JP2000265241A - Non-heat treated steel for induction contour hardening gear - Google Patents

Non-heat treated steel for induction contour hardening gear

Info

Publication number
JP2000265241A
JP2000265241A JP7107499A JP7107499A JP2000265241A JP 2000265241 A JP2000265241 A JP 2000265241A JP 7107499 A JP7107499 A JP 7107499A JP 7107499 A JP7107499 A JP 7107499A JP 2000265241 A JP2000265241 A JP 2000265241A
Authority
JP
Japan
Prior art keywords
steel
gear
heat treated
hardenability index
treated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7107499A
Other languages
Japanese (ja)
Inventor
Koichiro Inoue
幸一郎 井上
Sadayuki Nakamura
貞行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP7107499A priority Critical patent/JP2000265241A/en
Publication of JP2000265241A publication Critical patent/JP2000265241A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-heat treated steel for induction contour hardening gear, capable of providing homogeneous hardened layer structure even if a hardening process by ultrashort-time heating, that is, an induction contour hardening process is adopted and capable of providing a gear product having high rolling contact fatigue strength, at the time of manufacturing a gear by using the non-heattreated steel as a material and applying hot forging and successive machining to it. SOLUTION: The steel has a composition consisting of, by weight, 0.45-0.8% C, 1.0-2.0% Si, 0.1-1.5% Mn, 0.05-1.0% Cr, 0.05-0.3% V, 0.015-0.05%; sol.Al, and the balance Fe with impurities. This steel satisfies the condition of (hardenability index)=1.2-1.4×C(%)-0.28×Mn(%)-0.49×Cr(%)<=0.3, and the tempering hardness of the hardened material at 300 deg.C is regulated to >=HV600. This steel can further contain either or both of the following optional additive elements: (I) 0.0005-0.005% B and 0.005-0.05% Ti; and (II) <=0.2% S and/or <=0.1% Te.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波輪郭焼入歯
車用非調質鋼に関し、くわしくは、熱間鍛造により歯車
形状に成形され、必要に応じて機械加工を行なったのち
高周波焼き入れによる表面硬化処理を施して、非調質の
まま歯車製品とする鋼に関する。本発明で「歯車」の語
は、次に例示するような広い意味を有する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-heat-treated steel for high-frequency contour hardened gears, and more particularly, to a gear shape formed by hot forging and, if necessary, machining, followed by induction hardening. The present invention relates to a steel that has been subjected to a surface hardening treatment to be used as a gear product without being tempered. In the present invention, the term "gear" has a wide meaning as exemplified below.

【0002】[0002]

【従来の技術】たとえば自動車エンジンの変速ギア、無
段変速機用の転動体その他の機械部品であって広義の歯
車形状を有するものを、熱間鍛造後の焼入れ・焼戻し処
理を省略して製造しようとする場合、中炭素鋼に微量の
Vを添加した合金組成の非調質鋼が好んで使用されてい
る。このような非調質鋼の鍛造品の中でも高い接触疲労
強度が要求される部品には、熱間鍛造および機械加工の
後、高周波焼入れを行なって表面を硬化させることが一
般的である。
2. Description of the Related Art For example, a transmission gear of an automobile engine, a rolling element for a continuously variable transmission, and other mechanical parts having a broad gear shape are manufactured without quenching and tempering after hot forging. In this case, a non-heat treated steel having an alloy composition obtained by adding a small amount of V to medium carbon steel is preferably used. In the case of a part requiring high contact fatigue strength among such forged products of non-heat treated steel, it is general to harden the surface by induction hardening after hot forging and machining.

【0003】しかし、中炭素鋼に微量のを添加した従来
の非調質鋼は、初析フェライト面積率が高く、均質な高
周波焼入れ組織を得るためには、十分長い時間加熱する
必要があった。
However, a conventional non-heat treated steel obtained by adding a trace amount to a medium carbon steel has a high proeutectoid ferrite area ratio and requires a sufficiently long heating time to obtain a homogeneous induction hardened structure. .

【0004】一方、近年確立された高周波輪郭焼入れに
よれば、0.1〜1.0秒間という超短時間の加熱で部
品の表層だけを焼入れすることができる。この技術で処
理した焼入れ材は、表層部に高い圧縮残留応力が加わる
ため、高い強度が得られるのが特徴である。ところが、
従来の非調質鋼は長時間の加熱を必要とするため、短時
間の加熱に特色のある高周波輪郭焼入れでは、均質な硬
化層を得ることができず、強度が低い製品しか得られな
いことが多い。調質鋼を使用し、熱間鍛造後に焼入れ・
焼戻しをすれば、高周波輪郭焼入れによって均質な硬化
層が得られるものの、非調質鋼のもつコストメリットを
享受することができない。
On the other hand, according to the high-frequency contour quenching established in recent years, only the surface layer of a part can be quenched by heating for a very short time of 0.1 to 1.0 second. The quenched material treated by this technique is characterized by high strength because a high compressive residual stress is applied to the surface layer. However,
Conventional non-heat treated steel requires long-time heating, so high-frequency contour quenching, which is characterized by short-time heating, cannot provide a uniform hardened layer and can only provide low-strength products. There are many. Using tempered steel, quenching after hot forging
If tempering is performed, a uniform hardened layer can be obtained by high frequency contour quenching, but the cost advantage of the non-heat treated steel cannot be enjoyed.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記のような
事情にかんがみてなされたものであって、その目的は、
熱間鍛造後に必要に応じて機械加工を行なって所望の部
品形状としたものを、焼入れ・焼戻しをすることなく超
短時間加熱の高周波輪郭焼入れし、均質な硬化層組織を
得て、高いころがり接触疲労強度を有する歯車製品を与
えることのできる高周波輪郭焼入歯車用非調質鋼を提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and its object is to provide:
After hot forging, if necessary, machine processing to obtain the desired part shape, high-frequency contour quenching of ultra-short time heating without quenching and tempering, to obtain a homogeneous hardened layer structure, high rolling An object of the present invention is to provide a non-heat treated steel for high frequency contour hardened gears that can provide a gear product having contact fatigue strength.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成する本
発明の高周波輪郭焼入歯車用非調質鋼は、基本的な合金
組成として、重量で、C:0.45〜0.8%,Si:
1.0〜2.0%,Mn:0.1〜1.5%,Cr:
0.05〜1.0%,V:0.05〜0.3%およびso
l-Al:0.015〜0.05%を、下記の焼入性指数
の条件を満たす割合で含有し、 焼入性指数=1.2−1.4×C(%)−0.28×Mn
(%)−0.49×Cr(%)≦0.3 残部がFeおよび不純物からなり、焼入れ後の材料の3
00℃における焼戻し硬さがHV600以上であること
を特徴とする。
The non-heat-treated steel for high-frequency contour hardened gears of the present invention which achieves the above object has a basic alloy composition of C: 0.45 to 0.8% by weight. , Si:
1.0 to 2.0%, Mn: 0.1 to 1.5%, Cr:
0.05-1.0%, V: 0.05-0.3% and so
l-Al: 0.015 to 0.05% is contained in a ratio satisfying the following hardenability index condition, and hardenability index = 1.2-1.4 × C (%) − 0.28 × Mn
(%) − 0.49 × Cr (%) ≦ 0.3 The balance consists of Fe and impurities.
The tempering hardness at 00 ° C. is HV600 or more.

【0007】[0007]

【発明の実施形態】本発明の高周波輪郭焼入歯車用非調
質鋼は、上記した必須成分からなる合金組成に加えて、
さらに、下記のグループIおよびIIの任意添加成分の一
方または両方を含有することができる。 (I)B:0.0005〜0.005%およびTi:
0.005〜0.05% (II)S:0.2%以下および(または)Te:0.1
%以下。
BEST MODE FOR CARRYING OUT THE INVENTION The non-heat-treated steel for high-frequency contour hardened gears of the present invention is characterized in that, in addition to the above-mentioned alloy composition comprising essential components,
Further, one or both of the following optional components of Groups I and II can be contained. (I) B: 0.0005 to 0.005% and Ti:
0.005 to 0.05% (II) S: 0.2% or less and / or Te: 0.1
%Less than.

【0008】これらの任意添加成分を含有する合金にお
いても、上記の焼入性指数の条件が満たされ、かつ焼入
れ後の材料の焼戻し硬さの下限が確保されなければなら
ないことは、もちろんである。
It is a matter of course that alloys containing these optional components must also satisfy the above-mentioned hardenability index conditions and ensure the lower limit of the tempered hardness of the material after quenching. .

【0009】合金組成について、以下に必須成分および
任意添加成分の作用と組成範囲の限定理由を説明する。
Regarding the alloy composition, the action of the essential components and optional additives and the reasons for limiting the composition range will be described below.

【0010】C:0.45〜0.8% Cは鋼の強度を得るために重要な元素であり、高周波焼
き入れ後の表面硬さを確保し、静的強度や曲げ疲労強度
および転がり接触疲労強度を向上させるためには、通常
の炭素鋼S40CやS45CのC量より高い、0.45
%以上を添加する必要がある。一方、C量が0.80%
の共析点を超えると、かえって表面硬さが低下して強度
の向上がはかれなくなる上、初析セメンタイトが生成し
て靭性を損なうので、0.8%を上限とした。
C: 0.45 to 0.8% C is an important element for obtaining the strength of steel. It secures the surface hardness after induction hardening, and has a static strength, a bending fatigue strength and a rolling contact. In order to improve the fatigue strength, the carbon content of the normal carbon steel S40C or S45C is higher than that of the normal carbon steel S40C or S45C by 0.45%.
% Or more must be added. On the other hand, the C content is 0.80%
If the eutectoid point is exceeded, on the contrary, the surface hardness is lowered and the strength cannot be improved, and furthermore, proeutectoid cementite is formed and the toughness is impaired. Therefore, the upper limit is set to 0.8%.

【0011】Si:1.0〜2.0% Siは、溶製時に脱酸剤として添加するほか、300℃
以下の温度における焼戻し軟化抵抗を高め、転がり接触
疲労強度を高めるはたらきがある。歯車類は使用条件に
よって、ある程度の温度に長時間さらされることが多
く、低温での焼戻し軟化抵抗性の高低は、重要な問題で
ある。これらの作用を期待して、1.0%以上のSiを
添加する。多量になると、被削性、熱間加工性、高周波
焼入れ性を低下させるので、2.0%までの添加に止め
る。
Si: 1.0-2.0% In addition to adding Si as a deoxidizing agent at the time of melting, 300 ° C.
It has the function of increasing the tempering softening resistance at the following temperatures and increasing the rolling contact fatigue strength. Gears are often exposed to a certain temperature for a long time depending on use conditions, and the degree of temper softening resistance at low temperatures is an important problem. In view of these effects, 1.0% or more of Si is added. If the amount is too large, the machinability, hot workability and induction hardenability are reduced. Therefore, the addition is limited to 2.0%.

【0012】Mn:0.1〜1.5% Mnも溶製時に脱酸剤として作用する。また、高周波焼
入れ性を高める元素であって、この効果を期待するに
は、0.1%以上の添加を要する。過剰に添加すると、
熱間鍛造後にベイナイトが生成して被削性が著しく低下
するので、上限を1.5%とした。
Mn: 0.1-1.5% Mn also acts as a deoxidizing agent during melting. Further, it is an element that enhances the induction hardening property, and in order to expect this effect, addition of 0.1% or more is required. If added in excess,
Since bainite is formed after hot forging and the machinability is significantly reduced, the upper limit is set to 1.5%.

【0013】Cr:0.05〜1.0% CrはMnと同様に高周波焼き入れ性を向上させる元素
であるが、多量の添加は、やはりベイナイトの生成を引
き起こし、素材の硬さを高めて被削性、加工性を損な
う。効果の認められる0.05%を下限とし、ベイナイ
ト生成の弊害が生じない限度の1.0%を上限とした。
Cr: 0.05 to 1.0% Cr is an element that improves the induction hardenability like Mn, but the addition of a large amount also causes the formation of bainite and increases the hardness of the material. Machinability and workability are impaired. The lower limit was set to 0.05% at which the effect was recognized, and the upper limit was set to 1.0% at which no adverse effect of bainite formation occurred.

【0014】V:0.05〜0.3% Vは熱間鍛造後、空冷時に炭窒化物を形成し、これが微
細に析出して強度を高める作用があり、はじめに記した
ように、焼入れ・焼戻しをすることなく強度を発現しな
ければならない被調質鋼にとって、Vは必須の元素であ
る。歯車は芯部の強度も高いことが望ましく、それに対
しVの存在が役立つ。この効果を得るためには0.05
%以上のVの添加が必要である。多量に添加すると硬さ
を高めすぎるし、経済的にも不利になるから、0.3%
までの添加が得策である。
V: 0.05% to 0.3% V forms carbonitrides during air forging after hot forging, and has the effect of finely precipitating and enhancing the strength. V is an essential element for a tempered steel that must develop strength without tempering. The gear should also have a high core strength, for which the presence of V helps. To achieve this effect, 0.05
% Or more of V is required. If added in a large amount, the hardness becomes too high, and it is economically disadvantageous.
It is advisable to add up to.

【0015】sol-Al:0.015〜0.05% Alは溶製時に脱酸剤として作用させる元素であって、
アルミキルド鋼の製造には0.015%以上の添加が必
要である。しかし過大な添加は、介在物の増加を招き、
靭性や疲労強度の低下をひきおこすから、添加量は0.
05%までの範囲で選ぶ。
Sol-Al: 0.015 to 0.05% Al is an element that acts as a deoxidizing agent during melting.
The production of aluminum-killed steel requires an addition of 0.015% or more. However, excessive addition causes an increase in inclusions,
Since the toughness and the fatigue strength are reduced, the amount of addition is 0.
Choose up to 05%.

【0016】任意添加元素の作用と組成範囲の限定理由
は、つぎのとおりである。 B:0.0005〜0.005% Bは、焼入れ性を高めて、安定した硬化層深さを得るた
めに役立つとともに、MnおよびCrの量の変化にとも
なう焼入れ性の変動を、効果的に抑制する。Bを0.0
005%以上添加すれば、この効果を安定して得ること
ができる。過剰に添加してもかえって効果が減少するの
で、上限値0.005%までの添加に止めるべきであ
る。
The function of the optional additive element and the reason for limiting the composition range are as follows. B: 0.0005% to 0.005% B is useful for enhancing the hardenability and obtaining a stable hardened layer depth, and effectively preventing the hardenability from changing with the amounts of Mn and Cr. Suppress. B to 0.0
If 005% or more is added, this effect can be obtained stably. Since the effect is reduced even if it is added in excess, the addition should be limited to the upper limit of 0.005%.

【0017】Ti:0.005〜0.05%、 Tiは鋼中のNと結合してTiN化合物を生成し、BN
化合物の生成を抑制するから、Bのもつ焼入れ性向上効
果を側面から支援するはたらきがある。このため、Bを
添加する場合、通常はTiも適量を、あわせて添加す
る。ただし多量のTiの存在は、靭性や疲労強度の低下
をもたらすので、それを避けるため0.05%を上限値
とした。Nとの関係は、Ti/N≧3.4であることが
好ましい。
Ti: 0.005 to 0.05%, Ti combines with N in steel to form a TiN compound, and BN
Since the formation of the compound is suppressed, B has a function of supporting the effect of improving the hardenability of the steel from the aspect. Therefore, when B is added, an appropriate amount of Ti is usually added together. However, since the presence of a large amount of Ti causes a decrease in toughness and fatigue strength, the upper limit is set to 0.05% in order to avoid this. The relationship with N is preferably Ti / N ≧ 3.4.

【0018】S: 0.2%以下 Te:0.1%以下 これらは被削性を高める元素であって、機械加工が工程
に含まれる歯車の製造に当たっては、添加することが望
ましい。そこでSおよびTeを、それぞれ0.2%また
は0.1%の範囲内で、単独で、または複合して添加す
る。上限値は、これら元素の添加が製品の機械的性質の
低下を招かない限度、という観点から定めた。
S: 0.2% or less Te: 0.1% or less These are elements for improving machinability, and are desirably added when manufacturing a gear that includes machining. Therefore, S and Te are added alone or in combination within the range of 0.2% or 0.1%, respectively. The upper limit is determined from the viewpoint that addition of these elements does not cause a decrease in mechanical properties of the product.

【0019】焼入性指数の条件:焼入性指数=1.2−
1.4×C(%)−0.28×Mn(%)−0.49×Cr
(%)≦0.3 この式で定義される焼入れ性指数が0.3を超えると、
熱間鍛造後の初析フェライトが多量になり、超短時間の
加熱では均質な硬化層の生成を望めないから、高周波焼
入れ後の強度が不十分になる。 焼入れ後の材料の300℃における焼戻し硬さ:HV6
00以上
Condition of hardenability index: Hardenability index = 1.2-
1.4 x C (%)-0.28 x Mn (%)-0.49 x Cr
(%) ≦ 0.3 When the hardenability index defined by this equation exceeds 0.3,
Since the amount of proeutectoid ferrite after hot forging becomes large and a uniform hardened layer cannot be expected by heating for an extremely short time, the strength after induction hardening becomes insufficient. Tempering hardness of the quenched material at 300 ° C .: HV6
00 or more

【0020】この条件を満たさない鋼は焼戻し軟化抵抗
が低いため、転がり接触の間に歯車の転がり面の温度が
上昇したときに、焼戻されて硬さが低下し、短時間で破
損に至るおそれがある。HV600以上の鋼は、このよ
うな転がり面の硬さの低下が小さく、高い転がり接触疲
労強度を示す。
Since steel that does not satisfy this condition has low tempering softening resistance, when the temperature of the rolling surface of the gear increases during rolling contact, the steel is tempered and the hardness decreases, leading to breakage in a short time. There is a risk. Steels having an HV of 600 or more have a small decrease in the hardness of the rolling surface and exhibit high rolling contact fatigue strength.

【0021】[0021]

【実施例】表1に示す合金組成の鋼を高周波誘導炉で溶
解し、150kgのインゴットに鋳造した。表1には挙げ
なかったが、各鋼は、通常の鋼に通常含有される不純物
である、P:0.03%以下、Cu:0.35以下、N
i:0.2%以下、N:0.03%以下およびO:0.
003%を含有している。
EXAMPLE Steel having the alloy composition shown in Table 1 was melted in a high frequency induction furnace and cast into a 150 kg ingot. Although not listed in Table 1, each steel is an impurity usually contained in ordinary steel, P: 0.03% or less, Cu: 0.35 or less, N
i: 0.2% or less, N: 0.03% or less, and O: 0.
003%.

【0022】 表 1 No. C Si Mn Cr V sol-Al B Ti その他 実施例 1 0.46 1.25 1.20 0.15 0.15 0.028 − − − 2 0.55 1.30 1.20 0.15 0.14 0.028 − − − 3 0.75 1.25 1.21 0.14 0.15 0.021 − − − 4 0.60 1.05 1.20 0.15 0.13 0.023 − − − 5 0.55 1.61 0.60 0.34 0.15 0.020 − − − 6 0.55 1.83 0.25 0.81 0.15 0.024 − − − 7 0.55 1.52 1.20 0.15 0.28 0.025 − − − 8 0.54 1.92 1.20 0.08 0.15 0.027 − − S:0.10 9 0.55 1.31 1.20 0.15 0.05 0.021 − − S:0.05 Te:0.001 10 0.55 1.54 1.21 0.14 0.15 0.025 0.0015 0.025 − 11 0.54 1.53 1.20 0.16 0.15 0.045 0.0013 0.023 S:0.10 12 0.54 1.66 1.20 0.15 0.15 0.026 0.0015 0.024 S:0.05 Te:0.001 比較例 A 0.40 1.21 1.20 0.10 0.15 0.024 − − − B 0.85 1.20 1.20 0.10 0.14 0.028 − − − C 0.55 0.60 1.20 0.10 0.15 0.026 − − − D 0.55 2.51 1.20 0.10 0.15 0.022 − − − E 0.55 1.21 0.25 1.20 0.15 0.028 − − − F 0.54 1.20 1.20 0.10 0.40 0.022 − − − G 0.55 1.30 1.20 0.15 0.14 0.028 − − − H 0.55 1.21 1.20 0.10 0.15 0.005 − − − I 0.56 1.19 1.20 0.10 0.15 0.063 − − − J 0.46 1.24 0.70 0.10 0.16 0.024 − − − K 0.55 1.18 1.20 0.10 0.16 0.024 − − S :0.26 Te:0.05 L 0.55 1.21 1.20 0.10 0.15 0.024 0.0015 0.100 − M 0.55 1.23 1.20 0.11 0.14 0.025 0.0015 0.024 S :0.27 Te:0.05Table 1 No. C Si Mn Cr V sol-Al B Ti Other Examples 1 0.46 1.25 1.20 0.15 0.15 0.028---2 0.55 1.30 1.20 0.15 0.14 0.028----3 0.75 1.25 1.21 0.14 0.15 0.021--- 4 0.60 1.05 1.20 0.15 0.13 0.023---5 0.55 1.61 0.60 0.34 0.15 0.020---6 0.55 1.83 0.25 0.81 0.15 0.024---7 0.55 1.52 1.20 0.15 0.28 0.025---8 0.54 1.92 1.20 0.08 0.15 0.027--S : 0.10 9 0.55 1.31 1.20 0.15 0.05 0.021 − − S: 0.05 Te: 0.001 10 0.55 1.54 1.21 0.14 0.15 0.025 0.0015 0.025 −11 0.54 1.53 1.20 0.16 0.15 0.045 0.0013 0.023 S: 0.10 12 0.54 1.66 1.20 0.15 0.15 0.026 0.0015 0.024 S: 0.05 Te: 0.001 Comparative example A 0.40 1.21 1.20 0.10 0.15 0.024 − − − B 0.85 1.20 1.20 0.10 0.14 0.028 − − − C 0.55 0.60 1.20 0.10 0.15 0.026 − − − D 0.55 2.51 1.20 0.10 0.15 0.022 − − − E 0.55 1.21 0.25 1.20 0.15 0.028---F 0.54 1.20 1.20 0.10 0.40 0.022 − − G 0.55 1.30 1.20 0.15 0.14 0.028 − − − H 0.55 1.21 1.20 0.10 0.15 0.005 − − − I 0.56 1.19 1.20 0.10 0.15 0.063 − − − J 0.46 1.24 0.70 0.10 0.16 0.024 − − − K 0.55 1.18 1.20 0.10 0.16 0.024 − − S: 0.26 Te: 0.05 L 0.55 1.21 1.20 0.10 0.15 0.024 0.0015 0.100 − M 0.55 1.23 1.20 0.11 0.14 0.025 0.0015 0.024 S: 0.27 Te: 0.05

【0023】転がり接触疲労強度を評価するため、ロー
ラーピッティング試験を行なった。上記のインゴットを
1200℃で熱間鍛造して直径32mmの丸棒にし、丸棒
を相互に熱的な影響を与えないような距離に置いて、室
温まで冷却した。冷却後の各丸棒から直径26mmの円筒
形の試験片を削り出し、つぎの条件で、高周波輪郭焼入
れ処理を行なって、 周波数:150KHz 方 式:定置焼き入れ 電 力:600KW 焼戻し:なし その表面に有効硬化層深さ(硬さ500HV以上が得ら
れる試験片表面からの距離)約1mmの焼入れ層を形成し
た。ローラーピッティング試験は、つぎの条件で実施し
た: 相手材:SCM418浸炭材製ディスク(直径130m
m、周囲に150rのクラウニングを施してある) 面 圧:2.94GPa 回転数:1500rpm 滑り率:−40% 油 温:80℃ 評 価:試験片表面にピッティングが発生するまでの時
間。
A roller pitting test was performed to evaluate the rolling contact fatigue strength. The above ingot was hot forged at 1200 ° C. to form a round bar having a diameter of 32 mm, and the round bars were cooled to room temperature while being spaced apart from each other so as not to thermally affect each other. A cylindrical test piece with a diameter of 26 mm was cut out from each round bar after cooling, and high-frequency contour quenching was performed under the following conditions. Frequency: 150 KHz Method: Fixed quench Power: 600 KW Tempering: None Surface A quenched layer having an effective hardened layer depth of about 1 mm (distance from the test piece surface at which a hardness of 500 HV or more was obtained) was formed. The roller pitting test was performed under the following conditions: Counterpart material: SCM418 carburized disk (130 m in diameter)
m, surroundings are crowned at 150 r) Surface pressure: 2.94 GPa Revolution: 1500 rpm Slip ratio: -40% Oil temperature: 80 ° C. Evaluation: Time until pitting occurs on the surface of the test piece.

【0024】被削性を評価するため、旋削試験を行なっ
た。上記した150kgのインゴットを直径90mmの丸棒
に鍛造し、1100℃に1時間保持する焼ならし処理に
よって、非調質鍛造のシミュレーションとした。その
後、焼きならしままで直径86.4mmの円柱状試験片に
加工し、つぎの条件で切削加工した: 工 具:超硬P10 切削速度:200m/min. 送 り:0.2mm 切りこみ:2mm 切削油:なし 寿命判定:VB=0.2mm 以上の転がり接触疲労試験および被削性の試験結果を、
焼入れ性指数および焼戻し硬さの値とともに、表2に示
す。
In order to evaluate the machinability, a turning test was performed. The 150 kg ingot described above was forged into a round bar having a diameter of 90 mm, and a non-tempering forging simulation was performed by a normalizing process in which the ingot was kept at 1100 ° C. for 1 hour. Thereafter, it was processed into a cylindrical test piece having a diameter of 86.4 mm until normalizing, and cut under the following conditions: Tool: Carbide P10 Cutting speed: 200 m / min. Sending: 0.2 mm Cutting: 2 mm Cutting Oil: None Life judgment: Rolling contact fatigue test of VB = 0.2 mm or more and machinability test results
Table 2 shows the values of the hardenability index and the temper hardness.

【0025】 表 2 No. 焼入れ性指数 焼戻し硬さ 転がり接触 被削性 (HV) 疲労強度 実施例2基準 実施例 1 0.15 600 5.20 1.32 2 0.02 662 ≧10 1.00 3 −0.26 783 ≧10 0.59 4 −0.05 668 9.40 0.93 5 0.10 693 ≧10 1.09 6 −0.04 716 ≧10 0.92 7 0.02 684 ≧10 0.65 8 0.05 718 ≧10 1.89 9 0.02 663 ≧10 2.84 10 0.02 686 ≧10 0.91 11 0.03 679 ≧10 1.94 12 0.03 692 ≧10 2.42 比較例 A 0.26 558 0.93 1.68 B −0.38 841 5.72 0.39 C 0.04 591 2.43 1.18 D 0.04 785 ≧10 0.51 E −0.18 656 ≧10 0.43 F −0.23 653 ≧10 0.47 G 0.06 645 ≧10 0.32 H 0.04 653 6.17 1.02 I 0.03 657 5.15 0.99 J 0.31 599 2.11 1.72 K 0.04 650 0.87 2.99 L 0.04 653 0.76 1.02 M 0.04 655 0.79 3.04Table 2 No. Hardenability Index Tempering Hardness Rolling Contact Machinability (HV) Fatigue Strength Example 2 Reference Example 1 0.15 600 5.20 1.32 2 0.02 662 ≧ 10 1.00 3 -0.26 783 ≧ 10 0.59 4 -0.05 668 9.40 0.93 5 0.10 693 ≧ 10 1.09 6 -0.04 716 ≧ 10 0.92 7 0.02 684 ≧ 10 0.65 8 0.05 718 ≧ 10 1.89 9 0.02 663 ≧ 10 2.84 10 0.02 686 ≧ 10 0.91 11 0.03 679 ≧ 10 1.94 12 0.03 692 ≧ 10 2.42 Comparative Example A 0.26 558 0.93 1.68 B -0.38 841 5.72 0.39 C 0.04 591 2.43 1.18 D 0.04 785 ≧ 10 0.51 E-0. 18 656 ≧ 10 0.43 F −0.23 653 ≧ 10 0.47 G 0.06 645 ≧ 10 0.32 H 0.04 653 6.17 1.02 I 0.03 657 5.15 0.99 J 0.31 599 2.11 1.72 K 0.04 650 0.87 2.99 L 0.04 653 0.76 1.02 M 0.04 655 0.79 3.04

【0026】実施例1〜12の鋼は本発明の要件をすべ
て充足するものであって、疲労強度および被削性ともす
ぐれている。快削元素を添加した態様においては、被削
性がとくに改善されている。
The steels of Examples 1 to 12 satisfy all the requirements of the present invention and have excellent fatigue strength and machinability. In the embodiment in which the free-cutting element is added, the machinability is particularly improved.

【0027】これに対し、比較例の各鋼は、つぎのよう
に何らかの欠点が認められる。まずA鋼は、C含有量が
少ないため硬化層の焼き入れ硬さが低く、強度が劣る。
B鋼は逆にC含有量が多すぎるため、初析セメンタイト
が生成してこれが強度を下げている。また、鍛造後硬さ
が高く、被削性が悪い。C鋼はSi含有量が低いために
焼戻し硬さが600HVに届かず、かつ強度が低い。
On the other hand, each of the steels of the comparative examples has some disadvantages as follows. First, since the steel A has a low C content, the quenching hardness of the hardened layer is low and the strength is inferior.
On the other hand, since steel B has too much C content, proeutectoid cementite is formed, which lowers the strength. Moreover, the hardness after forging is high and the machinability is poor. Since the C steel has a low Si content, the tempering hardness does not reach 600 HV and the strength is low.

【0028】D,E,FおよびGの各鋼は、それぞれS
i,Mn,CrおよびVの含有量が高すぎるため、熱間
鍛造後の素材の硬さが上がりすぎて、被削性がひどく悪
くなっている。
Each steel of D, E, F and G is S
Since the contents of i, Mn, Cr and V are too high, the hardness of the material after hot forging is too high, and the machinability is severely deteriorated.

【0029】H鋼はsol-Al含有量が低すぎるため熱間
鍛造後の結晶粒が粗大化し、その結果、強度が低下して
いる。逆にsol-Al含有量が高すぎるI鋼も強度が低い
が、これはAlの窒化物が過剰に生成したためである。
Since the H steel has too low a sol-Al content, crystal grains after hot forging are coarsened, and as a result, the strength is reduced. Conversely, the I steel having a too high sol-Al content also has a low strength, because an excessive amount of Al nitride was generated.

【0030】J鋼は、各合金成分の量は範囲内である
が、焼入れ性指数が大きすぎるため、加熱が超短時間の
高周波輪郭焼入れでは均質な硬化層組織が得られず、た
めに強度が低い。K鋼は快削元素S,Teの添加量が過
大であるため、被削性は著しく改善されたが、強度不足
に陥っている。M鋼も同様である。
Although the amount of each alloy component in the J steel is within the range, since the hardenability index is too large, a uniform hardened layer structure cannot be obtained by high-frequency contour quenching in which heating is performed in a very short time, so that the strength is high. Is low. The machinability of K steel is remarkably improved due to the excessive addition of the free-cutting elements S and Te, but the strength is insufficient. The same applies to M steel.

【0031】L鋼は、Ti含有量が多すぎてTiの炭窒
化物が多量に生成し、これが介在物として強度の低下を
引き起こしている。
In the L steel, the Ti content is too large and a large amount of Ti carbonitride is generated, which causes the strength to decrease as inclusions.

【0032】[0032]

【発明の効果】本発明の高周波輪郭焼入歯車用非調質鋼
は、合金組成を適切に選ぶとともに焼入れ性指数を特定
の値以下におさえ、かつ一定の焼戻し硬さを確保するこ
とにより、熱間鍛造後、焼入れ焼戻しをする必要のない
非調質鋼であって、しかも超短時間の加熱で均質な硬化
層組織を得ることができるから、高周波輪郭焼入れとい
う新しい手法のもたらす利益を享受して、強度の高い歯
車を製造することを可能にする。適量の快削元素を添加
した好ましい態様の鋼は、上記の利益に加えて、被削性
が良好であって歯車の製造に実質上不可欠な機械加工が
容易であるという利点がある。
The non-heat treated steel for high frequency contour hardened gears of the present invention can be obtained by appropriately selecting the alloy composition, keeping the hardenability index below a specific value, and securing a constant temper hardness. It is a non-heat treated steel that does not require quenching and tempering after hot forging, and can obtain a homogeneous hardened layer structure by heating for a very short time. Thus, it is possible to manufacture a gear having high strength. The steel according to a preferred embodiment to which an appropriate amount of free-cutting elements is added has, in addition to the above-mentioned advantages, an advantage that the machinability is good and machining which is substantially indispensable for the manufacture of gears is easy.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量で、C:0.45〜0.8%,S
i:1.0〜2.0%,Mn:0.1〜1.5%,C
r:0.05〜1.0%,V:0.05〜0.3%およ
びsol-Al:0.015〜0.05%を、下記の焼入性
指数の条件を満たす割合で含有し、 焼入性指数=1.2−1.4×C(%)−0.28×Mn
(%)−0.49×Cr(%)≦0.3 残部がFeおよび不純物からなり、焼入れ後の材料の3
00℃における焼戻し硬さがHV600以上であること
を特徴とする高周波輪郭焼入歯車用非調質鋼。
1. C: 0.45 to 0.8% by weight, S
i: 1.0 to 2.0%, Mn: 0.1 to 1.5%, C
r: 0.05 to 1.0%, V: 0.05 to 0.3% and sol-Al: 0.015 to 0.05% in a ratio satisfying the following hardenability index conditions. Hardenability index = 1.2-1.4 x C (%)-0.28 x Mn
(%) − 0.49 × Cr (%) ≦ 0.3 The balance consists of Fe and impurities.
A non-heat treated steel for high-frequency contour hardened gears, wherein the tempering hardness at 00 ° C is HV600 or more.
【請求項2】 重量で、C:0.45〜0.8%,S
i:1.0〜2.0%,Mn:0.1〜1.5%,C
r:0.05〜1.0%,V:0.05〜0.3%およ
びsol-Al:0.015〜0.05%を、下記の焼入性
指数の条件を満たす割合で含有し、 焼入性指数=1.2−1.4×C(%)−0.28×Mn
(%)−0.49×Cr(%)≦0.3 さらに、B:0.0005〜0.005%およびTi:
0.005〜0.05%を含有し、残部がFeおよび不
純物からなり、焼入れ後の材料の300℃における焼戻
し硬さがHV600以上であることを特徴とする高周波
輪郭焼入歯車用非調質鋼。
2. C: 0.45 to 0.8% by weight, S
i: 1.0 to 2.0%, Mn: 0.1 to 1.5%, C
r: 0.05 to 1.0%, V: 0.05 to 0.3% and sol-Al: 0.015 to 0.05% in a ratio satisfying the following hardenability index conditions. Hardenability index = 1.2-1.4 x C (%)-0.28 x Mn
(%) − 0.49 × Cr (%) ≦ 0.3 Further, B: 0.0005 to 0.005% and Ti:
Non-heat treated high frequency contour hardened gear characterized by containing 0.005 to 0.05%, the balance being Fe and impurities, and the tempered hardness at 300 ° C of the quenched material is HV600 or more. steel.
【請求項3】 重量で、C:0.45〜0.8%,S
i:1.0〜2.0%,Mn:0.1〜1.5%,C
r:0.05〜1.0%,V:0.05〜0.3%およ
びsol-Al:0.015〜0.05%を、下記の焼入性
指数の条件を満たす割合で含有し、 焼入性指数=1.2−1.4×C(%)−0.28×Mn
(%)−0.49×Cr(%)≦0.3 さらに、S:0.2%以下および(または)Te:0.
1%以下を含有し、残部がFeおよび不純物からなり、
焼入れ後の材料の300℃における焼戻し硬さがHV6
00以上であることを特徴とする高周波輪郭焼入歯車用
非調質鋼。
3. C: 0.45 to 0.8% by weight, S
i: 1.0 to 2.0%, Mn: 0.1 to 1.5%, C
r: 0.05 to 1.0%, V: 0.05 to 0.3% and sol-Al: 0.015 to 0.05% in a ratio satisfying the following hardenability index conditions. Hardenability index = 1.2-1.4 x C (%)-0.28 x Mn
(%) − 0.49 × Cr (%) ≦ 0.3 Further, S: 0.2% or less and / or Te: 0.
1% or less, the balance being Fe and impurities,
The tempered hardness of the quenched material at 300 ° C is HV6
Non-heat-treated steel for high-frequency contour hardened gears, characterized by being at least 00.
【請求項4】 重量で、C:0.45〜0.8%,S
i:1.0〜2.0%,Mn:0.1〜1.5%,C
r:0.05〜1.0%,V:0.05〜0.3%およ
びsol-Al:0.015〜0.05%を、下記の焼入性
指数の条件を満たす割合で含有し、 焼入性指数=1.2−1.4×C(%)−0.28×Mn
(%)−0.49×Cr(%)≦0.3 さらに、B:0.0005〜0.005%およびTi:
0.005〜0.05%、ならびに、S:0.2%以下
および(または)Te:0.1%以下を含有し、残部が
Feおよび不純物からなり、焼入れ後の材料の300℃
における焼戻し硬さがHV600以上であることを特徴
とする高周波輪郭焼入歯車用非調質鋼。
4. C: 0.45 to 0.8% by weight, S
i: 1.0 to 2.0%, Mn: 0.1 to 1.5%, C
r: 0.05 to 1.0%, V: 0.05 to 0.3% and sol-Al: 0.015 to 0.05% in a ratio satisfying the following hardenability index conditions. Hardenability index = 1.2-1.4 x C (%)-0.28 x Mn
(%) − 0.49 × Cr (%) ≦ 0.3 Further, B: 0.0005 to 0.005% and Ti:
0.005 to 0.05%, S: 0.2% or less and / or Te: 0.1% or less, the balance being Fe and impurities, 300 ° C. of the material after quenching
Non-heat treated steel for high-frequency contour hardened gears, wherein the tempered hardness is HV600 or more.
JP7107499A 1999-03-16 1999-03-16 Non-heat treated steel for induction contour hardening gear Withdrawn JP2000265241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7107499A JP2000265241A (en) 1999-03-16 1999-03-16 Non-heat treated steel for induction contour hardening gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7107499A JP2000265241A (en) 1999-03-16 1999-03-16 Non-heat treated steel for induction contour hardening gear

Publications (1)

Publication Number Publication Date
JP2000265241A true JP2000265241A (en) 2000-09-26

Family

ID=13450023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7107499A Withdrawn JP2000265241A (en) 1999-03-16 1999-03-16 Non-heat treated steel for induction contour hardening gear

Country Status (1)

Country Link
JP (1) JP2000265241A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7422643B2 (en) 2003-03-11 2008-09-09 Komatsu Ltd. Rolling element and method of producing the same
JP2008248282A (en) * 2007-03-29 2008-10-16 Nippon Steel Corp Induction hardened component and manufacturing method thereof
US7544255B2 (en) 2003-03-04 2009-06-09 Komatsu Ltd. Rolling element
JP2015175023A (en) * 2014-03-14 2015-10-05 新日鐵住金株式会社 Induction-hardened gear and induction hardening method of gear

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544255B2 (en) 2003-03-04 2009-06-09 Komatsu Ltd. Rolling element
US7691212B2 (en) 2003-03-04 2010-04-06 Komatsu Ltd. Rolling element and method of producing the same
US7422643B2 (en) 2003-03-11 2008-09-09 Komatsu Ltd. Rolling element and method of producing the same
US7691213B2 (en) 2003-03-11 2010-04-06 Komatsu Ltd. Case hardened gear and method of producing the same
JP2008248282A (en) * 2007-03-29 2008-10-16 Nippon Steel Corp Induction hardened component and manufacturing method thereof
JP4757831B2 (en) * 2007-03-29 2011-08-24 新日本製鐵株式会社 Induction hardening part and manufacturing method thereof
JP2015175023A (en) * 2014-03-14 2015-10-05 新日鐵住金株式会社 Induction-hardened gear and induction hardening method of gear

Similar Documents

Publication Publication Date Title
JP3995904B2 (en) Method for producing inner ring for constant velocity joint excellent in workability and strength
JP4581966B2 (en) Induction hardening steel
JPH08311607A (en) Low strain carburized gear excellent in deddendum bending strength and its production
JP2012214832A (en) Steel for machine structure and method for producing the same
JP4219023B2 (en) High-strength drive shaft and manufacturing method thereof
JP3932995B2 (en) Induction tempering steel and method for producing the same
WO2013015085A1 (en) Induction hardening steel and crank shaft manufactured by using same
JP2009191330A (en) Electric resistance steel tube
JP4320589B2 (en) Mechanical structure shaft parts and manufacturing method thereof
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP4488228B2 (en) Induction hardening steel
US5223049A (en) Steel for induction hardening
JP5583352B2 (en) Induction hardening steel and induction hardening parts with excellent static torsional fracture strength and torsional fatigue strength
JP2004225102A (en) High strength steel for pinion shaft, and production method therefor
JP2000265241A (en) Non-heat treated steel for induction contour hardening gear
JP2006028599A (en) Component for machine structure
JPH108189A (en) Steel for induction hardening excellent in bendability and induction hardened part excellent in bendability using the same steel
JP2004124127A (en) Carburizing steel superior in torsion fatigue characteristic
JP2006265703A (en) Steel for case hardening having excellent crystal grain coarsening resistance and cold workability and method for producing the same
JP3637984B2 (en) Rolling element for toroidal continuously variable transmission
JP3687275B2 (en) Non-tempered steel for induction hardening
JPH04124217A (en) Production of high strength gear steel excellent in softening property
WO2012144495A1 (en) Steel for cold punching, and element obtained therefrom for steel belt
JPH10259447A (en) Steel plate for drive plate excellent in form-rollability
JPH10176242A (en) Bearing steel excellent in quenching crack resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060126

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070125