JP5619668B2 - Cold stamping steel and steel belt element using the same - Google Patents

Cold stamping steel and steel belt element using the same Download PDF

Info

Publication number
JP5619668B2
JP5619668B2 JP2011092138A JP2011092138A JP5619668B2 JP 5619668 B2 JP5619668 B2 JP 5619668B2 JP 2011092138 A JP2011092138 A JP 2011092138A JP 2011092138 A JP2011092138 A JP 2011092138A JP 5619668 B2 JP5619668 B2 JP 5619668B2
Authority
JP
Japan
Prior art keywords
steel
cold
hardness
heat treatment
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011092138A
Other languages
Japanese (ja)
Other versions
JP2012224896A (en
Inventor
高田 健太郎
健太郎 高田
紘樹 寺田
紘樹 寺田
進一郎 加藤
進一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Daido Steel Co Ltd
Original Assignee
Honda Motor Co Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Daido Steel Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011092138A priority Critical patent/JP5619668B2/en
Priority to DE112012001745.5T priority patent/DE112012001745T5/en
Priority to PCT/JP2012/060358 priority patent/WO2012144495A1/en
Priority to US14/003,508 priority patent/US20140053955A1/en
Priority to CN201280016737.1A priority patent/CN103502495A/en
Publication of JP2012224896A publication Critical patent/JP2012224896A/en
Application granted granted Critical
Publication of JP5619668B2 publication Critical patent/JP5619668B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/16V-belts, i.e. belts of tapered cross-section consisting of several parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、自動車等のベルト式CVTに使用されるスチールベルト用エレメントに加工される冷間打抜用鋼及びエレメントに関する。   The present invention relates to a steel for cold punching and an element processed into a steel belt element used for a belt type CVT of an automobile or the like.

自動車等のベルト式の無段階変速機(Continuously
Variable Transmission:CVT)では、入力側及び出力側の一対のプーリの間にスチールベルトを捲いて動力を伝達している。かかるスチールベルトは、環状ベルトに沿ってチップ状のエレメント(スチール駒)を重ねるようにして複数個組み付けた構造を有する。このスチールベルトを出力側プーリのV字状溝に嵌み込み、溝幅を変化させるとスチールベルトがプーリの半径方向に移動しその回転半径を連続的に調整できて、入力側と出力側のプーリの回転比率を滑らかに変化させ得る。
Belt-type continuously variable transmission for automobiles (Continuously
In Variable Transmission (CVT), power is transmitted by putting a steel belt between a pair of pulleys on the input side and output side. Such a steel belt has a structure in which a plurality of chip-like elements (steel pieces) are assembled along an annular belt. When this steel belt is fitted into the V-shaped groove of the output pulley and the groove width is changed, the steel belt moves in the radial direction of the pulley, and its rotational radius can be continuously adjusted. The rotation ratio of the pulley can be changed smoothly.

上記したように、スチールベルト用エレメントは、常に、出力側プーリのV字状溝に当接して駆動されるため、耐摩耗性に優れる高い硬さの鋼が使用される。一般的には、JIS SKS95(質量%で、C:0.80〜0.90%、Si:0.50%以下、Mn:0.80〜1.10%、P:0.030%以下、S:0.030%以下、Cr:0.20〜0.60%)のような、比較的炭素量の多い鋼が使用される。球状化処理された炭化物を含む冷間圧延材をエレメントの形状に冷間打ち抜き加工し、平衡状態図上でAcm点以上の温度から焼入れ・焼戻しされて、一定量の未固溶炭化物を分散させた焼戻しマルテンサイト組織を与えられる。   As described above, since the steel belt element is always driven in contact with the V-shaped groove of the output pulley, steel with high hardness having excellent wear resistance is used. Generally, JIS SKS95 (mass%, C: 0.80-0.90%, Si: 0.50% or less, Mn: 0.80-1.10%, P: 0.030% or less, Steel having a relatively large carbon content such as S: 0.030% or less, Cr: 0.20 to 0.60% is used. Cold-rolled material containing carbide that has been spheroidized is cold-punched into the shape of the element and quenched and tempered from a temperature above the Acm point on the equilibrium diagram to disperse a certain amount of undissolved carbide. Given a tempered martensite structure.

エレメントを冷間打ち抜きするには、高い硬さの鋼では生産性が低下してしまう。そこで、軟化熱処理を施した鋼を冷間打ち抜き加工し、その後に硬化熱処理を行う製造方法が考慮される。ここで打ち抜き加工後のエレメントの変形の防止には、硬化熱処理は比較的低い温度で且つ短時間で行われるべきである。これに対して、本発明者は、平衡状態図上でオーステナイト単相安定域温度が最も低い共析組成近傍の鋼に着目し、共析点近傍の温度で硬化熱処理を行って、高い硬さによる高い摩耗性とともに、プーリとの相対的移動による接触にも耐えられる高い靱性をも兼ね備えた鋼を得ることを検討している。   In order to cold punch the element, the productivity of the steel having high hardness is lowered. Therefore, a manufacturing method in which a steel subjected to a softening heat treatment is subjected to cold punching, and then a hardening heat treatment is considered. Here, in order to prevent the deformation of the element after the punching process, the curing heat treatment should be performed at a relatively low temperature and in a short time. On the other hand, the present inventor focused on steel near the eutectoid composition having the lowest austenite single-phase stability region temperature on the equilibrium diagram, and performed a heat treatment at a temperature near the eutectoid point to obtain a high hardness. We are studying to obtain a steel that has both high wear resistance and high toughness that can withstand contact by relative movement with the pulley.

例えば、特許文献1では、共析組成近傍の鋼であって、600〜900Hvの硬さを維持しながらも、25J/cm以上の高い衝撃値を有する高炭素鋼部材を開示している。詳細には、質量%で、C:0.60〜1.30%、Si:≦1.0%、Mn:0.2〜1.5%、P:≦0.02%、S:≦0.02%、Mo:≦0.5%、V:≦0.5%、の成分組成を有し、焼入れ・焼戻し後の組織で未固溶炭化物を8.5<15.3×C%−V<10.0の体積率V(体積%)で残存させ、且つ、粒径1.0μm以上の粗大な未固溶炭化物を観察面積100μmあたり2個以下に規制すべきことを開示している。ここで、Moを添加すると、焼入れ性と靭性を高め、Niと特殊な炭化物を形成し耐摩耗性をも高めると述べている。また、Vを添加すると、焼入れの際に、オーステナイト結晶粒を微細化させて耐摩耗性を高め得るとも述べている。 For example, Patent Document 1 discloses a high carbon steel member that is a steel in the vicinity of a eutectoid composition and has a high impact value of 25 J / cm 2 or more while maintaining a hardness of 600 to 900 Hv. Specifically, by mass%, C: 0.60 to 1.30%, Si: ≦ 1.0%, Mn: 0.2 to 1.5%, P: ≦ 0.02%, S: ≦ 0 0.02%, Mo: ≦ 0.5%, V: ≦ 0.5%, and the composition after quenching / tempering is 8.5 <15.3 × C% − It is disclosed that the coarse undissolved carbide having a particle size of 1.0 μm or more should be restricted to 2 or less per 100 μm 2 of observation area with V f <10.0 volume ratio V f (volume%). doing. Here, it is stated that when Mo is added, hardenability and toughness are improved, Ni and a special carbide are formed, and wear resistance is also improved. It is also stated that when V is added, the austenite crystal grains can be refined during quenching to improve wear resistance.

また、特許文献2では、共析組成近傍の鋼であって、靭性及び耐疲労性に優れる炭素鋼を開示している。詳細には、質量%で、C:0.50〜0.70%、Si:≦0.5%、Mn:1.0〜2.0%、P:≦0.02%、S:≦0.02%、Al:0.001〜0.10%に加えて、V:0.05〜0.50%、Ti:0.02〜0.20%、Nb:0.01〜0.50%、Mo:≦0.50%の1種又は2種以上を含む成分組成を有し、焼なまし後の組織で未固溶炭化物の球状化率を95%以上とし、粒径2.5μm以上の粗大な未固溶炭化物を生成させないようにすることを開示している。ここで、Moを添加すると焼入れ性を高め、Vを添加すると炭窒化物を形成させて靭性を高めると述べている。   Patent Document 2 discloses a carbon steel which is a steel in the vicinity of a eutectoid composition and is excellent in toughness and fatigue resistance. Specifically, in mass%, C: 0.50 to 0.70%, Si: ≦ 0.5%, Mn: 1.0 to 2.0%, P: ≦ 0.02%, S: ≦ 0 0.02%, Al: 0.001 to 0.10%, V: 0.05 to 0.50%, Ti: 0.02 to 0.20%, Nb: 0.01 to 0.50% , Mo: ≦ 0.50% of component composition including one or more kinds, the spheroidization rate of undissolved carbide in the structure after annealing is 95% or more, and the particle size is 2.5 μm or more It is disclosed that no coarse undissolved carbide is produced. Here, it is stated that when Mo is added, hardenability is improved, and when V is added, carbonitrides are formed and toughness is increased.

特開2006−63384号公報JP 2006-63384 A 特開2009−24233号公報JP 2009-24233 A

特許文献1及び2に開示されている鋼のように、MoやV等の希少金属を添加することで、耐摩耗性と靭性に優れる鋼を得られる。しかしながら、コストの点から、これら希少金属の添加量を下げつつも、同等程度若しくはそれ以上の耐摩耗性と靱性を得られることが望まれる。   Like the steel currently disclosed by patent document 1 and 2, the steel which is excellent in abrasion resistance and toughness can be obtained by adding rare metals, such as Mo and V. However, from the viewpoint of cost, it is desired that the wear resistance and toughness of the same level or higher can be obtained while reducing the amount of these rare metals added.

本発明はかかる状況に鑑みてなされたものであって、その目的とするところは、Mo及びV等の希少金属の添加を抑制しつつ、耐摩耗性と靭性に優れる自動車等のベルト式CVTに使用されるスチールベルト用エレメント及びこれを与える冷間打抜用鋼を提供することを目的とする。   The present invention has been made in view of such a situation. The object of the present invention is to provide a belt-type CVT such as an automobile excellent in wear resistance and toughness while suppressing the addition of rare metals such as Mo and V. It is an object of the present invention to provide an element for a steel belt to be used and a steel for cold punching that provides the element.

本発明による冷間打抜用鋼は、元素Mの質量%を[M]とすると、10.8[C]+5.6[Si]+2.7[Mn]+0.3[Cr]+7.8[Mo]+1.4[V]≦13を満たす成分組成の鋼からなる冷間打抜用鋼であって、質量%で、必須添加元素として、Cを0.50から0.70%、Siを0.03から0.60%、Mnを0.50から1.00%、Crを0.20から1.00%、Tiを0.01から0.10%、及び、Bを0.0005から0.0050%の範囲内、任意添加元素として、Pを0.025%以下、及び、Sを0.015%以下の範囲内、残部Fe及び不可避的不純物とした成分組成を有し、オーステナイト単相温度域に加熱保持後、所定速度で冷却して、主として、フェライト+パーライト混合組織に微細炭化物を分散させた組織で88HRB以下の硬さを与えたことを特徴とする。   The steel for cold stamping according to the present invention is 10.8 [C] +5.6 [Si] +2.7 [Mn] +0.3 [Cr] +7.8 when the mass% of the element M is [M]. It is a steel for cold stamping made of steel having a component composition satisfying [Mo] +1.4 [V] ≦ 13, in mass%, C as an essential additive element, 0.50 to 0.70%, Si 0.03 to 0.60%, Mn 0.50 to 1.00%, Cr 0.20 to 1.00%, Ti 0.01 to 0.10%, and B 0.0005% In the range of 0.0050% to 0.0050%, and as an optional additive element, P is 0.025% or less, and S is in a range of 0.015% or less, with the balance being Fe and inevitable impurities, and austenite After heating and holding in the single-phase temperature range, it is cooled at a predetermined rate, and finely mainly in the ferrite + pearlite mixed structure Characterized in that it gave 88HRB following hardness at product was dispersed tissue.

かかる発明によれば、冷間打抜用鋼として、ベルト式CVTのスチールベルト用エレメントの形状への冷間打ち抜きが良好にできる。また、主として、フェライト+パーライト混合組織にBを核とした微細炭化物を分散させた組織を有する。所定の焼入れ焼戻し熱処理により、微細炭化物の分散組織によりエレメントとしての高い耐摩耗性を与えつつ、粗大な炭化物を抑制できて、エレメントとしての高い靱性をも与え得るのである。   According to this invention, as a steel for cold punching, cold punching into the shape of a steel belt element of a belt type CVT can be favorably performed. Further, it mainly has a structure in which fine carbides having B as a nucleus are dispersed in a ferrite + pearlite mixed structure. By a predetermined quenching and tempering heat treatment, coarse carbides can be suppressed and high toughness as an element can be provided while giving a high wear resistance as an element by a dispersed structure of fine carbides.

上記した発明において、断面組織において、円相当径で0.5μm以上の粗大炭化物を1mm四方当たり1.2×10個以下に抑制したことを特徴としてもよい。かかる発明によれば、所定の焼入れ焼戻し熱処理により、粗大な炭化物を抑制できて、エレメントとしての高い靱性を与え得る。 In the above-described invention, in the cross-sectional structure, coarse carbides having an equivalent circle diameter of 0.5 μm or more may be suppressed to 1.2 × 10 5 or less per 1 mm square. According to this invention, a predetermined quenching and tempering heat treatment can suppress coarse carbides and can provide high toughness as an element.

本発明によるベルト式CVTのスチールベルト用エレメントは、上記した発明のうちのいずれか1つからなる冷間打抜用鋼を所定形状に冷間打ち抜きした後に焼き入れ焼き戻し熱処理を与えて640Hv以上の硬さを与えたことを特徴とする。   The steel belt element of the belt type CVT according to the present invention is 640 Hv or more by applying a quenching and tempering heat treatment after cold punching the steel for cold punching according to any one of the above inventions into a predetermined shape. It is characterized by giving the hardness.

かかる発明によれば、エレメントとしての高い耐摩耗性を有しつつ、粗大な炭化物を抑制した組織によりエレメントとしての高い靱性をも有するのである。
るのである。
According to this invention, it has high toughness as an element by the structure | tissue which suppressed the coarse carbide | carbonized_material while having high abrasion resistance as an element.
It is.

上記した発明において、断面組織において、円相当径で0.5μm以上の粗大炭化物を1mm四方当たり1.3×10個以下に抑制したことを特徴としてもよい。かかる発明によれば、エレメントとしての高い耐摩耗性を有しつつ、粗大な炭化物を抑制した組織によりエレメントとしての高い靱性をも有するのである。 In the above-described invention, in the cross-sectional structure, coarse carbides having an equivalent circle diameter of 0.5 μm or more may be suppressed to 1.3 × 10 4 or less per 1 mm square. According to this invention, it has high toughness as an element by the structure | tissue which suppressed the coarse carbide | carbonized_material while having high abrasion resistance as an element.

本発明によるエレメントの製造工程を示す図である。It is a figure which shows the manufacturing process of the element by this invention. 軟化熱処理における断面組織を示す図である。It is a figure which shows the cross-sectional structure | tissue in softening heat processing. 実施例及び比較例の成分組成を示す図である。It is a figure which shows the component composition of an Example and a comparative example. 衝撃試験の試験片の形状を示す図である。It is a figure which shows the shape of the test piece of an impact test. 摩耗試験の方法を示す図である。It is a figure which shows the method of an abrasion test. 試験結果をまとめた図である。It is the figure which put together the test result. 硬化熱処理後の硬さに対する衝撃比を示す図である。It is a figure which shows the impact ratio with respect to the hardness after hardening heat processing. 未固溶炭化物の組成分布を示す図であるIt is a figure showing composition distribution of insoluble carbide 亀裂の進行を示す断面組織の写真である。It is a photograph of a cross-sectional structure showing the progress of cracks. 摩耗試験の結果を示すグラフである。It is a graph which shows the result of an abrasion test. 摩耗試験の結果を示すグラフである。It is a graph which shows the result of an abrasion test. 軟化熱処理後の未固溶炭化物の大きさ毎の観察個数を示す図である。It is a figure which shows the observation number for every magnitude | size of the insoluble carbide | carbonized_material after softening heat processing. 硬化熱処理後の未固溶炭化物の大きさ毎の観察個数を示す図である。It is a figure which shows the observation number for every magnitude | size of the insoluble carbide | carbonized_material after hardening heat processing.

本発明による1つの実施例としてのベルト式CVTのスチールベルト用エレメントの製造方法について、図1に沿って説明する。   A method of manufacturing a steel belt element of a belt type CVT as one embodiment according to the present invention will be described with reference to FIG.

まず、所定量のBとTiを含む共析組成近傍の所定の成分組成を有する薄鋼板を後述する打ち抜き加工をし易くするよう軟化熱処理する(S1)。かかる軟化熱処理では、オーステナイト単相安定温度域であって比較的低い温度、すなわち、A3及びAcm線よりも20〜30℃程度高い温度に薄鋼板を加熱し所定時間だけ保持後、所定速度で冷却する。この軟化熱処理では、成分組成中のBにより未固溶炭化物を微細分散させた冷間打抜用鋼を得ることができる。この冷間打抜用鋼は良好な冷間打ち抜き性を有し、容易にエレメントの形状を加工できる。   First, softening heat treatment is performed so that a thin steel plate having a predetermined component composition in the vicinity of a eutectoid composition containing a predetermined amount of B and Ti is easily punched (described later) (S1). In such softening heat treatment, the steel sheet is heated to a relatively low temperature in the austenite single-phase stable temperature range, that is, about 20 to 30 ° C. higher than the A3 and Acm lines, held for a predetermined time, and then cooled at a predetermined rate. To do. In this softening heat treatment, a steel for cold punching in which insoluble carbides are finely dispersed by B in the component composition can be obtained. This steel for cold punching has good cold punchability and can easily process the shape of the element.

ここで、図2に示すように、パーライト組織を有する薄鋼板において、Bはパーライト組織中のセメンタイト部分に特に分散している(図2(a)参照)。この薄鋼板をオーステナイト単相安定温度域に加熱し保持すると、オーステナイト単相へと変化していく(図2(b)参照)。完全にオーステナイト単相へと変化する前に再び、フェライト安定温度域まで徐々に降温させると、まず、フェライト中に固溶できない炭素は炭化物として析出するが、一部の炭化物は分散したBを析出核として析出する(図2(c)及び図8を併せて参照)。降温を続けると、粗大なパーライト粒とフェライト粒の混合組織中に炭化物を微細に分散させた組織となっていく(図2(d)参照)。   Here, as shown in FIG. 2, in the thin steel plate having a pearlite structure, B is particularly dispersed in the cementite portion in the pearlite structure (see FIG. 2 (a)). When this thin steel sheet is heated and held in the austenite single-phase stable temperature range, it changes into an austenite single-phase (see FIG. 2B). When the temperature is gradually lowered to the ferrite stable temperature range again before completely changing to the austenite single phase, carbon that cannot be dissolved in ferrite first precipitates as carbide, but some carbide precipitates dispersed B. It precipitates as a nucleus (see also FIG. 2 (c) and FIG. 8). When the temperature is continuously lowered, a structure is obtained in which carbides are finely dispersed in a mixed structure of coarse pearlite grains and ferrite grains (see FIG. 2D).

すなわち、Bを凝集させずに、分散を維持させたままフェライト安定温度域まで降温させるには、保持温度をA3線及びAcm線近傍の比較的低い温度で完全にオーステナイト単相に変化する以前に降温を開始させるのである。なお、Bに併せてTiを含むことで、TiがBよりも優先してNと窒化物を生成し、B窒化物の生成を抑制させて、Bの分散を維持させるのである。   That is, in order to lower the temperature to the ferrite stable temperature range while maintaining the dispersion without aggregating B, the holding temperature is changed to the austenite single phase completely at a relatively low temperature near the A3 line and the Acm line. The temperature drop is started. In addition, by including Ti together with B, Ti generates N and nitride in preference to B, suppresses the generation of B nitride, and maintains the dispersion of B.

再び、図1を参照すると、冷間打抜用鋼から所定のエレメントの形状に打ち抜き加工してエレメントを得る(S2)。   Referring to FIG. 1 again, an element is obtained by punching into a predetermined element shape from the steel for cold punching (S2).

更に、打ち抜き加工して得られたエレメントに耐摩耗性などを付与するよう硬化熱処理を施す(S3)。すなわち、焼き入れ、焼き戻しを行う。なお、薄鋼板からなるエレメントの変形の防止のためには、比較的低い温度で且つ短時間でこの熱処理を行うことが好ましい。つまり、軟化熱処理(S1)と同様、オーステナイト単相安定温度域であって比較的低い温度に加熱保持し、焼き入れるのである。かかる場合、軟化熱処理によりBを核に分散した微細な炭化物は維持されるのである。以上により、耐摩耗性と靭性に優れる自動車等のベルト式CVTに使用されるスチールベルト用エレメントを得ることができる。   Further, a curing heat treatment is performed so as to impart wear resistance and the like to the element obtained by punching (S3). That is, quenching and tempering are performed. In order to prevent the deformation of the element made of a thin steel plate, it is preferable to perform this heat treatment at a relatively low temperature and in a short time. That is, as in the softening heat treatment (S1), the austenite single-phase stable temperature range is maintained at a relatively low temperature and quenched. In such a case, the fine carbide in which B is dispersed in the nucleus is maintained by the softening heat treatment. By the above, the steel belt element used for belt type CVTs, such as a motor vehicle excellent in abrasion resistance and toughness, can be obtained.

次に、スチールベルト用エレメントに冷間打ち抜き加工するために冷間打抜用鋼に必要とされる硬さなどの評価、及び、この冷間打抜用鋼に硬化熱処理を与えたときのスチールベルト用エレメントとして必要とされる機械的特性(靭性及び耐摩耗性)の評価を行った。これについて図3乃至図5を用いて説明する。   Next, evaluation of the hardness required for cold punching steel for cold punching into the steel belt element, and steel when hardening heat treatment is applied to this cold punching steel The mechanical properties (toughness and wear resistance) required for belt elements were evaluated. This will be described with reference to FIGS.

まず、本発明者は、ここまでJIS SKS95などの成分組成を冷間打ち抜き加工に適した硬さを得られるよう調整するにあたって、成分元素と硬さの関係について、以下の経験式を得ている。
=10.8[C]+5.6[Si]+2.7[Mn]
+0.3[Cr]+7.8[Mo]+1.4[V]+75 (式1)
そこで、式1により後述する所定の硬さを得られるよう、まず成分組成の目標値を選択し、鋼を製造したところ、図3に示す実施例1乃至10及び比較例1乃至11の成分組成の鋼を得られた。ここで、図3の実施例1乃至10及び比較例1乃至11の成分組成において、比較例3ではMoを、比較例4ではVを目標値に従って添加したが、その他の実施例及び比較例において、Mo及びVは目標値としては添加を意図しておらず、いずれも不純物として検出されたものである。
First, the present inventor has obtained the following empirical formula for the relationship between component elements and hardness in adjusting the component composition such as JIS SKS95 so as to obtain hardness suitable for cold punching processing so far. .
H 1 = 10.8 [C] +5.6 [Si] +2.7 [Mn]
+0.3 [Cr] +7.8 [Mo] +1.4 [V] +75 (Formula 1)
Therefore, when the target value of the component composition was first selected and steel was manufactured so as to obtain the predetermined hardness described later using Equation 1, the component compositions of Examples 1 to 10 and Comparative Examples 1 to 11 shown in FIG. Of steel was obtained. Here, in the component compositions of Examples 1 to 10 and Comparative Examples 1 to 11 in FIG. 3, Mo was added in Comparative Example 3 and V was added according to the target value in Comparative Example 4, but in other Examples and Comparative Examples, , Mo and V are not intended to be added as target values, and both are detected as impurities.

評価用の試験片の作製方法について説明する。まず、母合金150kgを真空誘導炉により溶製し、図3に示す成分組成を有するインゴットを得る。   A method for producing a test piece for evaluation will be described. First, 150 kg of the master alloy is melted in a vacuum induction furnace to obtain an ingot having the component composition shown in FIG.

次に、インゴットを1200℃で3時間保持後、その一部を切り出して直径25mmの略円柱形状の丸棒に熱間鍛造した。なお、鍛造終了温度は900℃以上であった。続いて、丸棒を840℃で60分間保持し空冷し焼準しを行った。また、切り出したインゴットの残りを3.5mmに熱間圧延し、同様の焼準しを行った後、さらに1.5mmに冷間圧延して圧延材を得た。   Next, after holding the ingot at 1200 ° C. for 3 hours, a part thereof was cut out and hot forged into a substantially cylindrical round bar having a diameter of 25 mm. The forging end temperature was 900 ° C. or higher. Subsequently, the round bar was held at 840 ° C. for 60 minutes, air-cooled and normalized. Moreover, after hot-rolling the remainder of the cut out ingot to 3.5 mm, performing the same normalization, it cold-rolled further to 1.5 mm, and obtained the rolling material.

圧延材については、上記した軟化熱処理(S1)として、760℃で1時間保持し、10℃/hrで650℃まで徐冷し、その後空冷する熱処理を施した。適宜、研磨などを行って組織観察試験片とし、ロックウェル硬さや未固溶炭化物の個数などを測定した。   The rolled material was subjected to a heat treatment that was held at 760 ° C. for 1 hour, gradually cooled to 650 ° C. at 10 ° C./hr, and then air-cooled as the softening heat treatment (S1). As appropriate, polishing was performed to obtain a structure observation specimen, and the Rockwell hardness, the number of insoluble carbides, and the like were measured.

丸棒については、同様の軟化熱処理(S1)を模した熱処理を行った後に、更に、上記した硬化熱処理(S3)として、800℃で30分保持後、70℃の油浴に焼入れ、180℃で120分だけ焼き戻す焼入れ焼戻しを行った。熱処理後の丸棒の一部を切り出し、図4に示すような形状のサブサイズの衝撃試験片1と、後述する摩耗試験用の幅15.75mm、高さ10.16mm、厚さ6.35mmの略直方体ブロック状の摩耗試験片13とに加工した。なお、試験片13は、適宜、研磨などを行って組織観察試験片として、ビッカース硬さ及び未固溶炭化物の個数などを測定した。   About a round bar, after performing the heat treatment imitating the same softening heat treatment (S1), further, as the above-described curing heat treatment (S3), after holding at 800 ° C. for 30 minutes, quenching in a 70 ° C. oil bath, 180 ° C. Quenching and tempering were performed for 120 minutes. A part of the round bar after the heat treatment was cut out, and a sub-size impact test piece 1 having a shape as shown in FIG. 4 and a wear test width 15.75 mm, height 10.16 mm, and thickness 6.35 mm to be described later. And a wear test piece 13 having a substantially rectangular parallelepiped block shape. In addition, the test piece 13 performed grinding | polishing etc. suitably and measured the Vickers hardness, the number of insoluble carbides, etc. as a structure | tissue observation test piece.

ロックウェル硬さは、市販のロックウェル硬度試験装置を用い、任意の5点での測定値の平均値を測定値Hとした。なお、経験的に88HRB未満の硬さを基準に冷間打ち抜きのし易さが異なるため、図6において、測定値Hが88HRB未満のときを冷間打ち抜き性を良好(○)、これ以上のときを冷間打ち抜き性を不良(×)と評価した。 Rockwell hardness, using a commercially available Rockwell hardness testing apparatus, and the average value of measurements at arbitrary 5 points and the measured value H 2. Since the empirically ease cold punching are different relative to the hardness of less than 88HRB, 6, when the measurement value of H 2 less than 88HRB good cold punching property (○), no more The cold punching property was evaluated as poor (x).

ビッカース硬度は、市販のビッカース硬度計を用い、摩耗試験片13の断面において表面から約25μmの深さの位置で5点測定し、平均値を測定値Hとした。 Vickers hardness, using a commercially available Vickers hardness meter, was measured five points at a depth of about 25μm from the surface in the cross section of the wear test piece 13 was the average value and the measured value H 3.

衝撃試験は、市販のシャルピー衝撃試験装置を用いて行った。なお、図6の衝撃比は、比較例3の試験片での測定値に対する比である。この衝撃比が1以上の場合、靱性において良好(○)、1未満で靱性において不良(×)と評価している。   The impact test was performed using a commercially available Charpy impact test apparatus. In addition, the impact ratio of FIG. 6 is a ratio with respect to the measured value in the test piece of Comparative Example 3. When this impact ratio is 1 or more, it is evaluated that the toughness is good (◯), and less than 1, the toughness is poor (x).

摩耗試験は、図5に示すような摩耗試験装置10でブロック・オン・リング法により行った。詳細には、110℃のオイル12を蓄えた槽14に一部を浸されて回転するリング11に摩耗試験片13を1200Nの荷重で接触させ、相対的に滑った距離3000mにおける摩耗量を測定した。なお、リング11に対する摩耗試験片13の滑り速度は、0.05m/secである。また、リング11は、外径35mm、厚み8.74mmの環状体で、SCM420の浸炭焼入れ焼戻し材を750Hv程度の硬さに調質した鋼からなる。図6の摩耗比は、摩耗試験片13の摩耗部の断面積を測定し、比較例3の摩耗面積に対す比である。この摩耗比が1未満の場合、耐摩耗性において良好(○)、1以上で耐摩耗性において不良(×)と評価した。   The wear test was performed by a block-on-ring method using a wear test apparatus 10 as shown in FIG. Specifically, a wear test piece 13 is brought into contact with a rotating ring 11 immersed in a tank 14 storing 110 ° C. oil 12 at a load of 1200 N, and the wear amount at a relatively sliding distance of 3000 m is measured. did. The sliding speed of the wear test piece 13 with respect to the ring 11 is 0.05 m / sec. The ring 11 is an annular body having an outer diameter of 35 mm and a thickness of 8.74 mm, and is made of steel obtained by tempering a carburizing and tempering material of SCM420 to a hardness of about 750 Hv. The wear ratio in FIG. 6 is a ratio to the wear area of Comparative Example 3 by measuring the cross-sectional area of the wear portion of the wear test piece 13. When this wear ratio was less than 1, the wear resistance was good (◯), and when it was 1 or more, the wear resistance was poor (x).

未固溶炭化物の個数は、断面組織の画像解析により測定した。100μm四方当たりに存在する円相当径で0.50μm以上の未固溶炭化物の個数について、これを1mm四方当たりに存在する個数に換算した。   The number of insoluble carbides was measured by image analysis of the cross-sectional structure. The number of undissolved carbides having an equivalent circle diameter of 0.50 μm or more present per 100 μm square was converted to the number present per 1 mm square.

図6に各結果をまとめた。   FIG. 6 summarizes the results.

まず、上記した式1を用いて図3の各成分組成から計算されるた硬さの予測値Hと測定値Hとは良く一致していた。このことは、B及びTiを添加した本実施例においても、硬さへの影響は式1で予測でき得ることを示している。 First, consistent well above the predicted value H 1 hardness was calculated from the composition of Fig. 3 using Equation 1 and the measurement value H 2. This shows that the effect on the hardness can be predicted by Formula 1 even in the present example in which B and Ti are added.

実施例1乃至10では、軟化熱処理(S1)後の硬さ(以降、「軟化熱処理後硬さ」と称する。)Hはいずれも88HRBよりも小さく、打ち抜き性に優れる。一方、硬化熱処理(S3)後の硬さ(以降、「硬化熱処理後硬さ」と称する。)Hは比較例3とほぼ同程度又はそれ以下でありながら、衝撃比は1以上、摩耗比は1よりも小さい。つまり、従来材と比較して靭性及び耐摩耗性は同等以上である。 In Examples 1 to 10, the hardness after the softening heat treatment (S1) (hereinafter referred to as “hardness after the softening heat treatment”) H 2 is smaller than 88HRB and has excellent punchability. On the other hand, the hardness after hardening heat treatment (S3) (hereinafter referred to as “hardness after hardening heat treatment”) H 3 is approximately the same as or lower than that of Comparative Example 3, but the impact ratio is 1 or more, the wear ratio. Is less than 1. That is, the toughness and the wear resistance are equal to or higher than those of conventional materials.

参考として、比較例3に対して、Moを添加せず、Cの含有量を増加させた比較例1では、軟化熱処理後硬さHは89.0HRBと高く、打ち抜き性に劣る。また、硬化熱処理後硬さHは高いながら、衝撃比は1よりも小さく、摩耗比は1よりも大きい。つまり、靭性及び耐摩耗性で比較例3よりも劣る。硬化熱処理後の未固溶炭化物の個数が比較例3よりも非常に多く、このため耐摩耗性が低くなったものと考えられる。 As a reference, in Comparative Example 1 in which the content of C was increased without adding Mo to Comparative Example 3, the hardness H 2 after the softening heat treatment was as high as 89.0HRB, and the punchability was poor. Further, while the hardness H 3 after the curing heat treatment is high, the impact ratio is smaller than 1, and the wear ratio is larger than 1. That is, it is inferior to Comparative Example 3 in toughness and wear resistance. The number of undissolved carbides after the curing heat treatment is much larger than that in Comparative Example 3, and thus it is considered that the wear resistance is lowered.

従来材に対して、Moを添加せず、Cの含有量を減少させた比較例2では、硬化熱処理後硬さHは537Hvと低く、衝撃比は1よりも大きいものの、摩耗比は5.58と非常に大きかった。つまり、耐摩耗性において従来材に対して大きく劣る。 In Comparative Example 2 in which Mo was not added and the C content was reduced with respect to the conventional material, the hardness H 3 after curing heat treatment was as low as 537 Hv, the impact ratio was larger than 1, but the wear ratio was 5 .58 and it was very large. That is, it is greatly inferior to conventional materials in wear resistance.

従来材に対して、Moの代わりにVを添加した比較例4では、靭性及び耐摩耗性については比較例3とほぼ同程度である。   In Comparative Example 4 in which V is added instead of Mo with respect to the conventional material, the toughness and wear resistance are substantially the same as those in Comparative Example 3.

従来材に対して、Moを添加せず、SiやMnの含有量を増加させた比較例5及び7では、軟化熱処理後硬さHは、88HRBを超えており、冷間打抜用鋼として冷間打ち抜き性に劣る傾向にある。 In Comparative Examples 5 and 7 in which the content of Si and Mn was increased without adding Mo to the conventional material, the hardness H 2 after the softening heat treatment exceeded 88 HRB, and steel for cold punching Tends to be inferior in cold punchability.

一方、従来材に対して、Moを添加せず、Mnの含有量を減じた比較例8では、軟化熱処理後硬さHは低く、冷間打抜用鋼として冷間打ち抜き性は良好である。しかしながら、摩耗比は1よりも非常に大きく、耐摩耗性で従来材に対して大きく劣る。 On the other hand, in Comparative Example 8 in which Mo is not added and the Mn content is reduced compared to the conventional material, the hardness H 2 after the softening heat treatment is low, and the cold punching steel is good as a steel for cold punching. is there. However, the wear ratio is much larger than 1, which is much inferior to conventional materials in wear resistance.

従来材に対して、Moを添加せず、Crの含有量を増加させた比較例9では、冷間打抜用鋼として冷間打ち抜き性は良好である。しかし、衝撃比は1より小さく、摩耗比は1よりも大きく、靭性及び耐摩耗性において従来材より劣る。   In Comparative Example 9 in which the Mo content was not added and the Cr content was increased with respect to the conventional material, the cold punchability was good as a steel for cold punching. However, the impact ratio is smaller than 1, the wear ratio is larger than 1, and the toughness and wear resistance are inferior to the conventional materials.

従来材に対して、Moを添加せず、Crの含有量を減じた比較例10では、摩耗比は1よりも大きく、耐摩耗性において従来材より劣る。   In Comparative Example 10 in which Mo was not added to the conventional material and the Cr content was reduced, the wear ratio was larger than 1 and the wear resistance was inferior to that of the conventional material.

一方、従来材に対して、Moの代わりにBとTiを添加した実施例10では、冷間打抜用鋼として良好な冷間打ち抜き性を有し、衝撃比は1.22と大きく、摩耗比は0.65と小さい。つまり、良好な靭性及び耐摩耗性を有している。   On the other hand, in Example 10 in which B and Ti were added instead of Mo as compared with the conventional material, the steel had good cold punchability as a steel for cold punching, the impact ratio was as large as 1.22, and wear The ratio is as small as 0.65. That is, it has good toughness and wear resistance.

従来材に対して、Moの代わりにBとTiを添加し、さらにCの含有量を減じつつMnを加えた実施例1でも、冷間打抜用鋼として良好な打ち抜き性を有し、衝撃比は1.40と非常に大きく、特に優れた靭性を有している。   Even in Example 1, where B and Ti are added instead of Mo and Mn is added while reducing the C content, the steel has good punchability as a steel for cold punching, The ratio is very large at 1.40 and has particularly excellent toughness.

従来材に対して、Moの代わりにBとTiを添加し、さらにCrとPの含有量を増加させた実施例2でも、冷間打抜用鋼として良好な打ち抜き性を有する。また、靭性及び耐摩耗性のいずれも従来材に対して同等以上である。   Even in Example 2 in which B and Ti are added instead of Mo and the contents of Cr and P are increased with respect to the conventional material, the steel has good punchability as a steel for cold punching. Moreover, both toughness and wear resistance are equal to or higher than those of conventional materials.

従来材に対して、Moの代わりにBとTiを添加し、さらにMnの含有量を減じた実施例3でも、冷間打抜用鋼として良好な打ち抜き性を有するとともに、衝撃比は1.24と大きく、摩耗比は0.68と小さく、良好な靭性及び耐摩耗性を有している。   In Example 3 in which B and Ti were added instead of Mo and the Mn content was further reduced compared to the conventional material, the steel had good punchability as a steel for cold punching, and the impact ratio was 1. The wear ratio is as small as 0.68, and it has good toughness and wear resistance.

従来材に対して、Moの代わりにB及びTiを添加し、さらにSiの含有量を増加させた実施例4でも、冷間打抜用鋼として良好な打ち抜き性を有するとともに、衝撃比は1.20と大きく、摩耗比は0.65と小さく、良好な靭性及び耐摩耗性を有している。   In Example 4 in which B and Ti were added instead of Mo to the conventional material and the Si content was increased, the steel had good punchability as a steel for cold punching, and the impact ratio was 1 .20, wear ratio is as small as 0.65, and has good toughness and wear resistance.

従来材に対して、Moの代わりにB及びTiを添加し、さらにSiの含有量を減じつつCの含有量を増加させた実施例5でも、冷間打抜用鋼として良好な打ち抜き性を有する。また、靭性及び耐摩耗性のいずれも従来材に対して同等以上である。   Even in Example 5 in which B and Ti are added instead of Mo, and the content of C is increased while reducing the Si content, it has good punchability as a steel for cold punching. Have. Moreover, both toughness and wear resistance are equal to or higher than those of conventional materials.

従来材に対して、Moの代わりにB及びTiを添加し、BやCrの含有量を減じた実施例6及び7でも、冷間打抜用鋼として良好な打ち抜き性を有する。また、スチールベルト用エレメントとして有する靭性は従来材に対して同等以上で、耐摩耗性は良好である。   In Examples 6 and 7 in which B and Ti are added instead of Mo to the conventional material and the contents of B and Cr are reduced, the steel has good punchability as a cold punching steel. Further, the toughness of the steel belt element is equal to or higher than that of the conventional material, and the wear resistance is good.

従来材に対して、Moの代わりにB及びTiを添加し、さらに、SやTiの含有量を増加させた実施例8及び9でも、冷間打抜用鋼として良好な打ち抜き性を有するとともに、スチールベルト用エレメントとして優れた靭性及び耐摩耗性を有している。   In Examples 8 and 9 in which B and Ti are added instead of Mo and the contents of S and Ti are increased with respect to the conventional material, the steel has good punchability as a steel for cold punching. It has excellent toughness and wear resistance as a steel belt element.

ところで、実施例10に対して、B及びTiを添加しなかった比較例6では、冷間打抜用鋼として良好な打ち抜き性を有する。しかし、衝撃比は1より小さく、摩耗比は1より大きく、靭性と耐摩耗性についていずれも従来材より劣る。特に実施例10に対して靭性と耐摩耗性は大きく劣化する。   By the way, with respect to Example 10, Comparative Example 6 in which B and Ti were not added has good punchability as a steel for cold punching. However, the impact ratio is smaller than 1, the wear ratio is larger than 1, and both toughness and wear resistance are inferior to those of conventional materials. In particular, the toughness and wear resistance are greatly deteriorated with respect to Example 10.

また、実施例10に対して、Tiを添加しなかった比較例11でも、冷間打抜用鋼として良好な打ち抜き性を有する。しかし、衝撃比は1より小さく、摩耗比は1より大きく、スチールベルト用エレメントとして有する靭性と耐摩耗性についていずれも従来材より劣る。特に実施例10に対して靭性と耐摩耗性は大きく劣化する。   Further, in Comparative Example 11 in which Ti was not added to Example 10, the steel had good punchability as a cold punching steel. However, the impact ratio is less than 1, the wear ratio is greater than 1, and both the toughness and wear resistance of the steel belt element are inferior to those of conventional materials. In particular, the toughness and wear resistance are greatly deteriorated with respect to Example 10.

以上の実施例及び比較例の各結果から得られる傾向について述べる。   The tendency obtained from each result of the above examples and comparative examples will be described.

図7に示すように、硬化熱処理後硬さHに対する衝撃比のグラフにおいて、B及びTiを添加した実施例1乃至10は、Moを加えた比較例3とVを加えた比較例4とほぼ同様の位置にある。少なくとも、B及びTiを添加しなかった比較例1及び2、比較例5乃至10よりも右上の位置にある。すなわち、硬化熱処理後硬さHが高くとも耐衝撃性に優れる傾向にある。これは、Bが粒界強度を高め、破壊の起点となる粗大な未固溶炭化物の析出を抑制したためと考える。上記したように、Bは軟化熱処理時に未固溶炭化物の析出核となって、結果として、破壊の起点となる粗大な未固溶炭化物の析出を抑制すると考えるが、図8に示すように、未固溶炭化物15の中心部ではBの濃度が高くなっている。 As shown in FIG. 7, in the graph of the impact ratio with respect to the hardness H 3 after curing heat treatment, Examples 1 to 10 to which B and Ti were added are Comparative Example 3 to which Mo was added and Comparative Example 4 to which V was added. It is in almost the same position. At least in the upper right position of Comparative Examples 1 and 2 and Comparative Examples 5 to 10 in which B and Ti were not added. That is, even if the hardness H 3 after the curing heat treatment is high, the impact resistance tends to be excellent. This is thought to be because B increases the grain boundary strength and suppresses the precipitation of coarse undissolved carbide that becomes the starting point of fracture. As described above, B becomes a precipitation nucleus of undissolved carbide during the softening heat treatment, and as a result, suppresses the precipitation of coarse undissolved carbide that becomes a starting point of fracture, but as shown in FIG. The concentration of B is high at the center of the insoluble carbide 15.

また、Bを添加しTiを添加しなかった比較例11と比べても、実施例1乃至10は硬化熱処理後硬さHに対して高い衝撃比を有する。実施例1乃至10において、TiはBよりも先にNと結合することで、Bと結合するNを減少させ、上記したBの効果をさらに高めると考える。 Further, as compared with Comparative Example 11 was not added Ti added B, Example 1 to 10 have a high impact ratio to after hardening heat treatment hardness H 3. In Examples 1 to 10, it is considered that Ti is bonded to N before B, thereby reducing N bonded to B and further enhancing the effect of B described above.

次に、摩耗の形態であるが、摩耗は表面からの微小亀裂21の発生及び成長と表面の剥離によって進行する。図9に示すように、微小亀裂21は未固溶炭化物22と母相23との界面を優先的に伝播している。すなわち、未固溶炭化物22が大きいほど、未固溶炭化物22と母相23との界面に応力集中が生じやすくなり、微小亀裂21は容易に伝播すると考えられる。そこで、図10に示すように、円相当径0.5μm以上の粗大な未固溶炭化物の個数と摩耗比との関係についてまとめてみると、この個数の減少とともに摩耗比は低下している。つまり、粗大な未固溶炭化物22の個数を減じることで、耐摩耗性を向上させ得ることが判る。   Next, although it is a form of abrasion, abrasion advances by generation | occurrence | production and growth of the micro crack 21 from a surface, and peeling of a surface. As shown in FIG. 9, the microcracks 21 preferentially propagate through the interface between the undissolved carbide 22 and the parent phase 23. That is, it is considered that as the insoluble carbide 22 is larger, stress concentration is more likely to occur at the interface between the insoluble carbide 22 and the parent phase 23 and the microcracks 21 are easily propagated. Therefore, as shown in FIG. 10, when the relationship between the number of coarse undissolved carbides having an equivalent circle diameter of 0.5 μm or more and the wear ratio is summarized, the wear ratio decreases as the number decreases. That is, it can be seen that the wear resistance can be improved by reducing the number of coarse insoluble carbides 22.

一方、粗大な未固溶炭化物の個数は、Cの含有量に依存するが、Cの含有量を減じると、硬さを低下させ耐摩耗性を低下させてしまう。図11に示すように、硬化熱処理後で640Hv以下の硬さの場合、摩耗比は急激に上昇、すなわち耐摩耗性は大きく降下する。つまり、スチールベルト用エレメントとして良好な耐摩耗性を与えるために必要なCの含有量の下限値が存在する。一方、Cの含有量の高い比較例1などは、冷間打抜用鋼としての冷間打ち抜き性が不良となり、Cの含有量の上限値も存在する。   On the other hand, the number of coarse undissolved carbides depends on the C content, but if the C content is reduced, the hardness is lowered and the wear resistance is lowered. As shown in FIG. 11, when the hardness is 640 Hv or less after the curing heat treatment, the wear ratio increases rapidly, that is, the wear resistance greatly decreases. That is, there is a lower limit value of the C content necessary to give good wear resistance as a steel belt element. On the other hand, Comparative Example 1 and the like having a high C content have poor cold punchability as a steel for cold punching, and there is an upper limit for the C content.

スチールベルト用エレメントとしての耐摩耗性と、冷間打抜用鋼としての冷間打ち抜き性の両立を与えるCの含有量の範囲は、質量%で、0.50〜0.70%であり、硬化熱処理後で硬さが640Hv以上、且つ、円相当径0.5μm以上の粗大な未固溶炭化物の個数が100μm四方当たり130個以下、すなわち、1mm四方当たり約1.3×10個以下とされる。 The range of the C content that gives both the wear resistance as the steel belt element and the cold punchability as the steel for cold punching is 0.50 to 0.70% in mass%, The number of coarse undissolved carbides having a hardness of 640 Hv or more and an equivalent circle diameter of 0.5 μm or more after curing heat treatment is 130 or less per 100 μm square, that is, about 1.3 × 10 4 or less per 1 mm square. It is said.

次に、Bの添加と粗大な未固溶炭化物についてであるが、図12に示すように、軟化熱処理後において、Bを添加した実施例10は、Bを添加しなかった比較例6に対し、円相当径0.30μm以下の未固溶炭化物がより多く、これよりも大きい未固溶炭化物がより少ない。つまり、Bの添加により、軟化熱処理後の未固溶炭化物を微細化させることが判る。   Next, with respect to the addition of B and coarse undissolved carbide, as shown in FIG. 12, after softening heat treatment, Example 10 to which B was added was compared to Comparative Example 6 to which B was not added. There are more undissolved carbides having an equivalent circle diameter of 0.30 μm or less, and fewer undissolved carbides larger than this. In other words, it can be seen that the addition of B refines the insoluble carbide after the softening heat treatment.

更に、図13に示すように、硬化熱処理後において、Bを添加した実施例10は、Bを添加しなかった比較例6に対し、円相当径0.30μm以下の未固溶炭化物がより多く、これよりも大きい未固溶炭化物がより少ない。すなわち、硬化熱処理後にも、Bの添加による炭化物の微細化の効果は有効である。   Further, as shown in FIG. 13, after curing heat treatment, Example 10 to which B was added had more undissolved carbide having an equivalent circle diameter of 0.30 μm or less than Comparative Example 6 to which B was not added. There are fewer undissolved carbides larger than this. That is, the effect of making carbide fine by adding B is effective even after the heat treatment for curing.

以上述べてきたように、Mo又はVを添加せずとも、B及びTiを添加した所定の成分組成及び所定の熱処理により、靭性を高めつつ、未固溶炭化物を微細に析出させて耐摩耗性にも優れたスチールベルト用エレメントを与え得る冷間打抜用鋼を得られるのである。   As described above, without adding Mo or V, the predetermined component composition and the predetermined heat treatment to which B and Ti are added, and the toughness is increased, while the insoluble carbide is finely precipitated and wear resistance is increased. In addition, it is possible to obtain a steel for cold punching that can provide an excellent steel belt element.

上記した実施例及び比較例に基づき、冷間打抜用鋼の組成範囲を以下のような指針で定めた。まず、必須添加元素であるC、Si、Mn、Cr、B、Tiについて説明する。   Based on the above examples and comparative examples, the composition range of the steel for cold stamping was determined by the following guidelines. First, the essential additive elements C, Si, Mn, Cr, B, and Ti will be described.

Cは、上記したように、スチールベルト用エレメントとして必要とされる耐摩耗性を確保するために最も重要な元素である。Cの添加量が少なすぎると、硬化熱処理後に硬さが確保できず、耐摩耗性を低下させる。一方、Cの添加量が多すぎると、硬化熱処理後に粗大な未固溶炭化物を残存させ、やはり耐摩耗性を低下させる。また、粒界にFilm状に炭化物を析出させて粒界強度を低下させ、靭性が低下してしまう。そこで、上記したように、質量%で、Cは、0.50〜0.70%の範囲内である。   As described above, C is the most important element for ensuring the wear resistance required as a steel belt element. If the amount of C added is too small, the hardness cannot be ensured after the curing heat treatment and the wear resistance is lowered. On the other hand, if the amount of addition of C is too large, coarse undissolved carbides remain after the heat treatment for curing, and the wear resistance is also lowered. Moreover, the carbide | carbonized_material precipitates in a film form at a grain boundary, grain boundary strength is reduced, and toughness will fall. Therefore, as described above, C is in the range of 0.50 to 0.70% by mass%.

Siは、鋼の脱酸元素として有効な元素である。Siの添加量が少なすぎると、鋼を十分に脱酸をさせることができない。一方、Siの添加量が多すぎると、軟化熱処理後の硬さが上昇し、冷間打抜用鋼として必要とされる冷間打ち抜き性を悪化させる。そこで、質量%で、Siの含有量は0.03〜0.60%の範囲内である。   Si is an effective element as a deoxidizing element for steel. If the amount of Si added is too small, the steel cannot be sufficiently deoxidized. On the other hand, when there is too much addition amount of Si, the hardness after softening heat processing will raise and the cold punching property required as steel for cold punching will be deteriorated. Therefore, the Si content is in the range of 0.03 to 0.60% by mass%.

Mnは、鋼の焼入れ性を向上させ、スチールベルト用エレメントとして必要とされる機械的強度の確保に有効である。Mnの添加量が少なすぎると、焼入れ性を確保できず、スチールベルト用エレメントとして必要とされる耐摩耗性を低下させる。一方、Mnの添加量が多すぎると、冷間打抜用鋼として必要とされる冷間打ち抜き性を悪化させる。そこで、質量%で、Mnは0.50〜1.00%の範囲内である。   Mn improves the hardenability of steel and is effective in ensuring the mechanical strength required as a steel belt element. If the amount of Mn added is too small, hardenability cannot be ensured, and the wear resistance required as a steel belt element is reduced. On the other hand, when there is too much addition amount of Mn, the cold punching property required as cold punching steel will be deteriorated. Therefore, in terms of mass%, Mn is in the range of 0.50 to 1.00%.

Crは、Mnと同様に、鋼の焼入れ性を向上させ、スチールベルト用エレメントとして必要とされる機械的強度の確保に有効である。しかし、Crの添加量が多すぎると、鉄炭化物中に容易に固溶して未固溶炭化物を安定化させ、粗大な未固溶炭化物を増加させる。つまり、スチールベルト用エレメントとして必要とされる耐摩耗性を低下させる。そこで、質量%で、Crは0.20〜1.00%の範囲内である。   Cr, like Mn, improves the hardenability of steel and is effective in ensuring the mechanical strength required as a steel belt element. However, if the amount of Cr added is too large, it easily dissolves in iron carbide, stabilizes insoluble carbides, and increases coarse insoluble carbides. That is, the wear resistance required as a steel belt element is reduced. Therefore, Cr is in the range of 0.20 to 1.00% by mass%.

Bは、Pなどの不純物の粒界偏析を抑制し、粒界強度を高めるため、スチールベルト用エレメントとして必要とされる靭性の向上に有効である。また、上記したように、パーライト相中の旧セメンタイト部分中に分散しているため、軟化熱処理時に析出する未固溶炭化物の析出核となり、未固溶炭化物を微細に分散析出させる。これにより、スチールベルト用エレメントとして必要とされる耐摩耗性を高める効果を有する。しかし、Bの添加量を多くするとコストを増大させる。そこで、質量%で、Bは0.0005〜0.0050%の範囲内である。   B suppresses the grain boundary segregation of impurities such as P and increases the grain boundary strength, and is therefore effective in improving the toughness required as a steel belt element. Further, as described above, since it is dispersed in the old cementite portion in the pearlite phase, it becomes a precipitation nucleus of insoluble carbide precipitated during the softening heat treatment, and the insoluble carbide is finely dispersed and precipitated. Thereby, it has the effect which improves the abrasion resistance required as an element for steel belts. However, increasing the amount of B added increases the cost. Therefore, in mass%, B is in the range of 0.0005 to 0.0050%.

Tiは、Bよりも優先的にNと結合し、Ti窒化物となるためB窒化物の形成を抑制し、Bによる粒界強度及び耐摩耗性の向上に寄与する。Tiの添加量が少なすぎると、B窒化物の形成を十分に抑制できず、Bによる粒界強度の向上及び耐摩耗性の向上を得られない。一方、Tiの添加量を多くするとコストを増大させる。そこで、質量%で、Tiは0.01〜0.10%の範囲内である。   Ti bonds preferentially to N over B and becomes Ti nitride, so that formation of B nitride is suppressed and contributes to improvement of grain boundary strength and wear resistance by B. If the addition amount of Ti is too small, formation of B nitride cannot be sufficiently suppressed, and improvement in grain boundary strength and wear resistance due to B cannot be obtained. On the other hand, increasing the amount of Ti added increases the cost. Therefore, in mass%, Ti is in the range of 0.01 to 0.10%.

次に、任意添加元素について説明する。任意添加元素については、上記した必須添加元素によるスチールベルト用エレメントとしての特性を損なわない範囲においてその上限値を定めた。   Next, the optional additive element will be described. For the optional additive element, the upper limit value was determined within a range not impairing the characteristics of the above-described essential additive element as a steel belt element.

Pは、結晶粒界の強度を低下させるが、一定の含有量以下であれば、この粒界強度の低下は軽微である。また、添加量の抑制は、精錬プロセスを延長させコストの増大原因にもなり得る。そこで、質量%で、Pは0.025%以下の範囲内である。   P decreases the strength of the crystal grain boundaries, but if the content is below a certain content, the decrease in the grain boundary strength is slight. In addition, the suppression of the addition amount can prolong the refining process and cause an increase in cost. Therefore, in mass%, P is in the range of 0.025% or less.

Sは、Mnと結合しMnS介在物を生成するので、過剰に含有させると応力集中の起点となる介在物量を増加させてスチールベルト用エレメントとして必要とされる疲労強度の
低下を招く。しかし、一定の含有量以下であれば、疲労強度の低下は極めて軽微である。そこで、質量%で、Sは0.015%以下の範囲内である。
Since S combines with Mn to produce MnS inclusions, if contained excessively, the amount of inclusions that become the starting point of stress concentration is increased, leading to a decrease in fatigue strength required as a steel belt element. However, if the content is below a certain level, the decrease in fatigue strength is very slight. Therefore, in mass%, S is within a range of 0.015% or less.

更に、積極的な添加をせず、不可避的不純物として含有し得るMo及びVについて説明する。   Furthermore, Mo and V which can be contained as inevitable impurities without actively adding them will be described.

Moは、結晶粒界へのFilm状セメンタイトの生成を抑制する効果を持ち、添加することで靭性の更なる向上を期待できる。また、Moは焼入れ性を大幅に高める効果もある。しかし、Moの添加は、冷間打抜用鋼として必要とされる打ち抜き性の大幅な劣化とコストの増大を招く。また、上記した実施例により、スチールベルト用エレメントとして必要とされる特性を得るために、Moの添加は必ずしも必要としない。   Mo has the effect of suppressing the formation of film-like cementite at the grain boundaries, and by adding it, further improvement in toughness can be expected. Mo also has the effect of significantly increasing the hardenability. However, the addition of Mo causes a significant deterioration in punchability and an increase in cost required as steel for cold punching. Further, according to the above-described embodiment, the addition of Mo is not necessarily required in order to obtain characteristics required as a steel belt element.

Vは、鋼中に微細なV炭化物を形成し、結晶粒を微細にさせるので、靭性及び耐摩耗性を向上させ得る。しかし、Vの添加は、コストを増大させる。また、上記した実施例により、スチールベルト用エレメントとして必要とされる特性を得るために、Vの添加は必ずしも必要としない。   V forms fine V carbides in the steel and makes the crystal grains fine, so that toughness and wear resistance can be improved. However, the addition of V increases costs. In addition, according to the above-described embodiment, the addition of V is not always necessary in order to obtain the characteristics required as a steel belt element.

なお、上記した組成範囲における鋼のAc1変態点は714℃〜753℃であることから、軟化熱処理の保持温度は700℃〜780℃であることが好ましい。   In addition, since the Ac1 transformation point of steel in an above-described composition range is 714 degreeC-753 degreeC, it is preferable that the retention temperature of softening heat processing is 700 degreeC-780 degreeC.

ここまで本発明による代表的実施例及びこれに基づく変形例について説明したが、本発明は必ずしもこれらに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるだろう。   Up to this point, the representative embodiments according to the present invention and the modifications based thereon have been described, but the present invention is not necessarily limited thereto. Those skilled in the art will recognize a variety of alternative embodiments and modifications without departing from the scope of the appended claims.

10 摩耗試験装置
11 リング
13 摩耗試験片
21 微小亀裂
22 未固溶炭化物
23 母相
DESCRIPTION OF SYMBOLS 10 Wear test apparatus 11 Ring 13 Wear test piece 21 Micro crack 22 Undissolved carbide 23 Mother phase

Claims (4)

元素Mの質量%を[M]とすると、
10.8[C]+5.6[Si]+2.7[Mn]
+0.3[Cr]+7.8[Mo]+1.4[V]≦13
を満たす成分組成の鋼からなる冷間打抜用鋼であって、
質量%で、必須添加元素として、
Cを0.50から0.70%、
Siを0.03から0.60%、
Mnを0.50から1.00%、
Crを0.20から1.00%、
Tiを0.01から0.10%、及び、
Bを0.0005から0.0050%の範囲内、
任意添加元素として、
Pを0.025%以下、及び、
Sを0.015%以下の範囲内、
残部Fe及び不可避的不純物とした成分組成を有し、
オーステナイト単相温度域に加熱保持後、所定速度で冷却して、主として、フェライト+パーライト混合組織に微細炭化物を分散させた組織で88HRB以下の硬さを与えたことを特徴とする冷間打抜用鋼。
If the mass% of the element M is [M],
10.8 [C] +5.6 [Si] +2.7 [Mn]
+0.3 [Cr] +7.8 [Mo] +1.4 [V] ≦ 13
It is a steel for cold punching made of steel having a component composition satisfying
In mass%, as an essential additive element,
C from 0.50 to 0.70%,
0.03 to 0.60% Si,
Mn from 0.50 to 1.00%,
0.20 to 1.00% of Cr,
Ti from 0.01 to 0.10%, and
B within the range of 0.0005 to 0.0050%,
As an optional additive element,
P is 0.025% or less, and
S within the range of 0.015% or less,
It has a component composition with the balance Fe and inevitable impurities,
Cold-punching characterized by giving a hardness of 88HRB or less in a structure in which fine carbides are dispersed in a ferrite + pearlite mixed structure after cooling at a predetermined rate after heating and holding in the austenite single phase temperature range Steel.
断面組織において、円相当径で0.5μm以上の粗大炭化物を1mm四方当たり1.2×10個以下に抑制したことを特徴とする請求項1記載の冷間打抜用鋼。 The steel for cold punching according to claim 1, wherein in the cross-sectional structure, coarse carbides having an equivalent circle diameter of 0.5 µm or more are suppressed to 1.2 × 10 5 or less per 1 mm square. 請求項1又は2に記載の冷間打抜用鋼を所定形状に冷間打ち抜きした後に焼き入れ焼き戻し熱処理を与えて640Hv以上の硬さを与えたことを特徴とするスチールベルト用エレメント。   A steel belt element, wherein the steel for cold punching according to claim 1 or 2 is cold punched into a predetermined shape and then subjected to quenching and tempering heat treatment to give a hardness of 640 Hv or more. 断面組織において、円相当径で0.5μm以上の粗大炭化物を1mm四方当たり1.3×10個以下に抑制したことを特徴とする請求項3記載のスチールベルト用エレメント。 The steel belt element according to claim 3, wherein in the cross-sectional structure, coarse carbides having an equivalent circle diameter of 0.5 μm or more are suppressed to 1.3 × 10 4 or less per 1 mm square.
JP2011092138A 2011-04-18 2011-04-18 Cold stamping steel and steel belt element using the same Expired - Fee Related JP5619668B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011092138A JP5619668B2 (en) 2011-04-18 2011-04-18 Cold stamping steel and steel belt element using the same
DE112012001745.5T DE112012001745T5 (en) 2011-04-18 2012-04-17 Steel for cold punching and steel element for a steel belt using the same
PCT/JP2012/060358 WO2012144495A1 (en) 2011-04-18 2012-04-17 Steel for cold punching, and element obtained therefrom for steel belt
US14/003,508 US20140053955A1 (en) 2011-04-18 2012-04-17 Steel for cold punching and steel element for steel belt using the same
CN201280016737.1A CN103502495A (en) 2011-04-18 2012-04-17 Steel for cold punching, and element obtained therefrom for steel belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011092138A JP5619668B2 (en) 2011-04-18 2011-04-18 Cold stamping steel and steel belt element using the same

Publications (2)

Publication Number Publication Date
JP2012224896A JP2012224896A (en) 2012-11-15
JP5619668B2 true JP5619668B2 (en) 2014-11-05

Family

ID=47041601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011092138A Expired - Fee Related JP5619668B2 (en) 2011-04-18 2011-04-18 Cold stamping steel and steel belt element using the same

Country Status (5)

Country Link
US (1) US20140053955A1 (en)
JP (1) JP5619668B2 (en)
CN (1) CN103502495A (en)
DE (1) DE112012001745T5 (en)
WO (1) WO2012144495A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6527709B2 (en) * 2015-02-12 2019-06-05 本田技研工業株式会社 Metal belt element for continuously variable transmission
US10844456B2 (en) * 2015-03-26 2020-11-24 Hitachi Metals, Ltd. Cold work tool and method for manufacturing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487748A (en) * 1987-09-30 1989-03-31 Aisin Seiki Belt block for non-stage transmission
JPH10287959A (en) * 1997-04-17 1998-10-27 Daido Steel Co Ltd High strength steel for induction hardening
DE69905963T2 (en) * 1998-04-21 2004-01-22 Kabushiki Kaisha Kobe Seiko Sho Also Known As Kobe Steel Ltd. Wire rod or steel bars with good cold formability and machine parts made from them
JP3460659B2 (en) * 2000-02-03 2003-10-27 住友金属工業株式会社 Soft high carbon steel strip with small heat treatment distortion and method for producing the same
JP3737952B2 (en) * 2001-02-16 2006-01-25 本田技研工業株式会社 CVT belt push block and manufacturing method thereof
JP4319948B2 (en) * 2004-06-07 2009-08-26 新日本製鐵株式会社 High carbon cold-rolled steel sheet with excellent stretch flangeability
JP2007107029A (en) * 2005-10-11 2007-04-26 Honda Motor Co Ltd Steel material and its production method
JP5594521B2 (en) * 2010-06-21 2014-09-24 本田技研工業株式会社 Steel for element of belt type CVT and element using the same

Also Published As

Publication number Publication date
DE112012001745T5 (en) 2014-04-17
JP2012224896A (en) 2012-11-15
CN103502495A (en) 2014-01-08
US20140053955A1 (en) 2014-02-27
WO2012144495A1 (en) 2012-10-26

Similar Documents

Publication Publication Date Title
JP5231101B2 (en) Machine structural steel with excellent fatigue limit ratio and machinability
JP5123335B2 (en) Crankshaft and manufacturing method thereof
JP5030280B2 (en) High carbon steel sheet with excellent hardenability, fatigue characteristics, and toughness and method for producing the same
TWI591187B (en) High-carbon cold-rolled steel sheet and its manufacturing method
JP5824063B2 (en) Manufacturing method of steel parts
JP5484103B2 (en) Steel plate for high-strength machine parts, method for producing the same, and method for producing high-strength machine parts
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP2007177317A (en) Steel for machine structure having excellent strength, ductility, toughness and abrasion resistance, its production method and metal belt using the same
JP2007146232A (en) Method for producing soft-nitrided machine part made of steel
JP6384627B2 (en) Induction hardening steel
KR20130108403A (en) Rolled steel bar or wire for hot forging
JP5541048B2 (en) Carbonitrided steel parts with excellent pitting resistance
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP5619668B2 (en) Cold stamping steel and steel belt element using the same
JP5739689B2 (en) Mechanical structural member
JP6068291B2 (en) Soft high carbon steel sheet
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP5594521B2 (en) Steel for element of belt type CVT and element using the same
CN106103777A (en) Vacuum carburization steel and manufacture method thereof
JP4757831B2 (en) Induction hardening part and manufacturing method thereof
JP2006257482A (en) Forged member having excellent coarsening preventive characteristic during carburization, manufacturing method therefor, and pulley for belt type continuously variable transmission using the forged member and/or manufacturing method
JP5969204B2 (en) Induction hardened gear having excellent wear resistance and surface fatigue characteristics and method for producing the same
JP6551225B2 (en) Induction hardening gear
JP2004263200A (en) High strength steel having excellent fatigue strength, and production method therefor
JP4411096B2 (en) Steel wire rod and steel bar for case hardening with excellent cold forgeability after spheronization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140917

R150 Certificate of patent or registration of utility model

Ref document number: 5619668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees