JP4165272B2 - High-tensile hot-dip galvanized steel sheet with excellent fatigue characteristics and hole expansibility and method for producing the same - Google Patents

High-tensile hot-dip galvanized steel sheet with excellent fatigue characteristics and hole expansibility and method for producing the same Download PDF

Info

Publication number
JP4165272B2
JP4165272B2 JP2003086940A JP2003086940A JP4165272B2 JP 4165272 B2 JP4165272 B2 JP 4165272B2 JP 2003086940 A JP2003086940 A JP 2003086940A JP 2003086940 A JP2003086940 A JP 2003086940A JP 4165272 B2 JP4165272 B2 JP 4165272B2
Authority
JP
Japan
Prior art keywords
mass
less
steel sheet
hot
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003086940A
Other languages
Japanese (ja)
Other versions
JP2004292891A (en
Inventor
達也 中垣内
哲雄 清水
坂田  敬
俊吾 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003086940A priority Critical patent/JP4165272B2/en
Publication of JP2004292891A publication Critical patent/JP2004292891A/en
Application granted granted Critical
Publication of JP4165272B2 publication Critical patent/JP4165272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、疲労特性および穴拡げ性に優れる高張力溶融亜鉛めっき鋼板およびその製造方法を提案するものである。
【0002】
【従来の技術】
近年、自動車は、地球環境の保全という観点から、燃費改善が強く求められている。他に、衝突時における乗員の安全を確保する観点から、車体の安全性の向上も求められている。このような観点から、自動車は、車体の軽量化および高強度化が積極的に進められている。自動車車体の軽量化と高強度化を同時に満足させるためには、車体部品の素材を高強度化することが最も有効であり、そのために最近では自動車部品には高張力鋼板が積極的に使用されている。
【0003】
さて、自動車部品用鋼板は、その多くはプレス加工によって成形されるため、優れたプレス成形性が要求される。優れたプレス成形性を実現するためには、第一義的には高い延性を有することが必要である。従って、自動車部品用の高張力鋼板としては、高い延性特性が求められている。延性に優れる高張力鋼板としては、例えば、フェライトと低温変態相からなる組織強化型の複合組織高張力鋼板が提案されている。特に残留オーステナイトを活用した複合組織鋼板は、非常に高い延性を示すことが知られている。
【0004】
一方、自動車部品は、適用部位によっては高い耐食性も要求される。このような部位に適用される部品の素材には、溶融亜鉛めっき鋼板や合金化溶融亜鉛めっき鋼板が好適に用いられている。したがって、自動車車体の軽量化および強化をよりいっそう推進するためには、耐食性に優れ、しかも延性にも優れる溶融亜鉛めっき高張力鋼板や合金化溶融亜鉛めっき高張力鋼板が必要不可欠な素材となっている。
【0005】
しかし、残留オーステナイトを利用した鋼板は、例えば、特許文献1に開示されているように、基本的にSiを多量に含有する成分系であるため、溶融亜鉛めっき性とくにめっき密着性に劣る傾向がある。このような残留オーステナイトを活用した溶融亜鉛めっき鋼板のめっき性を改善する方法としては、例えば、特許文献2や特許文献3などに開示されているように、Siの代替としてAlを添加する技術がある。
【0006】
【特許文献1】
特開昭61-217529号公報
【特許文献2】
特開平05-247586号公報
【特許文献3】
特開平11-131145号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献2および3に記載された溶融亜鉛めっき高張力鋼板は、延性には優れるものの、硬質相と軟質相の複合組織を基本組織としているため、疲労特性や穴拡げ性が劣るという問題点を有しており、実用化する上での障害となっていた。
【0008】
本発明の目的は、自動車部品用素材として十分な延性を有するほか、疲労特性ならびに穴拡げ性にも優れる高張力溶融亜鉛めっき鋼板とその有利な製造方法を提案することにある。
【0009】
【課題を解決するための手段】
発明者らは、上記の課題を達成し、連続焼鈍ラインや連続溶融亜鉛めっきラインを用いて延性のほか、疲労特性と穴拡げ性にも優れる高張力溶融亜鉛めっき鋼板を製造するため、鋼板の成分組成およびミクロ組織の観点から鋭意研究を行った。その結果、鋼組織に着目したとき、その組織を、主相であるフェライト、体積率で3%以上の残留オーステナイト、および低温変態相とからなる複合組織で構成され、さらに、前記低温変態相中に占めるマルテンサイトの比率が20%以下でかつ低温変態相中のベイナイトと主相であるフェライトの硬度比が2.6以下であり、前記残留オーステナイトはその70%以上がアスペクト比:0.2〜0.4のものとすることにより、延性のみならず、優れた疲労特性と穴拡げ性を兼備した高張力鋼板を得ることが可能であることを見出した。また、上記鋼板を得るためには、素材となる鋼板の組織と、最終焼鈍条件を適正化することか特に重要であることを見出した。
【0010】
本発明は、上記知見に基づいて開発されたものであって、C:0.05〜0.25mass%、Si:1.0mass%以下、Mn:0.5〜3.0mass%、Al:2.0mass%以下を含み、かつSiとAlの合計が0.4〜2.0mass%で、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼板組織が、主相であるフェライト、体積率で3%以上20%以下の残留オーステナイトおよび体積率で10%以上40%以下のベイナイトやマルテンサイトの低温変態相とからなる複合組織で構成され、さらに前記低温変態相中に占めるマルテンサイトの比率が20%以下でかつ低温変態相中のベイナイトと主相であるフェライトの硬度比が2.6以下であり、前記残留オーステナイトはその70%以上がアスペクト比:0.2〜0.4のものである鋼板の表面に、溶融亜鉛めっき層が形成されてなることを特徴とする疲労特性および穴拡げ性に優れる高張力溶融亜鉛めっき鋼板である。
【0011】
また本発明の鋼板は、上記成分組成に加えてさらに、下記(a)〜(d)群のうちから選ばれる1群または2群以上を含有することが好ましい。

(a)群:Cr,Moのうち1種または2種を合計で、0.05〜1.0mass%
(b)群:Bを0.003mass%以下
(c)群:Ti,Nb,Vのうちから選ばれた1種または2種以上を合計で、0.01〜0.3mass%
(d)群:Ca,REMのうちから選ばれた1種または2種を合計で、0.01mass%以下
【0012】
さらに本発明の鋼板は、上記溶融亜鉛めっき層が、合金化溶融亜鉛めっき層でるものでもよい。
【0013】
また、本発明は、C:0.05〜0.25mass%、Si:1.0mass%以下、Mn:0.5〜3.0mass%、Al:2.0mass%以下を含み、かつSiとAlの合計が0.4〜2.0mass%で、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼組織が、全組織に対する組織分率が10%以上のベイナイトやマルテンサイトからなる低温変態相を含む組織で構成されていると共に、該低温変態相中に占めるベイナイトの比率が80%以上である素材鋼板を、700〜950℃の温度で5〜120sec間保持した後、5℃/sec以上の速度で400℃以上500℃以下まで冷却し、その温度範囲で20〜200sec滞留する最終焼鈍後、溶融亜鉛めっき処理を施し、その後、300℃までの冷却速度を5℃/sec以上とすることを特徴とする疲労特性および穴拡げ性に優れる高張力溶融亜鉛めっき鋼板の製造方法を提案する。
【0014】
また本発明の製造方法は、上記成分組成に加えてさらに、下記(a)〜(d)群のうちから選ばれる1群または2群以上を含有することが好ましい。

(a)群:Cr,Moのうち1種または2種を合計で、0.05〜1.0mass%
(b)群:Bを0.003mass%以下
(c)群:Ti,Nb,Vのうちから選ばれた1種または2種以上を合計で、0.01〜0.3mass%
(d)群:Ca,REMのうちから選ばれた1種または2種を合計で、0.01mass%以下
【0015】
さらに本発明の他の製造方法によれば、上記溶融亜鉛めっきした後の鋼板を、さらに450〜550℃の温度に保持して溶融亜鉛めっき層の合金化処理を施し、その後、5℃/sec以上の冷却速度で300℃まで冷却することにより高張力合金化溶融亜鉛めっき鋼板とすることができる。
【0016】
【発明の実施の形態】
本発明に係る高張力溶融亜鉛めっき鋼板は、鋼板の表層に溶融亜鉛めっき層または合金化溶融亜鉛めっき層を有するものであり(以降、両鋼板を併せて「溶融亜鉛めっき鋼板」と言う)、その製造方法は、連続溶融亜鉛めっきラインにおいて最終焼鈍の後、溶融亜鉛めっき処理され、あるいはさらに合金化処理が施されて製造されるのが望ましい。
【0017】
まず、本発明に係る高張力溶融亜鉛めっき鋼板の素材(被めっき材)となる鋼の成分組成を限定する理由について説明する。
C:0.05〜0.25mass%
Cは、鋼板の高強度化のために必要であり、さらに残留オーステナイトや低温変態相の生成にも効果があり、不可欠の元素である。C含有量が0.05mass%未満では、上記した所望の残留γ量と強度が得られず、一方、0.25mass%を超えると、溶接性の劣化を招く。そのため、Cは0.05〜0.25mass%の範囲に制限する。好ましくは、0.08〜0.15mass%である。
【0018】
Mn:0.5〜3.0mass%
Mnは、固溶強化により鋼を強化するとともに、残留オーステナイトや低温変態相の生成を促進する作用を有する。このような作用は、Mn含有量が0.5mass%以上で認められる。一方、3.0mass%を超えて含有しても、効果が飽和して含有量に見合う効果が期待できなくなりコストの上昇を招く。そのため、Mnは0.5〜3.0mass%の範囲に限定する。好ましくは、1.0〜2.0mass%である。
【0019】
Si:1.0mass%以下
Siは、固溶強化により鋼を強化するとともに、炭化物の生成を抑え、残留オーステナイト相の生成を促進する作用を有する。しかし、1.0mass%を超えて含有すると、めっき性が顕著に劣化する。そのため、Siは1.0mass%以下に制限する必要がある。好ましくは、0.5mass%以下である。
【0020】
Al:2.0mass%以下
Alは、Siと同様、炭化物の生成を抑え、残留オーステナイトの生成を促進する作用を有する。しかし、2.0mass%を超えて含有すると、めっき性が劣化する傾向があるため、2.0mass%以下に限定する。好ましくは、1.0mass%以下である。
【0021】
SiとAlの合計:0.4〜2.0mass%
SiとAlの含有量の合計が0.4mass%未満では、上述したSiやAlの効果が認められないので、SiとAlの合計の下限を0.4mass%とする。また、SiとAlの添加量の合計が2.0mass%を超えると、めつき性が劣化する傾向があるため、上限を2.0mass%とする。
【0022】
本発明では、上記成分組成に加えてさらに、下記(a)〜(d)群のうちの1群または2群以上を必要に応じて添加することができる。
(a)群:Cr,Moのうち1種または2種を合計で、0.05〜1.0mass%
CrおよびMoは、低温変態相の生成を促進する作用を有する元素である。このような作用は、CrおよびMoのうちの1種または2種を合計で0.05mass%以上含有した時に認められる。一方、合計で1.0mass%を超えて含有しても効果が飽和し、含有量に見合う効果を期待できず、経済的に不利となる。そのため、Cr,Moのうち1種または2種を合計で0.05〜1.0mass%の範囲で添加するのが望ましい。
【0023】
(b)群:Bを0.003mass%以下
Bは、鋼の焼き入れ性を向上する作用を有する元素であり、必要に応じて含有することができる。しかし、B含有量が0.003mass%を超えると、その効果が飽和するため、0.003mass%以下にするのが好ましい。より好ましくは0.001〜0.002mass%である。
【0024】
(c)群:Ti,Nb,Vのうちから選ばれた1種または2種以上を合計で、0.01〜0.3mass%
Ti,Nb,Vは、炭窒化物を形成して鋼を析出強化により高強度化する作用を有しており、必要に応じて添加できる。このような作用は、Ti,Nb,Vのうちから選ばれた1種または2種以上を合計で0.01mass%以上添加したときに認められる。一方、合計で0.3mass%を超えて含有すると、過度に高強度化して延性が低下する。そのため、Ti,Nb,Vのうちの1種または2種以上の含有量は、合計で0.01〜0.3mass%の範囲に限定するのが好ましい。
【0025】
(d)群:Ca,REMのうちから選ばれた1種または2種を合計で、0.01mass%以下
Ca,REMは、硫化物系介在物の形態を制御する作用を有し、これにより、鋼板の伸びフランジ性を向上させる。このような効果は、Ca,REMのうちから選ばれた1種または2種の含有量が合計で0.01mass%を超えると飽和する。そのため、Ca,REMのうちの1種または2種以上の含有量は、合計で0.01mass%以下に限定するのが望ましい。
【0026】
本発明に係る高張力鋼板の素材となる鋼は、上記成分以外の残部は、Feおよび不可避的不純物からなる。不可避的不純物としては、P:0.05mass%以下、S:0.02mass%以下であれば許容できる。
【0027】
次に、本発明に係る溶融亜鉛めっき処理後の鋼(最終鋼板)の組織について説明する。
(1) 鋼組織(最終組織)
本発明の高張力溶融亜鉛めっき鋼板の鋼組織は、フェライトが主相であり、他は残留オーステナイトおよび低温変態相からなる第2相である。この組織において、上記残留オーステナイトは、加工時にマルテンサイトに歪誘起変態し、局所的に加えられた加工歪を広く分散させて、鋼板の延性を向上する作用を有する。その効果を発揮するためには、残留オーステナイトは全組織に対する体積率で3%以上とすることが必要である。なお、上限については特に限定しないが、本発明の成分組成では、得られる残留オーステナイトは最大でも20%程度である。
【0028】
第2相中の上記残留オーステナイト以外は、低温変態相である。本発明でいう低温変態相とは、マルテンサイトあるいはベイナイトを指す。マルテンサイト、ベイナイトはともに硬質相であり、鋼板強度を上昇する。そのため、低温変態相の量は、要求された強度レベルに応じて適宜決めることができるが、好ましい範囲は、延性確保の観点から全組織に対する体積率で40%以下、強度確保の観点から全組織に対する体積率で10%以上である。
【0029】
以上説明した第2相以外は、主相であるフェライトである。フェライトは炭化物を含まない軟質な相であり、高い変形能を有し、鋼板の延性を向上させる。この主相であるフェライトは、全組織に対する体積率で50%以上であることが必要である。
【0030】
(2) 低温変態相中のマルテンサイト比率
本発明鋼板のように、軟質なフェライト相と硬質な低温変態相が混在する場合には、加工に伴う歪量の違いによって軟質相と硬質相の界面でボイドが発生し易く、特に、フェライトとマルテンサイトが混在する場合には、それらの界面においてボイドが多く発生し、伸びフランジ性つまり穴拡げ性を大きく劣化させる。この穴拡げ性の低下は、第2相中に占めるマルテンサイトの比率が20%を超えると著しくなるため、その比率を20%以下に制限する必要がある。
【0031】
(3) ベイナイトとフェライトの硬度比
また、同様の理由から、硬質なベイナイトとフェライトとの硬さの違いが大きすぎると、それらの界面でボイドが発生し易く、穴拡げ性の低下をもたらす。特に、低温変態相中のベイナイトと主相であるフェライトの硬さの比が2.6を超えると穴拡げ性の劣化が大きいため、その比を2.6以下と限定する。なお、上記硬さとは、マイクロビッカース硬度計で測定した値である。
【0032】
(4) 残留γのアスペクト比
本発明における新たな知見として、残留オーステナイトは適度に伸展した形状、即ち、長径と短径の比であるアスペクト比が、0.2〜0.4であるときに、延性を低下させることなく疲労特性が向上することがわかった。この残留オーステナイトのアスペクト比を規制すると疲労特性が向上する理由については、その詳細は不明であるが、残留オーステナイトの適度な伸展が、疲労亀裂の発生、伝播の抑制に有効に働いているものと考えられている。そこで本発明では、残留オーステナイトのアスペクト比が0.2〜0.4の範囲のものが、全残留オーステナイトの70%以上と規定した。
【0033】
次に、本発明に係る高張力溶融亜鉛めっき鋼板の製造方法について説明する。
まず、上記した成分組成を有する鋼を溶製し、連続鋳造等の公知の方法でスラブ等に鋳造し、圧延用の鋼素材とする。続いて、この鋼素材を、公知の方法で加熱し、粗圧延、仕上圧延して所望の板厚とした後、冷却して巻取る熱間圧延工程により熱延鋼板とする。
【0034】
本発明の高強度鋼板の素材すなわち後述する最終焼鈍前の鋼板は、上記熱延のままの鋼板、上記熱延鋼板を冷間圧延した冷延鋼板、あるいはそれらに最終焼鈍前の組織を調整するための熱処理を施した鋼板など、いずれを用いてもよい。ただし、本発明では、溶融亜鉛めっき後の最終組織を上述した組織とするために、最終焼鈍の前段階の組織を、ベイナイトやマルテンサイトなどの低温変態相を含む組織であり、かつ該低温変態相中に占めるベイナイトの比率が80%以上の組織とすることが必要である。
【0035】
低温変態相は、針状あるいは羽毛状ベイナイトとラスマルテンサイトとからなるが、いずれもその内部組織は伸展した構造を持つ。それを最終焼鈍でフェライト−オーステナイト2相域に加熱することにより、加熱前の組織を承継した微細に伸展したオーステナイトが生成し、冷却後に得られる残留オーステナイトのアスペクト比も小さくなる。また、低温変態相中のベイナイト比率を80%以上とすることにより、適度なアスペクト比を有する残留オーステナイトが生成しやすくなり、最終的に、残留オーステナイトの70%以上がアスペクト比0.2〜0.4の鋼組織を得ることができる。
【0036】
最終焼鈍前の鋼組織における低温変態相中のマルテンサイト比率が多くなると、最終組織、すなわち焼鈍、溶融亜鉛めっき処理後の鋼組織における残留オーステナイトのアスペクト比が小さくなり過ぎる傾向にあり、一方、最終焼鈍前の鋼組織にマルテンサイトやベイナイトが含まれないと、ラス組織は形成されず、最終的に生成する残留オーステナイトのアスペクト比は大きくなる。従って、最終焼鈍前の鋼組織は、低温変態相を含む組織とし、低温変態相中のベイナイト比率は80%以上とする必要がある。なお、低温変態相は、全組織に対する組織分率で10%以上であることが好ましい。
【0037】
最終焼鈍前の組織を、上述した低温変態相を含む組織とするためには、熱延鋼板あるいはこれを冷間圧延して得られる冷延鋼板を被めっき材として用いる場合で、後述する最終焼鈍の前に熱処理を施さない場合には、熱間圧延後の巻取までの段階で組織を調整しておく、すなわち、熱延後の冷却速度をパーライト変態が起こらない15℃/sec以上とし、かつ巻取温度をベイナイト変態が起こる300〜500℃とすることが好ましい。熱間圧延後の冷却速度が15℃/sec未満であったり、巻取温度が500℃超であったりすると、パーライト変態が生じて、ベイナイト相の比率が80%以上の低温変態相を得ることができない。また、巻取温度が300℃未満では、低温変態相中のマルテンサイト比率が増加し、ベイナイト比率が上記した比率とならない。
【0038】
また、最終焼鈍前に熱延鋼板や冷延鋼板を熱処理することによっても、前述の低温変態相を含む組織とすることができる。この場合、熱間圧延後の冷却条件、巻取温度条件は、必ずしも上記の条件とする必要はない。この熱処理により、最終焼鈍前組織として、ベイナイト比率が80%以上の低温変態相を含む組織を得るには、鋼板を720〜900℃で5sec以上保持した後、300〜500℃の温度範囲までを冷却速度15℃/sec以上で冷却し、その後300〜500℃の温度範囲に60sec以上滞留させる、連続焼鈍を採用することが好ましい。この場合においては、冷却停止温度が300℃未満であったり、300〜500℃での滞留時間が短かったりすると、マルテンサイトの生成量が多くなり低温変態相中のベイナイト比率が80%以上とならない。また、冷却停止温度が500℃超の場合には、パーライト変態が生じて、ベイナイト比率が80%以上の低温変態相を得ることができなくなる。
【0039】
上記のようにして鋼板組織を制御した素材を、連続溶融亜鉛めっきラインにて、700〜950℃の温度範囲で5〜120sec保持する最終焼鈍を施し、冷却後、溶融亜鉛めっき処理を施す。上記最終焼鈍の温度が700℃未満では、再オーステナイト化が不十分となり、残留オーステナイトの量が減少し、一方、950℃を上回ると、最終焼鈍後の残留オーステナイトのアスペクト比が大きくなり、所望のアスペクト比が得られなくなる。また、加熱時間が短すぎると、再オーステナイト化が十分に起こらずに残留オーステナイト量が減少し、逆に、長すぎると伸展した組織が崩れ、残留オーステナイトのアスペクト比が大きくなる。そこで、本発明では、最終焼鈍温度を700〜950℃、この温度範囲における保持時間を5〜120secに制限する。
【0040】
最終焼鈍に続く冷却は、5℃/sec以上の冷却速度で、400℃以上500℃以下まで冷却後、その温度範囲で20〜200sec間滞留する必要がある。冷却速度が5℃/sec未満では、最終焼鈍で生成したオーステナイトが、フェライトやパーライト等に変態し、残留オーステナイトや低温変態相とならない。なお、この時の冷却速度は、50℃/sec以下とすることが鋼板の形状制御の点からは好ましい。また、冷却停止温度および滞留温度は、500℃を超える場合には、セメンタイトの析出に伴い残留オーステナイト量が減少する他、低温変態相が得られなくなる。一方、400℃以下では生成する低温変態相中のベイナイトが硬質化し、ベイナイトと主相であるフェライトとの硬度比が2.6を超えてしまう。そこで、冷却停止から滞留処理を行う温度範囲を400℃以上500℃以下とする。
なお、冷却停止後の滞留時間が20sec未満では、低温変態相中のマルテンサイトの体積率が20%を超えてしまい、一方、滞留時間が200secを超えると、過度のベイナイト変態の進行により残留オーステナイトが減少する。そのため、冷却停止後の滞留時間は、20〜200secの範囲とする。
【0041】
以上の条件にて、最終焼鈍して冷却後、溶融亜鉛めっき処理する。めっき処理を施した後は、300℃までの冷却速度を5℃/sec以上とする。溶融亜鉛めっき処理の条件は、連続溶融亜鉛めっきラインで行われている通常の処理条件でよく、特に限定する必要はない。しかし、極端な高温でのめっき処理は、必要な残留オーステナイト量の確保が困難となるため、500℃以下で処理を施すことが好ましい。また、めっき後の冷却速度が極端に小さいと、残留オーステナイトの確保が困難となるため、めっき処理後から300℃までの冷却速度は、5℃/sec以上とする必要がある。なお、冷却速度の上限は50℃/sec以下であることが好ましい。
【0042】
溶融亜鉛めっきの目付量は、要求される使用部位の耐食性の程度により適宜決定すれば良く、特に限定されないが、自動車の構造部品に使用される鋼板では、溶融亜鉛めっきの目付量は30〜60g/m2とするのが好ましい。
【0043】
また、溶融亜鉛めっき処理後、必要に応じて溶融亜鉛めっき層の合金化処理を施してもよい。合金化処理は、450〜550℃の温度域に保持して亜鉛めっき層を合金化する。合金化処理後は、5℃/sec以上の冷却速度で300℃まで冷却する。合金化処理温度は、高温では必要な残留オーステナイト量の確保が困難となり、鋼板の延性が低下するため、550℃以下とするのが好ましい。一方、合金化処理温度が450℃未満では、合金化の進行が遅く、生産性が低下する。また、合金化後の冷却速度が極端に低い場合には、必要な残留オーステナイトの確保が困難になるため、合金化処理温度から300℃までの冷却速度は5℃/sec以上とする。
【0044】
なお、めっき処理後あるいは合金化処理後の鋼板には、形状矯正や表面粗度等の調整のために調質圧延を施してもよい。また、樹脂あるいは油脂コーティングや各種の塗装処理等を施しても何ら不都合はない。また、本発明は、焼鈍や溶融亜鉛めっき処理、合金化処理を連続ラインで行うことを前提としているが、各工程を独立した設備あるいは工程で実施することも可能である。
【0045】
【実施例】
表1に示す各種組成を有する鋼を転炉で溶製し、連続鋳造法により鋼スラブとし、得られたスラブを熱間圧延し、表2に示す条件で冷却、巻取りを行い板厚2.6mmの熱延鋼板を得た。次いで、酸洗したのち、一部については冷間圧延を行い、板厚1.0mmの冷延鋼板とした。さらに一部については、連続焼鈍ラインを用いて表2に示す条件にて熱処理を施した。次いで、これらの熱延鋼板あるいは冷延鋼板を、連続溶融亜鉛めっきラインに通板し、表2に示す条件で、最終焼鈍後、冷却し、溶融亜鉛めっき処理を施した。溶融亜鉛めっき処理の条件は、浴温475℃のめっき浴に鋼板を浸漬した後、引き上げ、片面当たりの目付量が50g/m2となるようにガスワイピングで目付量を制御した。また、一部については、溶融亜鉛めっき処理後、10℃/secの加熱速度で500℃まで昇温し、合金化処理を行った。合金化処理の保持時間は、めっき層中のFe含有率が9〜11mass%となるように調整した。なお、連続溶融亜鉛めっきラインに通板する前の鋼板、すなわち、最終焼鈍前の鋼板について、走査型電子顕微鏡(SEM)により、倍率3000倍で30μm×30μm相当の面積を10視野、組織観察し、この観察像について画像解析を行い、鋼板中のベイナイトの体積率を測定した。この結果についても表2に示した。
【0046】
【表1】

Figure 0004165272
【0047】
【表2】
Figure 0004165272
【0048】
上記のようにして得られた鋼板について、引張特性、疲労特性、穴拡げ性および鋼板組織を以下の要領で測定した。まず、引張特性は、鋼板から圧延直角方向に採取したJIS5号試験片を用いて、降伏強さ(YP)、引張強さ(TS)、伸び(El)を測定した。疲労特性は、周波数20Hz、応力比=0.1の引張疲労試験法により疲労限(FL)を測定し、引張強さ(TS)との比(FL/TS)を求めた。
また、穴拡げ性は、伸びフランジ性に対応する特性であり、鋼板に直径diの円形の穴を打抜き、この穴に60°の円錐ポンチを押し当てて穴拡げ加工を行い、穴縁に発生した亀裂が板厚を貫通した時点の穴の径dbを求め、このdi,dbから次式によって穴拡げ率を求めて評価した。なお、本試験では、初期穴径diは10mmで行った。
穴拡げ率λ(%)={(db−di)/di}×100
また、ベイナイト相とフェライト相の硬さ比は、マイクロビッカース硬度計を用いて各相の硬さを7点ずつ測定し、その平均値の比(ベイナイトの硬さ/フェライトの硬さ)とした。
【0049】
また、残留オーステナイト量の測定は、鋼板を板厚方向中心面まで研磨し、板厚中心面での回折X線強度測定により求めた。入射X線にはMo−Kα線を使用し、フェライト相の{110}、{200}、{211}の各面の回折X線強度に対する、残留オーステナイト相の{111}、{200}、{220}、{311}各面の回折X線強度比を求め、これらの平均値を残留オーステナイト相の体積率とした。
さらに、鋼板中の低温変態相中に占めるベイナイトの体積率の測定は、走査型電子顕微鏡(SEM)により、倍率3000倍(30μm×30μm相当の視野)で観察した10視野の観察像について画像解析を行って求めた。
最終組織(溶融亜鉛めっき後の鋼組織)中の残留オーステナイトのアスペクト比については、透過型電子顕微鏡(TEM)を用いて、30個の残留オーステナイト粒についてアスペクト比を求め、アスペクト比が0.2〜0.4の範囲内にある結晶粒の百分率を求めた。
【0050】
上記測定の結果を表3に示した。この表から明らかなように、本発明の成分組成および製造条件に従って製造した鋼板は、いずれも強度−延性バランスを示すTS×Elが23000 MPa・%以上でかつ疲労限と引張強度との比(FL/TS)が0.46以上であり、さらに強度−穴拡げ性バランスを示すTS×λが43000 MPa・%以上であり、強度−延性バランスに優れると共に、疲労特性や強度−穴拡げ性バランスにも優れていることがわかる。これに対し、本発明の成分組成または製造条件のいずれかを外れて製造した鋼板は、TS×Elが23000 MPa・%未満か、(FL/TS)が0.46未満か、あるいはTS×λが43000 MPa・%未満でしかなく、延性、疲労特性ならびに穴拡げ性を兼備した高張力鋼板となっていない。
【0051】
【表3】
Figure 0004165272
【0052】
【発明の効果】
以上説明したように、本発明によれば、溶融亜鉛めっき鋼板の素材となる鋼板の成分組成と組織とを適正範囲に規制すると共に、最終焼鈍条件およびその後の冷却条件を適正範囲に制御することにより、溶融亜鉛めっき後の鋼板組織を適正化することができ、ひいては延性に優れるとともに疲労強度や穴拡げ性にも優れる高張力溶融亜鉛めっき鋼板を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention proposes a high-tensile hot-dip galvanized steel sheet excellent in fatigue characteristics and hole expandability and a method for producing the same.
[0002]
[Prior art]
In recent years, automobiles have been strongly demanded to improve fuel efficiency from the viewpoint of preservation of the global environment. In addition, from the viewpoint of ensuring the safety of occupants in the event of a collision, improvement of the safety of the vehicle body is also required. From this point of view, automobiles have been actively promoted to reduce the weight and strength of the vehicle body. In order to satisfy both the weight reduction and the strength improvement of automobile bodies, it is most effective to increase the strength of the material of the body parts. For this reason, high-tensile steel plates have been actively used for automobile parts recently. ing.
[0003]
Now, since many steel plates for automobile parts are formed by press working, excellent press formability is required. In order to realize excellent press formability, it is necessary to have high ductility in the first place. Therefore, high ductility characteristics are required for high-tensile steel sheets for automobile parts. As a high-strength steel sheet having excellent ductility, for example, a structure-strengthened composite high-strength steel sheet composed of ferrite and a low-temperature transformation phase has been proposed. In particular, it is known that a composite structure steel plate using retained austenite exhibits very high ductility.
[0004]
On the other hand, automobile parts are also required to have high corrosion resistance depending on the application site. As a material of a component applied to such a part, a hot dip galvanized steel plate or an alloyed hot dip galvanized steel plate is preferably used. Therefore, in order to further promote weight reduction and strengthening of automobile bodies, hot-dip galvanized high-strength steel sheets and alloyed hot-dip galvanized high-tensile steel sheets that have excellent corrosion resistance and ductility have become indispensable materials. Yes.
[0005]
However, since the steel sheet using retained austenite is basically a component system containing a large amount of Si, as disclosed in Patent Document 1, for example, it tends to be inferior in hot dip galvanizing properties, particularly plating adhesion. is there. As a method for improving the plateability of the hot dip galvanized steel sheet utilizing such retained austenite, for example, as disclosed in Patent Document 2 and Patent Document 3, etc., there is a technique of adding Al as an alternative to Si. is there.
[0006]
[Patent Document 1]
JP 61-217529
[Patent Document 2]
Japanese Patent Laid-Open No. 05-247586
[Patent Document 3]
Japanese Patent Laid-Open No. 11-131145
[0007]
[Problems to be solved by the invention]
However, although the hot-dip galvanized high-tensile steel sheets described in Patent Documents 2 and 3 are excellent in ductility, they have a fatigue structure and hole expandability that are inferior because they have a composite structure of a hard phase and a soft phase. It had problems and was an obstacle to commercialization.
[0008]
An object of the present invention is to propose a high-tensile hot-dip galvanized steel sheet that has sufficient ductility as a material for automobile parts, and is excellent in fatigue characteristics and hole expandability, and an advantageous manufacturing method thereof.
[0009]
[Means for Solving the Problems]
In order to achieve the above-mentioned problems and to produce a high-tensile hot-dip galvanized steel sheet that has excellent fatigue properties and hole expandability in addition to ductility using a continuous annealing line and continuous hot-dip galvanizing line, Intensive research was conducted from the viewpoints of component composition and microstructure. As a result, when paying attention to the steel structure, the structure is composed of a composite structure composed of ferrite as a main phase, residual austenite with a volume ratio of 3% or more, and a low-temperature transformation phase, and further in the low-temperature transformation phase. The ratio of martensite to 20% or less and the hardness ratio of bainite in the low-temperature transformation phase to ferrite as the main phase is 2.6 or less, and 70% or more of the retained austenite has an aspect ratio of 0.2 to 0.4 Thus, it was found that it is possible to obtain a high-tensile steel sheet having not only ductility but also excellent fatigue characteristics and hole expansibility. Moreover, in order to obtain the said steel plate, it discovered that it was especially important to optimize the structure of the steel plate used as a raw material, and the final annealing conditions.
[0010]
The present invention was developed based on the above findings, and C: 0.05 to 0.25 mass%, Si: 1.0 mass% or less, Mn: 0.5 to 3.0 mass%, Al: 2 0.0 mass% or less, and the total composition of Si and Al is 0.4 to 2.0 mass%, the balance is a composition composed of Fe and unavoidable impurities, and the steel sheet structure is the main phase of ferrite, volume More than 3% 20% or less Residual austenite and Of bainite and martensite of 10% to 40% by volume It is composed of a composite structure composed of a low-temperature transformation phase, and the ratio of martensite in the low-temperature transformation phase is 20% or less, and the hardness ratio of bainite and the main phase ferrite in the low-temperature transformation phase is 2.6 or less. Fatigue properties and hole expansion characterized in that a hot dip galvanized layer is formed on the surface of a steel sheet in which 70% or more of the retained austenite has an aspect ratio of 0.2 to 0.4. It is a high-tensile hot-dip galvanized steel sheet with excellent properties.
[0011]
In addition to the above component composition, the steel sheet of the present invention preferably further contains one group or two or more groups selected from the following groups (a) to (d).
Record
(a) Group: 0.05 to 1.0 mass% in total of one or two of Cr and Mo
(b) Group: B is 0.003 mass% or less
(c) Group: One or more selected from Ti, Nb, and V in total, 0.01 to 0.3 mass%
(d) Group: One or two selected from Ca and REM in total, 0.01 mass% or less
[0012]
Further, in the steel sheet of the present invention, the hot dip galvanized layer may be an alloyed hot dip galvanized layer.
[0013]
Further, the present invention includes C: 0.05 to 0.25 mass%, Si: 1.0 mass% or less, Mn: 0.5 to 3.0 mass%, Al: 2.0 mass% or less, and Si and Al. Is 0.4 to 2.0 mass%, and the balance is composed of Fe and inevitable impurities, and the steel structure is The tissue fraction of all organizations is 10% or more Baynite and martensite Consist of After holding the raw steel plate which is composed of a structure including a low-temperature transformation phase and has a bainite ratio of 80% or more in the low-temperature transformation phase at a temperature of 700 to 950 ° C. for 5 to 120 seconds, 5 ° C. After cooling at a rate of at least 400 / sec to 400 ° C to 500 ° C and after the final annealing for 20 to 200 sec in that temperature range, a hot dip galvanizing treatment is performed, and then the cooling rate to 300 ° C is at least 5 ° C / sec. A method of manufacturing a high-tensile hot-dip galvanized steel sheet excellent in fatigue characteristics and hole expansibility characterized by
[0014]
Moreover, in addition to the said component composition, it is preferable that the manufacturing method of this invention contains 1 group or 2 groups or more chosen from the following (a)-(d) group.
Record
(a) Group: 0.05 to 1.0 mass% in total of one or two of Cr and Mo
(b) Group: B is 0.003 mass% or less
(c) Group: One or more selected from Ti, Nb, and V in total, 0.01 to 0.3 mass%
(d) Group: One or two selected from Ca and REM in total, 0.01 mass% or less
[0015]
Furthermore, according to another production method of the present invention, the steel sheet after the above hot dip galvanization is further maintained at a temperature of 450 to 550 ° C. to perform alloying treatment of the hot dip galvanized layer, and thereafter 5 ° C./sec. By cooling to 300 ° C. at the above cooling rate, a high-tensile galvannealed steel sheet can be obtained.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The high-tensile hot-dip galvanized steel sheet according to the present invention has a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface layer of the steel sheet (hereinafter referred to as “hot-dip galvanized steel sheet” together) It is desirable that the manufacturing method is such that, after the final annealing in the continuous hot dip galvanizing line, hot dip galvanizing treatment or further alloying treatment is performed.
[0017]
First, the reason for limiting the component composition of steel used as the raw material (material to be plated) of the high-tensile hot-dip galvanized steel sheet according to the present invention will be described.
C: 0.05-0.25mass%
C is necessary for increasing the strength of the steel sheet, and is also an indispensable element because it is effective in generating retained austenite and low-temperature transformation phase. If the C content is less than 0.05 mass%, the desired residual γ amount and strength described above cannot be obtained. On the other hand, if the C content exceeds 0.25 mass%, weldability is deteriorated. Therefore, C is limited to a range of 0.05 to 0.25 mass%. Preferably, it is 0.08 to 0.15 mass%.
[0018]
Mn: 0.5-3.0mass%
Mn strengthens the steel by solid solution strengthening and has the effect of promoting the formation of retained austenite and low-temperature transformation phase. Such an effect is recognized when the Mn content is 0.5 mass% or more. On the other hand, even if the content exceeds 3.0 mass%, the effect is saturated and an effect commensurate with the content cannot be expected, resulting in an increase in cost. Therefore, Mn is limited to the range of 0.5 to 3.0 mass%. Preferably, it is 1.0-2.0 mass%.
[0019]
Si: 1.0 mass% or less
Si strengthens steel by solid solution strengthening, suppresses the formation of carbides, and promotes the formation of residual austenite phase. However, if the content exceeds 1.0 mass%, the plating property is remarkably deteriorated. Therefore, Si needs to be limited to 1.0 mass% or less. Preferably, it is 0.5 mass% or less.
[0020]
Al: 2.0 mass% or less
Al, like Si, has the action of suppressing the formation of carbides and promoting the formation of retained austenite. However, if the content exceeds 2.0 mass%, the plating property tends to deteriorate, so the content is limited to 2.0 mass% or less. Preferably, it is 1.0 mass% or less.
[0021]
Total of Si and Al: 0.4 ~ 2.0mass%
When the total content of Si and Al is less than 0.4 mass%, the above-described effects of Si and Al are not recognized, so the lower limit of the total of Si and Al is 0.4 mass%. Further, if the total amount of Si and Al added exceeds 2.0 mass%, the tackiness tends to deteriorate, so the upper limit is set to 2.0 mass%.
[0022]
In the present invention, in addition to the above component composition, one or more of the following groups (a) to (d) can be added as necessary.
(a) Group: 0.05 to 1.0 mass% in total of one or two of Cr and Mo
Cr and Mo are elements having an action of promoting the generation of a low temperature transformation phase. Such an effect is recognized when one or two of Cr and Mo are contained in a total of 0.05 mass% or more. On the other hand, even if it contains exceeding 1.0 mass% in total, an effect will be saturated and the effect corresponding to content cannot be expected, but it becomes economically disadvantageous. Therefore, it is desirable to add one or two of Cr and Mo in a total range of 0.05 to 1.0 mass%.
[0023]
(b) Group: B is 0.003 mass% or less
B is an element having an effect of improving the hardenability of steel and can be contained as required. However, if the B content exceeds 0.003 mass%, the effect is saturated, so it is preferable to make it 0.003 mass% or less. More preferably, it is 0.001 to 0.002 mass%.
[0024]
(c) Group: One or more selected from Ti, Nb, and V in total, 0.01 to 0.3 mass%
Ti, Nb, and V have a function of forming carbonitride to increase the strength of the steel by precipitation strengthening, and can be added as necessary. Such an action is recognized when one or more selected from Ti, Nb, and V are added in a total of 0.01 mass% or more. On the other hand, when it contains exceeding 0.3 mass% in total, it will become high strength too much and ductility will fall. Therefore, the content of one or more of Ti, Nb, and V is preferably limited to a range of 0.01 to 0.3 mass% in total.
[0025]
(d) Group: One or two selected from Ca and REM in total, 0.01 mass% or less
Ca and REM have the effect of controlling the form of sulfide inclusions, thereby improving the stretch flangeability of the steel sheet. Such an effect is saturated when the content of one or two selected from Ca and REM exceeds 0.01 mass% in total. Therefore, the content of one or more of Ca and REM is desirably limited to 0.01 mass% or less in total.
[0026]
In the steel as the material of the high-tensile steel plate according to the present invention, the balance other than the above components is composed of Fe and inevitable impurities. As inevitable impurities, P: 0.05 mass% or less and S: 0.02 mass% or less are acceptable.
[0027]
Next, the structure of steel (final steel plate) after hot dip galvanizing according to the present invention will be described.
(1) Steel structure (final structure)
The steel structure of the high-tensile hot-dip galvanized steel sheet of the present invention is a second phase consisting of retained austenite and a low-temperature transformation phase, with ferrite being the main phase. In this structure, the retained austenite has the effect of improving the ductility of the steel sheet by causing strain-induced transformation to martensite during processing and widely dispersing locally applied processing strain. In order to exert the effect, the retained austenite needs to be 3% or more in terms of the volume ratio with respect to the entire structure. In addition, although it does not specifically limit about an upper limit, In the component composition of this invention, the retained austenite obtained is about 20% at the maximum.
[0028]
Other than the above-mentioned retained austenite in the second phase, it is a low temperature transformation phase. The low temperature transformation phase referred to in the present invention refers to martensite or bainite. Martensite and bainite are both hard phases and increase the strength of the steel sheet. Therefore, the amount of the low temperature transformation phase can be appropriately determined according to the required strength level, but the preferred range is 40% or less in terms of volume ratio to the entire structure from the viewpoint of ensuring ductility, and the entire structure from the viewpoint of ensuring the strength. Is 10% or more by volume ratio.
[0029]
Except for the second phase described above, the main phase is ferrite. Ferrite is a soft phase that does not contain carbides, has high deformability, and improves the ductility of the steel sheet. This main phase ferrite needs to be 50% or more in volume ratio with respect to the entire structure.
[0030]
(2) Martensite ratio in the low temperature transformation phase
When the soft ferrite phase and the hard low-temperature transformation phase are mixed like the steel sheet of the present invention, voids are likely to occur at the interface between the soft phase and the hard phase due to the difference in strain accompanying the processing. When martensite is mixed, many voids are generated at the interface between them, and the stretch flangeability, that is, the hole expandability is greatly deteriorated. This decrease in hole expansibility becomes significant when the ratio of martensite in the second phase exceeds 20%, so that the ratio needs to be limited to 20% or less.
[0031]
(3) Hardness ratio of bainite and ferrite
For the same reason, if the difference in hardness between hard bainite and ferrite is too large, voids are likely to occur at the interface between them, resulting in a decrease in hole expansibility. In particular, when the hardness ratio of bainite in the low-temperature transformation phase and ferrite as the main phase exceeds 2.6, the hole expandability deteriorates greatly, so the ratio is limited to 2.6 or less. The hardness is a value measured with a micro Vickers hardness meter.
[0032]
(4) Residual γ aspect ratio
As a new finding in the present invention, the retained austenite has a moderately extended shape, that is, when the aspect ratio, which is the ratio of the major axis to the minor axis, is 0.2 to 0.4, the fatigue characteristics are improved without reducing ductility. I understood it. The reason why the fatigue characteristics are improved by regulating the aspect ratio of the retained austenite is not known in detail, but the proper extension of the retained austenite works effectively to suppress the generation and propagation of fatigue cracks. It is considered. Therefore, in the present invention, the retained austenite aspect ratio in the range of 0.2 to 0.4 is defined as 70% or more of the total retained austenite.
[0033]
Next, the manufacturing method of the high tension hot dip galvanized steel sheet concerning this invention is demonstrated.
First, steel having the above component composition is melted and cast into a slab or the like by a known method such as continuous casting to obtain a steel material for rolling. Subsequently, this steel material is heated by a known method, roughly rolled and finish-rolled to obtain a desired plate thickness, and then cooled and wound into a hot-rolled steel plate.
[0034]
The material of the high-strength steel sheet of the present invention, that is, the steel sheet before final annealing, which will be described later, is a steel sheet as it is hot-rolled, a cold-rolled steel sheet cold-rolled from the hot-rolled steel sheet, or a structure before final annealing is adjusted to them. Any steel plate that has been subjected to heat treatment may be used. However, in the present invention, in order to make the final structure after hot dip galvanization the structure described above, the structure of the previous stage of final annealing is a structure including a low temperature transformation phase such as bainite and martensite, and the low temperature transformation. It is necessary to make the structure in which the proportion of bainite in the phase is 80% or more.
[0035]
The low temperature transformation phase consists of acicular or feathery bainite and lath martensite, both of which have an extended internal structure. By heating it to the ferrite-austenite two-phase region by final annealing, finely stretched austenite inheriting the structure before heating is generated, and the aspect ratio of the retained austenite obtained after cooling is also reduced. Also, by setting the bainite ratio in the low-temperature transformation phase to 80% or more, it becomes easy to generate retained austenite having an appropriate aspect ratio, and finally 70% or more of the retained austenite has a steel having an aspect ratio of 0.2 to 0.4. You can get an organization.
[0036]
When the martensite ratio in the low temperature transformation phase in the steel structure before final annealing increases, the aspect ratio of retained austenite in the final structure, i.e., steel structure after annealing and hot dip galvanizing, tends to be too small, while the final If martensite and bainite are not included in the steel structure before annealing, a lath structure is not formed, and the aspect ratio of the residual austenite that is finally generated increases. Therefore, the steel structure before the final annealing needs to be a structure including a low-temperature transformation phase, and the bainite ratio in the low-temperature transformation phase needs to be 80% or more. Note that the low temperature transformation phase is preferably 10% or more in terms of the structure fraction with respect to the entire structure.
[0037]
In order to make the structure before the final annealing a structure containing the low-temperature transformation phase described above, a hot-rolled steel sheet or a cold-rolled steel sheet obtained by cold rolling the same is used as a material to be plated. If the heat treatment is not performed before, the structure is adjusted at the stage until winding after hot rolling, that is, the cooling rate after hot rolling is 15 ° C./sec or more at which pearlite transformation does not occur, And it is preferable to make winding temperature into 300-500 degreeC in which a bainite transformation occurs. If the cooling rate after hot rolling is less than 15 ° C / sec or the coiling temperature exceeds 500 ° C, pearlite transformation occurs, and a low temperature transformation phase with a bainite phase ratio of 80% or more is obtained. I can't. On the other hand, when the coiling temperature is less than 300 ° C., the martensite ratio in the low-temperature transformation phase increases, and the bainite ratio does not become the above ratio.
[0038]
Moreover, it can be set as the structure | tissue containing the above-mentioned low temperature transformation phase also by heat-processing a hot-rolled steel plate and a cold-rolled steel plate before final annealing. In this case, the cooling condition after the hot rolling and the coiling temperature condition are not necessarily the above-described conditions. In order to obtain a structure including a low-temperature transformation phase having a bainite ratio of 80% or more as a structure before final annealing by this heat treatment, the steel sheet is held at 720 to 900 ° C. for 5 seconds or more and then to a temperature range of 300 to 500 ° C. It is preferable to employ continuous annealing in which cooling is performed at a cooling rate of 15 ° C./sec or more, and then retained in a temperature range of 300 to 500 ° C. for 60 seconds or more. In this case, if the cooling stop temperature is less than 300 ° C. or the residence time at 300 to 500 ° C. is short, the amount of martensite generated increases, and the bainite ratio in the low temperature transformation phase does not exceed 80%. . Further, when the cooling stop temperature is higher than 500 ° C., pearlite transformation occurs, and a low temperature transformation phase having a bainite ratio of 80% or more cannot be obtained.
[0039]
The material whose steel sheet structure is controlled as described above is subjected to final annealing for 5 to 120 seconds in a temperature range of 700 to 950 ° C. in a continuous hot dip galvanizing line. If the temperature of the final annealing is less than 700 ° C, re-austenitization becomes insufficient and the amount of retained austenite decreases.On the other hand, if it exceeds 950 ° C, the aspect ratio of the retained austenite after final annealing increases, and the desired The aspect ratio cannot be obtained. On the other hand, if the heating time is too short, the amount of retained austenite will not be sufficiently increased and the amount of retained austenite will decrease. On the other hand, if it is too long, the stretched structure will collapse and the aspect ratio of retained austenite will increase. Therefore, in the present invention, the final annealing temperature is limited to 700 to 950 ° C., and the holding time in this temperature range is limited to 5 to 120 seconds.
[0040]
The cooling following the final annealing needs to stay for 20 to 200 seconds in the temperature range after cooling to 400 ° C. or more and 500 ° C. or less at a cooling rate of 5 ° C./sec or more. When the cooling rate is less than 5 ° C./sec, austenite generated by the final annealing is transformed into ferrite, pearlite or the like, and does not become retained austenite or a low temperature transformation phase. In addition, it is preferable from the point of the shape control of a steel plate that the cooling rate at this time shall be 50 degrees C / sec or less. When the cooling stop temperature and the residence temperature exceed 500 ° C., the amount of retained austenite decreases with the precipitation of cementite, and a low temperature transformation phase cannot be obtained. On the other hand, at 400 ° C. or lower, the bainite in the low-temperature transformation phase to be formed becomes hard, and the hardness ratio between bainite and the main phase ferrite exceeds 2.6. Therefore, the temperature range from the cooling stop to the staying treatment is set to 400 ° C. or more and 500 ° C. or less.
If the residence time after cooling is stopped is less than 20 seconds, the volume fraction of martensite in the low-temperature transformation phase exceeds 20%. On the other hand, if the residence time exceeds 200 seconds, residual austenite is caused by excessive bainite transformation. Decrease. Therefore, the residence time after stopping cooling is in the range of 20 to 200 seconds.
[0041]
Under the above conditions, after the final annealing and cooling, hot dip galvanizing treatment is performed. After performing the plating treatment, the cooling rate to 300 ° C. is set to 5 ° C./sec or more. The conditions for the hot dip galvanizing process may be normal process conditions performed in a continuous hot dip galvanizing line, and need not be particularly limited. However, since it is difficult to ensure the necessary amount of retained austenite in the plating process at an extremely high temperature, it is preferable to perform the process at 500 ° C. or less. In addition, if the cooling rate after plating is extremely small, it is difficult to secure retained austenite. Therefore, the cooling rate up to 300 ° C. after the plating treatment needs to be 5 ° C./sec or more. The upper limit of the cooling rate is preferably 50 ° C./sec or less.
[0042]
The basis weight of hot dip galvanizing may be appropriately determined depending on the required degree of corrosion resistance of the use site, and is not particularly limited. However, in steel sheets used for structural parts of automobiles, the basis weight of hot dip galvanizing is 30 to 60 g. / M 2 Is preferable.
[0043]
Moreover, after the hot dip galvanizing treatment, an alloying treatment of the hot dip galvanized layer may be performed as necessary. In the alloying treatment, the galvanized layer is alloyed while being maintained in a temperature range of 450 to 550 ° C. After the alloying treatment, it is cooled to 300 ° C at a cooling rate of 5 ° C / sec or more. The alloying treatment temperature is preferably set to 550 ° C. or lower because a high retained austenite amount is difficult to secure at a high temperature and the ductility of the steel sheet is lowered. On the other hand, when the alloying treatment temperature is less than 450 ° C., the progress of alloying is slow and the productivity is lowered. In addition, when the cooling rate after alloying is extremely low, it becomes difficult to secure the necessary retained austenite. Therefore, the cooling rate from the alloying temperature to 300 ° C. is set to 5 ° C./sec or more.
[0044]
The steel sheet after the plating treatment or alloying treatment may be subjected to temper rolling for shape correction, adjustment of surface roughness, and the like. Moreover, there is no inconvenience even if resin or oil coating or various coating treatments are applied. Moreover, although this invention presupposes performing annealing, a hot dip galvanization process, and an alloying process by a continuous line, it is also possible to implement each process with an independent installation or process.
[0045]
【Example】
Steels having various compositions shown in Table 1 are melted in a converter and made into a steel slab by a continuous casting method. The obtained slab is hot-rolled and cooled and wound under the conditions shown in Table 2 to obtain a plate thickness of 2.6. mm hot-rolled steel sheet was obtained. Next, after pickling, a part was cold-rolled to obtain a cold-rolled steel sheet having a thickness of 1.0 mm. Furthermore, some were heat-treated on the conditions shown in Table 2 using a continuous annealing line. Subsequently, these hot-rolled steel plates or cold-rolled steel plates were passed through a continuous hot dip galvanizing line, cooled under the conditions shown in Table 2, and then subjected to hot dip galvanizing treatment. The condition of the hot dip galvanizing treatment is that the steel sheet is immersed in a plating bath with a bath temperature of 475 ° C and then pulled up, and the basis weight per side is 50 g / m. 2 The basis weight was controlled by gas wiping so that Moreover, about one part, after the hot dip galvanization process, it heated up to 500 degreeC with the heating rate of 10 degree-C / sec, and performed the alloying process. The retention time of the alloying treatment was adjusted so that the Fe content in the plating layer was 9 to 11 mass%. In addition, about the steel plate before passing through the continuous hot dip galvanizing line, that is, the steel plate before final annealing, the structure corresponding to 30 μm × 30 μm in an area equivalent to 30 μm × 30 μm was observed with a scanning electron microscope (SEM) in 10 fields Then, image analysis was performed on the observed image, and the volume fraction of bainite in the steel sheet was measured. This result is also shown in Table 2.
[0046]
[Table 1]
Figure 0004165272
[0047]
[Table 2]
Figure 0004165272
[0048]
The steel sheet obtained as described above was measured for tensile properties, fatigue properties, hole expansibility, and steel plate structure in the following manner. First, as for the tensile properties, yield strength (YP), tensile strength (TS), and elongation (El) were measured using a JIS No. 5 test piece taken from the steel sheet in the direction perpendicular to the rolling direction. As for the fatigue characteristics, the fatigue limit (FL) was measured by a tensile fatigue test method with a frequency of 20 Hz and a stress ratio = 0.1, and the ratio (FL / TS) to the tensile strength (TS) was obtained.
Moreover, hole expansibility is a characteristic corresponding to stretch flangeability, and the diameter d i The hole diameter at the time when the crack generated at the hole edge penetrates the plate thickness is punched out by punching a circular hole of b For this d i , D b From the following equation, the hole expansion rate was obtained and evaluated. In this test, the initial hole diameter d i Was performed at 10 mm.
Hole expansion ratio λ (%) = {(d b -D i ) / D i } × 100
Moreover, the hardness ratio of the bainite phase and the ferrite phase was determined by measuring the hardness of each phase 7 points using a micro Vickers hardness tester, and the ratio of the average values (the hardness of bainite / the hardness of ferrite). .
[0049]
The amount of retained austenite was measured by polishing the steel plate to the center plane in the plate thickness direction and measuring the diffraction X-ray intensity at the plate thickness center plane. Mo-Kα rays are used as incident X-rays, and {111}, {200}, {200 in the retained austenite phase with respect to the diffracted X-ray intensities on the {110}, {200}, {211} surfaces of the ferrite phase. 220}, {311} diffracted X-ray intensity ratios of the respective surfaces were obtained, and the average value thereof was defined as the volume ratio of the retained austenite phase.
Furthermore, the measurement of the volume fraction of bainite in the low-temperature transformation phase in the steel sheet was carried out by image analysis of observation images of 10 fields observed with a scanning electron microscope (SEM) at a magnification of 3000 times (field equivalent to 30 μm × 30 μm). Asked to go.
About the aspect ratio of the retained austenite in the final structure (steel structure after hot dip galvanization), the aspect ratio was determined for 30 retained austenite grains using a transmission electron microscope (TEM), and the aspect ratio was 0.2 to 0.4. The percentage of crystal grains in the range was determined.
[0050]
The measurement results are shown in Table 3. As is apparent from this table, the steel plates produced according to the component composition and production conditions of the present invention have a strength-ductility balance of TS × El of 23000 MPa ·% or more and the ratio between the fatigue limit and the tensile strength ( (FL / TS) is 0.46 or more, and TS × λ, which shows a strength-hole expansibility balance, is 43000 MPa ·% or more. It has an excellent balance between strength and ductility, as well as fatigue properties and strength-hole expansibility balance. It turns out that it is excellent. On the other hand, a steel plate manufactured without any of the component composition or manufacturing conditions of the present invention has a TS × El of less than 23000 MPa ·%, (FL / TS) of less than 0.46, or TS × λ of 43000. It is less than MPa ·%, and it is not a high-strength steel sheet that has ductility, fatigue characteristics and hole expandability.
[0051]
[Table 3]
Figure 0004165272
[0052]
【The invention's effect】
As described above, according to the present invention, the component composition and the structure of the steel sheet that is the material of the hot dip galvanized steel sheet are regulated to an appropriate range, and the final annealing conditions and the subsequent cooling conditions are controlled to an appropriate range. Thus, it is possible to optimize the steel sheet structure after hot dip galvanization, and as a result, it is possible to obtain a high-tensile hot dip galvanized steel sheet having excellent ductility and fatigue strength and hole expansibility.

Claims (6)

C:0.05〜0.25mass%、Si:1.0mass%以下、Mn:0.5〜3.0mass%、Al:2.0mass%以下を含み、かつSiとAlの合計が0.4〜2.0mass%で、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼板組織が、主相であるフェライト、体積率で3%以上20%以下の残留オーステナイトおよび体積率で10%以上40%以下のベイナイトやマルテンサイトの低温変態相とからなる複合組織で構成され、さらに前記低温変態相中に占めるマルテンサイトの比率が20%以下でかつ低温変態相中のベイナイトと主相であるフェライトの硬度比が2.6以下であり、前記残留オーステナイトはその70%以上がアスペクト比:0.2〜0.4のものである鋼板の表面に、溶融亜鉛めっき層が形成されてなることを特徴とする疲労特性および穴拡げ性に優れる高張力溶融亜鉛めっき鋼板。C: 0.05 to 0.25 mass%, Si: 1.0 mass% or less, Mn: 0.5 to 3.0 mass%, Al: 2.0 mass% or less, and the total of Si and Al is 0.4 ~ 2.0 mass%, the balance is a composition composed of Fe and inevitable impurities, and the steel sheet structure is ferrite as a main phase, retained austenite of 3% to 20% by volume, and 10% by volume It is composed of a composite structure composed of bainite and martensite low-temperature transformation phase of 40% or less, and the martensite ratio in the low-temperature transformation phase is 20% or less and bainite and main phase in the low-temperature transformation phase Hot-dip galvanizing is performed on the surface of a steel sheet in which a certain ferrite has a hardness ratio of 2.6 or less, and 70% or more of the retained austenite has an aspect ratio of 0.2 to 0.4. High-tensile galvanized steel sheet excellent in fatigue properties and hole expandability characterized by but made formed. 上記成分組成に加えてさらに、下記(a)〜(d)群のうちから選ばれる1群または2群以上を含有することを特徴とする請求項1に記載の高張力溶融亜鉛めっき鋼板。

(a)群:Cr,Moのうち1種または2種を合計で、0.05〜1.0mass%
(b)群:Bを0.003mass%以下
(c)群:Ti,Nb,Vのうちから選ばれた1種または2種以上を合計で、0.01〜0.3mass%
(d)群:Ca,REMのうちから選ばれた1種または2種を合計で、0.01mass%以下
The high-tensile hot-dip galvanized steel sheet according to claim 1, further comprising one group or two or more groups selected from the following groups (a) to (d) in addition to the above component composition.
Group (a): One or two of Cr and Mo in total, 0.05 to 1.0 mass%
(B) Group: B is 0.003 mass% or less (c) Group: One or two or more selected from Ti, Nb, and V in total, 0.01 to 0.3 mass%
(D) Group: 1 type or 2 types selected from Ca and REM in total, 0.01 mass% or less
上記溶融亜鉛めっき層が、合金化溶融亜鉛めっき層であることを特徴とする請求項1または2に記載の高張力溶融亜鉛めっき鋼板。The high-tensile hot-dip galvanized steel sheet according to claim 1 or 2, wherein the hot-dip galvanized layer is an alloyed hot-dip galvanized layer. C:0.05〜0.25mass%、Si:1.0mass%以下、Mn:0.5〜3.0mass%、Al:2.0mass%以下を含み、かつSiとAlの合計が0.4〜2.0mass%で、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼組織が、全組織に対する組織分率が10%以上のベイナイトやマルテンサイトからなる低温変態相を含む組織で構成されていると共に、該低温変態相中に占めるベイナイトの比率が80%以上である素材鋼板を、700〜950℃の温度で5〜120sec間保持した後、5℃/sec以上の速度で400℃以上500℃以下まで冷却し、その温度範囲で20〜200sec滞留する最終焼鈍後、溶融亜鉛めっき処理を施し、その後、300℃までの冷却速度を5℃/sec以上とすることを特徴とする疲労特性および穴拡げ性に優れる高張力溶融亜鉛めっき鋼板の製造方法。C: 0.05 to 0.25 mass%, Si: 1.0 mass% or less, Mn: 0.5 to 3.0 mass%, Al: 2.0 mass% or less, and the total of Si and Al is 0.4 It is a structure containing a low-temperature transformation phase composed of bainite and martensite having a composition composed of Fe and unavoidable impurities in the balance of ~ 2.0 mass%, the steel structure having a structure fraction of 10% or more with respect to the entire structure. The material steel plate that is configured and has a bainite ratio of 80% or more in the low-temperature transformation phase is held at a temperature of 700 to 950 ° C. for 5 to 120 seconds, and then 400 at a rate of 5 ° C./sec or more. After cooling to 20 ° C. or more and 500 ° C. or less and retaining for 20 to 200 seconds in that temperature range, a hot dip galvanizing treatment is performed, and then the cooling rate to 300 ° C. is 5 ° C./sec or more. Method for producing a high-tensile galvanized steel sheet excellent in fatigue properties and hole expandability characterized Rukoto. 上記成分組成に加えてさらに、下記(a)〜(d)群のうちから選ばれる1群または2群以上を含有することを特徴とする請求項4に記載の高張力溶融亜鉛めっき鋼板の製造方法。

(a)群:Cr,Moのうち1種または2種を合計で、0.05〜1.0mass%
(b)群:Bを0.003mass%以下
(c)群:Ti,Nb,Vのうちから選ばれた1種または2種以上を合計で、0.01〜0.3mass%
(d)群:Ca,REMのうちから選ばれた1種または2種を合計で、0.01mass%以下
In addition to the said component composition, 1 group or 2 groups or more chosen from the following (a)-(d) groups are contained, The manufacture of the high tension hot-dip galvanized steel sheet of Claim 4 characterized by the above-mentioned. Method.
Group (a): One or two of Cr and Mo in total, 0.05 to 1.0 mass%
(B) Group: B is 0.003 mass% or less (c) Group: One or two or more selected from Ti, Nb, and V in total, 0.01 to 0.3 mass%
(D) Group: 1 type or 2 types selected from Ca and REM in total, 0.01 mass% or less
溶融亜鉛めっきした後の鋼板を、さらに450〜550℃の温度に保持して溶融亜鉛めっき層の合金化処理を施し、その後、5℃/sec以上の冷却速度で300℃まで冷却することを特徴とする請求項4または5に記載の高張力溶融亜鉛めっき鋼板の製造方法。The steel sheet after the hot dip galvanization is further maintained at a temperature of 450 to 550 ° C., subjected to alloying treatment of the hot dip galvanized layer, and then cooled to 300 ° C. at a cooling rate of 5 ° C./sec or more. A method for producing a high-tensile hot-dip galvanized steel sheet according to claim 4 or 5.
JP2003086940A 2003-03-27 2003-03-27 High-tensile hot-dip galvanized steel sheet with excellent fatigue characteristics and hole expansibility and method for producing the same Expired - Lifetime JP4165272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003086940A JP4165272B2 (en) 2003-03-27 2003-03-27 High-tensile hot-dip galvanized steel sheet with excellent fatigue characteristics and hole expansibility and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086940A JP4165272B2 (en) 2003-03-27 2003-03-27 High-tensile hot-dip galvanized steel sheet with excellent fatigue characteristics and hole expansibility and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004292891A JP2004292891A (en) 2004-10-21
JP4165272B2 true JP4165272B2 (en) 2008-10-15

Family

ID=33401427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086940A Expired - Lifetime JP4165272B2 (en) 2003-03-27 2003-03-27 High-tensile hot-dip galvanized steel sheet with excellent fatigue characteristics and hole expansibility and method for producing the same

Country Status (1)

Country Link
JP (1) JP4165272B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105734411A (en) * 2014-12-24 2016-07-06 Posco公司 Hot Dip Galvanized and Galvannealed Steel Sheet Having Excellent Elongation Properties, And Method For Manufacturing The Same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4956998B2 (en) * 2005-05-30 2012-06-20 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP4692259B2 (en) * 2005-12-07 2011-06-01 Jfeスチール株式会社 High-strength steel sheet with excellent formability and shape freezeability
JP2007254772A (en) * 2006-03-20 2007-10-04 Osaka Univ Hot-dip galvanized steel sheet and its manufacturing method
KR100900657B1 (en) * 2007-05-02 2009-06-01 주식회사 포스코 High Strength Hot Dip Coated Steel Sheet Having Good Formability And Manufacturing Method Thereof
JP5167487B2 (en) * 2008-02-19 2013-03-21 Jfeスチール株式会社 High strength steel plate with excellent ductility and method for producing the same
KR101115790B1 (en) 2009-04-07 2012-03-09 주식회사 포스코 Cold rolled steel sheet having excellent spot welding property and delayed fracture resistance and method for manufacturing the same
MX338319B (en) 2009-12-21 2016-04-12 Tata Steel Ijmuiden Bv High strength hot dip galvanised steel strip.
KR101620750B1 (en) 2014-12-10 2016-05-13 주식회사 포스코 Composition structure steel sheet with superior formability and method for manufacturing the same
KR101561008B1 (en) 2014-12-19 2015-10-16 주식회사 포스코 Hot dip galvanized and galvannealed steel sheet having higher hole expansion ratio, and method for the same
KR101988148B1 (en) * 2015-02-24 2019-06-12 닛폰세이테츠 가부시키가이샤 Cold rolled steel sheet and manufacturing method thereof
EP3418414B1 (en) * 2016-02-18 2020-01-01 JFE Steel Corporation High-strength cold-rolled steel sheet, and production method therefor
KR101726130B1 (en) 2016-03-08 2017-04-27 주식회사 포스코 Composition structure steel sheet having excellent formability and method for manufacturing the same
BR112018071668A2 (en) * 2016-07-15 2019-02-19 Nippon Steel & Sumitomo Metal Corporation hot dip galvanized steel sheet
KR101797401B1 (en) 2016-12-07 2017-11-13 주식회사 포스코 Hot dip zinc-based plated steel sheet having excellent bake hardenability and strain aging resistance at room temperature and method for manufacturing same
CN110139941B (en) * 2017-01-30 2021-11-12 日本制铁株式会社 Steel plate
JP6409991B1 (en) * 2017-04-05 2018-10-24 Jfeスチール株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof
WO2018186335A1 (en) * 2017-04-05 2018-10-11 Jfeスチール株式会社 High strength cold rolled steel sheet and method for producing same
KR102031452B1 (en) 2017-12-24 2019-10-11 주식회사 포스코 Cold rolled steel sheet and hot dip zinc-based plated steel sheet having excellent bake hardenability and plating adhesion, and method for manufaturing the same
KR102064962B1 (en) 2017-12-24 2020-02-11 주식회사 포스코 Cold rolled steel sheet and hot dip zinc-based plated steel sheet having excellent bake hardenability and corrosion resistance, and method for manufacturing the same
KR102031449B1 (en) 2017-12-24 2019-10-11 주식회사 포스코 Zinc-based metal plated steel sheet having excellent anti-aging property at room temperature and bake hardenability, and manufacturing method for the same
CN111511945B (en) * 2017-12-26 2021-12-24 杰富意钢铁株式会社 High-strength cold-rolled steel sheet and method for producing same
KR102418275B1 (en) * 2017-12-26 2022-07-07 제이에프이 스틸 가부시키가이샤 High-strength cold-rolled steel sheet and method for manufacturing same
KR102086305B1 (en) 2019-12-03 2020-03-06 주식회사 포스코 Cold rolled steel sheet having excellent bake hardenability and corrosion resistance, and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539545B2 (en) * 1998-12-25 2004-07-07 Jfeスチール株式会社 High-tensile steel sheet excellent in burring property and method for producing the same
JP3820868B2 (en) * 2000-10-20 2006-09-13 Jfeスチール株式会社 Method for producing high-tensile hot-dip galvanized steel sheet with excellent ductility
JP2003073773A (en) * 2001-08-31 2003-03-12 Kobe Steel Ltd High-strength steel sheet superior in workability and fatigue characteristic, and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105734411A (en) * 2014-12-24 2016-07-06 Posco公司 Hot Dip Galvanized and Galvannealed Steel Sheet Having Excellent Elongation Properties, And Method For Manufacturing The Same

Also Published As

Publication number Publication date
JP2004292891A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP4165272B2 (en) High-tensile hot-dip galvanized steel sheet with excellent fatigue characteristics and hole expansibility and method for producing the same
EP2762580B1 (en) Hot-dip galvanized steel sheet and method for producing same
JP6179677B2 (en) High strength steel plate and manufacturing method thereof
JP5967319B2 (en) High strength steel plate and manufacturing method thereof
JP5454745B2 (en) High strength steel plate and manufacturing method thereof
JP5967320B2 (en) High strength steel plate and manufacturing method thereof
JP6252710B2 (en) High-strength steel sheet for warm working and manufacturing method thereof
WO2016067625A1 (en) High-strength steel sheet and method for manufacturing same
JP2009203548A (en) High-strength hot-dip galvanized steel sheet with excellent workability and process for producing the same
JP4883216B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and spot weldability and method for producing the same
JP6274360B2 (en) High-strength galvanized steel sheet, high-strength member, and method for producing high-strength galvanized steel sheet
JP4314842B2 (en) High-tensile hot-dip galvanized steel sheet excellent in strength-elongation balance and fatigue characteristics and method for producing the same
JP5141235B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP3539546B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP4710558B2 (en) High-tensile steel plate with excellent workability and method for producing the same
JP5533145B2 (en) Cold rolled steel sheet and method for producing the same
JP5533143B2 (en) Cold rolled steel sheet and method for producing the same
JP6252709B2 (en) High-strength steel sheet for warm working and manufacturing method thereof
WO2014156140A1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
JP5776762B2 (en) Cold rolled steel sheet and method for producing the same
WO2022075072A1 (en) High-strength cold-rolled steel sheet, hot-dipped galvanized steel sheet, alloyed hot-dipped galvanized steel sheet, and methods for producing of these
JP2019173156A (en) High strength steel sheet and high strength galvanized steel sheet
JP4396347B2 (en) Method for producing high-tensile steel sheet with excellent ductility and stretch flangeability
JP5776761B2 (en) Cold rolled steel sheet and method for producing the same
JP5776764B2 (en) Cold rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4165272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term