JP3534146B2 - Non-heat treated steel excellent in fatigue resistance and method for producing the same - Google Patents

Non-heat treated steel excellent in fatigue resistance and method for producing the same

Info

Publication number
JP3534146B2
JP3534146B2 JP01604797A JP1604797A JP3534146B2 JP 3534146 B2 JP3534146 B2 JP 3534146B2 JP 01604797 A JP01604797 A JP 01604797A JP 1604797 A JP1604797 A JP 1604797A JP 3534146 B2 JP3534146 B2 JP 3534146B2
Authority
JP
Japan
Prior art keywords
machinability
content
steel
ferrite
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01604797A
Other languages
Japanese (ja)
Other versions
JPH10212559A (en
Inventor
宏二 渡里
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP01604797A priority Critical patent/JP3534146B2/en
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to CN97191416A priority patent/CN1095503C/en
Priority to KR1019980704909A priority patent/KR100268536B1/en
Priority to EP97913441A priority patent/EP0903418B1/en
Priority to PCT/JP1997/004297 priority patent/WO1998023784A1/en
Priority to CA002243123A priority patent/CA2243123C/en
Priority to DE69718784T priority patent/DE69718784T2/en
Priority to US09/103,566 priority patent/US5922145A/en
Publication of JPH10212559A publication Critical patent/JPH10212559A/en
Application granted granted Critical
Publication of JP3534146B2 publication Critical patent/JP3534146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐疲労特性に優れ
た非調質鋼材及びその製造方法に関する。更に詳しく
は、熱間加工後に焼入れ焼戻しの調質処理を施さずとも
優れた疲労強度−被削性バランスを有する、機械構造部
品などの素材として好適な非調質鋼材及びその製造方法
に関するものである。
TECHNICAL FIELD The present invention relates to a non-heat treated steel material excellent in fatigue resistance and a method for producing the same. More specifically, it relates to a non-heat treated steel material suitable as a material for machine structural parts and a method for producing the same, which has an excellent fatigue strength-machinability balance without being subjected to a tempering treatment after hot working. is there.

【0002】[0002]

【従来の技術】従来、高い疲労強度を必要とする鋼製の
機械構造部品などは、熱間加工で所定の形状に粗加工
し、次いで切削加工によって最終の所望形状とした後、
焼入れ焼戻しの調質処理を施すのが一般的であった。し
かしこの調質処理には多くのエネルギーとコストを費や
す。そこで近年、省エネルギーの社会的要請に応え、且
つ一方では低コスト化を図るために、熱間加工のままで
使用できる非調質鋼の開発が盛んに行われている。
2. Description of the Related Art Conventionally, mechanical structural parts made of steel, which require high fatigue strength, are roughly hot-worked into a predetermined shape and then cut into a final desired shape.
It was general to perform tempering treatment such as quenching and tempering. However, this conditioning process consumes a lot of energy and cost. Therefore, in recent years, non-heat treated steel that can be used as hot-worked has been actively developed in order to meet the social demand for energy saving and at the same time reduce cost.

【0003】例えば、特開平4−141550号公報に
はCr、Mo、Nb及びTiを複合添加して微細なベイ
ナイト組織とした「熱間鍛造用非調質鋼」が開示されて
いる。しかしこの非調質鋼はベイナイト型であるため従
来のフェライト・パーライト型の非調質鋼に比べて被削
性が劣るし、更には大きな変態歪が生じるため曲がりが
大きくなるという問題を有していた。したがって、曲が
り取りの矯正工程が必要となってコストアップにつなが
るものであった。
For example, Japanese Unexamined Patent Publication (Kokai) No. 4-141550 discloses "non-heat treated steel for hot forging" having a fine bainite structure by adding Cr, Mo, Nb and Ti together. However, since this non-heat treated steel is a bainite type, it has inferior machinability compared to the conventional ferrite / pearlite type non-heat treated steel, and further has a problem that a large transformation strain causes a large bending. Was there. Therefore, a correction process for removing the bend is required, which leads to an increase in cost.

【0004】一方、熱間加工後に冷却した鋼材をオ−ス
テナイト温度域まで再加熱して焼入れし、次いで焼戻し
処理する調質処理に代わるものとして、特開平6−21
2347号公報に特定の化学組成を有する鋼を熱間鍛造
後直ちに焼入れし、その後焼戻し処理を行ってTiCを
析出させる「高疲労強度を有する熱間鍛造品及びその製
造方法」が開示されている。しかしこの公報に記載の熱
間鍛造品は、熱間鍛造後に直ちに焼入れしてマルテンサ
イト組織とするので、焼入れ時の焼き割れに対する管理
が必要となるし、固溶したTiCを析出させるために焼
戻しを行うのでエネルギーコストが嵩むという問題も有
していた。
On the other hand, as an alternative to the refining treatment in which a steel material cooled after hot working is reheated to the austenite temperature range, quenched, and then tempered, there is disclosed in Japanese Patent Laid-Open No. 6-21.
Japanese Patent No. 2347 discloses "a hot forged product having high fatigue strength and a manufacturing method thereof" in which a steel having a specific chemical composition is quenched immediately after hot forging, and then a tempering treatment is performed to precipitate TiC. . However, since the hot forged product described in this publication is hardened immediately after hot forging to form a martensite structure, it is necessary to control quenching cracks at the time of quenching, and tempering is required to precipitate solid solution TiC. Therefore, there is also a problem that the energy cost is increased.

【0005】非調質鋼については、熱間加工後の切削加
工を容易にする目的から、被削性に優れた快削鋼に対す
る要求が大きくなっている。
Regarding non-heat treated steel, there is an increasing demand for free-cutting steel excellent in machinability for the purpose of facilitating cutting after hot working.

【0006】一般に鋼の被削性は金属組織に大きく依存
し、特開平4−141550号公報に記載の技術の項で
も触れたが、フェライト・パーライト組織を有する鋼の
場合には被削性が良好であり、フェライト・ベイナイト
組織やベイナイトあるいはマルテンサイトの単相組織の
鋼にあっては被削性が悪い。又、Pb、Te、Bi、C
a及びSなどの快削元素を単独あるいは複合添加すれば
被削性が向上することも周知の事実である。したがっ
て、従来は非調質鋼に前記の快削元素を添加して熱間加
工後の切削加工性を改善する方法が採られてきた。しか
し、非調質鋼に単に快削元素を添加しただけの場合に
は、所望の高い疲労強度を確保できないことが多い。
Generally, the machinability of steel largely depends on the metal structure, and as mentioned in the section of the technique described in Japanese Patent Laid-Open No. 4-141550, the machinability of steel has a ferrite-pearlite structure. It is good, and the machinability is poor in the steel having a ferrite / bainite structure or a single-phase structure of bainite or martensite. Also, Pb, Te, Bi, C
It is well known that the machinability is improved by adding free-cutting elements such as a and S alone or in combination. Therefore, conventionally, a method of adding the above-mentioned free-cutting element to non-heat treated steel to improve the machinability after hot working has been adopted. However, if the free-cutting element is simply added to the non-heat treated steel, the desired high fatigue strength cannot be secured in many cases.

【0007】こうした状況の下、例えば、特開平2−1
11842号公報と特開平6−279849号公報に
は、鋼中のCを黒鉛として存在させ、この黒鉛の切欠き
並びに潤滑効果を利用することによって被削性を向上さ
せた「被削性、焼入性に優れた熱間圧延鋼材」と「被削
性に優れた機械構造用鋼の製造方法」がそれぞれ提案さ
れている。
Under such circumstances, for example, Japanese Patent Laid-Open No. 2-1
In Japanese Patent No. 11842 and Japanese Patent Laid-Open No. 6-279849, C in steel is present as graphite, and the notch and lubrication effect of this graphite are used to improve the machinability. A "hot-rolled steel having excellent workability" and a "method for manufacturing steel for machine structural use having excellent machinability" have been proposed.

【0008】しかし、特開平2−111842号公報に
提案された鋼材は、Bを添加しB窒化物(BN)を黒鉛
化の核として黒鉛化を促進させるものであって、Bの添
加が必須であるため凝固時に割れを生じ易いという問題
を含んでいる。一方、特開平6−279849号公報に
記載の方法は、Al添加とともに鋼中O(酸素)を低く
規制することで熱間圧延ままで黒鉛化を促進させるもの
であるが、熱間圧延後に黒鉛化焼なまし処理を施す必要
があるため、必ずしも経済的とはいえないものである。
更に、前記した2つの公報における提案はいずれも黒鉛
化を活用したものであるため、所定の形状に加工した機
械構造部品などに所望の機械的特性を付与するために
は、必ず焼入れ焼戻しの調質処理を施さねばならず、
「非調質化」と「高強度鋼の被削性の向上」を両立させ
たいとする産業界の要請には応えきれないものであっ
た。
However, the steel material proposed in Japanese Patent Laid-Open No. 2-111842 is one in which B is added to promote graphitization by using B nitride (BN) as a graphitization nucleus, and addition of B is essential. Therefore, there is a problem that cracking is likely to occur during solidification. On the other hand, the method described in Japanese Patent Application Laid-Open No. 6-279849 promotes graphitization as it is in hot rolling by restricting O (oxygen) in steel together with addition of Al. It is not always economical because it needs to be annealed.
Further, since both of the proposals in the above-mentioned two publications utilize graphitization, in order to impart desired mechanical properties to mechanical structural parts etc. processed into a predetermined shape, quenching and tempering must be performed. It has to undergo quality treatment,
It has not been possible to meet the demands of the industrial world to achieve both "non-heat treatment" and "improvement of machinability of high strength steel".

【0009】鉄と鋼(vol.57(1971年)S4
84)には、脱酸調整快削鋼にTiを添加すれば被削性
が高まる場合のあることが報告されている。しかし、T
iの多量の添加はTiNが多量に生成されることもあっ
て工具摩耗を増大させ、被削性の点からは好ましくない
ことも述べられている。例えば、C:0.45%、S
i:0.29%、Mn:0.78%、P:0.017
%、S:0.041%、Al:0.006%、N:0.
0087%、Ti:0.228%、O:0.004%及
びCa:0.001%を含有する鋼では却ってドリル寿
命が低下して被削性が劣っている。このように、鋼に単
にTiを添加するだけでは被削性は向上するものではな
い。
Iron and Steel (vol. 57 (1971) S4
84) has reported that machinability may be enhanced by adding Ti to the deoxidized controlled free-cutting steel. But T
It is also stated that the addition of a large amount of i increases tool wear due to the large amount of TiN produced, which is not preferable in terms of machinability. For example, C: 0.45%, S
i: 0.29%, Mn: 0.78%, P: 0.017
%, S: 0.041%, Al: 0.006%, N: 0.
Steel containing 0087%, Ti: 0.228%, O: 0.004% and Ca: 0.001% conversely has a shortened drill life and poor machinability. As described above, the machinability is not improved simply by adding Ti to steel.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記現状に
鑑みなされたもので、通常の熱間加工と冷却の条件で、
それも焼戻しを含めて熱処理を行うことなく非調質のま
まで優れた耐疲労特性を有するとともに被削性にも優れ
た、つまり疲労強度−被削性バランスに優れた機械構造
部品などの素材用として好適な低コストの鋼材とその製
造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned current situation, and under the conditions of normal hot working and cooling,
It is also a material for machine structural parts, etc. that has excellent fatigue resistance as well as machinability without heat treatment including tempering and excellent machinability, that is, excellent fatigue strength-machinability balance. An object of the present invention is to provide a low-cost steel material suitable for use and a method for manufacturing the same.

【0011】[0011]

【課題を解決するための手段】本発明の要旨は、下記
(1)に示す被削性及び耐疲労特性に優れた非調質鋼材
及び(2)に示す被削性及び耐疲労特性に優れた非調質
鋼材の製造方法にある。
The gist of the present invention is to provide a non-heat treated steel material having excellent machinability and fatigue resistance characteristics as shown in (1) below and excellent machinability and fatigue resistance characteristics as shown in (2) below. There is a method for manufacturing non-heat treated steel.

【0012】(1)重量%で、C:0.2〜0.6%、
Si:0.05〜1.5%、Mn:0.1〜2.0%、
P:0.01〜0.07%、S:0.01〜0.20
%、Ti:0.25%を超え1.0%まで、Al:0.
002〜0.05%、N:0.008%以下、Cr:0
〜2.0%、V:0〜0.3%、Nb:0〜0.05
%、Mo:0〜0.5%、Cu:0〜1.0%、Nd:
0〜0.1%、Pb:0〜0.50%、Ca:0〜0.
01%、Se:0〜0.5%、Te:0〜0.05%、
Bi:0〜0.4%、残部はFe及び不可避不純物の組
成であって、組織がJIS粒度番号6以上のフェライト
とラメラ間隔の平均が0.2μm以下のパーライトから
なるフェライト・パーライト組織である被削性及び耐疲
労特性に優れた非調質鋼材。
(1) C: 0.2 to 0.6% by weight,
Si: 0.05-1.5%, Mn: 0.1-2.0%,
P: 0.01 to 0.07%, S: 0.01 to 0.20
%, Ti: more than 0.25% to 1.0%, Al: 0.
002-0.05%, N: 0.008% or less, Cr: 0
~ 2.0%, V: 0 ~ 0.3%, Nb: 0 ~ 0.05
%, Mo: 0 to 0.5%, Cu: 0 to 1.0%, Nd:
0 to 0.1%, Pb: 0 to 0.50%, Ca: 0 to 0.
01%, Se: 0 to 0.5%, Te: 0 to 0.05%,
Bi: 0 to 0.4%, the balance being composition of Fe and unavoidable impurities, and the structure is a ferrite-pearlite structure composed of ferrite having a JIS grain size number of 6 or more and pearlite having an average lamellar spacing of 0.2 μm or less. Non-heat treated steel with excellent machinability and fatigue resistance.

【0013】(2)上記(1)に記載の化学組成を有す
る鋼を、1050〜1300℃の温度域の温度に加熱し
た後900℃以上の温度域で熱間加工を行い、次いで5
〜30℃/分の冷却速度で冷却して、JIS粒度番号6
以上のフェライトとラメラ間隔の平均が0.2μm以下
のパーライトからなるフェライト・パーライト組織とす
ることを特徴とする被削性及び耐疲労特性に優れた非調
質鋼材の製造方法。
(2) The steel having the chemical composition described in (1) above is heated to a temperature in the temperature range of 1050-1300 ° C., hot-worked in a temperature range of 900 ° C. or higher, and then 5
JIS particle size number 6
A method for producing a non-heat treated steel material having excellent machinability and fatigue resistance, characterized by having a ferrite-pearlite structure comprising the above ferrite and pearlite having an average lamella spacing of 0.2 μm or less.

【0014】[0014]

【発明の実施の形態】本発明者らは、前記した目的を達
成するため非調質鋼材の化学組成及び組織について研究
を重ねた結果、下記の知見を得た。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of repeated studies on the chemical composition and structure of a non-heat treated steel in order to achieve the above-mentioned objects, the present inventors have obtained the following findings.

【0015】フェライト・パーライト組織の場合には
疲労強度は降伏強度(YS)と正の良い相関を示す。し
たがって、疲労強度を高めるためにはYSを向上させれ
ば良い。引張強度(TS)を上げることは被削性の点か
ら好ましくないので、フェライト・パーライト組織のT
Sを上げずにYSを高めることで被削性と高い疲労強度
(疲労限度(σw))を兼備できる。
In the case of a ferrite / pearlite structure, the fatigue strength has a positive and good correlation with the yield strength (YS). Therefore, in order to increase the fatigue strength, YS should be improved. Since increasing the tensile strength (TS) is not preferable from the standpoint of machinability, the T of ferrite-pearlite structure is
Machinability and high fatigue strength (fatigue limit (σw)) can be achieved by increasing YS without increasing S.

【0016】フェライト粒の微細化とパーライトラメ
ラ間隔の微細化はフェライト・パーライト組織のTSを
それほど上げることなくYSを高めるのに有効である。
Finer ferrite grains and finer pearlite lamella spacing are effective in increasing YS without significantly increasing TS in the ferrite-pearlite structure.

【0017】N量を規制した鋼材に適正量のTiを含
有させて熱間加工後の冷却条件を適正化すれば、フェラ
イト・パーライト組織のTSをそれほど上げることなく
YSを高めることができ、疲労強度が飛躍的に向上す
る。これは、(イ)冷却中に微細なTiCが析出してフ
ェライトが強化することと、(ロ)熱間加工における加
熱時に未固溶で存在するTiCによりオーステナイト粒
の成長が抑制されることで微細な組織が得られ、この組
織の微細化によって強化(微細強化)することによるも
のである。
If proper amount of Ti is added to the steel material in which the amount of N is regulated to optimize the cooling condition after hot working, YS can be increased without increasing TS of ferrite / pearlite structure so much and fatigue. The strength is dramatically improved. This is because (a) fine TiC precipitates during cooling and strengthens the ferrite, and (b) the growth of austenite grains is suppressed by TiC that is present in an undissolved state during heating during hot working. This is because a fine structure is obtained and the structure is strengthened (finely strengthened) by miniaturization.

【0018】適正な条件の下で鋼にTiを積極的に添
加すると、鋼中にTiの炭硫化物が形成される。
When Ti is positively added to steel under appropriate conditions, Ti carbosulfide is formed in the steel.

【0019】鋼中に上記したTiの炭硫化物が生成す
ると、MnSの生成量が減少する。
When the above-mentioned Ti carbosulfide is formed in the steel, the amount of MnS produced is reduced.

【0020】鋼中のS含有量が同じ場合には、Tiの
炭硫化物はMnSよりも大きな被削性改善効果を有す
る。これは、Tiの炭硫化物の融点がMnSのそれより
も低いため、切削加工時に工具のすくい面での潤滑作用
が大きくなることに基づく。
When the S content in steel is the same, Ti carbosulfide has a greater machinability improving effect than MnS. This is because the melting point of Ti carbosulfide is lower than that of MnS, so that the lubricating action on the rake face of the tool during cutting is increased.

【0021】Tiの炭硫化物の効果を充分発揮させる
ためには、N含有量を低く制限することが重要である。
これは、N含有量が多いとTiNとしてTiが固定され
てしまい、Tiの炭硫化物の生成が抑制されてしまうた
めである。
In order to sufficiently exert the effect of Ti carbosulfide, it is important to limit the N content to a low level.
This is because when the N content is high, Ti is fixed as TiN and the generation of Ti carbosulfide is suppressed.

【0022】製鋼時に生成したTiの炭硫化物は、通
常の熱間加工のための加熱温度では基地に固溶しない。
Ti carbosulfide produced during steelmaking does not form a solid solution in the matrix at the heating temperature for ordinary hot working.

【0023】本発明は上記の知見に基づいて完成された
ものである。
The present invention has been completed based on the above findings.

【0024】以下、本発明の各要件について詳しく説明
する。なお、成分含有量の「%」は「重量%」を意味す
る。
The requirements of the present invention will be described in detail below. In addition, "%" of a component content means "weight%."

【0025】(A)鋼の化学組成 C:Cは強度を確保するのに有効な元素である。その効
果を確保するためには0.2%以上の含有量を必要とす
る。しかし、0.6%を超えて含有すると切削加工時に
工具寿命が低下する。更に、フェライト・パーライト組
織におけるフェライト相の体積率が低下し、それに伴っ
てフェライト強化の効果が薄れて疲労強度が低下する。
したがって、Cの含有量を0.2〜0.6%とした。な
お、C含有量は0.25〜0.5%とすることが好まし
い。
(A) Chemical composition C of steel: C is an element effective for ensuring strength. In order to secure the effect, the content of 0.2% or more is required. However, if the content exceeds 0.6%, the tool life is shortened during cutting. Further, the volume ratio of the ferrite phase in the ferrite / pearlite structure decreases, and the effect of ferrite strengthening decreases accordingly, and the fatigue strength decreases.
Therefore, the content of C is set to 0.2 to 0.6%. The C content is preferably 0.25 to 0.5%.

【0026】Si:Siは、鋼の脱酸及びフェライト相
を強化する作用がある。更に、Si含有量の増加に伴い
切削時の切り屑表面の潤滑作用が高まって工具寿命が延
びるので、被削性を改善する作用も有する。しかし、そ
の含有量が0.05%未満では添加効果に乏しく、一
方、1.5%を超えると前記効果が飽和するばかりか却
って被削性が劣化するようになるので、その含有量を
0.05〜1.5%とした。なお、Siの好ましい含有
量は0.5〜1.3%である。
Si: Si acts to deoxidize the steel and strengthen the ferrite phase. Furthermore, as the Si content increases, the lubricating effect on the chip surface during cutting increases and the tool life is extended, so that it also has the effect of improving machinability. However, if the content is less than 0.05%, the effect of addition is poor, while if it exceeds 1.5%, the effect is saturated and the machinability is rather deteriorated. It was set to 0.05 to 1.5%. In addition, the preferable content of Si is 0.5 to 1.3%.

【0027】Mn:Mnは、固溶強化によって疲労強度
を向上させる効果を有する。しかし、その含有量が0.
1%未満では所望の効果が得られず、2.0%を超える
と焼入れ性が高くなりすぎてベイナイト組織や島状マル
テンサイト組織の生成を促進し、耐久比(σw/TS)
及び降伏比(YS/TS)が低下するようになる。した
がって、Mnの含有量を0.1〜2.0%とした。な
お、Mn含有量は0.5〜1.7%とすることが好まし
い。
Mn: Mn has the effect of improving fatigue strength by solid solution strengthening. However, when the content is 0.
If it is less than 1%, the desired effect cannot be obtained, and if it exceeds 2.0%, the hardenability becomes too high to promote the formation of bainite structure or island martensite structure, and the durability ratio (σw / TS).
And, the yield ratio (YS / TS) is lowered. Therefore, the Mn content is set to 0.1 to 2.0%. The Mn content is preferably 0.5 to 1.7%.

【0028】P:Pは、固溶強化元素であり引張強度及
び疲労強度を向上させる効果がある。しかし、その含有
量が0.01%未満では添加効果に乏しく、一方、0.
07%を超えるとその効果が飽和するとともに靭性の劣
化及び延性(加工性)の低下をもたらすので、その含有
量を0.01〜0.07%とした。なお、Pの好ましい
含有量は0.015〜0.05%である。
P: P is a solid solution strengthening element and has the effect of improving tensile strength and fatigue strength. However, if the content is less than 0.01%, the effect of addition is poor, while on the other hand,
If it exceeds 07%, the effect is saturated and the toughness is deteriorated and the ductility (workability) is lowered, so the content is set to 0.01 to 0.07%. In addition, the preferable content of P is 0.015 to 0.05%.

【0029】S:Sは、被削性の向上に有効な元素であ
る。CとともにTiと結合してTiの炭硫化物を形成
し、被削性を高める作用を有する。更に、Mnと結合し
たMnSやNdを添加した場合のNdと結合したNd2
3が微細分散析出することによってフェライト生成核
密度を高くし、フェライト量を増加させるとともにフェ
ライト粒を微細化する効果を有する。しかし、その含有
量が0.01%未満では所望の効果が得られず、0.2
%を超えるとMnSが過剰に生成するのでTi炭硫化物
による被削性向上効果が低下するばかりか、却って靭性
が劣化するようになるので、その含有量を0.01〜
0.2%とした。なお、S含有量は0.02〜0.17
%とすることが好ましい。
S: S is an element effective for improving machinability. Together with C, it combines with Ti to form a carbosulfide of Ti and has the effect of enhancing machinability. Furthermore, when MnS combined with Mn or Nd is added, Nd 2 combined with Nd 2
The finely dispersed precipitation of S 3 has the effect of increasing the density of ferrite-producing nuclei, increasing the amount of ferrite, and refining the ferrite grains. However, if the content is less than 0.01%, the desired effect cannot be obtained and 0.2
%, MnS is excessively generated, so that not only the machinability improving effect of Ti carbosulfide decreases but also the toughness deteriorates.
It was set to 0.2%. The S content is 0.02 to 0.17.
% Is preferable.

【0030】Ti:Tiは、本発明において重要な元素
である。冷却中に微細なTiCとして析出して鋼を析出
強化するとともに、熱間加工のための加熱時にオーステ
ナイト中に固溶しないで残った未固溶TiCのピンニン
グ効果によってオーステナイト粒の成長が抑制されるの
で組織が微細になって、微細強化(粒界強化)の効果が
生ずる。加えて、前記の析出強化と微細強化とが重畳し
て疲労強度を改善する作用を有する。更に、C及びSと
結合してTi炭硫化物を形成し、被削性を高める作用も
有する。しかし、その含有量が0.25%以下では所望
の効果が得られず、1.0%を超えるとTiCあるいは
Ti炭硫化物が凝集粗大化して却って疲労強度が低下す
る。したがって、Tiの含有量を0.25%超えて1.
0%までとした。なお、安定して疲労強度を向上させる
ためには、Tiの含有量を0.27〜0.8%とするこ
とが好ましい。
Ti: Ti is an important element in the present invention. During cooling, it precipitates as fine TiC to strengthen the steel, and the growth of austenite grains is suppressed by the pinning effect of undissolved TiC that remains undissolved in austenite during heating for hot working. Therefore, the structure becomes fine, and the effect of fine strengthening (grain boundary strengthening) occurs. In addition, the precipitation strengthening and the fine strengthening described above are superimposed on each other to improve fatigue strength. Further, it has a function of combining with C and S to form Ti carbosulfide and enhancing machinability. However, if the content is 0.25% or less, the desired effect cannot be obtained, and if it exceeds 1.0%, TiC or Ti carbosulfide is aggregated and coarsened, and the fatigue strength is rather decreased. Therefore, if the content of Ti exceeds 0.25%, 1.
It was set to 0%. In order to stably improve the fatigue strength, the Ti content is preferably 0.27 to 0.8%.

【0031】Al:Alは、鋼の脱酸の安定化及び均質
化を図るのに有効な元素である。しかし、その含有量が
0.002%未満では所望の効果が得られず、0.05
%を超えるとその効果が飽和するとともに、却って鋼の
被削性を低下させることになるのでその含有量を0.0
02〜0.05%とした。なお、Al含有量は0.00
5〜0.03%とすることが好ましい。
Al: Al is an element effective for stabilizing and homogenizing deoxidation of steel. However, if the content is less than 0.002%, the desired effect cannot be obtained,
%, The effect will be saturated and, on the contrary, the machinability of the steel will be deteriorated.
It was set to 02 to 0.05%. The Al content is 0.00
It is preferably set to 5 to 0.03%.

【0032】N:本発明においてはNの含有量を低く制
御することが極めて重要である。すなわち、NはTiと
の親和力が大きいために容易にTiと結合してTiNを
生成し、Tiを固定してしまうので、Nを多量に含有す
る場合には前記したTiCによる強化効果及びTiの炭
硫化物による被削性向上効果が充分に発揮できないこと
となる。N含有量が0.008%未満の場合に前記した
TiC及びTi炭硫化物の効果が確保される。なお、T
iC及びTi炭硫化物の効果を高めるために、N含有量
の上限は0.006%とすることが好ましい。
N: In the present invention, it is extremely important to control the N content to be low. That is, since N has a large affinity with Ti, it easily binds to Ti to form TiN and fixes Ti. Therefore, when a large amount of N is contained, the strengthening effect of TiC and Ti This means that the effect of improving the machinability due to carbosulfide cannot be fully exerted. When the N content is less than 0.008%, the effects of TiC and Ti carbosulfide described above are secured. In addition, T
In order to enhance the effect of iC and Ti carbosulfide, the upper limit of the N content is preferably 0.006%.

【0033】Cr:Crは添加しなくても良い。添加す
れば、固溶強化によって疲労強度を向上させる効果があ
る。この効果を確実に得るには、Crは0.02%以上
の含有量とすることが好ましい。しかし、その含有量が
2.0%を超えると焼入れ性が高くなりすぎてベイナイ
ト組織あるいは島状マルテンサイト組織の生成を促進
し、耐久比(σw/TS)並びに降伏比(YS/TS)
が低下するようになる。したがって、Crの含有量を0
〜2.0%とした。なお、Crを添加する場合にはその
含有量を0.05〜1.5%とすることがより好まし
い。
Cr: Cr may not be added. If added, it has an effect of improving fatigue strength by solid solution strengthening. In order to surely obtain this effect, the content of Cr is preferably 0.02% or more. However, if its content exceeds 2.0%, the hardenability becomes too high, which promotes the formation of bainite structure or island martensite structure, resulting in a durability ratio (σw / TS) and a yield ratio (YS / TS).
Will be reduced. Therefore, the content of Cr is 0
˜2.0%. When Cr is added, its content is more preferably 0.05 to 1.5%.

【0034】V:Vは添加しなくても良い。添加すれ
ば、微細な窒化物や炭窒化物として析出し、鋼の強度、
特に疲労強度を向上させる効果を有する。この効果を確
実に得るには、Vは0.05%以上の含有量とすること
が好ましい。しかし、その含有量が0.3%を超えると
析出物が粗大化するので前記の効果が飽和したり、却っ
て低下したりする。更に、原料コストも嵩むばかりであ
る。したがって、Vの含有量を0〜0.3%とした。
V: V may not be added. If added, it precipitates as fine nitrides and carbonitrides,
In particular, it has the effect of improving fatigue strength. In order to reliably obtain this effect, it is preferable that the content of V be 0.05% or more. However, if the content exceeds 0.3%, the precipitates become coarse, so that the above-mentioned effect is saturated or rather decreased. Furthermore, the raw material cost only increases. Therefore, the content of V is set to 0 to 0.3%.

【0035】Nb:Nbは添加しなくても良い。添加す
れば、微細な窒化物や炭窒化物として析出し、オ−ステ
ナイト粒の粗大化を防止するとともに、鋼の強度、特に
疲労強度を向上させる効果を有する。この効果を確実に
得るには、Nbは0.005%以上の含有量とすること
が好ましい。しかし、その含有量が0.05%を超える
と前記の効果が飽和するばかりか、粗大な窒化物が生じ
て工具を損傷し、被削性の低下を招く。したがって、N
bの含有量を0〜0.05%とした。
Nb: Nb may not be added. If added, it precipitates as fine nitrides and carbonitrides, has the effects of preventing coarsening of austenite grains and improving the strength of steel, especially fatigue strength. In order to reliably obtain this effect, the Nb content is preferably 0.005% or more. However, if the content exceeds 0.05%, not only the above effects are saturated, but also coarse nitrides are generated to damage the tool, resulting in a decrease in machinability. Therefore, N
The content of b was 0 to 0.05%.

【0036】Mo:Moは添加しなくても良い。添加す
れば、フェライト・パーライト組織を微細化して鋼の強
度、特に疲労強度を向上させる効果を有する。この効果
を確実に得るには、Moの含有量は0.05%以上とす
ることが好ましい。しかし、その含有量が0.5%を超
えると熱間加工後の組織が却って異常粗大化し、疲労強
度が低下してしまう。このため、Moの含有量を0〜
0.5%とした。
Mo: Mo may not be added. If added, it has the effect of refining the ferrite / pearlite structure and improving the strength of the steel, especially the fatigue strength. In order to reliably obtain this effect, the Mo content is preferably 0.05% or more. However, if the content exceeds 0.5%, the structure after hot working rather becomes abnormally coarse, and the fatigue strength decreases. Therefore, the content of Mo is 0 to
It was set to 0.5%.

【0037】Cu:Cuは添加しなくても良い。添加す
れば、析出強化により鋼の強度、特に疲労強度を向上さ
せる効果を有する。この効果を確実に得るには、Cuは
0.2%以上の含有量とすることが好ましい。しかし、
その含有量が1.0%を超えると熱間加工性が劣化する
ことに加えて、析出物が粗大化して前記の効果が飽和し
たり却って低下したりする。更に、コストも嵩むばかり
である。したがって、Cuの含有量を0〜1.0%とし
た。
Cu: Cu may not be added. If added, precipitation strengthening has the effect of improving the strength of the steel, especially the fatigue strength. In order to reliably obtain this effect, the content of Cu is preferably 0.2% or more. But,
If the content exceeds 1.0%, not only the hot workability is deteriorated, but also the precipitates are coarsened and the above-mentioned effects are saturated or rather lowered. In addition, the cost is high. Therefore, the content of Cu is set to 0 to 1.0%.

【0038】Nd:Ndは添加しなくても良い。添加す
れば、Nd23としてチップブレーカーの作用を有し被
削性を向上させる効果を有する。更に、Nd23が溶鋼
の比較的高温域で微細に分散して生成することにともな
って、MnSを微細に分散析出させてフェライト生成核
密度を高め、フェライト量を増加させるとともにフェラ
イト粒を微細化して、微細なフェライト・パーライト組
織として鋼を高強度・高靭性化する効果もある。前記の
効果を確実に得るには、Ndは0.005%以上の含有
量とすることが好ましい。しかし、その含有量が0.1
%を超えるとNd23自体が粗大化して却って疲労強度
及び靭性の低下をきたす。したがって、Ndの含有量を
0〜0.1%とした。なお、Nd含有量の好ましい上限
値は0.08%である。
Nd: Nd need not be added. If added, Nd 2 S 3 acts as a chip breaker and has the effect of improving machinability. In addition, Nd 2 S 3 is finely dispersed and formed in a relatively high temperature region of molten steel, so that MnS is finely dispersed and precipitated to increase the density of ferrite-forming nuclei, increase the amount of ferrite and form ferrite grains. It also has the effect of refining and making the steel high-strength and high-toughness as a fine ferrite-pearlite structure. In order to surely obtain the above effect, the Nd content is preferably 0.005% or more. However, its content is 0.1
If it exceeds 0.1%, Nd 2 S 3 itself is coarsened and rather deteriorates fatigue strength and toughness. Therefore, the content of Nd is set to 0 to 0.1%. The preferable upper limit of the Nd content is 0.08%.

【0039】Pb:Pbは添加しなくても良い。添加す
れば、鋼の被削性を一段と高める作用がある。この効果
を確実に得るには、Pbは0.05%以上の含有量とす
ることが好ましい。しかし、その含有量が0.50%を
超えると前記の効果が飽和するばかりか、却って粗大介
在物を生成して疲労強度の低下をきたす。更に、熱間加
工性が劣化するので鋼材の表面に疵が生じてしまう。し
たがって、Pbの含有量を0〜0.50%とした。
Pb: Pb may not be added. If added, it has the effect of further improving the machinability of steel. In order to reliably obtain this effect, the Pb content is preferably 0.05% or more. However, if the content exceeds 0.50%, not only the above effects are saturated, but rather coarse inclusions are generated, resulting in a decrease in fatigue strength. Further, since the hot workability is deteriorated, the surface of the steel material is flawed. Therefore, the Pb content is set to 0 to 0.50%.

【0040】Ca:Caは添加しなくても良い。添加す
れば、鋼の被削性を高める作用がある。この効果を確実
に得るには、Caは0.001%以上の含有量とするこ
とが好ましい。しかし、その含有量が0.01%を超え
ると前記の効果が飽和するばかりか、却って粗大介在物
を生成して疲労強度の低下をきたす。したがって、Ca
の含有量を0〜0.01%とした。
Ca: Ca may not be added. If added, it has the effect of increasing the machinability of steel. In order to reliably obtain this effect, the content of Ca is preferably 0.001% or more. However, if the content exceeds 0.01%, not only the above effect is saturated, but also rather coarse inclusions are generated, resulting in a decrease in fatigue strength. Therefore, Ca
Content was 0 to 0.01%.

【0041】Se:Seは添加しなくても良い。添加す
れば、鋼の被削性を向上させる効果を有する。この効果
を確実に得るには、Seは0.1%以上の含有量とする
ことが好ましい。しかし、その含有量が0.5%を超え
ると前記の効果が飽和するばかりか、却って粗大介在物
を生成して疲労強度の低下をきたす。したがって、Se
の含有量を0〜0.5%とした。
Se: Se may not be added. If added, it has the effect of improving the machinability of steel. In order to reliably obtain this effect, it is preferable that the content of Se is 0.1% or more. However, if its content exceeds 0.5%, not only the above-mentioned effect is saturated, but rather coarse inclusions are generated to cause a decrease in fatigue strength. Therefore, Se
Content of 0 to 0.5%.

【0042】Te:Teも添加しなくても良い。添加す
れば、鋼の被削性を一段と高める効果を有する。この効
果を確実に得るには、Teは0.005%以上の含有量
とすることが好ましい。しかし、その含有量が0.05
%を超えると前記の効果が飽和するばかりか、却って粗
大介在物を生成して疲労強度の低下をもたらす。更に、
熱間加工性が著しく劣化するので鋼材の表面に疵が生じ
てしまう。したがって、Teの含有量を0〜0.05%
とした。
Te: Te may not be added. If added, it has the effect of further improving the machinability of steel. In order to reliably obtain this effect, the content of Te is preferably 0.005% or more. However, its content is 0.05
If it exceeds%, not only the above effect is saturated, but also rather large inclusions are formed to cause a decrease in fatigue strength. Furthermore,
Since the hot workability is remarkably deteriorated, a flaw is generated on the surface of the steel material. Therefore, the content of Te should be 0 to 0.05%.
And

【0043】Bi:Biは添加しなくても良い。添加す
れば、鋼の被削性を向上させる効果を有する。この効果
を確実に得るには、Biは0.05%以上の含有量とす
ることが好ましい。しかし、その含有量が0.4%を超
えると前記の効果が飽和するばかりか、却って粗大介在
物を生成して疲労強度の低下をきたす。更に、熱間加工
性が劣化するので鋼材の表面に疵が生じてしまう。した
がって、Biの含有量を0〜0.4%とした。
Bi: Bi does not have to be added. If added, it has the effect of improving the machinability of steel. In order to reliably obtain this effect, the Bi content is preferably 0.05% or more. However, if the content exceeds 0.4%, not only the above effect is saturated, but rather, coarse inclusions are generated and fatigue strength is reduced. Further, since the hot workability is deteriorated, the surface of the steel material is flawed. Therefore, the Bi content is set to 0 to 0.4%.

【0044】(B)鋼材の組織 上記の化学組成を有する鋼であっても、熱間加工後の組
織がベイナイトやマルテンサイトといった所謂「低温変
態生成物」からなるものでは、被削性が劣化する。更
に、熱間加工後の冷却過程で、製品に大きな変態歪が生
じて曲がりが大きくなるため曲がり取りの矯正工程が必
要となってコストアップにつながる。したがって、良好
な被削性を得るとともに変態歪を小さくするために鋼の
組織は、先ずフェライト・パーライト組織とする必要が
ある。なお、前記の化学組成は熱間加工後に鋼材を適正
な条件で冷却すれば「低温変態生成物」が生成しないよ
うに配慮されたものである。
(B) Structure of Steel Material Even if the steel has the above chemical composition, if the structure after hot working is composed of so-called "low temperature transformation product" such as bainite or martensite, the machinability deteriorates. To do. Further, in the cooling process after the hot working, a large transformation strain occurs in the product and the bending becomes large, so that a correction process for removing the bending is required, which leads to an increase in cost. Therefore, in order to obtain good machinability and reduce transformation strain, the steel structure must first be a ferrite-pearlite structure. The above chemical composition is designed so that a "low temperature transformation product" will not be produced if the steel material is cooled under appropriate conditions after hot working.

【0045】フェライト・パーライト組織において、フ
ェライトがJIS粒度番号6以上の細粒であり、且つパ
ーライトラメラ間隔の平均が0.2μm以下の場合にフ
ェライト・パーライト組織のTSを上げることなくYS
を高めることができるので、被削性を低下させることな
く疲労強度を高めることができる。したがって、鋼材の
組織を、JIS粒度番号6以上のフェライトとラメラ間
隔の平均が0.2μm以下のパーライトからなるフェラ
イト・パーライト組織とした。
In the ferrite / pearlite structure, if the ferrite is fine particles having a JIS grain size number of 6 or more and the average pearlite lamella spacing is 0.2 μm or less, the YS can be obtained without increasing the TS of the ferrite / pearlite structure.
Therefore, the fatigue strength can be increased without decreasing the machinability. Therefore, the structure of the steel material is a ferrite-pearlite structure composed of ferrite having a JIS grain size number of 6 or more and pearlite having an average lamella spacing of 0.2 μm or less.

【0046】フェライト粒とパーライトラメラ間隔の平
均は、微細であればあるほど前記した効果(フェライト
・パーライト組織のTSを上げることなくYSを高める
効果)が大きいので、フェライトのJIS粒度番号の上
限及びパーライトラメラ間隔の平均の下限は特に規定さ
れるものではない。
Since the above-mentioned effect (the effect of increasing YS without increasing TS of the ferrite-pearlite structure) is greater as the average of the ferrite grain and pearlite lamella spacing is finer, the upper limit of the JIS grain size number of ferrite and The lower limit of the average pearlite lamella spacing is not particularly specified.

【0047】なお、本発明でいうパーライトのラメラ間
隔は、例えば、ナイタルで腐食した試料の走査電子顕微
鏡組織や前記試料から採取した2段レプリカの透過電子
顕微鏡組織を用いた通常の方法によって容易に求めるこ
とができる。
The lamellar spacing of pearlite referred to in the present invention can be easily determined by a usual method using, for example, a scanning electron microscope structure of a sample corroded with nital or a transmission electron microscope structure of a two-step replica taken from the sample. You can ask.

【0048】(C)熱間加工 鋼材を前記の所望組織とするためには、熱間での加工
は、1050〜1300℃の温度域の温度に加熱した
後、900℃以上の温度域で行う必要がある。
(C) Hot working In order to obtain the desired structure of the steel material, hot working is performed in a temperature range of 900 ° C or higher after heating to a temperature range of 1050-1300 ° C. There is a need.

【0049】1300℃を超える高温加熱の場合には、
オ−ステナイト粒の粗大化が著しいため所望のサイズの
フェライト・パーライト組織が得られないという品質面
での問題があることに加えて、コストアップになるとい
う経済面での不利もある。又、1050℃を下回る温度
域で加熱した場合には、Tiのオ−ステナイト中への固
溶が充分でないため、熱間加工後に適正な冷却条件で冷
却しても微細なTiCの析出が充分生じず、所望の組織
及び機械的性質が得られない。したがって、本発明にお
いては熱間加工の加熱温度を1050〜1300℃に限
定した。
In the case of high temperature heating exceeding 1300 ° C.,
In addition to the problem of quality that a desired size of ferrite-pearlite structure cannot be obtained because the austenite grains are significantly coarsened, there is also an economical disadvantage of increased cost. Further, when heated in a temperature range lower than 1050 ° C., Ti does not form a solid solution in austenite sufficiently, and therefore fine TiC precipitation is sufficient even if cooled under proper cooling conditions after hot working. It does not occur and the desired texture and mechanical properties are not obtained. Therefore, in the present invention, the heating temperature for hot working is limited to 1050-1300 ° C.

【0050】熱間加工を900℃以上の温度域で行うの
は、900℃を下回る温度域で熱間加工すれば加工中に
TiCが加工誘起析出してしまうので再結晶が抑制さ
れ、所望の組織が得難いためである。又、鋼材の変形抵
抗が高くなって疵の発生や割れにつながることにもな
る。このため、熱間加工は900℃以上の温度域で行う
こととした。この加工温度の上限は1050℃程度とす
るのが良い。また熱間加工時の加工度は断面減少率で1
0〜90%程度とすることが好ましい。なお、所望の特
性をより安定して得るために、上記の熱間加工時の加工
度を断面減少率で30〜90%程度とすることが一層好
ましい。
Performing the hot working in the temperature range of 900 ° C. or higher means that if the hot working is carried out in the temperature range of lower than 900 ° C., TiC is induced by work-induced precipitation during the working, so that recrystallization is suppressed and a desired temperature is desired. This is because the organization is difficult to obtain. Further, the deformation resistance of the steel material becomes high, which leads to the occurrence of flaws and cracks. Therefore, the hot working is performed in the temperature range of 900 ° C. or higher. The upper limit of this processing temperature is preferably about 1050 ° C. The workability during hot working is 1 in terms of cross-section reduction rate.
It is preferably about 0 to 90%. In addition, in order to obtain desired characteristics more stably, it is more preferable that the working ratio during the hot working is about 30 to 90% in terms of cross-sectional reduction rate.

【0051】(D)熱間加工後の冷却 熱間加工終了後は鋼材を5〜30℃/分の冷却速度で少
なくとも500℃まで空冷あるいは放冷する必要があ
る。30℃/分を超える冷却速度で冷却した場合には、
微細なTiCの充分な量の析出が生じないので所望の組
織と機械的性質が得られない。一方、5℃/分未満の冷
却速度ではTiCが粗大化してしまい所望の微細な組織
が得られず、機械的性質も所望のものが得られない。な
お、5〜30℃/分の冷却速度で500℃まで冷却した
後の冷却速度は特に規制しなくても良い。
(D) Cooling after hot working After the hot working is finished, the steel material needs to be air-cooled or allowed to cool to at least 500 ° C at a cooling rate of 5 to 30 ° C / min. When cooled at a cooling rate of over 30 ° C / min,
The desired structure and mechanical properties cannot be obtained because a sufficient amount of fine TiC is not precipitated. On the other hand, if the cooling rate is less than 5 ° C./minute, TiC becomes coarse and a desired fine structure cannot be obtained, and desired mechanical properties cannot be obtained. The cooling rate after cooling to 500 ° C at a cooling rate of 5 to 30 ° C / min does not have to be particularly limited.

【0052】上記の(A)に示した成分組成を有する鋼
材に、上記の(C)及び(D)に示した条件で熱間加工
・冷却を行うことにより、上記の(B)に示した組織を
有する非調質鋼材を製造することができる。
The steel material having the composition shown in (A) above is subjected to hot working / cooling under the conditions shown in (C) and (D) above to obtain the result shown in (B) above. It is possible to manufacture a non-heat treated steel having a structure.

【0053】[0053]

【実施例】表1〜5に示す化学組成の鋼を150kg真
空溶解炉を用い通常の方法によって溶製した。表1にお
ける鋼1〜5、表2における鋼14〜21、表3におけ
る鋼27〜31、表4における鋼37〜46及び表5に
おける鋼47〜56は本発明例の鋼、表1における鋼6
〜13、表2における鋼22〜26及び表3における鋼
32〜36は成分のいずれかが本発明で規定する含有量
の範囲から外れた比較例の鋼である。
EXAMPLES Steels having the chemical compositions shown in Tables 1 to 5 were melted by a usual method using a 150 kg vacuum melting furnace. Steels 1 to 5 in Table 1, steels 14 to 21 in Table 2, steels 27 to 31 in Table 3, steels 37 to 46 in Table 4 and steels 47 to 56 in Table 5 are steels of the examples of the present invention, steels in Table 1 6
.About.13, Steels 22 to 26 in Table 2 and Steels 32 to 36 in Table 3 are steels of Comparative Examples in which any of the components is out of the range of the content specified in the present invention.

【0054】[0054]

【表1】 [Table 1]

【0055】[0055]

【表2】 [Table 2]

【0056】[0056]

【表3】 [Table 3]

【0057】[0057]

【表4】 [Table 4]

【0058】[0058]

【表5】 [Table 5]

【0059】次いで、これらの鋼を1250℃の温度に
1時間加熱してから900℃以上で仕上げる熱間鍛造を
1回あるいは2〜3回行って直径60mmの丸棒を作製
した。なお、直径60mmの丸棒とするための最終の熱
間鍛造工程において、熱間鍛造後の冷却条件は15℃/
分とし常温まで冷却した。
Then, these steels were heated to a temperature of 1250 ° C. for 1 hour and then hot forged for finishing at 900 ° C. or higher was performed once or 2-3 times to produce a round bar having a diameter of 60 mm. In the final hot forging step for forming a round bar having a diameter of 60 mm, the cooling condition after hot forging is 15 ° C /
Minutes and cooled to room temperature.

【0060】こうして得られた丸棒の表面から15mm
の位置(R/2部位置、Rは丸棒の半径)から、JIS
14A号の引張試験片、小野式回転曲げ試験片(平行部
の直径が8mmでその長さが18.4mm)を採取し、
室温での引張強度(TS)と疲労強度(σw)を調査し
た。又、光学顕微鏡による組織(相)の調査を行うとと
もに、走査電子顕微鏡写真からパーライトラメラ間隔
(平均値)を求めた。
15 mm from the surface of the round bar thus obtained
From the position (R / 2 position, R is the radius of the round bar),
The No. 14A tensile test piece and the Ono-type rotary bending test piece (the diameter of the parallel part is 8 mm and the length thereof is 18.4 mm) are sampled,
The tensile strength (TS) and fatigue strength (σw) at room temperature were investigated. Further, the structure (phase) was examined by an optical microscope, and the pearlite lamella spacing (average value) was obtained from the scanning electron micrograph.

【0061】ドリル穿孔試験による被削性の評価も行っ
た。すなわち、直径60mmの丸棒を45mmの長さの
輪切りにしたものを用いてその長さ方向に深さ40mm
の孔をあけ、刃先摩損により穿孔不能となった時の孔の
個数を判定した。穿孔条件はJIS高速度工具鋼SKH
51のφ6mmドリルを使用し、水溶性の潤滑剤を用い
て、送り0.15mm/rev、回転数980rpmで
行った。
Machinability was also evaluated by a drilling test. That is, a round bar with a diameter of 60 mm is cut into a slice with a length of 45 mm, and a depth of 40 mm in the length direction is used.
The number of holes was determined when the holes were made and the holes could not be drilled due to the abrasion of the cutting edge. Drilling conditions are JIS high speed tool steel SKH
A φ6 mm drill No. 51 was used and a water-soluble lubricant was used, and the feed was 0.15 mm / rev and the rotation speed was 980 rpm.

【0062】これらの結果を表6、7に示す。又、図1
〜4に疲労強度と被削性の関係を整理して示す。なお、
図1は鋼1〜13について、図2は鋼14〜26につい
て、図3は鋼27〜36について、図4は鋼37〜56
の本発明例の鋼と全ての比較例の鋼(鋼6〜13、鋼2
2〜26、鋼32〜36)について疲労強度と被削性の
関係を整理したものである。
The results are shown in Tables 6 and 7. Moreover, FIG.
The relationships between fatigue strength and machinability are summarized and shown in ~ 4. In addition,
FIG. 1 shows steels 1 to 13, FIG. 2 shows steels 14 to 26, FIG. 3 shows steels 27 to 36, and FIG. 4 shows steels 37 to 56.
Steels of the present invention and steels of all comparative examples (steels 6 to 13, steel 2).
2 to 26, steels 32 to 36), the relationship between fatigue strength and machinability is arranged.

【0063】[0063]

【表6】 [Table 6]

【0064】[0064]

【表7】 [Table 7]

【0065】表6、表7及び図1〜4から、本発明例の
鋼は高い疲労強度を有し、しかもその疲労強度レベルで
の被削性が良好であること、つまり、疲労強度−被削性
バランスに優れていることが明らかである。
From Tables 6 and 7 and FIGS. 1 to 4, the steels of the examples of the present invention have high fatigue strength and good machinability at the fatigue strength level. It is clear that the machinability balance is excellent.

【0066】これに対して比較例の鋼の場合には、明ら
かに疲労強度−被削性バランスの点で劣っている。
On the other hand, the steels of Comparative Examples are clearly inferior in the balance of fatigue strength and machinability.

【0067】[0067]

【発明の効果】本発明の非調質鋼材は高い疲労強度を有
し、しかもその疲労強度レベルでの被削性が良好である
ので機械構造部品などの素材として利用することができ
る。この耐疲労特性に優れた非調質鋼材は本発明方法に
よって比較的容易に低コストで製造することができる。
INDUSTRIAL APPLICABILITY The non-heat treated steel material of the present invention has high fatigue strength and good machinability at the fatigue strength level, and thus can be used as a material for machine structural parts and the like. This non-heat treated steel material having excellent fatigue resistance can be manufactured relatively easily and at low cost by the method of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で用いた鋼1〜13の疲労強度と被削性
の関係を示した図である。
FIG. 1 is a diagram showing a relationship between fatigue strength and machinability of steels 1 to 13 used in Examples.

【図2】実施例で用いた鋼14〜26の疲労強度と被削
性の関係を示した図である。
FIG. 2 is a diagram showing a relationship between fatigue strength and machinability of steels 14 to 26 used in the examples.

【図3】実施例で用いた鋼27〜36の疲労強度と被削
性の関係を示した図である。
FIG. 3 is a diagram showing the relationship between the fatigue strength and the machinability of the steels 27 to 36 used in the examples.

【図4】実施例で用いた鋼6〜13、鋼22〜26、鋼
32〜56の疲労強度と被削性の関係を示した図であ
る。
FIG. 4 is a diagram showing a relationship between fatigue strength and machinability of steels 6 to 13, steels 22 to 26, and steels 32 to 56 used in the examples.

フロントページの続き (56)参考文献 特開 平7−157824(JP,A) 特開 昭61−264162(JP,A) 特開 昭50−57914(JP,A) 特開 平6−228713(JP,A) 特開 昭50−20917(JP,A) 特公 昭34−2405(JP,B1) 「材料とプロセス」Vol.7 (1994),No.3、P.819Continued front page       (56) Reference JP-A-7-157824 (JP, A)                 JP-A-61-264162 (JP, A)                 Japanese Patent Laid-Open No. 50-57914 (JP, A)                 JP-A-6-228713 (JP, A)                 JP-A-50-20917 (JP, A)                 Japanese Patent Publication Sho 34-2405 (JP, B1)                 "Materials and Processes" Vol. 7               (1994), No. 3, P.I. 819

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C:0.2〜0.6%、Si:
0.05〜1.5%、Mn:0.1〜2.0%、P:
0.01〜0.07%、S:0.01〜0.20%、T
i:0.25%を超え1.0%まで、Al:0.002
〜0.05%、N:0.008%以下、Cr:0〜2.
0%、V:0〜0.3%、Nb:0〜0.05%、M
o:0〜0.5%、Cu:0〜1.0%、Nd:0〜
0.1%、Pb:0〜0.50%、Ca:0〜0.01
%、Se:0〜0.5%、Te:0〜0.05%、B
i:0〜0.4%、残部はFe及び不可避不純物の組成
であって、組織がJIS粒度番号6以上のフェライトと
ラメラ間隔の平均が0.2μm以下のパーライトからな
るフェライト・パーライト組織である被削性及び耐疲労
特性に優れた非調質鋼材。
1. C: 0.2 to 0.6% by weight, Si:
0.05-1.5%, Mn: 0.1-2.0%, P:
0.01 to 0.07%, S: 0.01 to 0.20%, T
i: more than 0.25% to 1.0%, Al: 0.002
~ 0.05%, N: 0.008% or less, Cr: 0-2.
0%, V: 0 to 0.3%, Nb: 0 to 0.05%, M
o: 0 to 0.5%, Cu: 0 to 1.0%, Nd: 0
0.1%, Pb: 0 to 0.50%, Ca: 0 to 0.01
%, Se: 0 to 0.5%, Te: 0 to 0.05%, B
i: 0 to 0.4%, the balance being Fe and unavoidable impurities, and the structure is a ferrite-perlite structure composed of ferrite having a JIS grain size number of 6 or more and pearlite having an average lamella spacing of 0.2 μm or less. Non-heat treated steel with excellent machinability and fatigue resistance.
【請求項2】請求項1に記載の化学組成を有する鋼を、
1050〜1300℃の温度域の温度に加熱した後90
0℃以上の温度域で熱間加工を行い、次いで5〜30℃
/分の冷却速度で冷却して、JIS粒度番号6以上のフ
ェライトとラメラ間隔の平均が0.2μm以下のパーラ
イトからなるフェライト・パーライト組織とすることを
特徴とする被削性及び耐疲労特性に優れた非調質鋼材の
製造方法。
2. A steel having the chemical composition according to claim 1,
90 after heating to a temperature in the temperature range of 1050 to 1300 ° C
Hot working in the temperature range of 0 ℃ or more, then 5-30 ℃
Machinability and fatigue resistance characterized by cooling at a cooling rate of 1 / min to form a ferrite / pearlite structure consisting of ferrite with a JIS grain size number 6 or more and pearlite with an average lamella spacing of 0.2 μm or less Excellent non-heat treated steel manufacturing method.
JP01604797A 1996-11-25 1997-01-30 Non-heat treated steel excellent in fatigue resistance and method for producing the same Expired - Fee Related JP3534146B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP01604797A JP3534146B2 (en) 1997-01-30 1997-01-30 Non-heat treated steel excellent in fatigue resistance and method for producing the same
KR1019980704909A KR100268536B1 (en) 1996-11-25 1997-11-25 Steel having excellent machinability and machined component
EP97913441A EP0903418B1 (en) 1996-11-25 1997-11-25 Steel having excellent machinability and machined component
PCT/JP1997/004297 WO1998023784A1 (en) 1996-11-25 1997-11-25 Steel having excellent machinability and machined component
CN97191416A CN1095503C (en) 1996-11-25 1997-11-25 Steel having excellent machinability and machined component using said steel
CA002243123A CA2243123C (en) 1996-11-25 1997-11-25 Steel products excellent in machinability and machined steel parts
DE69718784T DE69718784T2 (en) 1996-11-25 1997-11-25 STEEL WITH EXCELLENT PROCESSABILITY AND COMPONENT PRODUCED WITH IT
US09/103,566 US5922145A (en) 1996-11-25 1998-06-24 Steel products excellent in machinability and machined steel parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01604797A JP3534146B2 (en) 1997-01-30 1997-01-30 Non-heat treated steel excellent in fatigue resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10212559A JPH10212559A (en) 1998-08-11
JP3534146B2 true JP3534146B2 (en) 2004-06-07

Family

ID=11905673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01604797A Expired - Fee Related JP3534146B2 (en) 1996-11-25 1997-01-30 Non-heat treated steel excellent in fatigue resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3534146B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010066065A (en) * 1999-12-31 2001-07-11 이계안 Manufacturing method of quenching and trenching crank shaft for the diesel engine
JP3780999B2 (en) * 2002-10-17 2006-05-31 住友金属工業株式会社 Manufacturing method of non-tempered steel hot forged member
US8026191B2 (en) 2007-01-26 2011-09-27 Wonjin Worldwide Co., Ltd. Carbon-containing refractory composition containing no resinous binder
CN114196884B (en) * 2021-12-13 2022-06-17 芜湖新兴铸管有限责任公司 400 MPa-grade microalloyed corrosion-resistant reinforcing steel bar and production method thereof
CN114959500B (en) * 2022-06-29 2023-05-09 马鞍山钢铁股份有限公司 Non-quenched and tempered steel for Nb-Ti composite reinforced medium-carbon expansion-break connecting rod, expansion-break connecting rod produced by non-quenched and tempered steel, and forging and cooling control process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
「材料とプロセス」Vol.7(1994),No.3、P.819

Also Published As

Publication number Publication date
JPH10212559A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
JP5079788B2 (en) Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts
JP3954772B2 (en) Shaped material for high-temperature carburized parts with excellent grain coarsening prevention characteristics and manufacturing method thereof
JP5620336B2 (en) Steel parts for high fatigue strength and high toughness machine structure and manufacturing method thereof
JP4802435B2 (en) Non-tempered steel with small material anisotropy and excellent strength, toughness and machinability, and method for producing the same
JP4451808B2 (en) Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
JPH11335777A (en) Case hardening steel excellent in cold workability and low carburizing strain characteristics, and its production
JP3489434B2 (en) High-strength free-cut non-heat treated steel
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3196579B2 (en) Free-cutting non-heat treated steel with excellent strength and toughness
WO2012161322A1 (en) Steel component for mechanical structural use and manufacturing method for same
JP3534146B2 (en) Non-heat treated steel excellent in fatigue resistance and method for producing the same
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP3739958B2 (en) Steel with excellent machinability and its manufacturing method
JP3149741B2 (en) Non-heat treated steel excellent in fatigue resistance and its manufacturing method
JP5443277B2 (en) High-strength steel with excellent machinability and method for producing the same
JP3489656B2 (en) High-strength, high-toughness tempered steel with excellent machinability
JP6791179B2 (en) Non-microalloyed steel and its manufacturing method
JP3472675B2 (en) High-strength free-cut non-heat treated steel
JP3489376B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JP3494271B2 (en) Free-cutting non-heat treated steel with excellent strength and toughness
JP3489655B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JP4232242B2 (en) High strength high toughness non-tempered steel
JPH07116550B2 (en) Low alloy high speed tool steel and manufacturing method thereof
JPH07173571A (en) High workability wear resistant steel and production thereof
JPH10324952A (en) Heat treated steel product having high strength and high toughness and excellent in machinability

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees