JP3687275B2 - Non-tempered steel for induction hardening - Google Patents

Non-tempered steel for induction hardening Download PDF

Info

Publication number
JP3687275B2
JP3687275B2 JP16318097A JP16318097A JP3687275B2 JP 3687275 B2 JP3687275 B2 JP 3687275B2 JP 16318097 A JP16318097 A JP 16318097A JP 16318097 A JP16318097 A JP 16318097A JP 3687275 B2 JP3687275 B2 JP 3687275B2
Authority
JP
Japan
Prior art keywords
steel
strength
less
addition
tempered steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16318097A
Other languages
Japanese (ja)
Other versions
JPH10317095A (en
Inventor
幸一郎 井上
貞行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP16318097A priority Critical patent/JP3687275B2/en
Publication of JPH10317095A publication Critical patent/JPH10317095A/en
Application granted granted Critical
Publication of JP3687275B2 publication Critical patent/JP3687275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

【0001】
【発明の属する技術分野】
本発明は,熱間鍛造で成形される機械構造用部品で機械加工後,高周波焼入により表面硬化処理を施す部品,例えば変速ギヤ,無段変速機用転動体,等速ジョイントアウターレース,ドライブシャフトその他で曲げ疲労強度,ねじり疲労強度および転がり接触疲労強度に優れた高強度高周波焼入用鋼に関する。
【0002】
【従来の技術】
中炭素鋼に微量のVを添加した非調質鋼は熱間鍛造後の焼入・焼戻し処理を省略しても目的とした強度が得られるため,広く機械構造用部品に適用されている。このような非調質鋼鍛造品において高い接触疲労強度や曲げ,ねじり疲労強度が要求される部品には熱間鍛造後,機械加工を施した後に高周波焼入を行うことが一般的である。しかし,中炭素鋼に微量のVを添加した従来の非調質鋼は初析フェライト面積率が多く,均質な高周波焼入組織を得るためには十分に長い時間加熱する必要があった。
【0003】
近年ではこれらの部品に対してさらなる高強度化が要求されており,0.1〜1.0sec.の超短時間の加熱で部品形状に沿った焼入を行う技術が開発されている。このような高周波輪郭焼入技術を用いた焼入材は高い圧縮残留応力が付与されるため,優れた強度を得られることが特徴である。従来の非調質鋼に加熱時間の短い高周波輪郭焼入技術を適用する場合には前にも述べた理由により均質な硬化層を得ることができず,かえって強度が低下する問題があった。
【0004】
また,非調質鋼でない炭素鋼では,高周波輪郭焼入の場合には均質な硬化層組織を得るために熱間鍛造後に焼入・焼戻しなどの調質処理を行うことが行われているが,非調質鋼は調質処理を行わないのが特徴であり調質処理を行うことはその工程省略によるコストメリットを失うことになり好ましくない。
【0005】
【発明が解決しようとする課題】
本発明は,上記のような事情を背景としてなされたもので,本発明の目的とするところは,熱間鍛造後に目的とする部品形状に加工し,調質処理を行うことなく,超短時間加熱の高周波輪郭焼入で均質な硬化層組織が得られ,高い曲げまたはねじり疲労強度および転がり接触疲労強度を有する高周波輪郭焼入用非調質鋼に関する。
【0006】
【課題を解決するための手段】
本発明は,種々の合金元素の組み合わせについて検討した結果,曲げまたはねじり疲労強度および転がり接触疲労強度を向上させるためにはC含有量を通常のS40C〜S45Cの炭素鋼より高い0.45%以上の添加とした。また,C,Mn,Cr含有量と初析フェライト面積率の関係を調査し各々の合金元素が下式で表わされる焼入性指数が0.3以下となる様に調整することにより超短時間でも均質な硬化層を得ることができることを見い出した。
焼入性指数:1.2−1.4×C(%)−0.28×Mn(%)−0.49×Cr(%)≦0.3
【0007】
また,場合によってはBを添加することにより焼入性を向上させるとともに硬化層組織の強度を改善した。これにより熱間鍛造後に目的とする部品形状に加工し,調質処理を行うことなく,超短時間加熱の高周波輪郭焼入で均質な硬化層組織が得られ,高い曲げまたはねじり疲労強度および転がり接触疲労強度を有する高周波輪郭焼入用非調質鋼を開発した。
【0008】
すなわち、本発明の高強度高周波焼入用鋼は、基本的な合金組成としては、重量基準で、C:0.45〜0.80%、Si:0.01〜1.00%、Mn:0.60〜1.50%、Cr:0.10〜1.00%、V:0.05〜0.25%、およびs−Al:0.015〜0.050%を含有し、残部Feおよび不純物からなり、かつ、下記の式により定義される焼入性指数が0.3以下である高周波輪郭焼入用非調質鋼である。
焼入性指数:1.2−1.4×C(%)−0.28×Mn(%)−0.49×Cr(%)
【0009】
本発明の高周波輪郭焼入用非調質鋼は、変更態様として、上記の基本的な合金成分に加えて、重量基準で、B:0.0005〜0.0050%、およびTi:0.005〜0.050%を含有することができる。さらにこの非調質鋼は、上記の基本的な合金成分に加えて、または上記の変更態様に従う合金成分に加えて、重量基準で、S:0.20%以下およびTe:0.10%以下の1種または2種を含有することができる。
【0010】
以下に各合金成分の限定理由について説明する。
C:0.45〜0.80%
Cは高周波焼入後,鋼の強度を保持するための必須の元素であり,高周波焼入後の表面硬さを確保し,静的強度や曲げ疲労強度および転がり接触疲労強度を向上させるために0.45%以上添加する必要がある。しかし,その含有量が0.80%の共析点を超えて添加するとむしろ表面硬さが低下し,強度向上の劣化を招く。また,初析セメンタイトが生成して靭性を損なうなどの弊害をもたらすので,C含有量の上限を0.80%にした。
【0011】
Si:0.01〜1.00%
Siは溶製時の脱酸剤として作用する元素である。しかし多量に添加すると被削性や熱間加工性を低下させるので0.01〜1.00%に規定した。
【0012】
Mn:0.60〜1.50%
Mnは溶製時の脱酸剤として作用する元素であり、また高周波焼入性を向上させる元素である。この効果は、0.10%以上の添加により認められるが、0.60%以上の添加で確実になる。過剰に添加すると、熱間鍛造後ベイナイトが発生して、被削性を低下させる。このため、Mn含有量の上限を1.50%とする。
【0013】
Cr:0.10〜1.00%
CrはMnと同様に高周波焼入性を向上させる元素であるが,多量の添加はベイナイトの生成により素材硬さを高め被削性および加工性を劣化させるので0.10〜1.00%に規定した。
【0014】
V:0.05〜0.25%
Vは熱間鍛造後、空冷時に炭窒化物として微細析出し強度を高める元素であり、調質処理を行うことなく目的とする強度を得ることができる、非調質鋼には必須の元素である。このような効果を得るためには0.05%以上の添加が必要である。しかし、多量の添加は経済的に不利となるため、0.25%以下とする必要がある。
【0015】
s−Al:0.015〜0.050%
s−Alは溶製時の脱酸剤として作用する元素であり,0.015%以上添加する必要がある.しかし,多量に添加すると靭性や疲労強度の低下をきたすので0.050%以下に限定した.
【0016】
B:0.0005〜0.0050%
Bは焼入性を高め安定した硬化層深さを得るために役立つとともにMn,Cr含有量の変化による焼入性の変動を効果的に抑制することができる。この効果を安定して得るためにも0.0005%以上の添加を必要とする。しかし,過剰に添加してもその効果はかえって低下するので上限を0.0050%以下にした。
【0017】
Ti:0.005〜0.050%
Tiは鋼中のNと結びつき,TiN化合物の生成によりBN化合物の生成を抑制し,Bによる焼入性向上効果を確保するために必要な元素である。このため,Bを添加する場合には必ず添加する必要がある。しかし,多量に添加すると靭性や疲労強度の低下をきたすので0.005〜0.050%に限定した。また,Ti望ましい添加量はTi/N≧3.4である。
【0018】
S :0.20%以下
Te:0.10%以下
S,Teは被削性を高める元素であって,それぞれ0.20%以下,0.10%以下の範囲で単独に,または複合添加しても良い。ただしこれ以上添加すると機械的性質が劣化するので上限を定めた。
【0019】
焼入性指数:1.2−1.4×C(%)−0.28×Mn(%)−0.49×Cr(%)≦0.3
上述した式で示される焼入性指数が0.3を超えるとでは熱間鍛造後の初析フェライト量が多く超短時間の焼入では均質な硬化層が得られず,高周波焼入後も充分な強度を得ることができない。
【0020】
【実施例】
表1に示す化学組成をもつ各鋼材を高周波誘導炉で溶解し150kgの鋼塊に鋳造した。その後,1200℃で熱間鍛造し直径32mmの丸棒にした。鍛造後は適当な間隔をおいて室温まで放冷した。たこれらの丸棒より下記の試験条件にて転動試験,回転曲げ疲労試験を下記の条件で行い評価した。その結果を表2に示す。また実施例に示される鋼には通常の鋼に含まれるP:0.030%以下,Cu:0.30%以下,Ni:0.20%以下,N:0.030%以下,O:0.003%以下の不純物が含有されている.
【0021】
転動試験は試験部直径12.3mmの疲労試験片を削りだし,周波数:150kHz,方式:定置焼入,加熱時間:0.3s,電力:600kW,最高加熱温度:980℃,冷却水:水,焼戻し:なしの条件で高周波焼入焼戻し処理を施した。試験はラジアル型転動試験機により,SUJ2製ボールを用いて面圧5880MPaにて試験を実施した。回転曲げ疲労試験は応力集中係数1.8の切欠きを有し,切欠き底半径8mmの試験片を用い周波数:150kHz,方式:定置焼入,加熱時間:0.25s,電力:600kW,最高加熱温度:980℃,冷却水:水,焼戻し:なしの条件で高周波焼入焼戻し処理を施し小野式回転曲げ疲労試験を行った。
【0022】
被削性は歯切り試験によって行った。150kg鋼塊を直径90mmの丸棒に鍛造し,これを1100℃で1時間の焼ならし処理により非調質鍛造をシミュレーションした。その後,焼ならしままで直径86.4mmの試験片に加工し,表3に示した条件で試験に供した。表2に示す工具寿命はクレーター磨耗が50μmに達した時点とし,従来鋼Bの工具寿命を1としたときの相対値で示した。
【0023】
【表1】

Figure 0003687275
【0024】
【表2】
Figure 0003687275
【0025】
【表3】
Figure 0003687275
【0026】
表1の実施例1〜12は本発明にかかわる成分組成および焼入性指数の全ての条件を満足する実施例であり,回転曲げ疲労強度,転動疲労特性および歯切り被削性のすべてに優れている。また,快削元素を添加した9,8,11,12鋼は同じ硬さの発明鋼に比べて被削性が改善されていることがわかる。
【0027】
これに対して比較鋼A,BはC含有量が請求範囲外であり,A鋼はC含有量が低すぎるために硬化層の焼入硬さが低く強度が低下している。また,B鋼はC含有量が多すぎるために初析セメンタイトが発生し強度を低下させている。
【0028】
比較鋼C,D,E,FはそれぞれSi,Mn,Cr,V含有量が高すぎるため熱間鍛造後の素材硬さが高くなりすぎて被削性を著しく低下させている。
【0029】
比較鋼Gはs−Al含有量が低すぎるために熱間鍛造後の結晶粒が粗大化し,強度が低下している。また,比較鋼Hはs−Al含有量が高すぎるため,Alの窒化物が過剰に生成し,強度を低下させている。
【0030】
比較鋼JはTi含有量が高すぎるためにTiの炭窒化物が介在物として多量に存在するため強度低下を招いている。また,比較鋼Lは化学成分は請求範囲内であるが,焼入性指数が大きすぎるために超短時間高周波加熱では均質な硬化層組織が得られず,強度が低下している。
【0031】
比較鋼l,KはS,Teを過剰に添加しているため被削性は大きく改善されるが強度は低下している。
【0032】
【発明の効果】
以上説明してきたように,本発明の高周波輪郭焼入用非調質鋼は重量基準でC:0.45〜0.80%,Si:0.01〜1.00%,Mn:0.10〜1.50%,Cr:0.10〜1.00%,V :0.05〜0.30%,s−Al:0.015〜0.050%また,必要に応じて,B :0.0005〜0.0050%,Ti:0.005〜0.050%を含有すことができ,同じく必要に応じてS :0.20%以下,Te:0.10%以下のうちから選ばれる1種または2種以上を含み,残部Feおよび不純物よりなり,かつ下記の式を満たすことを特徴とし,熱間鍛造後に目的とする部品形状に加工したのち調質処理を行うことなく,超短時間加熱の高周波輪郭焼入で均質な硬化層組織が得られ,高い曲げまたはねじり疲労強度および転がり接触疲労強度を有する高強度高周波焼入用非調質鋼を得ることができる。
焼入性指数:1.2−1.4×C(%)−0.28×Mn(%)−0.49×Cr(%)≦0.3[0001]
BACKGROUND OF THE INVENTION
The present invention is a machine structural part formed by hot forging, and is subjected to surface hardening treatment by induction hardening, such as a transmission gear, a continuously variable transmission rolling element, a constant velocity joint outer race, a drive, etc. The present invention relates to a high strength induction hardening steel excellent in bending fatigue strength, torsional fatigue strength and rolling contact fatigue strength in shafts and others.
[0002]
[Prior art]
Non-tempered steel obtained by adding a small amount of V to medium carbon steel is widely applied to machine structural parts because the desired strength can be obtained even if the quenching and tempering treatment after hot forging is omitted. In such non-tempered steel forgings, parts that require high contact fatigue strength, bending and torsional fatigue strength are generally subjected to induction hardening after hot forging and machining. However, the conventional non-tempered steel in which a small amount of V is added to the medium carbon steel has a large proeutectoid ferrite area ratio, and it is necessary to heat it for a sufficiently long time in order to obtain a homogeneous induction hardened structure.
[0003]
In recent years, there has been a demand for higher strength for these parts, and 0.1 to 1.0 sec. Technology has been developed for quenching along the shape of the part by heating for a very short time. A hardened material using such a high-frequency contour quenching technique is characterized by being able to obtain an excellent strength because it is imparted with a high compressive residual stress. When applying high-frequency contour quenching technology with a short heating time to conventional non-tempered steel, a uniform hardened layer cannot be obtained for the reason described above, and there is a problem that the strength is lowered.
[0004]
In the case of carbon steel that is not non-tempered steel, tempering treatment such as quenching and tempering is performed after hot forging in order to obtain a homogeneous hardened layer structure in the case of induction hardening. , Non-tempered steel is characterized by not performing tempering treatment, and performing tempering treatment is not preferable because it loses the cost merit by omitting the process.
[0005]
[Problems to be solved by the invention]
The present invention has been made in the background as described above, and the object of the present invention is to process into an intended part shape after hot forging and perform a tempering process for a very short time. The present invention relates to a non-heat treated steel for high-frequency contour quenching that has a uniform hardened layer structure obtained by high-frequency contour quenching and has high bending or torsional fatigue strength and rolling contact fatigue strength.
[0006]
[Means for Solving the Problems]
As a result of studying combinations of various alloy elements, the present invention has a C content of 0.45% or more higher than that of ordinary S40C to S45C carbon steel in order to improve bending or torsional fatigue strength and rolling contact fatigue strength. Was added. In addition, by investigating the relationship between the C, Mn, Cr content and the pro-eutectoid ferrite area ratio, and adjusting each alloy element so that the hardenability index represented by the following formula is 0.3 or less, ultra-short time However, it has been found that a homogeneous hardened layer can be obtained.
Hardenability index: 1.2-1.4 × C (%) − 0.28 × Mn (%) − 0.49 × Cr (%) ≦ 0.3
[0007]
Further, in some cases, by adding B, the hardenability was improved and the strength of the hardened layer structure was improved. As a result, a uniform hardened layer structure can be obtained by high-frequency contour quenching with ultra-short heating without processing to the desired part shape after hot forging, and with high bending or torsional fatigue strength and rolling. A non-tempered steel for induction hardening with high contact fatigue strength was developed.
[0008]
That is, the high strength induction hardening steel of the present invention has a basic alloy composition of C: 0.45 to 0.80%, Si: 0.01 to 1.00%, Mn: Containing 0.60 to 1.50%, Cr: 0.10 to 1.00%, V: 0.05 to 0.25%, and s-Al: 0.015 to 0.050%, the balance being Fe And a non-tempered steel for high-frequency contour quenching that has a hardenability index defined by the following formula and is 0.3 or less.
Hardenability index: 1.2-1.4 × C (%) − 0.28 × Mn (%) − 0.49 × Cr (%)
[0009]
The non-heat treated steel for high-frequency contour quenching of the present invention has, as a modification, B: 0.0005 to 0.0050% and Ti: 0.005 on a weight basis in addition to the above basic alloy components. It can contain up to 0.050%. Further, the non-tempered steel has an S: 0.20% or less and a Te: 0.10% or less on a weight basis in addition to the above basic alloy components or in addition to the alloy components according to the above-described modification. 1 type or 2 types of can be contained.
[0010]
The reason for limiting each alloy component will be described below.
C: 0.45-0.80%
C is an indispensable element for maintaining the strength of steel after induction hardening, in order to ensure the surface hardness after induction hardening and to improve static strength, bending fatigue strength and rolling contact fatigue strength. It is necessary to add 0.45% or more. However, if its content exceeds the eutectoid point of 0.80%, the surface hardness is rather lowered, leading to deterioration of strength improvement. In addition, since the proeutectoid cementite is formed and the toughness is impaired, the upper limit of the C content is set to 0.80%.
[0011]
Si: 0.01-1.00%
Si is an element that acts as a deoxidizer during melting. However, if added in a large amount, the machinability and hot workability are lowered, so the content was specified to be 0.01 to 1.00%.
[0012]
Mn: 0.60 to 1.50%
Mn is an element that acts as a deoxidizer during melting, and is an element that improves induction hardenability. This effect is recognized by addition of 0.10% or more, but is ensured by addition of 0.60% or more. If excessively added, bainite is generated after hot forging, and machinability is lowered. For this reason, the upper limit of the Mn content is set to 1.50%.
[0013]
Cr: 0.10 to 1.00%
Cr, like Mn, is an element that improves induction hardenability, but adding a large amount increases the material hardness due to the formation of bainite and degrades machinability and workability, so 0.10 to 1.00% Stipulated.
[0014]
V: 0.05-0.25%
V is an element that, after hot forging, finely precipitates as carbonitride during air cooling and increases the strength, and is an essential element for non-tempered steel that can obtain the desired strength without tempering treatment. is there. In order to obtain such an effect, addition of 0.05% or more is necessary. However, since a large amount of addition becomes economically disadvantageous, it is necessary to make it 0.25% or less.
[0015]
s-Al: 0.015 to 0.050%
s-Al is an element that acts as a deoxidizer during melting, and it is necessary to add 0.015% or more. However, when added in a large amount, the toughness and fatigue strength are lowered, so it was limited to 0.050% or less.
[0016]
B: 0.0005 to 0.0050%
B is useful for increasing hardenability and obtaining a stable hardened layer depth, and can effectively suppress variation in hardenability due to changes in Mn and Cr contents. In order to stably obtain this effect, 0.0005% or more must be added. However, even if it is added excessively, the effect is reduced, so the upper limit was made 0.0050% or less.
[0017]
Ti: 0.005 to 0.050%
Ti is an element necessary for binding to N in steel, suppressing the formation of a BN compound by the formation of a TiN compound, and ensuring the effect of improving the hardenability by B. For this reason, it is necessary to add B whenever B is added. However, if added in a large amount, the toughness and fatigue strength are lowered, so the content is limited to 0.005 to 0.050%. Further, a desirable addition amount of Ti is Ti / N ≧ 3.4.
[0018]
S: 0.20% or less Te: 0.10% or less S and Te are elements for improving the machinability, and are added individually or in combination in the range of 0.20% or less and 0.10% or less, respectively. May be. However, since the mechanical properties deteriorate if added more than this, an upper limit was set.
[0019]
Hardenability index: 1.2-1.4 × C (%) − 0.28 × Mn (%) − 0.49 × Cr (%) ≦ 0.3
If the hardenability index expressed by the above formula exceeds 0.3, the amount of pro-eutectoid ferrite after hot forging is large, and a uniform hardened layer cannot be obtained by quenching for a very short time. Sufficient strength cannot be obtained.
[0020]
【Example】
Each steel material having the chemical composition shown in Table 1 was melted in a high frequency induction furnace and cast into a 150 kg steel ingot. Thereafter, it was hot forged at 1200 ° C. to obtain a round bar having a diameter of 32 mm. After forging, it was allowed to cool to room temperature at an appropriate interval. From these round bars, a rolling test and a rotating bending fatigue test were performed under the following conditions and evaluated. The results are shown in Table 2. Further, the steels shown in the examples include P: 0.030% or less, Cu: 0.30% or less, Ni: 0.20% or less, N: 0.030% or less, O: 0 contained in ordinary steel. .003% or less of impurities are contained.
[0021]
In the rolling test, a fatigue test piece having a diameter of 12.3 mm in the test part was cut out, frequency: 150 kHz, method: stationary quenching, heating time: 0.3 s, power: 600 kW, maximum heating temperature: 980 ° C., cooling water: water , Tempering: Induction quenching and tempering were performed under the conditions of none. The test was carried out with a radial rolling tester using SUJ2 balls at a surface pressure of 5880 MPa. The rotating bending fatigue test has a notch with a stress concentration factor of 1.8, uses a test piece with a notch bottom radius of 8 mm, frequency: 150 kHz, method: stationary quenching, heating time: 0.25 s, power: 600 kW, maximum An ono type rotary bending fatigue test was performed by induction hardening and tempering under the conditions of heating temperature: 980 ° C., cooling water: water, and tempering: none.
[0022]
Machinability was performed by a gear cutting test. A 150 kg steel ingot was forged into a round bar with a diameter of 90 mm, and a non-tempered forging was simulated by normalizing at 1100 ° C. for 1 hour. Then, it processed into the test piece of diameter 86.4mm until normalizing, and used for the test on the conditions shown in Table 3. The tool life shown in Table 2 is the relative value when the tool life of the conventional steel B is 1 when the crater wear reaches 50 μm.
[0023]
[Table 1]
Figure 0003687275
[0024]
[Table 2]
Figure 0003687275
[0025]
[Table 3]
Figure 0003687275
[0026]
Examples 1 to 12 in Table 1 are examples that satisfy all the conditions of the component composition and the hardenability index according to the present invention, and all of the rotational bending fatigue strength, rolling fatigue characteristics, and gear cutting machinability. Are better. It can also be seen that the 9, 8, 11, and 12 steels to which free-cutting elements are added have improved machinability compared to the invention steels with the same hardness.
[0027]
On the other hand, the C contents of the comparative steels A and B are outside the claimed range, and the steel A has a low quenching hardness and a low strength because the C content is too low. Further, since the steel B has too much C content, pro-eutectoid cementite is generated and the strength is lowered.
[0028]
Since the comparative steels C, D, E, and F have too high contents of Si, Mn, Cr, and V, respectively, the material hardness after hot forging becomes too high and the machinability is remarkably lowered.
[0029]
Since the comparative steel G has a too low s-Al content, the crystal grains after hot forging are coarsened and the strength is reduced. In addition, since the comparative steel H has an excessively high s-Al content, an excessive amount of Al nitride is generated to reduce the strength.
[0030]
Since the comparative steel J has a too high Ti content, a large amount of Ti carbonitrides are present as inclusions, resulting in a decrease in strength. Further, although the chemical composition of the comparative steel L is within the claimed range, since the hardenability index is too large, a uniform hardened layer structure cannot be obtained by ultrashort high-frequency heating, and the strength is reduced.
[0031]
In comparison steels 1 and K, since S and Te are added excessively, the machinability is greatly improved, but the strength is lowered.
[0032]
【The invention's effect】
As described above, the non-heat treated steel for high-frequency contour quenching according to the present invention is C: 0.45-0.80%, Si: 0.01-1.00%, Mn: 0.10 on a weight basis. To 1.50%, Cr: 0.10 to 1.00%, V: 0.05 to 0.30%, s-Al: 0.015 to 0.050%, and, if necessary, B: 0 .0005 to 0.0050%, Ti: 0.005 to 0.050% can be contained, and if necessary, S is selected from 0.20% or less, Te: 0.10% or less. It is characterized by including one or more types, the balance Fe and impurities, and satisfying the following formula. A homogeneous hardened layer structure is obtained by high-frequency contour quenching with time heating, and high bending or torsional fatigue strength is achieved. Fine rolling contact fatigue strength can be obtained high strength induction hardening microalloyed steel having.
Hardenability index: 1.2-1.4 × C (%) − 0.28 × Mn (%) − 0.49 × Cr (%) ≦ 0.3

Claims (4)

重量基準で、C:0.45〜0.80%、Si:0.01〜1.00%、Mn:0.60〜1.50%、Cr:0.10〜1.00%、V:0.05〜0.25%、およびs−Al:0.015〜0.050%を含有し、残部Feおよび不純物からなる合金組成を有し、かつ、下記の式で定義される焼入性指数が0.3以下であることを特徴とする高周波輪郭焼入用非調質鋼。
焼入性指数:1.2−1.4×C(%)−0.28×Mn(%)−0.49×Cr(%)
On a weight basis, C: 0.45-0.80%, Si: 0.01-1.00%, Mn: 0.00. 60 to 1.50%, Cr: 0.10 to 1.00%, V: 0.05 to 0. 25%, and s-Al: containing from 0.015 to 0.050%, having a Ru alloy composition Na balance being Fe and impurities, and the hardenability index defined by the following formula 0.3 frequency contour hardening microalloyed steels, characterized in that at most.
Hardenability index: 1.2-1.4 × C (%) − 0.28 × Mn (%) − 0.49 × Cr (%)
請求項1に規定した合金成分に加えて、さらにB:0.0005〜0.0050%およびTi:0.005〜0.050%を含有する合金組成を有する請求項1の高周波輪郭焼入用非調質鋼。 In addition to the alloy components defined in claim 1, further B: 0.0005 to 0.0050% and Ti: frequency contour hardening of claim 1 having the alloy composition you containing from 0.005 to 0.050 percent For non-tempered steel. 請求項1に規定した合金成分に加えて、さらにS:0.20%以下およびTe:0.10%以下の1種または2種を含有する合金組成を有する請求項1の高周波輪郭焼入用非調質鋼。 In addition to the alloy components defined in claim 1, further S: 0.20% or less and Te: frequency contour hardening of claim 1 having the alloy composition you contain one or 0.10% of For non-tempered steel. 請求項1に規定した合金成分に加えて、さらにB:0.0005〜0.0050%およびTi:0.005〜0.050%に加えて、S:0.20%以下およびTe:0.10%以下の1種または2種を含有する合金組成を有する請求項1の高周波輪郭焼入用非調質鋼。 In addition to the alloy components defined in claim 1, in addition to B: 0.0005 to 0.0050% and Ti: 0.005 to 0.050%, S: 0.20% or less and Te: 0.0. 10% or less of one or high frequency contour hardening microalloyed steel according to claim 1 having the alloy composition you containing two.
JP16318097A 1997-05-19 1997-05-19 Non-tempered steel for induction hardening Expired - Fee Related JP3687275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16318097A JP3687275B2 (en) 1997-05-19 1997-05-19 Non-tempered steel for induction hardening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16318097A JP3687275B2 (en) 1997-05-19 1997-05-19 Non-tempered steel for induction hardening

Publications (2)

Publication Number Publication Date
JPH10317095A JPH10317095A (en) 1998-12-02
JP3687275B2 true JP3687275B2 (en) 2005-08-24

Family

ID=15768775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16318097A Expired - Fee Related JP3687275B2 (en) 1997-05-19 1997-05-19 Non-tempered steel for induction hardening

Country Status (1)

Country Link
JP (1) JP3687275B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740175B2 (en) * 2001-02-01 2004-05-25 Sanyo Special Steel Co., Ltd. High strength steel for induction hardening
CN102046828A (en) * 2008-03-25 2011-05-04 Skf公司 A bearing component
CN102029347B (en) * 2010-12-29 2012-07-04 中原特钢股份有限公司 Manufacturing method of gear shaft forge piece for offshore drilling platform

Also Published As

Publication number Publication date
JPH10317095A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
JP4581966B2 (en) Induction hardening steel
US7387691B2 (en) Hot forged non-heat treated steel for induction hardening
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP4488228B2 (en) Induction hardening steel
JP4752800B2 (en) Non-tempered steel
JP3687275B2 (en) Non-tempered steel for induction hardening
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP2004124127A (en) Carburizing steel superior in torsion fatigue characteristic
JP3534146B2 (en) Non-heat treated steel excellent in fatigue resistance and method for producing the same
JP4232242B2 (en) High strength high toughness non-tempered steel
WO2011155605A1 (en) High-machinability high-strength steel and manufacturing method therefor
JP3579558B2 (en) Bearing steel with excellent resistance to fire cracking
JP3467929B2 (en) High toughness hot forged non-heat treated steel for induction hardening
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JP3637984B2 (en) Rolling element for toroidal continuously variable transmission
JPH0621319B2 (en) Non-heat treated steel for hot forging
JP3996386B2 (en) Carburizing steel with excellent torsional fatigue properties
JP3713805B2 (en) Induction hardening steel with excellent cold forgeability and its manufacturing method
JP2000265241A (en) Non-heat treated steel for induction contour hardening gear
JPS62127425A (en) Manufacture of induction-hardened gear
JPH0797656A (en) Cold forging steel
JPH11106863A (en) Steel for mechanical structure excellent in cold workability and its production
JPH09195000A (en) Non-heat treated steel
JPH10259447A (en) Steel plate for drive plate excellent in form-rollability
JP3320958B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees