JP2001192768A - High tensile strength hot dip galvanized steel plate and producing method therefor - Google Patents

High tensile strength hot dip galvanized steel plate and producing method therefor

Info

Publication number
JP2001192768A
JP2001192768A JP2000001634A JP2000001634A JP2001192768A JP 2001192768 A JP2001192768 A JP 2001192768A JP 2000001634 A JP2000001634 A JP 2000001634A JP 2000001634 A JP2000001634 A JP 2000001634A JP 2001192768 A JP2001192768 A JP 2001192768A
Authority
JP
Japan
Prior art keywords
steel sheet
hot
less
dip galvanized
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000001634A
Other languages
Japanese (ja)
Other versions
JP3840864B2 (en
Inventor
Takashi Kobayashi
崇 小林
Nobutaka Kurosawa
伸隆 黒澤
Takashi Sakata
坂田  敬
Akitoshi Shinohara
章翁 篠原
Chikako Fujinaga
千香子 藤長
Osamu Furukimi
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000001634A priority Critical patent/JP3840864B2/en
Publication of JP2001192768A publication Critical patent/JP2001192768A/en
Application granted granted Critical
Publication of JP3840864B2 publication Critical patent/JP3840864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high tensile strength hot dip galvanized steel plate having excellent ductility, stretch-flanging properties and fatigue resistance and to provide a method for producing the same. SOLUTION: A steel plate having a composition containing 0.05 to 0.20% C, 0.3 to 1.8% Si, 1.0 to 3.0% Mn and <=0.005% S is subjected to a first stage in which the same is subjected to primary heating treatment in the temperature range of (the Ac3 transformation point -50 deg.C) to (the Ac3 transformation point + 100 deg.C) and is thereafter rapidly cooled to the Ms point or less, a second stage in which the same is subjected to secondary heating treatment in a two phase region and is rapidly cooled to 500 deg.C or less and a third stage in which the same is subjected to hot dip galvanizing treatment and is rapidly cooled to 300 deg.C in succession. In this way, a composite structure containing a low temperature transformed phase inclusive of, by volume, ferrite of 30% or more, tempered martensite of 20% or more, retained austenite of 2% or more and, preferably, martensite of 2 to 5%, and in which the average crystal grain size of ferrite and tempered martensite is 10 μm or less, preferably, the average grain size is 5 μm or less, is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高張力溶融亜鉛め
っき鋼板に係わり、特に連続溶融亜鉛めっきラインで製
造される高張力溶融亜鉛めっき鋼板の延性および伸びフ
ランジ性、あるいはさらに耐疲労特性の向上に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength galvanized steel sheet, and more particularly to an improvement in ductility and stretch flangeability of a high-strength galvanized steel sheet manufactured in a continuous hot-dip galvanizing line, and further improvement in fatigue resistance. About.

【0002】[0002]

【従来の技術】近年、地球環境の保全という観点から、
自動車の燃費改善が要求されている。さらに加えて、衝
突時に乗員を保護するため、自動車車体の安全性向上も
要求されている。このようなことから、自動車車体の軽
量化および自動車車体の強化が積極的に進められてい
る。自動車車体の軽量化と強化を同時に満足させるに
は、部品素材を高強度化することが効果的であると言わ
れており、最近では高張力鋼板が自動車部品に積極的に
使用されている。
2. Description of the Related Art In recent years, from the viewpoint of preserving the global environment,
There is a demand for improved fuel efficiency of automobiles. In addition, in order to protect occupants in the event of a collision, there is a demand for improved safety of the vehicle body. For these reasons, reduction of the weight of the vehicle body and reinforcement of the vehicle body have been actively promoted. It is said that it is effective to increase the strength of the component material in order to satisfy the weight reduction and strengthening of an automobile body at the same time. Recently, high-tensile steel sheets have been actively used for automobile components.

【0003】鋼板を素材とする自動車部品の多くがプレ
ス加工によって成形されるため、自動車部品用鋼板には
優れたプレス成形性が要求される。優れたプレス成形性
を実現するには、第一義的には高い延性を確保すること
が肝要である。また、自動車部品のプレス成形において
は、伸びフランジ変形も多用される。特に、自動車車体
の強度を確保するための骨格部材であるメンバーやリン
フォース等を構成する部品では、伸びフランジ変形を多
用した部品成形が行われることが多い。このため、自動
車部品用鋼板には、優れた延性および伸びフランジ性を
有することが強く求められている。
[0003] Since many automotive parts made of steel sheets are formed by press working, steel sheets for automotive parts are required to have excellent press formability. In order to realize excellent press formability, it is essential to secure high ductility in the first place. Also, in press molding of automobile parts, stretch flange deformation is often used. In particular, in the case of a member constituting a skeletal member for ensuring the strength of an automobile body, a component constituting a reinforcement, or the like, component molding using stretch flange deformation is often performed. For this reason, there is a strong demand for steel sheets for automotive parts to have excellent ductility and stretch flangeability.

【0004】さらに、自動車車体の強度を確保するため
の骨格部材であるメンバーやリンフォース等を構成する
部品では、上記した静的な強度に加えて、さらに優れた
耐疲労特性を有することが必要であり、このため、自動
車部品用鋼板には、耐疲労特性にも優れることが要求さ
れている。
[0004] In addition, the members constituting the skeletal members and the reinforcement for ensuring the strength of the vehicle body need to have more excellent fatigue resistance in addition to the static strength described above. Therefore, steel sheets for automobile parts are required to have excellent fatigue resistance properties.

【0005】一方、自動車部品は、適用部位によっては
高い耐食性も要求される。高い耐食性が要求される部位
に適用される部品の素材には、溶融亜鉛めっき鋼板が好
適である。
On the other hand, high corrosion resistance is required for automotive parts depending on the application site. A hot-dip galvanized steel sheet is suitable for a material of a component applied to a part where high corrosion resistance is required.

【0006】したがって、自動車車体の軽量化および強
化をより一層推進するためには、耐食性に優れ、しかも
延性および伸びフランジ性、さらには耐疲労特性に優れ
る高張力溶融亜鉛めっき鋼板が必要不可欠な素材となっ
ている。
Therefore, in order to further reduce the weight and strengthen the automobile body, a high-strength hot-dip galvanized steel sheet which is excellent in corrosion resistance, ductility, stretch flangeability, and fatigue resistance is indispensable. It has become.

【0007】延性に優れる高張力鋼板としては、フェラ
イトとマルテンサイトの複合組織を有する二相組織鋼板
が代表的である。また、近年では残留オーステナイトに
起因する変態誘起塑性を利用した高延性鋼板も実用化の
段階に至っている。しかし、このような組織強化鋼板
は、硬質なマルテンサイトを主要強化因子としているた
め、局部伸びが低い。このため、伸びフランジ性に劣る
という問題がある。さらに、硬質なマルテンサイト相と
軟質なフェライト相の硬度差に起因して耐疲労特性が劣
化するという問題もある。
As a high-tensile steel sheet having excellent ductility, a dual-phase steel sheet having a composite structure of ferrite and martensite is typical. In recent years, a highly ductile steel sheet utilizing transformation induced plasticity caused by retained austenite has also reached the stage of practical use. However, such a structure strengthened steel sheet has low local elongation because hard martensite is used as a main strengthening factor. Therefore, there is a problem that stretch flangeability is poor. Further, there is a problem that fatigue resistance is deteriorated due to a difference in hardness between the hard martensite phase and the soft ferrite phase.

【0008】また、多くの連続溶融亜鉛めっきライン
は、焼鈍設備とめっき設備を連続化して設置している。
この連続化されためっき工程の存在により、焼鈍後の冷
却はめっき温度で中断され、工程を通じた平均冷却速度
も必然的に小さくなる。したがって、連続溶融亜鉛めっ
きラインで製造される鋼板では、冷却速度の大きい冷却
条件下で生成するマルテンサイトや残留オーステナイト
をめっき後の鋼板中に含有させることは難しい。このた
め、これらの相を有する高張力溶融亜鉛めっき鋼板を連
続溶融亜鉛めっきラインにて製造することは、一般には
困難である。
[0008] Many continuous hot-dip galvanizing lines are provided with continuous annealing equipment and plating equipment.
Due to the continuous plating process, cooling after annealing is interrupted at the plating temperature, and the average cooling rate throughout the process is necessarily reduced. Therefore, in a steel sheet manufactured by a continuous hot-dip galvanizing line, it is difficult to include martensite and residual austenite generated under cooling conditions with a high cooling rate in the steel sheet after plating. For this reason, it is generally difficult to produce a high-strength hot-dip galvanized steel sheet having these phases in a continuous hot-dip galvanizing line.

【0009】伸びフランジ性に優れる高張力鋼板として
は、べイナイトあるいは焼戻マルテンサイトを主体とす
る組織を有する鋼板が提案されている。べイナイトや焼
戻マルテンサイトは、連続溶融亜鉛めっきラインにおけ
る冷却条件においても形成することが比較的容易であ
る。
As a high-tensile steel sheet having excellent stretch flangeability, a steel sheet having a structure mainly composed of bainite or tempered martensite has been proposed. It is relatively easy to form bainite and tempered martensite even under cooling conditions in a continuous galvanizing line.

【0010】例えば、特開平5-179356号公報には、仕上
げ圧延後0.1 〜2sの間に冷却を開始し、50〜200 ℃/s
の冷却速度で450 ℃以下まで冷却し、350 〜450 ℃の温
度で巻き取り、50%以上のベイナイトを含むベイナイト
+フェライト複合組織、あるいはベイナイト単相組織と
して、ついで(Ac1+20℃)〜(Ac1+70℃)の(α+
γ)2相共存温度で加熱均熱したのち、溶融亜鉛めっき
を施し、その後合金化処理し、冷却し、さらに、スキン
パス圧延を行う、伸びフランジ性に優れた高張力合金化
溶融亜鉛めっき鋼板の製造方法が提案されている。
For example, Japanese Patent Application Laid-Open No. Hei 5-179356 discloses that cooling is started between 0.1 and 2 s after finish rolling, and the cooling is started at 50 to 200 ° C./s.
At a cooling rate of 450 ° C. or lower, and wound at a temperature of 350 ° C. to 450 ° C. to form a bainite + ferrite composite structure containing 50% or more bainite or a bainite single phase structure, and then (Ac 1 + 20 ° C.) (Ac 1 + 70 ° C) (α +
γ) After hot-soaking at two-phase coexistence temperature, hot-dip galvanizing is applied, then alloying treatment, cooling, and skin pass rolling are performed. Manufacturing methods have been proposed.

【0011】また、特開平6-93340 号公報には、熱延鋼
板を冷間圧延したのち、再結晶温度以上かつAc1点以上
に加熱保持し、その後溶融亜鉛槽に至るまでの間にMs
点以下の温度に急冷し、鋼板中に部分的あるいは全部分
マルテンサイトを生成させ、ついでMs 点以上の温度で
あって少なくとも溶融亜鉛浴温度および合金化炉温度に
加熱して、焼戻しマルテンサイトを生成させる、伸びフ
ランジ性に優れた高張力合金化溶融亜鉛めっき鋼板の製
造方法が提案されている。
Japanese Patent Application Laid-Open No. 6-93340 discloses that a hot-rolled steel sheet is cold-rolled, heated to a recrystallization temperature or more and kept at one point or more, and then heated to a molten zinc tank.
Quenched to a temperature below the melting point, to generate partially or completely martensite in the steel sheet, and then heated to a temperature not less than the Ms point and at least to the temperature of the molten zinc bath and the temperature of the alloying furnace, to transform the tempered martensite. A method for producing a high-tensile alloyed hot-dip galvanized steel sheet having excellent stretch flangeability has been proposed.

【0012】しかしながら、特開平5-179356号公報や特
開平6-93340 号公報に記載された技術で得られる高張力
溶融亜鉛めっき鋼板は、伸びフランジ性には優れるもの
の、延性の面で十分に満足できるものではなかった。
However, the high-strength hot-dip galvanized steel sheet obtained by the techniques described in JP-A-5-179356 and JP-A-6-93340 has excellent stretch flangeability, but has a sufficient ductility. It was not satisfactory.

【0013】一方、延性および伸びフランジ性の両方に
優れる高張力鋼板の製造方法として、特許第282481号公
報には、所定の化学成分を有する鋼を熱間圧延、冷間圧
延したのち、所定の温度で焼入れ焼戻しして、残留オー
ステナイトを1.0 〜6.0 %含む焼戻マルテンサイトを主
体とする組織を有する鋼板とする、局部伸びに優れる高
強度薄鋼板の製造方法が提案されている。
On the other hand, as a method for producing a high-strength steel sheet excellent in both ductility and stretch flangeability, Japanese Patent No. 282481 discloses that a steel having a predetermined chemical composition is hot-rolled and cold-rolled, There has been proposed a method for producing a high-strength thin steel sheet having excellent local elongation by quenching and tempering at a temperature to obtain a steel sheet having a structure mainly composed of tempered martensite containing retained austenite of 1.0 to 6.0%.

【0014】また、特開平6-322479号公報には、C:0.
06%以下、Mn:0.2 〜3.0 %、Si:1.5 %以下を含有
し、さらにV、Ti、Nbのうちの1種または2種以上を合
計で0.005 〜0.3 %を含み、ミクロ組織の主相をフェラ
イトもしくはベイナイトとし、粒界における鉄炭化物の
占有率が0.1 %以下、鉄炭化物の最大粒子径が1μm 以
下とした、疲労特性と局部変形能に優れた良加工性溶融
めっき高強度鋼板が開示されている。
Japanese Patent Application Laid-Open No. 6-322479 discloses that C: 0.
Not more than 06%, Mn: 0.2-3.0%, Si: 1.5% or less, and further contains one or more of V, Ti, and Nb in a total amount of 0.005-0.3%, and has a main phase of microstructure. Is a high-strength hot-dip galvanized steel sheet with excellent fatigue characteristics and local deformability, in which ferrite or bainite is used, the occupation ratio of iron carbide in grain boundaries is 0.1% or less, and the maximum particle size of iron carbide is 1 μm or less. Have been.

【0015】[0015]

【発明が解決しようとする課題】しかし、特許第282481
号公報に記載された技術によって得られる高張力鋼板の
延性については、未だ不十分な水準にあり、自動車用鋼
板として広く使用される高張力鋼板として十分満足でき
るものではない。また、特許第282481号公報で提案され
ている製造方法は、一般的な連続溶融亜鉛めっきライン
における鋼板の熱履歴とは完全に整合しない。このた
め、特許第282481号公報に記載された製造方法を連続溶
融亜鉛めっきラインに適用することは不可能であり、延
性および伸びフランジ性に優れる高張力溶融亜鉛めっき
鋼板を得ることは困難である。また、特開平6-322479号
公報に記載された鋼板は、疲労特性には優れるものの、
自動車用鋼板として十分な延性を保持していないという
問題があった。
However, Patent No. 282481
The ductility of a high-strength steel sheet obtained by the technique described in the above-mentioned publication is still at an insufficient level, and is not sufficiently satisfactory as a high-tensile steel sheet widely used as a steel sheet for automobiles. Further, the manufacturing method proposed in Japanese Patent No. 282481 does not completely match the thermal history of a steel sheet in a general continuous hot-dip galvanizing line. Therefore, it is impossible to apply the production method described in Japanese Patent No. 282481 to a continuous hot-dip galvanizing line, and it is difficult to obtain a high-strength hot-dip galvanized steel sheet having excellent ductility and stretch flangeability. . Further, although the steel sheet described in JP-A-6-322479 is excellent in fatigue properties,
There is a problem that the steel sheet does not have sufficient ductility as a steel sheet for automobiles.

【0016】本発明は、上記従来技術が抱える問題点を
解決し、自動車部品用素材として好適な、優れた延性お
よび伸びフランジ性、さらには優れた耐疲労特性を有す
る高張力溶融亜鉛めっき鋼板およびその製造方法を提供
することを目的とする。なお、本発明における高張力溶
融亜鉛めっき鋼板は、連続溶融亜鉛めっきラインを利用
して製造されることが望ましい。
The present invention solves the above-mentioned problems of the prior art and provides a high-strength hot-dip galvanized steel sheet having excellent ductility and stretch flangeability and excellent fatigue resistance, which is suitable as a material for automobile parts. It is an object of the present invention to provide a manufacturing method thereof. In addition, it is desirable that the high tension hot-dip galvanized steel sheet in the present invention is manufactured using a continuous hot-dip galvanizing line.

【0017】[0017]

【課題を解決するための手段】まず、本発明者らは、連
続溶融亜鉛めっきラインを用いて上記した課題を解決す
るため、延性および伸びフランジ性におよぼす鋼板の組
成およびミクロ組織の影響について、鋭意研究を重ね
た。その結果、溶融亜鉛めっき処理後に得られる高張力
溶融亜鉛めっき鋼板の組織を、フェライト、焼戻マルテ
ンサイト、残留オーステナイト、低温変態相とからなる
複合組織とし、複合組織中の各相の体積率を所定の比率
とすることにより、優れた延性を発現させることが可能
であることを知見した。また、複合組織の主体となるフ
ェライトおよび焼戻マルテンサイトの結晶粒径を微細化
することにより、高延性に加えて優れた伸びフランジ性
をも獲得させ得ることも見出した。
Means for Solving the Problems First, in order to solve the above-mentioned problems using a continuous hot-dip galvanizing line, the present inventors examined the effects of the composition and microstructure of a steel sheet on ductility and stretch flangeability. We continued our research. As a result, the structure of the high-strength hot-dip galvanized steel sheet obtained after the hot-dip galvanizing process is a composite structure consisting of ferrite, tempered martensite, retained austenite, and a low-temperature transformation phase, and the volume ratio of each phase in the composite structure is It has been found that by setting the ratio to a predetermined ratio, it is possible to express excellent ductility. In addition, they have found that, by reducing the crystal grain size of ferrite and tempered martensite, which are the main components of the composite structure, excellent stretch flangeability as well as high ductility can be obtained.

【0018】さらに、本発明者らは、化学成分を所定の
範囲に調整した鋼板を、まずラス状のマルテンサイトを
含む組織としたうえで、さらに連続溶融亜鉛めっきライ
ンにて所定の条件下で再加熱処理およびめっき処理を施
すことにより、鋼板の組織が、所定の体積率範囲内のフ
ェライト、焼戻マルテンサイト、残留オーステナイト、
低温変態相からなる複合組織となり、かつフェライトと
焼戻マルテンサイトの結晶粒が微細化し、延性および伸
びフランジ性がともに向上した高張力溶融亜鉛めっき鋼
板とすることが可能であるという知見を得た。
Further, the present inventors have made a steel sheet having a chemical composition adjusted to a predetermined range into a structure containing lath-like martensite, and further, under a predetermined condition in a continuous hot-dip galvanizing line. By performing the reheating treatment and the plating treatment, the structure of the steel sheet has a ferrite within a predetermined volume ratio range, tempered martensite, retained austenite,
It has been found that a high-strength hot-dip galvanized steel sheet that has a composite structure composed of a low-temperature transformation phase and has fine grains of ferrite and tempered martensite, and has improved ductility and stretch flangeability can be obtained. .

【0019】また、本発明者らは、Ti、Nb、Vの1種ま
たは2種以上を含有させ、フェライト、焼戻しマルテン
サイトなど各相の結晶粒を平均結晶粒径で5μm 以下と
微細化した場合には、適量のマルテンサイト相の存在が
耐疲労特性を顕著に向上させることを知見した。
Further, the present inventors have incorporated one or more of Ti, Nb and V and refined the crystal grains of each phase such as ferrite and tempered martensite to an average crystal grain size of 5 μm or less. In some cases, it has been found that the presence of an appropriate amount of martensite phase significantly improves fatigue resistance.

【0020】本発明は上記した知見に基づいて構成され
たものである。
The present invention has been made based on the above findings.

【0021】すなわち、第1の本発明は、鋼板表層に溶
融亜鉛めっき層または合金化溶融亜鉛めっき層を有する
溶融亜鉛めっき鋼板であって、前記鋼板が、mass%で、
C:0.05〜0.20%、Si:0.3 〜1.8 %、Mn:1.0 〜3.0
%、S:0.005 %以下を含み、残部Feおよび不可避的不
純物からなる組成と、フェライト、焼戻マルテンサイ
ト、残留オーステナイト、低温変態相からなる複合組織
を有し、かつ、前記フェライトを体積率で30%以上、前
記焼戻マルテンサイトを体積率で20%以上、前記残留オ
ーステナイトを体積率で2%以上含み、さらに、前記フ
ェライトおよび焼戻マルテンサイトの平均結晶粒径が10
μm 以下であることを特徴とする延性および伸びフラン
ジ性に優れる高張力溶融亜鉛めっき鋼板であり、また、
第1の本発明では、前記組成に加え、さらに、次(a
群)〜(d群) (a群):Cr、Mo、Cuのうちの1種または2種以上を合
計で、0.05〜1.0 mass% (b群):B:0.003 mass%以下 (c群):Ca、REM のうちから選ばれた1種または2種
を合計で、0.01mass%以下 (d群):Ti、 Nb 、Vのうちから選ばれた1種または
2種以上を合計で、0.01〜0.2 mass% のうちから選ばれた1群または2群以上を含有してもよ
い。
That is, a first present invention is a hot-dip galvanized steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface of a steel sheet, wherein the steel sheet has a mass%
C: 0.05 to 0.20%, Si: 0.3 to 1.8%, Mn: 1.0 to 3.0
%, S: 0.005% or less, having a composition consisting of the balance of Fe and unavoidable impurities, a composite structure consisting of ferrite, tempered martensite, retained austenite, and a low-temperature transformation phase. 30% or more, 20% or more by volume of the tempered martensite, 2% or more by volume of the retained austenite, and the average grain size of the ferrite and the tempered martensite is 10% or more.
It is a high tensile galvanized steel sheet excellent in ductility and stretch flangeability characterized by being not more than μm,
In the first invention, in addition to the above composition, the following (a)
Groups) to (d) (Group a): 0.05 to 1.0 mass% in total of one or more of Cr, Mo, and Cu (Group b): B: 0.003 mass% or less (Group c) : 0.01 mass% or less in total of one or two selected from Ca and REM (d group): 0.01 or more in total of one or two selected from Ti, Nb and V One or two or more groups selected from the group consisting of -0.2 mass%.

【0022】また、第2の本発明は、mass%で、C:0.
05〜0.20%、Si:0.3 〜1.8 %、Mn:1.0 〜3.0 %、
S:0.005 %以下を含み、残部Feおよび不可避的不純物
からなる組成を有する鋼板に、(Ac3変態点−50℃) 〜
(Ac3変態点+100 ℃)の温度域で5sec 以上保持する
一次加熱処理を施した後、10℃/s以上の冷却速度でM
s 点以下の温度まで冷却する一次工程と、次いで、(Ac1
変態点〜Ac3 変態点) の間の温度域で5〜120sec間保持
する二次加熱処理を施した後、5℃/s以上の冷却速度
で500 ℃以下の温度まで冷却する二次工程と、次いで溶
融亜鉛めっき処理を施し、前記鋼板表層に溶融亜鉛めっ
き層を形成した後、5℃/s以上の冷却速度で300 ℃ま
で冷却する三次工程とを順次施すことを特徴とする延性
および伸びフランジ性に優れる高張力溶融亜鉛めっき鋼
板の製造方法であり、また、第2の本発明では、前記三
次工程が、溶融亜鉛めっき処理を施し前記鋼板表面に溶
融亜鉛めっき層を形成した後、450 ℃〜550 ℃の温度域
まで再加熱して溶融亜鉛めっき層の合金化処理を施し、
該合金化処理後、5 ℃/s以上の冷却速度で300 ℃まで
冷却する工程とするのが好ましく、また、第2の本発明
では、前記組成に加え、さらに、次(a群)〜(d群) (a群):Cr、Mo、Cuのうちの1種または2種以上を合
計で、0.05〜1.0 mass% (b群):B:0.003 mass%以下 (c群):Ca、REM のうちから選ばれた1種または2種
を合計で、0.01mass%以下 (d群):Ti、 Nb 、Vのうちから選ばれた1種または
2種以上を合計で、0.01〜0.2 mass% のうちから選ばれた1群または2群以上を含有してもよ
い。
Further, the present invention provides a method of the present invention, wherein the mass% and the C: 0.
05-0.20%, Si: 0.3-1.8%, Mn: 1.0-3.0%,
S: A steel sheet containing 0.005% or less and having a balance of Fe and unavoidable impurities has a (Ac 3 transformation point of −50 ° C.)
After performing the primary heat treatment for 5 seconds or more in the temperature range of (Ac 3 transformation point + 100 ° C), M is cooled at a cooling rate of 10 ° C / s or more.
a primary step of cooling to a temperature below the s point and then (Ac 1
A second step of performing a secondary heat treatment for 5 to 120 seconds in a temperature range between the transformation point and the Ac 3 transformation point, followed by cooling to a temperature of 500 ° C. or less at a cooling rate of 5 ° C./s or more. A hot-dip galvanizing process, a hot-dip galvanized layer formed on the surface layer of the steel sheet, and a tertiary step of cooling to 300 ° C. at a cooling rate of 5 ° C./s or more, and then sequentially performing a ductility and an elongation. It is a method for producing a high-tensile hot-dip galvanized steel sheet having excellent flangeability, and in the second invention, the tertiary step is performed after hot-dip galvanizing treatment to form a hot-dip galvanized layer on the steel sheet surface. Re-heated to the temperature range of ℃ ~ 550 ℃ to perform alloying treatment of the hot-dip galvanized layer,
After the alloying treatment, it is preferable to perform a step of cooling to 300 ° C. at a cooling rate of 5 ° C./s or more. In the second invention, in addition to the above composition, the following (group a) to (a) d group) (a group): 0.05 to 1.0 mass% in total of one or more of Cr, Mo, and Cu (group b): B: 0.003 mass% or less (group c): Ca, REM 0.01 mass% or less in total of one or two selected from (d group): 0.01 to 0.2 mass% in total of one or more selected from Ti, Nb and V One or two or more groups selected from the above may be contained.

【0023】また、第3の本発明は、鋼板表層に溶融亜
鉛めっき層または合金化溶融亜鉛めっき層を有する溶融
亜鉛めっき鋼板であって、前記鋼板が、mass%で、C:
0.05〜0.20%、Si:0.3 〜1.8 %、Mn:1.0 〜3.0 %、
S:0.005 %以下、Ti、 Nb、Vのうちから選ばれた1
種または2種以上を合計で、0.01〜0.2 %を含み、残部
Feおよび不可避的不純物からなる組成と、フェライト、
焼戻マルテンサイト、残留オーステナイトおよび低温変
態相からなる複合組織を有し、かつ、前記フェライトを
体積率で30%以上、前記焼戻マルテンサイトを体積率で
20%以上、前記残留オーステナイトを体積率で2%以
上、前記低温変態相としてマルテンサイトを体積率で2
〜5%含み、さらに、前記フェライト、焼戻マルテンサ
イト、残留オーステナイトおよび低温変態相の平均結晶
粒径が5μm 以下であることを特徴とする延性、伸びフ
ランジ性および耐疲労特性に優れる高張力溶融亜鉛めっ
き鋼板であり、また、第3の本発明では、前記組成に加
え、さらに、次(a群)〜(c群) (a群):Cr、Mo、Cuのうちの1種または2種以上を合
計で、0.05〜1.0 mass%、(b群):Bを0.003 mass%
以下、(c群):Ca、REM のうちから選ばれた1種また
は2種を合計で、0.01mass%以下のうちから選ばれた1
群または2群以上を含有することが好ましい。
A third invention is a hot-dip galvanized steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface layer of a steel sheet, wherein the steel sheet has a mass% of C:
0.05-0.20%, Si: 0.3-1.8%, Mn: 1.0-3.0%,
S: 0.005% or less, 1 selected from Ti, Nb, and V
Species or two or more species in total, containing 0.01-0.2%, balance
A composition consisting of Fe and unavoidable impurities, ferrite,
It has a composite structure of tempered martensite, retained austenite and a low-temperature transformation phase, and the ferrite has a volume ratio of 30% or more, and the tempered martensite has a volume ratio of
20% or more, 2% or more by volume of the retained austenite, and 2% by volume of martensite as the low-temperature transformation phase.
And high-tensile melting excellent in ductility, stretch flangeability and fatigue resistance, characterized in that the average crystal grain size of the ferrite, tempered martensite, retained austenite and low-temperature transformation phase is 5 μm or less. A galvanized steel sheet, and in the third aspect of the present invention, in addition to the above composition, one or more of the following (Group a) to (Group c) (Group a): Cr, Mo, Cu The total of the above is 0.05 to 1.0 mass%, (group b): 0.003 mass% of B
Hereinafter, (group c): one or two selected from Ca and REM in total are selected from 0.01 mass% or less.
It is preferable to contain a group or two or more groups.

【0024】また、第4の本発明は、mass%で、C:0.
05〜0.20%、Si:0.3 〜1.8 %、Mn:1.0 〜3.0 %、
S:0.005 %以下、Ti、 Nb 、Vのうちから選ばれた1
種または2種以上を合計で、0.01〜0.2 %を含み、残部
Feおよび不可避的不純物からなる組成を有する鋼板に、
(Ac3変態点−30℃) 〜(Ac3変態点+60℃)の温度域
で5〜90s保持する一次加熱処理を施した後、10℃/s
以上の冷却速度でMs 点以下の温度まで冷却する一次工
程と、次いで、(Ac1変態点+30℃〜Ac3 変態点−30℃)
の温度域で5〜90s間保持する二次加熱処理を施した
後、5℃/s以上のの冷却速度で500 ℃以下の温度まで
冷却する二次工程と、次いで溶融亜鉛めっき処理を施
し、前記鋼板表層に溶融亜鉛めっき層を形成した後、5
℃/s以上の冷却速度で300 ℃まで冷却する三次工程と
を順次施すことを特徴とする延性、伸びフランジ性およ
び耐疲労特性に優れる高張力溶融亜鉛めっき鋼板の製造
方法であり、また第4の本発明では、前記三次工程が、
溶融亜鉛めっき処理を施し前記鋼板表層に溶融亜鉛めっ
き層を形成した後、450 ℃〜550 ℃の温度域まで再加熱
して溶融亜鉛めっき層の合金化処理を施し、該合金化処
理後、5℃/s以上の冷却速度で300 ℃まで冷却する工
程であることが好ましく、また、第4の本発明では、前
記組成に加え、さらに、次(a群)〜(c群) (a群):Cr、Mo、Cuのうちの1種または2種以上を合
計で、0.05〜1.0 mass%、(b群):Bを0.003 mass%
以下、(c群):Ca、REM のうちから選ばれた1種また
は2種を合計で、0.01mass%以下のうちから選ばれた1
群または2群以上を含有することが好ましい。
Further, the fourth invention is characterized in that, in mass%, C: 0.
05-0.20%, Si: 0.3-1.8%, Mn: 1.0-3.0%,
S: 0.005% or less, one selected from Ti, Nb, and V
Species or two or more species in total, containing 0.01-0.2%, balance
For steel sheets having a composition consisting of Fe and unavoidable impurities,
(Ac 3 transformation point -30 ° C) After performing primary heat treatment for 5 to 90 seconds in the temperature range of (Ac 3 transformation point + 60 ° C), 10 ° C / s
A primary step of cooling to a temperature below the Ms point at the above cooling rate, and then (Ac 1 transformation point + 30 ° C. to Ac 3 transformation point −30 ° C.)
After performing a secondary heat treatment for 5 to 90 seconds at a temperature range of 5 ° C./s, a secondary step of cooling to a temperature of 500 ° C. or less at a cooling rate of 5 ° C./s or more, and then performing a galvanizing treatment, After forming a hot-dip galvanized layer on the steel sheet surface layer,
And a tertiary step of cooling to 300 ° C. at a cooling rate of not lower than 300 ° C./s, which is a method for producing a high-strength hot-dip galvanized steel sheet having excellent ductility, stretch flangeability and fatigue resistance. In the present invention, the tertiary step comprises:
After performing a hot-dip galvanizing process to form a hot-dip galvanized layer on the surface layer of the steel sheet, re-heating to a temperature range of 450 ° C. to 550 ° C. to perform an alloying process on the hot-dip galvanized layer. Preferably, the process is a step of cooling to 300 ° C. at a cooling rate of not less than 300 ° C./s. In the fourth present invention, in addition to the above composition, the following (group a) to (group c) (group a) : 0.05 to 1.0 mass% in total of one or more of Cr, Mo and Cu, (group b): 0.003 mass% of B
Hereinafter, (group c): one or two selected from Ca and REM in total are selected from 0.01 mass% or less.
It is preferable to contain a group or two or more groups.

【0025】[0025]

【発明の実施の形態】本発明の高張力溶融亜鉛めっき鋼
板は、鋼板表層に溶融亜鉛めっき層または合金化溶融亜
鉛めっき層を有する溶融亜鉛めっき鋼板である。
BEST MODE FOR CARRYING OUT THE INVENTION The high-strength hot-dip galvanized steel sheet of the present invention is a hot-dip galvanized steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface layer of the steel sheet.

【0026】まず、本発明に用いる鋼板の組成限定理由
について説明する。なお、mass%を単に%と記す。
First, the reasons for limiting the composition of the steel sheet used in the present invention will be described. In addition, mass% is simply described as%.

【0027】C:0.05〜0.20% Cは、鋼の高強度化に必須の元素であり、さらに残留オ
ーステナイトや低温変態相の生成に効果があり、不可欠
の元素である。しかし、C含有量が0.05%未満では所望
の高強度化が得られず、一方、O.20%を超えると、溶接
性の劣化を招く。このため、Cは0.05〜0.20%の範囲に
限定した。
C: 0.05 to 0.20% C is an essential element for increasing the strength of steel, and has an effect on generation of retained austenite and a low-temperature transformation phase, and is an essential element. However, if the C content is less than 0.05%, the desired high strength cannot be obtained, while if it exceeds 0.20%, the weldability is degraded. For this reason, C was limited to the range of 0.05 to 0.20%.

【0028】Si:0.3 〜1.8 % Siは、固溶強化により鋼を強化するとともに、オーステ
ナイトを安定化し、残留オーステナイト相の生成を促進
する作用を有する。このような作用は、Si含有量がO.3
%以上で認められる。一方、1.8 %を超えて含有する
と、めっき性が顕著に劣化する。このため、Siは0.3 〜
1.8 %の範囲に限定した。
Si: 0.3 to 1.8% Si has the effect of strengthening steel by solid solution strengthening, stabilizing austenite, and promoting the formation of a retained austenite phase. This effect is due to the Si content of 0.3.
% Or more. On the other hand, when the content exceeds 1.8%, the plating property is remarkably deteriorated. Therefore, Si is 0.3 ~
Limited to the 1.8% range.

【0029】Mn:1.0 〜3.0 % Mnは、固溶強化により鋼を強化するとともに、鋼の焼入
性を向上し、残留オーステナイトや低温変態相の生成を
促進する作用を有する。このような作用は、Mn含有量が
1.0 %以上で認められる。一方、3.0 %を超えて含有し
ても効果が飽和し、含有量に見合う効果が期待できなく
なりコストの上昇を招く。このため、Mnは1.0 〜3.0 %
の範囲に限定した。
Mn: 1.0 to 3.0% Mn has the effect of strengthening the steel by solid solution strengthening, improving the hardenability of the steel, and promoting the generation of retained austenite and low-temperature transformation phase. This effect is due to the Mn content
Approved at 1.0% or more. On the other hand, if the content exceeds 3.0%, the effect saturates and the effect corresponding to the content cannot be expected, resulting in an increase in cost. Therefore, Mn is 1.0-3.0%
Limited to the range.

【0030】S:0.005 %以下 Sは、鋼中にMnS を形成し、鋼板の伸びフランジ性およ
び耐疲労特性を低下させる不純物元素である。このた
め、Sの含有量は0.005 %以下に限定する。
S: not more than 0.005% S is an impurity element that forms MnS in the steel and lowers the stretch flangeability and fatigue resistance of the steel sheet. For this reason, the content of S is limited to 0.005% or less.

【0031】さらに、本発明の鋼板では、必要に応じ
て、上記した化学成分に加え、下記に示す(a群)〜
(d群)のうちの1群または2群以上を含有することが
できる。
Further, in the steel sheet of the present invention, the following (group a) to
One or more of (d) groups can be contained.

【0032】(a群):Cr、Mo、Cuのうちの1種または
2種以上を合計で、0.05〜1.0 % Cr、Mo、Cuは、いずれも鋼の焼入性を向上し、低温変態
相の生成を促進する作用を有する元素である。このよう
な作用は、Cr、Mo、Cuのうちの1種または2種以上を合
計で0.05%以上含有して認められる。一方、Cr、Mo、Cu
のうちの1種または2種以上を合計で1.0 %を超えて含
有しても効果が飽和し、含有量に見合う効果が期待でき
ず、経済的に不利となる。このため、Cr、Mo、Cuのうち
の1種または2種以上は、合計で0.05〜1.0 %の範囲に
限定するのが望ましい。なお、より好ましい範囲はCr、
Mo、Cuのうちの1種または2種以上を合計で0.05〜0.5
%である。
(Group a): One or more of Cr, Mo, and Cu in a total of 0.05 to 1.0% Cr, Mo, and Cu all improve the hardenability of steel and are transformed at low temperatures. It is an element that has the function of promoting the formation of a phase. Such an effect is recognized when one or more of Cr, Mo, and Cu are contained in a total amount of 0.05% or more. On the other hand, Cr, Mo, Cu
Even if one or more of them exceeds 1.0% in total, the effect saturates, an effect corresponding to the content cannot be expected, and it is economically disadvantageous. Therefore, one or more of Cr, Mo, and Cu are desirably limited to a total range of 0.05 to 1.0%. The more preferred range is Cr,
One or two or more of Mo and Cu in a total of 0.05 to 0.5
%.

【0033】(b群):B:0.003 %以下 Bは、鋼の焼入性を向上する作用を有する元素であり、
必要に応じ含有できる。しかし、B含有量が0.003 %を
超えると、効果が飽和するため、Bは0.003 %以下に限
定するのが望ましい。なお、より望ましいは範囲は0.00
1 〜0.002 %である。
(Group b): B: 0.003% or less B is an element having an effect of improving the hardenability of steel,
It can be contained as needed. However, if the B content exceeds 0.003%, the effect is saturated, so it is desirable to limit B to 0.003% or less. Note that a more preferable range is 0.00.
1 to 0.002%.

【0034】(c群):Ca、REM のうちから選ばれた1
種または2種を合計で、0.01%以下 Ca、REM は、硫化物系介在物の形態を制御する作用を有
し、これにより鋼板の伸びフランジ性、および耐疲労特
性を向上させる効果を有する。このような効果はCa、RE
M のうちから選ばれた1種または2種の含有量が合計
で、0.01%を超えると飽和する。このため、Ca、REM の
うちの1種または2種の含有量は、合計で0.01%以下に
限定するのが好ましい。なお、より好ましい範囲は0.00
1 〜0.005%である。
(Group c): 1 selected from Ca and REM
0.01% or less of the total of two or more kinds of Ca and REM have the effect of controlling the form of the sulfide-based inclusions, and thereby have the effect of improving the stretch flangeability and fatigue resistance of the steel sheet. These effects are due to Ca, RE
Saturation occurs when the content of one or two selected from M exceeds 0.01% in total. Therefore, the content of one or two of Ca and REM is preferably limited to 0.01% or less in total. Note that a more preferable range is 0.00.
1 to 0.005%.

【0035】(d群):Ti、 Nb 、Vのうちから選ばれ
た1種または2種以上を合計で、0.01〜0.2 % Ti、Nb、Vは、鋼中で炭窒化物を形成し、これら炭窒化
物による析出強化によりフェライト相を強化し鋼を高強
度化する効果を有するとともに、結晶粒径を微細化する
効果も有しており、必要に応じて含有できる。このよう
な効果は、Ti、Nb、Vのうちから選ばれた1種または2
種以上を合計で、0.01%以上で認められる。一方、合計
で0.2 %を超えて含有しても効果が飽和し、含有量に見
合う効果が期待できず、経済的に不利となる。このた
め、Ti、Nb、Vのうちの1種または2種以上の含有量
は、合計で、0.01〜0.2 %の範囲に限定するのが好まし
い。なお、本発明では、とくに優れた耐疲労特性が要求
される場合には、これら元素は、必須添加とする。
(D group): one or more selected from Ti, Nb and V in a total amount of 0.01 to 0.2% Ti, Nb and V form carbonitrides in steel; Precipitation strengthening by these carbonitrides has the effect of strengthening the ferrite phase and increasing the strength of steel, and has the effect of reducing the crystal grain size, and can be contained as necessary. Such an effect is achieved by selecting one or two selected from Ti, Nb, and V.
More than 0.01% of species or more are found. On the other hand, if the content exceeds 0.2% in total, the effect saturates and the effect corresponding to the content cannot be expected, which is economically disadvantageous. Therefore, the content of one or more of Ti, Nb, and V is preferably limited to a total of 0.01 to 0.2%. In the present invention, when particularly excellent fatigue resistance is required, these elements are essential.

【0036】本発明に用いる鋼板では、上記した化学成
分以外の残部は、Feおよび不可避的不純物からなる。不
可避的不純物としては、Al:0.1 %以下、P:0.05%以
下が許容できる。
In the steel sheet used in the present invention, the balance other than the above chemical components consists of Fe and inevitable impurities. As unavoidable impurities, Al: 0.1% or less and P: 0.05% or less are acceptable.

【0037】さらに、本発明の鋼板は、上記した組成と
(1)フェライト、(2)焼戻マルテンサイト、(3)
残留オーステナイトおよび(4)低温変態相からなる複
合組織を有する鋼板である。これら各相が混在共存する
複合組織となることにより、鋼板の延性向上等の効果が
発現する。なお、本発明における焼戻マルテンサイトと
は、ラス状のマルテンサイトを加熱した際に生成する相
を指す。
Further, the steel sheet of the present invention has the above composition and (1) ferrite, (2) tempered martensite, (3)
It is a steel sheet having a composite structure consisting of retained austenite and (4) a low-temperature transformation phase. By forming a composite structure in which these phases coexist, effects such as improvement in ductility of the steel sheet are exhibited. The tempered martensite in the present invention refers to a phase generated when lath-like martensite is heated.

【0038】(1)フェライト フェライトは、鉄炭化物を含まない軟質な相であり、高
い変形能を有し、鋼板の延性を向上させる。本発明の鋼
板では、このようなフェライトを、体積率で30%以上含
有する。フェライト量が30%未満では、顕著な延性向上
効果が期待できない。このため、複合組織中のフェライ
ト量は30%以上に限定した。なお、フェライト量が70%
を超えると、多相複合組織化による利点が得にくくなる
ため、フェライト量は70%以下とするのが望ましい。
(1) Ferrite Ferrite is a soft phase containing no iron carbide, has a high deformability, and improves the ductility of a steel sheet. The steel sheet of the present invention contains such ferrite in a volume ratio of 30% or more. If the amount of ferrite is less than 30%, a remarkable ductility improving effect cannot be expected. For this reason, the amount of ferrite in the composite structure is limited to 30% or more. The ferrite content is 70%
If it exceeds 50, it is difficult to obtain the advantage of the multi-phase composite structure, so that the amount of ferrite is desirably 70% or less.

【0039】(2)焼戻マルテンサイト 焼戻マルテンサイトは、焼戻前のラス状マルテンサイト
のラス形態を引き継いだ微細な内部構造を有することが
特徴であり、鋼板の伸びフランジ性および耐疲労特性の
向上に有効な相である。また、焼戻マルテンサイトは、
焼戻しによって軟質化しており、十分な塑性変形能を有
するため、鋼板の延性向上にも有効な相である。本発明
の鋼板では、このような焼戻マルテンサイトを、体積率
で20%以上含有する。焼戻マルテンサイト量が20%未満
では、前記した効果が十分に期待できない。このため、
複合組織中の焼戻マルテンサイト量は20%以上に限定し
た。なお、焼戻しマルテンサイト量が60%を超えると、
多相複合組織化による利点が得にくくなるため、焼戻し
マルテンサイト量は60%以下とするのが望ましい。
(2) Tempered martensite Tempered martensite is characterized by having a fine internal structure that inherits the lath form of lath martensite before tempering, and has a stretch flangeability and fatigue resistance of a steel sheet. This is an effective phase for improving characteristics. In addition, tempered martensite
Since it is softened by tempering and has sufficient plastic deformability, it is an effective phase for improving the ductility of a steel sheet. The steel sheet of the present invention contains such tempered martensite in a volume ratio of 20% or more. If the amount of tempered martensite is less than 20%, the above effects cannot be sufficiently expected. For this reason,
The amount of tempered martensite in the composite structure was limited to 20% or more. When the amount of tempered martensite exceeds 60%,
Since it is difficult to obtain the advantage of the multi-phase composite structure, the amount of tempered martensite is desirably 60% or less.

【0040】(3)残留オーステナイト 残留オーステナイトは、加工時にマルテンサイトに歪誘
起変態し、局所的に加えられた加工歪を広く分散させ、
鋼板の延性を向上させる作用を有する。本発明の鋼板で
は、このような残留オーステナイトを、体積率で2%以
上含有する。残留オーステナイト量が2%未満では、顕
著な延性の向上が期待できない。このため、残留オース
テナイト量は2%以上に限定した。また、残留オーステ
ナイト量は、好ましくは5%以上である。なお、残留オ
ーステナイト量は多いほどよいが、実際的には10%以下
である。
(3) Retained austenite Retained austenite undergoes strain-induced transformation to martensite during processing, widely dispersing locally applied processing strain,
It has the effect of improving the ductility of the steel sheet. The steel sheet of the present invention contains such retained austenite in a volume ratio of 2% or more. If the amount of retained austenite is less than 2%, remarkable improvement in ductility cannot be expected. For this reason, the amount of retained austenite was limited to 2% or more. The amount of retained austenite is preferably at least 5%. The larger the amount of retained austenite is, the better, but it is practically 10% or less.

【0041】(4)低温変態相 本発明でいう低温変態相とは、焼き戻しされていないマ
ルテンサイトあるいはべイナイトを指す。
(4) Low-temperature transformation phase The low-temperature transformation phase in the present invention refers to martensite or bainite that has not been tempered.

【0042】マルテンサイト、べイナイトとも硬質相で
あり、組織強化によって鋼板強度を増加させる作用を有
する。また、変態生成時に可動転位の発生を伴うため、
鋼板の降伏比を低下させる作用も有する。なお、前記作
用を十分に得るためには、低温変態相はマルテンサイト
とするのが好適である。マルテンサイトは、変態時に圧
縮の残留応力を発生させ、疲労における初期亀裂の進展
を抑制させる作用も有し、耐疲労特性を向上させる効果
が大きい。この効果は、とくに、マルテンサイトが2〜
5%存在した場合に顕著となる。
Both martensite and bainite are hard phases and have the effect of increasing the strength of the steel sheet by strengthening the structure. In addition, since the generation of transformation involves the occurrence of mobile dislocations,
It also has the effect of lowering the yield ratio of the steel sheet. In order to sufficiently obtain the above-mentioned effects, it is preferable that the low-temperature transformation phase is martensite. Martensite also has the effect of generating compressive residual stress during transformation, suppressing the growth of initial cracks in fatigue, and has a great effect of improving fatigue resistance. This effect is particularly noticeable when martensite
It becomes significant when 5% is present.

【0043】一方、ベイナイトは、変態時に圧縮の残留
応力を発生させる作用は少なく、疲労における初期亀裂
の進展を抑制させる作用は小さい。耐疲労特性の向上と
いう観点からはベイナイトの含有は特段必要としない。
なお、ベイナイトの含有量が30%を超えると、多相複合
組織化による利点が得にくくなるため、ベイナイトは30
%以下とするのが望ましい。
On the other hand, bainite has a small effect of generating residual stress of compression during transformation, and has a small effect of suppressing the growth of initial cracks in fatigue. From the viewpoint of improving the fatigue resistance, the inclusion of bainite is not particularly required.
If the content of bainite exceeds 30%, it becomes difficult to obtain the advantages of the multi-phase composite structure, so that
% Is desirable.

【0044】本発明においては、低温変態相の量はとく
に限定せず、鋼板の強度に応じて適宜配分すればよく、
好ましくは体積率で5〜30%である。なお、優れた耐疲
労特性を要求される場合は、低温変態相として、マルテ
ンサイトを体積率で2〜5%含有するのが好ましい。
In the present invention, the amount of the low-temperature transformation phase is not particularly limited, and may be appropriately distributed according to the strength of the steel sheet.
Preferably, the volume ratio is 5 to 30%. When excellent fatigue resistance is required, it is preferable to contain 2 to 5% by volume of martensite as a low-temperature transformation phase.

【0045】さらに、本発明の鋼板では、上記した複合
組織中のフェライトおよび焼戻マルテンサイトの結晶粒
径を平均粒径で10μm 以下とする。
Further, in the steel sheet of the present invention, the crystal grain size of ferrite and tempered martensite in the above-mentioned composite structure is set to 10 μm or less in average grain size.

【0046】結晶粒径の微細化は鋼板の伸びフランジ
性、および耐疲労特性を向上させる効果を有する。本発
明の鋼板では、複合組織中のフェライトおよび焼戻マル
テンサイトの平均結晶粒径を10μm 以下とする。フェラ
イトおよび焼戻マルテンサイトの平均結晶粒径が10μm
を超えると、伸びフランジ性の顕著な向上作用が期待で
きない。このため、フェライトおよび焼戻マルテンサイ
トの平均結晶粒径は10μm 以下に限定した。
Refinement of the crystal grain size has the effect of improving the stretch flangeability and fatigue resistance of the steel sheet. In the steel sheet of the present invention, the average crystal grain size of ferrite and tempered martensite in the composite structure is set to 10 μm or less. Average grain size of ferrite and tempered martensite is 10μm
If it exceeds 3, a remarkable action of improving the stretch flangeability cannot be expected. For this reason, the average grain size of ferrite and tempered martensite is limited to 10 μm or less.

【0047】なお、本発明鋼板における複合組織では、
上記フェライトおよび焼戻マルテンサイトが主相であ
り、残部は残留オーステナイトおよび低温変態相であ
る。このような残留オーステナイトおよび低温変態相
は、主相であるフェライトおよび焼戻マルテンサイトの
粒間あるいは焼戻マルテンサイト粒内に分散して存在す
る。このため、残留オーステナイトおよび低温変態相の
平均粒径は、主相であるフェライトおよび焼戻マルテン
サイトの平均粒径より小さくなるため、本発明ではとく
に限定しない。
In the composite structure of the steel sheet of the present invention,
The ferrite and tempered martensite are the main phases, and the balance is retained austenite and a low-temperature transformation phase. Such a retained austenite and a low-temperature transformation phase exist in a dispersed state between grains of ferrite and tempered martensite as main phases or in tempered martensite grains. For this reason, the average particle size of the retained austenite and the low-temperature transformation phase is smaller than the average particle size of the ferrite and the tempered martensite, which are the main phases, and is not particularly limited in the present invention.

【0048】なお、とくに優れた耐疲労特性を要求させ
る場合には、各相の平均結晶粒径を5μm 以下に限定す
るのが好ましい。各相の平均結晶粒径が5μm を超える
と、顕著な耐疲労特性の向上が期待できない。このた
め、とくに優れた耐疲労特性を要求される場合には、各
相の平均結晶粒径を5μm 以下とする。
When particularly excellent fatigue resistance is required, the average crystal grain size of each phase is preferably limited to 5 μm or less. If the average crystal grain size of each phase exceeds 5 μm, remarkable improvement in fatigue resistance cannot be expected. Therefore, when particularly excellent fatigue resistance is required, the average crystal grain size of each phase is set to 5 μm or less.

【0049】本発明の高張力溶融亜鉛めっき鋼板は、上
記した組成および上記した複合組織を有する鋼板の表層
に、溶融亜鉛めっき層、または合金化溶融亜鉛めっき層
が形成されためっき鋼板である。めっき層の付着量(目
付量)は、使用部位による耐食性要求により適宜決定す
ればよく、とくに規定されない。自動車部品に使用され
る鋼板では、溶融亜鉛めっき層の付着量は30〜120 g/m2
とするのが好ましい。
The high-strength hot-dip galvanized steel sheet of the present invention is a coated steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer formed on a surface layer of a steel sheet having the above-described composition and the above-described composite structure. The amount of coating (weight per unit area) of the plating layer may be appropriately determined according to the corrosion resistance requirement depending on the use site, and is not particularly specified. For steel sheets used for automotive parts, the coating weight of the hot-dip galvanized layer is 30-120 g / m 2
It is preferred that

【0050】次に、本発明の高張力溶融亜鉛めっき鋼板
の製造方法について説明する。
Next, a method for producing a high-strength galvanized steel sheet according to the present invention will be described.

【0051】まず、上記した組成を有する鋼片を溶製
し、通常の公知の方法で鋳造し、次いで通常の公知の方
法で熱間圧延、あるいはさらに冷間圧延して、鋼板とす
る。また、必要に応じて、酸洗あるいは焼鈍等の工程を
加えることができる。
First, a slab having the above-described composition is melted and cast by an ordinary known method, and then hot-rolled or further cold-rolled by an ordinary known method to obtain a steel sheet. Further, if necessary, a step such as pickling or annealing can be added.

【0052】本発明では、上記した組成を有する鋼板
に、一次加熱処理後冷却しラス状マルテンサイトを含有
する組織とする一次工程()と、次いで連続溶融亜鉛
めっきラインにて二次加熱処理を施し、一次工程で形成
されたマルテンサイトの焼戻しと、三次工程後に残留オ
ーステナイトおよび低温変態相を生成するための鋼板組
織の一部再オーステナイト化を図る二次工程()とを
施し、しかる後亜鉛めっき処理を施し、冷却して残留オ
ーステナイトおよび低温変態相の生成を図る三次工程
()を施し、延性および伸びフランジ性、あるいはさ
らに耐疲労特性に優れる高張力溶融亜鉛めっき鋼板を得
る。
In the present invention, the steel sheet having the above-mentioned composition is subjected to a primary heat treatment followed by cooling to form a structure containing lath martensite, and then a secondary heat treatment in a continuous galvanizing line. Tempering of the martensite formed in the first step, and a second step () for partially re-austenizing the steel sheet structure for generating the retained austenite and the low-temperature transformation phase after the third step, and then performing zinc. A tertiary step (2) is performed to perform a plating treatment and to cool to produce a retained austenite and a low-temperature transformation phase, thereby obtaining a high-strength hot-dip galvanized steel sheet excellent in ductility and stretch flangeability, or even fatigue resistance.

【0053】一次工程 一次工程では、鋼板に(Ac3変態点−50℃)〜(Ac3
態点+100 ℃)の温度域に少なくとも5sec 以上保持す
る一次加熱処理を施した後、Ms 点以下の温度まで10℃
/s以上の冷却速度で鋼板を急冷する。この一次工程に
より、鋼板中にラス状マルテンサイトが生成される。三
次工程後の鋼板中に、フェライト、焼戻マルテンサイ
ト、残留オーステナイト、低温変態相の均一微細な複合
組織を得るためには、一次工程後の鋼板組織を、ラス状
のマルテンサイトを含む組織とすることが必要である。
Primary Step In the primary step, the steel sheet is subjected to a primary heat treatment in which the steel sheet is kept in a temperature range of (Ac 3 transformation point−50 ° C.) to (Ac 3 transformation point + 100 ° C.) for at least 5 seconds, and then subjected to a temperature below the Ms point. Up to 10 ℃
The steel sheet is quenched at a cooling rate of / s or more. By this primary step, lath martensite is generated in the steel sheet. In order to obtain a uniform and fine composite structure of ferrite, tempered martensite, retained austenite, and low-temperature transformation phase in the steel sheet after the tertiary step, the steel sheet structure after the primary step is to be changed to a structure containing lath martensite. It is necessary to.

【0054】一次加熱処理の加熱保持温度が(Ac3変態
点−50℃)未満、あるいは保持時間が5sec 未満では、
加熱保持中に生成するオーステナイト量が少なく、冷却
後に得られるラス状マルテンサイト量が不足する。一
方、一次加熱処理の加熱保持温度が(Ac3変態点+100
℃)を超えると、加熱保持中にオーステナイトの結晶粒
径が粗大化する。このため、三次工程後に得られるフェ
ライトおよび焼戻マルテンサイトの平均結晶粒径が10μ
m 以下とならない。また、保持時間は120 sec 以下とす
るのが好ましい。
If the heating holding temperature of the primary heat treatment is less than (Ac 3 transformation point −50 ° C.) or the holding time is less than 5 seconds,
The amount of austenite generated during heating and holding is small, and the amount of lath martensite obtained after cooling is insufficient. On the other hand, the heating holding temperature of the primary heat treatment is (Ac 3 transformation point + 100
C.), the austenite grain size becomes coarse during heating and holding. Therefore, the average crystal grain size of ferrite and tempered martensite obtained after the third step is 10 μm.
m or less. Further, the holding time is preferably set to 120 sec or less.

【0055】なお、耐疲労特性向上のために、三次工程
後に得られる各相の平均結晶粒径を5μm 以下とするに
は、一次加熱処理の加熱保持温度を(Ac3変態点−30
℃)〜(Ac3変態点+60℃)の範囲とするのが好まし
い。
In order to reduce the average crystal grain size of each phase obtained after the third step to 5 μm or less in order to improve the fatigue resistance, the heating holding temperature of the primary heat treatment is set to (Ac 3 transformation point −30).
° C.) ~ (preferably in the range of Ac 3 transformation point + 60 ° C.).

【0056】また、一次加熱処理後の冷却速度が10℃/
s未満では、冷却後の鋼板組織をラス状マルテンサイト
を含む組織とすることができない。なお、一次加熱処理
後の冷却速度は、鋼板の形状を良好に保つためには100
℃/s以下とするのが望ましい。
The cooling rate after the primary heat treatment was 10 ° C. /
If it is less than s, the steel sheet structure after cooling cannot be a structure containing lath martensite. In addition, the cooling rate after the primary heat treatment is 100 to maintain the shape of the steel sheet well.
C./s or less is desirable.

【0057】なお、めっき母板として、最終圧延が(Ar
3 変態点−50℃)以上の温度で行われた熱延鋼板を使用
する場合には、最終圧延後の冷却時に、Ms点以下の温度
まで10℃/s以上の冷却速度で急冷することにより、こ
の一次工程を代替することができる。
The final rolling of the plating base plate was (Ar
(3 Transformation point -50 ℃) When using a hot-rolled steel sheet performed at a temperature of at least, at the time of cooling after the final rolling, quench at a cooling rate of at least 10 ℃ / s to a temperature below the Ms point. , This primary step can be substituted.

【0058】二次工程 二次工程では、一次工程によりラス状マルテンサイトを
生成させた鋼板に、さらに Ac1変態点〜Ac3 変態点の温
度域で5〜120sec間保持する二次加熱処理を施した後、
5℃/s以上の冷却速度で500 ℃以下の温度まで冷却す
る。この二次工程により、一次工程で形成されたマルテ
ンサイトを焼戻マルテンサイトとするとともに、三次工
程後に残留オーステナイトおよび低温変態相を生成する
ための鋼板組織の一部再オーステナイト化を図る。
Secondary Step In the secondary step, the steel sheet which has produced lath martensite in the primary step is further subjected to a secondary heat treatment for 5 to 120 seconds in a temperature range from Ac 1 transformation point to Ac 3 transformation point. After giving
Cool at a cooling rate of 5 ° C / s or more to a temperature of 500 ° C or less. By this secondary process, the martensite formed in the primary process is turned into tempered martensite, and after the tertiary process, a part of the steel sheet structure for generating residual austenite and a low-temperature transformation phase is re-austenitized.

【0059】二次加熱処理における加熱保持温度がAc1
変態点未満では、オーステナイトが再生成せず、三次工
程後に残留オーステナイトや低温変態相が得られない。
また、保持温度がAc3変態点を超えると、鋼板組織の再
オーステナイト化を招き、焼戻マルテンサイトが消失す
る。また、二次加熱処理における加熱保持時間が5sec
未満ではオーステナイトの再生成が不十分であるため、
三次工程後に十分な量の残留オーステナイトが得られな
い。また、加熱保持時間が120secを超えると、焼戻マル
テンサイトの再オーステナイト化が進行し、必要量の焼
戻マルテンサイトを得ることが困難となる。
The heating holding temperature in the secondary heat treatment is Ac 1
Below the transformation point, austenite is not regenerated, and no residual austenite or low-temperature transformation phase is obtained after the third step.
Further, when the holding temperature exceeds the Ac 3 transformation point, the steel sheet structure is re-austenitized, and tempered martensite disappears. In addition, the heating holding time in the secondary heat treatment is 5 seconds.
If it is less than 1, the regeneration of austenite is insufficient.
A sufficient amount of retained austenite cannot be obtained after the third step. On the other hand, when the heating holding time exceeds 120 seconds, the re-austenitization of tempered martensite proceeds, and it becomes difficult to obtain a required amount of tempered martensite.

【0060】また、二次加熱処理後の500 ℃までの温度
範囲での冷却速度が5℃/s未満では二次加熱処理にて
生成したオーステナイトがフェライトやパーライトに変
態し、残留オーステナイトや低温変態相とならない。な
お、二次加熱処理後の冷却速度は5℃/s以上50℃/s
以下とするのが好ましい。
If the cooling rate in the temperature range up to 500 ° C. after the secondary heat treatment is less than 5 ° C./s, the austenite formed in the secondary heat treatment is transformed into ferrite or pearlite, and the residual austenite or low-temperature transformation Not in phase. The cooling rate after the secondary heat treatment is 5 ° C / s or more and 50 ° C / s.
It is preferable to set the following.

【0061】なお、耐疲労特性向上のため、低温変態相
をとくに2〜5%のマルテンサイトを含む相とするに
は、二次加熱処理を、(Ac1変態点+30℃〜Ac3 変態点−
30℃)の温度域で5〜90s間保持した後、5℃/s以上
の冷却速度で500 ℃以下の温度まで冷却するのが好まし
い。加熱保持温度、冷却速度が上記した範囲を外れる
と、所望の組織を得ることができず、耐疲労特性の顕著
な向上が得られない。
In order to improve the fatigue resistance of the low-temperature transformation phase, especially to a phase containing 2 to 5% martensite, the secondary heat treatment is carried out at (Ac 1 transformation point + 30 ° C. to Ac 3 transformation point). −
After maintaining the temperature for 5 to 90 seconds in a temperature range of 30 ° C.), it is preferable to cool to a temperature of 500 ° C. or less at a cooling rate of 5 ° C./s or more. When the heating holding temperature and the cooling rate are out of the above-mentioned ranges, a desired structure cannot be obtained, and remarkable improvement in fatigue resistance cannot be obtained.

【0062】なお、この二次工程は、焼鈍設備と溶融亜
鉛めっき設備を兼ね備えた連続溶融亜鉛めっきラインで
行うのが好ましい。このような連続溶融亜鉛めっきライ
ンで行うことにより、二次工程後直ちに三次工程に移行
でき、生産性が向上する。
This secondary step is preferably performed in a continuous hot-dip galvanizing line having both annealing equipment and hot-dip galvanizing equipment. By using such a continuous galvanizing line, the process can be shifted to the tertiary process immediately after the secondary process, and the productivity is improved.

【0063】三次工程 三次工程では、二次工程を施された鋼板に溶融亜鉛めっ
きを施し、5 ℃/s以上の冷却速度で300 ℃まで冷却す
る。溶融亜鉛めっき処理は、通常、連続溶融亜鉛めっき
ラインで行われている処理条件でよく、特に限定する必
要はない。しかし、極端に高温でのめっきは必要な残留
オーステナイト量の確保が困難となる。このため、500
℃以下でのめっき処理とするのが好ましい。また、めっ
き処理後の冷却速度が極端に小さいときは、残留オース
テナイト量の確保が困難になる。このため、めっき後か
ら 300℃までの温度範囲における冷却速度は5℃/s以
上に限定するのがよい。なお、好ましくは50℃/s以下
である。また、めっき処理後、必要に応じて目付量調整
のためのワイピングを行ってもよいのはいうまでもな
い。
Tertiary Step In the tertiary step, the steel sheet subjected to the secondary step is subjected to hot dip galvanizing, and cooled to 300 ° C. at a cooling rate of 5 ° C./s or more. The hot-dip galvanizing process may be performed under the processing conditions usually performed in a continuous hot-dip galvanizing line, and there is no particular limitation. However, plating at an extremely high temperature makes it difficult to secure a necessary amount of retained austenite. Therefore, 500
Preferably, the plating treatment is performed at a temperature of not more than ℃. When the cooling rate after the plating treatment is extremely low, it is difficult to secure the amount of retained austenite. Therefore, the cooling rate in a temperature range from after plating to 300 ° C. is preferably limited to 5 ° C./s or more. In addition, it is preferably 50 ° C./s or less. Needless to say, after plating, wiping for adjusting the basis weight may be performed as necessary.

【0064】また、溶融亜鉛めっき処理後、めっき層の
合金化処理を施してもよい。溶融亜鉛めっき層の合金化
処理は、溶融亜鉛めっき処理後、450 〜550 ℃の温度域
まで再加熱して行う。合金化処理後は、5℃/s以上の
冷却速度で300 ℃まで冷却するのが好ましい。高温での
合金化処理は、必要な残留オーステナイト量の確保が困
難となり、鋼板の延性が低下する。このため、合金化処
理温度の上限は550 ℃に限定する。また、合金化処理温
度が450 ℃未満では、合金化の進行が遅く生産性が低下
する。このため、合金化処理温度の下限は450 ℃とする
のが好ましい。また、合金化処理後の冷却速度が極端に
小さい場合には必要な残留オーステナイト量の確保が困
難になる。このため、合金化処理後から300 ℃までの温
度範囲における冷却速度を5℃/s以上に限定するのが
よい。
After the hot-dip galvanizing treatment, an alloying treatment of the plating layer may be performed. The alloying treatment of the hot-dip galvanized layer is performed by reheating to a temperature range of 450 to 550 ° C. after the hot-dip galvanizing treatment. After the alloying treatment, it is preferable to cool to 300 ° C. at a cooling rate of 5 ° C./s or more. In the alloying treatment at a high temperature, it is difficult to secure a necessary amount of retained austenite, and the ductility of the steel sheet is reduced. For this reason, the upper limit of the alloying treatment temperature is limited to 550 ° C. On the other hand, if the alloying temperature is lower than 450 ° C., the progress of alloying is slow and the productivity is reduced. For this reason, the lower limit of the alloying treatment temperature is preferably set to 450 ° C. Further, when the cooling rate after the alloying treatment is extremely low, it becomes difficult to secure a necessary amount of retained austenite. Therefore, the cooling rate in the temperature range from after the alloying treatment to 300 ° C. is preferably limited to 5 ° C./s or more.

【0065】なお、めっき処理後あるいは合金化処理後
の鋼板には、形状矯正、表面粗度等の調整のための調質
圧延を加えてもよい。また、樹脂あるいは油脂コーティ
ング、各種塗装あるいは電気めっき等の処理を施しても
何ら不都合はない。
The steel sheet after plating or alloying may be subjected to temper rolling for shape correction and adjustment of surface roughness. In addition, there is no inconvenience even if a treatment such as resin or oil coating, various kinds of painting or electroplating is performed.

【0066】本発明は、焼鈍設備とめっき設備および合
金化処理設備を連続した溶融亜鉛めっきラインにおい
て、二次工程と三次工程を連続して行うことを前提とし
ているが、各工程を独立した設備で実施することも可能
である。
The present invention is based on the premise that the secondary step and the tertiary step are performed continuously in a hot-dip galvanizing line in which annealing equipment, plating equipment, and alloying treatment equipment are continuous. It is also possible to carry out.

【0067】[0067]

【実施例】(実施例1)表1に示す組成を有する鋼を転
炉にて溶製し、連続鋳造法にて鋳片とした。得られた鋳
片を板厚2.6 mmまで熱間圧延し、次いで酸洗した後、冷
間圧延により板厚1.4 mmの冷延鋼板を得た。なお、表1
に示した化学成分以外の残部はFeおよび不可避的不純物
である。
EXAMPLES Example 1 Steel having the composition shown in Table 1 was melted in a converter and cast into slabs by a continuous casting method. The obtained slab was hot-rolled to a sheet thickness of 2.6 mm, then pickled, and then cold-rolled to obtain a cold-rolled steel sheet having a sheet thickness of 1.4 mm. Table 1
The balance other than the chemical components shown in (1) is Fe and inevitable impurities.

【0068】[0068]

【表1】 [Table 1]

【0069】次いで、これら冷延鋼板に、連続焼鈍ライ
ンにて、表2に示す一次工程条件にて加熱保持した後冷
却する一次工程を施した。一次工程後、鋼板のミクロ組
織調査を行い、ラス状マルテンサイトの量を測定した。
さらに、一次工程を施されたこれら鋼板に、連続溶融亜
鉛めっきラインにて、表2に示す二次工程条件で、加熱
保持した後冷却する二次工程を施した後、引き続き溶融
亜鉛めっき処理を施し、一部については溶融亜鉛めっき
処理後に再加熱する溶融亜鉛めっき層の合金化処理を行
い、次いで冷却する三次工程を施した。
Next, these cold-rolled steel sheets were subjected to a primary step of heating and holding them in a continuous annealing line under the primary step conditions shown in Table 2, followed by cooling. After the primary process, the microstructure of the steel sheet was examined, and the amount of lath martensite was measured.
Further, the steel sheet subjected to the primary step was subjected to a secondary step of heating and holding and then cooling under the secondary step conditions shown in Table 2 in a continuous hot-dip galvanizing line, followed by hot-dip galvanizing treatment. A tertiary step of performing an alloying process on the hot-dip galvanized layer, which is reheated after the hot-dip galvanizing process, and then cooling was performed.

【0070】なお、溶融亜鉛めっき処理は、浴温475 ℃
のめっき槽に鋼板を浸漬して行い、浸漬した鋼板を引き
上げた後、片面当たりの目付量(付着量)が50g/m2とな
るように、ガスワイピングにより目付量を調整した。亜
鉛めっき層の合金化処理を行う場合には、ワイピング処
理の後、10℃/sの加熱速度で500 ℃まで昇温して合金
化処理した。合金化処理時の保持時間は、めっき層中の
鉄含有率が9〜11%となるように調整した。
The hot-dip galvanizing treatment was performed at a bath temperature of 475 ° C.
The steel sheet was immersed in a plating tank of No. 1, and after the immersed steel sheet was pulled up, the weight per unit area (adhesion amount) was adjusted by gas wiping such that the weight per unit area was 50 g / m 2 . When performing the alloying treatment of the galvanized layer, after the wiping treatment, the temperature was increased to 500 ° C. at a heating rate of 10 ° C./s to perform the alloying treatment. The holding time during the alloying treatment was adjusted so that the iron content in the plating layer was 9 to 11%.

【0071】[0071]

【表2】 [Table 2]

【0072】鋼板のミクロ組織は、鋼板の圧延方向断面
を光学顕微鏡あるいは走査型電子顕微鏡にて観察するこ
とにより調査した。鋼板中のラス状マルテンサイト、フ
ェライト、焼戻マルテンサイトの量については、倍率10
00倍の断面組織写真を用いて、画像解析により任意に設
定した100 mm四方の正方形領域内に存在する該当相の占
有面積率を求め、該当相の体積率とした。また、残留オ
ーステナイト量は、鋼板を板厚方向の中心面まで研磨
し、板厚中心面での回析X線強度測定により求めた。入
射X線にはMoK α線を使用し、残留オーステナイト相の
{111 }、{200}、{220 }、{311 }各面の回析X
線強度比を求め、これらの平均値を残留オーステナイト
の体積率とした。
The microstructure of the steel sheet was investigated by observing the cross section in the rolling direction of the steel sheet with an optical microscope or a scanning electron microscope. Regarding the amount of lath martensite, ferrite and tempered martensite in the steel sheet, a magnification of 10
Using the photograph of the cross-sectional structure at a magnification of 00 times, the occupied area ratio of the relevant phase existing in a 100 mm square area arbitrarily set by image analysis was determined and defined as the volume ratio of the relevant phase. The amount of retained austenite was determined by polishing a steel plate to the center in the thickness direction and measuring the diffraction X-ray intensity at the center of the thickness. MoK α-rays are used as incident X-rays, and diffraction X on each of the {111}, {200}, {220}, and {311} faces of the retained austenite phase.
The linear intensity ratio was determined, and the average value was defined as the volume fraction of retained austenite.

【0073】フェライト粒径は、JIS Z0552の規定に準
拠して結晶粒度を測定し、平均結晶粒径に換算した。ま
た、焼戻マルテンサイト粒径も、フェライト粒径と同様
の方法により求めた。
The grain size of the ferrite was determined by measuring the grain size in accordance with the provisions of JIS Z0552 and converting the average grain size. Further, the tempered martensite particle size was determined by the same method as the ferrite particle size.

【0074】鋼板の機械的特性は、引張試験および穴拡
げ試験により調査した。
The mechanical properties of the steel sheet were examined by a tensile test and a hole expanding test.

【0075】引張試験は、鋼板より圧延直角方向に採取
したJIS Z2204に規定のJIS 5号試験片を用いて、JIS
Z2241の規定に準拠して、引張強さ(TS)および破断伸
び(El)を測定した。
The tensile test was carried out by using a JIS No. 5 test piece specified in JIS Z2204 sampled from a steel sheet in a direction perpendicular to the rolling direction.
The tensile strength (TS) and the elongation at break (El) were measured according to the rules of Z2241.

【0076】穴拡げ試験は、日本鉄鋼連盟規格JFS T10
01に準拠して、鋼板に10mmφ(D0)の円穴を打抜き、
打抜き穴を頂角60°の円錐ポンチで押し拡げ、割れが板
厚方向に貫通した直後の穴径Dを求めた。DとD0
ら、λ={(D−D0 )/D0}×100 (%)で定義さ
れる穴拡げ率(λ)を求め、伸びフランジ性の指標とし
た。
The hole expanding test was conducted according to the Japan Iron and Steel Federation standard JFS T10.
According to 01, a circular hole of 10mmφ (D 0 ) is punched into a steel plate,
The punched hole was pushed and expanded with a conical punch having a vertex angle of 60 °, and the hole diameter D immediately after the crack penetrated in the thickness direction was determined. From D and D 0 , the hole expansion ratio (λ) defined by λ = {(D−D 0 ) / D 0 } × 100 (%) was obtained and used as an index of stretch flangeability.

【0077】得られた結果を表3に示す。Table 3 shows the obtained results.

【0078】[0078]

【表3】 [Table 3]

【0079】表3から、本発明例の溶融亜鉛めっき鋼板
は、590 MPa 以上の引張強さ(TS)を有し、強度−伸び
バランス(TS×El)が20000 MPa ・%以上、かつ、強度
−穴拡げ率バランス(TS×λ)が60000 MPa ・%以上
と、延性および伸びフランジ性に優れた高張力溶融亜鉛
めっき鋼板となっている。
As shown in Table 3, the hot-dip galvanized steel sheet according to the present invention has a tensile strength (TS) of 590 MPa or more, a strength-elongation balance (TS × El) of 20,000 MPa ·% or more, and -High tension hot-dip galvanized steel sheet with excellent hole expansion ratio balance (TS × λ) of 60,000 MPa ·% or more and excellent ductility and stretch flangeability.

【0080】一方、本発明の範囲を外れる比較例では、
強度−伸びバランスと強度−穴拡げ率バランスの両方で
ともに高い値を示すものはなく、延性および伸びフラン
ジ性が同時に優れるものはない。
On the other hand, in a comparative example outside the scope of the present invention,
None shows high values in both the strength-elongation balance and the strength-hole expansion ratio balance, and none has excellent ductility and stretch flangeability at the same time.

【0081】鋼板No.2は、一次加熱処理における加熱温
度が低く、冷却後に得られるラス状マルテンサイトが少
なく、めっき処理後の焼戻マルテンサイトおよび残留オ
ーステナイト量が低下して、強度−伸びバランスおよび
強度−穴拡げ率バランスが低下している。
In steel sheet No. 2, the heating temperature in the primary heat treatment was low, the amount of lath martensite obtained after cooling was small, the amount of tempered martensite and residual austenite after plating decreased, and the strength-elongation balance was reduced. And the strength-hole expansion ratio balance is reduced.

【0082】鋼板No.4は、一次加熱処理における加熱温
度が高く、めっき処理後のフェライトおよび焼戻マルテ
ンサイトの粒径が大きくなり、強度−穴拡げ率バランス
が低下している。
In steel sheet No. 4, the heating temperature in the primary heat treatment was high, the grain size of ferrite and tempered martensite after plating became large, and the strength-hole expansion ratio balance was lowered.

【0083】鋼板No.5は、一次加熱処理後の冷却速度が
小さく、冷却後にラス状マルテンサイトが生成しないた
め、めっき処理後に焼戻マルテンサイトおよび残留オー
ステナイトが得られず、強度−伸びバランスおよび強度
−穴拡げ率バランスが低下している。
In steel sheet No. 5, since the cooling rate after the primary heat treatment was low and lath-like martensite was not formed after cooling, tempered martensite and residual austenite were not obtained after plating, and the strength-elongation balance and The strength-hole expansion ratio balance is reduced.

【0084】鋼板No.6は、二次加熱処理における加熱温
度が高すぎため、めっき処理後に焼戻マルテンサイトお
よび残留オーステナイトが得られず、強度−伸びバラン
スおよび強度−穴拡げ率バランスが低下している。
In steel sheet No. 6, since the heating temperature in the secondary heat treatment was too high, tempered martensite and retained austenite were not obtained after the plating treatment, and the strength-elongation balance and the strength-hole expansion ratio balance were reduced. ing.

【0085】鋼板No.7は、二次加熱処理における加熱温
度が低すぎたため、めっき処理後に残留オーステナイト
および低温変態相が得られず、強度−伸びバランスおよ
び強度−穴拡げ率バランスが低下している。
In steel sheet No. 7, since the heating temperature in the secondary heat treatment was too low, no residual austenite and low-temperature transformation phase were obtained after plating, and the strength-elongation balance and the strength-hole expansion ratio balance were reduced. I have.

【0086】鋼板No.13 〜15は、鋼板の組成が本発明範
囲を外れ、焼戻マルテンサイトあるいは残留オーステナ
イトの生成量が少なくなり、強度−伸びバランスおよび
強度−穴拡げ率バランスが低下している。また、鋼板N
o.16 は、鋼板の組成が本発明範囲を外れ、鋼中の硫化
物が多くなり、強度−穴拡げ率バランスが低下してい
る。 (実施例2)表4に示す組成を有する鋼を転炉にて溶製
し、連続鋳造法にて鋳片とした。得られた鋳片を板厚2.
6 mmまで熱間圧延し、次いで酸洗した後、冷間圧延によ
り板厚1.4 mmの冷延鋼板を得た。なお、表4に示した化
学成分以外の残部はFeおよび不可避的不純物である。
In steel sheets Nos. 13 to 15, the composition of the steel sheet was out of the range of the present invention, the amount of tempered martensite or retained austenite was reduced, and the strength-elongation balance and the strength-hole expansion ratio balance were reduced. I have. Also, steel sheet N
In o.16, the composition of the steel sheet was out of the range of the present invention, the sulfide in the steel was increased, and the strength-hole expansion ratio balance was lowered. (Example 2) Steel having a composition shown in Table 4 was melted in a converter and cast into a slab by a continuous casting method. The obtained slab is used for plate thickness 2.
After hot rolling to 6 mm and then pickling, a cold rolled steel sheet having a thickness of 1.4 mm was obtained by cold rolling. The balance other than the chemical components shown in Table 4 is Fe and inevitable impurities.

【0087】[0087]

【表4】 [Table 4]

【0088】次いで、これら冷延鋼板に、連続焼鈍ライ
ンにて、表5に示す一次工程条件にて加熱保持した後冷
却する一次工程を施した。一次工程後、鋼板のミクロ組
織調査を行い、ラス状マルテンサイトの量を測定した。
さらに、一次工程を施されたこれら鋼板に、連続溶融亜
鉛めっきラインにて、表5に示す二次工程条件で、加熱
保持した後冷却する二次工程を施した後、引き続き溶融
亜鉛めっき処理を施し、一部については溶融亜鉛めっき
処理後に再加熱する溶融亜鉛めっき層の合金化処理を行
い、次いで冷却する三次工程を施した。
Next, these cold-rolled steel sheets were subjected to a primary step of heating and holding them in a continuous annealing line under the primary step conditions shown in Table 5, followed by cooling. After the primary process, the microstructure of the steel sheet was examined, and the amount of lath martensite was measured.
Furthermore, these steel sheets subjected to the primary step were subjected to a secondary step of heating and holding and then cooling under a secondary step condition shown in Table 5 in a continuous hot-dip galvanizing line, and subsequently subjected to a hot-dip galvanizing treatment. A tertiary step of performing an alloying process on the hot-dip galvanized layer, which is reheated after the hot-dip galvanizing process, and then cooling was performed.

【0089】なお、溶融亜鉛めっき処理は、浴温475 ℃
のめっき槽に鋼板を浸漬して行い、浸漬した鋼板を引き
上げた後、片面当たりの目付量(付着量)が50g/m2とな
るように、ガスワイピングにより目付量を調整した。亜
鉛めっき層の合金化処理を行う場合には、ワイピング処
理の後、10℃/sの加熱速度で500 ℃まで昇温して合金
化処理した。合金化処理時の保持時間は、めっき層中の
鉄含有率が9〜11%となるように調整した。
The hot-dip galvanizing treatment was performed at a bath temperature of 475 ° C.
The steel sheet was immersed in a plating tank of No. 1, and after the immersed steel sheet was pulled up, the weight per unit area (adhesion amount) was adjusted by gas wiping such that the weight per unit area was 50 g / m 2 . When performing the alloying treatment of the galvanized layer, after the wiping treatment, the temperature was increased to 500 ° C. at a heating rate of 10 ° C./s to perform the alloying treatment. The holding time during the alloying treatment was adjusted so that the iron content in the plating layer was 9 to 11%.

【0090】これら鋼板について、ミクロ組織、機械的
特性、疲労特性を調査した。
The microstructure, mechanical properties and fatigue properties of these steel sheets were investigated.

【0091】[0091]

【表5】 [Table 5]

【0092】鋼板のミクロ組織は、鋼板の圧延方向断面
を光学顕微鏡あるいは走査型電子顕微鏡にて観察するこ
とにより調査した。鋼板中のラス状マルテンサイト、フ
ェライト、焼戻マルテンサイト、低温変態相の量につい
ては、倍率1000倍の断面組織写真を用いて、画像解析に
より任意に設定した100 mm四方の正方形領域内に存在す
る該当相の占有面積率を求め、該当相の体積率とした。
また、残留オーステナイト量は、鋼板を板厚方向の中心
面まで研磨し、板厚中心面での回析X線強度測定により
求めた。入射X線にはMoK α線を使用し、残留オーステ
ナイト相の{111 }、{200 }、{220 }、{311 }各
面の回析X線強度比を求め、これらの平均値を残留オー
ステナイトの体積率とした。
The microstructure of the steel sheet was examined by observing the cross section in the rolling direction of the steel sheet with an optical microscope or a scanning electron microscope. The amount of lath-like martensite, ferrite, tempered martensite, and low-temperature transformation phase in the steel sheet exists in a 100 mm square area arbitrarily set by image analysis using a 1000-fold cross-sectional structure photograph. Then, the occupied area ratio of the relevant phase was determined and defined as the volume ratio of the relevant phase.
The amount of retained austenite was determined by polishing a steel plate to the center in the thickness direction and measuring the diffraction X-ray intensity at the center of the thickness. MoK α-rays were used for the incident X-rays, and the diffracted X-ray intensity ratios of each of the {111}, {200}, {220}, and {311} faces of the retained austenite phase were determined, and the average of these was used as the residual austenite phase. Volume ratio.

【0093】フェライト粒径は、JIS Z 0552の規定に準
拠して結晶粒度を測定し、平均結晶粒径に換算した。ま
た、焼戻マルテンサイト粒径も、フェライト粒径と同様
の方法により求めた。低温変態相の平均粒径は、画像解
析により、各粒の面積から円相当径に換算し、それらの
平均値を用いた。
The grain size of the ferrite was determined by measuring the grain size in accordance with JIS Z 0552 and converting it to the average grain size. Further, the tempered martensite particle size was determined by the same method as the ferrite particle size. The average particle diameter of the low-temperature transformation phase was converted from the area of each particle to an equivalent circle diameter by image analysis, and the average value thereof was used.

【0094】鋼板の機械的特性は、引張試験および穴拡
げ試験により調査した。
The mechanical properties of the steel sheet were examined by a tensile test and a hole expanding test.

【0095】引張試験、穴拡げ試験は、実施例1と同様
とした。
The tensile test and the hole expanding test were the same as in Example 1.

【0096】疲労特性は、JIS Z 2275に準拠した両振り
平面曲げ疲労試験により、疲労限(FL)を測定した。
As for the fatigue characteristics, the fatigue limit (FL) was measured by a double swing plane bending fatigue test in accordance with JIS Z 2275.

【0097】得られた結果を表6に示す。Table 6 shows the obtained results.

【0098】[0098]

【表6】 [Table 6]

【0099】表6から、本発明例の溶融亜鉛めっき鋼板
は、590 MPa 以上の引張強さ(TS)を有し、強度−伸び
バランス(TS×El)が20000 MPa ・%以上、かつ、強度
−穴拡げ率バランス(TS×λ)が60000MPa・%以上と、
延性および伸びフランジ性に優れた高張力溶融亜鉛めっ
き鋼板であり、かつ、耐久比FL/TS が0.5 以上と、耐疲
労特性にも優れた高張力溶融亜鉛めっき鋼板となってい
る。
From Table 6, it is clear that the hot-dip galvanized steel sheet of the present invention has a tensile strength (TS) of 590 MPa or more, a strength-elongation balance (TS × El) of 20,000 MPa ·% or more, and -When the hole expansion ratio balance (TS x λ) is 60,000 MPa ·% or more,
It is a high-strength hot-dip galvanized steel sheet that has excellent ductility and stretch flangeability, and has a durability ratio FL / TS of 0.5 or more and excellent fatigue resistance.

【0100】一方、本発明の範囲を外れる比較例では、
強度−伸びバランス、強度−穴拡げ率バランス、耐久比
がいずれも高い値を示すものはなく、延性、伸びフラン
ジ性、耐疲労特性が同時に優れるものはない。
On the other hand, in a comparative example outside the scope of the present invention,
None of the strength-elongation balance, the strength-hole expansion ratio balance and the durability ratio show high values, and none of them have excellent ductility, stretch flangeability and fatigue resistance at the same time.

【0101】鋼板No.2-2は、一次加熱処理における加熱
温度が低く、冷却後に得られるラス状マルテンサイトが
少なく、めっき処理後の焼戻マルテンサイトおよび残留
オーステナイト量が低下して、強度−伸びバランスおよ
び強度−穴拡げ率バランスが低下している。
The steel sheet No. 2-2 has a low heating temperature in the primary heat treatment, a small amount of lath martensite obtained after cooling, a decrease in the amount of tempered martensite and residual austenite after the plating treatment, and a reduction in strength. Elongation balance and strength-hole expansion ratio balance are reduced.

【0102】鋼板No.2-3は、一次加熱処理後の冷却速度
が小さく、フェライト、焼戻マルテンサイトの平均粒径
が大きくなり、また、残留オーステナイトが得られず、
強度−伸びバランスおよび強度−穴拡げ率バランスが低
下している。
In steel sheet No. 2-3, the cooling rate after the primary heat treatment was low, the average grain size of ferrite and tempered martensite was large, and no retained austenite was obtained.
The strength-elongation balance and the strength-hole expansion ratio balance are reduced.

【0103】鋼板No.2-4は、二次加熱処理における加熱
温度が低すぎるため、めっき処理後に残留オーステナイ
トおよび低温変態相(マルテンサイト)が得られず、強
度−伸びバランスおよび強度−穴拡げ率バランスが低下
している。
In steel sheet No. 2-4, since the heating temperature in the secondary heat treatment was too low, no residual austenite and low-temperature transformation phase (martensite) were obtained after the plating treatment, and the strength-elongation balance and the strength-hole expansion. Rate balance is falling.

【0104】鋼板No.2-6は、一次加熱処理における加熱
温度が高すぎたため、めっき処理後にフェライトおよび
焼戻しマルテンサイトの粒径が大きく、また残留オース
テナイトが得られず、強度−伸びバランスおよび強度−
穴拡げ率バランス、耐久比が低下している。
In steel sheet No. 2-6, since the heating temperature in the primary heat treatment was too high, the grain size of ferrite and tempered martensite was large after the plating treatment, no retained austenite was obtained, and the strength-elongation balance and strength −
The hole expansion ratio balance and durability ratio have decreased.

【0105】鋼板No.2-7は、二次加熱処理における加熱
温度が高すぎたため、めっき処理後に焼戻マルテンサイ
トおよび残留オーステナイトが得られず、強度−伸びバ
ランスおよび強度−穴拡げ率バランスが低下している。
In the steel sheet No. 2-7, tempering martensite and retained austenite were not obtained after the plating treatment because the heating temperature in the secondary heat treatment was too high, and the strength-elongation balance and the strength-hole expansion ratio balance were not improved. Is declining.

【0106】鋼板No.2-12 〜2-14は、鋼板の組成が本発
明範囲を外れ、焼戻マルテンサイトおよび/または残留
オーステナイトの生成量が少なくなり、強度−伸びバラ
ンスおよび強度−穴拡げ率バランスが低下している。
In steel sheets No. 2-12 to No. 2-14, the composition of the steel sheet was out of the range of the present invention, the amount of tempered martensite and / or retained austenite was reduced, and the strength-elongation balance and strength-hole expansion. Rate balance is falling.

【0107】また、鋼板No.2-15 は、鋼板の組成が本発
明範囲を外れ、鋼中の硫化物が多くなり、強度−穴拡げ
率バランス、耐久比が低下している。
[0107] In the steel sheet No. 2-15, the composition of the steel sheet was out of the range of the present invention, the sulfide in the steel was increased, and the strength-hole expansion ratio balance and durability ratio were lowered.

【0108】[0108]

【発明の効果】以上説明したように、本発明によれば、
非常に優れた延性、伸びフランジ性あるいはさらに耐疲
労特性を有し、自動車部品に代表される成形品素材とし
て実に好適な高張力亜鉛めっき鋼板が、安価にしかも安
定して製造でき、産業上格段の効果を奏する。
As described above, according to the present invention,
High tensile strength galvanized steel sheet with extremely excellent ductility, stretch flangeability or even fatigue resistance, which is really suitable as a molded article material represented by automotive parts, can be manufactured stably at low cost, and it is industrially outstanding. Has the effect of

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂田 敬 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 篠原 章翁 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 藤長 千香子 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 古君 修 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4K037 EA02 EA05 EA06 EA09 EA11 EA13 EA15 EA16 EA17 EA19 EA25 EA27 EA28 EA31 EA32 EA36 EB11 FM04 GA05  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Takashi Sakata 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. 1-chome (without address) Kawasaki Steel Corporation Mizushima Works (72) Inventor Chikako Fujinaga 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Corporation Technical Research Institute (72) Inventor Osamu Furukun Chiba Prefecture 1 Kawasaki-cho, Chuo-ku, Chiba F-term (reference) in Kawasaki Steel Engineering Laboratory 4K037 EA02 EA05 EA06 EA09 EA11 EA13 EA15 EA16 EA17 EA19 EA25 EA27 EA28 EA31 EA32 EA36 EB11 FM04 GA05

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 鋼板表層に溶融亜鉛めっき層または合金
化溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板であっ
て、 前記鋼板が、mass%で、 C:0.05〜0.20%、 Si:0.3 〜1.8 %、 Mn:1.0 〜3.0 %、 S:0.005 %以下 を含み、残部Feおよび不可避的不純物からなる組成と、
フェライト、焼戻マルテンサイト、残留オーステナイト
および低温変態相からなる複合組織を有し、かつ、前記
フェライトを体積率で30%以上、前記焼戻マルテンサイ
トを体積率で20%以上、前記残留オーステナイトを体積
率で2%以上含み、さらに、前記フェライトおよび焼戻
マルテンサイトの平均結晶粒径が10μm 以下であること
を特徴とする延性および伸びフランジ性に優れる高張力
溶融亜鉛めっき鋼板。
1. A hot-dip galvanized steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface of a steel sheet, wherein the steel sheet is mass%, C: 0.05 to 0.20%, Si: 0.3 to 1.8%. , Mn: 1.0-3.0%, S: 0.005% or less, the composition comprising balance Fe and unavoidable impurities;
Ferrite, tempered martensite, has a composite structure consisting of retained austenite and low-temperature transformation phase, and the ferrite has a volume fraction of 30% or more, the tempered martensite has a volume fraction of 20% or more, and the retained austenite has a volume fraction of at least 20%. A high-strength hot-dip galvanized steel sheet having excellent ductility and stretch flangeability, comprising a volume fraction of 2% or more, and the ferrite and tempered martensite having an average crystal grain size of 10 μm or less.
【請求項2】 前記組成に加え、さらに、下記(a群)
〜(d群)のうちから選ばれた1群または2群以上を含
有することを特徴とする請求項1に記載の延性および伸
びフランジ性に優れる高張力溶融亜鉛めっき鋼板。 記 (a群):Cr、Mo、Cuのうちの1種または2種以上を合
計で、0.05〜1.0 mass%、 (b群):Bを0.003 mass%以下、 (c群):Ca、REM のうちから選ばれた1種または2種
を合計で、0.01mass%以下 (d群):Ti、 Nb 、Vのうちから選ばれた1種または
2種以上を合計で、0.01〜0.2 mass%、
2. In addition to the above composition, the following (group a)
The high-strength hot-dip galvanized steel sheet having excellent ductility and stretch flangeability according to claim 1, comprising one or more groups selected from (d). Note (Group a): 0.05 to 1.0 mass% of one or more of Cr, Mo, and Cu in total, (Group b): 0.003 mass% or less of B, (Group c): Ca, REM 0.01 mass% or less in total of one or two selected from (d group): 0.01 to 0.2 mass% in total of one or more selected from Ti, Nb and V ,
【請求項3】 鋼板表層に溶融亜鉛めっき層または合金
化溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板であっ
て、 前記鋼板が、mass%で、 C:0.05〜0.20%、 Si:0.3 〜1.8 %、 Mn:1.0 〜3.0 %、 S:0.005 %以下、 Ti、 Nb 、Vのうちから選ばれた1種または2種以上を
合計で、0.01〜0.2 %を含み、残部Feおよび不可避的不
純物からなる組成と、フェライト、焼戻マルテンサイ
ト、残留オーステナイトおよび低温変態相からなる複合
組織を有し、かつ、前記フェライトを体積率で30%以
上、前記焼戻マルテンサイトを体積率で20%以上、前記
残留オーステナイトを体積率で2%以上、前記低温変態
相としてマルテンサイトを体積率で2〜5%含み、さら
に、前記フェライト、焼戻マルテンサイト、残留オース
テナイトおよび低温変態相の平均結晶粒径が5μm 以下
であることを特徴とする延性、伸びフランジ性および耐
疲労特性に優れる高張力溶融亜鉛めっき鋼板。
3. A hot-dip galvanized steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface of a steel sheet, wherein the steel sheet is mass%, C: 0.05 to 0.20%, Si: 0.3 to 1.8%. , Mn: 1.0 to 3.0%, S: 0.005% or less, one or two or more selected from Ti, Nb, V are contained in a total of 0.01 to 0.2%, the balance being Fe and unavoidable impurities. The composition has a composite structure consisting of ferrite, tempered martensite, retained austenite and a low-temperature transformation phase, and the ferrite has a volume fraction of 30% or more, and the tempered martensite has a volume fraction of 20% or more. Contains at least 2% by volume of retained austenite and 2 to 5% by volume of martensite as the low-temperature transformation phase, and further has an average crystal grain size of the ferrite, tempered martensite, retained austenite, and low-temperature transformation phase. High-tensile galvanized steel sheet having excellent ductility, stretch-flange formability and fatigue properties, characterized in that it is 5μm or less.
【請求項4】 前記組成に加え、さらに、下記(a群)
〜(c群)のうちから選ばれた1群または2群以上を含
有することを特徴とする請求項3に記載の延性、伸びフ
ランジ性および耐疲労特性に優れる高張力溶融亜鉛めっ
き鋼板。 記 (a群):Cr、Mo、Cuのうちの1種または2種以上を合
計で、0.05〜1.0 mass%、 (b群):Bを0.003 mass%以下、 (c群):Ca、REM のうちから選ばれた1種または2種
を合計で、0.01mass%以下
4. In addition to the above composition, the following (group a)
The high tensile galvanized steel sheet having excellent ductility, stretch flangeability and fatigue resistance according to claim 3, comprising one or more groups selected from (c). Note (Group a): 0.05 to 1.0 mass% of one or more of Cr, Mo, and Cu in total, (Group b): 0.003 mass% or less of B, (Group c): Ca, REM 0.01 mass% or less in total of one or two selected from
【請求項5】 mass%で、 C:0.05〜0.20%、 Si:0.3 〜1.8 %、 Mn:1.0 〜3.0 %、 S:0.005 %以下 を含み、残部Feおよび不可避的不純物からなる組成を有
する鋼板に、(Ac3変態点−50℃) 〜(Ac3変態点+10
0 ℃)の温度域で5sec 以上保持する一次加熱処理を施
した後、10℃/s以上の冷却速度でMs 点以下の温度ま
で冷却する一次工程と、次いで、(Ac1変態点〜Ac3 変態
点) の温度域で5〜120sec間保持する二次加熱処理を施
した後、5℃/s以上の冷却速度で500 ℃以下の温度ま
で冷却する二次工程と、次いで溶融亜鉛めっき処理を施
し、前記鋼板表層に溶融亜鉛めっき層を形成した後、5
℃/s以上の冷却速度で300 ℃まで冷却する三次工程と
を順次施すことを特徴とする延性および伸びフランジ性
に優れる高張力溶融亜鉛めっき鋼板の製造方法。
5. A steel sheet containing, by mass%, C: 0.05 to 0.20%, Si: 0.3 to 1.8%, Mn: 1.0 to 3.0%, and S: 0.005% or less, with the balance being Fe and unavoidable impurities. In addition, (Ac 3 transformation point -50 ° C) ~ (Ac 3 transformation point + 10
(0 ° C.) in a temperature range of 5 ° C. or more, followed by a primary step of cooling at a cooling rate of 10 ° C./s or more to a temperature below the Ms point, and then (Ac 1 transformation point to Ac 3 (Transformation point) in a temperature range of 5 to 120 seconds, followed by a secondary step of cooling at a cooling rate of 5 ° C./s or more to a temperature of 500 ° C. or less, and then a galvanizing treatment. After forming a hot-dip galvanized layer on the surface layer of the steel sheet,
A method of manufacturing a high tensile galvanized steel sheet having excellent ductility and stretch flangeability, wherein a tertiary step of cooling to 300 ° C. at a cooling rate of not lower than 300 ° C./s is sequentially performed.
【請求項6】 前記三次工程が、溶融亜鉛めっき処理を
施し前記鋼板表層に溶融亜鉛めっき層を形成した後、45
0 ℃〜550 ℃の温度域まで再加熱して溶融亜鉛めっき層
の合金化処理を施し、該合金化処理後、5 ℃/s以上の
冷却速度で300 ℃まで冷却する工程であることを特徴と
する請求項5に記載の延性および伸びフランジ性に優れ
る高張力溶融亜鉛めっき鋼板の製造方法。
6. The tertiary step comprises: performing a hot-dip galvanizing process to form a hot-dip galvanized layer on a surface layer of the steel sheet;
The process is characterized by reheating to a temperature range of 0 ° C to 550 ° C to perform an alloying process on the hot-dip galvanized layer, and then cooling to 300 ° C at a cooling rate of 5 ° C / s or more after the alloying process. The method for producing a high tensile galvanized steel sheet having excellent ductility and stretch flangeability according to claim 5.
【請求項7】 前記組成に加え、さらに、下記(a群)
〜(d群)のうちから選ばれた1群または2群以上を含
有することを特徴とする請求項5または6に記載の延性
および伸びフランジ性に優れる高張力溶融亜鉛めっき鋼
板の製造方法。 記 (a群):Cr、Mo、Cuのうちの1種または2種以上を合
計で、0.05〜1.0 mass%、 (b群):Bを0.003 mass%以下、 (c群):Ca、REM のうちから選ばれた1種または2種
を合計で、0.01mass%以下 (d群):Ti、 Nb 、Vのうちから選ばれた1種または
2種以上を合計で、0.01〜0.2 mass%、
7. In addition to the above composition, the following (group a)
The method for producing a high-strength hot-dip galvanized steel sheet having excellent ductility and stretch flangeability according to claim 5 or 6, comprising one or more groups selected from (d). Note (Group a): 0.05 to 1.0 mass% of one or more of Cr, Mo, and Cu in total, (Group b): 0.003 mass% or less of B, (Group c): Ca, REM 0.01 mass% or less in total of one or two selected from (d group): 0.01 to 0.2 mass% in total of one or more selected from Ti, Nb and V ,
【請求項8】 mass%で、 C:0.05〜0.20%、 Si:0.3 〜1.8 %、 Mn:1.0 〜3.0 %、 S:0.005 %以下、 Ti、 Nb 、Vのうちから選ばれた1種または2種以上を
合計で、0.01〜0.2 %を含み、残部Feおよび不可避的不
純物からなる組成を有する鋼板に、(Ac3変態点−30
℃) 〜(Ac3変態点+60℃)の温度域で5〜90s保持す
る一次加熱処理を施した後、10℃/s以上の冷却速度で
Ms 点以下の温度まで冷却する一次工程と、次いで、(A
c1変態点+30℃〜Ac3 変態点−30℃) の温度域で5〜90
s間保持する二次加熱処理を施した後、5℃/s以上の
冷却速度で500 ℃以下の温度まで冷却する二次工程と、
次いで溶融亜鉛めっき処理を施し、前記鋼板表層に溶融
亜鉛めっき層を形成した後、5℃/s以上の冷却速度で
300 ℃まで冷却する三次工程とを順次施すことを特徴と
する延性、伸びフランジ性および耐疲労特性に優れる高
張力溶融亜鉛めっき鋼板の製造方法。
8. In mass%, C: 0.05 to 0.20%, Si: 0.3 to 1.8%, Mn: 1.0 to 3.0%, S: 0.005% or less, one or more selected from Ti, Nb, and V A steel sheet containing a total of two or more of 0.01 to 0.2% and having a balance of Fe and unavoidable impurities has a (Ac 3 transformation point −30).
℃) ~ (Ac 3 transformation point + 60 ℃) in the temperature range of 5 to 90 s after performing a primary heat treatment, followed by cooling at a cooling rate of 10 ℃ / s to a temperature below the Ms point below the primary step, , (A
c 5 to 90 in the temperature range of 1 transformation point + 30 ° C to Ac 3 transformation point -30 ° C)
a second step of performing a secondary heat treatment for holding for s, and then cooling to a temperature of 500 ° C. or less at a cooling rate of 5 ° C./s or more;
Next, a hot-dip galvanizing treatment is performed to form a hot-dip galvanized layer on the surface layer of the steel sheet, and then at a cooling rate of 5 ° C./s or more.
A method for producing a high-strength hot-dip galvanized steel sheet having excellent ductility, stretch flangeability and fatigue resistance, characterized by sequentially performing a tertiary step of cooling to 300 ° C.
【請求項9】 前記三次工程が、溶融亜鉛めっき処理を
施し前記鋼板表層に溶融亜鉛めっき層を形成した後、45
0 ℃〜550 ℃の温度域まで再加熱して溶融亜鉛めっき層
の合金化処理を施し、該合金化処理後、5℃/s以上の
冷却速度で300 ℃まで冷却する工程であることを特徴と
する請求項8に記載の延性、伸びフランジ性および耐疲
労特性に優れる高張力溶融亜鉛めっき鋼板の製造方法。
9. The method according to claim 9, wherein the tertiary step performs a hot-dip galvanizing process to form a hot-dip galvanized layer on a surface layer of the steel sheet.
The process is characterized by reheating to a temperature range of 0 ° C. to 550 ° C. to perform alloying of the hot-dip galvanized layer, and then cooling to 300 ° C. at a cooling rate of 5 ° C./s or more after the alloying. The method for producing a high-strength hot-dip galvanized steel sheet according to claim 8, which is excellent in ductility, stretch flangeability and fatigue resistance.
【請求項10】 前記組成に加え、さらに、下記(a群)
〜(c群)のうちから選ばれた1群または2群以上を含
有することを特徴とする請求項8または9に記載の、伸
びフランジ性および耐疲労特性に優れる高張力溶融亜鉛
めっき鋼板の製造方法。 記 (a群):Cr、Mo、Cuのうちの1種または2種以上を合
計で、0.05〜1.0 mass%、 (b群):Bを0.003 mass%以下、 (c群):Ca、REM のうちから選ばれた1種または2種
を合計で、0.01mass%以下
10. In addition to the above composition, the following (group a)
A high-strength galvanized steel sheet having excellent stretch flangeability and fatigue resistance according to claim 8 or 9, wherein the high-strength galvanized steel sheet has excellent stretch flangeability and fatigue resistance. Production method. Note (Group a): 0.05 to 1.0 mass% of one or more of Cr, Mo, and Cu in total, (Group b): 0.003 mass% or less of B, (Group c): Ca, REM 0.01 mass% or less in total of one or two selected from
JP2000001634A 1999-11-02 2000-01-07 High-tensile hot-dip galvanized steel sheet and manufacturing method thereof Expired - Fee Related JP3840864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000001634A JP3840864B2 (en) 1999-11-02 2000-01-07 High-tensile hot-dip galvanized steel sheet and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31288199 1999-11-02
JP11-312881 1999-11-02
JP2000001634A JP3840864B2 (en) 1999-11-02 2000-01-07 High-tensile hot-dip galvanized steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001192768A true JP2001192768A (en) 2001-07-17
JP3840864B2 JP3840864B2 (en) 2006-11-01

Family

ID=26567360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000001634A Expired - Fee Related JP3840864B2 (en) 1999-11-02 2000-01-07 High-tensile hot-dip galvanized steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3840864B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078668A1 (en) * 2002-03-18 2003-09-25 Jfe Steel Corporation Process for producing high tensile hot-dip zinc-coated steel sheet of excellent ductility and antifatigue properties
WO2008007785A1 (en) * 2006-07-14 2008-01-17 Kabushiki Kaisha Kobe Seiko Sho High-strength steel sheets and processes for production of the same
WO2008123267A1 (en) * 2007-03-22 2008-10-16 Jfe Steel Corporation High-strength hot dip zinc plated steel sheet having excellent moldability, and method for production thereof
WO2008133062A1 (en) * 2007-04-13 2008-11-06 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
JP2008297609A (en) * 2007-05-31 2008-12-11 Kobe Steel Ltd High-strength steel sheet having excellent elongation and excellent stretch flangeability and process for production of the same
JP2009102715A (en) * 2007-10-25 2009-05-14 Jfe Steel Corp High-strength hot-dip galvanized steel sheet superior in workability and impact resistance, and manufacturing method therefor
JP2009102714A (en) * 2007-10-25 2009-05-14 Jfe Steel Corp High-strength hot-dip galvanized steel sheet superior in workability, and manufacturing method therefor
WO2009096115A1 (en) * 2008-01-31 2009-08-06 Jfe Steel Corporation High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
JP2009263686A (en) * 2008-04-22 2009-11-12 Nippon Steel Corp High strength steel sheet having excellent weldability and stretch flange formability
EP2202327A1 (en) * 2007-10-25 2010-06-30 JFE Steel Corporation High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same
CN101851732A (en) * 2009-03-31 2010-10-06 株式会社神户制钢所 The high strength cold rolled steel plate of excellent in bending workability
JP2010236027A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp High-strength hot dip galvanized steel sheet excellent in formability
EP2267176A1 (en) * 2008-02-08 2010-12-29 JFE Steel Corporation High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
WO2012036269A1 (en) 2010-09-16 2012-03-22 新日本製鐵株式会社 High-strength steel sheet with excellent ductility and stretch flangeability, high-strength galvanized steel sheet, and method for producing both
WO2013005618A1 (en) 2011-07-06 2013-01-10 新日鐵住金株式会社 Cold-rolled steel sheet
WO2013005670A1 (en) 2011-07-06 2013-01-10 新日鐵住金株式会社 Hot-dip plated cold-rolled steel sheet and process for producing same
WO2013005714A1 (en) 2011-07-06 2013-01-10 新日鐵住金株式会社 Method for producing cold-rolled steel sheet
WO2016030010A1 (en) * 2014-08-25 2016-03-03 Tata Steel Ijmuiden B.V. Cold rolled high strength low alloy steel
RU2603762C2 (en) * 2012-08-07 2016-11-27 Ниппон Стил Энд Сумитомо Метал Корпорейшн Galvanized steel sheet for hot forming
EP2258886A4 (en) * 2008-01-31 2017-04-12 JFE Steel Corporation High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
EP3219821A4 (en) * 2015-01-15 2017-11-29 JFE Steel Corporation High-strength hot-dip galvanized steel sheet and production method thereof
US20180057907A1 (en) * 2015-03-27 2018-03-01 Jfe Steel Corporation High-strength steel sheet and production method therefor
KR20190040018A (en) 2016-10-19 2019-04-16 닛폰세이테츠 가부시키가이샤 Plated steel sheet, method of manufacturing hot-dip galvanized steel sheet, and method of producing galvannealed galvanized steel sheet
KR20200122382A (en) 2018-03-30 2020-10-27 닛폰세이테츠 가부시키가이샤 Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
US10907232B2 (en) 2014-07-03 2021-02-02 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
US10954580B2 (en) 2015-12-21 2021-03-23 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet
CN115698359A (en) * 2020-07-20 2023-02-03 日本制铁株式会社 Steel sheet and method for producing same
EP4074857A4 (en) * 2020-01-31 2023-05-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Galvanized steel sheet for hot stamping, hot stamped part, and method for producing hot-stamped part

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078668A1 (en) * 2002-03-18 2003-09-25 Jfe Steel Corporation Process for producing high tensile hot-dip zinc-coated steel sheet of excellent ductility and antifatigue properties
KR101082680B1 (en) * 2006-07-14 2011-11-15 가부시키가이샤 고베 세이코쇼 High-strength steel sheets and processes for production of the same
WO2008007785A1 (en) * 2006-07-14 2008-01-17 Kabushiki Kaisha Kobe Seiko Sho High-strength steel sheets and processes for production of the same
EP2465961A1 (en) * 2006-07-14 2012-06-20 Kabushiki Kaisha Kobe Seiko Sho High-strength steel sheets and processes for production of the same
WO2008123267A1 (en) * 2007-03-22 2008-10-16 Jfe Steel Corporation High-strength hot dip zinc plated steel sheet having excellent moldability, and method for production thereof
JP2008266778A (en) * 2007-03-22 2008-11-06 Jfe Steel Kk High-strength hot dip zinc-plated steel sheet having excellent moldability, and method for production thereof
US8241759B2 (en) 2007-03-22 2012-08-14 Jfe Steel Corporation Zinc-plated high-tension steel sheet excellent in press formability
KR101132993B1 (en) 2007-03-22 2012-04-09 제이에프이 스틸 가부시키가이샤 High-strength hot dip zinc plated steel sheet having excellent moldability, and method for production thereof
WO2008133062A1 (en) * 2007-04-13 2008-11-06 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for producing the same
JP2008280608A (en) * 2007-04-13 2008-11-20 Jfe Steel Kk High-strength hot-dip galvanized steel sheet excellent in workability and weldability, and its manufacturing method
US8389128B2 (en) 2007-04-13 2013-03-05 Jfe Steel Corporation High tensile-strength galvanized steel sheet and process for manufacturing high tensile-strength galvanized steel sheet
JP2008297609A (en) * 2007-05-31 2008-12-11 Kobe Steel Ltd High-strength steel sheet having excellent elongation and excellent stretch flangeability and process for production of the same
TWI406966B (en) * 2007-10-25 2013-09-01 Jfe Steel Corp High tensile strength galvanized steel sheet excellent in workability and method for manufacturing the same
JP2009102715A (en) * 2007-10-25 2009-05-14 Jfe Steel Corp High-strength hot-dip galvanized steel sheet superior in workability and impact resistance, and manufacturing method therefor
JP2009102714A (en) * 2007-10-25 2009-05-14 Jfe Steel Corp High-strength hot-dip galvanized steel sheet superior in workability, and manufacturing method therefor
EP2202327A4 (en) * 2007-10-25 2017-09-06 JFE Steel Corporation High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same
EP3696292A1 (en) * 2007-10-25 2020-08-19 JFE Steel Corporation A high tensile strength galvanized steel sheet with excellent formability and anti-crush properties and method of manufacturing the same
EP2202327A1 (en) * 2007-10-25 2010-06-30 JFE Steel Corporation High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same
WO2009096115A1 (en) * 2008-01-31 2009-08-06 Jfe Steel Corporation High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
EP2233597A4 (en) * 2008-01-31 2015-05-27 Jfe Steel Corp High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
KR101528080B1 (en) * 2008-01-31 2015-06-10 제이에프이 스틸 가부시키가이샤 High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
EP2258886A4 (en) * 2008-01-31 2017-04-12 JFE Steel Corporation High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
TWI495734B (en) * 2008-01-31 2015-08-11 Jfe Steel Corp Method for manufacturing high strength galvanized steel sheet excellent in formability
US8815026B2 (en) 2008-01-31 2014-08-26 Jfe Steel Corporation High strength galvanized steel sheet excellent in formability
US9011614B2 (en) 2008-02-08 2015-04-21 Jfe Steel Corporation High-strength galvanized steel sheet with excellent formability and method for manufacturing the same
EP2267176A1 (en) * 2008-02-08 2010-12-29 JFE Steel Corporation High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
EP2267176A4 (en) * 2008-02-08 2013-12-25 Jfe Steel Corp High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
JP2009263686A (en) * 2008-04-22 2009-11-12 Nippon Steel Corp High strength steel sheet having excellent weldability and stretch flange formability
JP2010236027A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp High-strength hot dip galvanized steel sheet excellent in formability
CN101851732A (en) * 2009-03-31 2010-10-06 株式会社神户制钢所 The high strength cold rolled steel plate of excellent in bending workability
US9139885B2 (en) 2010-09-16 2015-09-22 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet and high-strength zinc-coated steel sheet which have excellent ductility and stretch-flangeability and manufacturing method thereof
EP3034644A1 (en) 2010-09-16 2016-06-22 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet and high-strength zinc-coated steel sheet which have excellent ductility and stretch-flangeability and manufacturing method thereof
WO2012036269A1 (en) 2010-09-16 2012-03-22 新日本製鐵株式会社 High-strength steel sheet with excellent ductility and stretch flangeability, high-strength galvanized steel sheet, and method for producing both
KR20140033227A (en) 2011-07-06 2014-03-17 신닛테츠스미킨 카부시키카이샤 Hot-dip plated cold-rolled steel sheet and process for producing same
US10174392B2 (en) 2011-07-06 2019-01-08 Nippon Steel & Sumitomo Metal Corporation Method for producing cold-rolled steel sheet
KR20140033226A (en) 2011-07-06 2014-03-17 신닛테츠스미킨 카부시키카이샤 Method for producing cold-rolled steel sheet
KR20140030335A (en) 2011-07-06 2014-03-11 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel sheet
WO2013005618A1 (en) 2011-07-06 2013-01-10 新日鐵住金株式会社 Cold-rolled steel sheet
US9523139B2 (en) 2011-07-06 2016-12-20 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet
WO2013005714A1 (en) 2011-07-06 2013-01-10 新日鐵住金株式会社 Method for producing cold-rolled steel sheet
WO2013005670A1 (en) 2011-07-06 2013-01-10 新日鐵住金株式会社 Hot-dip plated cold-rolled steel sheet and process for producing same
EP2730671B1 (en) 2011-07-06 2017-11-01 Nippon Steel & Sumitomo Metal Corporation Hot-dip plated cold-rolled steel sheet and process for producing same
US10774412B2 (en) 2011-07-06 2020-09-15 Nippon Steel Corporation Hot-dip galvanized cold-rolled steel sheet and process for producing same
RU2603762C2 (en) * 2012-08-07 2016-11-27 Ниппон Стил Энд Сумитомо Метал Корпорейшн Galvanized steel sheet for hot forming
US10907232B2 (en) 2014-07-03 2021-02-02 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
US11718888B2 (en) 2014-07-03 2023-08-08 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
WO2016030010A1 (en) * 2014-08-25 2016-03-03 Tata Steel Ijmuiden B.V. Cold rolled high strength low alloy steel
US10370737B2 (en) 2015-01-15 2019-08-06 Jfe Steel Corporation High-strength galvanized steel sheet
EP3219821A4 (en) * 2015-01-15 2017-11-29 JFE Steel Corporation High-strength hot-dip galvanized steel sheet and production method thereof
US10570476B2 (en) * 2015-03-27 2020-02-25 Jfe Steel Corporation High-strength steel sheet and production method therefor
US20180057907A1 (en) * 2015-03-27 2018-03-01 Jfe Steel Corporation High-strength steel sheet and production method therefor
US10954580B2 (en) 2015-12-21 2021-03-23 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet
KR20190040018A (en) 2016-10-19 2019-04-16 닛폰세이테츠 가부시키가이샤 Plated steel sheet, method of manufacturing hot-dip galvanized steel sheet, and method of producing galvannealed galvanized steel sheet
US11732341B2 (en) 2016-10-19 2023-08-22 Nippon Steel Corporation Metal coated steel sheet, manufacturing method of hot-dip galvanized steel sheet, and manufacturing method of alloyed galvannealed steel sheet
KR20200122382A (en) 2018-03-30 2020-10-27 닛폰세이테츠 가부시키가이샤 Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
US11225701B2 (en) 2018-03-30 2022-01-18 Nippon Steel Corporation Hot dip galvanized steel sheet and hot dip galvannealed steel sheet
EP4074857A4 (en) * 2020-01-31 2023-05-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Galvanized steel sheet for hot stamping, hot stamped part, and method for producing hot-stamped part
CN115698359A (en) * 2020-07-20 2023-02-03 日本制铁株式会社 Steel sheet and method for producing same
CN115698359B (en) * 2020-07-20 2024-03-29 日本制铁株式会社 Steel sheet and method for producing same

Also Published As

Publication number Publication date
JP3840864B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
JP3587116B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP3840864B2 (en) High-tensile hot-dip galvanized steel sheet and manufacturing method thereof
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
JP6536294B2 (en) Hot dip galvanized steel sheet, alloyed hot dip galvanized steel sheet, and method for producing them
JP5290245B2 (en) Composite structure steel plate and method of manufacturing the same
KR102466821B1 (en) Cold-rolled and heat-treated steel sheet and its manufacturing method
US10889873B2 (en) Complex-phase steel sheet having excellent formability and method of manufacturing the same
WO2000065119A1 (en) High tensile hot-dip zinc-coated steel plate excellent in ductility and method for production thereof
KR20070061859A (en) High strength thin steel plate excellent in elongation and bore expanding characteristics and method for production thereof
WO2003078668A1 (en) Process for producing high tensile hot-dip zinc-coated steel sheet of excellent ductility and antifatigue properties
JP3587126B2 (en) High tensile hot-dip galvanized steel sheet excellent in ductility and method for producing the same
JP2021507985A (en) Cold-rolled heat-treated steel sheet and its manufacturing method
WO2017154401A1 (en) High-strength steel plate and method for manufacturing same
JP3820868B2 (en) Method for producing high-tensile hot-dip galvanized steel sheet with excellent ductility
CN113840930A (en) Cold rolled and coated steel sheet and method for manufacturing the same
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP2004256836A (en) High tensile strength hot-dip galvanized steel sheet having excellent strength-elongation balance and fatigue characteristic, and its manufacturing method
JP5397141B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2021508770A (en) Steel sheet with excellent seizure curability and corrosion resistance and its manufacturing method
JP3587115B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent formability
JP3624772B2 (en) Low yield ratio high-tensile hot-dip galvanized steel sheet excellent in ductility and manufacturing method thereof
JP4396347B2 (en) Method for producing high-tensile steel sheet with excellent ductility and stretch flangeability
JP2001207236A (en) High tensile strength hot dip galvanized steel plate and producing method therefor
WO2022009032A1 (en) Heat treated cold rolled steel sheet and a method of manufacturing thereof
CN116507753A (en) Ultra-high strength steel sheet having excellent ductility and method for manufacturing same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3840864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees