JP4501716B2 - High-strength steel sheet with excellent workability and method for producing the same - Google Patents
High-strength steel sheet with excellent workability and method for producing the same Download PDFInfo
- Publication number
- JP4501716B2 JP4501716B2 JP2005040466A JP2005040466A JP4501716B2 JP 4501716 B2 JP4501716 B2 JP 4501716B2 JP 2005040466 A JP2005040466 A JP 2005040466A JP 2005040466 A JP2005040466 A JP 2005040466A JP 4501716 B2 JP4501716 B2 JP 4501716B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- phase
- mass
- workability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 57
- 239000010959 steel Substances 0.000 title claims description 57
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229910000734 martensite Inorganic materials 0.000 claims description 23
- 238000001816 cooling Methods 0.000 claims description 19
- 229910000859 α-Fe Inorganic materials 0.000 claims description 18
- 229910001563 bainite Inorganic materials 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 238000002955 isolation Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 229910001568 polygonal ferrite Inorganic materials 0.000 claims 1
- 229910001566 austenite Inorganic materials 0.000 description 35
- 230000000694 effects Effects 0.000 description 18
- 230000000717 retained effect Effects 0.000 description 15
- 230000009466 transformation Effects 0.000 description 12
- 238000000137 annealing Methods 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 8
- 238000005728 strengthening Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 6
- 229910000794 TRIP steel Inorganic materials 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910001562 pearlite Inorganic materials 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 238000005279 austempering Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 241000219307 Atriplex rosea Species 0.000 description 1
- 229910000885 Dual-phase steel Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車、電気等の産業分野で使用される加工性に優れた高強度鋼板およびその製造法に関するものである。 The present invention relates to a high-strength steel sheet excellent in workability used in industrial fields such as automobiles and electricity, and a method for producing the same.
近年、地球環境保全の見地から、自動車の燃費向上が重要な課題となっている。このため、車体材料の高強度化により薄肉化を図り、車体そのものを軽量化しようとする動きが活発である。しかしながら、鋼板の高強度化は成形加工性の低下を招くことから、高強度と高加工性を併せ持つ材料の開発が望まれている。 In recent years, improving the fuel efficiency of automobiles has become an important issue from the viewpoint of global environmental conservation. For this reason, efforts are being made to reduce the thickness of the vehicle body by increasing the strength of the vehicle body material and to reduce the weight of the vehicle body itself. However, the development of a material having both high strength and high workability is desired since the increase in strength of the steel sheet causes a decrease in forming workability.
このような要求に対して、これまでフェライト−マルテンサイト二相鋼(Dual-Phase鋼)や残留オーステナイトの変態誘起塑性を利用したTRIP鋼など、種々の複合組織鋼板が開発されてきた。例えば、特許文献1では、化学成分および鋼板中の残留オーステナイト量を制御することによるプレス成形性に優れた鋼板、特許文献2では、化学成分および鋼板組織を制御することによるプレス成形性の良好な高強度鋼板、特許文献3では、その製造方法が提案されている。また、特許文献4では、5%以上の残留オーステナイトを含む加工性、特に局部延性に優れる鋼板が提案されている。
しかしながら、これらの発明はその大半が延性の向上を図るために開発されたものであり、成形時における重要な加工性である伸びフランジ性とのバランスの取れた成形性の確保に対しては十分な考慮がなされていない。また、考慮されている場合においても、その効果は十分とはいえなかった。例えば、特許文献1、2および3では、TRIP効果の活用により延性は十分に得られるものの、その伸びフランジ性に関してはフェライト−マルテンサイト二相鋼よりも劣る。また、特許文献4では、高歪域まで歪誘起変態を起こしにくくすることにより、局部伸びを向上させ、伸びフランジ性を確保することが提案されているが、打ち抜き端面など強加工を受けた部分では歪誘起変態を起こしてしまい、その後の伸びフランジ性の向上効果は限られたものであった。 However, most of these inventions have been developed to improve ductility, and are sufficient for securing formability that is balanced with stretch flangeability, which is an important workability during molding. There is no particular consideration. Moreover, even when considered, the effect was not sufficient. For example, in Patent Documents 1, 2 and 3, although the ductility can be sufficiently obtained by utilizing the TRIP effect, the stretch flangeability is inferior to that of the ferrite-martensite duplex steel. Further, in Patent Document 4, it is proposed to improve local elongation and secure stretch flangeability by making it difficult to cause strain-induced transformation up to a high strain region. Then, strain-induced transformation was caused, and the effect of improving the stretch flangeability after that was limited.
実際のプレス成形等において、優れた成形性を確保するためには、延性に優れるのみでなく伸びフランジ性とのバランスが非常に重要となる。しかしながら、上述したようにこれまでの発明はその両立が十分ではなかったのが現状である。 In actual press molding or the like, in order to ensure excellent formability, it is very important to balance not only excellent ductility but also stretch flangeability. However, as described above, the present invention has not been sufficiently compatible with the present invention.
本発明の目的は、上述した課題を解決し、優れた延性と伸びフランジ性を有する高強度鋼板およびその製造方法を提供することにある。 The objective of this invention is providing the high strength steel plate which solves the subject mentioned above, and has the outstanding ductility and stretch flangeability, and its manufacturing method.
上記目的を達成するため、本発明の要旨構成は以下のとおりである。
(I)質量%で、C:0.05〜0.30%、Si:2.0%以下、Mn:0.8〜3.0%、P:0.1%以下、S:0.07%以下、Al:0.1〜2.5%およびN:0.007%以下を含有し、残部がFeおよび不可避的不純物からなり、フェライト母相中に孤立して第二相粒が存在し、かつ該第二相粒のうち、焼き戻しマルテンサイト相とベイナイト相を含む混在組織からなる第二相粒の存在比率が20%以上であることを特徴とする加工性に優れた高強度鋼板。
In order to achieve the above object, the gist of the present invention is as follows.
(I) By mass%, C: 0.05 to 0.30%, Si: 2.0% or less, Mn: 0.8 to 3.0%, P: 0.1% or less, S: 0.07% or less, Al: 0.1 to 2.5% and N: 0.007% Containing the following, the balance is made of Fe and inevitable impurities, the second phase grains are present in isolation in the ferrite matrix, and the second phase grains include a tempered martensite phase and a bainite phase. A high-strength steel sheet with excellent workability, characterized in that the abundance ratio of second phase grains consisting of a mixed structure is 20% or more.
(II)質量%で、Cr:2.0%以下、V:2.0%以下およびMo:2.0%以下から選ばれる1種または2種以上の元素をさらに含有することを特徴とする上記(I)に記載の加工性に優れた高強度鋼板。 (II) As described in (I) above, further comprising one or more elements selected from Cr: 2.0% or less, V: 2.0% or less, and Mo: 2.0% or less in terms of mass% High-strength steel sheet with excellent workability.
(III)質量%で、Ti:0.1%以下、Nb:0.1%以下、B:0.0050%以下、Ni:2.0%以下およびCu:2.0%以下から選ばれる1種または2種以上の元素をさらに含有することを特徴とする上記(I)または(II)に記載の加工性に優れた高強度鋼板。 (III) By mass%, Ti: 0.1% or less, Nb: 0.1% or less, B: 0.0050% or less, Ni: 2.0% or less, and Cu: 2.0% or less, further containing one or more elements A high-strength steel sheet excellent in workability as described in (I) or (II) above.
(IV)質量%で、C:0.05〜0.30%、Si:2.0%以下、Mn:0.8〜3.0%、P:0.1%以下、S:0.07%以下、Al:0.1〜2.5%およびN:0.007%以下を含有し、残部がFeおよび不可避的不純物からなる鋼板を、700〜900℃の第1温度域で15〜600秒間保持した後、5℃/s以上の冷却速度で、下記(1)式で得られるMS〜MS−50℃の温度範囲まで冷却した後、350〜600℃の第2温度域で15〜600秒間保持した後、少なくとも200℃までの温度域を3℃/s以上の冷却速度で冷却することを特徴とする、加工性に優れた高強度鋼板の製造方法。
記
MS(℃)=540−350×{[C%]/(1−〔α%〕/100)}−40×[Mn%]+30×[Al%]
−20×[Cr%]−35×[V%]−10×[Mo%]−17×[Ni%]
−10×[Cu%] ・・・(1)
ただし、[X%]は合金元素Xの質量%、〔α%〕はポリゴナルフェライトの体積分率(%)を意味する。
(IV) By mass%, C: 0.05 to 0.30%, Si: 2.0% or less, Mn: 0.8 to 3.0%, P: 0.1% or less, S: 0.07% or less, Al: 0.1 to 2.5% and N: 0.007% After holding a steel plate containing the following, the balance being Fe and inevitable impurities in a first temperature range of 700 to 900 ° C. for 15 to 600 seconds, at a cooling rate of 5 ° C./s or more, the following formula (1) After cooling to the temperature range of MS to MS-50 ° C obtained in step 1, hold at the second temperature range of 350 to 600 ° C for 15 to 600 seconds, then cool the temperature range to at least 200 ° C at 3 ° C / s or more A method for producing a high-strength steel sheet excellent in workability, characterized by cooling at a speed.
Record
MS (° C.) = 540−350 × {[C%] / (1− [α%] / 100)} − 40 × [Mn%] + 30 × [Al%]
−20 × [Cr%] − 35 × [V%] − 10 × [Mo%] − 17 × [Ni%]
−10 × [Cu%] (1)
However, [X%] means mass% of the alloy element X, and [α%] means volume fraction (%) of polygonal ferrite.
(V)前記鋼板が、質量%で、Cr:2.0%以下、V:2.0%以下およびMo:2.0%以下から選ばれる1種または2種以上の元素をさらに含有することを特徴とする上記(IV)に記載の加工性に優れた高強度鋼板の製造方法。 (V) The steel sheet described above, wherein the steel sheet further contains one or more elements selected from Cr: 2.0% or less, V: 2.0% or less, and Mo: 2.0% or less in mass% ( A method for producing a high-strength steel sheet having excellent workability as described in IV).
(VI)前記鋼板が、質量%で、Ti:0.1%以下、Nb:0.1%以下、B:0.0050%以下、Ni:2.0%以下およびCu:2.0%以下から選ばれる1種または2種以上の元素をさらに含有することを特徴とする上記(IV)または(V)に記載の加工性に優れた高強度鋼板の製造方法。 (VI) The steel sheet is, by mass%, Ti: 0.1% or less, Nb: 0.1% or less, B: 0.0050% or less, Ni: 2.0% or less, and Cu: 2.0% or less. The method for producing a high-strength steel sheet having excellent workability as described in (IV) or (V) above, further comprising an element.
本発明によれば、優れた延性と伸びフランジ性を有する高強度鋼板とその製造方法が提供でき、産業上の利用価値は非常に大きく、工業的効果の大きい発明である。 According to the present invention, a high-strength steel sheet having excellent ductility and stretch flangeability and a method for producing the same can be provided, and the industrial utility value is very large, which is an invention with a large industrial effect.
発明者らは、高強度鋼板、特にTRIP鋼の延性と伸びフランジ性に影響を与える因子について調査した。TRIP鋼は、歪付与時に残留オーステナイトがマルテンサイト変態し、歪集中部が加工硬化して歪を分散することにより、高延性を得ている。このため均一伸びは優れるが、残留オーステナイトがマルテンサイト変態した後に加工を加えると、高Cを含有し硬化したマルテンサイトと他の粒の硬度差が著しく大きいためにその粒界からボイドが発生・進展して破断に至る。このため、伸びフランジ加工時、特に打ち抜き加工をした場合、その端面は著しい強加工を受けているために、特性が劣化する。 The inventors investigated factors affecting the ductility and stretch flangeability of high-strength steel sheets, particularly TRIP steel. In TRIP steel, retained austenite undergoes martensite transformation when strain is applied, and the strain concentrated portion is work-hardened to disperse the strain, thereby obtaining high ductility. For this reason, the uniform elongation is excellent, but when processing is performed after the retained austenite is transformed into martensite, voids are generated from the grain boundaries because the hardness difference between martensite containing high C and hardened is significantly large. Progresses and breaks. For this reason, at the time of stretch flange processing, in particular, when punching is performed, the end face is subjected to remarkably strong processing, so the characteristics deteriorate.
発明者らは、このようなフェライトとの硬度差から生じるボイドの発生を抑制する方法を検討した。その結果、残留オーステナイトを含むベイナイトを焼き戻しマルテンサイトと隣接させることにより、伸びフランジ性が改善されることを明らかにした。さらに、このような組織を実現する方法を検討した。その結果、オーステンパ後に残留した未変態オーステナイトの一部分がマルテンサイト変態した場合、オーステンパ処理後にマルテンサイト焼き戻しのために熱処理を施すため残留オーステナイトから炭化物が析出し延性が劣化する。このため、オーステンパ前に未変態オーステナイトの一部をマルテンサイト変態させ、その後のオーステンパ時に未変態オーステナイトのベイナイト変態を進行させると同時に、オーステンパ前に生成させたマルテンサイトを焼き戻すことによって軟化させ、フェライトとの硬度差を小さくすることが有効であることを明らかにした。 The inventors examined a method for suppressing the generation of voids resulting from such a hardness difference from ferrite. As a result, it has been clarified that stretch flangeability is improved by making bainite containing retained austenite adjacent to tempered martensite. Furthermore, the method of realizing such an organization was examined. As a result, when a part of the untransformed austenite remaining after austemper undergoes martensite transformation, heat treatment is performed for martensite tempering after the austempering treatment, so that carbide precipitates from the retained austenite and ductility deteriorates. For this reason, a part of untransformed austenite is martensitic transformed before austemper, and at the same time the bainite transformation of untransformed austenite proceeds during austempering, and at the same time, the martensite generated before austemper is softened by tempering, It was clarified that it is effective to reduce the hardness difference with ferrite.
本発明は、このように焼き戻しマルテンサイト相とラス間に残留オーステナイトを含むベイナイト相とを隣接させることにより、フェライトの硬度差を小さくして、伸びフランジ性を向上させることおよびその方法に特徴がある。 The present invention is characterized by the fact that the tempered martensite phase and the bainite phase containing residual austenite between the laths are adjacent to each other, thereby reducing the hardness difference of ferrite and improving stretch flangeability and the method thereof. There is.
次に、本発明の化学成分の限定理由について述べる。なお、以下の化学成分で表す%は質量%を意味する。
C:0.05〜0.30%
Cはオーステナイトを安定化させる元素であり、マルテンサイト量の確保および室温でオーステナイトを残留させるために必要な元素である。C量が0.05%未満では、製造条件の最適化を図ったとしても、鋼板の強度確保と同時に残留オーステナイト量を確保し、所定の特性を満たすことが難しい。一方、C量が0.30%を超えると、溶接部および熱影響部の硬化が著しく、溶接性が劣化する。こうした観点から、C量を0.05〜0.30%の範囲内とし、好ましくは0.05〜0.2%とする。
Next, the reasons for limiting the chemical components of the present invention will be described. In addition,% represented with the following chemical components means the mass%.
C: 0.05-0.30%
C is an element that stabilizes austenite, and is an element necessary for ensuring the amount of martensite and for retaining austenite at room temperature. If the amount of C is less than 0.05%, even if the production conditions are optimized, it is difficult to secure the amount of retained austenite at the same time as securing the strength of the steel sheet and satisfy the predetermined characteristics. On the other hand, if the amount of C exceeds 0.30%, the welded part and the heat-affected zone are markedly cured, and the weldability deteriorates. From such a viewpoint, the C content is in the range of 0.05 to 0.30%, preferably 0.05 to 0.2%.
Si:2.0%以下
Siは、鋼の強化に有効な元素である。また、フェライト生成元素であり、オーステナイト中へのCの濃化促進および炭化物の生成を抑制することから、残留オーステナイトの生成を促進する働きがあるので、複合組織鋼およびTRIP鋼に添加されることが多い。しかしながら、2.0%を超えるSiの過剰な添加は、フェライト中への固溶量の増加による加工性および靭性の劣化や、赤スケール等の発生による表面性状の劣化が生じる他、溶融めっきを施す場合には、めっき密着性の劣化を引き起こす。従って、Si添加量を2.0%以下とし、好ましくは0.Ol〜2.0%とする。
Si: 2.0% or less
Si is an element effective for strengthening steel. In addition, it is a ferrite-forming element, and since it acts to promote the formation of retained austenite because it promotes the concentration of C in austenite and suppresses the formation of carbides, it must be added to composite structure steel and TRIP steel. There are many. However, excessive addition of Si exceeding 2.0% causes deterioration of workability and toughness due to an increase in the amount of solid solution in ferrite, and deterioration of surface properties due to the occurrence of red scale, etc. Causes deterioration of plating adhesion. Therefore, the Si addition amount is set to 2.0% or less, preferably 0.01 to 2.0%.
Mn:0.8〜3.0%
Mmは、鋼の強化に有効な元素である。また、オーステナイトを安定化させる元素であり、マルテンサイトや残留オーステナイトの体積の増加に必要な元素である。この効果は、Mnが0.8%以上で得られる。一方、Mnを3.0%を超えて過剰に添加すると、第二相分率過大や固溶強化による強度上昇が著しくなる。従って、Mn含有量を0.8〜3.0%とし、好ましくは1.0〜3.0%とする。
Mn: 0.8-3.0%
Mm is an element effective for strengthening steel. In addition, it is an element that stabilizes austenite, and is an element that is necessary for increasing the volume of martensite and retained austenite. This effect is obtained when Mn is 0.8% or more. On the other hand, when Mn is added excessively exceeding 3.0%, strength increase due to excessive second phase fraction or solid solution strengthening becomes remarkable. Therefore, the Mn content is set to 0.8 to 3.0%, preferably 1.0 to 3.0%.
P:0.1%以下
Pは、鋼の強化に有効な元素であるが、0.1%を超えて過剰に添加すると、粒界偏析により脆化を引き起こし、耐衝撃性を劣化させる。従って、P含有量を0.1%以下とする。
P: 0.1% or less P is an element effective for strengthening steel. However, when P is added in excess of 0.1%, it causes embrittlement due to segregation at the grain boundaries and deteriorates impact resistance. Therefore, the P content is 0.1% or less.
S:0.07%以下
Sは、MnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となるので極力低い方がよく、製造コストの面も考慮して、S含有量を0.07%以下とする。
S: 0.07% or less S is an inclusion such as MnS, which causes deterioration in impact resistance and cracks along the metal flow of the weld. Thus, the S content is set to 0.07% or less.
Al:0.1〜2.5%
Alは、フェライト生成元素であり、オーステナイト中へのCの濃化促進および炭化物の生成を抑制し、残留オーステナイトの生成を促進する効果がある。この効果の発揮させるには、Alを0.1%以上添加することが必要である。特に、複合組織鋼およびTRIP鋼の場合には、かかる効果を発揮させるため、Alを多量に添加する場合がある。しかしながら、2.5%を超えるAlの過剰添加は、フェライトの脆化を招き、材料の強度−延性バランスを劣化させるとともに、鋼板中の介在物が多くなって延性を劣化させる。従って、Al添加量を0.1〜2.5%とし、好ましくは0.1〜2.0%とする。
Al: 0.1-2.5%
Al is a ferrite-forming element, and has the effect of promoting the concentration of C in austenite and suppressing the formation of carbides and promoting the formation of retained austenite. In order to exert this effect, it is necessary to add 0.1% or more of Al. In particular, in the case of composite structure steel and TRIP steel, a large amount of Al may be added in order to exert such an effect. However, excessive addition of Al exceeding 2.5% leads to embrittlement of ferrite, which deteriorates the strength-ductility balance of the material, and increases the inclusions in the steel sheet to deteriorate the ductility. Therefore, the Al addition amount is 0.1 to 2.5%, preferably 0.1 to 2.0%.
N:0.007%以下
Nは、鋼の耐時効性を最も大きく劣化させる元素であるため、少ないほどよく、特にN含有量が0.007%を超えると、耐時効性の劣化が顕著となる。従って、N含有量を0.007%以下とする。
N: 0.007% or less Since N is an element that most deteriorates the aging resistance of steel, the smaller the amount, the better. In particular, when the N content exceeds 0.007%, the deterioration of aging resistance becomes significant. Therefore, the N content is 0.007% or less.
本発明の鋼板は、以上の基本成分および鉄を主成分とするものである。ここで主成分とは、不可避的不純物の含有や、上記基本成分の作用を損なうことなく、むしろこれらの作用を向上させ、あるいは機械的、化学的特性を改善できる元素の含有を妨げない趣旨であり、例えば下記に示すCr、VおよびMoから選ばれる1種または2種以上の元素を含有することができる。 The steel sheet of the present invention is mainly composed of the above basic components and iron. Here, the main component does not impede the inclusion of elements that inevitably improve the action of these elements or improve the mechanical and chemical characteristics without impairing the action of the inevitable impurities and the basic ingredients. For example, one or more elements selected from Cr, V and Mo shown below can be contained.
Cr:2.0%以下
Crは、焼鈍温度からの冷却時にパーライト相の生成を抑制する効果を有する。しかしながら、Cr含有量が2.0%を超えると、フェライト量が過少となり加工性の低下が懸念されることから、Cr含有量の上限を2.0%とすることが好ましい。なお、Cr含有量の下限は、特に限定はしないが、パーライト相生成の抑制効果を得るために、0.01%とすることが好ましい。
Cr: 2.0% or less
Cr has an effect of suppressing the formation of a pearlite phase during cooling from the annealing temperature. However, if the Cr content exceeds 2.0%, the ferrite content becomes too small and there is a concern about workability deterioration, so the upper limit of the Cr content is preferably 2.0%. The lower limit of the Cr content is not particularly limited, but is preferably 0.01% in order to obtain the effect of suppressing the formation of pearlite phase.
V:2.0%以下
Vは焼鈍温度からの冷却時にパーライト相の生成を抑制する効果を有する。しかしながら、V含有量が2.0%を超えると、フェライト量が過少となり加工性の低下が懸念されることから、V含有量の上限を2.0%とすることが好ましい。なお、V含有量の下限は、特に限定はしないが、パーライト相生成の抑制効果を得るために、0.005%とすることが好ましい。
V: 2.0% or less V has an effect of suppressing the formation of a pearlite phase during cooling from the annealing temperature. However, if the V content exceeds 2.0%, the amount of ferrite becomes too small and there is a concern about workability reduction, so the upper limit of the V content is preferably 2.0%. The lower limit of the V content is not particularly limited, but is preferably 0.005% in order to obtain the effect of suppressing the formation of pearlite phase.
Mo:2.0%以下
Moは、耐遅れ破壊性等に有効な元素であるが、Mo含有量が2.0%を超えると、加工性が低下する傾向がある。従って、Mo含有量は2.0%とすることが好ましい。なお、Mo含有量の下限は、特に限定はしないが、耐遅れ破壊等への効果を十分に得るために、0.005%とすることが好ましい。
Mo: 2.0% or less
Mo is an element effective for delayed fracture resistance and the like, but if the Mo content exceeds 2.0%, the workability tends to decrease. Therefore, the Mo content is preferably 2.0%. The lower limit of the Mo content is not particularly limited, but is preferably 0.005% in order to sufficiently obtain an effect on delayed fracture resistance.
また、本発明の鋼板は、Ti、Nb、B、NiおよびCuから選ばれる1種または2種以上の元素をさらに含有することができる。
TiおよびNb:それぞれ0.1%以下
TiおよびNbは、鋼の析出強化に有効な元素であり、本発明で規定した組織を満たす範囲内であれば、鋼の強化に使用しても差し支えない。しかしながら、TiおよびNbの各含有量が0.1%を超えると、加工性が低下する傾向がある。従って、TiおよびNbの含有量は、それぞれ0.1%以下とすることが好ましい。なお、TiおよびNbの含有量の下限は、特に限定はしないが、析出強化などの効果を十分に得るためには、0.003%とすることが好ましい。
Moreover, the steel plate of this invention can further contain the 1 type (s) or 2 or more types of element chosen from Ti, Nb, B, Ni, and Cu.
Ti and Nb: 0.1% or less each
Ti and Nb are effective elements for precipitation strengthening of steel, and may be used for strengthening steel as long as the structure satisfies the structure defined in the present invention. However, when the content of Ti and Nb exceeds 0.1%, the workability tends to decrease. Accordingly, the Ti and Nb contents are each preferably 0.1% or less. In addition, although the minimum of content of Ti and Nb is not specifically limited, In order to fully acquire effects, such as precipitation strengthening, it is preferable to set it as 0.003%.
B:0.0050%以下
Bは、オーステナイト粒界からのフェライト相の生成を抑制し、第二相を増加させる作用を有する。しかしながら、B含有量が0.0050%を超えると、フェライト量が過少となり、加工性が低下する傾向がある。従って、B含有量は0.0050%以下とする。なお、B含有量の下限は、特に限定はしないが、第二相増加などの効果を十分に得るために、0.0003%とすることが好ましい。
B: 0.0050% or less B has an action of suppressing the formation of a ferrite phase from the austenite grain boundary and increasing the second phase. However, if the B content exceeds 0.0050%, the amount of ferrite becomes too small, and the workability tends to decrease. Therefore, the B content is 0.0050% or less. The lower limit of the B content is not particularly limited, but is preferably 0.0003% in order to sufficiently obtain effects such as an increase in the second phase.
NiおよびCu:それぞれ2.0%以下
NiおよびCuは、オーステナイト安定化元素であり、オーステナイトを残留させるとともに強度上昇にも効果がある。ただし、NiおよびCuを、それぞれ2.0%を超えて添加すると、鋼板の延性を低下させる傾向がある。従って、NiおよびCuの含有量は、それぞれ2.0%以下とすることが好ましい。なお、NiおよびCuの含有量の下限は、特に限定はしないが、オーステナイト安定化効果を得るために、0.005%とすることが好ましい。
Ni and Cu: 2.0% or less each
Ni and Cu are austenite stabilizing elements, and are effective in increasing the strength while retaining austenite. However, if Ni and Cu are added in excess of 2.0%, the ductility of the steel sheet tends to be reduced. Accordingly, the Ni and Cu contents are each preferably 2.0% or less. In addition, although the minimum of content of Ni and Cu is not specifically limited, In order to acquire an austenite stabilization effect, it is preferable to set it as 0.005%.
次に、本発明の鋼板の鋼組織を限定した理由について説明する。
本発明の高強度鋼板は、フェライト母相中に孤立して第二相粒が存在する、いわゆる複合組織を有することが必要である。フェライト相と第二相の複合組織にすることによって、高強度と高加工性の両立が可能になるからである。
Next, the reason which limited the steel structure of the steel plate of this invention is demonstrated.
The high-strength steel sheet of the present invention needs to have a so-called composite structure in which second phase grains are present in isolation in the ferrite matrix. This is because, by using a composite structure of a ferrite phase and a second phase, both high strength and high workability can be achieved.
さらに、本発明では、第二相粒のうち、焼き戻しマルテンサイト相とベイナイト相を含む混在組織からなる第二相粒の存在比率が20%以上であることが必要である。このように焼き戻しマルテンサイト相とラス間に残留オーステナイトを含むベイナイト相とを隣接させることにより、各相間の硬度の急激な変化を抑制して、伸びフランジ性を向上させるという効果を奏することができるからである。このような効果は、第二相粒のうち、焼き戻しマルテンサイト相とベイナイト相を含む混在組織からなる第二相粒の存在比率が20%以上である場合に有効に発揮することができる。なお、前記第二相粒の存在比率は、延性と伸びフランジ性のバランスを良好とするために、30〜90%とすることが好ましい。残部の第二相粒は、マルテンサイト(焼戻しマルテンサイトを含む)単相もしくはべイナイト(ラス間に残留オーステナイトを含む)単相である。 Furthermore, in the present invention, it is necessary that the abundance ratio of the second phase grains composed of the mixed structure including the tempered martensite phase and the bainite phase among the second phase grains is 20% or more. By adjoining the tempered martensite phase and the bainite phase containing retained austenite between the laths in this way, it is possible to suppress the rapid change in hardness between the phases and improve the stretch flangeability. Because it can. Such an effect can be exhibited effectively when the abundance ratio of the second phase grains composed of the mixed structure including the tempered martensite phase and the bainite phase is 20% or more. The abundance ratio of the second phase grains is preferably 30 to 90% in order to improve the balance between ductility and stretch flangeability. The remaining second phase grains are martensite (including tempered martensite) single phase or bainite (including residual austenite between laths) single phase.
また、加工性の点から、フェライト相と第二相との存在割合は、鋼組織全体に占めるフェライト相の体積率にして30〜80%とすることが好ましい。 Further, from the viewpoint of workability, it is preferable that the abundance ratio of the ferrite phase and the second phase is 30 to 80% in terms of the volume ratio of the ferrite phase in the entire steel structure.
次に、本発明の高強度鋼板の製造方法の一例について以下で説明する。
上記化学組成を有する冷延鋼板を、まず700〜900℃の第1温度域、具体的には、オーステナイト単相域、もしくはオーステナイト相とフェライト相の2相域で、15〜600秒間焼鈍する。焼鈍温度が700℃未満の場合や、焼鈍時間が15秒間未満の場合には、冷延鋼板中の炭化物が十分に溶解しない場合やフェライトの再結晶が完了せず、目標とする特性が得られない場合がある。一方、焼鈍温度が900℃を超える場合には、オーステナイト粒の成長が著しく、その後の冷却によって生じる第二相からのフェライトの核生成サイトの減少を引き起こす場合がある。また、焼鈍時間が600秒間を超える焼鈍は、多大なエネルギー消費に伴うコストの増加を引き起こす。このため、焼鈍温度を700〜900℃とし、焼鈍時間を15〜600秒間とする。
Next, an example of the manufacturing method of the high strength steel plate of the present invention will be described below.
First, the cold-rolled steel sheet having the above chemical composition is annealed for 15 to 600 seconds in a first temperature range of 700 to 900 ° C., specifically, in an austenite single phase region or a two-phase region of an austenite phase and a ferrite phase. If the annealing temperature is less than 700 ° C or if the annealing time is less than 15 seconds, the carbides in the cold-rolled steel sheet will not dissolve sufficiently or the recrystallization of ferrite will not be completed, and the target characteristics will be obtained. There may not be. On the other hand, when the annealing temperature exceeds 900 ° C., the austenite grains grow remarkably, which may cause a decrease in ferrite nucleation sites from the second phase caused by subsequent cooling. In addition, annealing with an annealing time exceeding 600 seconds causes an increase in cost due to a large energy consumption. For this reason, annealing temperature shall be 700-900 degreeC, and annealing time shall be 15-600 seconds.
焼鈍後、5℃/s以上の冷却速度で、下記(1)式で得られるMS〜MS−50℃の温度範囲まで冷却する。
記
MS(℃)=540−350×{[C%]/(1−〔α%〕/100)}−40×[Mn%]+30×[Al%]
−20×[Cr%]−35×[V%]−10×[Mo%]−17×[Ni%]
−10×[Cu%] ・・・(1)
ただし、[X%]は合金元素Xの質量%、〔α%〕はポリゴナルフェライトの体積分率(%)を意味する。
After annealing, it is cooled to a temperature range of MS to MS-50 ° C. obtained by the following formula (1) at a cooling rate of 5 ° C./s or more.
Record
MS (° C.) = 540−350 × {[C%] / (1− [α%] / 100)} − 40 × [Mn%] + 30 × [Al%]
−20 × [Cr%] − 35 × [V%] − 10 × [Mo%] − 17 × [Ni%]
−10 × [Cu%] (1)
However, [X%] means mass% of the alloy element X, and [α%] means volume fraction (%) of polygonal ferrite.
冷却速度が5℃/s未満の場合には、パーライトが析出し、未変態オーステナイト中の固溶Cが大幅に低下するため、目標とする組織が得られない。冷却停止温度は、MS〜MS−50℃の範囲である場合に、未変態オーステナイトの一部をマルテンサイト変態させることができる。冷却停止温度がMS℃を超える温度では、第二相に含まれる合金成分にバラツキがあるため、第二相の一部はマルテンサイト変態するものの、その変態量が十分ではなく、またMS−50℃未満では、逆にマルテンサイト変態量が過大となり、目標とする特性が得られない場合がある。このため、冷却停止温度は、MS〜MS−50℃の範囲とする。 When the cooling rate is less than 5 ° C./s, pearlite is precipitated and the solid solution C in the untransformed austenite is significantly reduced, so that the target structure cannot be obtained. When the cooling stop temperature is in the range of MS to MS-50 ° C., part of untransformed austenite can be martensitic transformed. At a temperature at which the cooling stop temperature exceeds MS ° C., the alloy components contained in the second phase vary, so part of the second phase undergoes martensitic transformation, but the transformation amount is not sufficient, and MS-50 If it is less than 0 ° C., on the contrary, the martensite transformation amount becomes excessive, and the target characteristics may not be obtained. For this reason, cooling stop temperature shall be the range of MS-MS-50 degreeC.
この後、本発明では、さらに350〜600℃の第2温度域で、15〜600秒間保持する。これは、未変態オーステナイトのベイナイト変態を促進し、固溶C量を増加させて常温において安定な残留オーステナイトを得るために行い、同時にマルテンサイトの焼き戻しも行う。前記温度域が600℃超えでは、未変態オーステナイト中から炭化物が析出し、逆に350℃未満の温度では下部ベイナイト変態により炭化物が析出して、結果として安定した残留オーステナイトが十分に得られない。また、保持時間が15秒間未満では、ベイナイト変態量が十分でなく、逆に600秒間超えでは、未変態オーステナイトから炭化物が析出し、結果として安定した残留オーステナイトが十分に得られない。 Then, in this invention, it hold | maintains for 15 to 600 second in the 2nd temperature range of 350-600 degreeC. This is performed to promote the bainite transformation of untransformed austenite and increase the amount of dissolved C to obtain stable retained austenite at room temperature, and at the same time, temper martensite. If the temperature range exceeds 600 ° C., carbide precipitates from the untransformed austenite. Conversely, if the temperature is less than 350 ° C., carbide precipitates due to the lower bainite transformation, and as a result, stable retained austenite cannot be obtained sufficiently. If the holding time is less than 15 seconds, the amount of bainite transformation is not sufficient. Conversely, if it exceeds 600 seconds, carbides precipitate from untransformed austenite, and as a result, stable retained austenite cannot be obtained sufficiently.
本発明では、上記第2温度域で保持後、少なくとも200℃までの第3温度域を3℃/s以上の冷却速度で冷却することが必要である。少なくとも200℃までの温度域を3℃/s以上の冷却速度で冷却することによって、炭化物の析出による特性劣化を抑制可能となる。3℃/s以上の冷却速度での冷却終了温度が200℃よりも高いと、炭化物が析出する場合があり、また3℃/s未満だと、炭化物の析出、粗大化により特性劣化が生じる可能性がある。 In the present invention, after holding in the second temperature range, it is necessary to cool the third temperature range up to at least 200 ° C. at a cooling rate of 3 ° C./s or more. By cooling the temperature range up to at least 200 ° C. at a cooling rate of 3 ° C./s or more, it is possible to suppress deterioration of characteristics due to precipitation of carbides. If the cooling end temperature at a cooling rate of 3 ° C./s or higher is higher than 200 ° C., carbide may be precipitated, and if it is less than 3 ° C./s, characteristic deterioration may occur due to carbide precipitation or coarsening. There is sex.
なお、本発明の製造方法における一連の熱処理においては、規定した温度範囲内であれば保持温度は一定である必要はなく、また冷却速度が冷却中に変化した場合においても規定した範囲内であれば本発明の趣旨を損なわない。また、熱履歴さえ満足されれば、鋼板は連続焼鈍設備や溶融亜鉛めっき設備をはじめとしたいかなる設備で熱処理を施されてもかまわない。加えて、熱処理後に形状矯正のため本発明の鋼板に調質圧延を施したり電気めっき等で表面層を被覆することも本発明の範囲に含まれる。なお、本発明では、鋼素材を通常の製鋼、鋳造、熱延の各工程を経て製造する場合を想定しているが、例えば薄手鋳造などにより熱延工程の一部もしくは全部を省略して製造する場合でもよい。 In the series of heat treatments in the production method of the present invention, the holding temperature does not have to be constant as long as it is within the specified temperature range, and even if the cooling rate changes during cooling, it may be within the specified range. Thus, the gist of the present invention is not impaired. Further, as long as the thermal history is satisfied, the steel sheet may be heat-treated in any equipment including a continuous annealing equipment and a hot dip galvanizing equipment. In addition, it is also included in the scope of the present invention that the steel sheet of the present invention is subjected to temper rolling or the surface layer is coated with electroplating or the like for shape correction after heat treatment. In the present invention, it is assumed that the steel material is manufactured through normal steelmaking, casting, and hot rolling processes, but the manufacturing process is performed by omitting part or all of the hot rolling process by thin casting, for example. You may do it.
以下、本発明を実施例によってさらに詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に沿って設計変更することはいずれも本発明の技術的範囲に含まれるものである。 Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.
表1に示す化学成分の鋼を溶製して得た鋳片を熱延、酸洗後、冷間圧延によって1.2mm厚の冷延鋼板とした。その後、表2および表3に示す条件で熱処理後、0.5%の調質圧延を施した。このようにして得られた各鋼板について、性能を評価した。また、鋼板組織は、走査型電子顕微鏡(SEM)で観察し、組織中の各相の体積分率を線分法により求めた。 A slab obtained by melting steel having chemical components shown in Table 1 was hot-rolled, pickled, and then cold-rolled to obtain a cold-rolled steel sheet having a thickness of 1.2 mm. Then, after heat treatment under the conditions shown in Table 2 and Table 3, 0.5% temper rolling was performed. The performance of each steel plate thus obtained was evaluated. Further, the steel sheet structure was observed with a scanning electron microscope (SEM), and the volume fraction of each phase in the structure was determined by a line segment method.
1.引張試験
引張試験は、得られた各鋼板から打抜き加工したJIS5号試験片を用いて行い、TS(引張り強さ)、El(全伸び)を測定し、強度と伸びの積(TS×El)で表される強度−伸びバランスの値を求めた。なお、本発明では、TS×El≧19800(MPa・%)の場合を良好と判定した。
1. Tensile test Tensile test is performed using JIS No. 5 test piece punched from each steel plate obtained, TS (tensile strength) and El (total elongation) are measured, and product of strength and elongation (TS x El) The value of strength-elongation balance represented by In the present invention, the case of TS × El ≧ 19800 (MPa ·%) was determined to be good.
2.伸びフランジ性
得られた各鋼板を100mm×100mmに切断後、クリアランス12%で直径10mmの穴を打ち抜いた後、内径75mmのダイスを用いてしわ押さえ力9tonで抑えた状態で、60°円錐のポンチを穴に押し込んで亀裂発生限界における穴直径を測定し、下記に示す式から、限界穴拡げ率(%)を求め、この限界穴拡げ率の値から伸びフランジ性を評価した。なお、本発明では、限界穴拡げ率λ≧50%を良好と判定した。
限界穴拡げ率λ(%)={(Df−D0)/D0}×100
ただし、Dfは亀裂発生時の穴径(mm)、D0は初期穴径(mm)である。
2. Stretch flangeability Each steel plate obtained was cut to 100 mm x 100 mm, punched out a hole with a diameter of 10 mm with a clearance of 12%, and then with a dies with a diameter of 75 mm and a wrinkle holding force of 9 tons, The punch was pushed into the hole, the hole diameter at the crack initiation limit was measured, the critical hole expansion rate (%) was obtained from the following formula, and the stretch flangeability was evaluated from the value of the critical hole expansion rate. In the present invention, the critical hole expansion ratio λ ≧ 50% was determined to be good.
Limit hole expansion rate λ (%) = {(D f −D 0 ) / D 0 } × 100
However, D f hole diameter at crack initiation (mm), D 0 is the initial hole diameter (mm).
表2および表3に、それらの評価結果をまとめて記す。これらの結果から明らかなように、本発明で規定する要件を満足する鋼板は、強度−伸びバランスの値と伸びフランジ性のバランスに優れ、目標とした特性が得られていることがわかる。 Tables 2 and 3 summarize the evaluation results. As is clear from these results, it can be seen that the steel sheet that satisfies the requirements defined in the present invention is excellent in the balance between the strength-elongation balance value and the stretch flangeability, and the target characteristics are obtained.
本発明によれば、優れた延性と伸びフランジ性を有する高強度鋼板とその製造方法が提供でき、産業上の利用価値は非常に大きく、工業的効果の大きい発明である。 According to the present invention, a high-strength steel sheet having excellent ductility and stretch flangeability and a method for producing the same can be provided, and the industrial utility value is very large, which is an invention with a large industrial effect.
Claims (6)
記
MS(℃)=540−350×{[C%]/(1−〔α%〕/100)}−40×[Mn%]+30×[Al%]
−20×[Cr%]−35×[V%]−10×[Mo%]−17×[Ni%]
−10×[Cu%] ・・・(1)
ただし、[X%]は合金元素Xの質量%、〔α%〕はポリゴナルフェライトの体積分率(%)を意味する。 In mass%, C: 0.05-0.30%, Si: 2.0% or less, Mn: 0.8-3.0%, P: 0.1% or less, S: 0.07% or less, Al: 0.1-2.5% and N: 0.007% or less Then, after the steel plate having the balance of Fe and inevitable impurities is held for 15 to 600 seconds in the first temperature range of 700 to 900 ° C., it is obtained by the following formula (1) at a cooling rate of 5 ° C./s or more. After cooling to the temperature range of MS to MS-50 ° C, hold in the second temperature range of 350 to 600 ° C for 15 to 600 seconds, then cool the temperature range of at least 200 ° C at a cooling rate of 3 ° C / s or more A method for producing a high-strength steel sheet excellent in workability, characterized in that:
Record
MS (° C.) = 540−350 × {[C%] / (1− [α%] / 100)} − 40 × [Mn%] + 30 × [Al%]
−20 × [Cr%] − 35 × [V%] − 10 × [Mo%] − 17 × [Ni%]
−10 × [Cu%] (1)
However, [X%] means mass% of the alloy element X, and [α%] means volume fraction (%) of polygonal ferrite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005040466A JP4501716B2 (en) | 2004-02-19 | 2005-02-17 | High-strength steel sheet with excellent workability and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004042688 | 2004-02-19 | ||
JP2005040466A JP4501716B2 (en) | 2004-02-19 | 2005-02-17 | High-strength steel sheet with excellent workability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005264328A JP2005264328A (en) | 2005-09-29 |
JP4501716B2 true JP4501716B2 (en) | 2010-07-14 |
Family
ID=35089174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005040466A Active JP4501716B2 (en) | 2004-02-19 | 2005-02-17 | High-strength steel sheet with excellent workability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4501716B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4725973B2 (en) * | 2006-10-18 | 2011-07-13 | 株式会社神戸製鋼所 | High strength steel plate with excellent stretch flangeability and method for producing the same |
JP5223360B2 (en) | 2007-03-22 | 2013-06-26 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same |
JP5365217B2 (en) | 2008-01-31 | 2013-12-11 | Jfeスチール株式会社 | High strength steel plate and manufacturing method thereof |
JP5369663B2 (en) * | 2008-01-31 | 2013-12-18 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof |
JP5703608B2 (en) | 2009-07-30 | 2015-04-22 | Jfeスチール株式会社 | High strength steel plate and manufacturing method thereof |
JP6007571B2 (en) * | 2012-04-26 | 2016-10-12 | Jfeスチール株式会社 | High-strength cold-rolled steel sheet and high-strength galvanized steel sheet |
CN103060703B (en) | 2013-01-22 | 2015-09-23 | 宝山钢铁股份有限公司 | A kind of cold rolling diphasic strip steel of 780MPa level and manufacture method thereof |
CN112522582B (en) * | 2019-09-19 | 2022-11-18 | 宝山钢铁股份有限公司 | Boron-containing high-strength high-hole-expansion steel and manufacturing method thereof |
CN117737587B (en) * | 2023-12-20 | 2024-06-14 | 广州航海学院 | Bainite steel with wide window processing and stable performance and preparation method thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0665645A (en) * | 1992-08-22 | 1994-03-08 | Sumitomo Metal Ind Ltd | Production of high ductility hot rolled high tensile strength steel sheet |
JPH06145892A (en) * | 1992-11-02 | 1994-05-27 | Nippon Steel Corp | High strength steel sheet good in press formability |
JPH06145788A (en) * | 1992-11-02 | 1994-05-27 | Nippon Steel Corp | Production of high strength steel sheet excellent in press formbility |
JPH07207413A (en) * | 1994-01-12 | 1995-08-08 | Nippon Steel Corp | Cold rolled steel sheet of high-strength composite structure having excellent workability and tensile strength of 45 to 65kgf/mm2 and its production |
JPH11323490A (en) * | 1998-05-13 | 1999-11-26 | Nippon Steel Corp | High strength cold rolled steel sheet having superior workability and excellent in shape fixability and its production |
JP2000017385A (en) * | 1998-06-29 | 2000-01-18 | Nippon Steel Corp | Dual-phase-type high strength cold rolled steel sheet excellent in dynamic deformability, and its production |
JP2001003150A (en) * | 1999-04-21 | 2001-01-09 | Kawasaki Steel Corp | High tensile strength hot dip galvanized steel sheet excellent in ductility and its production |
JP2002129241A (en) * | 2000-10-20 | 2002-05-09 | Kawasaki Steel Corp | Method for manufacturing high tensile hot-dip galvanized steel sheet having excellent ductility |
JP2002294400A (en) * | 2001-03-28 | 2002-10-09 | Sumitomo Metal Ind Ltd | High tensile strength steel plate and production method therefor |
JP2003105513A (en) * | 2001-09-28 | 2003-04-09 | Nippon Steel Corp | High strength galvanized steel sheet having excellent appearance and workability, and production method therefor |
-
2005
- 2005-02-17 JP JP2005040466A patent/JP4501716B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0665645A (en) * | 1992-08-22 | 1994-03-08 | Sumitomo Metal Ind Ltd | Production of high ductility hot rolled high tensile strength steel sheet |
JPH06145892A (en) * | 1992-11-02 | 1994-05-27 | Nippon Steel Corp | High strength steel sheet good in press formability |
JPH06145788A (en) * | 1992-11-02 | 1994-05-27 | Nippon Steel Corp | Production of high strength steel sheet excellent in press formbility |
JPH07207413A (en) * | 1994-01-12 | 1995-08-08 | Nippon Steel Corp | Cold rolled steel sheet of high-strength composite structure having excellent workability and tensile strength of 45 to 65kgf/mm2 and its production |
JPH11323490A (en) * | 1998-05-13 | 1999-11-26 | Nippon Steel Corp | High strength cold rolled steel sheet having superior workability and excellent in shape fixability and its production |
JP2000017385A (en) * | 1998-06-29 | 2000-01-18 | Nippon Steel Corp | Dual-phase-type high strength cold rolled steel sheet excellent in dynamic deformability, and its production |
JP2001003150A (en) * | 1999-04-21 | 2001-01-09 | Kawasaki Steel Corp | High tensile strength hot dip galvanized steel sheet excellent in ductility and its production |
JP2002129241A (en) * | 2000-10-20 | 2002-05-09 | Kawasaki Steel Corp | Method for manufacturing high tensile hot-dip galvanized steel sheet having excellent ductility |
JP2002294400A (en) * | 2001-03-28 | 2002-10-09 | Sumitomo Metal Ind Ltd | High tensile strength steel plate and production method therefor |
JP2003105513A (en) * | 2001-09-28 | 2003-04-09 | Nippon Steel Corp | High strength galvanized steel sheet having excellent appearance and workability, and production method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2005264328A (en) | 2005-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4956998B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same | |
JP5333298B2 (en) | Manufacturing method of high-strength steel sheet | |
JP5365217B2 (en) | High strength steel plate and manufacturing method thereof | |
CN110959049B (en) | Flat steel product with good aging resistance and method for the production thereof | |
US20120175028A1 (en) | High strength steel sheet and method for manufacturing the same | |
JP5251208B2 (en) | High-strength steel sheet and its manufacturing method | |
CN109642263B (en) | Method for producing a high-strength steel strip with improved properties during further processing, and such a steel strip | |
JP4501716B2 (en) | High-strength steel sheet with excellent workability and method for producing the same | |
JP2005139485A (en) | Steel sheet to be hot-formed | |
KR20130083481A (en) | High-strength hot-dip galvannealed steel shhet with excellent workability and fatigue characteristics and process for production thereof | |
KR20130012153A (en) | High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same | |
JP5786317B2 (en) | High-strength hot-dip galvanized steel sheet with excellent material stability and workability and method for producing the same | |
JP2008156680A (en) | High-strength cold rolled steel sheet having high yield ratio, and its production method | |
KR20140007476A (en) | Process for producing high-strength hot-dip galvanized steel sheet with excellent material-quality stability, processability, and deposit appearance | |
KR20120099517A (en) | High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same | |
JP5256690B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same | |
KR100860172B1 (en) | Method for manufacturing galvannealed steel sheet | |
JP2023534180A (en) | Heat-treated cold-rolled steel sheet and manufacturing method thereof | |
JP5591443B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability | |
CN113348255A (en) | Cold rolled steel sheet | |
JP5256689B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
JP4848722B2 (en) | Method for producing ultra-high-strength cold-rolled steel sheet with excellent workability | |
JP5304522B2 (en) | High-strength steel sheet with excellent workability and method for producing the same | |
JP2004323958A (en) | High tensile strength hot dip galvanized steel sheet having excellent secondary working brittleness resistance, and its production method | |
JPH05117834A (en) | Manufacture of hot dip galvannealed steel sheet having excellent stretch-flanging property using high strength hot-rolled original sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060609 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071025 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100305 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100330 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100412 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4501716 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140430 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |