JP6835046B2 - Thin steel sheet and its manufacturing method - Google Patents

Thin steel sheet and its manufacturing method Download PDF

Info

Publication number
JP6835046B2
JP6835046B2 JP2018143806A JP2018143806A JP6835046B2 JP 6835046 B2 JP6835046 B2 JP 6835046B2 JP 2018143806 A JP2018143806 A JP 2018143806A JP 2018143806 A JP2018143806 A JP 2018143806A JP 6835046 B2 JP6835046 B2 JP 6835046B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
water
area ratio
thin steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018143806A
Other languages
Japanese (ja)
Other versions
JP2020019992A (en
Inventor
典晃 ▲高▼坂
典晃 ▲高▼坂
智裕 村上
智裕 村上
康二郎 藤本
康二郎 藤本
拓弥 平島
拓弥 平島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018143806A priority Critical patent/JP6835046B2/en
Publication of JP2020019992A publication Critical patent/JP2020019992A/en
Application granted granted Critical
Publication of JP6835046B2 publication Critical patent/JP6835046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、薄鋼板およびその製造方法に関する。本発明の薄鋼板は、引張強さ(TS):780MPa以上の強度で、優れた強度均質性、表面性状及び板形状を兼備する。このため、本発明の薄鋼板は、自動車用骨格部材の素材に適する。 The present invention relates to a thin steel sheet and a method for producing the same. The thin steel sheet of the present invention has a tensile strength (TS) of 780 MPa or more, and has excellent strength homogeneity, surface texture, and plate shape. Therefore, the thin steel plate of the present invention is suitable as a material for a skeleton member for automobiles.

近年、地球環境保全の観点から、CO排出量の規制を目的として自動車業界全体で自動車の燃費改善が指向されている。自動車の燃費改善には、使用部品の薄肉化による自動車の軽量化が最も有効であるため、近年、自動車部品用素材としての高強度鋼板の使用量が増加しつつある。 In recent years, from the viewpoint of global environmental conservation, improvement of automobile fuel efficiency has been aimed at in the entire automobile industry for the purpose of regulating CO 2 emissions. In recent years, the amount of high-strength steel sheets used as materials for automobile parts has been increasing because it is most effective to reduce the weight of automobiles by thinning the thickness of the parts used to improve the fuel efficiency of automobiles.

鋼板強度を得るために硬質相であるマルテンサイトを活用した鋼板は多い。一方で、マルテンサイトを生成させる際、変態ひずみによって板形状が悪化する。板形状が悪化すると成形時の寸法精度に悪影響をもたらすため、所望の寸法精度が得られるよう板をレベラー加工やスキンパス圧延(調質圧延)によって矯正されてきた。一方で、これらのレベラー加工やスキンパス圧延によって局所的に塑性変形が加えられるため、加工硬化の不均一を招き、幅方向に対して降伏強さの変動が避けられない。降伏強さは成形時の寸法精度に影響をおよぼすため、均質性に優れた高強度鋼板が望まれている。この均質性を悪化させないためにはマルテンサイト変態時の板形状の劣化を抑制する必要があるのに対し、これまでにも様々な技術が提案されている。 Many steel sheets utilize martensite, which is a hard phase, in order to obtain steel sheet strength. On the other hand, when martensite is generated, the plate shape deteriorates due to transformation strain. Since deterioration of the plate shape adversely affects the dimensional accuracy at the time of molding, the plate has been corrected by leveler processing or skin pass rolling (tempering rolling) so as to obtain the desired dimensional accuracy. On the other hand, since plastic deformation is locally applied by these leveler processing and skin pass rolling, non-uniformity of work hardening is caused, and fluctuation of yield strength is unavoidable in the width direction. Since the yield strength affects the dimensional accuracy at the time of molding, a high-strength steel sheet having excellent homogeneity is desired. In order not to deteriorate this homogeneity, it is necessary to suppress the deterioration of the plate shape during martensitic transformation, whereas various techniques have been proposed so far.

例えば、特許文献1では、Ac1〜900℃に加熱後、平均冷却速度30〜500℃/sで(Ms+10℃)〜(Ms+100℃)の温度範囲まで水冷却または気水冷却をおこない、次いで(Ms−30℃)〜(Ms−100℃)の温度範囲まで気体冷却をおこない、続いて、平均冷却速度30〜1000℃/sで、400℃以下に水冷却または気水冷却をおこない、気体冷却中の鋼板を(Ms+10℃)〜(Ms+100℃)の温度に保持した1対以上のロールに接触させることで形状不良を解消する超高強度冷延鋼板が得られるとしている。 For example, Patent Document 1, after heating the A c1 to 900 ° C., subjected to average water cooling or air-water cooling to a temperature range at a cooling rate of 30~500 ℃ / s (Ms + 10 ℃) ~ (Ms + 100 ℃), followed by ( Gas cooling is performed in the temperature range of Ms-30 ° C) to (Ms-100 ° C), followed by water cooling or air-water cooling at an average cooling rate of 30 to 1000 ° C / s below 400 ° C, and gas cooling. It is said that an ultra-high-strength cold-rolled steel plate that eliminates shape defects can be obtained by contacting the steel plate inside with a pair or more of rolls held at a temperature of (Ms + 10 ° C.) to (Ms + 100 ° C.).

特許文献2では、Ac1変態点以上の温度で焼鈍したのち、650〜750℃から400℃/sec以上の平均冷却速度で急速冷却し、次いで、100〜450℃の温度で、100〜1200sec保持する焼戻処理を行った後、鋼板表面の平均粗さRaが1.4μm以上となるように調質圧延を施すことにより鋼板の形状が良好な鋼板が得られるとしている。 In Patent Document 2, after annealing at transformation point A c1 temperature above rapidly cooled at an average cooling rate of more than 400 ° C. / sec from 650 to 750 ° C., then, at a temperature of 100~450 ℃, 100~1200sec holding It is said that a steel sheet having a good shape can be obtained by performing temper rolling so that the average roughness Ra of the surface of the steel sheet is 1.4 μm or more after the annealing treatment.

特開2000−160254号公報Japanese Unexamined Patent Publication No. 2000-160254 特開2009−79255号公報JP-A-2009-79255

特許文献1で提案された技術では、気体冷却中の温度むらを解消することを目的とした加熱ロールに接触させる必要があるが、水冷に比べると冷却速度が著しく小さく、不可避的にベイナイトが生成する。ベイナイトが生成すると所望の鋼板強度が得られなくなるばかりか、強度ばらつきの原因となる。 In the technique proposed in Patent Document 1, it is necessary to contact the heating roll for the purpose of eliminating temperature unevenness during gas cooling, but the cooling rate is significantly lower than that of water cooling, and bainite is inevitably generated. To do. When bainite is formed, not only the desired steel sheet strength cannot be obtained, but also it causes strength variation.

特許文献2で提案された技術では、表面粗さRaが5.0〜10.0μmの圧延ロールを板表面に転写させることで所望の表面粗さを得ている。しかしながら、この方法でも局所的な加工硬化の影響は避けられず、強度均質性と鋼板形状とを兼備する鋼板が得られない。 In the technique proposed in Patent Document 2, a rolling roll having a surface roughness Ra of 5.0 to 10.0 μm is transferred to the plate surface to obtain a desired surface roughness. However, even with this method, the influence of local work hardening cannot be avoided, and a steel sheet having both strength homogeneity and a steel sheet shape cannot be obtained.

いずれの特許文献に記載の技術でも強度均質性と鋼板形状及び表面性状とを兼備することはできない。本発明では引張強さ:780MPa以上を有し、かつ良好な強度均質性と鋼板形状及び表面性状とを兼備する薄鋼板およびその製造方法を提供することを目的とする。 Neither of the techniques described in the patent documents can combine strength homogeneity with steel plate shape and surface texture. An object of the present invention is to provide a thin steel sheet having a tensile strength of 780 MPa or more and having good strength homogeneity, a steel sheet shape and surface properties, and a method for producing the same.

本発明者らは上記課題を解決するために、引張強さ780MPa以上かつ鋼板の強度均質性および形状を良好とする薄鋼板の要件について鋭意検討した。本件で対象とする薄鋼板の板厚は、0.4mm以上2.6mm以下である。一般的に、鋼板の高強度化にともない合金元素濃度は上昇し、スポット溶接性に悪影響をおよぼす。そのため、スポット溶接性を考慮して効率良く強度を得ることができるマルテンサイトに着目した。一方で効率良くマルテンサイトを得るには鋼板を水冷することが効果的であるが、水冷中のマルテンサイト変態は急速かつ不均一に生じるため、変態ひずみにより鋼板形状を悪化させる。変態ひずみによる悪影響の軽減について調査した結果、鋼板の表裏面の冷却速度の違いがマルテンサイト変態の不均一を誘発し、鋼板形状を悪化させることが判明した。鋼板の表裏面の冷却速度の差異についてさらに追究した結果、鋼板が水槽に進入する際の板表面に対して法線方向の変動が大きいときに生じることを知見した。そして、板形状が良好である場合、過度の矯正が不要であり、通常のスキンパス圧延(調質圧延)で所望の形状が得られ、均一に加工硬化するため、幅方向に対する降伏強さの変動を抑制できることがわかった。本発明は上記の知見に基づき完成されたものであり、その要旨は次のとおりである。 In order to solve the above problems, the present inventors have diligently studied the requirements for a thin steel sheet having a tensile strength of 780 MPa or more and good strength homogeneity and shape of the steel sheet. The thickness of the thin steel plate targeted in this case is 0.4 mm or more and 2.6 mm or less. In general, the concentration of alloying elements increases as the strength of the steel sheet increases, which adversely affects the spot weldability. Therefore, we focused on martensite, which can efficiently obtain strength in consideration of spot weldability. On the other hand, in order to efficiently obtain martensite, it is effective to cool the steel sheet with water, but since the martensitic transformation during water cooling occurs rapidly and non-uniformly, the shape of the steel sheet is deteriorated by the transformation strain. As a result of investigating the reduction of adverse effects due to transformation strain, it was found that the difference in cooling rate between the front and back surfaces of the steel sheet induces non-uniformity of martensitic transformation and worsens the shape of the steel sheet. As a result of further investigating the difference in the cooling rate between the front and back surfaces of the steel sheet, it was found that it occurs when the fluctuation in the normal direction with respect to the plate surface when the steel sheet enters the water tank is large. When the plate shape is good, excessive straightening is not required, a desired shape can be obtained by ordinary skin pass rolling (tempering rolling), and work hardening is performed uniformly, so that the yield strength fluctuates in the width direction. It was found that it can suppress. The present invention has been completed based on the above findings, and the gist thereof is as follows.

[1]質量%で、C:0.05%以上0.35%以下、Si:0.01%以上2.0%以下、Mn:0.8%以上3.2%以下、P:0.05%以下、S:0.005%以下、Al:0.005%以上0.10%以下、N:0.0060%以下、残部がFeおよび不可避的不純物からなる成分組成と、フェライト面積率が0%以上90%以下、ベイナイト面積率が5%以下(0%を含む)、マルテンサイトおよび焼き戻されたマルテンサイト面積率が10%以上(100%を含む)、残留オーステナイト面積率が2.0%以下(0%を含む)である鋼組織と、を有し、幅方向の降伏強さの標準偏差が30MPa以下、長さ1mでせん断した際の板鋼板の最大反り量が10mm以下である薄鋼板。 [1] In terms of mass%, C: 0.05% or more and 0.35% or less, Si: 0.01% or more and 2.0% or less, Mn: 0.8% or more and 3.2% or less, P: 0. 05% or less, S: 0.005% or less, Al: 0.005% or more and 0.10% or less, N: 0.0060% or less, component composition with the balance consisting of Fe and unavoidable impurities, and ferrite area ratio 0% or more and 90% or less, bainite area ratio of 5% or less (including 0%), martensite and tempered martensite area ratio of 10% or more (including 100%), retained austenite area ratio of 2. It has a steel structure of 0% or less (including 0%), the standard deviation of the yield strength in the width direction is 30 MPa or less, and the maximum warp amount of the sheet steel when sheared at a length of 1 m is 10 mm or less. A thin steel plate.

[2]前記成分組成は、さらに、質量%で、V:0.001%以上1%以下、Ti:0.001%以上0.3%以下、Nb:0.001%以上0.3%以下、Cr:0.001%以上1.0%以下、Mo:0.001%以上1.0%以下、Ni:0.01%以上1.0%以下、Cu:0.01%以上1.0%以下、B:0.0002%以上0.0050%以下、Sb:0.001%以上0.050%以下、REM:0.0002%以上0.050%以下、Mg:0.0002%以上0.050%以下及びCa:0.0002%以上0.050%以下のいずれか1種または2種以上を含有する[1]に記載の薄鋼板。 [2] Further, the component composition is, in mass%, V: 0.001% or more and 1% or less, Ti: 0.001% or more and 0.3% or less, Nb: 0.001% or more and 0.3% or less. , Cr: 0.001% or more and 1.0% or less, Mo: 0.001% or more and 1.0% or less, Ni: 0.01% or more and 1.0% or less, Cu: 0.01% or more and 1.0 % Or less, B: 0.0002% or more and 0.0050% or less, Sb: 0.001% or more and 0.050% or less, REM: 0.0002% or more and 0.050% or less, Mg: 0.0002% or more 0 The thin steel sheet according to [1], which contains any one or more of .050% or less and Ca: 0.0002% or more and 0.050% or less.

[3][1]又は[2]に記載の成分組成を有する鋼素材を、熱間圧延する熱延工程と、前記熱延工程後の鋼板を酸洗し、冷間圧延する冷延工程と、前記冷延工程後の鋼板を、760℃以上で加熱した後、600℃以上で水焼入し、該水焼入において水槽に鋼板が進入する際の鋼板表面の法線方向の変動量が30mm以下となるように100℃以下まで水冷し、100℃以上350℃以下で再度加熱する焼鈍工程と、を有する薄鋼板の製造方法。 [3] A hot-rolling step of hot-rolling a steel material having the component composition according to [1] or [2], and a cold-rolling step of pickling and cold-rolling a steel sheet after the hot-rolling step. After heating the steel sheet after the cold rolling process at 760 ° C. or higher, water-annealing is performed at 600 ° C. or higher, and the amount of fluctuation in the normal direction of the steel sheet surface when the steel sheet enters the water tank in the water-annealing A method for producing a thin steel sheet, comprising an annealing step of water-cooling to 100 ° C. or lower so as to be 30 mm or less and reheating at 100 ° C. or higher and 350 ° C. or lower.

[4]前記焼鈍工程において、前記水槽の水面を基点とした上下1m以内に鋼板拘束用ロールを1対以上設置して前記変動量を調整する[3]に記載の薄鋼板の製造方法。 [4] The method for producing a thin steel plate according to [3], wherein in the annealing step, one or more pairs of steel plate restraining rolls are installed within 1 m above and below the water surface of the water tank to adjust the fluctuation amount.

本発明によると、本発明の薄鋼板は、引張強さ(TS):780MPa以上の高強度と、優れた強度均質性および良好な表面性状及び鋼板形状を兼ね備える。本発明の薄鋼板を自動車部品に適用すれば、自動車部品のさらなる軽量化が実現される。 According to the present invention, the thin steel sheet of the present invention has a high tensile strength (TS) of 780 MPa or more, excellent strength homogeneity, good surface texture and steel sheet shape. If the thin steel sheet of the present invention is applied to an automobile part, the weight of the automobile part can be further reduced.

ベイナイトの一例を示す図である。It is a figure which shows an example of bainite. 変動量を模式的に示す図である。It is a figure which shows the fluctuation amount schematically.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments.

先ず、本発明の薄鋼板の成分組成について説明する。以下の説明において、成分の含有量を表す「%」は「質量%」を意味する。 First, the composition of the thin steel sheet of the present invention will be described. In the following description, "%" representing the content of the component means "mass%".

C:0.05%以上0.35%以下
Cは、マルテンサイトおよび焼き戻しマルテンサイトの硬度に関係し、鋼板の高強度化に寄与する元素である。引張強さ:780MPa以上を得るには、少なくともC含有量を0.05%以上含有させる必要がある。好ましくは0.06%以上である。一方、C含有量が0.35%を上回ると、スポット溶接性等で実用化が極めて困難である。そのため、C含有量を0.35%以下とした。好ましくは0.25%以下である。
C: 0.05% or more and 0.35% or less C is an element that is related to the hardness of martensite and tempered martensite and contributes to increasing the strength of the steel sheet. Tensile strength: In order to obtain 780 MPa or more, it is necessary to contain at least 0.05% or more of C content. It is preferably 0.06% or more. On the other hand, if the C content exceeds 0.35%, it is extremely difficult to put it into practical use due to spot weldability and the like. Therefore, the C content was set to 0.35% or less. It is preferably 0.25% or less.

Si:0.01%以上2.0以下
Siは鋼板の伸びを上昇させるために有効な元素である。伸び上昇の観点から、Si含有量を0.01%以上とした。好ましくは0.1%以上である。一方、Si含有量が2.0%を上回ると化成処理性が著しく悪化し、自動車用鋼板として不適となるため、Si含有量を2.0%以下とした。好ましくは1.7%以下である。
Si: 0.01% or more and 2.0 or less Si is an element effective for increasing the elongation of the steel sheet. From the viewpoint of increase in elongation, the Si content was set to 0.01% or more. It is preferably 0.1% or more. On the other hand, if the Si content exceeds 2.0%, the chemical conversion processability is remarkably deteriorated and it becomes unsuitable as a steel sheet for automobiles. Therefore, the Si content is set to 2.0% or less. It is preferably 1.7% or less.

Mn:0.8%以上3.2%以下
Mnは鋼板の焼入性を上昇させ、マルテンサイトを得るために有効な元素である。Mnが不足すると焼入性不足に起因した幅方向の強度変動が生じる。これを抑制するにはMnは0.8%以上含有させる必要がある。好ましくは1.1%以上である。一方、Mnが過度に含有させても焼入性の効果は飽和するばかりか、鋳造性等で生産性に悪影響をもたらす。以上から、Mn含有量は3.2%以下とした。好ましくは2.9%以下である。曲げ性の変動を抑制するには、Mn含有量を2.3%以下とすることがより好ましい。
Mn: 0.8% or more and 3.2% or less Mn is an element effective for increasing the hardenability of steel sheets and obtaining martensite. When Mn is insufficient, the strength fluctuates in the width direction due to insufficient hardenability. To suppress this, Mn needs to be contained in an amount of 0.8% or more. It is preferably 1.1% or more. On the other hand, even if Mn is excessively contained, not only the effect of hardenability is saturated, but also the castability and the like adversely affect the productivity. From the above, the Mn content was set to 3.2% or less. It is preferably 2.9% or less. In order to suppress fluctuations in bendability, it is more preferable that the Mn content is 2.3% or less.

P:0.05%以下
Pは、低温脆性を発生させたり溶接性を低下させたりする有害元素であるため、極力低減することが好ましい。本発明では、P含有量は0.05%まで許容できる。好ましいP含有量は0.02%以下であるが、より厳しい溶接条件下で使用するには、0.01%以下まで抑制することがより好ましい。一方、製造上、0.002%は不可避的に混入する場合がある。
P: 0.05% or less P is a harmful element that causes low temperature brittleness and lowers weldability, so it is preferable to reduce it as much as possible. In the present invention, the P content can be up to 0.05%. The preferred P content is 0.02% or less, but it is more preferably suppressed to 0.01% or less for use under more severe welding conditions. On the other hand, 0.002% may be unavoidably mixed in manufacturing.

S:0.005%以下
Sは、鋼中で粗大な硫化物を形成し、これが熱間圧延時に伸展し楔状の介在物となることで、溶接性に悪影響をもたらす。そのため、Sも有害元素であるため極力低減することが好ましい。本発明では、0.005%まで許容できるため、S含有量を0.005%以下とした。好ましくは、0.003%以下であるが、より厳しい溶接条件下で使用するには、0.001%以下まで抑制することがより好ましい。製造上、0.0002%は不可避的に混入する場合がある。
S: 0.005% or less S forms coarse sulfide in steel, which stretches during hot rolling and becomes wedge-shaped inclusions, which adversely affects weldability. Therefore, since S is also a harmful element, it is preferable to reduce it as much as possible. In the present invention, since 0.005% can be tolerated, the S content is set to 0.005% or less. It is preferably 0.003% or less, but it is more preferably suppressed to 0.001% or less for use under more severe welding conditions. In manufacturing, 0.0002% may be unavoidably mixed.

Al:0.005%以上0.10%以下
Alを製鋼の段階で脱酸剤として添加する場合、Al含有量を0.005%以上含有させる必要がある。一方、Alは溶接性等を悪化させる粗大な酸化物を形成する。そのため、Al含有量上限0.10%とした。好ましくは0.07%以下である。
Al: 0.005% or more and 0.10% or less When Al is added as a deoxidizer at the stage of steelmaking, it is necessary to contain 0.005% or more of Al content. On the other hand, Al forms a coarse oxide that deteriorates weldability and the like. Therefore, the upper limit of Al content was set to 0.10%. It is preferably 0.07% or less.

N:0.0060%以下
Nは、常温時効性を悪化させ予期せぬ割れを発生させるため、表面性状に対して悪影響をもたらす有害元素である。そのため、Nは出来る限り低減することが望ましい。本発明では0.0060%まで許容できる。好ましくは0.0050%以下である。N含有量は極力低減する方が望ましいが、製造上、0.0005%は不可避的に混入する場合がある。
N: 0.0060% or less N is a harmful element that adversely affects the surface properties because it deteriorates the aging at room temperature and causes unexpected cracks. Therefore, it is desirable to reduce N as much as possible. In the present invention, up to 0.0060% is acceptable. It is preferably 0.0050% or less. It is desirable to reduce the N content as much as possible, but 0.0005% may be unavoidably mixed in during manufacturing.

以上が本発明の薄鋼板の必須成分であるが、さらに、質量%で、V:0.001%以上1%以下、Ti:0.001%以上0.3%以下、Nb:0.001%以上0.3%以下、Cr:0.001%以上1.0%以下、Mo:0.001%以上1.0%以下、Ni:0.01%以上1.0%以下、Cu:0.01%以上1.0%以下、B:0.0002%以上0.0050%以下、Sb:0.001%以上0.050%以下、REM:0.0002%以上0.050%以下、Mg:0.0002%以上0.050%以下、Ca:0.0002%以上0.050%以下の1種または2種以上を任意元素として含有してもよい。これら任意元素は焼入性の確保や、強度調整、介在物制御等に使用される元素であるが、これら任意元素を上記範囲で含有しても本発明の効果は損なわれない。 The above are the essential components of the thin steel sheet of the present invention, but further, in terms of mass%, V: 0.001% or more and 1% or less, Ti: 0.001% or more and 0.3% or less, Nb: 0.001%. More than 0.3% or less, Cr: 0.001% or more and 1.0% or less, Mo: 0.001% or more and 1.0% or less, Ni: 0.01% or more and 1.0% or less, Cu: 0. 01% or more and 1.0% or less, B: 0.0002% or more and 0.0050% or less, Sb: 0.001% or more and 0.050% or less, REM: 0.0002% or more and 0.050% or less, Mg: One or more of 0.0002% or more and 0.050% or less and Ca: 0.0002% or more and 0.050% or less may be contained as an optional element. These optional elements are elements used for ensuring hardenability, adjusting strength, controlling inclusions, etc. However, even if these optional elements are contained in the above range, the effect of the present invention is not impaired.

上記成分以外の成分は、Feおよび不可避的不純物である。なお、任意元素を上記下限値未満で含む場合、下限値未満で含まれる任意元素は不可避的不純物として含まれるものとする。 Components other than the above components are Fe and unavoidable impurities. When an arbitrary element is contained below the above lower limit value, the arbitrary element contained below the lower limit value shall be included as an unavoidable impurity.

続いて、本発明の薄鋼板の鋼組織について説明する。本発明の薄鋼板の鋼組織は、フェライト面積率が0%以下90%以下、ベイナイト面積率が5%以下(0%を含む)、マルテンサイトおよび焼き戻されたマルテンサイト面積率が10%以上(100%含む)、残留オーステナイト面積率が2.0%以下(0%を含む)である。 Subsequently, the steel structure of the thin steel sheet of the present invention will be described. The steel structure of the thin steel sheet of the present invention has a ferrite area ratio of 0% or less and 90% or less, a bainite area ratio of 5% or less (including 0%), martensite and a tempered martensite area ratio of 10% or more. (Including 100%), the residual austenite area ratio is 2.0% or less (including 0%).

フェライト面積率が0%以上90%以下
フェライトは軟質であるため、面積率が90%を上回ると所望の鋼板強度が得られない。そこで、フェライト面積率上限を90%とした。好ましくは80%以下である。また、フェライト面積率は0%であっても本発明の効果は失われない。
Ferrite area ratio is 0% or more and 90% or less Since ferrite is soft, if the area ratio exceeds 90%, the desired steel sheet strength cannot be obtained. Therefore, the upper limit of the ferrite area ratio was set to 90%. It is preferably 80% or less. Further, even if the ferrite area ratio is 0%, the effect of the present invention is not lost.

ベイナイト面積率が5%以下(0%を含む)
ベイナイトを生成させるには焼鈍工程の加熱後、徐冷もしくは室温まで冷却させることなく約200℃から400℃までの範囲で等温保持させる必要がある。徐冷することにより鋼板の軟化を招くうえ、幅方向の冷却むらが避けられないため、均一な鋼板強度が得られなくなる。本発明では水冷でマルテンサイトを生成させることを意図しているため、200℃から400℃までの等温保持はできない。一方で、水冷過程でベイナイトは僅かに生成することがあり、本発明では5%を上限(0%を含む)とした。好ましくは3%以下である。
Bainite area ratio is 5% or less (including 0%)
In order to generate bainite, it is necessary to maintain the isothermal temperature in the range of about 200 ° C. to 400 ° C. without slow cooling or cooling to room temperature after heating in the annealing step. Slow cooling causes softening of the steel sheet, and uneven cooling in the width direction is unavoidable, so that uniform steel sheet strength cannot be obtained. Since the present invention is intended to generate martensite by water cooling, it is not possible to maintain an isothermal temperature from 200 ° C. to 400 ° C. On the other hand, bainite may be slightly formed in the water cooling process, and in the present invention, the upper limit is 5% (including 0%). It is preferably 3% or less.

なお、本発明で対象とするベイナイトは転位をポリゴナルフェライトよりも含むベイニティックフェライトを含む組織であって、焼き戻しマルテンサイトと走査型電子顕微鏡では判別ができない下部ベイナイトは対象としない。ベイニティックフェライトは1%ナイタールエッチングで腐食現出した後、走査型電子顕微鏡では腐食痕が認められるフェライトである。代表例を図1に示す。 The bainite targeted in the present invention is a structure containing bainitic ferrite containing dislocations rather than polygonal ferrite, and does not include lower bainite that cannot be distinguished by tempered martensite and a scanning electron microscope. Bainitic ferrite is a ferrite in which corrosion marks are observed on a scanning electron microscope after corrosion appears by 1% nightal etching. A typical example is shown in FIG.

マルテンサイトおよび焼き戻されたマルテンサイト面積率が10%以上(100%含む)
本発明ではマルテンサイトおよび焼き戻されたマルテンサイト(焼き戻しマルテンサイト)で所望の強度を得ている。引張強さ780MPa以上を得るには上記組織は合計で10%以上(100%含む)必要である。好ましくは、20%以上である。
Martensite and refurbished martensite area ratio is 10% or more (including 100%)
In the present invention, desired strength is obtained with martensite and tempered martensite (tempered martensite). In order to obtain a tensile strength of 780 MPa or more, the above-mentioned structure needs to be 10% or more (including 100%) in total. Preferably, it is 20% or more.

残留オーステナイト面積率が2.0%以下(0%を含む)
残留オーステナイト2.0%を超えて生成させるには、本発明の鋼組成ではベイナイト生成や水冷以外の方法での製造が必須である。本発明ではベイナイトの生成や水冷以外の製造方法を意図しないため、残留オーステナイトの面積率上限を2.0%とした。残留オーステナイトが0%であっても本発明は損なわれることはない。
Residual austenite area ratio is 2.0% or less (including 0%)
In order to produce more than 2.0% of retained austenite, the steel composition of the present invention requires production by a method other than bainite formation or water cooling. Since the present invention does not intend a production method other than bainite formation or water cooling, the upper limit of the area ratio of retained austenite is set to 2.0%. The present invention is not impaired even if the retained austenite is 0%.

なお、上記フェライト、ベイナイト、マルテンサイト、焼き戻しマルテンサイト、残留オーステナイト以外のその他の組織として、パーライト、セメンタイト等が挙げられる。該組織は本発明において焼鈍不足もしくは冷却能力不足を表しており、面積率は1%以下が好ましく、0%とすることがさらに好ましい。セメンタイトはベイナイトや焼き戻しマルテンサイト中に含まれることが多く、これらについてはセメンタイトの面積率として計上しない。フェライト粒内に孤立して残存していた場合は面積率に計上しない。走査電子顕微鏡からはマルテンサイトと判別が困難であるため、EBSD法やTEMの回折像で確認する必要がある。フェライト粒内に孤立して残存しているセメンタイトの面積率は2%以下が好ましく、0%とすることがさらに好ましい。 Examples of structures other than the above-mentioned ferrite, bainite, martensite, tempered martensite, and retained austenite include pearlite and cementite. The structure represents insufficient annealing or insufficient cooling capacity in the present invention, and the area ratio is preferably 1% or less, more preferably 0%. Cementite is often contained in bainite and tempered martensite, and these are not counted as the area ratio of cementite. If it remains isolated in the ferrite grains, it is not counted in the area ratio. Since it is difficult to distinguish martensite from a scanning electron microscope, it is necessary to confirm it by the EBSD method or a diffraction image of TEM. The area ratio of cementite remaining isolated in the ferrite grains is preferably 2% or less, and more preferably 0%.

次いで、本発明の薄鋼板の特性について説明する。 Next, the characteristics of the thin steel sheet of the present invention will be described.

本発明の薄鋼板は高強度である。具体的には、実施例に記載の方法で測定した引張強度(TS)が780MPa以上である。TSの上限は特に限定されないが、他の特性とのバランスの点から2500MPa以下が好ましい。 The thin steel sheet of the present invention has high strength. Specifically, the tensile strength (TS) measured by the method described in the examples is 780 MPa or more. The upper limit of TS is not particularly limited, but is preferably 2500 MPa or less from the viewpoint of balance with other characteristics.

本発明の薄鋼板は強度均質性を有する。具体的には実施例に記載の方法で測定した、幅方向の降伏強さの標準偏差が30MPa以下である。 The thin steel sheet of the present invention has strength homogeneity. Specifically, the standard deviation of the yield strength in the width direction measured by the method described in the examples is 30 MPa or less.

本発明の薄鋼板は、優れた表面性状を有する。具体的には、実施例に記載した曲げ性評価におけるRmax−Raveが0.8mm以下である。好ましくは0.7mm以下、より好ましくは0.6mm以下である。 The thin steel sheet of the present invention has excellent surface properties. Specifically, the Rmax-Rave in the bendability evaluation described in the examples is 0.8 mm or less. It is preferably 0.7 mm or less, more preferably 0.6 mm or less.

本発明の薄鋼板は優れた板形状を有する。具体的には、実施例に記載の方法で測定した最大反り量が10mm以下である。 The thin steel plate of the present invention has an excellent plate shape. Specifically, the maximum amount of warpage measured by the method described in the examples is 10 mm or less.

次に、本発明の薄鋼板の製造方法について説明する。本発明の薄鋼板の製造方法は、熱延工程、冷延工程、焼鈍工程を有する。 Next, the method for manufacturing the thin steel sheet of the present invention will be described. The method for producing a thin steel sheet of the present invention includes a hot rolling step, a cold rolling step, and an annealing step.

熱延工程とは、上記成分組成を有する鋼素材を、熱間圧延する工程である。 The hot rolling step is a step of hot rolling a steel material having the above composition.

上記鋼素材の製造のための、溶製方法は特に限定されず、転炉、電気炉等、公知の溶製方法を採用することができる。また、真空脱ガス炉にて2次精錬を行ってもよい。その後、生産性や品質上の問題から連続鋳造法によりスラブ(鋼素材)とするのが好ましい。また、造塊−分塊圧延法、薄スラブ連鋳法等、公知の鋳造方法でスラブとしてもよい。 The melting method for producing the above steel material is not particularly limited, and a known melting method such as a converter or an electric furnace can be adopted. Further, the secondary refining may be performed in a vacuum degassing furnace. After that, it is preferable to use a slab (steel material) by a continuous casting method from the viewpoint of productivity and quality. Further, a slab may be formed by a known casting method such as an ingot-block rolling method or a thin slab continuous casting method.

また、熱間圧延における熱延条件は適宜設定すればよい。 Further, the hot rolling conditions in hot rolling may be appropriately set.

冷間圧延工程とは、上記熱延工程後の鋼板を酸洗し、冷間圧延する工程である。酸洗、冷間圧延の条件は特に限定されず、適宜設定すればよい。 The cold rolling step is a step of pickling and cold rolling the steel sheet after the hot rolling step. The conditions for pickling and cold rolling are not particularly limited and may be set as appropriate.

焼鈍工程とは、冷延工程後の鋼板を、760℃以上で加熱した後、600℃以上で水焼入し、該水焼入において水槽に鋼板が進入する際の鋼板表面の法線方向の変動量が30mm以下となるように100℃以下まで水冷し、100℃以上350℃以下で再度加熱する工程である。焼鈍工程は連続焼鈍ラインで行うことが好ましい。 The annealing step is a process in which a steel sheet after a cold-rolling process is heated at 760 ° C. or higher and then water-quenched at 600 ° C. or higher. This is a step of water cooling to 100 ° C. or lower so that the fluctuation amount is 30 mm or less, and reheating at 100 ° C. or higher and 350 ° C. or lower. The annealing step is preferably performed on a continuous annealing line.

760℃以上に加熱
加熱はマルテンサイトの生成に寄与するオーステナイトの生成が目的であり、所望のマルテンサイト面積率を得るには760℃以上に加熱する必要がある。好ましくは780℃以上である。加熱温度の上限はオーステナイト粒が粗大化することで肌荒れの原因となり表面性状を悪化させるため、加熱温度は900℃以下が好ましく、875℃以下がさらに好ましい。
Heating to 760 ° C or higher The purpose of heating is to produce austenite that contributes to the formation of martensite, and it is necessary to heat to 760 ° C or higher to obtain the desired martensite area ratio. It is preferably 780 ° C. or higher. The upper limit of the heating temperature is preferably 900 ° C. or lower, more preferably 875 ° C. or lower, because the austenite grains become coarse and cause rough skin and deteriorate the surface texture.

600℃以上で水焼入
水焼入開始までに過度に低温化すると、鋼板温度分布に起因した幅方向の強度変動やフェライトおよびベイナイト生成により所望の鋼板特性が得られなくなる。以上の観点から水焼入開始温度は600℃以上とした。好ましくは640℃以上である。また、水焼入開始温度の上限は特に限定されず、フェライト生成を意図しない場合は高い方が好ましい。実際の製造では焼鈍温度から10℃低下ほど低下した時点で焼入されることが多い。
Water quenching at 600 ° C. or higher If the temperature is excessively lowered before the start of water quenching, the desired steel sheet characteristics cannot be obtained due to the strength fluctuation in the width direction due to the steel sheet temperature distribution and the formation of ferrite and bainite. From the above viewpoint, the water quenching start temperature was set to 600 ° C. or higher. It is preferably 640 ° C. or higher. Further, the upper limit of the water quenching start temperature is not particularly limited, and a higher temperature is preferable when ferrite formation is not intended. In actual production, quenching is often performed when the temperature drops by about 10 ° C from the annealing temperature.

水槽に鋼板が進入する際の鋼板表面の法線方向の変動量が30mm以下に制御
水槽への鋼板進入状態を制御することで水冷時の冷却速度の変動を抑制したことに本発明は特徴がある。鋼板が水槽進入時に板面法線方向に対して鋼板位置の変動が大きい状態であると鋼板表面の水の滞留状態が不均一となり冷却速度の変動をもたらす。この変動を抑制するために、例えば張力を従来よりも高くすることで変動を抑制することも可能であるが、通板時に破断リスクを伴う。板面法線方向に対する鋼板位置の変動量を30mm以下とすることで、この冷却速度の変動を抑制し所望の鋼板形状が得られる。好ましい変動量は20mm以下である。また、上記変動量は小さいほど好ましい。なお、変動量とは、鋼板が直進した場合に対するズレの量であり、図2に変動量を模式的に示した。
Controlling the amount of fluctuation of the steel sheet surface in the normal direction when the steel plate enters the water tank to 30 mm or less The present invention is characterized in that the fluctuation of the cooling rate during water cooling is suppressed by controlling the state of steel plate entering the water tank. is there. If the position of the steel sheet fluctuates greatly with respect to the normal direction of the plate surface when the steel sheet enters the water tank, the retention state of water on the surface of the steel sheet becomes non-uniform and the cooling rate fluctuates. In order to suppress this fluctuation, for example, it is possible to suppress the fluctuation by increasing the tension more than before, but there is a risk of breakage at the time of passing the plate. By setting the fluctuation amount of the steel plate position with respect to the plate surface normal direction to 30 mm or less, this fluctuation of the cooling rate can be suppressed and a desired steel plate shape can be obtained. The preferred amount of variation is 20 mm or less. Further, the smaller the fluctuation amount, the more preferable. The amount of fluctuation is the amount of deviation when the steel sheet goes straight, and the amount of fluctuation is schematically shown in FIG.

板進入時の鋼板の拘束は、例えば水面から1m以内にロールを設置すればよい。この距離は水中および水面上のいずれも含まれる(図2には水面上の場合を図示)。好ましくは500mm以内である。ロールの幅や材質は特に限定されず、例えば幅方向センター部のみを拘束する鋼板の幅よりも狭いものであっても良い。拘束する際、板表面に疵が付かないよう、材質やロール位置、ロール周速を選定する必要がある。そのため、ロールの材質は金属製のものに限定されず、耐熱性を有するゴム、樹脂を含む材質のものであってもよい。ロール位置は鋼板表裏面から拘束する1対のロールであっても良いし、複数あっても良い。また、ロール間距離が離れた対のロールでも良い。ロール距離が離れた対のロールの場合、鋼板に対して過度に押し込むと、すなわち鋼板進路に対して妨げる位置にロールがある場合、形状や表面性状の悪化を招くため、押し込み量は5mm以下とすることが好ましく、さらに好ましくは2mm以下である。 To restrain the steel plate when entering the plate, for example, the roll may be installed within 1 m from the water surface. This distance includes both underwater and on the surface of the water (FIG. 2 shows the case on the surface of the water). It is preferably within 500 mm. The width and material of the roll are not particularly limited, and may be narrower than the width of the steel plate that restrains only the center portion in the width direction, for example. When restraining, it is necessary to select the material, roll position, and roll peripheral speed so that the plate surface is not scratched. Therefore, the material of the roll is not limited to the one made of metal, and may be a material containing rubber and resin having heat resistance. The roll position may be a pair of rolls restrained from the front and back surfaces of the steel sheet, or may be a plurality of roll positions. Further, a pair of rolls having a distance between the rolls may be used. In the case of a pair of rolls with a long roll distance, if the roll is pushed excessively against the steel plate, that is, if the roll is in a position that obstructs the course of the steel plate, the shape and surface properties will deteriorate, so the pushing amount is 5 mm or less. It is preferably 2 mm or less, more preferably 2 mm or less.

100℃以下まで水冷
水冷後の温度が100℃を超えると、形状に悪影響をもたらすほどマルテンサイト変態が水冷後に進行する。マルテンサイト変態しない場合には、ベイナイト変態が不均一に進行するため、幅方向に対して強度変動を誘発する。そのため、水槽から出た後の鋼板温度は100℃以下である必要がある。好ましくは80℃以下である。
Water cooling to 100 ° C. or lower When the temperature after water cooling exceeds 100 ° C., martensitic transformation proceeds after water cooling to the extent that the shape is adversely affected. When the martensitic transformation does not occur, the bainite transformation proceeds non-uniformly, which induces intensity fluctuation in the width direction. Therefore, the temperature of the steel sheet after being discharged from the water tank needs to be 100 ° C. or lower. It is preferably 80 ° C. or lower.

100℃以上350℃以下で再加熱
水冷後は再加熱し、水冷時に生成したマルテンサイトを焼き戻すことで自動車用成形を可能とする高延性化を図る必要がある。再加熱温度が100℃未満では必要な延性が得られない。一方、350℃超で焼き戻すとマルテンサイトが過度に焼き戻されるため、所望の鋼板強度が得られなくなる。以上から、再加熱温度を100℃以上350℃以下とした。好ましくは、130℃以上260℃以下である。
Reheating at 100 ° C. or higher and 350 ° C. or lower After water cooling, it is necessary to reheat and reheat the martensite generated during water cooling to achieve high ductility that enables molding for automobiles. If the reheating temperature is less than 100 ° C, the required ductility cannot be obtained. On the other hand, when the temperature is higher than 350 ° C., the martensite is excessively baked, so that the desired steel sheet strength cannot be obtained. From the above, the reheating temperature was set to 100 ° C. or higher and 350 ° C. or lower. Preferably, it is 130 ° C. or higher and 260 ° C. or lower.

表1に示す成分組成を有する肉厚250mmの鋼素材を表2に示す熱延条件で熱間圧延を施して板厚2.6〜4.4mmの熱延板とし、酸洗した後に、冷間圧延にて板厚1.4mmの冷延板とし、表2に示す条件の焼鈍を連続焼鈍ラインで施し、評価に供する鋼板を製造した。焼鈍後は通常の伸長率0.2%のスキンパス圧延のみを行い、2回以上のスキンパス圧延やレベラー矯正は行わず以下の手法で評価した。なお、水面進入時の板表面法線方向に対する鋼板の変動は水面直上にカメラを設置し、理想的な鋼板進入位置に対する乖離量を調査し、1mあたりの最大乖離量を求めた。水槽進入時の板表面法線方向に対する鋼板変動量は水面上下300mmの位置に鋼板表裏面に対して各1個ずつロールを設置し、押し込み量を変化させることで制御した。 A steel material having a wall thickness of 250 mm having the composition shown in Table 1 is hot-rolled under the hot-rolling conditions shown in Table 2 to obtain a hot-rolled plate having a thickness of 2.6 to 4.4 mm, pickled and then cooled. A cold-rolled sheet having a plate thickness of 1.4 mm was obtained by inter-rolling, and annealing under the conditions shown in Table 2 was performed on a continuous annealing line to produce a steel sheet to be evaluated. After annealing, only normal skin pass rolling with an elongation rate of 0.2% was performed, and evaluation was performed by the following method without performing skin pass rolling or leveler correction more than once. As for the fluctuation of the steel plate with respect to the plate surface normal direction at the time of approaching the water surface, a camera was installed directly above the water surface, the amount of deviation from the ideal steel plate approach position was investigated, and the maximum amount of deviation per 1 m was obtained. The amount of fluctuation of the steel plate with respect to the normal direction of the plate surface at the time of entering the water tank was controlled by installing one roll on each of the front and back surfaces of the steel plate at a position 300 mm above and below the water surface and changing the pushing amount.

(i)組織観察(鋼組織の面積率)
鋼板から、圧延方向に平行な板厚断面が観察面となるよう切り出し、板厚中心部を1%ナイタールで腐食現出し、走査電子顕微鏡で2000倍に拡大して板厚1/4t部(tは全厚)を10視野分撮影した。フェライトは粒内に腐食痕が観察されない組織であり、焼き戻しマルテンサイトは粒内に配向性を有する多数の500nm以下の微細なセメンタイトおよび腐食痕が認められる組織である。マルテンサイトは走査型電子顕微鏡ではフェライトよりも白いコントラストで観察される組織であり、粒内にセメンタイトの析出が認められない組織である。残留オーステナイトもマルテンサイトと同じ形態で観察されるため、走査型電子顕微鏡で求めたマルテンサイト面積から後述するXRDによる残留オーステナイト分率を差し引いた値をマルテンサイト面積率として計上した。ベイナイト組織は腐食痕を有するベイニティックフェライトを対象とした。
(I) Structure observation (area ratio of steel structure)
Cut out from the steel plate so that the cross section of the plate thickness parallel to the rolling direction becomes the observation surface, corrode the central part of the plate thickness with 1% nital, and magnify it 2000 times with a scanning electron microscope to make the plate thickness 1/4 t part (t). Was photographed for 10 fields of view. Ferrite is a structure in which no corrosion marks are observed in the grains, and tempered martensite is a structure in which a large number of fine cementites having an orientation of 500 nm or less and corrosion marks are observed in the grains. Martensite is a structure observed with a whiter contrast than ferrite with a scanning electron microscope, and is a structure in which no cementite precipitation is observed in the grains. Since retained austenite is also observed in the same form as martensite, the value obtained by subtracting the retained austenite fraction by XRD described later from the martensite area obtained by the scanning electron microscope was recorded as the martensite area ratio. The bainite structure was targeted for bainitic ferrite with corrosion marks.

上記組織の面積率は、得られた写真に対して実長さ30μmの水平線および垂直線各20本を格子状となるように引き、交点の組織を同定し、全交点に対する各組織の交点数の比率を各組織の面積率とする、切断法により求めた。 For the area ratio of the above tissues, draw 20 horizontal lines and 20 vertical lines each having an actual length of 30 μm in a grid pattern with respect to the obtained photograph, identify the tissues at the intersections, and the number of intersections of each tissue with respect to all the intersections. Was determined by the cutting method, where the ratio of was taken as the area ratio of each tissue.

(ii)XRDによる残留オーステナイト分率測定
鋼板を板厚1/4位置まで研磨後、化学研磨により更に0.1mm研磨した面について、X線回折装置でMoのKα線を用い、fcc鉄(オーステナイト)の(200)面、(220)面、(311)面と、bcc鉄(フェライト)の(200)面、(211)面、(220)面の積分反射強度を測定し、bcc鉄(フェライト)各面からの積分反射強度に対するfcc鉄(オーステナイト)各面からの積分反射強度の強度比から求めたオーステナイトの割合を残留オーステナイト分率とした。
(Ii) Measurement of retained austenite fraction by XRD After polishing the steel plate to a plate thickness of 1/4 position, the surface further polished by 0.1 mm by chemical polishing was subjected to fcc iron (austenite) using Mo Kα rays with an X-ray diffractometer. ), The (200) plane, the (311) plane, and the (200) plane, the (211) plane, and the (220) plane of the bcc iron (ferrite) are measured, and the bcc iron (ferrite) plane is measured. ) Fcc iron (austenite) to the integrated reflection intensity from each surface The ratio of austenite obtained from the intensity ratio of the integrated reflection intensity from each surface was defined as the retained austenite fraction.

(iii)引張試験
得られた鋼板から圧延方向に対して垂直方向にJIS5号引張試験片を作製し、JIS Z 2241(2011)の規定に準拠した引張試験を5回行い、平均の降伏強度(YS)、引張強さ(TS)、全伸び(El)を求めた。引張試験のクロスヘッドスピードは10mm/minとした。表3において、引張強さ:780MPa以上を本発明鋼で求める鋼板の機械的性質とした。
(Iii) Tensile test A JIS No. 5 tensile test piece was prepared from the obtained steel sheet in a direction perpendicular to the rolling direction, and a tensile test in accordance with the provisions of JIS Z 2241 (2011) was performed five times to obtain an average yield strength (iii). YS), tensile strength (TS), and total elongation (El) were determined. The crosshead speed of the tensile test was 10 mm / min. In Table 3, the tensile strength: 780 MPa or more was set as the mechanical property of the steel sheet obtained by the steel of the present invention.

また、圧延方向に対して平行方向のJIS5号引張試験片を板幅方向に対して隙間なく連続的に採取した。この際、板幅方向に対して長さが不足し、JIS5号引張試験片が採取できない位置が発生する場合、板幅中央部の板幅0mm超え35mm未満を破棄した。それらの降伏強さを調査し標準偏差を求め、その値が30MPa以下を本発明で求める範囲とした。 Further, JIS No. 5 tensile test pieces in the direction parallel to the rolling direction were continuously collected without gaps in the plate width direction. At this time, when the length was insufficient in the plate width direction and a position where the JIS No. 5 tensile test piece could not be collected occurred, the plate width of more than 0 mm and less than 35 mm at the center of the plate width was discarded. The yield strength was investigated and the standard deviation was obtained, and the value was set to the range of 30 MPa or less obtained in the present invention.

(iv)曲げ性評価
成形部材で曲げ部の割れにより不合格なる場合がある。これは曲げ性の局所的な悪化が原因であり、鋼板表面の亀裂に起因することが多く、鋼板表面の亀裂は形状が劣位の鋼板を2回以上のスキンパス圧延やレベラー加工を適用したときに発生する。本発明では、局所的な曲げ性悪化を招く、形状矯正を不要とするため、この曲げ性の局所的な悪化も抑制することができる。これを評価するため、幅方向センター部から幅100mm、長さ40mmの短冊状サンプルを50枚切り出し、せん断端面を研削加工した後、JISZ2248(1996)の規定に準拠したVブロック法による90°V曲げ試験(曲げ稜線は圧延方向)により曲げ評価用サンプルを作製した。この曲げ頂点部付近を20倍の光学顕微鏡もしくはルーペで観察し、割れ有無を判定した。表3には割れが生じなかった押し付けダイスの最小曲げ半径の平均値(Rave)と50枚評価したうちの最小曲げ半径の最大値(Rmax)を示した。Rmax−Rave=0.8mm以下の水準を本発明での好ましい範囲とした。
(Iv) Evaluation of bendability The molded member may be rejected due to cracks in the bent portion. This is due to the local deterioration of bendability, often due to cracks on the surface of the steel sheet, and the cracks on the surface of the steel sheet are when a steel sheet with an inferior shape is subjected to skin pass rolling or leveler processing more than once. appear. In the present invention, since shape correction that causes local deterioration of bendability is not required, this local deterioration of bendability can also be suppressed. In order to evaluate this, 50 strip-shaped samples having a width of 100 mm and a length of 40 mm are cut out from the center portion in the width direction, and after grinding the sheared end face, 90 ° V by the V block method according to the regulations of JISZ2248 (1996). A sample for bending evaluation was prepared by a bending test (the bending ridge line is the rolling direction). The vicinity of the bending apex was observed with a 20x optical microscope or a loupe to determine the presence or absence of cracks. Table 3 shows the average value (Rave) of the minimum bending radii of the pressing dies that did not cause cracks and the maximum value (Rmax) of the minimum bending radii among 50 sheets evaluated. A level of Rmax-Rave = 0.8 mm or less was set as a preferable range in the present invention.

(v)鋼板形状評価
幅方向に対しせん断しない冷延鋼板を、長さ方向1mの長さにせん断した板を水平な台に置き、設置した台に対する鋼板の最大高さを“最大反り量”として測定し、その結果を表3に示した。最大反り量が10mm以下を本発明で求める鋼板形状とした。
(V) Steel plate shape evaluation A cold-rolled steel plate that does not shear in the width direction is placed on a horizontal table that has been sheared to a length of 1 m in the length direction, and the maximum height of the steel sheet with respect to the installed table is the "maximum warpage amount". The results are shown in Table 3. The steel plate shape obtained in the present invention has a maximum warp amount of 10 mm or less.

本発明例はいずれも、引張強さTS:780MPa以上であり良好な鋼板強度均質性、表面性状及び鋼板形状が得られたことがわかる。一方、本発明の範囲を外れる比較例は引張強さ780MPaに達していないか、本発明で求める鋼板強度均質性もしくは表面性状もしくは鋼板形状が得られなかった。 In each of the examples of the present invention, the tensile strength TS: 780 MPa or more, and it can be seen that good steel sheet strength homogeneity, surface texture and steel sheet shape were obtained. On the other hand, in the comparative example outside the scope of the present invention, the tensile strength did not reach 780 MPa, or the steel sheet strength homogeneity, surface texture, or steel sheet shape required in the present invention could not be obtained.

Claims (4)

質量%で、
C:0.05%以上0.35%以下、
Si:0.01%以上2.0%以下、
Mn:0.8%以上3.2%以下、
P:0.05%以下、
S:0.005%以下、
Al:0.005%以上0.10%以下、
N:0.0060%以下、
残部がFeおよび不可避的不純物からなる成分組成と、
フェライト面積率が0%以上90%以下、ベイナイト面積率が5%以下(0%を含む)、マルテンサイトおよび焼き戻されたマルテンサイト面積率が10%以上(100%を含む)、残留オーステナイト面積率が2.0%以下(0%を含む)である鋼組織と、を有し、
引張強さが780MPa以上であり、幅方向の降伏強さの標準偏差が30MPa以下、長さ1mでせん断した際の板鋼板の最大反り量が10mm以下である薄鋼板。
By mass%
C: 0.05% or more and 0.35% or less,
Si: 0.01% or more and 2.0% or less,
Mn: 0.8% or more and 3.2% or less,
P: 0.05% or less,
S: 0.005% or less,
Al: 0.005% or more and 0.10% or less,
N: 0.0060% or less,
Ingredient composition with the balance consisting of Fe and unavoidable impurities,
Ferrite area ratio is 0% or more and 90% or less, bainite area ratio is 5% or less (including 0%), martensite and tempered martensite area ratio is 10% or more (including 100%), retained austenite area. Has a steel structure with a rate of 2.0% or less (including 0%),
A thin steel sheet having a tensile strength of 780 MPa or more, a standard deviation of yield strength in the width direction of 30 MPa or less, and a maximum warp amount of a sheet steel sheet when sheared at a length of 1 m is 10 mm or less.
前記成分組成は、さらに、質量%で、
V:0.001%以上1%以下、
Ti:0.001%以上0.3%以下、
Nb:0.001%以上0.3%以下、
Cr:0.001%以上1.0%以下、
Mo:0.001%以上1.0%以下、
Ni:0.01%以上1.0%以下、
Cu:0.01%以上1.0%以下、
B:0.0002%以上0.0050%以下、
Sb:0.001%以上0.050%以下、
REM:0.0002%以上0.050%以下、
Mg:0.0002%以上0.050%以下及び
Ca:0.0002%以上0.050%以下のいずれか1種または2種以上を含有する請求項1に記載の薄鋼板。
The component composition is further increased by mass%.
V: 0.001% or more and 1% or less,
Ti: 0.001% or more and 0.3% or less,
Nb: 0.001% or more and 0.3% or less,
Cr: 0.001% or more and 1.0% or less,
Mo: 0.001% or more and 1.0% or less,
Ni: 0.01% or more and 1.0% or less,
Cu: 0.01% or more and 1.0% or less,
B: 0.0002% or more and 0.0050% or less,
Sb: 0.001% or more and 0.050% or less,
REM: 0.0002% or more and 0.050% or less,
The thin steel sheet according to claim 1, which contains any one or more of Mg: 0.0002% or more and 0.050% or less and Ca: 0.0002% or more and 0.050% or less.
請求項1又は2に記載の薄鋼板の製造方法であって、鋼素材を、熱間圧延する熱延工程と、
前記熱延工程後の鋼板を酸洗し、冷間圧延する冷延工程と、
前記冷延工程後の鋼板を、760℃以上で加熱した後、600℃以上で水焼入し、該水焼入において水槽に鋼板が進入する際の鋼板表面の法線方向の変動量が30mm以下となるように100℃以下まで水冷し、100℃以上350℃以下で再度加熱する焼鈍工程と、を有する薄鋼板の製造方法。
The method for manufacturing a thin steel sheet according to claim 1 or 2, wherein the steel material is hot-rolled and hot-rolled.
A cold rolling process in which the steel sheet after the hot rolling process is pickled and cold-rolled,
The steel sheet after the cold rolling step is heated at 760 ° C. or higher and then water-quenched at 600 ° C. or higher, and the amount of variation in the normal direction of the steel sheet surface when the steel sheet enters the water tank in the water quenching is 30 mm. A method for producing a thin steel sheet, which comprises an annealing step of water-cooling to 100 ° C. or lower and reheating at 100 ° C. or higher and 350 ° C. or lower so as to be as follows.
前記焼鈍工程において、前記水槽の水面を基点とした上下1m以内に鋼板拘束用ロールを1対以上設置して前記変動量を調整する請求項3に記載の薄鋼板の製造方法。 The method for manufacturing a thin steel plate according to claim 3, wherein in the annealing step, one or more pairs of steel plate restraining rolls are installed within 1 m above and below the water surface of the water tank to adjust the fluctuation amount.
JP2018143806A 2018-07-31 2018-07-31 Thin steel sheet and its manufacturing method Active JP6835046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018143806A JP6835046B2 (en) 2018-07-31 2018-07-31 Thin steel sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018143806A JP6835046B2 (en) 2018-07-31 2018-07-31 Thin steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020019992A JP2020019992A (en) 2020-02-06
JP6835046B2 true JP6835046B2 (en) 2021-02-24

Family

ID=69587473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018143806A Active JP6835046B2 (en) 2018-07-31 2018-07-31 Thin steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6835046B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2022002441A (en) * 2019-08-30 2022-06-02 Jfe Steel Corp Steel sheet, member, and methods for producing same.
WO2021085335A1 (en) * 2019-10-31 2021-05-06 Jfeスチール株式会社 Steel plate, member, and method for manufacturing said steel plate and member
WO2021085336A1 (en) * 2019-10-31 2021-05-06 Jfeスチール株式会社 Steel sheet, member, method for producing said steel sheet and method for producing said member
MX2022013660A (en) * 2020-05-11 2022-11-30 Jfe Steel Corp Steel sheet, member, and method for manufacturing same.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238532A (en) * 1988-07-29 1990-02-07 Kobe Steel Ltd Manufacture of cold rolled high-tensile sheet steel
JPH11193418A (en) * 1997-12-29 1999-07-21 Kobe Steel Ltd Manufacture of high strength cold rolled steel sheet excellent in flatness characteristic
JP2003277833A (en) * 2002-03-22 2003-10-02 Jfe Steel Kk Method and device for manufacturing metal plate
JP4947176B2 (en) * 2010-03-24 2012-06-06 Jfeスチール株式会社 Manufacturing method of ultra-high strength cold-rolled steel sheet
JP5884714B2 (en) * 2012-01-31 2016-03-15 Jfeスチール株式会社 Hot-dip galvanized steel sheet and manufacturing method thereof
JP6047037B2 (en) * 2012-03-29 2016-12-21 株式会社神戸製鋼所 Manufacturing method of high-strength cold-rolled steel sheet with excellent steel plate shape
JP6094722B2 (en) * 2014-11-28 2017-03-15 Jfeスチール株式会社 Metal plate manufacturing method and quench quenching apparatus

Also Published As

Publication number Publication date
JP2020019992A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP6428970B1 (en) Hot-pressed member and manufacturing method thereof
CN107709598B (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet
KR101706485B1 (en) High-strength cold-rolled steel sheet and method for producing the same
US10329638B2 (en) High strength galvanized steel sheet and production method therefor
JP5860308B2 (en) High strength steel plate with excellent warm formability and method for producing the same
WO2018026014A1 (en) Steel sheet and plated steel sheet
JP6835046B2 (en) Thin steel sheet and its manufacturing method
JP6052473B1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods thereof
JPWO2018011978A1 (en) Hot-dip galvanized steel sheet
JP6928112B2 (en) Thin steel plate
KR102433938B1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet and manufacturing method thereof
CN115003841B (en) Steel sheet, component, and method for producing same
JP6777274B1 (en) Hot-dip galvanized steel sheet and its manufacturing method
JP6508176B2 (en) Hot pressed member and method of manufacturing the same
JP2012237042A (en) High-strength cold-rolled steel sheet excellent in workability and method for production thereof
CN114981462B (en) Steel sheet, component, and method for manufacturing same
JP6837372B2 (en) High-strength cold-rolled steel sheet with excellent formability and its manufacturing method
JP2014189868A (en) High strength steel sheet and manufacturing method therefor
JP7031795B1 (en) Steel sheets, members and their manufacturing methods
JP2021181624A (en) Steel sheet, member subject and manufacturing method of them
JP6737419B1 (en) Thin steel sheet and method of manufacturing the same
CN112714800B (en) Steel plate
WO2020080337A1 (en) Thin steel sheet and method for manufacturing same
JP7006849B1 (en) Steel sheets, members and their manufacturing methods
WO2021172297A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6835046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250