JP5082649B2 - High-strength cold-rolled steel sheet with excellent manufacturing stability and manufacturing method thereof - Google Patents

High-strength cold-rolled steel sheet with excellent manufacturing stability and manufacturing method thereof Download PDF

Info

Publication number
JP5082649B2
JP5082649B2 JP2007193943A JP2007193943A JP5082649B2 JP 5082649 B2 JP5082649 B2 JP 5082649B2 JP 2007193943 A JP2007193943 A JP 2007193943A JP 2007193943 A JP2007193943 A JP 2007193943A JP 5082649 B2 JP5082649 B2 JP 5082649B2
Authority
JP
Japan
Prior art keywords
mass
steel sheet
less
strength
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007193943A
Other languages
Japanese (ja)
Other versions
JP2009030091A (en
Inventor
勇樹 田路
毅 藤田
成人 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007193943A priority Critical patent/JP5082649B2/en
Publication of JP2009030091A publication Critical patent/JP2009030091A/en
Application granted granted Critical
Publication of JP5082649B2 publication Critical patent/JP5082649B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、自動車骨格部材や補強部材などに好適な、引張強さが980MPa以上の製造安定性に優れた高強度冷延鋼板およびその製造方法に関するものである。   The present invention relates to a high-strength cold-rolled steel sheet excellent in production stability and having a tensile strength of 980 MPa or more, which is suitable for automobile frame members and reinforcing members, and a method for producing the same.

近年、地球環境保全という観点から、自動車の燃費改善が要求されている。また、車両衝突時に乗員を保護する観点からは、自動車車体の安全性向上も要求されている。このため、燃費改善と安全性向上の両方を満足させるべく、自動車車体の軽量化と強化の双方を図る検討が積極的に進められている。自動車車体の軽量化と強化を同時に満足させるには、部品素材を高強度化かつ薄肉化することが効果的であり、最近では引張強さ980MPa以上の高張力薄鋼板が自動車骨格部材や自動車シート骨格部材などに使用され始めている。   In recent years, there has been a demand for improving fuel efficiency of automobiles from the viewpoint of global environmental conservation. Further, from the viewpoint of protecting occupants in the event of a vehicle collision, it is also required to improve the safety of the automobile body. For this reason, in order to satisfy both the improvement in fuel efficiency and the improvement in safety, studies are being actively carried out to reduce and strengthen the vehicle body. In order to satisfy the weight reduction and strengthening of automobile bodies at the same time, it is effective to increase the strength and thickness of component materials. Recently, high-strength steel sheets with a tensile strength of 980 MPa or more are used for automobile framework members and automobile seats. It has begun to be used for skeletal members.

自動車骨格部材などの部材はプレス加工により成形されるため、その材料には高い伸びフランジ性が要求される。鋼板を引張強さ980MPa以上の高強度とするためには、高硬度であるマルテンサイト相の活用が有効であるが、軟質なフェライト相と硬質なマルテンサイト相からなるDP鋼では、2相の加工性の違いから2相界面に歪が集中して伸びフランジ性が劣化する。高い伸びフランジ性を得るためには、硬度差のある2相組織を避け、単相組織とすることが効果的であり、例えば、特許文献1ではマルテンサイト単相組織とすることで、優れた穴拡げ性を達成している。
特許第3729108号公報
Since members such as automobile frame members are formed by press working, the material is required to have high stretch flangeability. In order to make the steel sheet have a high strength with a tensile strength of 980 MPa or more, it is effective to use a martensite phase having a high hardness. However, a DP steel composed of a soft ferrite phase and a hard martensite phase has two phases. Due to the difference in workability, strain concentrates on the two-phase interface and stretch flangeability deteriorates. In order to obtain high stretch flangeability, it is effective to avoid a two-phase structure having a hardness difference and to have a single-phase structure. For example, in Patent Document 1, a martensite single-phase structure is excellent. The hole expandability is achieved.
Japanese Patent No. 3729108

しかしながら、特許文献1の方法では、鋼板の引張強さが焼鈍過程における加熱後の冷却速度により大きく変化する(強度の冷却速度依存性が大きい)ため、製造安定性に問題があった。
したがって本発明の目的は、上記従来技術の課題を解決し、伸びフランジ性などの優れたプレス成形性を有するとともに、強度の冷却速度依存性が小さく、優れた製造安定性を有する高強度冷延鋼板およびその製造方法を提供することにある。
However, the method of Patent Document 1 has a problem in manufacturing stability because the tensile strength of the steel sheet varies greatly depending on the cooling rate after heating in the annealing process (the strength depends greatly on the cooling rate).
Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, have high press formability such as stretch flangeability, and have high strength cold rolling that has low dependency on the cooling rate of strength and has excellent manufacturing stability. The object is to provide a steel plate and a method for producing the same.

本発明者らは、上記の課題を解決すべく鋭意研究し、以下のような知見を得た。通常、マルテンサイト単相組織鋼の強度低下は、冷却中のマルテンサイト変態までの間のフェライト相またはベイナイト相の生成が原因と考えられ、その生成を抑制する手段としては、Mn,Cr,Mo,Bなどのようなフェライト、ベイナイト変態を遅延させる元素を添加することが効果的であることが知られている。しかしながら、フェライトなどの生成が認められない場合においても、強度の冷却速度依存性が認められ、詳細な組織観察の結果、強度低下した鋼のマルテンサイト中に鉄炭化物が析出していることを見出した。さらに、鉄炭化物析出の抑制にはMn,Cr,Mo,Bなどの添加は効果が無いが、Siを0.1mass%以上添加することで、マルテンサイト変態後室温まで冷却する間の鉄炭化物の析出を抑制することにより、連続焼鈍における加熱保持後の200℃までの平均冷却速度が300℃/秒以上の範囲において、冷却速度にかかわりなく安定して強度を確保することが可能であることを見出した。このように、Si添加により強度低下を抑制する効果が得られる理由として、Siは鉄炭化物にほとんど固溶しないため、鉄炭化物が生成・成長するためにはSiの拡散が必要となるが、マルテンサイト変態点(約450℃)以下の低温ではSiはほとんど拡散することができないため、鉄炭化物の析出が抑制されたものと考えられる。さらに、200℃までの平均冷却速度が300℃/秒以上となる、比較的冷却速度の速い製造方法においては、マルテンサイト変態点から200℃までに要する時間は1秒未満であり、その間の鉄炭化物析出抑制には、0.1mass%程度の少量のSi添加で十分であることを知見した。   The present inventors diligently studied to solve the above problems, and obtained the following knowledge. Usually, the decrease in strength of martensitic single phase steel is considered to be caused by the formation of ferrite phase or bainite phase until the martensitic transformation during cooling. As means for suppressing the formation, Mn, Cr, Mo It is known that it is effective to add an element that delays the transformation of ferrite and bainite, such as. However, even when the formation of ferrite and the like is not observed, the cooling rate dependence of the strength is recognized, and as a result of detailed structural observation, it has been found that iron carbide is precipitated in the martensite of the steel with reduced strength. It was. Furthermore, the addition of Mn, Cr, Mo, B, etc. is ineffective in suppressing iron carbide precipitation, but by adding 0.1 mass% or more of Si, iron carbide during cooling to room temperature after martensitic transformation. By suppressing the precipitation, it is possible to ensure the strength stably regardless of the cooling rate in the range where the average cooling rate up to 200 ° C after the heating and holding in the continuous annealing is 300 ° C / second or more. I found it. As described above, the reason why the addition of Si has the effect of suppressing the decrease in strength is that Si hardly dissolves in iron carbide, so that diffusion of Si is necessary for the formation and growth of iron carbide. Since Si hardly diffuses at a low temperature below the site transformation point (about 450 ° C.), it is considered that precipitation of iron carbide is suppressed. Furthermore, in a manufacturing method with a relatively high cooling rate in which the average cooling rate to 200 ° C. is 300 ° C./second or more, the time required from the martensite transformation point to 200 ° C. is less than 1 second, and the iron in the meantime It was found that a small amount of Si addition of about 0.1 mass% is sufficient for suppressing carbide precipitation.

本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]C:0.03〜0.12mass%、Si:0.1〜0.6mass%、Mn:1.5〜3.0mass%、P:0.10mass%以下、S:0.01mass%以下、Al:0.01〜0.1mass%、N:0.005mass%以下を含有し、残部がFeおよび不可避的不純物からなり、鋼板組織(但し、鋼板表面から深さ20μmまでの領域の組織を除く)が焼戻しマルテンサイト単相組織であり、引張強さが980MPa以上であることを特徴とする製造安定性に優れた高強度冷延鋼板。
[2]上記[1]の高強度冷延鋼板において、B:0.0005〜0.005mass%をさらに含有することを特徴とする製造安定性に優れた高強度冷延鋼板。
The present invention has been made on the basis of such findings and has the following gist.
[1] C: 0.03-0.12 mass%, Si: 0.1-0.6 mass%, Mn: 1.5-3.0 mass%, P: 0.10 mass% or less, S: 0.01 mass% Hereinafter, Al: 0.01 to 0.1 mass%, N: 0.005 mass% or less, the balance is made of Fe and unavoidable impurities, steel sheet structure (however, the structure of the region from the steel sheet surface to a depth of 20 μm) Is a tempered martensite single-phase structure, and has a tensile strength of 980 MPa or more, a high-strength cold-rolled steel sheet excellent in manufacturing stability.
[2] A high-strength cold-rolled steel sheet excellent in manufacturing stability, wherein the high-strength cold-rolled steel sheet according to [1] further contains B: 0.0005 to 0.005 mass% .

[3]上記[1]または[2]に記載の成分組成を有するスラブに、熱間圧延、冷間圧延、連続焼鈍を順次施す冷延鋼板の製造方法であって、前記連続焼鈍では、鋼板をAe変態点以上900℃以下の温度域に加熱保持した後、300℃/秒以上の平均冷却速度で200℃以下まで急冷し、次いで200℃以下で焼戻すことを特徴とする製造安定性に優れた高強度冷延鋼板の製造方法。
なお、本発明において、「製造安定性に優れた」とは、連続焼鈍工程においてAe変態点以上900℃以下の温度域に加熱保持した後の、200℃までの平均冷却速度が300℃/秒で製造した場合と1000℃/秒で製造した場合の強度差が、50MPa以下であることを意味する。
[3] A method for producing a cold-rolled steel sheet in which hot rolling, cold rolling, and continuous annealing are sequentially performed on a slab having the component composition described in [1] or [2] , wherein in the continuous annealing, Is heated to a temperature range of Ae 3 transformation point to 900 ° C., then rapidly cooled to 200 ° C. or less at an average cooling rate of 300 ° C./second or more, and then tempered at 200 ° C. or less. For producing high-strength cold-rolled steel sheets with excellent resistance.
In the present invention, “excellent in production stability” means that the average cooling rate up to 200 ° C. after heating and holding in the temperature range of Ae 3 transformation point to 900 ° C. in the continuous annealing step is 300 ° C. / It means that the difference in strength between the case of manufacturing in seconds and the case of manufacturing at 1000 ° C./second is 50 MPa or less.

本発明の高強度冷延鋼板は、980MPa以上の引張強さを有するととともに、伸びフランジ性などのプレス成形性に優れ、しかも、引張強さが焼鈍過程の冷却速度により大きく変化せず、製造安定性に優れている。このため良好なプレス成形性の求められる自動車骨格部材や補強部材の素材として特に好適であり、その他、高い強度と高い伸びフランジ性が必要とされる自動車部品、家電製品、建築部材などの素材としても好適である。また、本発明の製造方法によれば、上記のような性能を有する高強度冷延鋼板を安定して製造することができる。   The high-strength cold-rolled steel sheet of the present invention has a tensile strength of 980 MPa or more, is excellent in press formability such as stretch flangeability, and the tensile strength is not greatly changed by the cooling rate in the annealing process, and is manufactured. Excellent stability. For this reason, it is particularly suitable as a material for automobile framework members and reinforcing members that require good press formability, and as other materials for automobile parts, home appliances, building members, etc. that require high strength and high stretch flangeability. Is also suitable. Moreover, according to the manufacturing method of this invention, the high intensity | strength cold-rolled steel plate which has the above performances can be manufactured stably.

本発明の冷延鋼板は、C:0.03〜0.12mass%、Si:0.1〜0.6mass%、Mn:1.5〜3.0mass%、P:0.10mass%以下、S:0.01mass%以下、Al:0.01〜0.1mass%、N:0.005mass%以下を含有し、必要に応じて、B:0.0005〜0.005mass%を含有し、或いはさらに、Ti:0.005〜0.05mass%およびNb:0.005〜0.05mass%の1種または2種を含有し、残部がFeおよび不可避的不純物からなり、鋼板組織(但し、鋼板表面から深さ20μmまでの領域の組織を除く)が焼戻しマルテンサイト単相組織であり、引張強さが980MPa以上であることを特徴とする。   The cold-rolled steel sheet of the present invention has C: 0.03-0.12 mass%, Si: 0.1-0.6 mass%, Mn: 1.5-3.0 mass%, P: 0.10 mass% or less, S : 0.01 mass% or less, Al: 0.01 to 0.1 mass%, N: 0.005 mass% or less, and if necessary, B: 0.0005 to 0.005 mass%, or further , Ti: 0.005 to 0.05 mass% and Nb: 0.005 to 0.05 mass%, one or two of them, the balance being made of Fe and unavoidable impurities, steel sheet structure (however, from the surface of the steel sheet (Excluding the structure in the region up to a depth of 20 μm) is a tempered martensite single-phase structure and has a tensile strength of 980 MPa or more.

まず、鋼板の成分組成の限定理由は以下の通りである。
C:0.03〜0.12mass%
Cは、強度確保のために重要な元素の一つであり、本発明では引張り強さを980MPa以上とするために、0.03mass%以上の含有を必要とする。一方、0.12mass%を超える含有は、溶接性を著しく劣化させる。このためCは0.03〜0.12mass%、好ましくは0.04〜0.10mass%とする。
Si:0.1〜0.6mass%
Siは、本発明で最も重要な元素であり、連続焼鈍においてマルテンサイト変態後室温まで冷却する間の鉄炭化物の析出を抑制し、強度の冷却速度依存性を低減する効果を有する。このような効果は0.1mass%以上の添加で得ることができ、200℃までの平均冷却速度が300℃/秒以上の範囲において、300℃/秒で製造した場合と1000℃/秒で製造した場合の強度差を50MPa以下とすることができる。一方、0.6mass%を超えるSiの添加は、鋼板の化成処理性を劣化させるだけでなく、冷却中のフェライト変態が促進されて、焼戻しマルテンサイト単相組織を得ることが困難となり、Mn,Cr,Moなどのフェライト変態を遅延する元素を多量に添加する必要が生じる。このためSiは0.1〜0.6mass%、好ましくは0.2〜0.5mass%とする。
First, the reasons for limiting the component composition of the steel sheet are as follows.
C: 0.03-0.12 mass%
C is one of the important elements for ensuring the strength. In the present invention, it is necessary to contain 0.03 mass% or more in order to set the tensile strength to 980 MPa or more. On the other hand, inclusion exceeding 0.12 mass% significantly deteriorates weldability. For this reason, C is 0.03-0.12 mass%, preferably 0.04-0.10 mass%.
Si: 0.1 to 0.6 mass%
Si is the most important element in the present invention, and has the effect of suppressing precipitation of iron carbide during cooling to room temperature after martensite transformation in continuous annealing and reducing the strength cooling rate dependency. Such an effect can be obtained by addition of 0.1 mass% or more. When the average cooling rate up to 200 ° C. is 300 ° C./second or more, it is produced at 300 ° C./second and at 1000 ° C./second. In this case, the strength difference can be 50 MPa or less. On the other hand, the addition of Si exceeding 0.6 mass% not only deteriorates the chemical conversion property of the steel sheet, but also promotes ferrite transformation during cooling, making it difficult to obtain a tempered martensite single phase structure. It is necessary to add a large amount of an element that delays the ferrite transformation such as Cr and Mo. For this reason, Si is 0.1 to 0.6 mass%, preferably 0.2 to 0.5 mass%.

Mn:1.5〜3.0mass%
Mnは、オーステナイトを安定化し、フェライト変態を遅延させる元素であり、Mnを適量添加することで、連続焼鈍後の冷却時のフェライト生成を抑制し、焼戻しマルテンサイト単相組織を安定して得ることができる。このような効果を得るためには1.5mass%以上の添加が必要である。一方、3.0mass%を超えるMnの添加は加工性を劣化させる。このためMnは1.5〜3.0mass%、好ましくは1.6〜2.5mass%とする。
P:0.10mass%以下
Pは、鋼を強化する作用があり、鋼板の強度レベルに応じて添加してもよいが、0.10mass%を超えて添加すると溶接性が劣化する。このためPは0.10mass%以下とする。また、より優れた溶接性が要求される場合には、0.05mass%以下とすることが好ましい。
Mn: 1.5 to 3.0 mass%
Mn is an element that stabilizes austenite and delays ferrite transformation, and by adding an appropriate amount of Mn, it suppresses the formation of ferrite during cooling after continuous annealing and stably obtains a tempered martensite single phase structure. Can do. In order to obtain such an effect, addition of 1.5 mass% or more is necessary. On the other hand, the addition of Mn exceeding 3.0 mass% deteriorates workability. For this reason, Mn is 1.5 to 3.0 mass%, preferably 1.6 to 2.5 mass%.
P: 0.10 mass% or less P has an effect of strengthening steel, and may be added according to the strength level of the steel sheet. However, if it exceeds 0.10 mass%, weldability deteriorates. Therefore, P is 0.10 mass% or less. Moreover, when more excellent weldability is required, it is preferably 0.05 mass% or less.

S:0.01mass%以下
Sは、鋼板中で介在物として存在し、伸びフランジ性を劣化させる。そのため、Sはできるだけ低減するのが好ましく、伸びフランジ性への悪影響を排除するためには、0.01mass%以下とする必要がある。また、より優れた伸びフランジ性が要求される場合には、0.005mass%以下とすることが好ましい。
Al:0.01〜0.1mass%
Alは、鋼の脱酸元素として添加され、鋼の清浄度を向上させるのに有用な元素であり、鋼の組織微細化のためにも添加が望ましい元素である。また、適正範囲のAlを添加したアルミキルド鋼の方が、Alを添加しない従来のリムド鋼に比して、機械的性質が優れている。このためAlの下限は0.01mass%とする。一方、Al含有量が多くなると表面性状の悪化につながるため、上限は0.1mass%とする。
S: 0.01 mass% or less S is present as an inclusion in the steel sheet and deteriorates stretch flangeability. Therefore, it is preferable to reduce S as much as possible, and in order to eliminate the adverse effect on stretch flangeability, it is necessary to be 0.01 mass% or less. Moreover, when the more excellent stretch flangeability is requested | required, it is preferable to set it as 0.005 mass% or less.
Al: 0.01 to 0.1 mass%
Al is added as a deoxidizing element for steel, is an element useful for improving the cleanliness of steel, and is also an element that is desirable for addition to refine the structure of steel. Further, the aluminum killed steel added with an appropriate range of Al is superior in mechanical properties to the conventional rimmed steel not containing Al. For this reason, the lower limit of Al is set to 0.01 mass%. On the other hand, when the Al content increases, the surface properties deteriorate, so the upper limit is made 0.1 mass%.

N:0.005mass%以下
Nは、本発明では不純物として取り扱う。Nが0.005mass%を超えると強度バラツキの原因となるため、0.005mass%以下とする。
本発明の鋼板は、上記の成分組成で目的とする特性が得られるが、所望の特性に応じて以下の元素を含有することができる。
B:0.0005〜0.005mass%
Bは、フェライト変態を遅延させる元素であり、Bを適量添加することで、連続焼鈍の冷却時のフェライト生成を抑制し、焼戻しマルテンサイト単相組織を安定して得ることができる。このような効果を得るためには0.0005mass%以上の添加が必要である。一方、0.005mass%を超えるBの添加は上記した効果が飽和するだけでなく、熱間圧延の変形抵抗が大きくなり、製造が困難となる。このためBは0.0005〜0.005mass%とする。
N: 0.005 mass% or less N is treated as an impurity in the present invention. If N exceeds 0.005 mass%, strength variation will be caused, so 0.005 mass% or less.
The steel sheet of the present invention can achieve the desired characteristics with the above component composition, but can contain the following elements according to the desired characteristics.
B: 0.0005 to 0.005 mass%
B is an element that delays the ferrite transformation, and by adding an appropriate amount of B, it is possible to suppress the formation of ferrite at the time of cooling during continuous annealing and stably obtain a tempered martensite single phase structure. In order to obtain such an effect, addition of 0.0005 mass% or more is necessary. On the other hand, the addition of B exceeding 0.005 mass% not only saturates the above-described effect, but also increases the deformation resistance of hot rolling, making it difficult to manufacture. For this reason, B is set to 0.0005 to 0.005 mass%.

Ti:0.005〜0.05mass%、Nb:0.005〜0.05mass%の1種または2種
Bを添加する場合には、Ti,Nbを適量添加することが好ましい。Bが上記効果を発揮するためには、固溶状態である必要があり、BがNと結合してBNとなると、その効果は減少してしまう。その際、Ti,Nbを添加することで、NはTi,Nbと優先的に結合し、BNの形成を抑制することができる。このような効果は、Ti,Nbをそれぞれ0.005mass%以上添加することで得ることができるが、0.05mass%を超える添加は加工性の劣化をもたらす。よって、Ti,Nbはそれぞれ、0.005〜0.05mass%とする。
上記以外の残部はFe及び不可避的不純物とする。不可避的不純物としては、例えば、Sb、Sn、Zn、Coなどが挙げられ、これらの含有量の許容範囲としては、Sb:0.01mass%以下、Sn:0.1mass%以下、Zn:0.01mass%以下、Co:0.1mass%以下の範囲である。また、本発明では、Cr、Mo、V、Ni、Cu、Mg、Ca、Zr、REMを通常の鋼組成の範囲内で含有しても、その効果は失われない。
When adding 1 type or 2 types B of Ti: 0.005-0.05 mass% and Nb: 0.005-0.05 mass%, it is preferable to add Ti and Nb in an appropriate amount. In order for B to exhibit the above effect, it needs to be in a solid solution state. When B is combined with N to become BN, the effect decreases. At that time, by adding Ti and Nb, N is preferentially bonded to Ti and Nb, and the formation of BN can be suppressed. Such an effect can be obtained by adding 0.005 mass% or more of Ti and Nb, respectively, but addition exceeding 0.05 mass% brings about deterioration of workability. Therefore, Ti and Nb are 0.005 to 0.05 mass%, respectively.
The balance other than the above is Fe and inevitable impurities. Inevitable impurities include, for example, Sb, Sn, Zn, Co, etc. The allowable ranges of these contents are Sb: 0.01 mass% or less, Sn: 0.1 mass% or less, Zn: 0. It is the range of 01 mass% or less and Co: 0.1 mass% or less. Moreover, in this invention, even if it contains Cr, Mo, V, Ni, Cu, Mg, Ca, Zr, and REM within the range of a normal steel composition, the effect is not lost.

本発明の鋼板の金属組織(但し、鋼板表面から深さ20μmまでの組織を除く。これについては後述する。)は、焼戻しマルテンサイト単相組織とする。このようにフェライトなどの軟質相が含まれない焼戻しマルテンサイト単相組織とすることで、優れた伸びフランジ性が得られる。
ここで、焼戻しマルテンサイトとは、マルテンサイトを200℃以下の低温で焼戻した組織であり、ラス状フェライトとラス内およびラス境界に析出した微細板状鉄炭化物からなる。同じくラス状フェライトと微細板状鉄炭化物からなる組織として下部ベイナイトが知られるが、下部ベイナイトに生成する鉄炭化物は、同一ラス内において長手が一方向に揃っているという特徴があり、ランダムである焼戻しマルテンサイトとは、透過電子顕微鏡で観察することで区別できる。また、焼戻しマルテンサイト単相とは、走査電子顕微鏡、透過電子顕微鏡、X線回折法で組織を定量測定し、フェライト、ベイナイト、残留オーステナイトが合計で1%以上含まれないことを意味する。
The metal structure of the steel sheet of the present invention (excluding the structure from the steel sheet surface to a depth of 20 μm, which will be described later) is a tempered martensite single phase structure. Thus, the extensibility flangeability which was excellent by using the tempered martensite single phase structure which does not contain soft phases, such as a ferrite, is acquired.
Here, tempered martensite is a structure obtained by tempering martensite at a low temperature of 200 ° C. or less, and is composed of lath-like ferrite and fine plate-like iron carbide precipitated in the lath and at the lath boundary. Similarly, the lower bainite is known as a structure composed of lath-like ferrite and fine plate-like iron carbide, but the iron carbide generated in the lower bainite is characterized by the fact that the length is aligned in one direction within the same lath and is random. It can be distinguished from tempered martensite by observation with a transmission electron microscope. The tempered martensite single phase means that the structure is quantitatively measured by a scanning electron microscope, a transmission electron microscope, and an X-ray diffraction method, and means that ferrite, bainite, and retained austenite are not contained in total of 1% or more.

また、脱炭などにより鋼板表面から深さ20μm以内の最表層にフェライトが生成することがあるが、このようなフェライトは伸びフランジ性に影響を及ぼさず、むしろ曲げ性を向上させることから、鋼板表面から深さ20μm以内にはフェライトが含まれていてもよい。このため本発明では、鋼板表面から深さ20μmまでの領域については鋼板組織を限定しない。
本発明の鋼板は、高い引張強さが要求される自動車骨格部材、補強部材、および自動車シート骨格部材などへの適用を意図しているので、このような用途を考慮して引張強さを980MPa以上とする。
In addition, ferrite may be generated on the outermost layer within a depth of 20 μm from the steel sheet surface due to decarburization or the like, but such ferrite does not affect the stretch flangeability but rather improves the bendability. Ferrite may be contained within a depth of 20 μm from the surface. For this reason, in this invention, a steel plate structure | tissue is not limited about the area | region from a steel plate surface to a depth of 20 micrometers.
Since the steel sheet of the present invention is intended for application to automobile frame members, reinforcing members, and automobile seat frame members that require high tensile strength, the tensile strength is set to 980 MPa in consideration of such applications. That's it.

次に、本発明の冷延鋼板の製造方法について説明する。
この製造方法では、上述した成分組成に調整された溶鋼からスラブを製造し、このスラブに対して、熱間圧延、冷間圧延、連続焼鈍を順次施し、冷延鋼板を製造する。
使用するスラブは、成分のマクロ偏析が少ないなどの面では連続鋳造法で製造されたものが好ましいが、造塊−分塊圧延法や薄スラブ鋳造法で製造されたものでもよい。
熱間圧延の方式としては、鋳造されたスラブを一旦常温まで冷却し、その後加熱炉にて再加熱して圧延する方式のほか、鋳造されたスラブを常温まで冷却することなく、温片のままで加熱炉にて再加熱した後、圧延する方式、鋳造されたスラブを保熱した後に直ちに圧延する方式、鋳造されたスラブをそのまま圧延する直送圧延・直接圧延方式、などいずれの方式でもよい。
鋳造後常温まで冷却されたスラブを再加熱する場合、スラブ加熱温度は1000℃以上とするのが好ましい。上限は特に限定されないが、1300℃を超えると酸化重量の増加に伴うスケールロスが増大することなどから、1300℃以下とすることが好ましい。また、常温まで冷却することなく、温片のままで加熱炉にて再加熱する場合も、スラブ加熱温度は1000℃以上とするのが好ましい。
Next, the manufacturing method of the cold rolled steel sheet of this invention is demonstrated.
In this manufacturing method, a slab is manufactured from molten steel adjusted to the above-described component composition, and hot rolling, cold rolling, and continuous annealing are sequentially performed on the slab to manufacture a cold rolled steel sheet.
The slab to be used is preferably manufactured by a continuous casting method in terms of a small amount of macro-segregation of components, but may be manufactured by an ingot-bundling rolling method or a thin slab casting method.
As a method of hot rolling, the cast slab is once cooled to room temperature, then reheated and rolled in a heating furnace, and the cast slab is kept as a warm piece without cooling to room temperature. Any method may be employed, such as a method of rolling after reheating in a heating furnace, a method of rolling immediately after keeping the cast slab heated, and a direct feed rolling / direct rolling method of rolling the cast slab as it is.
When the slab cooled to room temperature after casting is reheated, the slab heating temperature is preferably 1000 ° C. or higher. The upper limit is not particularly limited, but if it exceeds 1300 ° C., scale loss accompanying an increase in oxidized weight increases, and therefore, it is preferably 1300 ° C. or lower. Moreover, also when it reheats with a heating furnace with a hot piece, without cooling to normal temperature, it is preferable that slab heating temperature shall be 1000 degreeC or more.

熱間圧延では、必要に応じて粗圧延を行った後、好ましくは仕上圧延温度:800℃以上で仕上圧延を行う。仕上圧延温度が800℃を下回ると、鋼板の組織が不均一になり、加工性が劣化する。仕上圧延温度の上限は特に限定されないが、過度に高い温度で圧延するとスケール疵などの原因となるので、1000℃以下とすることが好ましい。その後、平均冷却速度:30℃/秒以上で700℃以下まで冷却し、650℃以下で巻き取ることが好ましい。平均冷却速度が30℃/秒未満ではフェライト粒径が粗大となるため、冷間圧延後の焼鈍時にオーステナイト粒径が粗大となり、加工性に悪影響を及ぼすおそれがある。また、巻取温度が650℃を超えると、巻取後のスケールロスが増大する。
この熱間圧延では、圧延荷重を低減するために仕上圧延の一部または全部を潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化、材質の均一化の観点からも有効である。なお、潤滑圧延の際の摩擦係数は0.10〜0.25の範囲とすることが好ましい。また、相前後するシートバー同士を接合し、連続的に仕上圧延する連続圧延プロセスとすることが好ましい。連続圧延プロセスを適用することは、熱間圧延の操業安定性の観点からも望ましい。
In hot rolling, after rough rolling is performed as necessary, finish rolling is preferably performed at a finish rolling temperature of 800 ° C. or higher. When the finish rolling temperature is lower than 800 ° C., the structure of the steel sheet becomes non-uniform and workability deteriorates. The upper limit of the finish rolling temperature is not particularly limited, but if it is rolled at an excessively high temperature, scale wrinkles and the like are caused. Then, it is preferable to cool to 700 degrees C or less at an average cooling rate: 30 degrees C / sec or more, and to wind up at 650 degrees C or less. If the average cooling rate is less than 30 ° C./second, the ferrite grain size becomes coarse, so the austenite grain size becomes coarse during annealing after cold rolling, which may adversely affect workability. On the other hand, when the winding temperature exceeds 650 ° C., the scale loss after winding increases.
In this hot rolling, part or all of the finish rolling may be lubricated rolling in order to reduce the rolling load. Performing lubrication rolling is also effective from the viewpoint of uniform steel plate shape and uniform material. In addition, it is preferable to make the friction coefficient in the case of lubrication rolling into the range of 0.10-0.25. Moreover, it is preferable to set it as the continuous rolling process which joins the sheet | seat bars which precede and follow, and finish-rolls continuously. The application of the continuous rolling process is also desirable from the viewpoint of the operational stability of hot rolling.

次いで、上記により得られた熱延鋼板に冷間圧延を施し、冷延鋼板とする。冷間圧延条件は、所望の寸法形状の冷延鋼板とすることができればよく、特に限定されないが、表面の平坦度や組織の均一性の観点から、圧下率を20%以上とすることが好ましい。なお、冷間圧延前には、常法に準じた酸洗を施せばよいが、熱延鋼板表面のスケールが極めて薄い場合には直接冷間圧延を施してもよい。
次いで、得られた冷延鋼板に連続焼鈍を施す。この連続焼鈍工程では、鋼板をAe点以上900℃以下の温度域に加熱保持する。加熱保持温度がAe点未満では、オーステナイト単相組織とならず、冷却−焼戻し後に焼戻しマルテンサイト単相組織を得ることができない。一方、加熱保持温度が900℃を超えると、オーステナイト粒が粗大化するため、鋼板の曲げ性、靭性が劣化してしまう。なお、保持時間は、鋼板の均一性の観点からAe点以上となる時間が60秒以上であることが好ましい。さらに好ましくは120秒以上である。
Next, the hot-rolled steel sheet obtained as described above is cold-rolled to obtain a cold-rolled steel sheet. The cold rolling condition is not particularly limited as long as it can be a cold-rolled steel sheet having a desired size and shape, but the rolling reduction is preferably 20% or more from the viewpoint of surface flatness and structure uniformity. . In addition, it is sufficient to perform pickling according to a conventional method before cold rolling, but when the scale on the surface of the hot-rolled steel sheet is extremely thin, direct cold rolling may be performed.
Next, the obtained cold-rolled steel sheet is subjected to continuous annealing. In this continuous annealing step, the steel sheet is heated and held in a temperature range of 3 Ae or more and 900 ° C. or less. When the heating holding temperature is less than 3 points of Ae, an austenite single phase structure is not obtained, and a tempered martensite single phase structure cannot be obtained after cooling and tempering. On the other hand, when the heating and holding temperature exceeds 900 ° C., the austenite grains are coarsened, so that the bendability and toughness of the steel sheet are deteriorated. In addition, it is preferable that the holding time is 60 seconds or more when the Ae is 3 points or more from the viewpoint of the uniformity of the steel sheet. More preferably, it is 120 seconds or more.

次いで、平均冷却速度300℃/秒以上で200℃以下まで急冷する。本発明では、平均冷却速度が300℃/秒以上の場合に、Siを0.1mass%以上添加することで、200℃までの平均冷却速度が300℃/秒で製造した場合と1000℃/秒で製造した場合の強度差を、50MPa以下とすることができる。300℃/秒未満の冷却速度ではマルテンサイト変態後室温まで冷却する間の鉄炭化物の析出を抑制するために、0.6mass%を超える多量のSi添加が必要となり、化成処理性などに悪影響を及ぼす。よって、本発明では、平均冷却速度を300℃/秒以上、好ましくは400℃/秒以上とする。なお、鋼板温度が200℃未満まで冷却すると、数秒以内の短時間での炭化物の析出は、その後の200℃以下での焼戻し時の炭化物の析出に比べて無視できるレベルとなるため、200℃から室温までの冷却速度は特に規定されないが、生産性の観点から、50℃/秒以上であることが好ましい。また、加熱保持後直ちに急速冷却しても、また、製造プロセス上一定温度まで徐冷後、急速冷却しても構わないが、徐冷する際は急冷開始温度をAr点以上とする必要がある。 Next, it is rapidly cooled to 200 ° C. or less at an average cooling rate of 300 ° C./second or more. In the present invention, when the average cooling rate is 300 ° C./second or more, by adding 0.1 mass% or more of Si, when the average cooling rate up to 200 ° C. is manufactured at 300 ° C./second and 1000 ° C./second The difference in strength when manufactured with can be 50 MPa or less. At a cooling rate of less than 300 ° C / second, in order to suppress precipitation of iron carbide during cooling to room temperature after martensitic transformation, a large amount of Si exceeding 0.6 mass% is required, which adversely affects chemical conversion treatment properties. Effect. Therefore, in the present invention, the average cooling rate is set to 300 ° C./second or more, preferably 400 ° C./second or more. In addition, when the steel plate temperature is cooled to less than 200 ° C., carbide precipitation in a short time within a few seconds is negligible compared to carbide precipitation at the time of subsequent tempering at 200 ° C. or less. The cooling rate to room temperature is not particularly defined, but is preferably 50 ° C./second or more from the viewpoint of productivity. In addition, it may be rapidly cooled immediately after the heating and holding, or may be rapidly cooled after being gradually cooled to a certain temperature in the manufacturing process. However, when gradually cooling, it is necessary to set the rapid cooling start temperature to 3 or more points of Ar. is there.

次いで、靭性を向上させるため、200℃以下で焼戻しを行う。焼戻し温度が200℃を超えると、粗大な炭化物が析出し、強度低下が著しくなるため、添加元素に見合う強度が得られず、非経済的である。なお、焼戻し温度の下限は特に規定しないが、100℃以上であることが好ましい。また、焼戻しの保持時間は3〜30分であることが好ましい。
なお、連続焼鈍後、形状矯正、表面粗度などの調整のために、伸び率5%以下の調質圧延を施してもよい。
また、本発明の高強度冷延鋼板には、焼鈍後、酸洗処理やNiなどの成分を5〜500mg/m程度付着する処理などを施して、化成処理性、溶接性、耐食性、耐かじり性などの改善を行ってもよい。
Subsequently, in order to improve toughness, tempering is performed at 200 ° C. or lower. When the tempering temperature exceeds 200 ° C., coarse carbides are precipitated and the strength is remarkably lowered, so that the strength corresponding to the additive element cannot be obtained, which is uneconomical. The lower limit of the tempering temperature is not particularly defined, but is preferably 100 ° C. or higher. Moreover, it is preferable that the holding time of tempering is 3 to 30 minutes.
In addition, you may give the temper rolling of elongation rate 5% or less after continuous annealing for adjustment of shape correction, surface roughness, etc.
The high-strength cold-rolled steel sheet of the present invention is subjected to a chemical treatment, weldability, corrosion resistance, anti-resistance, etc. after annealing, by subjecting it to pickling treatment or a treatment for adhering about 5 to 500 mg / m 2 of components such as Ni. Improvements such as galling may be made.

表1に示す化学組成の鋼スラブを連続鋳造により製造し、1250℃に再加熱後、仕上圧延温度:約850℃、巻取温度:約600℃、板厚3.0mmまで熱間圧延を行った。酸洗後、冷間圧延を施して、板厚1.2mmの冷延鋼板とし、次いで、連続焼鈍ラインにて表2に示す条件で焼鈍・焼戻しを施した。得られた冷延鋼板に、伸び率:0.5%の調質圧延を施した後に試験片を採取し、組織観察および材質調査を実施した。各試験方法の詳細は以下の通りである。   A steel slab having the chemical composition shown in Table 1 is manufactured by continuous casting, and after reheating to 1250 ° C., finish rolling temperature: about 850 ° C., winding temperature: about 600 ° C., and hot rolling to a plate thickness of 3.0 mm. It was. After pickling, cold rolling was performed to obtain a cold-rolled steel sheet having a thickness of 1.2 mm, and then annealing and tempering were performed in the continuous annealing line under the conditions shown in Table 2. The obtained cold-rolled steel sheet was subjected to temper rolling with an elongation of 0.5%, and then a test piece was collected and subjected to structure observation and material investigation. Details of each test method are as follows.

・組織観察
得られた冷延鋼板から試験片を採取し、圧延方向に平行な断面について、光学顕微鏡、走査型電子顕微鏡、透過電子顕微鏡を用いて微細組織を観察し、組織の種類の同定を行い、焼戻しマルテンサイト相の体積率を求めた。ここで、鋼板表面から深さ20μmまでの領域は鋼板特性(強度、穴拡げ率)への影響が小さいことから、鋼板表面から深さ20μmまでの領域を除いた部分について、組織の同定を行った(なお、鋼板表面から深さ20μmまでの領域は、いずれの鋼も焼戻しマルテンサイト相の体積率が20〜100%であり、残部がフェライト相からなる組織であった)。構成相の種類、焼戻しマルテンサイト体積率を表2に示す。
・ Structure observation Specimens are collected from the obtained cold-rolled steel sheet, and the microstructure parallel to the rolling direction is observed using an optical microscope, scanning electron microscope, and transmission electron microscope to identify the type of structure. The volume ratio of the tempered martensite phase was determined. Here, since the region from the steel plate surface to the depth of 20 μm has little influence on the steel plate characteristics (strength, hole expansion rate), the structure is identified for the portion excluding the region from the steel plate surface to the depth of 20 μm. (Note that, in the region from the steel sheet surface to a depth of 20 μm, the volume ratio of the tempered martensite phase was 20 to 100% in all steels, and the balance was a structure composed of a ferrite phase). Table 2 shows the types of constituent phases and the tempered martensite volume fraction.

・材質調査
得られた冷延鋼板から、圧延方向に直交する方向を引張方向としてJIS5号引張試験片を採取し、JIS−Z−2241の規定に準拠して引張試験を行った。また、鉄鋼連盟規格(JFST1001−1996)に準拠して、穴拡げ率を測定した。引張試験により得られた、降伏強度(YS/MPa)、引張強度(TS/MPa)、伸び(El/%)および200℃までの平均冷却速度が300℃/秒で製造した場合と1000℃/秒で製造した場合の強度差(ΔTS/MPa)、穴拡げ率(λ/%)などを表2に示す。
穴拡げ性については、λ≧70%で良好であり、製造安定性については、ΔTS:50MPa以下を良好(○)、ΔTS:50MPa超を不良(×)とした。
-Material investigation From the obtained cold-rolled steel sheet, a JIS No. 5 tensile test piece was taken with the direction orthogonal to the rolling direction as the tensile direction, and a tensile test was performed in accordance with the provisions of JIS-Z-2241. Moreover, the hole expansion rate was measured based on the steel federation standard (JFST1001-1996). When yield strength (YS / MPa), tensile strength (TS / MPa), elongation (El /%) and average cooling rate up to 200 ° C. obtained by a tensile test were 300 ° C./second and 1000 ° C. / Table 2 shows the strength difference (ΔTS / MPa), hole expansion rate (λ /%) and the like when manufactured in seconds.
The hole expansibility was good at λ ≧ 70%, and the production stability was good (◯) when ΔTS: 50 MPa or less, and poor (×) when ΔTS: more than 50 MPa.

Figure 0005082649
Figure 0005082649

Figure 0005082649
Figure 0005082649

表2によれば、本発明例(No.3〜5、7〜9、13、15〜17、19)は、いずれも焼戻しマルテンサイト単相組織を有し、引張強度は980MPa以上であり、また、ΔTSは50MPa以下であることから、製造安定性に優れていることが判る。一方、Si添加量およびMn添加量が本発明の下限未満であるNo.1の比較例は、焼鈍後の冷却中にフェライトが生成し、λが低い値となっているほか、ΔTSの値も大きくなっており、強度の冷却速度依存性が大きくなっている。さらに、Si添加量をNo.1と同じく本発明の下限未満とし、Mn添加量を増量し、Bを添加したNo.2の比較例は、フェライトの生成は抑制され、焼戻しマルテンサイト単相組織となっているが、ΔTSは依然として大きく、製造安定性に劣ることが判る。また、No.6の比較例は焼鈍温度がAe点未満であるため、焼戻しマルテンサイト単相組織を得ることができず、λが低い値となっている。No.10およびNo.11の各比較例は、鋼成分は本発明条件を満足するが、連続焼鈍時の平均冷却速度が300℃/秒未満であるため、1000℃/秒で冷却したときとの引張強さの差が、それぞれ54MPa、72MPaと大きく、平均冷却速度が300℃/秒未満では製造安定性に劣ることが判る。No.12の比較例は焼戻し温度が高く、引張強さが980MPaに達していない。また、No.14の比較例はC量が本発明の下限未満であるため、引張強さが980MPaに達していない。さらに、No.18の比較例はMn添加量が本発明の下限未満であるため、焼鈍後の冷却中にフェライトが生成し、λが低い値となっている。 According to Table 2, the inventive examples (No. 3-5, 7-9, 13, 15-17, 19 ) all have a tempered martensite single phase structure, and the tensile strength is 980 MPa or more, Moreover, since ΔTS is 50 MPa or less, it can be seen that the production stability is excellent. On the other hand, in the comparative example of No. 1 in which the addition amount of Si and the addition amount of Mn is less than the lower limit of the present invention, ferrite is generated during cooling after annealing, and λ is low, and the value of ΔTS is also It is large and the dependence of the strength on the cooling rate is large. Further, in the comparative example of No. 2 in which the Si addition amount is less than the lower limit of the present invention as in No. 1, the Mn addition amount is increased, and B is added, the formation of ferrite is suppressed and the tempered martensite single phase structure. However, ΔTS is still large and it can be seen that the production stability is poor. Further, in the comparative example of No. 6, since the annealing temperature is less than 3 points of Ae, a tempered martensite single phase structure cannot be obtained, and λ is a low value. In each comparative example of No. 10 and No. 11, the steel components satisfy the conditions of the present invention, but the average cooling rate during continuous annealing is less than 300 ° C./sec. It can be seen that the difference in tensile strength of each is as great as 54 MPa and 72 MPa, respectively, and that the production stability is poor when the average cooling rate is less than 300 ° C./sec. The comparative example of No. 12 has a high tempering temperature, and the tensile strength does not reach 980 MPa. In the comparative example of No. 14, the C amount is less than the lower limit of the present invention, so the tensile strength does not reach 980 MPa. Further, in the comparative example of No. 18, since the amount of Mn added is less than the lower limit of the present invention, ferrite is generated during cooling after annealing, and λ is a low value.

Claims (3)

C:0.03〜0.12mass%、Si:0.1〜0.6mass%、Mn:1.5〜3.0mass%、P:0.10mass%以下、S:0.01mass%以下、Al:0.01〜0.1mass%、N:0.005mass%以下を含有し、残部がFeおよび不可避的不純物からなり、鋼板組織(但し、鋼板表面から深さ20μmまでの領域の組織を除く)が焼戻しマルテンサイト単相組織であり、引張強さが980MPa以上であることを特徴とする製造安定性に優れた高強度冷延鋼板。   C: 0.03-0.12 mass%, Si: 0.1-0.6 mass%, Mn: 1.5-3.0 mass%, P: 0.10 mass% or less, S: 0.01 mass% or less, Al : 0.01-0.1mass%, N: 0.005mass% or less, the balance consists of Fe and inevitable impurities, steel plate structure (however, excluding the structure of the region from the steel plate surface to a depth of 20μm) Is a tempered martensite single-phase structure and has a tensile strength of 980 MPa or more, a high-strength cold-rolled steel sheet excellent in manufacturing stability. B:0.0005〜0.005mass%をさらに含有することを特徴とする請求項1に記載の製造安定性に優れた高強度冷延鋼板。   B: 0.0005-0.005 mass% is further contained, The high-strength cold-rolled steel plate excellent in manufacturing stability of Claim 1 characterized by the above-mentioned. 請求項1または2に記載の成分組成を有するスラブに、熱間圧延、冷間圧延、連続焼鈍を順次施す冷延鋼板の製造方法であって、
前記連続焼鈍では、鋼板をAe変態点以上900℃以下の温度域に加熱保持した後、300℃/秒以上の平均冷却速度で200℃以下まで急冷し、次いで200℃以下で焼戻すことを特徴とする製造安定性に優れた高強度冷延鋼板の製造方法。
A method for producing a cold-rolled steel sheet, in which hot rolling, cold rolling, and continuous annealing are sequentially performed on a slab having the component composition according to claim 1 or 2 ,
In the continuous annealing, the steel sheet is heated and held in a temperature range of Ae 3 transformation point or higher and 900 ° C. or lower, then rapidly cooled to 200 ° C. or lower at an average cooling rate of 300 ° C./second or higher, and then tempered at 200 ° C. or lower. A method for producing a high-strength cold-rolled steel sheet having excellent production stability.
JP2007193943A 2007-07-25 2007-07-25 High-strength cold-rolled steel sheet with excellent manufacturing stability and manufacturing method thereof Active JP5082649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007193943A JP5082649B2 (en) 2007-07-25 2007-07-25 High-strength cold-rolled steel sheet with excellent manufacturing stability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007193943A JP5082649B2 (en) 2007-07-25 2007-07-25 High-strength cold-rolled steel sheet with excellent manufacturing stability and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012158128A Division JP5429331B2 (en) 2012-07-13 2012-07-13 High-strength cold-rolled steel sheet with excellent manufacturing stability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009030091A JP2009030091A (en) 2009-02-12
JP5082649B2 true JP5082649B2 (en) 2012-11-28

Family

ID=40400912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007193943A Active JP5082649B2 (en) 2007-07-25 2007-07-25 High-strength cold-rolled steel sheet with excellent manufacturing stability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5082649B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515796B2 (en) * 2009-02-17 2014-06-11 Jfeスチール株式会社 Welding method of high strength thin steel sheet
JP4977879B2 (en) * 2010-02-26 2012-07-18 Jfeスチール株式会社 Super high strength cold-rolled steel sheet with excellent bendability
JP4947176B2 (en) * 2010-03-24 2012-06-06 Jfeスチール株式会社 Manufacturing method of ultra-high strength cold-rolled steel sheet
CN102337458B (en) * 2011-10-17 2013-04-03 武汉钢铁(集团)公司 Steel with tensile strength not lower than 1100MPa for engineering machinery and production method thereof
KR101568495B1 (en) * 2013-12-20 2015-11-11 주식회사 포스코 High strength cold rolled steel sheet having excellent shape property and method for manufacturing the same
CN111868284B (en) 2018-03-19 2021-07-30 日本制铁株式会社 High-strength cold-rolled steel sheet and method for producing same
WO2021070951A1 (en) 2019-10-10 2021-04-15 日本製鉄株式会社 Cold-rolled steel sheet and method for producing same
KR102440757B1 (en) * 2020-12-03 2022-09-08 주식회사 포스코 Ultra high strength cold rolled steel sheet having excellent bandability and method of manufacturing the same
MX2023008445A (en) 2021-03-10 2023-07-27 Nippon Steel Corp Cold-rolled steel sheet and method for manufacturing same.
JPWO2022190958A1 (en) 2021-03-10 2022-09-15

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3514276B2 (en) * 1995-10-19 2004-03-31 Jfeスチール株式会社 Ultra-high strength steel sheet excellent in delayed fracture resistance and method of manufacturing the same

Also Published As

Publication number Publication date
JP2009030091A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP6654698B2 (en) Ultra-high-strength steel sheet excellent in formability and hole expandability and method for producing the same
JP5402191B2 (en) Ultra-high-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JP5493986B2 (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them
US10435762B2 (en) High-yield-ratio high-strength cold-rolled steel sheet and method of producing the same
JP5082649B2 (en) High-strength cold-rolled steel sheet with excellent manufacturing stability and manufacturing method thereof
KR101613806B1 (en) Method for manufacturing high strength steel sheet having excellent formability
JP6179461B2 (en) Manufacturing method of high-strength steel sheet
JP5780086B2 (en) High strength steel plate and manufacturing method thereof
JP5463685B2 (en) High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
JP5896085B1 (en) High-strength cold-rolled steel sheet with excellent material uniformity and manufacturing method thereof
JP6766190B2 (en) Ultra-high-strength, high-ductility steel sheet with excellent yield strength and its manufacturing method
JP5924332B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
WO2012020511A1 (en) High-strength cold-rolled steel sheet having excellent workability and impact resistance, and method for manufacturing same
JP4085826B2 (en) Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
WO2013084478A1 (en) Method for manufacturing high-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
WO2012002566A1 (en) High-strength steel sheet with excellent processability and process for producing same
JP5509909B2 (en) Manufacturing method of high strength hot-rolled steel sheet
CN115244200A (en) High-strength steel sheet and method for producing same
JP2009102715A (en) High-strength hot-dip galvanized steel sheet superior in workability and impact resistance, and manufacturing method therefor
JP4710558B2 (en) High-tensile steel plate with excellent workability and method for producing the same
JP2002241897A (en) Steel sheet having small variation in yield strength and fracture elongation, high formability and low yield ratio, and method for manufacturing the same
JP6224704B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JP5533143B2 (en) Cold rolled steel sheet and method for producing the same
JP5397141B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2006176844A (en) High-strength and low-density steel sheet superior in ductility and fatigue characteristic, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Ref document number: 5082649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250