JP2009102715A - High-strength hot-dip galvanized steel sheet superior in workability and impact resistance, and manufacturing method therefor - Google Patents
High-strength hot-dip galvanized steel sheet superior in workability and impact resistance, and manufacturing method therefor Download PDFInfo
- Publication number
- JP2009102715A JP2009102715A JP2007277040A JP2007277040A JP2009102715A JP 2009102715 A JP2009102715 A JP 2009102715A JP 2007277040 A JP2007277040 A JP 2007277040A JP 2007277040 A JP2007277040 A JP 2007277040A JP 2009102715 A JP2009102715 A JP 2009102715A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- martensite
- impact resistance
- dip galvanized
- galvanized steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims abstract description 26
- 239000008397 galvanized steel Substances 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 75
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 52
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 9
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 5
- 230000009466 transformation Effects 0.000 claims description 35
- 238000001816 cooling Methods 0.000 claims description 30
- 238000005246 galvanizing Methods 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 238000005275 alloying Methods 0.000 claims description 6
- 238000005098 hot rolling Methods 0.000 claims description 6
- 239000010960 cold rolled steel Substances 0.000 claims description 5
- 238000005097 cold rolling Methods 0.000 claims description 3
- 230000000717 retained effect Effects 0.000 abstract description 28
- 239000013078 crystal Substances 0.000 abstract description 11
- 229910052720 vanadium Inorganic materials 0.000 abstract description 8
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- 229910000831 Steel Inorganic materials 0.000 description 33
- 239000010959 steel Substances 0.000 description 33
- 238000000137 annealing Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 16
- 238000005096 rolling process Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 238000007747 plating Methods 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000003303 reheating Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229910001562 pearlite Inorganic materials 0.000 description 5
- 230000000630 rising effect Effects 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 229910001563 bainite Inorganic materials 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
本発明は、自動車、電気製品などの部材に使用される加工性および耐衝撃特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法に関する。 The present invention relates to a high-strength hot-dip galvanized steel sheet excellent in workability and impact resistance used for members such as automobiles and electrical products, and a method for producing the same.
近年、地球環境の保全の見地から、自動車の燃費向上が重要な課題になっている。このため、車体材料である鋼板を高強度化して薄肉化し、車体そのものを軽量化しようという動きが活発になっている。また、こうした車体材料の高強度化は、自動車の衝突時の安全性向上にも繋がるので、高強度鋼板の車体材料への適用が積極的に推進されている。しかしながら、一般的には、鋼板の高強度化は鋼板の延性の低下、すなわち加工性の低下を招くことから、高強度と高加工性を併せ持ち、さらに耐食性にも優れる溶融亜鉛めっき鋼板が望まれている。 In recent years, improving the fuel efficiency of automobiles has become an important issue from the viewpoint of conservation of the global environment. For this reason, the movement to increase the strength and thickness of the steel plate, which is the body material, and to reduce the weight of the vehicle body has become active. In addition, since the increase in strength of such body materials also leads to an improvement in safety at the time of automobile collision, the application of high-strength steel sheets to body materials is being actively promoted. However, in general, increasing the strength of a steel sheet causes a decrease in the ductility of the steel sheet, that is, a decrease in workability. Therefore, a hot dip galvanized steel sheet having both high strength and high workability and excellent corrosion resistance is desired. ing.
このような要望に対して、これまで、フェライトとマルテンサイトからなるDP(Dual Phase)鋼や残留オーステナイトの変態誘起塑性を利用したTRIP(Transformation Induced Plasticity)鋼などの複合組織型の高強度溶融亜鉛めっき鋼板が開発されている。例えば、特許文献1には、質量%で、C:0.05〜0.15%、Si:0.3〜1.5%、Mn:1.5〜2.8%、P:0.03%以下、S:0.02%以下、Al:0.005〜0.5%、N:0.0060%以下、残部がFeおよび不可避的不純物からなり、さらに(Mn%)/(C%)≧15かつ(Si%)/(C%)≧4を満たし、フェライト中に体積率で3〜20%のマルテンサイトと残留オーステナイトを含む加工性の良い高強度合金化溶融亜鉛めっき鋼板が提案されている。しかし、こうした複合組織型の高強度溶融亜鉛めっき鋼板は、一軸引張りで求まる伸びElは高いが、穴拡げ加工などで必要な伸びフランジ性に劣るという問題がある。 In response to these demands, high strength molten zinc of composite structure type, such as DP (Dual Phase) steel composed of ferrite and martensite and TRIP (Transformation Induced Plasticity) steel using transformation induced plasticity of retained austenite, has been developed so far. Plated steel sheets have been developed. For example, Patent Document 1 includes mass%, C: 0.05 to 0.15%, Si: 0.3 to 1.5%, Mn: 1.5 to 2.8%, P: 0.03% or less, S: 0.02% or less, Al: 0.005 to 0.5. %, N: 0.0060% or less, the balance is Fe and inevitable impurities, and (Mn%) / (C%) ≧ 15 and (Si%) / (C%) ≧ 4 are satisfied. A high-strength galvannealed steel sheet with good workability containing 3 to 20% martensite and retained austenite has been proposed. However, such a high-strength hot-dip galvanized steel sheet of the composite structure type has a problem that it has a high elongation El obtained by uniaxial tension, but is inferior in stretch flangeability required for hole expansion processing.
そこで、伸びフランジ性に優れた高強度溶融亜鉛めっき鋼板として、特許文献2には、質量%で、C:0.02〜0.30%、Si:1.50%以下、Mn:0.60〜3.0%、P:0.20%以下、S:0.05%以下、Al:0.01〜0.10%、残部がFeおよび不可避的不純物よりなる鋼を、Ac3変態点以上で熱間圧延後、酸洗、冷間圧延し、連続焼鈍溶融亜鉛めっきラインにおいて、再結晶温度以上かつAc1変態点以上に加熱保持し、その後、溶融亜鉛浴に至るまでの間において、Ms点以下に急冷して、鋼板中に部分的あるいは全部分マルテンサイトを生成させ、次いで、Ms点以上の温度であって少なくとも溶融亜鉛浴温度および合金化炉温度に加熱して、部分的あるいは全部焼戻しマルテンサイトを生成させる伸びフランジ性に優れた高強度溶融亜鉛めっき鋼板の製造方法が開示されている。
しかしながら、特許文献2に記載された高強度溶融亜鉛めっき鋼板では、優れた伸びフランジ性が得られるが、一軸引張りで求まる引張強度TSとElの積、すなわちTS-Elバランスが低いのみならず、自動車の衝突時の安全性にとって必要な耐衝撃特性に劣るという問題がある。 However, in the high-strength hot-dip galvanized steel sheet described in Patent Document 2, excellent stretch flangeability is obtained, but not only the product of tensile strength TS and El obtained by uniaxial tension, that is, the TS-El balance is low, There is a problem that it is inferior in impact resistance required for safety in a car collision.
本発明は、TS-Elバランスが高く、伸びフランジ性に優れ、かつ耐衝撃特性にも優れる高強度溶融亜鉛めっき鋼板およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a high-strength hot-dip galvanized steel sheet having a high TS-El balance, excellent stretch flangeability, and excellent impact resistance, and a method for producing the same.
本発明者らは、TS-Elバランスが高く、具体的にはTS×El≧19000MPa・%、伸びフランジ性に優れ、具体的には後述する穴拡げ率λ≧50%、かつ耐衝撃特性にも優れる、具体的には後述する吸収エネルギーAEとTSの比AE/TS≧0.063となる高強度溶融亜鉛めっき鋼板について鋭意検討を重ねたところ、以下のことを見出した。 The present inventors have a high TS-El balance, specifically TS × El ≧ 19000 MPa ·%, excellent stretch flangeability, specifically, a hole expansion ratio λ ≧ 50% described later, and impact resistance characteristics. As a result of intensive studies on a high-strength hot-dip galvanized steel sheet having a ratio AE / TS ≧ 0.063 of absorbed energy AE and TS, which will be described later, the following was found.
i) 成分組成を適正化した上で、面積率で、フェライトを20〜87%、マルテンサイトと残留オーステナイトを合計で3〜10%、焼戻しマルテンサイトを10〜60%含み、マルテンサイトと残留オーステナイトと焼戻しマルテンサイトからなる第二相の平均結晶粒径が3μm以下であるミクロ組織とすることにより、優れた伸びフランジ性のみならず、高いTS-Elバランスと優れた耐衝撃特性を達成できる。 i) After optimizing the component composition, in terms of area ratio, it contains 20 to 87% ferrite, 3 to 10% total martensite and retained austenite, 10 to 60% tempered martensite, martensite and retained austenite By using a microstructure in which the average crystal grain size of the second phase consisting of tempered martensite is 3 μm or less, not only excellent stretch flangeability but also high TS-El balance and excellent impact resistance can be achieved.
ii) こうしたミクロ組織は、焼鈍時に500℃〜Ac1変態点の温度域を10℃/s以上の昇温速度で昇温し、Ac1変態点〜(Ac3変態点+30℃)の温度域に加熱して10s以上保持して変態により微細なオーステナイトを生成させた後、(Ms点-100℃)〜(Ms点-200℃)の温度域に強制冷却し、その後再加熱し、さらに溶融亜鉛めっきを施すことによって得られる。ここで、Ms点とは、オーステナイトのマルテンサイト変態が開始する温度のことであり、冷却時の鋼の線膨張係数の変化から求めることができる。 ii) These microstructures have a temperature range from 500 ° C to Ac 1 transformation point during annealing at a temperature rising rate of 10 ° C / s or more, and temperatures from Ac 1 transformation point to (Ac 3 transformation point + 30 ° C). After heating to a region and holding for 10 s or more to produce fine austenite by transformation, forced cooling to a temperature range of (Ms point -100 ° C) to (Ms point -200 ° C), then reheating, It can be obtained by hot dip galvanizing. Here, the Ms point is a temperature at which martensitic transformation of austenite starts, and can be obtained from a change in the coefficient of linear expansion of steel during cooling.
本発明は、このような知見に基づきなされたもので、質量%で、C:0.05〜0.3%、Si:0.01〜2.5%、Mn:0.5〜3.5%、P:0.003〜0.100%、S:0.02%以下、Al:0.010〜1.5%、さらにTi、NbおよびVから選ばれる少なくとも1種の元素を合計で0.01〜0.2%含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、かつ、面積率で、フェライトを20〜87%、マルテンサイトと残留オーステナイトを合計で3〜10%、焼戻しマルテンサイトを10〜60%含み、前記マルテンサイトと残留オーステナイトと焼戻しマルテンサイトからなる第二相の平均結晶粒径が3μm以下であるミクロ組織を有する加工性および耐衝撃特性に優れる高強度溶融亜鉛めっき鋼板を提供する。 The present invention has been made based on such findings, and in mass%, C: 0.05 to 0.3%, Si: 0.01 to 2.5%, Mn: 0.5 to 3.5%, P: 0.003 to 0.100%, S: 0.02 % Or less, Al: 0.010 to 1.5%, further containing at least one element selected from Ti, Nb and V in a total of 0.01 to 0.2%, the balance has a component composition consisting of Fe and inevitable impurities, and The second phase is composed of 20 to 87% ferrite, 3 to 10% total martensite and retained austenite, and 10 to 60% tempered martensite, and consists of the martensite, retained austenite and tempered martensite. Provided is a high-strength hot-dip galvanized steel sheet having a microstructure with an average crystal grain size of 3 μm or less and excellent workability and impact resistance.
本発明の高強度溶融亜鉛めっき鋼板には、さらに、質量%で、Cr:0.005〜2.00%、Mo:0.005〜2.00%、Ni:0.005〜2.00%、Cu:0.005〜2.00%から選ばれる少なくとも1種の元素が含有されることが好ましい。さらにまた、質量%で、B:0.0002〜0.005%やCa:0.001〜0.005%、REM:0.001〜0.005%から選ばれる少なくとも1種の元素が含有されることがより好ましい。 In the high-strength hot-dip galvanized steel sheet of the present invention, at least 1% selected from Cr: 0.005-2.00%, Mo: 0.005-2.00%, Ni: 0.005-2.00%, Cu: 0.005-2.00%. It is preferable that a seed element is contained. Furthermore, it is more preferable that at least one element selected from B: 0.0002 to 0.005%, Ca: 0.001 to 0.005%, and REM: 0.001 to 0.005% by mass% is contained.
本発明の高強度溶融亜鉛めっき鋼板では、亜鉛めっきを合金化亜鉛めっきとすることもできる。 In the high-strength hot-dip galvanized steel sheet of the present invention, the galvanizing can be alloyed galvanizing.
本発明の高強度溶融亜鉛めっき鋼板は、例えば、上記の成分組成を有するスラブを、熱間圧延、冷間圧延を施して冷延鋼板とし、前記冷延鋼板に、500℃〜Ac1変態点の温度域を10℃/s以上の平均昇温速度で昇温し、Ac1変態点〜(Ac3変態点+30℃)の温度域に加熱して10s以上保持した後、10℃/s以上の平均冷却速度で(Ms点-100℃)〜(Ms点-200℃)の温度域に冷却し、350〜600℃の温度域に再加熱して1〜600s保持する条件で焼鈍を施した後、溶融亜鉛めっきを施す製造方法によって製造できる。 High-strength hot-dip galvanized steel sheet of the present invention, for example, a slab having the above component composition, hot rolling, subjected to cold rolling and cold-rolled steel sheet, the cold-rolled steel sheet, 500 ° C. to Ac 1 transformation point Is heated at an average temperature increase rate of 10 ° C / s or more, heated to the temperature range of Ac 1 transformation point to (Ac 3 transformation point + 30 ° C) and held for 10s or more, then 10 ° C / s Cool at a temperature range of (Ms point -100 ° C) to (Ms point -200 ° C) at the above average cooling rate, reheat to a temperature range of 350 to 600 ° C, and perform annealing under the condition of holding for 1 to 600 s. Then, it can be manufactured by a manufacturing method for applying hot dip galvanizing.
本発明の高強度溶融亜鉛めっき鋼板の製造方法では、溶融亜鉛めっきした後に、亜鉛めっきを合金化処理することもできる。 In the manufacturing method of the high-strength hot-dip galvanized steel sheet of the present invention, after hot-dip galvanizing, galvanization can be alloyed.
本発明により、TS-Elバランスが高く、伸びフランジ性に優れ、かつ耐衝撃特性に優れる高強度溶融亜鉛めっき鋼板を製造できるようになった。本発明の高強度溶融亜鉛めっき鋼板を自動車車体に適用することにより、自動車の軽量化や耐食性向上のみならず、衝突時の安全性向上を図ることができる。 The present invention makes it possible to produce a high-strength hot-dip galvanized steel sheet having a high TS-El balance, excellent stretch flangeability, and excellent impact resistance. By applying the high-strength hot-dip galvanized steel sheet of the present invention to an automobile body, not only weight reduction and corrosion resistance of an automobile can be improved, but also safety at the time of collision can be improved.
以下に、本発明の詳細を説明する。なお、成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。 Details of the present invention will be described below. “%” Representing the content of component elements means “% by mass” unless otherwise specified.
1) 成分組成
C:0.05〜0.3%
Cは、オーステナイトを安定化させる元素であり、フェライト以外のマルテンサイトなどの第二相を生成させてTSを上昇させるとともに、TS-Elバランスを向上させるために必要な元素である。C量が0.05%未満では、フェライト以外の第二相の確保が難しくなり、TS-Elバランスが低下する。一方、C量が0.3%を超えると、溶接性が劣化する。したがって、C量は0.05〜0.3%、好ましくは0.08〜0.15%とする。
1) Component composition
C: 0.05-0.3%
C is an element that stabilizes austenite, and is an element that is necessary for generating a second phase such as martensite other than ferrite to raise TS and improve the TS-El balance. If the C content is less than 0.05%, it is difficult to secure a second phase other than ferrite, and the TS-El balance is lowered. On the other hand, if the C content exceeds 0.3%, the weldability deteriorates. Therefore, the C content is 0.05 to 0.3%, preferably 0.08 to 0.15%.
Si:0.01〜2.5%
Siは、鋼を固溶強化して、TS-Elバランスを向上させるのに有効な元素である。こうした効果を得るには、Si量を0.01%以上にする必要がある。一方、Si量が2.5%を超えると、Elの低下や表面性状、溶接性の劣化を招く。したがって、Si量は0.01〜2.5%、好ましくは0.7〜2.0%とする。
Si: 0.01-2.5%
Si is an effective element for improving the TS-El balance by solid-solution strengthening steel. In order to obtain such an effect, the Si amount needs to be 0.01% or more. On the other hand, if the amount of Si exceeds 2.5%, the El decreases, the surface properties, and the weldability deteriorate. Therefore, the Si content is 0.01 to 2.5%, preferably 0.7 to 2.0%.
Mn:0.5〜3.5%
Mnは、鋼の強化に有効であり、マルテンサイトなどの第二相の生成を促進する元素である。こうした効果を得るには、Mn量を0.5%以上にする必要がある。一方、Mn量が3.5%を超えると、第二相の過剰な増加や固溶強化によるフェライトの延性劣化が著しくなり、加工性が低下する。したがって、Mn量は0.5〜3.5%、好ましくは1.5〜3.0%とする。
Mn: 0.5-3.5%
Mn is an element that is effective in strengthening steel and promotes the formation of a second phase such as martensite. In order to obtain such effects, the Mn content needs to be 0.5% or more. On the other hand, if the amount of Mn exceeds 3.5%, the ductile deterioration of ferrite due to excessive increase of the second phase or solid solution strengthening becomes remarkable, and the workability deteriorates. Therefore, the Mn content is 0.5 to 3.5%, preferably 1.5 to 3.0%.
P:0.003〜0.100%
Pは、鋼の強化に有効な元素である。こうした効果を得るには、P量を0.003%以上にする必要がある。一方、P量が0.100%を超えると、粒界偏析により鋼を脆化させ、耐衝撃特性を劣化させる。したがって、P量は0.003〜0.100%とする。
P: 0.003-0.100%
P is an element effective for strengthening steel. In order to obtain such an effect, the P amount needs to be 0.003% or more. On the other hand, if the P content exceeds 0.100%, the steel is embrittled by grain boundary segregation, and the impact resistance is deteriorated. Therefore, the P content is 0.003 to 0.100%.
S:0.02%以下
Sは、MnSなどの介在物として存在して、耐衝撃特性や溶接性を劣化させるため、その量は極力低減することが好ましい。しかし、製造コストの面から、S量は0.02%以下とする。
S: 0.02% or less
Since S exists as inclusions such as MnS and degrades impact resistance and weldability, the amount is preferably reduced as much as possible. However, in terms of manufacturing cost, the S amount is 0.02% or less.
Al:0.010〜1.5%
Alは、フェライトを生成させ、TS-Elバランスを向上させるのに有効な元素である。こうした効果を得るには、Al量を0.010%以上にする必要がある。一方、Al量が1.5%を超えると、連続鋳造時のスラブ割れの危険性が高まる。したがって、Al量は0.010〜1.5%とする。
Al: 0.010-1.5%
Al is an element effective in generating ferrite and improving the TS-El balance. In order to obtain such an effect, the Al content needs to be 0.010% or more. On the other hand, if the Al content exceeds 1.5%, the risk of slab cracking during continuous casting increases. Therefore, the Al content is 0.010 to 1.5%.
Ti、NbおよびVから選ばれる少なくとも1種:合計で0.01〜0.2%
Ti、Nb、Vは、それぞれTiC、NbC、VCなどとして析出し、鋼の組織を微細化するのに有効な元素である。こうした効果を得るには、Ti、NbおよびVから選ばれる少なくとも1種の元素の含有量を合計で0.01%以上にする必要がある。一方、Ti、NbおよびVから選ばれる少なくとも1種の元素の含有量が合計で0.2%を超えると、析出物が過剰になり、延性の低下を招く。したがって、Ti、NbおよびVから選ばれる少なくとも1種の元素の含有量は合計で0.01〜0.2%とする。
At least one selected from Ti, Nb and V: 0.01-0.2% in total
Ti, Nb, and V are elements effective for refining the steel structure by precipitating as TiC, NbC, and VC, respectively. In order to obtain such an effect, the content of at least one element selected from Ti, Nb and V needs to be 0.01% or more in total. On the other hand, when the content of at least one element selected from Ti, Nb, and V exceeds 0.2% in total, precipitates become excessive and ductility is reduced. Therefore, the content of at least one element selected from Ti, Nb and V is set to 0.01 to 0.2% in total.
残部はFeおよび不可避的不純物であるが、以下の理由で、Cr:0.005〜2.00%、Mo:0.005〜2.00%、Ni:0.005〜2.00%、Cu:0.005〜2.00%、B:0.0002〜0.005%、Ca:0.001〜0.005%、REM:0.001〜0.005%が含有されることが好ましい。 The balance is Fe and inevitable impurities, but for the following reasons, Cr: 0.005-2.00%, Mo: 0.005-2.00%, Ni: 0.005-2.00%, Cu: 0.005-2.00%, B: 0.0002-0.005% Ca: 0.001 to 0.005%, REM: 0.001 to 0.005% are preferably contained.
Cr、Mo、Ni、Cu:それぞれ0.005〜2.00%
Cr、Mo、Ni、Cuは、焼鈍時における加熱温度からの冷却時にパーライトの生成を抑制し、マルテンサイトなどの生成を促進して鋼を強化させるのに有効な元素である。こうした効果を得るには、Cr、Mo、Ni、Cuから選ばれる少なくとも1種の元素の含有量を0.005%にする必要がある。一方、Cr、Mo、Ni、Cuのそれぞれの元素の含有量が2.00%を超えると、その効果が飽和し、コストアップを招く。したがって、Cr、Mo、Ni、Cuの含有量はそれぞれ0.005〜2.00%とする。
Cr, Mo, Ni, Cu: 0.005-2.00% each
Cr, Mo, Ni, and Cu are effective elements for suppressing the formation of pearlite during cooling from the heating temperature during annealing, and promoting the formation of martensite and strengthening the steel. In order to obtain such an effect, the content of at least one element selected from Cr, Mo, Ni, and Cu needs to be 0.005%. On the other hand, when the content of each element of Cr, Mo, Ni, and Cu exceeds 2.00%, the effect is saturated and the cost is increased. Therefore, the contents of Cr, Mo, Ni, and Cu are each 0.005 to 2.00%.
B:0.0002〜0.005%
Bは、オーステナイト粒界からのフェライトの生成を抑制し、マルテンサイトなどの第二相を生成させて高強度化を図る上で有効な元素である。こうした効果を得るには、B量を0.0002%以上にする必要がある。一方、B量が0.005%を超えると、その効果が飽和し、コストアップを招く。したがって、B量は0.0002〜0.005%とする。
B: 0.0002-0.005%
B is an element effective in suppressing the formation of ferrite from the austenite grain boundary and increasing the strength by generating a second phase such as martensite. In order to obtain such effects, the B content needs to be 0.0002% or more. On the other hand, when the amount of B exceeds 0.005%, the effect is saturated and the cost is increased. Therefore, the B amount is 0.0002 to 0.005%.
Ca、REM:それぞれ0.001〜0.005%
Ca、REMは、いずれも硫化物の形態制御により加工性を改善させるのに有効な元素である。このような効果を得るには、Ca、REMから選ばれる少なくとも1種の元素の含有量を0.001%以上にする必要がある。一方、Ca、REMのそれぞれの元素の含有量が0.005%を超えると、鋼の清浄度に悪影響を及ぼす虞がある。したがって、Ca、REMの含有量はそれぞれ0.001〜0.005%とする。
Ca, REM: 0.001 to 0.005% each
Ca and REM are both effective elements for improving workability by controlling the morphology of sulfides. In order to obtain such an effect, the content of at least one element selected from Ca and REM must be 0.001% or more. On the other hand, if the content of each element of Ca and REM exceeds 0.005%, the cleanliness of steel may be adversely affected. Therefore, the Ca and REM contents are 0.001 to 0.005%, respectively.
2) ミクロ組織
フェライトの面積率:20〜87%
フェライトは、TS-Elバランスを向上させる。TS×El≧19000MPa・%とするには、フェライトの面積率を20%以上、好ましくは50%以上にする必要がある。なお、以下のマルテンサイトと残留オーステナイトの面積率が合計で3%以上および焼戻しマルテンサイトの面積率が10%以上より、フェライトの面積率の上限は87%である。
2) Microstructure Area ratio of ferrite: 20-87%
Ferrite improves TS-El balance. In order to satisfy TS × El ≧ 19000 MPa ·%, the area ratio of ferrite needs to be 20% or more, preferably 50% or more. Note that the total area ratio of martensite and retained austenite is 3% or more in total and the area ratio of tempered martensite is 10% or more, so the upper limit of the area ratio of ferrite is 87%.
マルテンサイトと残留オーステナイトの面積率:合計で3〜10%
マルテンサイトや残留オーステナイトは、鋼の強化に寄与するだけでなく、TS-Elバランスを向上させる。このような効果を得るには、マルテンサイトと残留オーステナイトの面積率を合計で3%以上にする必要がある。しかしながら、マルテンサイトと残留オーステナイトの面積率が合計で10%を超えると、伸びフランジ性が低下する。したがって、マルテンサイトと残留オーステナイトの面積率は合計で3〜10%とする。
Martensite and retained austenite area ratio: 3-10% in total
Martensite and retained austenite not only contribute to strengthening the steel, but also improve the TS-El balance. In order to obtain such an effect, the total area ratio of martensite and retained austenite needs to be 3% or more. However, when the area ratio of martensite and retained austenite exceeds 10% in total, stretch flangeability deteriorates. Therefore, the total area ratio of martensite and retained austenite is 3 to 10%.
焼戻しマルテンサイトの面積率:10〜60%
焼戻しマルテンサイトは、焼戻し前のマルテンサイトや残留オーステナイトに比べて伸びフランジ性への悪影響が少ないため、λ≧50%の優れた伸びフランジ性を維持しながら高強度化を図る上で有効な第二相である。このような効果を得るには、焼戻しマルテンサイトの面積率を10%以上にする必要がある。しかしながら、焼戻しマルテンサイトの面積率が60%を超えると、TS×El≧19000MPa・%が得られない。したがって、焼戻しマルテンサイトの面積率は10〜60%とする。
Tempered martensite area ratio: 10-60%
Tempered martensite has less adverse effects on stretch flangeability than martensite and retained austenite before tempering, so it is effective in increasing strength while maintaining excellent stretch flangeability of λ ≧ 50%. Two phases. In order to obtain such an effect, the area ratio of tempered martensite needs to be 10% or more. However, when the area ratio of tempered martensite exceeds 60%, TS × El ≧ 19000 MPa ·% cannot be obtained. Therefore, the area ratio of tempered martensite is 10 to 60%.
マルテンサイトと残留オーステナイトと焼戻しマルテンサイトからなる第二相の平均結晶粒径:3μm以下
マルテンサイトと残留オーステナイトと焼戻しマルテンサイトからなる第二相の存在は、耐衝撃特性向上に有効に作用する。特に、この第二相の平均結晶粒径を3μm以下とすると、AE/TS≧0.063を達成できる。したがって、マルテンサイトと残留オーステナイトと焼戻しマルテンサイトからなる第二相の平均結晶粒径は3μm以下とする。
Average grain size of the second phase composed of martensite, retained austenite, and tempered martensite: 3 μm or less The presence of the second phase composed of martensite, retained austenite, and tempered martensite effectively acts to improve impact resistance. In particular, when the average crystal grain size of the second phase is 3 μm or less, AE / TS ≧ 0.063 can be achieved. Therefore, the average crystal grain size of the second phase composed of martensite, retained austenite, and tempered martensite is 3 μm or less.
なお、マルテンサイト、残留オーステナイト、焼戻しマルテンサイト以外の第二相として、パーライトやベイナイトも含むことができるが、上記のフェライト、マルテンサイト、残留オーステナイト、焼戻しマルテンサイトの面積率や第二相の平均結晶粒径が満足されていれば、本発明の目的を達成できる。また、伸びフランジ性の観点から、パーライトの面積率は3%以下であることが望ましい。 In addition, pearlite and bainite can also be included as the second phase other than martensite, retained austenite, and tempered martensite, but the area ratio of the above ferrite, martensite, retained austenite, tempered martensite, and the average of the second phase If the crystal grain size is satisfied, the object of the present invention can be achieved. Further, from the viewpoint of stretch flangeability, the area ratio of pearlite is preferably 3% or less.
ここで、フェライト、マルテンサイト、残留オーステナイト、焼戻しマルテンサイトの面積率とは、観察面積に占める各相の面積の割合のことで、鋼板の板厚断面を研磨後、3%ナイタールで腐食し、板厚1/4の位置をSEM(走査電子顕微鏡)で1000〜3000倍の倍率で観察し、市販の画像処理ソフトを用いて求めた。また、マルテンサイト、残留オーステナイト、焼戻しマルテンサイトからなる第二相の総面積を第二相の総個数で除し、第二相1個当たりの平均面積を求め、その平方根を第二相の平均結晶粒径とした。 Here, the area ratio of ferrite, martensite, retained austenite, and tempered martensite is the ratio of the area of each phase in the observed area, and after corroding the plate thickness section of the steel sheet, it corrodes with 3% nital, The position of the plate thickness 1/4 was observed with a SEM (scanning electron microscope) at a magnification of 1000 to 3000 times, and obtained using commercially available image processing software. Also, the total area of the second phase consisting of martensite, retained austenite, and tempered martensite is divided by the total number of the second phase to obtain the average area per second phase, and the square root is the average of the second phase. The crystal grain size was used.
3) 製造条件
本発明の高強度溶融亜鉛めっき鋼板は、例えば、上記の成分組成を有するスラブを、熱間圧延、冷間圧延を施して冷延鋼板とし、前記冷延鋼板に、500℃〜Ac1変態点の温度域を10℃/s以上の平均昇温速度で昇温し、Ac1変態点〜(Ac3変態点+30℃)の温度域に加熱して10s以上保持した後、10℃/s以上の平均冷却速度で(Ms点-100℃)〜(Ms点-200℃)の温度域に冷却し、350〜600℃の温度域に再加熱して1〜600s保持する条件で焼鈍を施した後、溶融亜鉛めっきを施すことによって製造できる。
3) Production conditions The high-strength hot-dip galvanized steel sheet of the present invention is, for example, a slab having the above component composition, hot-rolled and cold-rolled to obtain a cold-rolled steel sheet. After raising the temperature range of the Ac 1 transformation point at an average temperature increase rate of 10 ° C./s or more, heating to the temperature range of the Ac 1 transformation point to (Ac 3 transformation point + 30 ° C.) and holding for 10 s or more, Conditions for cooling to a temperature range of (Ms point -100 ° C) to (Ms point -200 ° C) at an average cooling rate of 10 ° C / s or more, and reheating to a temperature range of 350 to 600 ° C and holding for 1 to 600 s It can be manufactured by applying hot dip galvanizing after annealing.
焼鈍時の昇温条件:500℃〜Ac1変態点の温度域を10℃/s以上の平均昇温速度で昇温
焼鈍時の昇温速度は、マルテンサイト、残留オーステナイト、焼戻しマルテンサイトからなる第二相の平均結晶粒径を微細にするための重要な条件である。本発明の成分組成を有する鋼では、Ti、Nb、Vの微細炭化物により再結晶が抑制されるが、500℃〜Ac1変態点の温度域を10℃/s以上の平均昇温速度で昇温すると、ほとんど再結晶が起こらずにその後のAc1変態点以上の温度域へ加熱される。そのため、加熱時には未再結晶フェライトのオーステナイト変態が起こり、微細なオーステナイトが生成されるので、冷却、再加熱後の第二相の平均結晶粒径が3μm以下となり、AE/TS≧0.063の優れた耐衝撃特性が得られる。一方、500℃〜Ac1変態点の温度域の平均昇温速度が10℃/s未満では、昇温中の500℃〜Ac1変態点の温度域で再結晶が起こり、再結晶フェライトがある程度粒成長してからオーステナイト変態するため、オーステナイトの微細化が図れず、第二相の平均結晶粒径を3μm以下とすることができなくなる。したがって、500℃〜Ac1変態点の温度域を10℃/s以上、好ましくは20℃/s以上の平均昇温速度で昇温する必要がある。
Temperature rising conditions during annealing: Temperature range from 500 ° C to Ac 1 transformation point at an average temperature rising rate of 10 ° C / s or more The temperature rising rate during temperature rising annealing consists of martensite, retained austenite, and tempered martensite. This is an important condition for reducing the average crystal grain size of the second phase. In the steel having the component composition of the present invention, recrystallization is suppressed by fine carbides of Ti, Nb, and V, but the temperature range from 500 ° C. to Ac 1 transformation point is increased at an average temperature increase rate of 10 ° C./s or more. When heated, it is heated to a temperature range above the subsequent Ac 1 transformation point with almost no recrystallization. Therefore, austenite transformation of unrecrystallized ferrite occurs during heating, and fine austenite is generated, so the average crystal grain size of the second phase after cooling and reheating is 3 μm or less, and excellent AE / TS ≧ 0.063 Impact resistance is obtained. On the other hand, if the average rate of temperature rise in the temperature range from 500 ° C to Ac 1 transformation point is less than 10 ° C / s, recrystallization occurs in the temperature range from 500 ° C to Ac 1 transformation point during temperature rise, and some recrystallized ferrite forms. Since the austenite transformation occurs after the grain growth, the austenite cannot be refined and the average crystal grain size of the second phase cannot be reduced to 3 μm or less. Therefore, it is necessary to raise the temperature range from 500 ° C. to Ac 1 transformation point at an average temperature increase rate of 10 ° C./s or more, preferably 20 ° C./s or more.
焼鈍時の加熱条件:Ac1変態点〜(Ac3変態点+30℃)の温度域に10s以上保持
焼鈍時の加熱温度がAc1変態点未満、あるいは保持時間が10s未満では、オーステナイトの生成が起こらず、あるいは不十分となり、その後の冷却で十分な量のマルテンサイトなどの第二相を確保できなくなる。一方、加熱温度が(Ac3変態点+30℃)を超えると、オーステナイトの粒成長が著しく、オーステナイトの微細化が図れない。また、オーステナイト粒の粒成長により、冷却時のフェライトの生成が抑制され、面積率で20%以上のフェライトが得られなくなる。したがって、焼鈍時の加熱は、Ac1変態点〜(Ac3変態点+30℃)の温度域に10s以上保持の条件で行う必要がある。なお、保持時間は、オーステナイトの粗大化抑制やエネルギーコストの観点から、300s以下とすることが好ましい。
Heating conditions during annealing: When the heating temperature during holding annealing is less than Ac 1 transformation point or holding time is less than 10 s in the temperature range from Ac 1 transformation point to (Ac 3 transformation point + 30 ° C), austenite is generated Does not occur or becomes insufficient, and subsequent cooling cannot secure a sufficient amount of the second phase such as martensite. On the other hand, if the heating temperature exceeds (Ac 3 transformation point + 30 ° C.), the austenite grains grow remarkably and the austenite cannot be refined. Further, the growth of austenite grains suppresses the formation of ferrite during cooling, and ferrite with an area ratio of 20% or more cannot be obtained. Therefore, the heating during annealing needs to be performed under the condition of holding for 10 s or more in the temperature range from the Ac 1 transformation point to (Ac 3 transformation point + 30 ° C.). The holding time is preferably 300 s or less from the viewpoint of suppressing austenite coarsening and energy cost.
焼鈍時の冷却条件:加熱温度から10℃/s以上の平均冷却速度で(Ms点-100℃)〜(Ms点-200℃)の温度域に冷却
加熱後は、加熱温度から10℃/s以上の平均冷却速度で冷却する必要があるが、これは、平均冷却速度が10℃/s未満だと、パーライトが多量に生成し、必要な量の焼戻しマルテンサイト、マルテンサイトおよび残留オーステナイトが得られないためである。冷却速度の上限は、特に規定しないが、鋼板形状が悪化したり、(Ms点-100℃)〜(Ms点-200℃)の冷却停止温度域に冷却を制御することが困難になるため、200℃/s以下とすることが好ましい。冷却の停止温度は、その後の再加熱、溶融亜鉛めっき、めっき相の合金化処理時に生成されるマルテンサイト、残留オーステナイト、焼戻しマルテンサイトの量を制御する本発明で最も重要な条件の一つである。すなわち、冷却停止時にマルテンサイトと未変態オーステナイトの量が決まり、その後の熱処理で、マルテンサイトが焼戻しマルテンサイトになり、未変態オーステナイトがマルテンサイトまたは残留オーステナイトとなって、鋼の強度、TS-Elバランス、伸びフランジ性を左右する。冷却の停止温度が(Ms点-100℃)を超えると、マルテンサイト変態が不十分となり、未変態オーステナイトの量が多くなり、最終的にマルテンサイトと残留オーステナイトの面積率が合計で10%を超え、伸びフランジ性が低下する。一方、冷却の停止温度が(Ms点-200℃)未満では、オーステナイトのほとんどがマルテンサイト変態し、未変態オーステナイトの量が少なくなり、最終的にマルテンサイトと残留オーステナイトの面積率が合計で3%未満となり、TS-Elバランスが劣化する。したがって、焼鈍時の冷却は、加熱温度から10℃/s以上の平均冷却速度で(Ms点-100℃)〜(Ms点-200℃)の温度域に冷却の条件で行う必要がある。
Cooling conditions during annealing: After cooling and heating to a temperature range of (Ms point -100 ° C) to (Ms point -200 ° C) at an average cooling rate of 10 ° C / s or more from the heating temperature, 10 ° C / s from the heating temperature It is necessary to cool at the above average cooling rate. However, if the average cooling rate is less than 10 ° C / s, a large amount of pearlite is generated, and the required amount of tempered martensite, martensite and retained austenite are obtained. It is because it is not possible. The upper limit of the cooling rate is not particularly specified, but it is difficult to control the cooling to the cooling stop temperature range from (Ms point -100 ° C) to (Ms point -200 ° C), although the steel plate shape deteriorates, It is preferable to be 200 ° C./s or less. The cooling stop temperature is one of the most important conditions in the present invention for controlling the amount of martensite, retained austenite, and tempered martensite generated during subsequent reheating, hot dip galvanizing, and alloying treatment of the plating phase. is there. That is, the amount of martensite and untransformed austenite is determined when cooling is stopped, and in the subsequent heat treatment, martensite becomes tempered martensite, untransformed austenite becomes martensite or retained austenite, and the strength of the steel, TS-El It affects the balance and stretch flangeability. When the cooling stop temperature exceeds (Ms point -100 ° C), the martensitic transformation becomes insufficient, the amount of untransformed austenite increases, and finally the area ratio of martensite and residual austenite becomes 10% in total. Exceeding, stretch flangeability is reduced. On the other hand, when the cooling stop temperature is less than (Ms point -200 ° C), most of the austenite undergoes martensitic transformation, the amount of untransformed austenite decreases, and finally the total area ratio of martensite and residual austenite is 3 Less than% and TS-El balance deteriorates. Therefore, cooling during annealing needs to be performed under a cooling condition in a temperature range of (Ms point −100 ° C.) to (Ms point −200 ° C.) at an average cooling rate of 10 ° C./s or more from the heating temperature.
焼鈍時の再加熱条件:350〜600℃の温度域に1〜600s保持
10℃/s以上の平均冷却速度で(Ms点-100℃)〜(Ms点-200℃)の温度域に冷却後は、350〜600℃の温度域で1s以上保持の再加熱を行うことにより、冷却時に生成したマルテンサイトが焼戻されて、面積率で10〜60%の焼戻しマルテンサイトが生成し、優れた伸びフランジ性を維持しながら高強度化を達成できる。再加熱温度が350℃未満あるいは保持時間が1s未満では、焼戻しマルテンサイトの面積率が10%未満となって、伸びフランジ性が劣化する。また、再加熱温度が600℃を超えるあるいは保持時間が600sを超えると、冷却時の生成した未変態オーステナイトがパーライトやベイナイトに変態し、最終的にマルテンサイトと残留オーステナイトの面積率が合計で3%未満となり、TS-Elバランスが劣化する。したがって、焼鈍時の再加熱は、350〜600℃の温度域に1〜600s保持の条件で行う必要がある。
Reheating conditions during annealing: Hold for 1 to 600 s in the temperature range of 350 to 600 ° C
After cooling to the temperature range of (Ms point -100 ° C) to (Ms point -200 ° C) with an average cooling rate of 10 ° C / s or more, reheat the sample for 1s or more in the temperature range of 350 to 600 ° C. Thus, the martensite generated during cooling is tempered to produce tempered martensite with an area ratio of 10 to 60%, and high strength can be achieved while maintaining excellent stretch flangeability. If the reheating temperature is less than 350 ° C. or the holding time is less than 1 s, the area ratio of tempered martensite is less than 10%, and stretch flangeability deteriorates. In addition, when the reheating temperature exceeds 600 ° C. or the holding time exceeds 600 s, the untransformed austenite generated during cooling is transformed into pearlite or bainite, and finally the total area ratio of martensite and residual austenite is 3 Less than% and TS-El balance deteriorates. Therefore, it is necessary to perform reheating at the time of annealing in the temperature range of 350 to 600 ° C. for 1 to 600 s.
その他の製造方法の条件は、特に限定しないが、以下の条件で行うのが好ましい。 The conditions for other production methods are not particularly limited, but the following conditions are preferable.
スラブは、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましいが、造塊法、薄スラブ鋳造法により製造することもできる。スラブを熱間圧延するには、スラブをいったん室温まで冷却し、その後再加熱して熱間圧延を行ってもよいし、スラブを室温まで冷却せずに加熱炉に装入して熱間圧延を行うこともできる。あるいはわずかの保熱を行った後に直ちに熱間圧延する省エネルギープロセスも適用できる。スラブを加熱する場合は、炭化物を溶解させたり、圧延荷重の増大を防止するため、1100℃以上に加熱することが好ましい。また、スケールロスの増大を防止するため、スラブの加熱温度は1300℃以下とすることが好ましい。 The slab is preferably produced by a continuous casting method in order to prevent macro segregation, but can also be produced by an ingot-making method or a thin slab casting method. To hot-roll the slab, the slab may be cooled to room temperature and then re-heated for hot rolling, or the slab may be charged in a heating furnace without being cooled to room temperature. Can also be done. Alternatively, an energy saving process in which hot rolling is performed immediately after performing a slight heat retention can also be applied. When heating the slab, it is preferable to heat to 1100 ° C. or higher in order to dissolve carbides and prevent an increase in rolling load. In order to prevent an increase in scale loss, the heating temperature of the slab is preferably 1300 ° C. or lower.
スラブを熱間圧延する時は、圧延温度の確保の観点から、粗圧延後の粗バーを加熱することもできる。また、粗バー同士を接合し、仕上圧延を連続的に行う、いわゆる連続圧延プロセスを適用できる。仕上圧延は、冷間圧延・焼鈍後の加工性を低下させたり、異方性を増大させる原因となるバンド組織の形成を防ぐために、Ar3変態点以上の仕上温度で行う。また、圧延荷重の低減や形状・材質の均一化のために、仕上圧延の全パスあるいは一部のパスで摩擦係数が0.10〜0.25となる潤滑圧延を行うことが好ましい。 When hot rolling a slab, the rough bar after rough rolling can be heated from the viewpoint of securing the rolling temperature. Moreover, what is called a continuous rolling process which joins rough bars and performs finish rolling continuously can be applied. Finish rolling is performed at a finishing temperature equal to or higher than the Ar 3 transformation point in order to prevent the formation of a band structure that causes a decrease in workability after cold rolling / annealing and an increase in anisotropy. Further, in order to reduce the rolling load and make the shape and material uniform, it is preferable to perform lubrication rolling with a friction coefficient of 0.10 to 0.25 in all passes or a part of the finishing rolling.
熱間圧延後の鋼板は、温度制御や脱炭防止の観点から、450〜700℃の巻取温度で巻取ることが好ましい。 The steel sheet after hot rolling is preferably wound at a winding temperature of 450 to 700 ° C. from the viewpoint of temperature control and prevention of decarburization.
巻取り後の鋼板は、スケールを酸洗などにより除去した後、好ましくは圧下率40%以上で冷間圧延され、上記の条件で焼鈍され、溶融亜鉛めっきが施される。 The steel sheet after winding is removed by scale pickling or the like, then cold-rolled preferably at a rolling reduction of 40% or more, annealed under the above conditions, and hot dip galvanized.
溶融亜鉛めっきは、めっきを合金化しない場合はAl量を0.12〜0.22%含む、あるいはめっきを合金化する場合はAl量を0.08〜0.18%含む440〜500℃のめっき浴中に鋼板を浸漬後、ガスワイピングなどによりめっき付着量を調整して行う。めっきを合金化する場合は、その後、さらに450〜600℃で1〜30秒間の合金化処理を施す。 In hot dip galvanization, if the plating is not alloyed, the amount of Al is 0.12-0.22%, or if the plating is alloyed, the steel plate is immersed in a 440-500 ° C plating bath containing the amount of Al 0.08-0.18%. , Adjust the amount of plating by gas wiping. When alloying the plating, an alloying treatment is further performed at 450 to 600 ° C. for 1 to 30 seconds.
溶融亜鉛めっきを施した後の鋼板、あるいはめっきの合金化処理を施した後の鋼板には、形状矯正や表面粗度の調整などを目的に調質圧延を行うことができる。また、樹脂や油脂コーティングなどの各種塗装処理を施すこともできる。 The steel sheet after the hot dip galvanization or the steel sheet after the alloying treatment of the plating can be subjected to temper rolling for the purpose of shape correction, adjustment of surface roughness, and the like. Moreover, various coating processes, such as resin and oil-fat coating, can also be given.
表1に示す成分組成の鋼A〜Lを転炉により溶製し、連続鋳造法でスラブとした後、仕上温度900℃で板厚3.0mmに熱間圧延を行い、圧延後10℃/sの冷却速度で冷却し、600℃の巻取温度で巻取った。次いで、酸洗後、板厚1.2mmに冷間圧延し、連続溶融亜鉛めっきラインにより、表2に示す焼鈍条件で焼鈍後、460℃のめっき浴中に浸漬し、付着量35〜45g/m2のめっき層を形成し、520℃で合金化処理を行い、冷却速度10℃/秒で冷却し、めっき鋼板1〜30を作製した。なお、表2に示すように、一部のめっき鋼板では、合金化処理を行わなかった。そして、得られためっき鋼板について、上記の方法でフェライト、マルテンサイト、残留オーステナイト、焼戻しマルテンサイトの面積率およびマルテンサイト、残留オーステナイト、焼戻しマルテンサイトからなる第二相の平均結晶粒径を測定した。また、圧延方向と直角方向にJIS5号引張試験片を採取し、JIS Z 2241に準拠して引張試験を行い、TS×Elを求めた。さらに、150mm×150mmの試験片を採取し、JFST 1001(鉄連規格)に準拠して穴拡げ試験を3回行って平均の穴拡げ率λ(%)を求め、伸びフランジ性を評価した。さらにまた、非特許文献1に記載の方法にしたがい、圧延方向と直角方向に平行部の幅5mm、長さ7mmの試験片を採取し、歪速度2000/sで引張試験を行い、測定された応力-真歪曲線を歪量0〜10%の範囲で積分して吸収エネルギーAEを算出し、AE/TSを求めて、耐衝撃特性を評価した。 Steels A to L having the composition shown in Table 1 were melted in a converter and made into a slab by a continuous casting method, and then hot-rolled to a sheet thickness of 3.0 mm at a finishing temperature of 900 ° C. and 10 ° C./s after rolling. And cooled at a winding temperature of 600 ° C. Next, after pickling, it was cold rolled to a plate thickness of 1.2 mm, and after annealing under the annealing conditions shown in Table 2 by a continuous hot dip galvanizing line, it was immersed in a 460 ° C. plating bath, and the adhesion amount was 35 to 45 g / m. 2 plating layers were formed, alloyed at 520 ° C., and cooled at a cooling rate of 10 ° C./sec to prepare plated steel sheets 1 to 30. As shown in Table 2, some of the plated steel sheets were not alloyed. Then, with respect to the obtained plated steel sheet, the area ratio of ferrite, martensite, retained austenite, tempered martensite and the average crystal grain size of the second phase composed of martensite, retained austenite, tempered martensite were measured by the above method. . Further, a JIS No. 5 tensile test piece was taken in a direction perpendicular to the rolling direction, and a tensile test was conducted in accordance with JIS Z 2241 to obtain TS × El. Further, a test piece of 150 mm × 150 mm was collected and subjected to a hole expansion test three times in accordance with JFST 1001 (Iron Standard) to obtain an average hole expansion ratio λ (%), and the stretch flangeability was evaluated. Furthermore, according to the method described in Non-Patent Document 1, a specimen having a width of 5 mm and a length of 7 mm in a direction perpendicular to the rolling direction was taken, and a tensile test was performed at a strain rate of 2000 / s. The absorption energy AE was calculated by integrating the stress-true strain curve in the range of 0 to 10% of strain, AE / TS was obtained, and the impact resistance characteristics were evaluated.
結果を表3、4に示す。本発明例であるめっき鋼板は、いずれもTS×El≧19000MPa・%でTS-Elバランスが高く、穴拡げ率λ≧50%で伸びフランジ性に優れ、AE/TS≧0.063で耐衝撃特性にも優れていることがわかる。 The results are shown in Tables 3 and 4. All of the plated steel sheets according to the present invention have high TS-El balance with TS × El ≧ 19000MPa ·%, excellent stretch flangeability with hole expansion ratio λ ≧ 50%, and impact resistance characteristics with AE / TS ≧ 0.063. It turns out that it is excellent.
Claims (7)
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007277040A JP5256690B2 (en) | 2007-10-25 | 2007-10-25 | High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same |
TW097140611A TWI406966B (en) | 2007-10-25 | 2008-10-23 | High tensile strength galvanized steel sheet excellent in workability and method for manufacturing the same |
EP20168476.8A EP3696292B1 (en) | 2007-10-25 | 2008-10-23 | A high tensile strength galvanized steel sheet with excellent formability and anti-crush properties and method of manufacturing the same |
CA2697226A CA2697226C (en) | 2007-10-25 | 2008-10-23 | High tensile strength galvanized steel sheet excellent in formability and method for manufacturing the same |
US12/682,801 US20100218857A1 (en) | 2007-10-25 | 2008-10-23 | High tensile strength galvanized steel sheet excellent in formability and method for manufacturing the same |
KR1020107006053A KR20100046057A (en) | 2007-10-25 | 2008-10-23 | High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same |
PCT/JP2008/069699 WO2009054539A1 (en) | 2007-10-25 | 2008-10-23 | High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same |
EP08841619.3A EP2202327B1 (en) | 2007-10-25 | 2008-10-23 | Method for manufacturing a high-strength galvanized steel sheet with excellent formability |
KR1020137001334A KR101399741B1 (en) | 2007-10-25 | 2008-10-23 | High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same |
CN200880111198.3A CN101821419B (en) | 2007-10-25 | 2008-10-23 | High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same |
US14/321,989 US9458521B2 (en) | 2007-10-25 | 2014-07-02 | High tensile strength galvanized steel sheets excellent in formability and methods of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007277040A JP5256690B2 (en) | 2007-10-25 | 2007-10-25 | High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009102715A true JP2009102715A (en) | 2009-05-14 |
JP5256690B2 JP5256690B2 (en) | 2013-08-07 |
Family
ID=40704694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007277040A Active JP5256690B2 (en) | 2007-10-25 | 2007-10-25 | High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5256690B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011032543A (en) * | 2009-08-03 | 2011-02-17 | Nippon Steel Corp | High strength steel sheet excellent in workability, and manufacturing method therefor |
JP2011046999A (en) * | 2009-08-27 | 2011-03-10 | Jfe Steel Corp | High-strength hot-dip galvanized steel sheet having excellent workability, and method for producing the same |
WO2011148490A1 (en) * | 2010-05-27 | 2011-12-01 | 住友金属工業株式会社 | Steel sheet, and process for production thereof |
JP2012031462A (en) * | 2010-07-29 | 2012-02-16 | Jfe Steel Corp | High strength hot dip zinc-coated steel sheet excellent in formability and impact resistance, and manufacturing method therefor |
CN103003460A (en) * | 2010-07-15 | 2013-03-27 | 杰富意钢铁株式会社 | High yield ratio high-strength hot-dip galvanized steel sheet with excellent ductility and hole expansion properties, and manufacturing method thereof |
JP2014029021A (en) * | 2012-07-04 | 2014-02-13 | Jfe Steel Corp | Method of producing high strength low yield ratio cold rolled steel sheet |
WO2017126678A1 (en) | 2016-01-22 | 2017-07-27 | Jfeスチール株式会社 | High-strength steel sheet and manufacturing method therefor |
CN111406124A (en) * | 2017-11-29 | 2020-07-10 | 杰富意钢铁株式会社 | High-strength cold-rolled steel sheet and method for producing same |
CN115698359A (en) * | 2020-07-20 | 2023-02-03 | 日本制铁株式会社 | Steel sheet and method for producing same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001192768A (en) * | 1999-11-02 | 2001-07-17 | Kawasaki Steel Corp | High tensile strength hot dip galvanized steel plate and producing method therefor |
JP2004052071A (en) * | 2002-07-23 | 2004-02-19 | Jfe Steel Kk | High tensile strength cold rolled steel sheet with composite structure having excellent stretch flanging property, strength-ductility balance and strain age hardenability, and method of producing the same |
JP2005200690A (en) * | 2004-01-14 | 2005-07-28 | Nippon Steel Corp | Hot dip galvanized high strength steel sheet having excellent plating adhesion and hole expansibility, and its production method |
JP2005307246A (en) * | 2004-04-19 | 2005-11-04 | Nippon Steel Corp | High-tensile-strength steel with composite structure of fine crystal grain |
JP2006104532A (en) * | 2004-10-06 | 2006-04-20 | Nippon Steel Corp | High strength thin steel sheet having excellent elongation and hole expansibility and method for producing the same |
-
2007
- 2007-10-25 JP JP2007277040A patent/JP5256690B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001192768A (en) * | 1999-11-02 | 2001-07-17 | Kawasaki Steel Corp | High tensile strength hot dip galvanized steel plate and producing method therefor |
JP2004052071A (en) * | 2002-07-23 | 2004-02-19 | Jfe Steel Kk | High tensile strength cold rolled steel sheet with composite structure having excellent stretch flanging property, strength-ductility balance and strain age hardenability, and method of producing the same |
JP2005200690A (en) * | 2004-01-14 | 2005-07-28 | Nippon Steel Corp | Hot dip galvanized high strength steel sheet having excellent plating adhesion and hole expansibility, and its production method |
JP2005307246A (en) * | 2004-04-19 | 2005-11-04 | Nippon Steel Corp | High-tensile-strength steel with composite structure of fine crystal grain |
JP2006104532A (en) * | 2004-10-06 | 2006-04-20 | Nippon Steel Corp | High strength thin steel sheet having excellent elongation and hole expansibility and method for producing the same |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011032543A (en) * | 2009-08-03 | 2011-02-17 | Nippon Steel Corp | High strength steel sheet excellent in workability, and manufacturing method therefor |
JP2011046999A (en) * | 2009-08-27 | 2011-03-10 | Jfe Steel Corp | High-strength hot-dip galvanized steel sheet having excellent workability, and method for producing the same |
KR101456772B1 (en) | 2010-05-27 | 2014-10-31 | 신닛테츠스미킨 카부시키카이샤 | Steel sheet, and process for production thereof |
WO2011148490A1 (en) * | 2010-05-27 | 2011-12-01 | 住友金属工業株式会社 | Steel sheet, and process for production thereof |
US10538823B2 (en) | 2010-05-27 | 2020-01-21 | Nippon Steel Corporation | Steel sheet and a method for its manufacture |
JP5252128B2 (en) * | 2010-05-27 | 2013-07-31 | 新日鐵住金株式会社 | Steel sheet and manufacturing method thereof |
CN103003460A (en) * | 2010-07-15 | 2013-03-27 | 杰富意钢铁株式会社 | High yield ratio high-strength hot-dip galvanized steel sheet with excellent ductility and hole expansion properties, and manufacturing method thereof |
CN103003460B (en) * | 2010-07-15 | 2015-08-19 | 杰富意钢铁株式会社 | Ductility and the excellent yield-ratio high-strength hot-dip galvanizing sheet steel of hole expandability and manufacture method thereof |
US10190186B2 (en) | 2010-07-29 | 2019-01-29 | Jfe Steel Corporation | Method for manufacturing a high-strength galvanized steel sheet having excellent formability and crashworthiness |
JP2012031462A (en) * | 2010-07-29 | 2012-02-16 | Jfe Steel Corp | High strength hot dip zinc-coated steel sheet excellent in formability and impact resistance, and manufacturing method therefor |
JP2014029021A (en) * | 2012-07-04 | 2014-02-13 | Jfe Steel Corp | Method of producing high strength low yield ratio cold rolled steel sheet |
WO2017126678A1 (en) | 2016-01-22 | 2017-07-27 | Jfeスチール株式会社 | High-strength steel sheet and manufacturing method therefor |
KR20180095668A (en) | 2016-01-22 | 2018-08-27 | 제이에프이 스틸 가부시키가이샤 | High strength steel sheet and manufacturing method thereof |
US10941476B2 (en) | 2016-01-22 | 2021-03-09 | Jfe Steel Corporation | High strength steel sheet and method for producing the same |
CN111406124A (en) * | 2017-11-29 | 2020-07-10 | 杰富意钢铁株式会社 | High-strength cold-rolled steel sheet and method for producing same |
CN111406124B (en) * | 2017-11-29 | 2021-11-09 | 杰富意钢铁株式会社 | High-strength cold-rolled steel sheet and method for producing same |
US11401569B2 (en) | 2017-11-29 | 2022-08-02 | Jfe Steel Corporation | High-strength cold-rolled steel sheet and method for manufacturing same |
CN115698359A (en) * | 2020-07-20 | 2023-02-03 | 日本制铁株式会社 | Steel sheet and method for producing same |
CN115698359B (en) * | 2020-07-20 | 2024-03-29 | 日本制铁株式会社 | Steel sheet and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP5256690B2 (en) | 2013-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101399741B1 (en) | High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same | |
JP5402007B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
JP6179461B2 (en) | Manufacturing method of high-strength steel sheet | |
JP5493986B2 (en) | High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them | |
JP4737319B2 (en) | High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same | |
JP5821260B2 (en) | High-strength hot-dip galvanized steel sheet excellent in formability and shape freezing property, and method for producing the same | |
US9617614B2 (en) | Method for manufacturing high strength steel sheet having excellent formability | |
JP5333298B2 (en) | Manufacturing method of high-strength steel sheet | |
KR101528080B1 (en) | High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof | |
KR102159872B1 (en) | High-strength steel sheet and its manufacturing method | |
JP5924332B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
WO2012147898A1 (en) | High-strength steel plate with excellent formability and stability of material properties, and method for manufacturing same | |
JP5256690B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same | |
WO2014020640A1 (en) | High-strength hot-dip galvanized steel sheet having excellent moldability and shape fixability, and method for manufacturing same | |
JP2010209392A (en) | High strength hot dip galvanized steel sheet having excellent formability, and method for producing the same | |
JP2010255097A (en) | High-strength hot-dip galvanized steel sheet superior in workability, and manufacturing method therefor | |
WO2011090180A1 (en) | High-strength hot-dip galvanized steel sheet with excellent material stability and processability and process for producing same | |
JP2011168879A (en) | High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and method for producing same | |
JP5141235B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof | |
JP2010001531A (en) | Method for manufacturing low-yield-ratio type high-strength galvannealed steel sheet | |
JP5256689B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
JP6221424B2 (en) | Cold rolled steel sheet and method for producing the same | |
JP5853884B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
JP5141232B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof | |
JP4010132B2 (en) | Composite structure type high-tensile hot-dip galvanized steel sheet excellent in deep drawability and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100823 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130326 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130408 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160502 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5256690 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |