JP3820868B2 - Method for producing high-tensile hot-dip galvanized steel sheet with excellent ductility - Google Patents

Method for producing high-tensile hot-dip galvanized steel sheet with excellent ductility Download PDF

Info

Publication number
JP3820868B2
JP3820868B2 JP2000321386A JP2000321386A JP3820868B2 JP 3820868 B2 JP3820868 B2 JP 3820868B2 JP 2000321386 A JP2000321386 A JP 2000321386A JP 2000321386 A JP2000321386 A JP 2000321386A JP 3820868 B2 JP3820868 B2 JP 3820868B2
Authority
JP
Japan
Prior art keywords
steel sheet
hot
cooling
dip galvanized
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000321386A
Other languages
Japanese (ja)
Other versions
JP2002129241A (en
Inventor
達也 中垣内
崇 小林
一洋 瀬戸
哲雄 清水
坂田  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000321386A priority Critical patent/JP3820868B2/en
Publication of JP2002129241A publication Critical patent/JP2002129241A/en
Application granted granted Critical
Publication of JP3820868B2 publication Critical patent/JP3820868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高張力溶融亜鉛めっき鋼板の製造方法に係り、とくに連続溶融亜鉛めっきラインで製造される高張力溶融亜鉛めっき鋼板の延性の向上に関する。
【0002】
【従来の技術】
近年、地球環境の保全という観点から、自動車の燃費改善が要求されている。さらに加えて、衝突時に乗員を保護するため、自動車車体の安全性向上も要求されている。このようなことから、自動車車体の軽量化および自動車車体の強化が積極的に進められている。自動車車体の軽量化と強化を同時に満足させるには、部品素材を高強度化することが効果的であると言われており、最近では高張力鋼板が自動車部品に積極的に使用されている。
【0003】
鋼板を素材とする自動車部品の多くがプレス加工によって成形されるため、自動車部品用鋼板には優れたプレス成形性が要求される。優れたプレス成形性を実現するには、第一義的には高い延性を確保することが肝要である。そのため、自動車部品用高張力鋼板には、高い延性を有することが強く求められている。
延性に優れる高張力鋼板としては、フェライトと低温変態相との複合組織からなる組織強化型鋼板が提案されている。この組織強化型鋼板では、フェライトとマルテンサイトの複合組織を有する二相組織鋼板が代表的である。また最近では、残留オーステナイトに起因する変態誘起塑性を利用した高延性鋼板も実用化の段階に至っている。
【0004】
一方、自動車部品には、適用部位によっては高い耐食性も要求される。このような部位に適用される部品素材には、合金化溶融亜鉛めっき鋼板を主体とする溶融亜鉛めっき鋼板が好適である。
したがって、自動車車体の軽量化および強化をより一層推進するためには、耐食性に優れ、しかも延性に優れる高張力溶融亜鉛めっき鋼板が必要不可欠な素材となっている。
【0005】
しかし、現在、溶融亜鉛めっき鋼板の多くは、連続溶融亜鉛めっきラインで製造されている。これら連続溶融亜鉛めっきラインは、焼鈍設備とめっき設備とを連続化して設置していることが多く、焼鈍後のめっき処理により、焼鈍後の冷却がめっき温度で中断されている。このため、工程全体での平均冷却速度を大きくすることが困難となる。
【0006】
したがって、連続溶融亜鉛めっきラインで製造される高張力溶融亜鉛めっき鋼板では、一般に冷却速度の大きい冷却条件下で生成するマルテンサイトや残留オーステナイトをめっき処理後の鋼板中に存在させることは難しい。
連続溶融亜鉛めっきラインで、組織強化型高張力溶融亜鉛めっき鋼板を製造する方法としては、CrやMoといった焼入性を高める合金元素を多量に添加し、マルテンサイト等の低温変態相の生成を容易にする方法がある。しかし、合金元素の多量添加は、製造コストの上昇を招くという問題がある。
【0007】
また、例えば、特公昭62−40405 号公報には、C:0.005 〜0.15%、Mn:0.3 〜2.0 %、Cr:0.03〜0.8 %を含有する薄鋼板をAc1変態点〜Ac3変態点間に加熱したのち、冷却途中に溶融亜鉛めっき処理を行い、さらに500 ℃〜Ac1変態点間の温度に加熱する合金化処理を施し、その後300 ℃まで冷却する連続溶融亜鉛めっきラインを用いた組織強化型合金化溶融亜鉛めっき高張力鋼板の製造方法が提案されている。この合金化溶融亜鉛めっき高張力鋼板の製造方法においては、Ac1変態点〜Ac3変態点間に加熱後の冷却、および合金化処理後300 ℃までの冷却を、CrとMn量と関連づけられた式で規定される臨界冷却速度以上の冷却速度で行うことを特徴としており、フェライト素地中に主としてマルテンサイトからなる低温変態組織を含む二相組織鋼板とし、その鋼板上に合金化亜鉛めっき層を有する鋼板としている。
【0008】
しかしながら、特公昭62−40405 号公報に記載された技術では、連続溶融亜鉛めっきラインで焼鈍後やめっき処理後の冷却条件を、各鋼板の組成に合致して調整する必要がある。このような冷却条件の調整は、連続亜鉛めっきラインの設備上の制約から問題があった。また、特公昭62−40405 号公報に記載された技術で製造された鋼板の延性も十分なものとは言えなかった。
【0009】
一方、特公昭62−40405 号公報に記載された組織強化型溶融亜鉛めっき高張力鋼板とは異なり、連続溶融亜鉛めっきラインを用いて、焼戻マルテンサイトを利用して、成形性に優れる高張力溶融亜鉛めっき鋼板を得る方法が提示されている。
例えば、特開平6−93340 号公報には、連続溶融亜鉛めっきラインにおいて、再結晶温度以上かつAc1変態点以上に加熱保持し、その後MS 点以下に急冷し、ついでMS 点以上の温度であって少なくとも溶融亜鉛浴温度および合金化炉温度に加熱したのち、溶融亜鉛槽に浸漬する高強度合金化溶融亜鉛めっき鋼板の製造方法が提案されている。
【0010】
また、特開平6−108152号公報には、(Ac3変態点−50℃)〜900 ℃の温度にて少なくとも1sec 以上保持することを含む再結晶焼鈍工程と、亜鉛めっきを施す工程と、これらの工程の後にAc1変態点以下250 ℃以上の温度にて再加熱処理を施す工程を有し、再結晶焼鈍工程の後でかつ再加熱処理工程前に、MS 点より高い温度から、合金元素量に依存する臨界冷却速度以上の冷却速度で、MS 点以下まで冷却する曲げ加工性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法が提案されている。
【0011】
特開平6−93340 号公報、特開平6−108152号公報に記載された技術は、いずれも、鋼板をめっき前あるいは合金化処理前にオーステナイト温度域からMS 点以下の温度に焼入れてマルテンサイト組織の鋼板とし、これを再加熱して焼戻マルテンサイトとする高強度合金化溶融亜鉛めっき鋼板の製造方法である。
しかしながら、特開平6−93340 号公報、特開平6−108152号公報に記載された技術で製造された鋼板は、いずれも、自動車部品等の素材用として現在要求される延性を十分満足できず、更なる延性の向上が望まれていた。
【0012】
【発明が解決しようとする課題】
本発明は、上記した従来技術の問題を解決し、自動車部品用素材として十分な延性を有し、強度−伸びバランスに優れる高張力溶融亜鉛めっき鋼板の製造方法を提供するものである。本発明の高張力溶融亜鉛めっき鋼板の製造方法では、連続溶融亜鉛めっきラインを利用するのが望ましい。
【0013】
【課題を解決するための手段】
本発明者らは、連続溶融亜鉛めっきラインを用いて高延性高張力溶融亜鉛めっき鋼板を製造するため、鋼板の組成およびミクロ組織の観点から鋭意研究を重ねた。その結果、溶融亜鉛めっき処理後に得られる高張力溶融亜鉛めっき鋼板の組織を焼戻マルテンサイト、残留オーステナイトを含み、残部をフェライトと低温変態相とからなる複合組織とすることにより、鋼板に優れた延性を発現せしめることが可能であることを知見した。
【0014】
さらに、鋼板の組織を焼戻マルテンサイト、残留オーステナイトを含み、残部をフェライトと低温変態相とからなる複合組織とするには、化学成分を所定の範囲に調整した鋼板の組織を、まずラス状マルテンサイトを含む組織とし、さらに連続溶融亜鉛めっきラインにて所定の条件下で再加熱処理およびめっき処理を施すことにより、焼戻マルテンサイト、残留オーステナイトを含み、残部をフェライトと低温変態相とからなる上記複合組織とすることができ、極めて延性に優れた高張力溶融亜鉛めっき鋼板とすることが可能であるという知見を得た。
【0015】
さらに、まずラス状マルテンサイトを含む組織とすることにより、その後の焼戻し処理時に析出するオーステナイトを微細に分散させることができ、したがってオーステナイト中へのCの濃化が容易になり、さらにはオーステナイトの微細化によりオーステナイトが安定化し、残留オーステナイト量が増加して、極めて延性に優れた高張力溶融亜鉛めっき鋼板とすることができることを知見した。
【0016】
本発明は、上記した知見に基づいて構成されたものである。
すなわち、本発明は、鋼板の表層に溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板の製造方法であって、
質量%で、C:0.05〜0.20%、Si:0.3 〜1.8 %、Mn:1.0 〜3.0 %を含み、残部Feおよび不可避的不純物からなる組成を有する鋼板に、(Ac3変態点−50℃)以上の温度で、5sec 以上保持する一次熱処理を施した後、10℃/sec 以上の冷却速度でMS 点以下の温度まで冷却する一次工程と、ついで、(Ac1変態点〜Ac3変態点)の間の温度域で5〜120sec間保持する二次熱処理を施した後、5℃/sec 以上の冷却速度で、470 〜350 ℃の温度域の冷却停止温度まで冷却したのち、該冷却停止温度以下350 ℃以上の温度域で10〜500sec間滞留する滞留処理を施す二次工程と、ついで溶融亜鉛めっき処理を施し前記鋼板表面に溶融亜鉛めっき皮膜を形成したのち、5℃/sec 以上の冷却速度で300 ℃まで冷却する三次工程とを順次施すことを特徴とする延性に優れる高張力溶融亜鉛めっき鋼板の製造方法であり、また、本発明では、前記三次工程が、溶融亜鉛めっき処理を施し前記鋼板表面に溶融亜鉛めっき皮膜を形成したのち、450 ℃〜550 ℃の温度域まで再加熱して溶融亜鉛めっき皮膜の合金化処理を施し、該合金化処理後に5℃/sec 以上の冷却速度で300 ℃まで冷却する工程であることが好ましい。
【0017】
また、本発明は、前記組成に加え、さらに、次(a群)〜(e群)
(a群):Al:0.2 〜1.5 質量%、
(b群):Cr、Moのうちの1種または2種を合計で、0.05〜1.0 質量%、
(c群):B:0.003 質量%以下、
(d群):Ti、Nb、Vのうちから選ばれた1種または2種以上を合計で、0.01〜0.3 質量%、
(e群):Ca、REM のうちから選ばれた1種または2種を合計で、0.01質量%以下
のうちから選ばれた1群または2群以上を含有することが好ましい。
【0018】
また、本発明では、前記鋼板を、最終熱間圧延が(Ar3変態点−50℃)以上の温度で行われた熱延鋼板とし、前記一次工程に代えて、最終熱間圧延後の冷却をMS 点以下の温度まで10℃/sec 以上の冷却速度で急冷する熱延鋼板組織調整工程とすることが可能である。
【0019】
【発明の実施の形態】
本発明は、鋼板表層に溶融亜鉛めっき層または合金化溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板の製造方法である。
まず、本発明に用いる鋼板の組成限定理由について説明する。なお、本発明では、組成における%は質量%を意味する。
【0020】
C:0.05〜0.20%
Cは、鋼板の高強度化に必須の元素であり、さらに残留オーステナイトや低温変態相の生成に効果があり、不可欠の元素である。しかし、C含有量が0.05%未満では所望の高強度化が得られず、一方、0.20%を超えると、溶接性の劣化を招く。このため、Cは0.05〜0.20%の範囲に限定した。
【0021】
Mn:1.0 〜3.0 %
Mnは、固溶強化により鋼を強化するとともに、鋼の焼入性を向上し、さらに残留オーステナイトや低温変態相の生成を促進する作用を有する。このような作用は、Mn含有量が1.0 %以上で認められる。一方、3.0 %を超えて含有しても効果が飽和し、含有量に見合う効果が期待できなくなりコストの上昇を招く。このため、Mnは1.0 〜3.0 %の範囲に限定した。
【0022】
Si:0.3 〜1.8 %
Siは、固溶強化により鋼を強化するとともに、炭化物の生成を抑制し、オーステナイトを安定化し、残留オーステナイト相の生成を促進する作用を有する。このような作用は、Si含有量が0.3 %以上で認められる。一方、1.8 %を超えて含有すると、めっき性が顕著に劣化する。このため、Siは0.3 〜1.8 %の範囲に限定した。
【0023】
さらに、本発明の鋼板では、必要に応じて、上記した化学成分に加え、下記に示す(a群)〜(e群)のうちの1種または2種以上をさらに含有することが可能である。
(a群):Al:0.2 〜1.5 %、
Alは、Siと同様に炭化物の生成を抑制し、残留オーステナイト相の生成を促進する作用を有し、本発明では必要に応じ含有できる。このような作用は、0.2 %以上の含有で認められる。一方、1.5 %を超える含有は、鋼中の介在物量を増加させ、延性を低下させる。このため、Alは0.2 〜1.5 %の範囲に限定するのが好ましい。
【0024】
(b群):Cr、Moのうちの1種または2種を合計で、0.05〜1.0 %
CrおよびMoは、鋼の焼入性を向上し、低温変態相の生成を促進する作用を有する元素である。このような作用は、CrおよびMoのうちの1種または2種を合計で0.05%以上含有して認められる。一方、合計で1.0 %を超えて含有しても効果が飽和し、含有量に見合う効果を期待できず、経済的に不利となる。このため、Cr、Moのうちの1種または2種を合計で0.05〜1.0 %の範囲に限定するのが望ましい。
【0025】
(c群):B:0.003 %以下、
Bは、鋼の焼入性を向上する作用を有する元素であり、必要に応じ含有できる。しかし、B含有量が0.003 %を超えると、効果が飽和するため、Bは0.003 %以下に限定するのが望ましい。なお、0.001 〜0.002 %が一層好ましい。
(d群):Ti、Nb、Vのうちから選ばれた1種または2種以上を合計で、0.01〜0.3 %
Ti、Nb、Vは、炭窒化物を形成し、鋼を析出強化により高強度化する作用を有しており、必要に応じて添加できる。このような作用は、Ti、Nb、Vのうちから選ばれた1種または2種以上を合計で、0.01%以上含有することで認められる。一方、合計で0.3 %を超えて含有しても、過度に高強度化し、延性が低下する。このため、Ti、Nb、Vのうちの1種または2種以上の含有量は、合計で、0.01〜0.3 %の範囲に限定するのが好ましい。なお、より好ましくは0.01〜0.15%である。
【0026】
(e群):Ca、REM のうちから選ばれた1種または2種を合計で、0.01%以下 Ca、REM は、硫化物系介在物の形態を制御する作用を有し、これにより、鋼板の伸びフランジ特性を向上させる効果を有する。このような効果を得るためには、Ca、REM のうちの1種または2種を合計で0.001 %以上含有することが好ましい。このような効果はCa、REM のうちから選ばれた1種または2種の含有量が合計で、0.01%を超えると飽和する。このため、Ca、REM のうちの1種または2種の含有量は合計で、0.01%以下に限定するのが好ましい。
【0027】
本発明に用いる鋼板は、上記した化学成分以外は、残部Feおよび不可避的不純物からなる。不可避的不純物としては、Al:0.1 %以下、P:0.05%以下、S:0.02%以下が許容できる。
つぎに、本発明方法における製造工程の限定理由について説明する。
上記した組成を有する溶鋼を溶製し、通常の公知の方法で鋳造し、通常の公知の方法で熱間圧延、あるいはさらに冷間圧延して、鋼板とする。また、必要に応じて、酸洗あるいは焼鈍等の工程を加えることができる。
【0028】
本発明では、上記した組成を有する鋼板に、一次熱処理後冷却しマルテンサイトを含有する組織とする一次工程(▲1▼)と、ついで連続溶融亜鉛めっきラインにて二次熱処理を施し、一次工程で形成されたマルテンサイトの焼戻しと、残留オーステナイトおよび低温変態相の生成を図る二次工程(▲2▼)とを施し、しかるのち亜鉛めっき処理する三次工程(▲3▼)を施し、延性に優れる高張力溶融亜鉛めっき鋼板を得る。
【0029】
▲1▼一次工程
一次工程では、鋼板に(Ac3変態点−50℃)以上の温度で少なくとも5sec 以上保持する一次熱処理を施した後、MS 点以下の温度まで10℃/sec 以上の冷却速度で急冷する。この一次工程により、鋼板中にラス状マルテンサイトが20%(体積率)以上生成される。本発明でいう焼戻マルテンサイトを得るためには、前組織としてラス状マルテンサイトを含む組織とすることが必要である。
【0030】
一次熱処理の保持温度が(Ac3変態点−50℃)未満、あるいは保持時間が5sec 未満では、加熱保持中に生成するオーステナイト量が少なく、冷却後に得られるラス状マルテンサイト量が不足する。また、一次熱処理後の冷却速度が10℃/sec 未満では、冷却後の鋼板組織をラス状マルテンサイトを含む組織とすることができない。なお、一次熱処理後の冷却速度の上限は、鋼板の形状を良好に保つためには100 ℃/sec 以下とするのが好ましい。また、保持時間は5sec 以上120sec以下とするのが好ましい。
【0031】
なお、めっき母板として、最終熱間圧延が(Ar3変態点−50℃)以上の温度で行われた熱延鋼板を使用する場合には、この一次工程は、最終圧延後の冷却を、MS 点以下の温度まで10℃/sec 以上の冷却速度で急冷することにより、代わりとすることができる。ただし、冷却後の鋼板組織の均質化を図るためには、一次工程は熱間圧延後に独立した工程として行うのが好ましい。
【0032】
▲2▼二次工程
二次工程では、一次工程により20%以上のラス状マルテンサイトを生成させた鋼板に、さらに(Ac1変態点〜Ac3変態点)の間の温度域で5〜120sec間保持する二次熱処理を施した後、5℃/sec 以上の冷却速度で、470 〜350 ℃の温度域の冷却停止温度まで冷却し、該冷却停止温度以下350 ℃以上の温度域で10〜500sec間滞留する滞留処理を施す。
【0033】
この二次工程により、一次工程により生成したラス状マルテンサイトを焼戻マルテンサイトとするとともに、最終的に残留オーステナイト、低温変態相を生成させるための鋼板組織の一部再オーステナイト化を図る。
二次熱処理における加熱保持温度がAc1変態点未満では、オーステナイトが再生成せず、冷却後に残留オーステナイトや低温変態相が得られない。また、保持温度がAc3変態点を超えると、焼戻マルテンサイトの再オーステナイト化を招く。
【0034】
また、二次熱処理における加熱保持時間が5sec 未満ではオーステナイトの再生成が不十分であるため、冷却後に十分な量の残留オーステナイトが得られない。また、120secを超えると、焼戻マルテンサイトの再オーステナイト化が進行し、必要量の焼戻マルテンサイトを得ることが困難となる。
また、二次熱処理後の470 〜350 ℃の温度域までの冷却速度が5℃/sec 未満では、冷却速度が遅く二次熱処理で生成したオーステナイトがフェライト、パーライト等に変態し、残留オーステナイトや低温変態相とならない。なお、二次熱処理後の冷却速度は5℃/sec 以上50℃/sec 以下とするのが好ましい。
【0035】
冷却停止温度から350 ℃間の温度域(以下、滞留温度域ともいう)で、等温保持または徐冷を行う滞留処理は、残留オーステナイトの生成を促進するために施される。この滞留処理を施すことにより、オーステナイトが安定化し、残留オーステナイト量が増加する。滞留処理の温度域が350 ℃未満では、オーステナイトがマルテンサイトに変態する可能性があり、一方、470 ℃を超えると、ベイナイト変態が過度に進行し、また炭化物の析出が速くなり、残留オーステナイト量が減少する。
【0036】
また、滞留温度域での滞留時間が10sec 未満では、オーステナイトへのCの濃化が不十分でオーステナイトの安定化が得られない。一方、500secを超えると、べイナイト変態が過度に進行し残留オーステナイト量が減少するため、鋼板の延性が低下する。このため、滞留処理における滞留時間は、10〜500secに限定する。なお、好ましくは、10〜100secである。滞留時間が100secを超えて長くしても、オーステナイトへのCの濃化が飽和し、オーステナイトの安定化も十分となるため、それ以上の長時間の滞留は、生産性を低下させることになる。
【0037】
なお、この二次工程は、焼鈍設備と溶融亜鉛めっき設備を兼ね備えた連続溶融亜鉛めっきラインで行うのが好ましい。連続溶融亜鉛めっきラインで行うことにより二次工程後直ちに三次工程に移行でき、生産性が向上する。
▲3▼三次工程
三次工程では、二次工程を施された鋼板に溶融亜鉛めっき処理を施し、5℃/sec 以上の冷却速度で300 ℃まで冷却する。なお、二次工程を経た鋼板の板温が、例えば430 ℃未満と、めっき浴温に比し著しく低く、亜鉛が凝固する可能性がある場合には、溶融亜鉛めっき処理前に、加熱手段により鋼板の板温を溶融亜鉛めっき処理に好適な温度に昇温させるめっき前加熱処理を施すのが好ましい。めっき前加熱処理の温度は、めっき密着性の観点からめっき浴温以上とするのが好ましい。なお、加熱手段は、とくに限定する必要はないが、誘導加熱等が好ましい。
【0038】
また、溶融亜鉛めっき処理は、通常、連続溶融亜鉛めっきラインで行われている処理条件でよく、特に限定する必要はない。しかし、極端な高温でのめっき処理は、必要な残留オーステナイト量の確保が困難となる。このため、500 ℃以下でのめっき処理とするのが好ましい。また、めっき後の冷却速度が極端に小さいときは、残留オーステナイトの確保が困難となる。このため、めっき処理後から 300℃までの温度範囲における冷却速度は5℃/sec 以上に限定するのが好ましい。なお、好ましくは50℃/sec 以下である。また、めっき処理後、必要に応じて目付量調整のためのワイピングを行ってもよいのはいうまでもない。
【0039】
また、溶融亜鉛めっき処理後、合金化処理を施してもよい。合金化処理は、溶融亜鉛めっき処理後、450 ℃〜550 ℃の温度域まで再加熱し溶融亜鉛めっき皮膜の合金化を行う。合金化処理後は、5℃/sec 以上の冷却速度で300 ℃まで冷却するのが好ましい。高温での合金化は、必要な残留オーステナイト量の確保が困難となり、鋼板の延性が低下する。このため、合金化温度の上限は 550℃に限定するのが好ましい。また、合金化温度が450 ℃未満では、合金化の進行が遅く生産性が低下する。また、合金化処理後の冷却速度が極端に低い場合には、必要な残留オーステナイトの確保が困難になる。このため、合金化処理後から 300℃までの温度範囲における冷却速度を5℃/sec 以上に限定するのが好ましい。
【0040】
なお、めっき処理後あるいは合金化処理後の鋼板には、形状矯正、表面粗度等の調整のための調質圧延を加えてもよい。また、樹脂あるいは油脂コーティング、各種塗装等の処理を施しても何ら不都合はない。
本発明は、焼鈍設備とめっき設備および合金化処理設備を連続した溶融亜鉛めっきラインにおいて鋼板の二次加熱と溶融亜鉛めっきおよび合金化処理を行うことを前提としているが、各工程を独立した設備あるいは工程において実施することも可能である。
【0041】
上記した、本発明の製造方法で得られる溶融亜鉛めっき鋼板は、上記した組成と、焼戻マルテンサイト、残留オーステナイト、フェライトおよび低温変態相からなる複合組織を有する鋼板である。なお、本発明における焼戻マルテンサイトとは、ラス状のマルテンサイトを(Ac1変態点〜Ac3変態点)の温度域に短時間加熱保持した際に鉄炭化物が析出して生成する相を指す。
【0042】
焼戻マルテンサイトは、焼戻前のラス状マルテンサイトの形態を引継いだ微細な内部構造を有する相である。焼戻マルテンサイトは、焼戻しによって軟質化しており十分な塑性変形能を有するため、高張力鋼板の延性向上に有効な相である。本発明の製造方法で得られる溶融亜鉛めっき鋼板では、このような焼戻マルテンサイト相を、体積率で20%以上含有する。焼戻マルテンサイト量が20%未満では、顕著な延性向上効果が期待できない。また、60%を超えると、鋼板の高強度化が困難となるため、60%以下とするのが好ましい。
【0043】
残留オーステナイトは、加工時にマルテンサイトに歪誘起変態し、局所的に加えられた加工歪を広く分散させ、鋼板の延性を向上する作用を有する。本発明の製造方法で得られた鋼板では、このような残留オーステナイトを体積率で3%以上含有する。残留オーステナイト量が3%未満では、顕著な延性の向上が期待できない。また、残留オーステナイト量は、好ましくは5%以上である。なお、残留オーステナイト量は多いほどよいが、連続溶融亜鉛めっきラインの熱履歴を経る本発明の製造方法では、実際的には15%以下となる。
【0044】
本発明の製造方法で得られた鋼板における複合組織では、上記した焼戻マルテンサイトと残留オーステナイト以外は、フェライトおよび低温変態相である。
フェライトは、鉄炭化物を含まない軟質な相であり、高い変形能を有し、鋼板の延性を向上させる。本発明の製造方法で得られた鋼板では、フェライトを体積率で30%以上含有するのが好ましい。30%未満では延性の向上が少ない。一方、70%を超えると鋼板の高強度化が困難となるため、70%以下とするのが好ましい。
【0045】
一方、本発明でいう低温変態相とは、焼戻しされていないマルテンサイトあるいはベイナイトを指す。これらの低温変態相は、本発明の製造方法における二次工程以降の冷却過程中に生成する。マルテンサイト、ベイナイトとも硬質相であり、鋼板強度を増加させる。また、強度の増加を十分図るためには、低温変態相は、焼戻されてないマルテンサイトとするのが好適である。低温変態相量は、本発明では特に限定しない。鋼板の強度に応じて適宜配分すればよいが、好ましくは体積率で5〜30%である。
【0046】
軟質相であるフェライトと硬質相である低温変態相とが、焼戻マルテンサイト、残留オーステナイトとともに複合組織を構成することにより、軟質相から硬質相までが混在する微細組織となって、鋼板の高延性化や低降伏比化が実現し鋼板の成形性が著しく向上する。
本発明の製造方法で得られた高張力溶融亜鉛めっき鋼板は、上記した組成および上記した複合組織を有する鋼板の表層に、溶融亜鉛めっき層、または合金化溶融亜鉛めっき層が形成されためっき鋼板である。めっき層の目付量は、使用部位による耐食性要求により適宜決定すればよく、とくに規定されない。自動車の構造部品に使用される鋼板では、溶融亜鉛めっき層の厚さ(目付量)は30〜60g/m2 とするのが好ましい。
【0047】
【実施例】
(実施例1)
表1に示す組成の鋼を転炉で溶製し、連続鋳造法で鋳片とした。得られた鋳片を板厚2.6mm まで熱間圧延し、次いで酸洗したのち、冷間圧延により板厚1.0mm の鋼板を得た。
【0048】
次いで、これら冷延鋼板に、連続焼鈍ラインで、表2に示す一次工程条件で加熱保持後冷却する一次工程を施した。一次工程後、組織調査を行い、ラス状マルテンサイト量を測定した。さらに、一次工程済のこれら鋼板に、連続溶融亜鉛めっきラインにて、表2に示す二次工程条件で、加熱保持した後冷却し、引き続いて滞留処理を施す二次工程を施したのち、引続き溶融亜鉛めっき処理を施し、一部については溶融亜鉛めっき処理後に再加熱する溶融亜鉛めっき皮膜の合金化処理を行い、冷却する三次工程を施した。溶融亜鉛めっき処理は、浴温 475℃のめっき槽に鋼板を浸漬して行い、引き上げて片面当たりの目付量が50g/m2 となるようにガスワイピングにより目付量を調整した。なお、めっき皮膜の合金化処理を行う場合には、ワイピング処理の後、10℃/sec の加熱速度で 500℃まで昇温し、合金化処理した。合金化処理時の保持時間はめっき皮膜中の鉄含有率が9〜11%となるように調整した。なお、めっき浴浸入前の板温が430 ℃を下回る鋼板は必ず、あるいはめっき浴浸入前の板温が430 ℃以上の鋼板の一部について、二次工程後で、溶融亜鉛めっき処理前に、所定の温度まで板温を上昇する加熱処理を施した。
【0049】
得られた鋼板について、ミクロ組織および機械的特性を調査し表3に示す。
鋼板のミクロ組織観察は、鋼板断面を光学顕微鏡あるいは走査型電子顕微鏡で行った。ミクロ組織中のラス状マルテンサイト量および焼戻マルテンサイト量は、倍率1000倍の断面組織写真を用いて、画像解析により任意に設定した 100mm四方の正方形領域内に存在する該当相の占有面積率を求め、該当相の体積率とした。また、残留オーステナイト量は、鋼板より採取した試片を板厚方向の中心面まで研磨し、板厚中心面での回折X線強度測定により求めた。入射X線には MoKα線を使用し、試片中の残留オーステナイト相の{111 }、{200 }、{220 }、{311 }各面の回折X線強度比を求め、これらの平均値を残留オーステナイトの体積率とした。
【0050】
また、機械的特性は、鋼板から圧延直角方向に採取したJIS 5 号引張試験片を用いて、降伏強さ(降伏点)YP、引張強さTS、伸びElを測定した。
これらの結果を表3に示す。
【0051】
【表1】

Figure 0003820868
【0052】
【表2】
Figure 0003820868
【0053】
【表3】
Figure 0003820868
【0054】
表3から、本発明例は、引張強さTSが590MPa以上、伸びElが30%以上、かつ強度−伸びバランス(TS×El)が23000MPa%以上と、強度−伸びバランスに優れた高延性高張力溶融亜鉛めっき鋼板となっている。
一方、本発明の範囲を外れる比較例では、延性が十分でなく、強度−伸びバランスが低下している。
【0055】
鋼板No.2は、一次熱処理における加熱保持温度が低く、冷却後に得られるラス状マルテンサイト量が少なくなり、めっき処理後の焼戻マルテンサイト量および残留オーステナイト量が低下し、強度−伸びバランスが低下している。鋼板No.4は、一次熱処理での保持時間が短く、冷却後に得られるラス状マルテンサイト量が少なくなり、めっき処理後の焼戻マルテンサイト量が低下し、強度−伸びバランスが低下している。また、鋼板No.5は、一次熱処理後の冷却速度が遅すぎたため、ラス状マルテンサイト量が少なくなり、めっき処理後の焼戻マルテンサイト量が低下し、強度−伸びバランスが低下している。
【0056】
また、鋼板No.7は、二次熱処理の保持温度が低すぎたため、めっき処理後に残留オーステナイト量が少なく、強度−伸びバランスが低下している。また、鋼板No.8は、二次熱処理の保持温度が高すぎたため、めっき処理後の焼戻マルテンサイト量が少なく、強度−伸びバランスが低下している。また、鋼板No.10 は、二次熱処理での保持時間が短すぎたため、めっき処理後に残留オーステナイト量が少なくなり、強度−伸びバランスが低下している。また、鋼板No.11 は二次熱処理での保持時間が好適範囲より長すぎたため、めっき処理後の焼戻マルテンサイト量が少なくなり、強度−伸びバランスが若干低下している。
【0057】
鋼板No.13 は、二次熱処理後の冷却速度が小さく、また、鋼板No.20 は合金化処理後 300℃までの冷却速度が小さく、めっき処理後の残留オーステナイト量が少なくなり、強度−伸びバランスが低下している。
鋼板No.15 は、滞留温度域が高すぎ、また、鋼板No.16 は、滞留温度域が低すぎ、めっき処理後の残留オーステナイト量が少なくなり、強度−伸びバランスが低下している。
【0058】
鋼板No.18 は、滞留処理時間が短かすぎ、めっき処理後の残留オーステナイト量が少なくなり、強度−伸びバランスが低下している。
鋼板No.24 は、滞留処理が省略され、めっき処理後の残留オーステナイト量が少なくなり、強度−伸びバランスが低下している。
鋼板No.21 〜23は、鋼板の組成が本発明範囲を外れ、焼戻マルテンサイト、あるいは残留オーステナイトの生成量が少なくなり、強度−伸びバランスが低下ししている。
【0059】
なお、めっき浴温度以上の板温を有する鋼板は、めっき浴温度を下回る板温の鋼板に比べ、めっき密着性が優れていた。
(実施例2)
表1に示す組成の鋼Bを転炉で溶製し、連続鋳造法にて鋳片とした。得られた鋳片に板厚2.3 mmまで熱間圧延する熱延工程と、熱間圧延後、直ちに表4に示す条件で急冷し、コイル状に巻き取る熱延鋼板組織調整工程とを施した。この熱延鋼板組織調整工程を、本発明の製造方法における一次工程の代替とした。熱延鋼板組織調整工程後、鋼板のミクロ組織調査を行い、ラス状マルテンサイトの量を測定した。
【0060】
次いで、この熱延鋼板に、連続溶融亜鉛めっきラインにて、表4に示す二次工程条件で、加熱保持した後冷却する二次工程を施した後、引続き溶融亜鉛めっき処理を施し、さらに溶融亜鉛めっき皮膜の合金化処理を行い、次いで冷却する三次工程を施した。
溶融亜鉛めっき処理は、実施例1と同様に行った。得られた鋼板について、実施例1と同様にミクロ組織および機械的特性を調査し表5に示す。
【0061】
【表4】
Figure 0003820868
【0062】
【表5】
Figure 0003820868
【0063】
表5から、本発明例の溶融亜鉛めっき鋼板は、延性に優れた高張力溶融亜鉛めっき鋼板となっている。
【0064】
【発明の効果】
本発明によれば、非常に優れた延性を有し、自動車部品に代表される成形品素材として実に好適な高張力溶融亜鉛めっき鋼板が、安価にしかも安定して製造でき、産業上格段の効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-tensile hot-dip galvanized steel sheet, and particularly relates to an improvement in ductility of a high-tensile hot-dip galvanized steel sheet produced on a continuous hot-dip galvanized steel line.
[0002]
[Prior art]
In recent years, there has been a demand for improvement in fuel efficiency of automobiles from the viewpoint of conservation of the global environment. In addition, in order to protect passengers in the event of a collision, it is also required to improve the safety of automobile bodies. For this reason, the weight reduction of the automobile body and the reinforcement of the automobile body are being actively promoted. It is said that it is effective to increase the strength of component materials in order to satisfy the weight reduction and strengthening of the automobile body at the same time, and recently, high-tensile steel plates are actively used for automobile parts.
[0003]
Since many automobile parts made of steel plates are formed by press working, excellent press formability is required for steel sheets for automobile parts. In order to achieve excellent press formability, it is essential to ensure high ductility in the first place. Therefore, high tensile strength steel sheets for automobile parts are strongly required to have high ductility.
As a high-strength steel sheet having excellent ductility, a structure-strengthened steel sheet composed of a composite structure of ferrite and a low-temperature transformation phase has been proposed. A typical example of the structure strengthened steel sheet is a duplex steel sheet having a composite structure of ferrite and martensite. Recently, high ductility steel sheets using transformation-induced plasticity due to retained austenite have also been put to practical use.
[0004]
On the other hand, automotive parts are also required to have high corrosion resistance depending on the application site. A hot-dip galvanized steel sheet mainly composed of an alloyed hot-dip galvanized steel sheet is suitable for a component material applied to such a part.
Therefore, a high-tensile hot-dip galvanized steel sheet that is excellent in corrosion resistance and excellent in ductility has become an indispensable material in order to further promote weight reduction and strengthening of automobile bodies.
[0005]
However, at present, many hot dip galvanized steel sheets are manufactured on a continuous hot dip galvanizing line. These continuous hot dip galvanizing lines often have an annealing facility and a plating facility installed continuously, and cooling after annealing is interrupted at the plating temperature by plating treatment after annealing. For this reason, it becomes difficult to increase the average cooling rate in the entire process.
[0006]
Therefore, in a high-tensile hot-dip galvanized steel sheet produced by a continuous hot-dip galvanizing line, it is difficult for martensite and residual austenite that are generally generated under cooling conditions having a high cooling rate to be present in the steel sheet after the plating treatment.
As a method of producing a structure-strengthened high-tensile hot-dip galvanized steel sheet in a continuous hot-dip galvanizing line, a large amount of alloy elements that enhance hardenability such as Cr and Mo are added to produce low-temperature transformation phases such as martensite. There are ways to make it easier. However, the addition of a large amount of alloy elements has a problem that the manufacturing cost increases.
[0007]
For example, Japanese Patent Publication No. 62-40405 discloses a thin steel plate containing C: 0.005 to 0.15%, Mn: 0.3 to 2.0%, Cr: 0.03 to 0.8%. 1 Transformation point ~ Ac Three After heating between transformation points, hot dip galvanizing treatment is performed in the middle of cooling. 1 There has been proposed a method for producing a structure-strengthened galvannealed high-tensile steel sheet using a continuous galvanizing line that is subjected to an alloying treatment that is heated to a temperature between transformation points and then cooled to 300 ° C. In this method of manufacturing a galvannealed high-tensile steel plate, Ac 1 Transformation point ~ Ac Three It is characterized in that the cooling after heating between the transformation points and the cooling to 300 ° C after the alloying treatment are performed at a cooling rate higher than the critical cooling rate specified by the formula related to the Cr and Mn content. The base material is a dual-phase steel plate containing a low temperature transformation structure mainly composed of martensite, and a steel plate having an alloyed galvanized layer on the steel plate.
[0008]
However, in the technique described in Japanese Examined Patent Publication No. 62-40405, it is necessary to adjust the cooling conditions after annealing and plating treatment in a continuous hot dip galvanizing line in accordance with the composition of each steel plate. Such adjustment of the cooling condition has a problem due to restrictions on the equipment of the continuous galvanizing line. In addition, the ductility of the steel sheet produced by the technique described in Japanese Patent Publication No. 62-40405 was not sufficient.
[0009]
On the other hand, unlike the structure-strengthened hot-dip galvanized high-strength steel sheet described in Japanese Patent Publication No. 62-40405, it uses a continuous hot-dip galvanizing line and uses tempered martensite to provide high tensile strength with excellent formability. A method for obtaining a hot dip galvanized steel sheet is presented.
For example, in Japanese Patent Laid-Open No. 6-93340, in a continuous hot dip galvanizing line, the recrystallization temperature or higher and Ac 1 Heated above the transformation point and then M S Cool down below the point, then M S A method for producing a high-strength alloyed hot-dip galvanized steel sheet that has been heated to at least the temperature of the hot-dip zinc bath and alloying furnace and then immersed in a hot-dip zinc bath has been proposed.
[0010]
JP-A-6-108152 discloses (Ac Three Transformation point −50 ° C.) to 900 ° C. and holding for at least 1 sec., Recrystallization annealing step, galvanizing step, and after these steps, Ac 1 Having a step of performing a reheating treatment at a temperature of 250 ° C. or more below the transformation point, and after the recrystallization annealing step and before the reheating treatment step, M S From a temperature higher than the point, at a cooling rate higher than the critical cooling rate depending on the amount of alloying elements S A method for producing a high-strength alloyed hot-dip galvanized steel sheet excellent in bending workability that is cooled to below the point has been proposed.
[0011]
The techniques described in Japanese Patent Application Laid-Open Nos. 6-93340 and 6-108152 are both available from the austenite temperature range before plating or alloying of the steel sheet. S This is a method for producing a high-strength galvannealed steel sheet which is quenched to a temperature below the point to obtain a martensitic steel sheet, which is reheated to obtain tempered martensite.
However, none of the steel plates produced by the techniques described in JP-A-6-93340 and JP-A-6-108152 cannot sufficiently satisfy the ductility currently required for materials such as automobile parts, Further improvement in ductility has been desired.
[0012]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, and provides a method for producing a high-tensile hot-dip galvanized steel sheet that has sufficient ductility as a material for automobile parts and has an excellent strength-elongation balance. In the manufacturing method of the high-tensile hot-dip galvanized steel sheet of the present invention, it is desirable to use a continuous hot-dip galvanizing line.
[0013]
[Means for Solving the Problems]
In order to produce a high ductility, high-tensile hot-dip galvanized steel sheet using a continuous hot-dip galvanizing line, the present inventors have made extensive studies from the viewpoint of the composition and microstructure of the steel sheet. As a result, the structure of the high-tensile hot-dip galvanized steel sheet obtained after the hot dip galvanizing treatment is superior to the steel sheet by including tempered martensite and residual austenite and the balance being a composite structure composed of ferrite and a low-temperature transformation phase. It was found that ductility can be expressed.
[0014]
Furthermore, in order to make the steel sheet structure containing tempered martensite and retained austenite and the balance being composed of ferrite and a low-temperature transformation phase, the structure of the steel sheet with chemical components adjusted to a predetermined range is first lath-shaped. By making the structure containing martensite and performing reheating treatment and plating treatment under specified conditions in a continuous hot dip galvanizing line, it contains tempered martensite and residual austenite, and the remainder from ferrite and low-temperature transformation phase The above-mentioned composite structure can be obtained, and it has been found that a high-tensile hot-dip galvanized steel sheet having extremely excellent ductility can be obtained.
[0015]
Furthermore, by first forming a structure containing lath-like martensite, it is possible to finely disperse the austenite precipitated during the subsequent tempering treatment, and therefore it becomes easy to concentrate C in the austenite, and further, It has been found that austenite is stabilized by refinement, the amount of retained austenite is increased, and a high-tensile hot-dip galvanized steel sheet having extremely excellent ductility can be obtained.
[0016]
The present invention is configured based on the above-described knowledge.
That is, the present invention is a method for producing a hot dip galvanized steel sheet having a hot dip galvanized layer on the surface layer of the steel sheet,
A steel sheet containing, by mass%, C: 0.05 to 0.20%, Si: 0.3 to 1.8%, Mn: 1.0 to 3.0%, and the balance consisting of Fe and inevitable impurities (Ac) Three After the primary heat treatment is held for 5 seconds or more at a temperature not lower than the transformation point (-50 ° C), M is applied at a cooling rate of 10 ° C / sec or more. S A primary step of cooling to a temperature below the point, and then (Ac 1 Transformation point ~ Ac Three After performing the secondary heat treatment for 5 to 120 seconds in the temperature range between the transformation points), cooling to a cooling stop temperature in the temperature range of 470 to 350 ° C. at a cooling rate of 5 ° C./sec or more, After a secondary process of performing a staying treatment that stays for 10 to 500 seconds in a temperature range of 350 ° C. or higher at a cooling stop temperature or lower, followed by hot dip galvanizing treatment to form a hot dip galvanized film on the steel sheet surface, 5 ° C./sec And a tertiary process of cooling to 300 ° C. at the above cooling rate in order, and a method for producing a high-tensile hot-dip galvanized steel sheet having excellent ductility. In the present invention, the tertiary process includes hot-dip galvanizing. After forming a hot dip galvanized film on the surface of the steel sheet, the steel sheet is reheated to a temperature range of 450 ° C. to 550 ° C. and subjected to an alloying treatment of the hot dip galvanized film. After the alloying treatment, 5 ° C./sec or more Cooling to 300 ° C at a cooling rate of There it is preferable.
[0017]
In addition to the above composition, the present invention further includes the following (group a) to (group e):
(Group a): Al: 0.2 to 1.5% by mass,
(Group b): One or two of Cr and Mo in total, 0.05 to 1.0% by mass,
(Group c): B: 0.003% by mass or less,
(Group d): One or more selected from Ti, Nb and V in total, 0.01 to 0.3% by mass,
(E group): One or two selected from Ca and REM in total, 0.01% by mass or less
It is preferable to contain 1 group or 2 groups or more selected from among them.
[0018]
In the present invention, the steel sheet is subjected to final hot rolling (Ar Three The steel sheet is a hot-rolled steel sheet at a temperature equal to or higher than the transformation point (-50 ° C.), and the cooling after the final hot rolling is M instead of the primary process. S It is possible to make a hot rolled steel sheet structure adjustment process that rapidly cools to a temperature below the point at a cooling rate of 10 ° C./sec or more.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a method for producing a hot dip galvanized steel sheet having a hot dip galvanized layer or an alloyed hot dip galvanized layer on the surface layer of the steel sheet.
First, the reasons for limiting the composition of the steel sheet used in the present invention will be described. In the present invention,% in the composition means mass%.
[0020]
C: 0.05-0.20%
C is an essential element for increasing the strength of the steel sheet, and further has an effect on the formation of retained austenite and a low-temperature transformation phase, and is an indispensable element. However, if the C content is less than 0.05%, the desired high strength cannot be obtained. On the other hand, if it exceeds 0.20%, weldability is deteriorated. For this reason, C was limited to the range of 0.05 to 0.20%.
[0021]
Mn: 1.0-3.0%
Mn strengthens the steel by solid solution strengthening, improves the hardenability of the steel, and further promotes the formation of retained austenite and a low-temperature transformation phase. Such an effect is observed when the Mn content is 1.0% or more. On the other hand, if the content exceeds 3.0%, the effect is saturated, and an effect commensurate with the content cannot be expected, resulting in an increase in cost. For this reason, Mn was limited to the range of 1.0 to 3.0%.
[0022]
Si: 0.3 to 1.8%
Si strengthens steel by solid solution strengthening, suppresses the formation of carbides, stabilizes austenite, and promotes the formation of residual austenite phase. Such an effect is recognized when the Si content is 0.3% or more. On the other hand, if the content exceeds 1.8%, the plating property is remarkably deteriorated. For this reason, Si was limited to the range of 0.3 to 1.8%.
[0023]
Furthermore, in the steel plate of this invention, in addition to the above-mentioned chemical component, it is possible to further contain one or more of (a group) to (e group) shown below as required. .
(Group a): Al: 0.2 to 1.5%,
Al has the effect | action which suppresses the production | generation of a carbide | carbonized_material similarly to Si, and accelerates | stimulates the production | generation of a retained austenite phase, and can be contained as needed in this invention. Such an effect is recognized when the content is 0.2% or more. On the other hand, the content exceeding 1.5% increases the amount of inclusions in the steel and lowers the ductility. For this reason, Al is preferably limited to the range of 0.2 to 1.5%.
[0024]
(Group b): One or two of Cr and Mo in total, 0.05 to 1.0%
Cr and Mo are elements having an effect of improving the hardenability of steel and promoting the generation of a low temperature transformation phase. Such an action is recognized by containing 0.05% or more of one or two of Cr and Mo in total. On the other hand, even if the total content exceeds 1.0%, the effect is saturated, an effect commensurate with the content cannot be expected, and this is economically disadvantageous. Therefore, it is desirable to limit one or two of Cr and Mo to a total range of 0.05 to 1.0%.
[0025]
(Group c): B: 0.003% or less,
B is an element having an effect of improving the hardenability of steel and can be contained as necessary. However, if the B content exceeds 0.003%, the effect is saturated, so it is desirable to limit B to 0.003% or less. In addition, 0.001 to 0.002% is more preferable.
(D group): One or more selected from Ti, Nb, and V in total, 0.01 to 0.3%
Ti, Nb, and V form carbonitrides and have the effect of increasing the strength of the steel by precipitation strengthening, and can be added as necessary. Such an effect is recognized by containing 0.01% or more in total of one or more selected from Ti, Nb, and V. On the other hand, even if the total content exceeds 0.3%, the strength is excessively increased and the ductility is lowered. For this reason, it is preferable to limit the content of one or more of Ti, Nb, and V to a range of 0.01 to 0.3% in total. In addition, More preferably, it is 0.01 to 0.15%.
[0026]
(Group e): A total of one or two selected from Ca and REM, 0.01% or less Ca and REM have the effect of controlling the form of sulfide inclusions, and thereby This has the effect of improving the stretch flange characteristics. In order to obtain such an effect, it is preferable to contain one or two of Ca and REM in total of 0.001% or more. Such an effect is saturated when the content of one or two selected from Ca and REM exceeds 0.01% in total. For this reason, the content of one or two of Ca and REM is preferably limited to 0.01% or less in total.
[0027]
The steel plate used for this invention consists of remainder Fe and an unavoidable impurity except the above-mentioned chemical component. As unavoidable impurities, Al: 0.1% or less, P: 0.05% or less, and S: 0.02% or less are acceptable.
Next, the reason for limiting the manufacturing process in the method of the present invention will be described.
Molten steel having the above-described composition is melted and cast by an ordinary known method, and hot rolled or further cold rolled by an ordinary known method to obtain a steel plate. Moreover, processes, such as pickling or annealing, can be added as needed.
[0028]
In the present invention, the steel sheet having the above composition is subjected to a primary process ((1)) that is cooled after the primary heat treatment to form a structure containing martensite, and then subjected to a secondary heat treatment in a continuous hot dip galvanizing line. The martensite formed in step (2) is subjected to the tempering of the martensite and the formation of residual austenite and low-temperature transformation phase (2), and then the third step (3) for galvanizing is performed to make it ductile. An excellent high-tensile hot-dip galvanized steel sheet is obtained.
[0029]
(1) Primary process
In the primary process, (Ac Three After performing a primary heat treatment for at least 5 seconds or more at a temperature equal to or higher than the transformation point (-50 ° C.), M S Rapidly cool to a temperature below the point at a cooling rate of 10 ° C / sec or more. By this primary process, lath-like martensite is generated in the steel sheet by 20% (volume ratio) or more. In order to obtain the tempered martensite as referred to in the present invention, it is necessary to obtain a structure containing lath-like martensite as the previous structure.
[0030]
The holding temperature of the primary heat treatment is (Ac Three If the transformation point is less than −50 ° C.) or the holding time is less than 5 seconds, the amount of austenite generated during heating and holding is small, and the amount of lath martensite obtained after cooling is insufficient. Further, if the cooling rate after the primary heat treatment is less than 10 ° C./sec, the steel plate structure after cooling cannot be a structure containing lath martensite. The upper limit of the cooling rate after the primary heat treatment is preferably 100 ° C./sec or less in order to keep the shape of the steel sheet good. The holding time is preferably 5 seconds or more and 120 seconds or less.
[0031]
As the plating mother plate, the final hot rolling is (Ar Three When using a hot-rolled steel sheet made at a temperature equal to or higher than the transformation point (-50 ° C.), the primary step is to perform cooling after the final rolling with M S An alternative can be obtained by rapidly cooling to a temperature below the point at a cooling rate of 10 ° C./sec or more. However, in order to homogenize the steel sheet structure after cooling, the primary process is preferably performed as an independent process after hot rolling.
[0032]
(2) Secondary process
In the secondary step, the steel plate in which 20% or more of lath martensite is generated in the primary step is further added to (Ac 1 Transformation point ~ Ac Three The secondary heat treatment is performed for 5 to 120 seconds in the temperature range between the transformation points), and then cooled to a cooling stop temperature in the temperature range of 470 to 350 ° C. at a cooling rate of 5 ° C./sec or more. A retention treatment is performed for a period of 10 to 500 seconds in a temperature range of 350 ° C or higher below the stop temperature.
[0033]
By this secondary step, the lath-like martensite generated in the primary step is tempered martensite and, finally, a part of the steel sheet structure for generating residual austenite and a low-temperature transformation phase is re-austenitized.
The heat holding temperature in the secondary heat treatment is Ac 1 Below the transformation point, austenite is not regenerated, and residual austenite and a low-temperature transformation phase cannot be obtained after cooling. Also, the holding temperature is Ac Three Exceeding the transformation point causes re-austeniteization of tempered martensite.
[0034]
Also, if the heating and holding time in the secondary heat treatment is less than 5 seconds, the austenite is not sufficiently regenerated, so that a sufficient amount of retained austenite cannot be obtained after cooling. On the other hand, if it exceeds 120 seconds, the tempered martensite is re-austenitized and it becomes difficult to obtain the required amount of tempered martensite.
In addition, when the cooling rate to the temperature range of 470 to 350 ° C. after the secondary heat treatment is less than 5 ° C./sec, the austenite generated by the secondary heat treatment is slow due to the slow cooling rate, and transformed into ferrite, pearlite, etc. It does not become a transformation phase. The cooling rate after the secondary heat treatment is preferably 5 ° C./sec or more and 50 ° C./sec or less.
[0035]
The residence treatment in which isothermal holding or slow cooling is performed in a temperature range between the cooling stop temperature and 350 ° C. (hereinafter also referred to as residence temperature range) is performed in order to promote the formation of retained austenite. By performing this staying treatment, austenite is stabilized and the amount of retained austenite is increased. If the temperature range of the retention treatment is less than 350 ° C, austenite may be transformed into martensite.On the other hand, if it exceeds 470 ° C, the bainite transformation proceeds excessively, and the precipitation of carbides is accelerated, resulting in a residual austenite amount. Decrease.
[0036]
If the residence time in the residence temperature range is less than 10 seconds, the concentration of C in the austenite is insufficient and austenite cannot be stabilized. On the other hand, if it exceeds 500 sec, the bainitic transformation proceeds excessively and the amount of retained austenite decreases, so the ductility of the steel sheet decreases. For this reason, the residence time in the residence process is limited to 10 to 500 seconds. In addition, Preferably, it is 10-100 sec. Even if the residence time is longer than 100 sec, the concentration of C in the austenite is saturated and the austenite is sufficiently stabilized. Therefore, a longer residence time will lower the productivity. .
[0037]
In addition, it is preferable to perform this secondary process in the continuous hot dip galvanizing line which has the annealing equipment and the hot dip galvanization equipment. By performing it in the continuous hot dip galvanizing line, it is possible to shift to the tertiary process immediately after the secondary process, and the productivity is improved.
(3) Tertiary process
In the tertiary process, the steel sheet subjected to the secondary process is subjected to a hot dip galvanizing process and cooled to 300 ° C. at a cooling rate of 5 ° C./sec or more. If the plate temperature of the steel plate that has undergone the secondary process is significantly lower than the plating bath temperature, for example, less than 430 ° C., and there is a possibility that the zinc may solidify, before the hot dip galvanizing treatment, It is preferable to perform pre-plating heat treatment for raising the plate temperature of the steel plate to a temperature suitable for hot dip galvanizing treatment. The temperature of the pre-plating heat treatment is preferably not less than the plating bath temperature from the viewpoint of plating adhesion. The heating means is not particularly limited, but induction heating or the like is preferable.
[0038]
In addition, the hot dip galvanizing treatment may be performed under the processing conditions that are usually performed in a continuous hot dip galvanizing line, and is not particularly limited. However, it is difficult to secure a necessary amount of retained austenite by plating at an extremely high temperature. For this reason, it is preferable to set it as the plating process at 500 degrees C or less. Moreover, when the cooling rate after plating is extremely small, it becomes difficult to secure retained austenite. For this reason, it is preferable to limit the cooling rate in the temperature range from after plating to 300 ° C. to 5 ° C./sec or more. In addition, Preferably it is 50 degrees C / sec or less. Needless to say, after the plating process, wiping for adjusting the basis weight may be performed as necessary.
[0039]
Further, an alloying treatment may be performed after the hot dip galvanizing treatment. In the alloying treatment, after the hot dip galvanizing treatment, the hot dip galvanized film is alloyed by reheating to a temperature range of 450 ° C to 550 ° C. After the alloying treatment, it is preferable to cool to 300 ° C. at a cooling rate of 5 ° C./sec or more. Alloying at a high temperature makes it difficult to secure the necessary amount of retained austenite, and the ductility of the steel sheet decreases. For this reason, the upper limit of the alloying temperature is preferably limited to 550 ° C. On the other hand, if the alloying temperature is less than 450 ° C., the alloying progresses slowly and the productivity decreases. In addition, when the cooling rate after the alloying process is extremely low, it is difficult to secure the necessary retained austenite. For this reason, it is preferable to limit the cooling rate in the temperature range from 300 degreeC after an alloying process to 5 degree-C / sec or more.
[0040]
In addition, you may add the temper rolling for adjustment of shape correction, surface roughness, etc. to the steel plate after a plating process or an alloying process. In addition, there is no inconvenience even if treatments such as resin or oil coating and various paintings are applied.
The present invention is based on the premise that secondary heating of a steel sheet and hot dip galvanizing and alloying treatment are performed in a hot dip galvanizing line in which annealing equipment, plating equipment, and alloying equipment are continuous. Or it is also possible to implement in a process.
[0041]
The above-described hot-dip galvanized steel sheet obtained by the production method of the present invention is a steel sheet having the above-described composition and a composite structure composed of tempered martensite, retained austenite, ferrite and a low-temperature transformation phase. The tempered martensite in the present invention is a lath-shaped martensite (Ac 1 Transformation point ~ Ac Three This refers to the phase in which iron carbide precipitates and forms when heated and held in the temperature range of the transformation point) for a short time.
[0042]
Tempered martensite is a phase having a fine internal structure that inherits the form of lath-like martensite before tempering. Tempered martensite is an effective phase for improving the ductility of a high-tensile steel sheet because it is softened by tempering and has sufficient plastic deformability. The hot-dip galvanized steel sheet obtained by the production method of the present invention contains 20% or more of such a tempered martensite phase by volume. If the amount of tempered martensite is less than 20%, a remarkable effect of improving ductility cannot be expected. On the other hand, if it exceeds 60%, it is difficult to increase the strength of the steel sheet.
[0043]
Residual austenite has a function of strain-induced transformation into martensite during processing, widely disperses locally applied processing strain, and improves the ductility of the steel sheet. The steel sheet obtained by the production method of the present invention contains such retained austenite by 3% or more by volume. If the amount of retained austenite is less than 3%, a significant improvement in ductility cannot be expected. The amount of retained austenite is preferably 5% or more. In addition, although the amount of retained austenite is better, it is 15% or less in practice in the production method of the present invention that undergoes the thermal history of the continuous hot dip galvanizing line.
[0044]
In the composite structure in the steel sheet obtained by the production method of the present invention, except for the tempered martensite and retained austenite, it is a ferrite and a low-temperature transformation phase.
Ferrite is a soft phase that does not contain iron carbide, has high deformability, and improves the ductility of the steel sheet. The steel sheet obtained by the production method of the present invention preferably contains 30% or more of ferrite by volume. Below 30% there is little improvement in ductility. On the other hand, if it exceeds 70%, it will be difficult to increase the strength of the steel sheet.
[0045]
On the other hand, the low temperature transformation phase referred to in the present invention refers to martensite or bainite that has not been tempered. These low temperature transformation phases are generated during the cooling process after the secondary step in the production method of the present invention. Both martensite and bainite are hard phases and increase the strength of the steel sheet. In order to sufficiently increase the strength, the low temperature transformation phase is preferably martensite that has not been tempered. The amount of low-temperature transformation phase is not particularly limited in the present invention. Although what is necessary is just to distribute suitably according to the intensity | strength of a steel plate, Preferably it is 5 to 30% by volume ratio.
[0046]
The soft phase, ferrite and the low temperature transformation phase, which is the hard phase, form a microstructure with tempered martensite and retained austenite, resulting in a microstructure that includes both the soft phase and the hard phase. Ductility and low yield ratio are realized, and the formability of the steel sheet is remarkably improved.
The high-tensile hot-dip galvanized steel sheet obtained by the production method of the present invention is a plated steel sheet in which a hot-dip galvanized layer or an alloyed hot-dip galvanized layer is formed on the surface layer of the steel sheet having the above composition and the above-described composite structure. It is. The basis weight of the plating layer may be appropriately determined according to the corrosion resistance requirement depending on the use site, and is not particularly defined. For steel plates used in automotive structural parts, the thickness (weight per unit area) of the hot-dip galvanized layer is 30-60 g / m. 2 Is preferable.
[0047]
【Example】
Example 1
Steel having the composition shown in Table 1 was melted in a converter and slabs were formed by a continuous casting method. The obtained slab was hot-rolled to a thickness of 2.6 mm, pickled, and then cold-rolled to obtain a steel plate having a thickness of 1.0 mm.
[0048]
Next, the cold rolled steel sheets were subjected to a primary process of cooling after heating and holding under the primary process conditions shown in Table 2 in a continuous annealing line. After the primary process, the structure was examined and the amount of lath martensite was measured. Further, these steel plates that have undergone the primary process were subjected to a secondary process in which the steel sheet was heated and held in a continuous hot dip galvanizing line under the secondary process conditions shown in Table 2 and then cooled, and subsequently subjected to a retention treatment. A hot dip galvanizing treatment was performed, and a part of the galvanized coating was re-heated after the hot dip galvanizing treatment, and a third step of cooling was performed. The hot dip galvanizing process is performed by immersing the steel sheet in a plating bath with a bath temperature of 475 ° C and pulling it up so that the basis weight per side is 50 g / m. 2 The basis weight was adjusted by gas wiping so that In the case of alloying the plating film, the temperature was increased to 500 ° C. at a heating rate of 10 ° C./sec after the wiping treatment, and the alloying treatment was performed. The holding time during the alloying treatment was adjusted so that the iron content in the plating film was 9 to 11%. In addition, for steel plates whose plate temperature before entering the plating bath is below 430 ° C, or for some steel plates whose plate temperature before entering the plating bath is 430 ° C or higher, after the secondary process, before hot dip galvanizing treatment, A heat treatment for increasing the plate temperature to a predetermined temperature was performed.
[0049]
The obtained steel sheet was examined for microstructure and mechanical properties and shown in Table 3.
The microstructure of the steel sheet was observed with an optical microscope or a scanning electron microscope. The amount of lath martensite and tempered martensite in the microstructure is the area ratio of the corresponding phase existing in a 100 mm square area set arbitrarily by image analysis using a cross-sectional structure photograph at a magnification of 1000 times. Was determined as the volume ratio of the corresponding phase. The amount of retained austenite was determined by polishing a specimen collected from a steel plate to the center plane in the plate thickness direction and measuring the diffraction X-ray intensity at the plate thickness center plane. Using MoKα rays as incident X-rays, find the diffracted X-ray intensity ratios for each of the {111}, {200}, {220}, {311} surfaces of the retained austenite phase in the specimen, and calculate the average of these values. The volume ratio of retained austenite was used.
[0050]
The mechanical properties were measured for yield strength (yield point) YP, tensile strength TS, and elongation El using JIS No. 5 tensile test specimens taken from the steel sheet in the direction perpendicular to the rolling direction.
These results are shown in Table 3.
[0051]
[Table 1]
Figure 0003820868
[0052]
[Table 2]
Figure 0003820868
[0053]
[Table 3]
Figure 0003820868
[0054]
From Table 3, the present invention example shows high tensile strength TS of 590 MPa or more, elongation El of 30% or more, and strength-elongation balance (TS × El) of 23000 MPa% or more. It is a tension hot-dip galvanized steel sheet.
On the other hand, in the comparative example outside the scope of the present invention, the ductility is not sufficient and the strength-elongation balance is lowered.
[0055]
Steel plate No. 2 has a low heat holding temperature in the primary heat treatment, the amount of lath-like martensite obtained after cooling is reduced, the amount of tempered martensite and the amount of retained austenite after plating is reduced, and the strength-elongation balance is reduced. It is falling. Steel plate No. 4 has a short holding time in the primary heat treatment, the amount of lath martensite obtained after cooling is reduced, the amount of tempered martensite after plating treatment is reduced, and the strength-elongation balance is reduced. . Steel plate No. 5 was too slow in cooling after the primary heat treatment, so the amount of lath martensite decreased, the amount of tempered martensite after plating decreased, and the strength-elongation balance decreased. .
[0056]
Steel plate No. 7 had a secondary heat treatment holding temperature that was too low, so the amount of retained austenite was small after plating and the strength-elongation balance was low. Steel plate No. 8 had a secondary heat treatment holding temperature that was too high, so the amount of tempered martensite after plating was small, and the strength-elongation balance was low. Steel plate No. 10 had a retention time in the secondary heat treatment that was too short, so the amount of retained austenite decreased after the plating treatment, and the strength-elongation balance was lowered. Steel plate No. 11 had a retention time in the secondary heat treatment that was too longer than the preferred range, so the amount of tempered martensite after plating was reduced, and the strength-elongation balance was slightly lowered.
[0057]
Steel plate No. 13 has a low cooling rate after secondary heat treatment, and Steel plate No. 20 has a low cooling rate up to 300 ° C after alloying treatment, and the amount of retained austenite after plating treatment is reduced. Balance is falling.
Steel plate No. 15 has a residence temperature range that is too high, and steel plate No. 16 has a residence temperature range that is too low, the amount of retained austenite after plating is reduced, and the strength-elongation balance is reduced.
[0058]
Steel plate No. 18 has a too short residence time, a small amount of retained austenite after plating, and a reduced strength-elongation balance.
In steel plate No. 24, the retention treatment is omitted, the amount of retained austenite after the plating treatment is reduced, and the strength-elongation balance is lowered.
In steel plates Nos. 21 to 23, the composition of the steel plate was outside the scope of the present invention, the amount of tempered martensite or retained austenite was reduced, and the strength-elongation balance was lowered.
[0059]
In addition, the steel plate which has plate temperature more than plating bath temperature was excellent in plating adhesiveness compared with the steel plate of plate temperature lower than plating bath temperature.
(Example 2)
Steel B having the composition shown in Table 1 was melted in a converter and formed into a slab by a continuous casting method. The obtained slab was subjected to a hot rolling process for hot rolling to a sheet thickness of 2.3 mm, and a hot rolling steel sheet structure adjusting process immediately after hot rolling under the conditions shown in Table 4 and winding in a coil shape. . This hot-rolled steel sheet structure adjustment step was used as an alternative to the primary step in the production method of the present invention. After the hot-rolled steel sheet structure adjustment step, the microstructure of the steel sheet was examined, and the amount of lath martensite was measured.
[0060]
Next, this hot-rolled steel sheet was subjected to a secondary process of cooling after being heated and held under the secondary process conditions shown in Table 4 in a continuous hot dip galvanizing line, and subsequently subjected to a hot dip galvanizing treatment and further melting. The galvanized film was alloyed and then cooled and then subjected to a tertiary process.
The hot dip galvanizing treatment was performed in the same manner as in Example 1. The obtained steel sheet was examined for microstructure and mechanical properties in the same manner as in Example 1 and shown in Table 5.
[0061]
[Table 4]
Figure 0003820868
[0062]
[Table 5]
Figure 0003820868
[0063]
From Table 5, the hot-dip galvanized steel sheet of the present invention is a high-tensile hot-dip galvanized steel sheet excellent in ductility.
[0064]
【The invention's effect】
According to the present invention, a high-tensile hot-dip galvanized steel sheet that has extremely excellent ductility and is actually suitable as a molded article material typified by automobile parts can be manufactured at a low cost and with a remarkable industrial effect. Play.

Claims (4)

質量%で、
C:0.05〜0.20%、 Si:0.3 〜1.8 %、
Mn:1.0 〜3.0 %
を含み、残部Feおよび不可避的不純物からなる組成を有する鋼板に、(Ac3変態点−50℃)以上の温度で、5sec 以上保持する一次熱処理を施した後、10℃/sec 以上の冷却速度でMS 点以下の温度まで冷却する一次工程と、ついで、(Ac1変態点〜Ac3変態点)の間の温度域で5〜120sec間保持する二次熱処理を施した後、5℃/sec 以上の冷却速度で、470 〜350 ℃の温度域の冷却停止温度まで冷却したのち、該冷却停止温度以下350 ℃以上の温度域で10〜500sec間滞留する滞留処理を施す二次工程と、ついで溶融亜鉛めっき処理を施し前記鋼板表面に溶融亜鉛めっき皮膜を形成したのち、5℃/sec 以上の冷却速度で300 ℃まで冷却する三次工程とを順次施すことを特徴とする延性に優れる高張力溶融亜鉛めっき鋼板の製造方法。
% By mass
C: 0.05 to 0.20%, Si: 0.3 to 1.8%,
Mn: 1.0-3.0%
A steel sheet having a composition composed of the remaining Fe and inevitable impurities is subjected to a primary heat treatment for 5 seconds or more at a temperature of (Ac 3 transformation point −50 ° C.) or more, and then a cooling rate of 10 ° C./sec or more. in a primary step of cooling to a temperature below M S point, then, it was subjected to secondary heat treatment of holding between 5~120sec in a temperature range between (Ac 1 transformation point to Ac 3 transformation point), 5 ° C. / a secondary step of performing a staying treatment for 10 to 500 seconds in a temperature range of 350 ° C. or higher after cooling to a cooling stop temperature of 470 to 350 ° C. at a cooling rate of sec or higher, Next, a hot dip galvanizing treatment is performed to form a hot dip galvanized film on the surface of the steel sheet, and then a tertiary process of cooling to 300 ° C. at a cooling rate of 5 ° C./sec or more is sequentially performed. Manufacturing method of hot dip galvanized steel sheet.
前記三次工程が、溶融亜鉛めっき処理を施し前記鋼板表面に溶融亜鉛めっき皮膜を形成したのち、450 ℃〜550 ℃の温度域まで再加熱して溶融亜鉛めっき皮膜の合金化処理を施し、該合金化処理後に5℃/sec 以上の冷却速度で300 ℃まで冷却する工程であることを特徴とする請求項1に記載の延性に優れる高張力溶融亜鉛めっき鋼板の製造方法。The third step is to perform hot dip galvanizing treatment to form a hot dip galvanized film on the surface of the steel sheet, and then reheat it to a temperature range of 450 ° C. to 550 ° C. to subject the hot dip galvanized film to alloying treatment. The method for producing a high-tensile hot-dip galvanized steel sheet having excellent ductility according to claim 1, which is a step of cooling to 300 ° C. at a cooling rate of 5 ° C./sec or more after the crystallization treatment. 前記組成に加え、さらに、下記(a群)〜(e群)のうちから選ばれた1群または2群以上を含有することを特徴とする請求項1または2に記載の延性に優れる高張力溶融亜鉛めっき鋼板の製造方法。

(a群):Al:0.2 〜1.5 質量%、
(b群):Cr、Moのうちの1種または2種を合計で、0.05〜1.0 質量%、
(c群):B:0.003 質量%以下、
(d群):Ti、Nb、Vのうちから選ばれた1種または2種以上を合計で、0.01〜0.3 質量%、
(e群):Ca、REM のうちから選ばれた1種または2種を合計で、0.01質量%以下
The high tensile strength excellent in ductility according to claim 1 or 2, further comprising one group or two or more groups selected from the following (a group) to (e group): Manufacturing method of hot dip galvanized steel sheet.
(Group a): Al: 0.2 to 1.5 mass%,
(Group b): One or two of Cr and Mo in total, 0.05 to 1.0% by mass,
(Group c): B: 0.003% by mass or less,
(Group d): One or more selected from Ti, Nb and V in total, 0.01 to 0.3% by mass,
(E group): One or two selected from Ca and REM in total, 0.01% by mass or less
前記鋼板を、最終熱間圧延が(Ar3変態点−50℃)以上の温度で行われた熱延鋼板とし、前記一次工程に代えて、最終熱間圧延後の冷却をMS 点以下の温度まで10℃/sec 以上の冷却速度で急冷する熱延鋼板組織調整工程とすることを特徴とする請求項1ないし3のいずれかに記載の延性に優れる高張力溶融亜鉛めっき鋼板の製造方法。The steel sheet is a hot-rolled steel sheet in which the final hot rolling is performed at a temperature equal to or higher than (Ar 3 transformation point −50 ° C.), and instead of the primary process, cooling after the final hot rolling is less than the M S point. The method for producing a high-tensile hot-dip galvanized steel sheet having excellent ductility according to any one of claims 1 to 3, wherein the hot-rolled steel sheet structure is adjusted rapidly by cooling at a cooling rate of 10 ° C / sec or more.
JP2000321386A 2000-10-20 2000-10-20 Method for producing high-tensile hot-dip galvanized steel sheet with excellent ductility Expired - Fee Related JP3820868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000321386A JP3820868B2 (en) 2000-10-20 2000-10-20 Method for producing high-tensile hot-dip galvanized steel sheet with excellent ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000321386A JP3820868B2 (en) 2000-10-20 2000-10-20 Method for producing high-tensile hot-dip galvanized steel sheet with excellent ductility

Publications (2)

Publication Number Publication Date
JP2002129241A JP2002129241A (en) 2002-05-09
JP3820868B2 true JP3820868B2 (en) 2006-09-13

Family

ID=18799523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000321386A Expired - Fee Related JP3820868B2 (en) 2000-10-20 2000-10-20 Method for producing high-tensile hot-dip galvanized steel sheet with excellent ductility

Country Status (1)

Country Link
JP (1) JP3820868B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4165272B2 (en) * 2003-03-27 2008-10-15 Jfeスチール株式会社 High-tensile hot-dip galvanized steel sheet with excellent fatigue characteristics and hole expansibility and method for producing the same
JP4501716B2 (en) * 2004-02-19 2010-07-14 Jfeスチール株式会社 High-strength steel sheet with excellent workability and method for producing the same
JP4592000B2 (en) * 2004-09-29 2010-12-01 日新製鋼株式会社 Manufacturing method of high-strength galvannealed steel sheet with excellent workability
US8986468B2 (en) 2005-03-31 2015-03-24 Kobe Steel, Ltd. High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile
JP4640130B2 (en) * 2005-11-21 2011-03-02 Jfeスチール株式会社 High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
JP4692259B2 (en) * 2005-12-07 2011-06-01 Jfeスチール株式会社 High-strength steel sheet with excellent formability and shape freezeability
JP4940813B2 (en) * 2006-03-06 2012-05-30 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet having a value of TS × El of 21000 MPa ·% or more
JP5509909B2 (en) * 2010-02-22 2014-06-04 Jfeスチール株式会社 Manufacturing method of high strength hot-rolled steel sheet
JP6324512B2 (en) * 2015-05-29 2018-05-16 Jfeスチール株式会社 High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods thereof
US11993823B2 (en) 2016-05-10 2024-05-28 United States Steel Corporation High strength annealed steel products and annealing processes for making the same
US11560606B2 (en) 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
MX2018013869A (en) * 2016-05-10 2019-03-21 United States Steel Corp High strength steel products and annealing processes for making the same.
JP2022531669A (en) * 2019-05-07 2022-07-08 ユナイテッド ステイツ スチール コーポレイション Method for manufacturing continuously cast hot-rolled high-strength steel sheet products
CA3151124A1 (en) * 2019-08-19 2021-02-25 United States Steel Corporation High strength steel products and annealing processes for making the same
CN115181889B (en) * 2021-04-02 2023-08-11 宝山钢铁股份有限公司 1180 MPa-level low-carbon low-alloy hot dip galvanized dual-phase steel and rapid heat treatment hot dip galvanizing manufacturing method

Also Published As

Publication number Publication date
JP2002129241A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
US9982318B2 (en) High-strength galvanized steel sheet having excellent formability and crashworthiness and method of manufacturing the same
KR100638543B1 (en) High tensile hot-dip zinc-coated steel plate excellent in ductility and method for production thereof
JP3840864B2 (en) High-tensile hot-dip galvanized steel sheet and manufacturing method thereof
KR101218448B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
JP3587116B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5413546B2 (en) High strength thin steel sheet and method for producing the same
JP4995109B2 (en) High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
KR100608555B1 (en) Process for producing high tensile hot-dip zinc-coated steel sheet of excellent ductility and antifatigue properties
US10351942B2 (en) Hot-dip galvannealed hot-rolled steel sheet and process for producing same
JP5765116B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
KR20100046057A (en) High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same
JP5532088B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof
JP3820868B2 (en) Method for producing high-tensile hot-dip galvanized steel sheet with excellent ductility
JP6515281B2 (en) Cold rolled steel sheet and method of manufacturing the same
JP5256690B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP3587126B2 (en) High tensile hot-dip galvanized steel sheet excellent in ductility and method for producing the same
JP4314842B2 (en) High-tensile hot-dip galvanized steel sheet excellent in strength-elongation balance and fatigue characteristics and method for producing the same
JP5256689B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP3624772B2 (en) Low yield ratio high-tensile hot-dip galvanized steel sheet excellent in ductility and manufacturing method thereof
JP3587115B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent formability
JP3972551B2 (en) High tensile hot dip galvanized steel sheet and method for producing the same
JP2011080126A (en) Hot-dip galvannealed steel sheet and method for manufacturing the same
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP3912181B2 (en) Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof
JP3587114B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140630

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees