JP4757831B2 - Induction hardening part and manufacturing method thereof - Google Patents

Induction hardening part and manufacturing method thereof Download PDF

Info

Publication number
JP4757831B2
JP4757831B2 JP2007088770A JP2007088770A JP4757831B2 JP 4757831 B2 JP4757831 B2 JP 4757831B2 JP 2007088770 A JP2007088770 A JP 2007088770A JP 2007088770 A JP2007088770 A JP 2007088770A JP 4757831 B2 JP4757831 B2 JP 4757831B2
Authority
JP
Japan
Prior art keywords
less
induction
steel
hardness
induction hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007088770A
Other languages
Japanese (ja)
Other versions
JP2008248282A (en
Inventor
修司 小澤
達朗 越智
崇史 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007088770A priority Critical patent/JP4757831B2/en
Publication of JP2008248282A publication Critical patent/JP2008248282A/en
Application granted granted Critical
Publication of JP4757831B2 publication Critical patent/JP4757831B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、機械構造用部品、特に自動車等の動力伝達部品用に適用される高い面圧疲労強度と靭性を有する無段変速機(CVT:Continuously Variable Transmission)シーブ、歯車等の部品に関する。   The present invention relates to parts such as continuously variable transmission (CVT) sheaves and gears having high surface pressure fatigue strength and toughness that are applied to mechanical structural parts, particularly power transmission parts such as automobiles.

機械構造用部品、例えば無段変速機(CVT)のCVTシーブや自動変速機の歯車などの動力伝達部品は、表面部に大きな硬度を付与することにより、面圧疲労強度、靭性、耐磨耗性を向上させるために、素材としてJIS SCr420、SCM420等のようにCが0.2%前後の肌焼鋼を用いている。実際にこのような素材を熱間鍛造し、部品形状となるように切削加工を行った後に、浸炭焼入処理を施して部品表面を0.8%前後のマルテンサイト組織として面圧疲労強度を向上させることにより使用する。因みに、これらCVTシーブや歯車を比較的小型の部品として具体化する場合には、低コスト化の観点から上述した熱間鍛造に代わって冷間鍛造が行われることもある。かかる場合には素材を球状化焼鈍処理等の軟化処理を行った後に冷間鍛造に供される。しかし、熱間鍛造工程、冷間鍛造工程いずれの工程を採用した場合においてもその後の浸炭焼入処理は一般に930℃で5時間〜10時間オーダーのもの長時間に亘り、高温間処理を施す必要があるため製造コストが上昇してしまうという問題点があった。   Power transmission parts such as CVT sheaves of continuously variable transmissions (CVT) and gears of automatic transmissions, for example, mechanical structural parts, are given high hardness on the surface, so that surface pressure fatigue strength, toughness, wear resistance In order to improve the property, case-hardened steel having C of about 0.2%, such as JIS SCr420 and SCM420, is used as a material. After actually forging such a material and cutting it into a part shape, carburizing and quenching is performed to make the surface of the part a martensite structure of about 0.8% and to improve the surface pressure fatigue strength. Use by improving. Incidentally, when these CVT sheaves and gears are embodied as relatively small parts, cold forging may be performed instead of the hot forging described above from the viewpoint of cost reduction. In such a case, the material is subjected to cold forging after being subjected to softening treatment such as spheroidizing annealing. However, even when either the hot forging step or the cold forging step is adopted, the subsequent carburizing and quenching treatment is generally required to be performed at a high temperature for a long time of the order of 5 hours to 10 hours at 930 ° C. Therefore, there is a problem that the manufacturing cost increases.

このような従来技術の問題点に対処するため、浸炭焼入処理に代わって数秒の短時間処理が可能な高周波焼入処理方法が提案されている。例えば特許文献1では、合金組成を適切に選ぶとともに焼入れ性指数を特定の値以下に抑え、かつ一定の焼き戻し硬さを確保することにより、焼入れ焼き戻しをすることなく短時間加熱の高周波輪郭焼入れを可能とする方法が提案されている。この特許文献1の開示技術における合金組成は、Cが0.45〜0.8%で他の合金元素を含むものとしている。この特許文献1の開示技術によれば、浸炭焼入処理を施さずとも高い疲労強度を持つ歯車を製作できる。   In order to cope with such problems of the prior art, an induction quenching method capable of short-time processing of several seconds instead of carburizing and quenching processing has been proposed. For example, in Patent Document 1, an alloy composition is appropriately selected, the hardenability index is suppressed to a specific value or less, and a certain tempering hardness is ensured, whereby a high-frequency contour that is heated for a short time without quenching and tempering. A method that enables quenching has been proposed. The alloy composition in the technology disclosed in Patent Document 1 is such that C is 0.45 to 0.8% and contains other alloy elements. According to the technique disclosed in Patent Document 1, a gear having high fatigue strength can be manufactured without performing carburizing and quenching.

しかしながら本発明者らが評価したところでは、Cが0.6%を超えると被削性が著しく劣化し切削コストが大幅に悪化することを確認している。またCが0.6%を超えると靭性が劣化するためCVTシーブや歯車への適用は困難になる。
特開2000−265241号公報
However, as evaluated by the present inventors, it has been confirmed that when C exceeds 0.6%, the machinability is remarkably deteriorated and the cutting cost is greatly deteriorated. Further, if C exceeds 0.6%, toughness deteriorates, so application to CVT sheaves and gears becomes difficult.
JP 2000-265241 A

そこで、本発明は、上述した問題点に鑑みて案出されたものであり、特にCVTシーブや歯車等を始めとした自動車等の動力伝達部品用に適用できる高い面圧疲労強度と靭性を有し、更には切削性に優れた高周波焼入れ部品及びその製造方法を提供することを目的とする。   Therefore, the present invention has been devised in view of the above-mentioned problems, and has high surface pressure fatigue strength and toughness that can be applied particularly to power transmission parts such as automobiles including CVT sheaves and gears. Furthermore, an object is to provide an induction-hardened part excellent in machinability and a method for manufacturing the same.

本発明者らは、鍛造処理の後に球状化焼鈍処理を施し鋼中のCを炭化物に移すことによりC量の低いフェライトと球状化炭化物を主体とする組織とさせ、Cが0.6%を超える鋼材でも実質的に低いC量からなる鋼とさせることで切削性と靭性を確保し、さらに、その後の高周波焼入で表層のみをマルテンサイト変態させ面圧疲労強度を確保することにより、上記課題を解決することができることを知見し、本発明を完成した。   The inventors of the present invention performed a spheroidizing annealing process after the forging process and transferred C in the steel to a carbide to form a structure mainly composed of ferrite and a spheroidized carbide having a low C content, and C was 0.6%. By making the steel having a substantially low C amount even if it exceeds the steel material, the machinability and toughness are ensured, and further, only the surface layer is martensitic transformed by subsequent induction hardening to ensure the surface pressure fatigue strength. The present invention has been completed by finding out that the problems can be solved.

即ち、本願請求項1に係る発明は、上述した課題を解決するために、質量%で、C :0.4〜1.2%、Si:2.0%以下、Mn:0.2〜3.0%、P :0.03%以下、S :0.005〜0.10%、Ni:2.0%以下(0%を含む)、Cr:3.0%以下(0%を含む)、Mo:1.0%以下(0%を含む)、O :0.0025%以下、N:0.005〜0.03%を含有し、さらに、Al:0.005〜0.05%、Ti:0.005〜0.05%のうち1種または2種と、V :0.3%以下(0%を含む)、Nb:0.3%以下(0%を含む)のうち1種または2種を含有し、残部が鉄と不可避不純物よりなる鋼からなり、表層を高周波焼入れした部品であって、表面から0.05mmの深さの部位における組織中のマルテンサイト面積率が60%以上であり、且つ前記部位における硬さがHRC55以上であり、非高周波焼入れ部である芯部の組織がベイナイトを含まない実質フェライトであり、該芯部組織中に存在する炭化物の実質全部が球状炭化物であり、無段変速機(CVT)に適用されることを特徴とする。
That is, in order to solve the above-described problems, the invention according to claim 1 of the present invention is in mass%, C: 0.4 to 1.2%, Si: 2.0% or less, Mn: 0.2 to 3 0.0%, P: 0.03% or less, S: 0.005-0.10%, Ni: 2.0% or less (including 0%), Cr: 3.0% or less (including 0%) , Mo: 1.0% or less (including 0%), O 2: 0.0025% or less, N: 0.005 to 0.03%, and Al: 0.005 to 0.05%, Ti: one or two of 0.005 to 0.05%, V: 0.3% or less (including 0%), Nb: one of 0.3% or less (including 0%) Alternatively, it is a component containing two types, the balance being made of steel consisting of iron and inevitable impurities, the surface layer of which is induction-hardened, and the structure in the region at a depth of 0.05 mm from the surface. The insite area ratio is 60% or more, the hardness at the part is HRC55 or more, and the core structure that is a non-frequency-hardened part is a substantial ferrite not containing bainite, and is present in the core structure. Ri substantially all of globular carbides der carbide, characterized in that it is applied to a continuously variable transmission (CVT).

本願請求項2に係る発明は、請求項1に記載の発明において、前記鋼の化学成分が、更に質量%でCa:0.01%以下、Mg:0.01%以下、Zr:0.05%以下、Te:0.1%以下のうち何れか1種以上を含有することを特徴とする。   The invention according to claim 2 of the present application is the invention according to claim 1, wherein the chemical composition of the steel is further, by mass%, Ca: 0.01% or less, Mg: 0.01% or less, Zr: 0.05 % Or less, Te: containing any one or more of 0.1% or less.

本願請求項3に係る発明は、上述した課題を解決するために、質量%で、C :0.4〜1.2%、Si:2.0%以下、Mn:0.2〜3.0%、P :0.03%以下、S :0.005〜0.10%、Ni:2.0%以下(0%を含む)、Cr:3.0%以下(0%を含む)、Mo:1.0%以下(0%を含む)、O :0.0025%以下、N :0.005〜0.03%を含有し、さらに、Al:0.005〜0.05%、Ti:0.005〜0.05%のうち1種または2種と、V:0.3%以下(0%を含む)、Nb:0.3%以下(0%を含む)のうち1種または2種を含有し、残部が鉄と不可避不純物よりなる鋼を、熱間鍛造または冷間鍛造を行った後、740〜780℃に1時間以上加熱し、加熱温度から550℃までの間を1℃/分以下の冷却速度で徐冷し、その後、高周波焼入れを施すことにより、表面から0.05mmの深さの部位における組織中のマルテンサイト面積率が60%以上であり、且つ前記部位における硬さがHRC55以上であり、非高周波焼入れ部である芯部の組織がベイナイトを含まない実質フェライトであり、該芯部組織中に存在する炭化物の実質全部が球状炭化物であるようにすることを特徴とする。
In order to solve the above-described problems, the invention according to claim 3 is mass%, C: 0.4 to 1.2%, Si: 2.0% or less, Mn: 0.2 to 3.0. %, P: 0.03% or less, S: 0.005 to 0.10%, Ni: 2.0% or less (including 0%), Cr: 3.0% or less (including 0%), Mo : 1.0% or less (including 0%), O: 0.0025% or less, N: 0.005 to 0.03%, Al: 0.005 to 0.05%, Ti: One or two of 0.005 to 0.05% and one or two of V: 0.3% or less (including 0%), Nb: 0.3% or less (including 0%) After the steel containing seeds and the balance consisting of iron and inevitable impurities is subjected to hot forging or cold forging, it is heated to 740 to 780 ° C. for 1 hour or longer, and the heating temperature to 550 ° C. Slow cooling at a cooling rate of ℃ / min or less, followed by induction hardening, so that the martensite area ratio in the tissue at a depth of 0.05 mm from the surface is 60% or more, and Hardness is HRC55 or more, the structure of the core part which is a non-high frequency quenching part is substantially ferrite not containing bainite, and substantially all of the carbides present in the core part structure are spherical carbides. Features.

本願請求項4に係る発明は、請求項3に記載の発明において、前記鋼の化学成分が、更に質量%でCa:0.01%以下、Mg:0.01%以下、Zr:0.05%以下、Te:0.1%以下のうち何れか1種以上を含有することを特徴とする。
The invention according to claim 4 of the present application is the invention according to claim 3, wherein the chemical components of the steel are further by mass% Ca: 0.01% or less, Mg: 0.01% or less, Zr: 0.05. % Or less, Te: containing any one or more of 0.1% or less.

本願請求項5に係る発明は、請求項3又は4に記載の高周波焼入部品は、無段変速機(CVT)に適用されることを特徴とする。   The invention according to claim 5 of the present application is characterized in that the induction-hardened component according to claim 3 or 4 is applied to a continuously variable transmission (CVT).

自動車等の動力伝達部品用に適用できる高い面圧疲労強度と靭性を有し、更には切削性の優れた、CVTシーブや歯車等の部品を提供することができ、これにより自動車の高出力化および低コスト化等に大きく寄与する。   It is possible to provide parts such as CVT sheaves and gears that have high surface pressure fatigue strength and toughness that can be applied to power transmission parts such as automobiles, and also have excellent machinability, thereby increasing the output of automobiles. In addition, it greatly contributes to cost reduction.

以下、本発明を実施するための最良の形態について、高周波焼入れ部品を例にして詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail using an induction-hardened component as an example.

本発明は、質量%で、Cの含有量を0.4〜1.2%とし、他の成分を適正に添加した鋼の素材を熱間鍛造後に球状化焼鈍処理を行うことによって、全体を靭性に優れるC量の低いフェライトと球状化炭化物を主体とする組織とし、その後、部品形状に切削加工を行った後に、高周波焼入で部品の表層のみをマルテンサイトさせ面圧疲労強度を確保するものであり、高周波焼入されない芯部は靭性に優れるC量の低いフェライトと球状化炭化物を主体とする組織のままであるため、面圧疲労強度と靭性が兼備する部品を得ることが可能となる。また、本発明は、比較的に小型の部品の場合には冷間鍛造で部品を製造することもできる。この場合は必要に応じて球状化焼鈍後に冷間鍛造を行い、その後に再度、球状化焼鈍処理を行い、切削加工、高周波焼入を施して部品を得ることができる。   In the present invention, the entire steel is obtained by performing a spheroidizing annealing treatment after hot forging a steel material in which the content of C is 0.4% to 1.2% in mass% and other components are appropriately added. After making the structure mainly composed of ferrite and spheroidized carbide with low C content with excellent toughness, and after cutting into the shape of the part, only the surface layer of the part is martensite to ensure the surface pressure fatigue strength by induction hardening Because the core part that is not induction hardened remains a structure mainly composed of ferrite and spheroidized carbide with low C content and excellent toughness, it is possible to obtain a component having both surface pressure fatigue strength and toughness Become. The present invention can also produce parts by cold forging in the case of relatively small parts. In this case, if necessary, cold forging may be performed after spheroidizing annealing, and then spheroidizing annealing may be performed again, and cutting and induction hardening may be performed to obtain a part.

以下に、本発明を適用した高周波焼入部品を構成する各元素成分の限定理由について説明する。以下、組成における質量%は、単に%と記載する。   Below, the reason for limitation of each element component which comprises the induction hardening component to which this invention is applied is demonstrated. Hereinafter, the mass% in the composition is simply described as%.

C:0.4〜1.2%
Cは鋼の強度を得るために重要な元素であり、高周波焼入後の表面硬さ(HRC55以上)を確保し、面圧疲労強度、曲げ疲労強度、ねじり疲労強度、静的強度を向上させるために添加する元素である。C量が0.4%未満では高周波焼入後の硬度が不十分となって、疲労寿命、耐摩耗性が大きく劣化し、所望の機械的特性が得られなくなる。このため本発明ではC量の下限を0.4%として強度等を確保する。しかし、このC量が1.2%を超えると高周波焼入後に残留オーステナイト組織が多く残存することに起因して表面硬さが低下してしまう。このため、上限を1.2%未満とした。なお、上述した効果をより安定して確保するために最も好ましい含有量は0.6〜1.0%である。
C: 0.4-1.2%
C is an important element for obtaining the strength of steel, and ensures the surface hardness (HRC 55 or higher) after induction hardening, and improves the surface pressure fatigue strength, bending fatigue strength, torsional fatigue strength, and static strength. It is an element to be added. If the amount of C is less than 0.4%, the hardness after induction hardening becomes insufficient, fatigue life and wear resistance are greatly deteriorated, and desired mechanical properties cannot be obtained. For this reason, in the present invention, the lower limit of the C amount is set to 0.4% to ensure strength and the like. However, if the amount of C exceeds 1.2%, the surface hardness is lowered due to a large amount of retained austenite structure remaining after induction hardening. For this reason, the upper limit was made less than 1.2%. In addition, in order to ensure the effect mentioned above more stably, the most preferable content is 0.6 to 1.0%.

Si:2.0%以下
Siは、鋼中に不可避的に含有する元素であり、また、製鋼時の脱酸に有効な元素であるが、他方、添加することにより焼入層の焼戻軟化抵抗を向上させることができ、CVTシーブや歯車のピッチング寿命が向上する効果がある。かかる効果を得るにはSi量を0.2%以上とすることが好ましい。しかし、Si量が2.0%を超えると鍛造時の脱炭が著しくなるため、2.0%を上限とした。なお、上述した効果をより安定して確保するために最も好ましい含有量は0.2〜2.0%である。
Si: 2.0% or less Si is an element inevitably contained in steel, and is an element effective for deoxidation during steelmaking. On the other hand, temper softening of the hardened layer is possible by adding it. The resistance can be improved, and the pitching life of the CVT sheave or gear is improved. In order to obtain such an effect, the Si content is preferably 0.2% or more. However, if the Si content exceeds 2.0%, decarburization during forging becomes significant, so 2.0% was made the upper limit. In addition, in order to ensure the effect mentioned above more stably, the most preferable content is 0.2 to 2.0%.

Mn:0.2〜3.0%
Mnは、鋼の焼入性を向上させるのに有効な元素であり、また焼戻軟化抵抗を向上させるのにも有効な元素である。その効果を得るには0.2%以上の添加が必要である。しかし、3.0%を超えると、高周波焼入れで表面部にはオーステナイトが残留して表面硬度の低下を招き、一方、芯部にはマルテンサイト量が増えるので鋼材製造時に硬くなりすぎて棒鋼切断性等に支障をきたす。このため、このMn量の上限を3.0%とした。最も好ましい添加量は0.2〜2.0%である。
Mn: 0.2 to 3.0%
Mn is an element effective for improving the hardenability of steel, and is also an element effective for improving the temper softening resistance. In order to obtain the effect, addition of 0.2% or more is necessary. However, if it exceeds 3.0%, austenite remains on the surface part due to induction hardening, leading to a decrease in surface hardness. On the other hand, the amount of martensite increases in the core part, so it becomes too hard during steel production and the steel bar is cut. It may interfere with sex. For this reason, the upper limit of the amount of Mn is set to 3.0%. The most preferable addition amount is 0.2 to 2.0%.

P:0.03%以下
Pは、鋼中に不可避不純物として含有する元素であり、意図的に添加する元素ではない。Pは、オーステナイトの粒界に偏析して靭性を低下させるため極力低減する必要があり、0.03%以下に制限する必要がある。
P: 0.03% or less P is an element contained as an inevitable impurity in steel, and is not an element intentionally added. P needs to be reduced as much as possible because it segregates at the grain boundaries of austenite and lowers toughness, and should be limited to 0.03% or less.

S:0.005〜0.10%
Sは、Sは、鋼中でMnSを形成し、切削性を向上させる有用元素である。S量の下限は、切削性を向上させる観点から0.005%とした。しかしながら0.10%を超えると、延性が低下して鍛造割れが生じ易いため、S量の上限を0.10%とした。なお、最も好ましい添加量は0.01〜0.03%である。
S: 0.005-0.10%
S is a useful element that improves the machinability by forming MnS in steel. The lower limit of the amount of S is set to 0.005% from the viewpoint of improving the machinability. However, if it exceeds 0.10%, the ductility is lowered and forging cracks are likely to occur, so the upper limit of the amount of S was made 0.10%. In addition, the most preferable addition amount is 0.01 to 0.03%.

Ni:2.0%以下(0%を含む)
Niは、添加しなくてもよい。但し、添加することにより靭性および強度を更に向上させる効果がある。これらの効果を発揮させるためには、Ni量0.2%以上とすることが好ましい。しかし、2.0%を超えると、その効果が飽和して経済的に不利になり、切削性が悪化するため2.0%を上限とした。
Ni: 2.0% or less (including 0%)
Ni need not be added. However, the addition has the effect of further improving toughness and strength. In order to exert these effects, the Ni content is preferably 0.2% or more. However, if it exceeds 2.0%, the effect is saturated and economically disadvantageous, and the machinability deteriorates, so 2.0% was made the upper limit.

Cr:3.0%以下(0%を含む)
Crは添加しなくてもよい。但し、添加すれば焼入層の焼戻軟化抵抗を向上させることにより、歯車のピッチング寿命が向上する効果がある。これらの効果を発揮させるためには、Cr量を0.2%以上とすることが好ましい。但し、Cr量が3.0%を超えると炭化物が高周波加熱時にも固溶しないほど安定化してしまうため3.0%を上限とした。最も好ましいCrの含有量は0.2〜2.0%である。
Cr: 3.0% or less (including 0%)
It is not necessary to add Cr. However, if added, the tempering softening resistance of the hardened layer is improved, thereby improving the pitching life of the gear. In order to exert these effects, the Cr content is preferably 0.2% or more. However, if the Cr content exceeds 3.0%, the carbide is stabilized so that it does not dissolve even during high-frequency heating, so 3.0% was made the upper limit. The most preferable content of Cr is 0.2 to 2.0%.

Mo:1.0%以下(0%を含む)
Moは、添加しなくてもよい。但し、添加することにより焼入層を強靭化して曲げ疲労強度を向上する効果がある。これらの効果を発揮させるためにはMo量を0.01%以上とすることが好ましい。但し1.0%を超えて添加してもその効果は飽和して経済性を損ねるため1.0%を上限とした。最も好ましい上限は0.4%である。
Mo: 1.0% or less (including 0%)
Mo may not be added. However, the addition has an effect of strengthening the hardened layer and improving the bending fatigue strength. In order to exert these effects, the Mo amount is preferably 0.01% or more. However, even if added over 1.0%, the effect is saturated and the economic efficiency is impaired, so 1.0% was made the upper limit. The most preferred upper limit is 0.4%.

O:0.0025%以下
Oはアルミナやチタニア等の酸化物系介在物として鋼中に存在するが、Oが多いと該酸化物が大型化してしまい、これを起点として動力伝達部品の破損に至るため、0.0025%以下に制限する必要がある。O量は、少ないほど好ましく、特に接触疲労特性が必要な部品に適用する場合は0.0020%以下が望ましく、更に、高寿命を指向する場合は0.0015%以下が望ましい。
O: 0.0025% or less O is present in steel as oxide inclusions such as alumina and titania, but if there is a large amount of O, the oxide will increase in size, and this will cause damage to power transmission components. Therefore, it is necessary to limit it to 0.0025% or less. The amount of O is preferably as small as possible. In particular, it is preferably 0.0020% or less when applied to a part that requires contact fatigue characteristics, and more preferably 0.0015% or less when aiming at a long life.

N:0.005〜0.03%
Nは、AlやTi等と窒化物を形成して高周波焼入処理時におけるオーステナイト粒微細化に有効に働くため、機械的性質の向上に寄与する。このような効果を発揮させるために、N量は、0.005%以上必要である。しかし、N量が0.03%を超えると鍛造性を著しく阻害するため、その上限を0.03%とした。最も好ましいN量は0.005〜0.02%である。
N: 0.005 to 0.03%
N forms nitrides with Al, Ti, and the like and effectively works to refine austenite grains during induction hardening, and thus contributes to improvement of mechanical properties. In order to exert such effects, the N amount needs to be 0.005% or more. However, if the N content exceeds 0.03%, the forgeability is remarkably inhibited, so the upper limit was made 0.03%. The most preferable amount of N is 0.005 to 0.02%.

Al:0.005〜0.05%、Ti:0.005〜0.05%のうち1種または2種
Al、Tiは窒化物として鋼中に析出分散することにより、高周波焼入処理時のオーステナイト組織の粗大化を防止する効果があり、かかる効果を発揮させるためにAl、Tiのうち1種または2種で夫々0.005%以上は必要である。しかし、Al量、Ti量が0.05%を超えると析出物が粗大化して鋼を脆化させる。このためAl量、Ti量の上限を0.05%とした。最も好ましいのはAlを0.005〜0.05%添加することである。
Al: 0.005 to 0.05%, Ti: 0.005 to 0.05%, one or two of Al, Ti precipitates and disperses in the steel as a nitride, and during induction hardening treatment There is an effect of preventing coarsening of the austenite structure, and in order to exert such an effect, one or two of Al and Ti are required to be 0.005% or more, respectively. However, if the Al content and Ti content exceed 0.05%, the precipitates become coarse and the steel becomes brittle. For this reason, the upper limit of Al amount and Ti amount was set to 0.05%. Most preferably, 0.005 to 0.05% of Al is added.

V:0.3%以下(0%を含む)、Nb:0.3%以下(0%を含む)のうち1種または2種
V、Nbは添加しなくてもよい。但し、添加することによってAl、Tiは窒化物として鋼中に析出分散することにより、高周波焼入処理時のオーステナイト組織の粗大化を更に防止する効果がある。これらの効果を発揮させるためには、V、Nbのうち1種または2種で夫々0.01%以上の添加するのが好ましい。しかし、0.3%を超えて添加してもその効果は飽和して経済性を損ねるため上限を0.3%とした。最も好ましいのはVを0.1〜0.2%添加することである。
One or two of V: 0.3% or less (including 0%) and Nb: 0.3% or less (including 0%) may not be added. However, when added, Al and Ti precipitate and disperse in the steel as nitrides, thereby further preventing coarsening of the austenite structure during induction hardening. In order to exert these effects, it is preferable to add 0.01% or more of one or two of V and Nb. However, even if added over 0.3%, the effect is saturated and the economy is impaired, so the upper limit was made 0.3%. Most preferably, 0.1 to 0.2% of V is added.

さらに、一層曲げ疲労強度を向上させる場合、次の含有量のCa、Mg、Zr、Teよりなる群から選択される1種以上を添加する。   Furthermore, when improving bending fatigue strength further, 1 or more types selected from the group which consists of Ca, Mg, Zr, and Te of the following content are added.

Ca:0.01%以下、Mg:0.01%以下、Zr:0.05%以下、Te:0.1%以下のうち何れか1種以上
歯車の曲げ疲労破壊や軸部品のスプラインの底の疲労破壊に対して、MnSの延伸を抑制し、一層曲げ疲労強度を向上させる元素である。すなわち、MnSの延伸抑制効果を与えるために、Caで0.01%以下、Mgで0.01%以下、Zrで0.05%以下及びTeで0.1%以下のうち何れか1種以上を含有させる。しかし、各元素において上記含有量を超えて含有させてもその効果は飽和して経済性を損なうため、上述の如く上限を設定した。
Any one or more of Ca: 0.01% or less, Mg: 0.01% or less, Zr: 0.05% or less, Te: 0.1% or less, and the bottom of splines of shaft parts It is an element that suppresses the extension of MnS and further improves the bending fatigue strength against fatigue fracture. That is, in order to give an effect of suppressing the stretching of MnS, any one or more of Ca 0.01% or less, Mg 0.01% or less, Zr 0.05% or less, and Te 0.1% or less. Containing. However, even if each element is contained in excess of the above content, the effect is saturated and the economy is impaired, so the upper limit is set as described above.

好ましい含有量は、Ca:0.0005〜0.003%、Mg:0.0003〜0.002%、Zr:0.0005〜0.004%、Te:0.005〜0.03%のうち何れか1種以上である。   Preferable content is Ca: 0.0005 to 0.003%, Mg: 0.0003 to 0.002%, Zr: 0.0005 to 0.004%, Te: 0.005 to 0.03% Any one or more.

次に、本発明のその他構成要素を規定する上での限定理由について説明する。   Next, the reasons for limitation in defining other components of the present invention will be described.

表層を高周波焼入れした部品であって、表面から0.05mmの深さの部位における組織中のマルテンサイト面積率が60%以上であり、且つ前記部位における硬さがHRC(ロックウェル硬さ)55以上
表層は高周波焼入によって組織をマルテンサイト変態せしめ硬度を向上させることによって面圧疲労強度を確保する。しかし、その硬度を向上させることが求められる領域は、本発明をいかなる部品に適用するかにより異なる。例えばプラネタリピニオンのような小型部品では、表面から0.3mm程度の領域までにおいて硬度が高められていれば十分であるがでが、CVTシーブのような大型部品では表面から2mm程度の領域まで硬度が高められていることが必要である。
A component obtained by induction-hardening the surface layer, the martensite area ratio in the tissue at a site 0.05 mm deep from the surface is 60% or more, and the hardness at the site is HRC (Rockwell hardness) 55 As described above, the surface fatigue strength is ensured by subjecting the structure to martensite transformation by induction hardening and improving the hardness. However, the area where it is required to improve the hardness differs depending on which part the present invention is applied to. For example, for small parts such as planetary pinions, it is sufficient if the hardness is increased up to about 0.3 mm from the surface, but for large parts such as CVT sheave, the hardness is up to about 2 mm from the surface. Need to be increased.

高周波焼入する領域は周波数の大小で調整することができ、0.3mmの領域なら400kHz前後、2mm程度の領域なら5kHz前後が目安になる。焼入に用いる冷媒は水、ポリマー焼入材、焼入油のいずれも使用可能であり通常は水で十分であるが、焼入時に割れが生じ易い形状の場合には冷却速度の遅い焼入油を用いて割れを防止することが望ましい。   The region to be induction hardened can be adjusted by the magnitude of the frequency. If the region is 0.3 mm, it is about 400 kHz, and if it is about 2 mm, the region is about 5 kHz. The coolant used for quenching can be any of water, polymer quenching material, and quenching oil, and water is usually sufficient, but quenching with a slow cooling rate is necessary when the shape is prone to cracking during quenching. It is desirable to prevent cracking with oil.

いずれの部品でも表面近傍は高い硬度が必要であり、また面圧疲労強度の観点からは表面に近い箇所ほど高い硬度が求められるため、本発明では表面から0.05mmの深さ領域において硬さを規定することとした。その硬度はHRC55未満では面圧疲労強度確保のためには不十分であることから、本発明ではHRC55以上とした。   In any part, high hardness is required in the vicinity of the surface, and from the viewpoint of surface fatigue strength, higher hardness is required in the portion closer to the surface. Therefore, in the present invention, the hardness is 0.05 mm from the surface. It was decided to prescribe. If the hardness is less than HRC55, it is insufficient for ensuring the surface fatigue strength. Therefore, in the present invention, the hardness is set to HRC55 or more.

本発明の鋼材成分では高周波焼入後の組織はマルテンサイトを主体とし、その他、残留オーステナイト、フェライト、パーライト、ベイナイトが存在しうるが、高周波加熱時の加熱不足が生じるとマルテンサイト面積率が60%未満となり、そのためHRC55未満となり面圧疲労強度が満足されないことがあるため、本発明ではマルテンサイト面積率が60%以上とする。   In the steel material component of the present invention, the structure after induction hardening is mainly martensite, and in addition, retained austenite, ferrite, pearlite, and bainite may be present. However, when insufficient heating occurs during induction heating, the martensite area ratio is 60. %, And therefore, it may be less than HRC55 and the surface fatigue strength may not be satisfied. Therefore, in the present invention, the martensite area ratio is set to 60% or more.

このマルテンサイト面積率とは、表面から0.05mmの深さを起点として、深さ方向が0.15mmで幅方向が0.15mmからなる正方形の領域を400倍の光学顕微鏡にて観察し、その全面積に対するマルテンサイト組織の面積率をいう。   With this martensite area ratio, starting from a depth of 0.05 mm from the surface, a square region having a depth direction of 0.15 mm and a width direction of 0.15 mm is observed with a 400 × optical microscope, It refers to the area ratio of the martensite structure to the total area.

上述した硬さ、およびマルテンサイト面積率とするには、高周波加熱温度をAc3変態点以上となる910℃以上とする必要があるが、1150℃を超えると結晶粒の粗大化を招く懸念があるため1150℃を上限とすることが望ましい。高周波加熱時間は長くなりすぎると熱伝導により部品内部までAc3変態点以上に到達してしまい、芯部の球状化炭化物が固溶し靭性が低下する懸念があるため10秒以内が望ましい。   In order to obtain the above-described hardness and martensite area ratio, it is necessary to set the high-frequency heating temperature to 910 ° C. or higher, which is equal to or higher than the Ac3 transformation point, but if it exceeds 1150 ° C., there is a concern of causing coarsening of crystal grains. Therefore, it is desirable that the upper limit is 1150 ° C. If the high-frequency heating time is too long, the heat conduction will reach the interior of the part beyond the Ac3 transformation point, and there is a concern that the spheroidized carbide in the core will dissolve and the toughness will decrease, so it is preferably within 10 seconds.

非高周波焼入れ部である芯部の組織がベイナイトを含まない実質フェライト
本発明の部品は、靭性と切削性を確保するために、非高周波焼入れ部である芯部の組織がベイナイトを含まない実質フェライトである必要がある。
Substantial ferrite in which core structure which is non-inductively hardened part does not contain bainite In order to ensure toughness and machinability, the component of the present invention is a real ferrite in which the structure of core part which is a non-inductively hardened part does not contain bainite. Need to be.

ベイナイトは靭性と切削性を著しく劣化させるため、皆無とする必要がある。また、実質フェライトとするのは、C量の低い組織を十分に確保して靭性を向上させるためである。この実質フェライトとは、組織中のフェライト面積率が95%以上であることをいい、残部は、パーライト及び/又は残留オーステナイトが許容される。フェライト面積率は400倍の光学顕微鏡にて観察し、その全面積に対するフェライト組織の面積率をいう。   Since bainite significantly deteriorates toughness and machinability, it must be completely eliminated. Further, the reason for making the ferrite substantially is to sufficiently secure a structure having a low C content and improve toughness. This substantial ferrite means that the ferrite area ratio in the structure is 95% or more, and pearlite and / or retained austenite is allowed for the balance. The ferrite area ratio is observed with an optical microscope of 400 times and refers to the area ratio of the ferrite structure with respect to the total area.

芯部組織中に存在する炭化物の実質全部が球状炭化物
本発明で、炭化物とは、CにFeが結合したセメンタイトや、CにFeと合金が結合したセメンタイトや、CにFeと合金が結合した合金系炭化物や、CにFeと合金とNが結合した合金系炭窒化物をいう。また、ここでいう実質全部とは、下記で定義される球状炭化物率が95%以上であることをいう。
In the present invention, substantially all of the carbides present in the core structure are spherical carbides. The carbides are cementite in which Fe is bonded to C, cementite in which Fe and an alloy are bonded to C, and Fe and an alloy are bonded to C. An alloy-based carbide or an alloy-based carbonitride in which Fe, an alloy, and N are bonded to C. The term “substantially all” as used herein means that the spherical carbide ratio defined below is 95% or more.

球状炭化物率(%)=(アスペクト比が3未満の炭化物の個数/全炭化物の個数)×100    Spherical carbide ratio (%) = (number of carbides having an aspect ratio of less than 3 / total number of carbides) × 100

ここで、アスペクト比とは走査型電子顕微鏡による金属組織観察において炭化物の最大長さLとその直角方向の最大長さDの比(L/D)のことをいい、全炭化物の個数とは、アスペクト比が3未満の炭化物の他、アスペクト比が3以上の炭化物(但し、パーライト中のラメラ形状セメントタイトを含み、粒界のセメントタイトは含まない)の合計個数である。炭化物の観察は走査型電子顕微鏡により行うことができ、EDS定性分析によりCのピークが現れるため、これを識別することが可能となる。   Here, the aspect ratio means a ratio (L / D) of the maximum length L of carbides and the maximum length D in the perpendicular direction in the observation of the metal structure by a scanning electron microscope. The number of all carbides is This is the total number of carbides having an aspect ratio of less than 3 and carbides having an aspect ratio of 3 or more (however, including lamellar cementite in pearlite and not including cementite at grain boundaries). Carbide can be observed with a scanning electron microscope, and since a peak of C appears by EDS qualitative analysis, it can be identified.

炭化物の球状化が不十分であるとパーライト中のラメラ形状セメンタイトが球状化しないまま残存し、部品への衝撃高荷重による大変形時に塑性変形が妨げられるために靭性が低下するため、本発明では、芯部組織中に存在する炭化物の実質全部が球状炭化物とした。   If the carbide spheroidization is insufficient, the lamellar shaped cementite in the pearlite remains without spheroidizing, and plastic deformation is hindered during large deformation due to high impact load on the part, so that the toughness is reduced. In addition, substantially all of the carbides present in the core structure were spherical carbides.

次に、非高周波焼入れ部である芯部の組織がベイナイトを含まない実質フェライトであり、該組織中に存在する炭化物の実質全部を球状炭化物とする方法について以下に説明する。   Next, a description will be given below of a method in which the core structure, which is a non-induction hardened part, is substantially ferrite containing no bainite, and substantially all of the carbides present in the structure are made into spherical carbides.

上述の如き芯部組織および炭化物とするには、熱間鍛造または冷間鍛造を行った後、Ac1変態点(730℃前後)よりもやや高い温度(740〜780℃)で1時間以上加熱したのち、加熱温度から550℃までの間を1℃/分以下の冷却速度で徐冷する。なお、550℃以下については冷却速度が1℃/分以上になっても差し支えない。加熱温度から550℃までの間の冷却速度を抑制させることによって炭化物の球状化を促進させ、なおかつベイナイトの生成を抑制させることができる。加熱温度から550℃までの間の冷却速度を抑制させるほど球状化された炭化物を粗大化させることができ、、例えば冷却速度0.1℃/分で冷却した場合には炭化物粒径を2μm前後にまで粗大化させることができるが、靭性の面においてはその方が好ましい。しかし、加熱温度から550℃までの間の冷却速度があまり長くなりすぎると生産性が低下するため冷却速度は0.1〜0.5℃/分が好ましい。   In order to obtain the core structure and carbide as described above, after hot forging or cold forging, it was heated for 1 hour or more at a temperature (740 to 780 ° C.) slightly higher than the Ac1 transformation point (around 730 ° C.). After that, the temperature from the heating temperature to 550 ° C. is gradually cooled at a cooling rate of 1 ° C./min or less. In addition, about 550 degrees C or less, even if a cooling rate will be 1 degree C / min or more, it does not interfere. By suppressing the cooling rate between the heating temperature and 550 ° C., the spheroidization of the carbide can be promoted and the formation of bainite can be suppressed. The spheroidized carbide can be coarsened so as to suppress the cooling rate between the heating temperature and 550 ° C. For example, when cooled at a cooling rate of 0.1 ° C / min, the carbide particle size is around 2 µm. However, it is preferable in terms of toughness. However, if the cooling rate between the heating temperature and 550 ° C. becomes too long, the productivity is lowered, so the cooling rate is preferably 0.1 to 0.5 ° C./min.

なお、熱間鍛造を採用する際において、上記の加熱から冷却までの熱処理を、熱間鍛造後に行う理由は、熱間鍛造前に上記熱処理を行っても、熱間鍛造時の加熱により球状化焼鈍組織が消失するためである。また冷間鍛造を採用する場合において、上記の加熱から冷却までの熱処理を冷間鍛造後に行う理由は、必要に応じて冷間鍛造前に上記熱処理を行ったとしても、冷間鍛造の加工硬化により切削性が阻害されることに加え、冷間鍛造により蓄積した加工歪みの影響で、その後の高周波加熱で結晶粒粗大化が生じ易くなる弊害がある。このため、冷間鍛造後の上記熱処理が必要となる。   In addition, when adopting hot forging, the reason for performing the heat treatment from the above heating to cooling after the hot forging is that the heat treatment before the hot forging makes the spheroidization by the heating during the hot forging. This is because the annealed structure disappears. In the case of adopting cold forging, the reason why the heat treatment from the heating to the cooling is performed after the cold forging is that the cold forging work hardening even if the heat treatment is performed before the cold forging if necessary. In addition to hindering the machinability, there is an adverse effect that the coarsening of the crystal grains is liable to occur by subsequent high-frequency heating due to the influence of processing distortion accumulated by cold forging. For this reason, the said heat processing after cold forging is needed.

通常、Cが0.6%以上の鋼材を素材とする場合には熱間鍛造により成型され、Cが0.6%未満の鋼材を素材とする場合には熱間鍛造または冷間鍛造により成型される。   Usually, when steel material with C of 0.6% or more is used as a raw material, it is formed by hot forging. When steel material with C is less than 0.6%, it is formed by hot forging or cold forging. Is done.

なお、本発明を適用した高周波焼入部品は高周波焼入処理した後、更にサブゼロ処理、焼戻処理、ショットピーニング処理、WPC処理、バレル研摩処理、歯研処理、ホーニング仕上加工等の追加処理を行ってもよいことは勿論である。   In addition, induction hardening parts to which the present invention is applied are subjected to induction hardening, and further processing such as sub-zero treatment, tempering treatment, shot peening treatment, WPC treatment, barrel polishing treatment, tooth polishing treatment, honing finishing processing, etc. Of course, you may go.

以下に本発明を実施例によって具体的に説明する。なお、これらの実施例は本発明を説明するためのものであって、本発明の範囲を限定するものではない。   Hereinafter, the present invention will be specifically described by way of examples. These examples are for explaining the present invention, and do not limit the scope of the present invention.

表1に示す化学組成を有する各熱間圧延鋼材を熱間鍛造または冷間鍛造後に760℃に300分間保持後、560℃まで表2に示す冷却速度で冷却し、その後、放冷の球状化焼鈍処理を施した後、機械加工によりローラーピッチング疲労試験用に直径が26mm、幅28mmの円筒部を有する小ローラー試験片と、直径130mm、幅18mmの大ローラー試験片を製作した。同様にUノッチ衝撃試験片(JIS Z 2202の図2aに示す)と切削性評価用のφ65mm丸棒を製作した。その後、該小ローラー試験片と該大ローラー試験片にはNo.1〜No.17については周波数100kHz、加熱温度980℃、水を冷媒とした高周波焼入処理を施した後、180℃で90分の焼戻処理を行いローラーピッチング疲労試験を行った。No.18については周波数100kHz、加熱温度900℃、水を冷媒とした高周波焼入処理を施した後、180℃で90分の焼戻処理を行いローラーピッチング疲労試験を行った。該Uノッチ衝撃試験片にはNo.1〜No.17については周波数400kHz、加熱温度980℃、水を冷媒とした高周波焼入処理を施した後、180℃で90分の焼戻処理を行い衝撃試験に供した。No.18については周波数400kHz、加熱温度900℃、水を冷媒とした高周波焼入処理を施した後、180℃で90分の焼戻処理を行い衝撃試験に供した。   Each hot-rolled steel material having the chemical composition shown in Table 1 is held at 760 ° C. for 300 minutes after hot forging or cold forging, then cooled to 560 ° C. at the cooling rate shown in Table 2, and then allowed to cool and spheroidized. After the annealing treatment, a small roller test piece having a cylindrical portion with a diameter of 26 mm and a width of 28 mm and a large roller test piece with a diameter of 130 mm and a width of 18 mm were manufactured for a roller pitting fatigue test by machining. Similarly, a U-notch impact test piece (shown in FIG. 2a of JIS Z 2202) and a φ65 mm round bar for machinability evaluation were manufactured. Thereafter, the small roller test piece and the large roller test piece were No. 1-No. No. 17 was subjected to induction hardening with a frequency of 100 kHz, a heating temperature of 980 ° C., and water as a refrigerant, and then subjected to a tempering treatment at 180 ° C. for 90 minutes to conduct a roller pitching fatigue test. No. 18 was subjected to induction hardening using a frequency of 100 kHz, a heating temperature of 900 ° C., and water as a refrigerant, and then subjected to a tempering treatment at 180 ° C. for 90 minutes to conduct a roller pitching fatigue test. The U-notch impact test piece is No. 1-No. 17 was subjected to induction hardening using a frequency of 400 kHz, a heating temperature of 980 ° C., and water as a refrigerant, followed by tempering at 180 ° C. for 90 minutes and subjected to an impact test. No. 18 was subjected to induction hardening using a frequency of 400 kHz, a heating temperature of 900 ° C., and water as a refrigerant, followed by tempering at 180 ° C. for 90 minutes and subjected to an impact test.

上述の製作した大ローラーと小ローラーを用いてローラーピッチング疲労試験を行った。ローラーピッチング疲労試験は、小ローラーに面圧をヘルツ応力3000MPaとして大ローラーを押し付けて、接触部での両ローラーの周速方向を同一方向とし、すべり率を−40%(小ローラーよりも大ローラーの方が接触部の周速が40%大きい)として回転させて、小ローラーにおいてピッチング発生するまでの小ローラーの回転数を寿命とした。前記接触部に供給するギア油の油温は80℃とした。ピッチング発生の検出は試験機に備え付けてある振動計によって行い、振動検出後に両ローラーの回転を停止させてピッチングの発生と回転数を確認した。   A roller pitching fatigue test was performed using the large roller and the small roller produced as described above. In the roller pitching fatigue test, the large roller is pressed against the small roller with a surface pressure of 3000 MPa, the circumferential speed direction of both rollers at the contact portion is the same direction, and the slip rate is −40% (larger roller than the small roller). The rotation speed of the small roller until the occurrence of pitching in the small roller was defined as the life. The oil temperature of the gear oil supplied to the contact portion was 80 ° C. The occurrence of pitching was detected by a vibrometer provided in the testing machine, and after the vibration was detected, the rotation of both rollers was stopped and the occurrence of pitching and the number of rotations were confirmed.

次に上述の製作したUノッチ衝撃試験を用いて、常温での衝撃値を測定した。切削性評価用のφ65mm丸棒はTiNコーティング超硬工具を用いて、切込量2mm、送り速度0.25mm/revおよび切削速度200mm/分の乾式条件にて実施し、工具逃げ面摩耗幅が0.2mmに達した時間を工具寿命として測定した。試験結果および測定結果を表2に示す。   Next, the impact value at room temperature was measured using the U-notch impact test produced above. The φ65mm round bar for machinability evaluation was carried out using a TiN-coated carbide tool under dry conditions with a cutting depth of 2mm, a feed rate of 0.25mm / rev and a cutting rate of 200mm / min. The time reaching 0.2 mm was measured as the tool life. The test results and measurement results are shown in Table 2.

表2に示すように、本発明例のNo.1〜No.13のローラー試験片は、寿命が1000万回以上であり、優れたピッチング疲労強度(面圧疲労強度)を有していることが明らかになった。また、本発明例のUノッチ衝撃試験片は衝撃値が20J/cm2以上であり、優れた靭性を有していることが明らかになった。工具寿命も20分を超えて良好であった。 As shown in Table 2, No. of the present invention example. 1-No. It was revealed that No. 13 roller test piece has a life of 10 million times or more and has excellent pitting fatigue strength (surface pressure fatigue strength). Further, it was revealed that the U-notch impact test piece of the present invention example has an impact value of 20 J / cm 2 or more and has excellent toughness. The tool life was also good over 20 minutes.

これに対し、C量を本発明において規定した成分範囲から逸脱させた比較例のNo.14はピッチング疲労試験寿命が4,832,000回と短かった。これはCが低いことに起因して表面から0.05mmの深さの硬さHRCが55を下回ったためである。   On the other hand, No. of the comparative example which made C amount deviate from the component range prescribed | regulated in this invention. No. 14 had a short pitching fatigue test life of 4,832,000 times. This is because the hardness HRC at a depth of 0.05 mm from the surface was less than 55 due to the low C.

Cr量を本発明において規定した成分範囲から逸脱させた比較例のNo.15はピッチング疲労試験寿命が6,231,000回と短かった。これはCrが低く焼き入れ層の焼戻軟化抵抗不足となったためと考えられる。   In Comparative Example No. 1 in which the amount of Cr deviates from the component range defined in the present invention. 15 had a short pitching fatigue test life of 6,231,000 times. This is presumably because Cr was low and the temper softening resistance of the quenched layer was insufficient.

HRCを本発明において規定した範囲から逸脱させた比較例のNo.16はピッチング疲労試験寿命が3,544,000回と短かった。これはCrが高いため炭化物が安定化してしまい、高周波加熱時にCがあまり組織中に固溶しなかったことに起因して0.05mmの深さの硬さがHRC55を下回ったためである。   Comparative Example No. HRC deviated from the range defined in the present invention. No. 16 had a short pitching fatigue test life of 3,544,000 times. This is because the carbide is stabilized because Cr is high, and the hardness at a depth of 0.05 mm is lower than that of HRC55 due to the fact that C did not dissolve in the structure at the time of high-frequency heating.

冷却速度の条件、芯部の組織並びに炭化物の形状を本発明で規定した範囲と異ならせた比較例のNo.17は衝撃値が11J/cm2と低かった。これは球状化焼鈍後の冷却速度が1.5℃/分と大きいことから、芯部組織が、ベイナイトを含み、フェライトが80%となったためであり、工具寿命も20分を大きく下まわった。 Comparative Example No. 1 in which the cooling rate conditions, the core structure, and the shape of the carbides were different from the ranges defined in the present invention. No. 17 had a low impact value of 11 J / cm 2 . This is because the cooling rate after spheroidizing annealing is as high as 1.5 ° C./min, and therefore the core structure contains bainite and the ferrite is 80%, and the tool life is greatly reduced to 20 minutes. .

HRCを本発明において規定した範囲から逸脱させた比較例のNo.18はピッチング疲労試験寿命が2,335,000回と短かった。これは高周波加熱温度が低くCがあまり組織中に固溶しなかったことに起因して0.05mmの深さの硬さがHRC55を下回ったためである。また、Cが組織中に固溶しないことに伴ってマルテンサイト面積率も低下していた。   Comparative Example No. HRC deviated from the range defined in the present invention. No. 18 had a short pitching fatigue test life of 2,335,000 times. This is because the hardness at a depth of 0.05 mm was lower than HRC55 due to the fact that the high-frequency heating temperature was low and C did not dissolve in the tissue. In addition, the martensite area ratio also decreased as C did not dissolve in the structure.

Figure 0004757831
Figure 0004757831

Figure 0004757831
Figure 0004757831

Claims (5)

質量%で、
C :0.4〜1.2%、
Si:2.0%以下、
Mn:0.2〜3.0%、
P :0.03%以下、
S :0.005〜0.10%、
Ni:2.0%以下(0%を含む)、
Cr:3.0%以下(0%を含む)、
Mo:1.0%以下(0%を含む)、
O :0.0025%以下、
N :0.005〜0.03%
を含有し、さらに、
Al:0.005〜0.05%、
Ti:0.005〜0.05%
のうち1種または2種と、
V :0.3%以下(0%を含む)、
Nb:0.3%以下(0%を含む)
のうち1種または2種を含有し、残部が鉄と不可避不純物よりなる鋼からなり、表層を高周波焼入れした部品であって、表面から0.05mmの深さの部位における組織中のマルテンサイト面積率が60%以上であり、且つ前記部位における硬さがHRC55以上であり、非高周波焼入れ部である芯部の組織がベイナイトを含まない実質フェライトであり、該芯部組織中に存在する炭化物の実質全部が球状炭化物であり、無段変速機(CVT)に適用されることを特徴とする高周波焼入れ部品。
% By mass
C: 0.4 to 1.2%,
Si: 2.0% or less,
Mn: 0.2 to 3.0%
P: 0.03% or less,
S: 0.005 to 0.10%,
Ni: 2.0% or less (including 0%),
Cr: 3.0% or less (including 0%),
Mo: 1.0% or less (including 0%),
O: 0.0025% or less,
N: 0.005-0.03%
In addition,
Al: 0.005 to 0.05%,
Ti: 0.005 to 0.05%
One or two of them,
V: 0.3% or less (including 0%),
Nb: 0.3% or less (including 0%)
A martensite area in the structure at a depth of 0.05 mm from the surface, which is made of steel containing one or two of the above, the balance being made of steel consisting of iron and inevitable impurities, and the surface layer being induction-hardened The rate is 60% or more, the hardness at the part is HRC55 or more, and the structure of the core part which is a non-high-frequency quenching part is a substantial ferrite containing no bainite, and the carbides present in the core part structure induction hardening components substantially all of Ri globular carbides der, characterized in that it is applied to a continuously variable transmission (CVT).
前記鋼の化学成分が、更に質量%でCa:0.01%以下、Mg:0.01%以下、Zr:0.05%以下、Te:0.1%以下のうち何れか1種以上を含有することを特徴とする請求項1記載の高周波焼入れ部品。   Further, the steel has a chemical composition of at least one of Ca: 0.01% or less, Mg: 0.01% or less, Zr: 0.05% or less, Te: 0.1% or less. The induction-hardened component according to claim 1, which is contained. 質量%で、
C :0.4〜1.2%、
Si:2.0%以下、
Mn:0.2〜3.0%、
P :0.03%以下、
S :0.005〜0.10%、
Ni:2.0%以下(0%を含む)、
Cr:3.0%以下(0%を含む)、
Mo:1.0%以下(0%を含む)、
O :0.0025%以下、
N :0.005〜0.03%
を含有し、さらに、
Al:0.005〜0.05%、
Ti:0.005〜0.05%
のうち1種または2種と、
V :0.3%以下(0%を含む)、
Nb:0.3%以下(0%を含む)
のうち1種または2種を含有し、残部が鉄と不可避不純物よりなる鋼を、熱間鍛造または冷間鍛造を行った後、740〜780℃に1時間以上加熱し、加熱温度から550℃までの間を1℃/分以下の冷却速度で徐冷し、その後、高周波焼入れを施すことにより、表面から0.05mmの深さの部位における組織中のマルテンサイト面積率が60%以上であり、且つ前記部位における硬さがHRC55以上であり、非高周波焼入れ部である芯部の組織がベイナイトを含まない実質フェライトであり、該芯部組織中に存在する炭化物の実質全部が球状炭化物であるようにすることを特徴とする高周波焼入部品の製造方法。
% By mass
C: 0.4 to 1.2%,
Si: 2.0% or less,
Mn: 0.2 to 3.0%
P: 0.03% or less,
S: 0.005 to 0.10%,
Ni: 2.0% or less (including 0%),
Cr: 3.0% or less (including 0%),
Mo: 1.0% or less (including 0%),
O: 0.0025% or less,
N: 0.005-0.03%
In addition,
Al: 0.005 to 0.05%,
Ti: 0.005 to 0.05%
One or two of them,
V: 0.3% or less (including 0%),
Nb: 0.3% or less (including 0%)
1 or 2 of the steel, and the remainder consisting of iron and inevitable impurities is subjected to hot forging or cold forging, and then heated to 740 to 780 ° C. for 1 hour or more, from the heating temperature to 550 ° C. Is gradually cooled at a cooling rate of 1 ° C./min or less, and then subjected to induction quenching, the martensite area ratio in the structure at a depth of 0.05 mm from the surface is 60% or more. And the hardness in the said part is HRC55 or more, the structure of the core part which is a non-high frequency hardening part is a substantial ferrite which does not contain a bainite, and substantially all of the carbide | carbonized_material which exists in this core part structure | tissue is a spherical carbide. A method for manufacturing an induction-hardened component, characterized by:
前記鋼の化学成分が、更に質量%でCa:0.01%以下、Mg:0.01%以下、Zr:0.05%以下、Te:0.1%以下のうち何れか1種以上を含有することを特徴とする請求項3記載の高周波焼入部品の製造方法。 Further, the steel has a chemical composition of at least one of Ca: 0.01% or less, Mg: 0.01% or less, Zr: 0.05% or less, Te: 0.1% or less. The method of manufacturing an induction-hardened component according to claim 3, wherein the component is contained . 請求項3又は4に記載の高周波焼入部品は、無段変速機(CVT)に適用されることを特徴とする高周波焼入部品の製造方法。 The induction hardening component according to claim 3 or 4, wherein the induction hardening component is applied to a continuously variable transmission (CVT).
JP2007088770A 2007-03-29 2007-03-29 Induction hardening part and manufacturing method thereof Expired - Fee Related JP4757831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007088770A JP4757831B2 (en) 2007-03-29 2007-03-29 Induction hardening part and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007088770A JP4757831B2 (en) 2007-03-29 2007-03-29 Induction hardening part and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008248282A JP2008248282A (en) 2008-10-16
JP4757831B2 true JP4757831B2 (en) 2011-08-24

Family

ID=39973579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007088770A Expired - Fee Related JP4757831B2 (en) 2007-03-29 2007-03-29 Induction hardening part and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4757831B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135558B2 (en) 2010-03-30 2013-02-06 新日鐵住金株式会社 Induction hardened steel, induction hardened rough shape, method for producing the same, and induction hardened steel parts
WO2013147259A1 (en) * 2012-03-30 2013-10-03 株式会社神戸製鋼所 Gear having excellent seizing resistance
DE112016001868T5 (en) * 2015-04-21 2018-01-04 Komatsu Ltd. Chisel and steel for chisel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145744A (en) * 1988-11-29 1990-06-05 Kawasaki Steel Corp Carbon steel for machine structural use having excellent cold forgeability and induction hardenability
JPH10183296A (en) * 1996-12-26 1998-07-14 Sumitomo Metal Ind Ltd Steel material for induction hardening, and its production
JP2000265241A (en) * 1999-03-16 2000-09-26 Daido Steel Co Ltd Non-heat treated steel for induction contour hardening gear
JP2001329333A (en) * 2000-05-17 2001-11-27 Sanyo Special Steel Co Ltd Steel for cold forging and induction hardening
JP2006152407A (en) * 2004-11-30 2006-06-15 Jfe Steel Kk Bearing part and production method thereof
JP2007131907A (en) * 2005-11-09 2007-05-31 Sanyo Special Steel Co Ltd Steel for induction hardening with excellent cold workability, and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145744A (en) * 1988-11-29 1990-06-05 Kawasaki Steel Corp Carbon steel for machine structural use having excellent cold forgeability and induction hardenability
JPH10183296A (en) * 1996-12-26 1998-07-14 Sumitomo Metal Ind Ltd Steel material for induction hardening, and its production
JP2000265241A (en) * 1999-03-16 2000-09-26 Daido Steel Co Ltd Non-heat treated steel for induction contour hardening gear
JP2001329333A (en) * 2000-05-17 2001-11-27 Sanyo Special Steel Co Ltd Steel for cold forging and induction hardening
JP2006152407A (en) * 2004-11-30 2006-06-15 Jfe Steel Kk Bearing part and production method thereof
JP2007131907A (en) * 2005-11-09 2007-05-31 Sanyo Special Steel Co Ltd Steel for induction hardening with excellent cold workability, and its manufacturing method

Also Published As

Publication number Publication date
JP2008248282A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
KR101129370B1 (en) Carbonitrided induction-hardened steel part with excellent rolling contact fatigue strength at high temperature and process for producing the same
JP5958652B2 (en) Soft nitrided induction hardened steel parts with excellent surface fatigue strength
JP5742801B2 (en) Hot rolled steel bar or wire rod
JP4581966B2 (en) Induction hardening steel
JP6461478B2 (en) Induction hardening gear and induction hardening method of gear
US11332817B2 (en) Machine component
JP2016050350A (en) Steel component for high strength high toughness machine structure excellent in pitching resistance and abrasion resistance and manufacturing method therefor
WO2019198539A1 (en) Machine component and method for producing same
AU2019287841B2 (en) Method for producing machine components
JP4757831B2 (en) Induction hardening part and manufacturing method thereof
JP5583352B2 (en) Induction hardening steel and induction hardening parts with excellent static torsional fracture strength and torsional fatigue strength
JP4488228B2 (en) Induction hardening steel
JP2008174810A (en) Inner ring and outer ring of bearing, having excellent rolling fatigue characteristic, and bearing
JP6447064B2 (en) Steel parts
JP6551225B2 (en) Induction hardening gear
JP4411096B2 (en) Steel wire rod and steel bar for case hardening with excellent cold forgeability after spheronization
JP6881496B2 (en) Parts and their manufacturing methods
JP6881497B2 (en) Parts and their manufacturing methods
JP6881498B2 (en) Parts and their manufacturing methods
JP6394844B1 (en) Shaft member
JP2023144674A (en) Steel for nitriding having excellent cold forging property and cold forged nitrided component
JP2023144640A (en) Steel for nitriding having excellent cold forging property and cold forged nitrided component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

R151 Written notification of patent or utility model registration

Ref document number: 4757831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees