phase structure composed of a martensite phase having a volume ratio of 80 to 97% and the balance consisting of a ferrite phase is disclosed.
In Patent Document 2, after continuous annealing to obtain a martensitic single-phase steel sheet having a tensile strength of 1049 to 1240 MPa, temper rolling is performed so that the average roughness Ra of the steel sheet surface is 1.4 μm or more. The technique of obtaining a favorable steel plate shape by applying is disclosed.

特許第2528387号公報Japanese Patent No. 2528387 特開2009−79255号公報JP 2009-79255 A

しかしながら、特許文献1の技術では、鋼板組織が、伸びフランジ性等の機械的特性に及ぼす影響については考慮がなされていない。すなわち、上記強度レベルの鋼板では、主相がマルテンサイト相で、微量のフェライト相を含む金属組織とした場合、硬質のマルテンサイト相と軟質なフェライト相との間に大きな硬度差が生じることから、伸びフランジ性が低下することが知られている。また、マルテンサイト相とフェライト相の界面を基点として、水素脆化割れが助長されるおそれもある。   However, in the technique of Patent Document 1, no consideration is given to the influence of the steel sheet structure on mechanical properties such as stretch flangeability. That is, in the steel sheet of the above strength level, when the main phase is a martensite phase and a metal structure including a small amount of ferrite phase, a large hardness difference occurs between the hard martensite phase and the soft ferrite phase. It is known that stretch flangeability is reduced. Further, hydrogen embrittlement cracking may be promoted starting from the interface between the martensite phase and the ferrite phase.

また、特許文献2の技術のように、鋼板形状を調質圧延で矯正する方法は、焼入れ時に発生する鋼板形状の悪化そのものを抑制する技術ではないため、連続焼鈍工程における操業性の改善には繋がらない。また、調質圧延による形状矯正は、例えば引張強さが1320MPa以上の高強度鋼板では、極めて高い圧延荷重が必要となり、既存の圧延設備では十分な形状矯正効果が得られない。さらに、鋼板の表面粗さの増大は、表面の美麗性が要求される用途には不適であり、しかも、表面粗さの増加に起因した疲労特性の低下も懸念されるという問題点がある。   Moreover, since the method of correcting the steel sheet shape by temper rolling as in the technique of Patent Document 2 is not a technique for suppressing the deterioration of the steel sheet shape that occurs during quenching, it is necessary to improve the operability in the continuous annealing process. I can not connect it. In addition, shape correction by temper rolling requires, for example, a very high rolling load for a high-strength steel sheet having a tensile strength of 1320 MPa or more, and a sufficient shape correction effect cannot be obtained with existing rolling equipment. Furthermore, the increase in the surface roughness of the steel sheet is unsuitable for applications that require surface aesthetics, and there is a problem that the fatigue characteristics may be deteriorated due to the increase in the surface roughness.

そこで、本発明は、上記問題点に鑑みてなされたものであって、その目的は、連続焼鈍における焼入れ時の鋼板形状の悪化そのものを抑制することによって、高い平坦度を有する超高強度冷延鋼板の有利な製造方法を提案することにある。
Therefore, the present invention has been made in view of the above problems, and its purpose is to suppress the deterioration of the shape of the steel sheet during quenching in continuous annealing itself, thereby achieving ultrahigh strength cold rolling having high flatness. It is to propose an advantageous production method of the steel plate.

発明者らは、従来技術が抱える上記問題点の解決に向けて鋭意研究を重ねた。その結果、焼入れ時の高速冷却に伴う体積収縮とマルテンサイト変態に伴う体積膨張により発生するマルテンサイト単相組織鋼板の形状悪化は、連続焼鈍での焼入れ時における冷却を、均熱温度からMs点直上近傍まで冷却する一次冷却と、Ms点直上近傍から100℃以下まで冷却する二次冷却とに分け、その間に鋼板をMs点直上近傍温度に所定の時間保持して鋼板温度を均一化することが有効であることを見出し、本発明を完成させた。   The inventors have intensively studied to solve the above problems of the prior art. As a result, the deterioration of the shape of the martensitic single-phase steel sheet caused by volume shrinkage due to high-speed cooling during quenching and volume expansion due to martensitic transformation is caused by cooling from the soaking temperature to the Ms point during quenching during continuous annealing. It is divided into primary cooling that cools to the vicinity immediately above and secondary cooling that cools to the temperature below 100 ° C. from the vicinity immediately above the Ms point, and during that time, the steel sheet is held at the temperature near the Ms point for a predetermined time to equalize the steel sheet temperature. Was found to be effective, and the present invention was completed.

すなわち、本発明は、C:0.05〜0.40mass%、Si:2.0mass%以下、P:0.05mass%以下、S:0.02mass%以下、Al:0.01〜0.05mass%、N:0.005mass%未満、Mn:1.0〜3.0mass%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する冷間圧延後の鋼板を連続焼鈍して引張強さ980MPa以上の超高強度冷延鋼板を製造する方法において、上記連続焼鈍では、Ac変態点以上の均熱温度から下記(1)式で求められるMs点〜Ms点+200℃の温度範囲まで20℃/秒以上の平均冷却速度で一次冷却し、上記温度範囲に0.1〜60秒間保持した後、100℃/秒以上の平均冷却速度で100℃以下まで二次冷却することを特徴とする超高強度冷延鋼板の製造方法を提案する。
Ms(℃)=550−361×C−39×Mn−35×V−20×Cr−17×Ni−10×Cu−5×(Mo+W)+15×Co+30×Al ・・・(1)
ここで、上記式中の元素記号は、それぞれの元素の含有量(mass%)を表す。
That is, the present invention includes C: 0.05 to 0.40 mass%, Si: 2.0 mass% or less, P: 0.05 mass% or less, S: 0.02 mass% or less, Al: 0.01 to 0.05 mass. %, N: less than 0.005 mass%, Mn: 1.0 to 3.0 mass%, and the steel sheet after cold rolling having a component composition with the balance consisting of Fe and inevitable impurities is subjected to continuous annealing and tensile strength In the method for producing an ultra-high strength cold-rolled steel sheet of 980 MPa or more, in the above-mentioned continuous annealing, the temperature ranges from the soaking temperature not lower than the Ac 3 transformation point to the temperature range of Ms point to Ms point + 200 ° C. determined by the following formula (1). Primary cooling is performed at an average cooling rate of ℃ / second or higher, and the secondary cooling is performed at an average cooling rate of 100 ° C / second or higher to 100 ° C or lower after being held in the above temperature range for 0.1 to 60 seconds. Super high A method for producing a high strength cold-rolled steel sheet is proposed.
Ms (° C.) = 550-361 × C-39 × Mn-35 × V-20 × Cr-17 × Ni-10 × Cu-5 × (Mo + W) + 15 × Co + 30 × Al (1)
Here, the element symbol in the above formula represents the content (mass%) of each element.

また、本発明の超高強度冷延鋼板の製造方法は、二次冷却後、再加熱し、100〜250℃×120〜1800秒の焼戻し処理を施すことを特徴とする。   Moreover, the manufacturing method of the ultra-high-strength cold-rolled steel sheet of the present invention is characterized in that after secondary cooling, reheating is performed and tempering treatment is performed at 100 to 250 ° C. × 120 to 1800 seconds.

また、本発明の超高強度冷延鋼板の製造方法は、一次冷却および二次冷却を水冷却で行うことを特徴とする。   Moreover, the manufacturing method of the ultra high strength cold-rolled steel sheet of the present invention is characterized in that primary cooling and secondary cooling are performed by water cooling.

また、本発明の製造方法における冷間圧延後の鋼板は、上記成分組成に加えてさらに、Ti:0.1mass%以下、Nb:0.1mass%以下、B:0.0005〜0.0030mass%およびCu:0.20mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする。   In addition to the above component composition, the steel sheet after cold rolling in the production method of the present invention is further Ti: 0.1 mass% or less, Nb: 0.1 mass% or less, B: 0.0005 to 0.0030 mass%. And Cu: It contains 1 type, or 2 or more types chosen from 0.20 mass% or less, It is characterized by the above-mentioned.

本発明によれば、連続焼鈍工程での鋼板焼入れ時に生じる形状の悪化そのものを抑制することができるので、連続焼鈍工程等での製造性の向上のみならず、調質圧延等による形状矯正コストの削減にも大きく寄与する。また、本発明の技術は、調質圧延等での形状矯正が困難と考えられる引張強さが1320MPa以上の超高強度鋼板にも適用できるので、超高強度マルテンサイト単相組織鋼板の用途拡大にも寄与する。さらに、本発明によれば、十分な平坦度を有する超高強度冷延鋼板を安定して得ることができるので、プレス成形やロール成形等で自動車用構造部材を製造する際の製造性の向上や寸法精度等の品質向上にも大きく寄与することができる。   According to the present invention, it is possible to suppress the deterioration of the shape itself that occurs at the time of quenching the steel sheet in the continuous annealing process, so that not only the improvement in manufacturability in the continuous annealing process etc., but also the shape correction cost by temper rolling etc. It also contributes greatly to reduction. The technology of the present invention can also be applied to ultra-high-strength steel sheets having a tensile strength of 1320 MPa or more, which is considered difficult to correct the shape in temper rolling, etc., so that the use of ultra-high-strength martensitic single-phase steel sheets is expanded. Also contributes. Furthermore, according to the present invention, an ultra-high-strength cold-rolled steel sheet having sufficient flatness can be stably obtained, so that the productivity when manufacturing a structural member for automobiles by press molding or roll molding is improved. And can greatly contribute to quality improvement such as dimensional accuracy.

鋼板に発生した最大反り高さを測定する方法を説明する図である。It is a figure explaining the method of measuring the maximum curvature height generate | occur | produced in the steel plate.

まず、本発明の基本的技術思想について説明する。
連続焼鈍工程での焼入れ時にマルテンサイト単相組織鋼板に発生する形状悪化は、高速冷却に伴う体積収縮とマルテンサイト変態に伴う体積膨張によって、鋼板内部に不均一な応力が発生することに起因する。一般に、高速冷却に伴う体積収縮およびそれによって発生する応力は、冷却を開始する温度と冷却終了温度との温度差に比例して大きくなると考えられる。一方、マルテンサイト変態に伴う体積膨張は、最終冷却後の金属組織がマルテンサイト単相組織である場合には均一である。したがって、冷却に伴う体積収縮とそれに伴い発生する応力が小さい場合、焼入れによる鋼板形状への影響は、ほぼマルテンサイト変態に伴う一様な体積膨張のみと考えることができ、Ms点以下の温度域における冷却速度が鋼板形状に及ぼす影響は小さいものと考えられる。
First, the basic technical idea of the present invention will be described.
The shape deterioration that occurs in a martensitic single-phase steel sheet during quenching in the continuous annealing process is due to the occurrence of non-uniform stress inside the steel sheet due to volume shrinkage associated with high-speed cooling and volume expansion associated with martensitic transformation. . In general, it is considered that the volume shrinkage accompanying high-speed cooling and the stress generated thereby increase in proportion to the temperature difference between the temperature at which cooling starts and the temperature at which cooling ends. On the other hand, the volume expansion accompanying the martensitic transformation is uniform when the metal structure after the final cooling is a martensite single phase structure. Therefore, when the volume shrinkage accompanying cooling and the stress generated thereby are small, the influence on the steel sheet shape due to quenching can be considered to be only a uniform volume expansion accompanying martensitic transformation, and the temperature range below the Ms point. The effect of the cooling rate on the steel plate shape is considered to be small.

したがって、焼入れ時の体積収縮に伴い鋼板内部に発生する応力を低減するには、冷却開始温度と冷却終了温度との差を小さくすればよいと考えられる。そこで、本発明は、連続焼鈍工程における鋼板の焼入れを、Ac変態点以上の均熱温度からMs点直上近傍温度まで冷却する一次冷却後、鋼板温度をMs点直上近傍温度に所定時間保持して鋼板内の温度分布を均一化した上で、Ms点直上近傍温度から100℃以下まで冷却する二次冷却し、マルテンサイト変態を起こさせるようにすれば、焼入れ時の体積収縮に伴い発生する応力を最大限に低減できることに想到し、開発したものである。 Therefore, it is considered that the difference between the cooling start temperature and the cooling end temperature may be reduced in order to reduce the stress generated in the steel sheet due to the volume shrinkage during quenching. Therefore, the present invention maintains the steel plate temperature at the temperature near the Ms point for a predetermined time after the primary cooling in which the quenching of the steel plate in the continuous annealing process is cooled from the soaking temperature not lower than the Ac 3 transformation point to the temperature just above the Ms point. If the temperature distribution in the steel plate is made uniform and then secondary cooling is performed from the temperature immediately above the Ms point to 100 ° C. or lower to cause martensitic transformation, this occurs with volume shrinkage during quenching. The idea was developed to reduce stress to the maximum.

次に、本発明の超高強度冷延鋼板の成分組成の限定理由について説明する。
C:0.05〜0.40mass%
Cは、オーステナイト相を安定化させる元素であるとともに、鋼板強度を確保するのに必要な元素である。Cが0.05mass%未満では、所望の引張強さ(980MPa以上)のマルテンサイト単相組織鋼板を得ることは困難である。一方、C量が0.40mass%を超えると、連続焼鈍工程前の圧延が困難となったり、マルテンサイト変態に伴う変態歪および変態応力が著しく増大し、焼き割れを起こしたりするおそれがあるため、製造上好ましくない。よって、本発明では、Cを0.05〜0.40mass%の範囲とする。好ましくは0.15〜0、30mass%の範囲である。
Next, the reason for limiting the component composition of the ultra high strength cold rolled steel sheet of the present invention will be described.
C: 0.05-0.40 mass%
C is an element that stabilizes the austenite phase and is an element necessary for ensuring the strength of the steel sheet. When C is less than 0.05 mass%, it is difficult to obtain a martensitic single-phase steel sheet having a desired tensile strength (980 MPa or more). On the other hand, if the amount of C exceeds 0.40 mass%, rolling before the continuous annealing process becomes difficult, and the transformation strain and transformation stress accompanying martensitic transformation may remarkably increase to cause firing cracks. This is not preferable in production. Therefore, in the present invention, C is set in the range of 0.05 to 0.40 mass%. Preferably it is the range of 0.15-0 and 30 mass%.

Si:2.0mass%以下
Siは、鋼板の加工性を害することなく高強度化するのに有効な置換型固溶強化元素である。しかし、SiはAc変態点を高温側に移行させる元素でもあるため、過度なSi添加は、焼鈍温度の上昇、ひいては焼鈍コストの上昇を招くため好ましくない。またSiを過剰に添加すると、熱間圧延でのスケール生成が顕著になり、最終製品の表面欠陥が増加し、品質上も好ましくない。よって、Siは2.0mass%以下とする。好ましくは1.5mass%以下である。
Si: 2.0 mass% or less Si is a substitutional solid solution strengthening element that is effective for increasing the strength without impairing the workability of the steel sheet. However, since Si is also an element that shifts the Ac 3 transformation point to the high temperature side, excessive addition of Si is not preferable because it causes an increase in annealing temperature and an increase in annealing cost. Moreover, when Si is added excessively, the scale production | generation by hot rolling will become remarkable, the surface defect of a final product will increase, and it is not preferable also on quality. Therefore, Si is set to 2.0 mass% or less. Preferably it is 1.5 mass% or less.

Mn:1.0〜3.0mass%
Mnは、オーステナイト相を安定化させて、マルテンサイト組織を得やすくする元素である。しかし、Mnが1.0mass%未満では、鋼の焼入れ性が十分ではなく、焼鈍時の均熱温度からの冷却中に、フェライト相やパーライト相、ベイナイト相が早期に生成を開始し、本発明が意図するマルテンサイト単相組織を安定して得ることが困難となる。一方、3.0mass%を超えて添加すると、偏析が顕著となったり、加工性が低下したりするおそれがある。また、耐遅れ破壊特性も低下する。よって、Mnは1.0〜3.0mass%の範囲とする。好ましくは1.5〜2.5mass%の範囲である。
Mn: 1.0 to 3.0 mass%
Mn is an element that stabilizes the austenite phase and makes it easier to obtain a martensite structure. However, if Mn is less than 1.0 mass%, the hardenability of the steel is not sufficient, and the ferrite phase, the pearlite phase, and the bainite phase start to form early during cooling from the soaking temperature during annealing, and the present invention However, it is difficult to stably obtain the intended martensite single-phase structure. On the other hand, if it is added in an amount exceeding 3.0 mass%, segregation may become remarkable or processability may be deteriorated. In addition, the delayed fracture resistance also decreases. Therefore, Mn is set to a range of 1.0 to 3.0 mass%. Preferably it is the range of 1.5-2.5 mass%.

P:0.05mass%以下
Pは、粒界に偏析して粒界破壊を助長する元素でもあるので、低いほど望ましい。よって、Pは0.05mass%以下とする。好ましくは0.02mass%以下、より好ましくは0.01mass%以下である。なお、溶接性を向上する観点からは、0.008mass%以下が望ましい。
P: 0.05 mass% or less P is also an element that segregates at the grain boundary and promotes grain boundary destruction. Therefore, P is set to 0.05 mass% or less. Preferably it is 0.02 mass% or less, More preferably, it is 0.01 mass% or less. In addition, from a viewpoint of improving weldability, 0.008 mass% or less is desirable.

S:0.02mass%以下
Sは、MnSなどの硫化物系介在物となって、耐衝撃特性や耐遅れ破壊特性の低下を誘引するため、極力低い方が望ましい。よって、Sの上限は0.02mass%とする。好ましくは0.002mass%以下である。
S: 0.02 mass% or less Since S becomes a sulfide-based inclusion such as MnS and induces a decrease in impact resistance and delayed fracture resistance, it is desirable that S be as low as possible. Therefore, the upper limit of S is 0.02 mass%. Preferably it is 0.002 mass% or less.

Al:0.01〜0.05mass%
Alは、製鋼工程において脱酸のために添加される元素であり、十分な脱酸効果を得るためには0.01mass%以上添加する必要がある。一方、過剰に添加すると、鋼板中の介在物が増加し、延性の低下を招く。よって、Alは0.01〜0.05mass%の範囲とする。
Al: 0.01-0.05 mass%
Al is an element added for deoxidation in the steelmaking process, and it is necessary to add 0.01 mass% or more in order to obtain a sufficient deoxidation effect. On the other hand, when it adds excessively, the inclusion in a steel plate will increase and the ductility will fall. Therefore, Al is set to a range of 0.01 to 0.05 mass%.

N:0.005mass%未満
Nは、窒化物を形成する元素である。特に含有量が0.005mass%以上になると、窒化物の形成による高温および低温での延性の低下が大きくなる。よって、Nは0.005mass%未満に制限する。
N: Less than 0.005 mass% N is an element that forms a nitride. In particular, when the content is 0.005 mass% or more, the decrease in ductility at high and low temperatures due to the formation of nitride increases. Therefore, N is limited to less than 0.005 mass%.

本発明の超高強度冷延鋼板は、上記必須元素の他に、目的に応じて、Nb,Ti,BおよびCuを下記の範囲で添加することができる。
Nb:0.1mass%以下、Ti:0.1mass%以下
NbおよびTiは、結晶粒を微細化させ、鋼板の強度を上昇させるのに有効な元素である。しかし、Nb,Tiは、それぞれ0.1mass%を超えて添加しても、その効果は飽和するため、経済的に好ましくない。よって、NbおよびTiを添加する場合には、それぞれ0.1mass%以下とする。
In addition to the above essential elements, Nb, Ti, B and Cu can be added to the ultra-high strength cold-rolled steel sheet of the present invention within the following ranges depending on the purpose.
Nb: 0.1 mass% or less, Ti: 0.1 mass% or less Nb and Ti are effective elements for refining crystal grains and increasing the strength of a steel sheet. However, even if Nb and Ti are added in amounts exceeding 0.1 mass%, the effect is saturated, which is not economically preferable. Therefore, when adding Nb and Ti, respectively, it shall be 0.1 mass% or less.

B:0.0005〜0.0030mass%
Bは、焼入れ性を高めて、鋼板強度を上昇させるのに有効な元素である。しかし、Bが0.0005mass%未満では、上記強度上昇効果が期待できない。一方、Bが0.0030mass%を超えると、熱間加工性が低下するため、製造上好ましくない。よって、Bを添加する場合には、0.0005〜0.0030mass%の範囲とする。
B: 0.0005 to 0.0030 mass%
B is an element effective for enhancing the hardenability and increasing the steel sheet strength. However, if B is less than 0.0005 mass%, the above-mentioned strength increasing effect cannot be expected. On the other hand, if B exceeds 0.0030 mass%, the hot workability deteriorates, which is not preferable for production. Therefore, when adding B, it is set as the range of 0.0005-0.0030 mass%.

Cu:0.20mass%以下
Cuは、オーステナイト相を安定化させ、マルテンサイト単相組織を得やすくするとともに、腐食環境下で鋼板表層に濃化層を形成することによって、鋼中への水素の侵入を抑制し、耐遅れ破壊特性を向上する効果がある元素である。しかし、添加量が0.20mass%を超えると、これらの効果が飽和するので、Cuは、0.20mass%を上限として添加するのが好ましい。
Cu: 0.20 mass% or less Cu stabilizes the austenite phase, makes it easy to obtain a martensite single-phase structure, and forms a concentrated layer on the surface of the steel sheet in a corrosive environment. It is an element that has the effect of suppressing penetration and improving delayed fracture resistance. However, when the addition amount exceeds 0.20 mass%, these effects are saturated. Therefore, it is preferable to add Cu with an upper limit of 0.20 mass%.

本発明の超高強度冷延鋼板は、上記元素以外の残部は、Feおよび不可避的不純物である。ただし、本発明の効果を害しない範囲内であれば、その他の元素の添加を拒むものではない。   In the ultra-high-strength cold-rolled steel sheet of the present invention, the balance other than the above elements is Fe and inevitable impurities. However, addition of other elements is not rejected as long as the effects of the present invention are not impaired.

次に、本発明の超高強度冷延鋼板の金属組織について説明する。
本発明の超高強度冷延鋼板は、その金属組織が、マルテンサイト単相であることが必要である。ただし、鋼板表面から板厚方向に10μmの範囲は、製造過程での脱炭等の影響により、マルテンサイト相が生成しない場合があるので、この範囲は除外する必要がある。なお、鋼板母相組織中には、オーステナイト相が残存する(残留オーステナイト相)ことがあるが、この残留オーステナイト相が体積率にして0.5%未満であれば、マルテンサイト単相組織と見做すことができる。また、鋼板組織中には不可避的に炭化物、窒化物、介在物も存在するが、これらはマルテンサイト単相組織であるか否かを判定する上では評価の対象には含めない。
Next, the metal structure of the ultra high strength cold rolled steel sheet of the present invention will be described.
The ultra-high-strength cold-rolled steel sheet of the present invention requires that the metal structure is a martensite single phase. However, since the martensite phase may not be generated in the range of 10 μm in the thickness direction from the steel sheet surface due to the influence of decarburization or the like in the manufacturing process, it is necessary to exclude this range. An austenite phase may remain in the steel matrix structure (residual austenite phase). If this retained austenite phase is less than 0.5% in volume ratio, it is regarded as a martensite single phase structure. Can be tricked. In addition, carbides, nitrides, and inclusions are inevitably present in the steel sheet structure, but these are not included in the evaluation when determining whether or not these are martensite single phase structures.

また、本発明の超高強度冷延鋼板は、焼入れままの金属組織はマルテンサイト単相であるが、二次冷却後、後述する焼戻し処理を施す場合には、焼戻しマルテンサイト単相組織となる。ただし、この場合でも、残留オーステナイト相は体積率にして0.5%未満であることが必要である。   The ultra-high-strength cold-rolled steel sheet of the present invention has a martensitic single phase as-quenched metal structure, but when subjected to a tempering treatment described later after secondary cooling, it becomes a tempered martensite single-phase structure. . However, even in this case, the residual austenite phase needs to be less than 0.5% in volume ratio.

次に、本発明の超高強度冷延鋼板の製造方法について説明する。
本発明の超高強度冷延鋼板の製造方法は、以下に述べる連続焼鈍工程に特徴があり、それ以前の工程、すなわち、製鋼工程から冷間圧延工程までについては、従来公知の製造方法を採用することができる。以下、本発明の特徴である連続焼鈍工程の限定理由について説明する。
Next, the manufacturing method of the ultra high strength cold-rolled steel sheet of the present invention will be described.
The manufacturing method of the ultra-high strength cold-rolled steel sheet of the present invention is characterized by the continuous annealing process described below. For the processes before that, that is, from the steel making process to the cold rolling process, a conventionally known manufacturing method is adopted. can do. Hereinafter, the reason for limitation of the continuous annealing process which is the feature of the present invention will be described.

均熱工程
本発明が意図するマルテンサイト単相組織を得るためには、焼入れ前の鋼板組織をオーステナイト単相とする必要があることから、連続焼鈍における均熱温度はAc変態点以上とする必要がある。ここで、Ac変態点は、鋼板の化学成分から、「金属熱処理技術便覧 第3版」(金属熱処理技術便覧編集委員会:日刊工業新聞社、(1966)、p.137)に記載された下記(2)式;
Ac(℃)=910−203×C1/2+44.7×Si−30×Mn−20×Cu+700×P+400×Al+400×Ti ・・・(2)
ここで、上記式中の元素記号は、各元素の含有量(mass%)を表す。
を用いて計算することができる。
なお、Ac変態点以上に均熱する時間は30〜1200秒が好ましく、焼鈍コストを抑制する観点からは300〜900秒の範囲がより好ましい。
Soaking process In order to obtain the martensite single phase structure intended by the present invention, the steel sheet structure before quenching needs to be an austenite single phase, so the soaking temperature in the continuous annealing is set to the Ac 3 transformation point or higher. There is a need. Here, the Ac 3 transformation point was described in “Metal Heat Treatment Technology Handbook 3rd Edition” (Metal Heat Treatment Technology Handbook Editorial Committee: Nikkan Kogyo Shimbun, (1966), p. 137) from the chemical composition of the steel sheet. The following formula (2);
Ac 3 (° C.) = 910−203 × C 1/2 + 44.7 × Si−30 × Mn−20 × Cu + 700 × P + 400 × Al + 400 × Ti (2)
Here, the element symbol in the above formula represents the content (mass%) of each element.
Can be used to calculate.
The soaking time above the Ac 3 transformation point is preferably 30 to 1200 seconds, and more preferably 300 to 900 seconds from the viewpoint of suppressing the annealing cost.

一次冷却工程
一般に、焼入れ工程における冷却停止温度は可能な限り低温であることが望ましい。しかし、一次冷却停止温度をMs点未満とした場合、急速冷却による体積収縮とマルテンサイト変態による体積膨張のムラに起因した応力が鋼板内部に発生し、形状悪化を引き起こす。そこで、本発明は、冷却に伴う体積収縮に起因して発生する応力を低減するため、焼入れ工程を均熱温度からMs点直上近傍温度まで冷却する一次冷却工程と、上記Ms点直上近傍から100℃以下まで冷却する二次冷却工程とに分けて制御することとした。
Primary cooling process Generally, it is desirable that the cooling stop temperature in the quenching process be as low as possible. However, when the primary cooling stop temperature is less than the Ms point, stress due to volume shrinkage due to rapid cooling and volume expansion unevenness due to martensitic transformation is generated inside the steel sheet, causing shape deterioration. Therefore, in the present invention, in order to reduce stress generated due to volume shrinkage accompanying cooling, a primary cooling step in which the quenching step is cooled from the soaking temperature to a temperature immediately above the Ms point, and from the vicinity immediately above the Ms point to 100. It was decided to control separately from the secondary cooling step of cooling to below ° C.

ここで、一次冷却における冷却停止温度は、Ms点直上近傍であるMs点〜Ms点+200℃の温度範囲とする必要がある。Ms点より低い温度では、マルテンサイト変態が進行し、マルテンサイト変態による体積膨張に起因した応力が発生するため形状悪化を抑制する効果が得られない。一方、Ms点+200℃超えの温度で冷却を停止すると、その後の保持工程において、フェライト相やパーライト相などの第2相が生成するおそれがあること、および、続く二次冷却開始温度が高くなると、二次冷却に伴う体積収縮が大きくなり形状の悪化を招くためである。   Here, the cooling stop temperature in the primary cooling needs to be in the temperature range of Ms point to Ms point + 200 ° C. in the vicinity immediately above the Ms point. At a temperature lower than the Ms point, the martensitic transformation proceeds, and stress due to volume expansion due to the martensitic transformation is generated, so that the effect of suppressing shape deterioration cannot be obtained. On the other hand, if the cooling is stopped at a temperature exceeding the Ms point + 200 ° C., a second phase such as a ferrite phase or a pearlite phase may be generated in the subsequent holding step, and the subsequent secondary cooling start temperature becomes high. This is because volume shrinkage accompanying secondary cooling is increased and the shape is deteriorated.

なお、Ms点(マルテンサイト変態開始点)は、鋼板の化学成分から、下記(1)式;
Ms(℃)=550−361×C−39×Mn−35×V−20×Cr−17×Ni−10×Cu−5×(Mo+W)+15×Co+30×Al ・・・(1)
ここで、上記式中の元素記号は、それぞれの元素の含有量(mass%)を表す。
を用いて計算することができる。
In addition, Ms point (Martensite transformation start point) is the following (1) formula from the chemical component of a steel plate;
Ms (° C.) = 550-361 × C-39 × Mn-35 × V-20 × Cr-17 × Ni-10 × Cu-5 × (Mo + W) + 15 × Co + 30 × Al (1)
Here, the element symbol in the above formula represents the content (mass%) of each element.
Can be used to calculate.

また、上記一次冷却における平均冷却速度は、20℃/秒以上とする必要がある。20℃/秒未満の平均冷却速度では、一次冷却停止温度に到達するまでに、フェライト相やパーライト相等の第二相が生成し、マルテンサイト単相組織は得られないからである。   The average cooling rate in the primary cooling needs to be 20 ° C./second or more. This is because, at an average cooling rate of less than 20 ° C./second, a second phase such as a ferrite phase and a pearlite phase is generated before the primary cooling stop temperature is reached, and a martensite single phase structure cannot be obtained.

保持工程
上記の一次冷却後の鋼板は、鋼板内の温度を均一化するため、一次冷却停止温度であるMs点〜Ms点+200℃の温度範囲に0.1〜60秒間保持する必要がある。この保持工程における保持時間が0.1秒よりも短い場合、鋼板の板厚方向あるいは幅方向での冷却速度の違いに起因する温度ムラが十分には解消されないため、鋼板内の応力低減に十分な効果が得られない。一方、保持時間が60秒よりも長くなると、保持中にフェライト相やパーライト相、ベイナイト相が生成し、マルテンサイト単相組織が得られなくなる。よって、保持工程における保持時間は0.1〜60秒の範囲とする。好ましくは2〜30秒の範囲である。
Holding Step The steel plate after the primary cooling described above needs to be held for 0.1 to 60 seconds in a temperature range of Ms point to Ms point + 200 ° C. which is the primary cooling stop temperature in order to make the temperature in the steel plate uniform. When the holding time in this holding process is shorter than 0.1 seconds, temperature unevenness due to the difference in cooling rate in the plate thickness direction or width direction of the steel plate is not sufficiently eliminated, so it is sufficient for reducing the stress in the steel plate. The effect is not obtained. On the other hand, if the holding time is longer than 60 seconds, a ferrite phase, a pearlite phase, and a bainite phase are generated during holding, and a martensite single phase structure cannot be obtained. Therefore, the holding time in the holding step is in the range of 0.1 to 60 seconds. Preferably it is the range of 2 to 30 seconds.

二次冷却工程
保持工程終了後は、マルテンサイト単相組織を得るために、一次冷却停止温度(Ms点〜Ms点+200℃)から100℃以下までを平均冷却速度100℃/秒以上で二次冷却を行う必要がある。平均冷却速度が100℃/秒未満の場合、冷却中にフェライト相やパーライト相、ベイナイト相等の第二相が生成し、マルテンサイト単相組織が得られない。なお、この工程で起こる冷却に伴う体積収縮とマルテンサイト変態に伴う体積膨張とによって発生する応力は、上記一次冷却によりマルテンサイト変態点との温度差を低減し、本工程で発生する体積収縮量を低減していること、および、上記保持工程において鋼板内の温度を均一化し、鋼板幅方向の不均一な応力発生を低減していることにより、最小限に抑えることができる。
Secondary cooling step After completion of the holding step, secondary cooling is performed from the primary cooling stop temperature (Ms point to Ms point + 200 ° C) to 100 ° C or lower at an average cooling rate of 100 ° C / second or higher in order to obtain a martensite single phase structure. Cooling needs to be done. When the average cooling rate is less than 100 ° C./second, a second phase such as a ferrite phase, a pearlite phase, or a bainite phase is generated during cooling, and a martensite single phase structure cannot be obtained. The stress generated by the volume shrinkage accompanying cooling that occurs in this step and the volume expansion accompanying martensite transformation reduces the temperature difference from the martensite transformation point by the primary cooling, and the volume shrinkage generated in this step Can be suppressed to a minimum by making the temperature in the steel plate uniform in the holding step and reducing the generation of uneven stress in the steel plate width direction.

上記の焼入れ処理を施した鋼板は、所定の強度と十分な平坦度を兼ね備えているので、そのままでも製品とすることができるが、靭性および加工性を向上するために、必要に応じて、100〜250℃の温度で、120〜1800秒の焼戻し処理を施してもよい。焼戻し温度が100℃より低い、あるいは焼戻し時間が120秒より短いと、焼戻しの効果が十分に得られず、一方、焼戻し温度が250℃より高い、あるいは焼戻し時間が1800秒より長いと、マルテンサイト相の軟質化が過度に進行し、強度が著しく低下することに加えて、製造コストの上昇を招くからである。より好ましい焼戻し条件は、130〜220℃×300〜1200秒の範囲である。焼戻し処理後の冷却は、特に制限はなく、空冷、水冷のいずれでもよい。なお、この焼戻し処理は、連続焼鈍ラインの過時効帯を用いて行うのが好ましい。   The steel plate subjected to the above-described quenching treatment has a predetermined strength and sufficient flatness, so that it can be made as it is, but in order to improve toughness and workability, 100 You may perform the tempering process for 120-1800 second at the temperature of -250 degreeC. When the tempering temperature is lower than 100 ° C. or when the tempering time is shorter than 120 seconds, the effect of tempering is not sufficiently obtained. On the other hand, when the tempering temperature is higher than 250 ° C. or the tempering time is longer than 1800 seconds, martensite. This is because the softening of the phase proceeds excessively and the strength is remarkably lowered, and the manufacturing cost is increased. More preferable tempering conditions are in the range of 130 to 220 ° C. × 300 to 1200 seconds. The cooling after the tempering treatment is not particularly limited and may be either air cooling or water cooling. In addition, it is preferable to perform this tempering process using the overaging zone of a continuous annealing line.

連続焼鈍における冷却方法は、均一な冷却と高い冷却速度を実現するためには、水冷却を用いることが望ましいが、ロール冷却やガス冷却、ミスト冷却(気水冷却)等を用いてもよい。また、鋼板温度をMs点〜Ms点+200℃の温度範囲に保持する方法としては、一次冷却と兼ねて、温度を一次冷却停止温度域に調整した塩浴あるいは金属浴に浸漬する方法としてもよく、あるいは、一次冷却停止後に誘導加熱装置を用いて一次冷却停止温度域に再加熱する方法を用いてもよい。
また、本発明では、連続焼鈍後の鋼板には、形状矯正を目的とする調質圧延を施す必要はないが、鋼板の表面粗度調整や材質調整の観点から、調質圧延を適宜施してもよい。
As a cooling method in continuous annealing, it is desirable to use water cooling in order to achieve uniform cooling and a high cooling rate, but roll cooling, gas cooling, mist cooling (air-water cooling), or the like may be used. In addition, as a method of maintaining the steel sheet temperature in the temperature range of Ms point to Ms point + 200 ° C., it may be a method of immersing in a salt bath or metal bath in which the temperature is adjusted to the primary cooling stop temperature range, in combination with primary cooling. Or you may use the method of reheating to a primary cooling stop temperature range using an induction heating apparatus after a primary cooling stop.
In the present invention, the steel sheet after continuous annealing does not need to be subjected to temper rolling for the purpose of shape correction, but from the viewpoint of surface roughness adjustment and material adjustment of the steel sheet, temper rolling is appropriately performed. Also good.

表1に記載した成分組成を有する鋼種記号A〜Sの鋼を溶製し、スラブとし、そのスラブを1250℃に加熱後、仕上圧延終了温度を900℃とする熱間圧延により板厚2.8mmの熱延鋼板とし、巻取温度650℃で巻き取った。その後、上記熱延鋼板を酸洗して表面スケールを除去した後、冷間圧延して板厚1.0mm×板幅800〜1400mmの冷延鋼板とした。次いで、上記冷延鋼板を、表2に記載した条件で、均熱後、一次冷却、保持、二次冷却を経て焼入れする連続焼鈍を施し、あるいはさらに焼戻し処理を施し、各種の超高強度冷延鋼板を得た。なお、表1には、各鋼種の化学成分から、先述した(1)式および(2)式で求めたMs点およびAc変態点を併記した。 Thickness of steel of grades A to S having the composition shown in Table 1 is made into a slab, the slab is heated to 1250 ° C., and then finished at a finish rolling temperature of 900 ° C. to obtain a sheet thickness of 2. An 8 mm hot-rolled steel sheet was taken up at a winding temperature of 650 ° C. Then, after pickling the said hot-rolled steel plate and removing a surface scale, it cold-rolled and it was set as the cold-rolled steel plate of board thickness 1.0mm x board width 800-1400mm. Next, the cold-rolled steel sheet is soaked under the conditions described in Table 2 and then subjected to continuous annealing that is quenched through primary cooling, holding, and secondary cooling, or further subjected to tempering treatment. A rolled steel sheet was obtained. In Table 1, the Ms point and Ac 3 transformation point obtained from the above-described formulas (1) and (2) from the chemical components of each steel type are also shown.

上記のようにして得た各種冷延鋼板について、幅方向の最大反り高さを図1に記載の方法で測定した。具体的には、上記鋼板を定盤上に載置し、鋼板の高さが最も高い位置における定盤から鋼板下面までの距離を測定した。
また、当該鋼板から試験片を採取して、金属組織、引張特性および伸びフランジ特性の評価を下記のようにして行った。
(1)金属組織の観察
上記の各冷延鋼板から試験片を採取し、圧延方向に平行な断面を鏡面研磨し、ナイタールエッチングをして金属組織を現出させ、光学顕微鏡または走査型電子顕微鏡を用いて微細な金属組織を観察し、マルテンサイト相、焼戻しマルテンサイト相、フェライト相などの構成相の種類を同定するとともに、撮影した組織写真を画像解析装置で2値化することにより、マルテンサイト相と第二相の体積率を求めた。なお、上記冷延鋼板には、残留オーステナイト相が存在する可能性もあるため、発明例の鋼板についてはX線(Mo−Kα線)測定により残留オーステナイト相の体積率の測定を試みたが、その存在量はいずれも0.5%未満であり、マルテンサイト単相組織あるいは焼戻しマルテンサイト単相組織と見做せることができた。
(2)引張試験
上記の各冷延鋼板から圧延方向に直角な方向にJIS5号引張試験片を採取し、JIS Z2241に準拠して引張試験を行い、0.2%耐力(PS)、引張強さ(TS)、破断伸び(El)を測定した。
(3)伸びフランジ特性
伸びフランジ特性は、日本鉄鋼連盟規格JFST1001の規定に準拠して穴拡げ試験を行い評価した。すなわち、上記の各冷延鋼板から採取した試験片に10mmφのポンチ穴を開け、バリが外側になるようにして、頂角60°の円錐ポンチを用いて、板厚を貫通する割れが発生するまで穴拡げ加工を行い、下記式を用いて穴拡げ率λを求めた。
λ(%)={(d−d)/d}×100
ここで、d:初期穴内径(mm)、d:割れ発生時の穴内径(mm)
About the various cold-rolled steel plates obtained as described above, the maximum warp height in the width direction was measured by the method shown in FIG. Specifically, the steel plate was placed on a surface plate, and the distance from the surface plate to the lower surface of the steel plate at the position where the height of the steel plate was the highest was measured.
Moreover, the test piece was extract | collected from the said steel plate, and metal structure, a tensile characteristic, and the stretch flange characteristic were evaluated as follows.
(1) Observation of metal structure A test piece is taken from each of the above-mentioned cold-rolled steel sheets, a cross section parallel to the rolling direction is mirror-polished, and a metal structure is revealed by performing a nital etching, and an optical microscope or scanning electron By observing a fine metal structure using a microscope, identifying the types of constituent phases such as martensite phase, tempered martensite phase, and ferrite phase, and binarizing the photographed structure photograph with an image analyzer, The volume ratio of the martensite phase and the second phase was determined. In addition, since there is a possibility that the retained austenite phase exists in the cold-rolled steel sheet, for the steel sheet of the inventive example, an attempt was made to measure the volume ratio of the retained austenite phase by X-ray (Mo-Kα ray) measurement. The abundance was less than 0.5%, and could be regarded as a martensite single phase structure or a tempered martensite single phase structure.
(2) Tensile test JIS No. 5 tensile test specimens were taken from each of the above cold-rolled steel sheets in a direction perpendicular to the rolling direction, and subjected to a tensile test in accordance with JIS Z2241, 0.2% proof stress (PS), tensile strength. (TS) and elongation at break (El) were measured.
(3) Stretch flange characteristics Stretch flange characteristics were evaluated by performing a hole expansion test in accordance with the provisions of the Japan Iron and Steel Federation Standard JFST1001. That is, a 10 mmφ punch hole is made in the test piece taken from each cold-rolled steel sheet, and a crack penetrating the plate thickness is generated using a conical punch with an apex angle of 60 ° so that the burr is on the outside. Hole expansion was performed until the hole expansion rate λ was obtained using the following formula.
λ (%) = {(d−d 0 ) / d 0 } × 100
Where d 0 : initial hole inner diameter (mm), d: hole inner diameter (mm) when cracking occurs

Figure 0004947176
Figure 0004947176

Figure 0004947176
Figure 0004947176

上記の結果を表3に示した。本発明に適合するNo.1〜13の発明例の鋼板は、いずれもマルテンサイト単相組織(焼戻しマルテンサイト単相組織)が得られており、かつ鋼板に発生した反りの最大反り高さが6mm以下であり、高い平坦度が得られているのに対して、従来の焼入れ法を実施したNo.14の比較例では、本発明が意図するマルテンサイト単相組織は得られてはいるものの、反りの最大反り高さが23mmと大きく、十分な平坦度が得られていない。さらに、本発明例の鋼板は、引張特性や、伸びフランジ特性の指標である穴広げ率λが、従来法で製造したマルテンサイト単相組織鋼板(No.14)と同等の値を有している。
一方、一次冷却工程の冷却速度が本発明範囲より低いNo.15では、一次冷却中に全てのオーステナイト相がフェライト相あるいはパーライト相に変態したため、マルテンサイト単相組織が得られていない。同様に、一次冷却停止温度を本発明の範囲よりも高温としたNo.16では、パーライト相は生成していないものの、オーステナイト相の大部分がフェライト相に変態しており、所定の金属組織が得られていない。また、保持工程における保持時間が本発明の範囲より長いNo.17では、保持工程中に多量のフェライト相およびパーライト相が生成するために、所定の金属組織が得られていない。また、二次冷却工程における冷却速度を本発明の冷却速度未満としたNo.18では、一次冷却停止温度からMs点までの冷却中にフェライト相およびパーライト相が生成したため、マルテンサイト単相組織は得られていない。
以上の結果から、本発明のマルテンサイト単相組織鋼板は、従来法で製造したマルテンサイト単相組織鋼板と同等の強度特性および加工特性を有しながらも、優れた平坦度を実現することができることが確認された。
The results are shown in Table 3. No. suitable for the present invention. Each of the steel sheets of Invention Examples 1 to 13 has a martensite single-phase structure (tempered martensite single-phase structure), and the maximum warp height of the warp generated in the steel sheet is 6 mm or less, which is highly flat. In contrast to the No. 1 in which the conventional quenching method was carried out. In Comparative Example 14, the martensite single-phase structure intended by the present invention is obtained, but the maximum warp height of warpage is as large as 23 mm, and sufficient flatness is not obtained. Furthermore, the steel sheet of the present invention has a hole expansion ratio λ, which is an index of tensile characteristics and stretch flange characteristics, having a value equivalent to that of a martensite single phase steel sheet (No. 14) manufactured by a conventional method. Yes.
On the other hand, the cooling rate of the primary cooling step is lower than the range of the present invention. In No. 15, since all austenite phases were transformed into ferrite phases or pearlite phases during primary cooling, no martensite single phase structure was obtained. Similarly, No. 1 in which the primary cooling stop temperature is higher than the range of the present invention. In No. 16, no pearlite phase was generated, but most of the austenite phase was transformed into a ferrite phase, and a predetermined metal structure was not obtained. Moreover, the holding time in the holding step is longer than the range of the present invention. In No. 17, since a large amount of ferrite phase and pearlite phase are generated during the holding step, a predetermined metal structure is not obtained. Moreover, the cooling rate in the secondary cooling step was less than the cooling rate of the present invention. In No. 18, since a ferrite phase and a pearlite phase were generated during cooling from the primary cooling stop temperature to the Ms point, a martensite single phase structure was not obtained.
From the above results, the martensitic single-phase steel sheet according to the present invention can achieve excellent flatness while having the same strength and processing characteristics as the martensitic single-phase steel sheet manufactured by the conventional method. It was confirmed that it was possible.

Figure 0004947176
Figure 0004947176

本発明により得られる超高強度マルテンサイト単相組織鋼板は、例えばプレス成形やロール成形により成形される自動車のドアインパクトビームやセンターピラー等の自動車用構造部材を高い生産性および寸法精度で製造することに大きく貢献できるものである。   The ultra-high-strength martensitic single-phase steel sheet obtained by the present invention produces automotive structural members such as automobile door impact beams and center pillars formed by press molding or roll molding with high productivity and dimensional accuracy. It can make a big contribution.

Claims (4)

C:0.05〜0.40mass%、Si:2.0mass%以下、P:0.05mass%以下、S:0.02mass%以下、Al:0.01〜0.05mass%、N:0.005mass%未満、Mn:1.0〜3.0mass%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する冷間圧延後の鋼板を連続焼鈍して引張強さ980MPa以上の超高強度冷延鋼板を製造する方法において、上記連続焼鈍では、Ac3変態点以上の均熱温度から下記(1)式で求められるMs点〜Ms点+200℃の温度範囲まで20℃/秒以上の平均冷却速度で一次冷却し、上記温度範囲に0.1〜60秒間保持した後、100℃/秒以上の平均冷却速度で100℃以下まで二次冷却することを特徴とする超高強度冷延鋼板の製造方法。
Ms(℃)=550−361×C−39×Mn−35×V−20×Cr−17×Ni−10×Cu−5×(Mo+W)+15×Co+30×Al ・・・(1)
ここで、上記式中の元素記号は、それぞれの元素の含有量(mass%)を表す。
C: 0.05-0.40 mass%, Si: 2.0 mass% or less, P: 0.05 mass% or less, S: 0.02 mass% or less, Al: 0.01-0.05 mass%, N: 0.00. Less than 005 mass%, Mn: 1.0-3.0 mass%, ultra-high strength with a tensile strength of 980 MPa or more by continuously annealing a steel sheet after cold rolling having a component composition consisting of Fe and inevitable impurities as the balance In the method for producing a cold-rolled steel sheet, in the above-described continuous annealing, an average cooling of 20 ° C./second or more from a soaking temperature not lower than the Ac3 transformation point to a temperature range of Ms point to Ms point + 200 ° C. obtained by the following formula (1) An ultra-high strength cold-rolled steel sheet characterized by primary cooling at a rate and holding in the above temperature range for 0.1 to 60 seconds, followed by secondary cooling to 100 ° C. or less at an average cooling rate of 100 ° C./s or more. Manufacturing method .
Ms (° C.) = 550-361 × C-39 × Mn-35 × V-20 × Cr-17 × Ni-10 × Cu-5 × (Mo + W) + 15 × Co + 30 × Al (1)
Here, the element symbol in the above formula represents the content (mass%) of each element.
二次冷却後、再加熱し、100〜250℃×120〜1800秒の焼戻し処理を施すことを特徴とする請求項に記載の超高強度冷延鋼板の製造方法。 The method for producing an ultra-high-strength cold-rolled steel sheet according to claim 1 , wherein after the secondary cooling, reheating is performed and a tempering treatment is performed at 100 to 250 ° C. × 120 to 1800 seconds. 一次冷却および二次冷却を水冷却で行うことを特徴とする請求項1または2に記載の超高強度冷延鋼板の製造方法。 The method for producing an ultra high strength cold-rolled steel sheet according to claim 1 or 2 , wherein the primary cooling and the secondary cooling are performed by water cooling. 上記冷間圧延後の鋼板は、上記成分組成に加えてさらに、Ti:0.1mass%以下、Nb:0.1mass%以下、B:0.0005〜0.0030mass%およびCu:0.20mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の超高強度冷延鋼板の製造方法。 In addition to the above component composition, the steel sheet after cold rolling is further Ti: 0.1 mass% or less, Nb: 0.1 mass% or less, B: 0.0005 to 0.0030 mass%, and Cu: 0.20 mass%. The manufacturing method of the ultra-high-strength cold-rolled steel sheet according to any one of claims 1 to 3 , comprising one or more selected from the following.
JP2010067921A 2010-03-24 2010-03-24 Manufacturing method of ultra-high strength cold-rolled steel sheet Expired - Fee Related JP4947176B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010067921A JP4947176B2 (en) 2010-03-24 2010-03-24 Manufacturing method of ultra-high strength cold-rolled steel sheet
CN201180015404.2A CN102822375B (en) 2010-03-24 2011-03-09 Ultra high strength cold rolled steel sheet and method for producing same
PCT/JP2011/056128 WO2011118459A1 (en) 2010-03-24 2011-03-09 Ultra high strength cold rolled steel sheet and method for producing same
KR1020127021878A KR101288701B1 (en) 2010-03-24 2011-03-09 Ultra high strength cold rolled steel sheet and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010067921A JP4947176B2 (en) 2010-03-24 2010-03-24 Manufacturing method of ultra-high strength cold-rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2011202195A JP2011202195A (en) 2011-10-13
JP4947176B2 true JP4947176B2 (en) 2012-06-06

Family

ID=44673016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010067921A Expired - Fee Related JP4947176B2 (en) 2010-03-24 2010-03-24 Manufacturing method of ultra-high strength cold-rolled steel sheet

Country Status (4)

Country Link
JP (1) JP4947176B2 (en)
KR (1) KR101288701B1 (en)
CN (1) CN102822375B (en)
WO (1) WO2011118459A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5466576B2 (en) * 2010-05-24 2014-04-09 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent bending workability
RU2660482C2 (en) * 2011-11-28 2018-07-06 Арселормитталь Инвестигасьон И Десарролло С.Л. MARTENSITE STEEL WITH TENSILE STRENGTH 1,700 - 2,200 MPa
JP6047037B2 (en) * 2012-03-29 2016-12-21 株式会社神戸製鋼所 Manufacturing method of high-strength cold-rolled steel sheet with excellent steel plate shape
JP6291289B2 (en) * 2013-03-06 2018-03-14 株式会社神戸製鋼所 High-strength cold-rolled steel sheet excellent in steel sheet shape and shape freezing property and method for producing the same
CN103215505B (en) * 2013-04-18 2015-08-26 首钢总公司 Superhigh-strength hot continuous-rolling strip steel and production method thereof
ES2744909T3 (en) * 2013-06-07 2020-02-26 Nippon Steel Corp Heat treated steel material and method of manufacture thereof
CN105899701A (en) * 2014-01-14 2016-08-24 株式会社神户制钢所 High-strength steel sheet and process for producing same
ES2752182T3 (en) * 2014-05-29 2020-04-03 Nippon Steel Corp Heat treated steel material and its manufacturing procedure
JP6098761B2 (en) * 2014-05-29 2017-03-22 新日鐵住金株式会社 Heat treated steel and method for producing the same
KR101620756B1 (en) 2014-12-22 2016-05-13 주식회사 포스코 Pillar member or vechile
KR101725274B1 (en) * 2015-10-16 2017-04-10 삼화스틸(주) Steel plate with high tensile strength and process for the same
CN106244924B (en) * 2016-08-31 2017-12-29 东北大学 A kind of cold rolling quenching ductile steel and preparation method
US10982297B2 (en) 2016-09-28 2021-04-20 Jfe Steel Corporation Steel sheet and method for producing the same
KR101917472B1 (en) * 2016-12-23 2018-11-09 주식회사 포스코 Tempered martensitic steel having low yield ratio and excellent uniform elongation property, and method for manufacturing the same
JP6835046B2 (en) * 2018-07-31 2021-02-24 Jfeスチール株式会社 Thin steel sheet and its manufacturing method
EP3825433B1 (en) * 2018-08-22 2023-02-15 JFE Steel Corporation High-strength steel sheet and method for manufacturing same
EP3825432B1 (en) * 2018-08-22 2023-02-15 JFE Steel Corporation High-strength steel sheet and method for manufacturing same
CN109321828A (en) * 2018-11-06 2019-02-12 鞍钢股份有限公司 A kind of 1600MPa grades of cold rolling martensite steel and its production method
CN109652625B (en) * 2019-01-15 2021-02-23 象山华鹰塑料工程有限公司 Manufacturing process of ultrahigh-strength cold-rolled steel plate for automobile window
CN112126757A (en) 2019-06-24 2020-12-25 宝山钢铁股份有限公司 Thick-direction variable-strength hardness cold-rolled strip steel and manufacturing method thereof
EP4310206A1 (en) * 2021-03-31 2024-01-24 JFE Steel Corporation Steel sheet, member, method for producing said steel sheet, and method for producing said member
WO2023037878A1 (en) 2021-09-09 2023-03-16 日本製鉄株式会社 Cold-rolled steel sheet and method for manufacturing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826401B2 (en) * 1990-12-29 1996-03-13 日本鋼管株式会社 Manufacturing method of ultra high strength cold rolled steel sheet with excellent workability and impact characteristics
JP3729108B2 (en) * 2000-09-12 2005-12-21 Jfeスチール株式会社 Ultra-high tensile cold-rolled steel sheet and manufacturing method thereof
JP5176599B2 (en) * 2007-03-30 2013-04-03 Jfeスチール株式会社 Ultra-thin cold-rolled steel sheet for building materials and manufacturing method thereof
JP5088002B2 (en) * 2007-06-08 2012-12-05 Jfeスチール株式会社 Steel strip rolling method and high-tensile cold-rolled steel strip manufacturing method
JP5082649B2 (en) * 2007-07-25 2012-11-28 Jfeスチール株式会社 High-strength cold-rolled steel sheet with excellent manufacturing stability and manufacturing method thereof
JP5151354B2 (en) * 2007-09-26 2013-02-27 Jfeスチール株式会社 High tensile cold-rolled steel sheet and method for producing high-tensile cold-rolled steel sheet

Also Published As

Publication number Publication date
JP2011202195A (en) 2011-10-13
KR101288701B1 (en) 2013-07-22
WO2011118459A1 (en) 2011-09-29
CN102822375A (en) 2012-12-12
CN102822375B (en) 2014-05-28
KR20120112813A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP4947176B2 (en) Manufacturing method of ultra-high strength cold-rolled steel sheet
JP5348268B2 (en) High-strength cold-rolled steel sheet having excellent formability and method for producing the same
JP5359168B2 (en) Ultra-high strength cold-rolled steel sheet with excellent ductility and method for producing the same
JP6341214B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
JP4977879B2 (en) Super high strength cold-rolled steel sheet with excellent bendability
JP5206244B2 (en) Cold rolled steel sheet
JP6306711B2 (en) Martensitic steel with delayed fracture resistance and manufacturing method
JP5447741B1 (en) Steel plate, plated steel plate, and manufacturing method thereof
JP5862051B2 (en) High-strength cold-rolled steel sheet excellent in workability and manufacturing method thereof
US10023934B2 (en) High-strength hot-dip galvannealed steel sheet having excellent bake hardening property and bendability
JP4291860B2 (en) High-strength steel sheet and manufacturing method thereof
JP5321605B2 (en) High strength cold-rolled steel sheet having excellent ductility and method for producing the same
JP2010215958A (en) High-strength cold-rolled steel sheet superior in bending workability and delayed fracture resistance, and manufacturing method therefor
KR101626233B1 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
KR102507715B1 (en) High-strength steel sheet and manufacturing method thereof
WO2013180180A1 (en) High strength cold-rolled steel plate and manufacturing method therefor
JP5239562B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5862052B2 (en) High-strength cold-rolled steel sheet excellent in elongation and stretch flangeability and method for producing the same
KR20210034640A (en) High-strength steel sheet and its manufacturing method
JP5811725B2 (en) High-tensile cold-rolled steel sheet excellent in surface distortion resistance, bake hardenability and stretch flangeability, and method for producing the same
JP6645637B1 (en) High strength steel sheet and method for producing the same
CN111051554B (en) High-strength steel sheet and method for producing same
JP4178940B2 (en) High-strength steel sheet with excellent secondary work brittleness resistance and method for producing the same
JP2021509147A (en) Ultra-high-strength hot-rolled steel sheets, steel pipes, members, and their manufacturing methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110914

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110915

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4947176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees