JPH10212559A - Non-heat treated steel excellent in fatigue resistance and its production - Google Patents

Non-heat treated steel excellent in fatigue resistance and its production

Info

Publication number
JPH10212559A
JPH10212559A JP1604797A JP1604797A JPH10212559A JP H10212559 A JPH10212559 A JP H10212559A JP 1604797 A JP1604797 A JP 1604797A JP 1604797 A JP1604797 A JP 1604797A JP H10212559 A JPH10212559 A JP H10212559A
Authority
JP
Japan
Prior art keywords
steel
content
machinability
ferrite
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1604797A
Other languages
Japanese (ja)
Other versions
JP3534146B2 (en
Inventor
Koji Watari
宏二 渡里
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP01604797A priority Critical patent/JP3534146B2/en
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to DE69718784T priority patent/DE69718784T2/en
Priority to CN97191416A priority patent/CN1095503C/en
Priority to EP97913441A priority patent/EP0903418B1/en
Priority to CA002243123A priority patent/CA2243123C/en
Priority to PCT/JP1997/004297 priority patent/WO1998023784A1/en
Priority to KR1019980704909A priority patent/KR100268536B1/en
Priority to US09/103,566 priority patent/US5922145A/en
Publication of JPH10212559A publication Critical patent/JPH10212559A/en
Application granted granted Critical
Publication of JP3534146B2 publication Critical patent/JP3534146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a low-cost steel having excellent fatigue strength and machinability as non-heat treated and suitable as the stock for parts of machine structures and to provide a method for producing the same. SOLUTION: This steel is the one having a compsn. contg., by weight, 0.2 to 0.6% C, 0.05 to 1.5% Si, 0.1 to 2.0% Mn, 0.01 to 0.07% P, 0.01 to 0.20% S, >0.25 to 1.0% Ti, 0.002 to 0.05% Al, <=0.008% N, 0 to 2.0% Cr, 0 to 0.3% V, 0 to 0.005% Nb, 0 to 0.5% Mo, 0 to 1.0% Cu, 0 to 0.1% Nd, 0 to 0.50% Pb, 0 to 0.01% Ca, 0 to 0.5% Se, 0 to 0.05% Te, 0 to 0.4% Bi, and the balance Fe with inevitable impurities and having a ferritic-pearlitic structure composed of ferrite having >=6 JIS size number and pearlite with <=0.2μm lamellar intervals. As to the method for producing it, after heating in the temp. range of 1,050 to 1,300 deg.C, hot working is executed in the temp. range of >=900 deg.C, and next, cooling is executed at a cooling rate of 5 to 30 deg.C/min.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐疲労特性に優れ
た非調質鋼材及びその製造方法に関する。更に詳しく
は、熱間加工後に焼入れ焼戻しの調質処理を施さずとも
優れた疲労強度−被削性バランスを有する、機械構造部
品などの素材として好適な非調質鋼材及びその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-heat treated steel excellent in fatigue resistance and a method for producing the same. More specifically, the present invention relates to a non-heat treated steel material having excellent fatigue strength-machinability balance without being subjected to a tempering treatment of quenching and tempering after hot working, and suitable as a material for machine structural parts and the like, and a method for producing the same. is there.

【0002】[0002]

【従来の技術】従来、高い疲労強度を必要とする鋼製の
機械構造部品などは、熱間加工で所定の形状に粗加工
し、次いで切削加工によって最終の所望形状とした後、
焼入れ焼戻しの調質処理を施すのが一般的であった。し
かしこの調質処理には多くのエネルギーとコストを費や
す。そこで近年、省エネルギーの社会的要請に応え、且
つ一方では低コスト化を図るために、熱間加工のままで
使用できる非調質鋼の開発が盛んに行われている。
2. Description of the Related Art Conventionally, steel mechanical structural parts that require high fatigue strength are roughly worked into a predetermined shape by hot working, and then cut into a final desired shape.
It was common to apply a quenching and tempering refining treatment. However, this refining process consumes a lot of energy and cost. Therefore, in recent years, non-heat-treated steels that can be used as they are in hot working have been actively developed in order to meet social demands for energy saving and reduce costs.

【0003】例えば、特開平4−141550号公報に
はCr、Mo、Nb及びTiを複合添加して微細なベイ
ナイト組織とした「熱間鍛造用非調質鋼」が開示されて
いる。しかしこの非調質鋼はベイナイト型であるため従
来のフェライト・パーライト型の非調質鋼に比べて被削
性が劣るし、更には大きな変態歪が生じるため曲がりが
大きくなるという問題を有していた。したがって、曲が
り取りの矯正工程が必要となってコストアップにつなが
るものであった。
For example, Japanese Unexamined Patent Publication (Kokai) No. 4-141550 discloses a "non-heat treated steel for hot forging" having a fine bainite structure obtained by adding Cr, Mo, Nb and Ti in a complex manner. However, since this non-heat treated steel is bainite type, its machinability is inferior to that of conventional ferritic / pearlite type non-heat treated steel, and furthermore, there is a problem that bending becomes large due to large transformation strain. I was Therefore, a straightening process for bending is required, which leads to an increase in cost.

【0004】一方、熱間加工後に冷却した鋼材をオ−ス
テナイト温度域まで再加熱して焼入れし、次いで焼戻し
処理する調質処理に代わるものとして、特開平6−21
2347号公報に特定の化学組成を有する鋼を熱間鍛造
後直ちに焼入れし、その後焼戻し処理を行ってTiCを
析出させる「高疲労強度を有する熱間鍛造品及びその製
造方法」が開示されている。しかしこの公報に記載の熱
間鍛造品は、熱間鍛造後に直ちに焼入れしてマルテンサ
イト組織とするので、焼入れ時の焼き割れに対する管理
が必要となるし、固溶したTiCを析出させるために焼
戻しを行うのでエネルギーコストが嵩むという問題も有
していた。
On the other hand, as an alternative to the refining treatment in which the steel material cooled after hot working is reheated to the austenite temperature range, quenched, and then tempered,
No. 2347 discloses "a hot forged product having high fatigue strength and a method for producing the same", in which steel having a specific chemical composition is quenched immediately after hot forging and then tempered to precipitate TiC. . However, the hot forged product described in this publication is quenched immediately after hot forging to have a martensitic structure, so it is necessary to control quenching cracks during quenching, and tempering to precipitate solid solution TiC. Therefore, there is also a problem that energy cost increases.

【0005】非調質鋼については、熱間加工後の切削加
工を容易にする目的から、被削性に優れた快削鋼に対す
る要求が大きくなっている。
[0005] With respect to non-heat treated steel, there is an increasing demand for free-cutting steel having excellent machinability for the purpose of facilitating cutting after hot working.

【0006】一般に鋼の被削性は金属組織に大きく依存
し、特開平4−141550号公報に記載の技術の項で
も触れたが、フェライト・パーライト組織を有する鋼の
場合には被削性が良好であり、フェライト・ベイナイト
組織やベイナイトあるいはマルテンサイトの単相組織の
鋼にあっては被削性が悪い。又、Pb、Te、Bi、C
a及びSなどの快削元素を単独あるいは複合添加すれば
被削性が向上することも周知の事実である。したがっ
て、従来は非調質鋼に前記の快削元素を添加して熱間加
工後の切削加工性を改善する方法が採られてきた。しか
し、非調質鋼に単に快削元素を添加しただけの場合に
は、所望の高い疲労強度を確保できないことが多い。
[0006] Generally, the machinability of steel largely depends on the metallographic structure, and as mentioned in the section of the technology described in JP-A-4-141550, the machinability of steel having a ferrite-pearlite structure is poor. It is good, and the machinability is poor in steels having a ferrite bainite structure or a single phase structure of bainite or martensite. Also, Pb, Te, Bi, C
It is a well-known fact that the machinability is improved by adding free-cutting elements such as a and S alone or in combination. Therefore, conventionally, a method of improving the machinability after hot working by adding the above-mentioned free-cutting element to non-heat treated steel has been adopted. However, simply adding a free-cutting element to non-heat treated steel often cannot ensure a desired high fatigue strength.

【0007】こうした状況の下、例えば、特開平2−1
11842号公報と特開平6−279849号公報に
は、鋼中のCを黒鉛として存在させ、この黒鉛の切欠き
並びに潤滑効果を利用することによって被削性を向上さ
せた「被削性、焼入性に優れた熱間圧延鋼材」と「被削
性に優れた機械構造用鋼の製造方法」がそれぞれ提案さ
れている。
Under these circumstances, for example, Japanese Patent Laid-Open No. 2-1
Japanese Patent No. 11842 and Japanese Patent Application Laid-Open No. Hei 6-279849 disclose "Machinability and sintering properties" in which C in steel is present as graphite and the machinability is improved by utilizing the notch and lubrication effect of the graphite. A hot-rolled steel excellent in machinability and a method for producing steel for machine structural use excellent in machinability have been proposed.

【0008】しかし、特開平2−111842号公報に
提案された鋼材は、Bを添加しB窒化物(BN)を黒鉛
化の核として黒鉛化を促進させるものであって、Bの添
加が必須であるため凝固時に割れを生じ易いという問題
を含んでいる。一方、特開平6−279849号公報に
記載の方法は、Al添加とともに鋼中O(酸素)を低く
規制することで熱間圧延ままで黒鉛化を促進させるもの
であるが、熱間圧延後に黒鉛化焼なまし処理を施す必要
があるため、必ずしも経済的とはいえないものである。
更に、前記した2つの公報における提案はいずれも黒鉛
化を活用したものであるため、所定の形状に加工した機
械構造部品などに所望の機械的特性を付与するために
は、必ず焼入れ焼戻しの調質処理を施さねばならず、
「非調質化」と「高強度鋼の被削性の向上」を両立させ
たいとする産業界の要請には応えきれないものであっ
た。
However, the steel material proposed in Japanese Patent Application Laid-Open No. 2-111842 is one in which B is added to promote the graphitization using B nitride (BN) as a nucleus of graphitization, and the addition of B is essential. Therefore, there is a problem that cracks easily occur during solidification. On the other hand, the method described in Japanese Patent Application Laid-Open No. 6-279849 is to promote graphitization while hot rolling by restricting O (oxygen) in steel to a low level together with the addition of Al. Since it is necessary to perform a chemical annealing treatment, it is not necessarily economical.
Further, since the proposals in the two publications described above both utilize graphitization, in order to impart desired mechanical properties to a machine structural part or the like processed into a predetermined shape, it is necessary to adjust the quenching and tempering. Quality treatment,
It was unable to meet the demands of the industry to achieve both "non-tempering" and "improvement in machinability of high-strength steel".

【0009】鉄と鋼(vol.57(1971年)S4
84)には、脱酸調整快削鋼にTiを添加すれば被削性
が高まる場合のあることが報告されている。しかし、T
iの多量の添加はTiNが多量に生成されることもあっ
て工具摩耗を増大させ、被削性の点からは好ましくない
ことも述べられている。例えば、C:0.45%、S
i:0.29%、Mn:0.78%、P:0.017
%、S:0.041%、Al:0.006%、N:0.
0087%、Ti:0.228%、O:0.004%及
びCa:0.001%を含有する鋼では却ってドリル寿
命が低下して被削性が劣っている。このように、鋼に単
にTiを添加するだけでは被削性は向上するものではな
い。
Iron and steel (vol. 57 (1971) S4)
84) reports that the addition of Ti to deoxidized adjusted free-cutting steel may enhance machinability. But T
It is also described that the addition of a large amount of i increases tool wear due to generation of a large amount of TiN, and is undesirable from the viewpoint of machinability. For example, C: 0.45%, S
i: 0.29%, Mn: 0.78%, P: 0.017
%, S: 0.041%, Al: 0.006%, N: 0.
Steel containing 0087%, Ti: 0.228%, O: 0.004%, and Ca: 0.001%, on the contrary, has a short drill life and poor machinability. Thus, the machinability is not improved simply by adding Ti to steel.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記現状に
鑑みなされたもので、通常の熱間加工と冷却の条件で、
それも焼戻しを含めて熱処理を行うことなく非調質のま
まで優れた耐疲労特性を有するとともに被削性にも優れ
た、つまり疲労強度−被削性バランスに優れた機械構造
部品などの素材用として好適な低コストの鋼材とその製
造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has been developed under ordinary hot working and cooling conditions.
It also has excellent fatigue resistance and excellent machinability without heat treatment including tempering and without heat treatment, that is, materials such as machine structural parts with excellent balance between fatigue strength and machinability. It is an object of the present invention to provide a low-cost steel material suitable for use and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】本発明の要旨は、下記
(1)に示す耐疲労特性に優れた非調質鋼材及び(2)
に示す耐疲労特性に優れた非調質鋼材の製造方法にあ
る。
SUMMARY OF THE INVENTION The gist of the present invention is to provide a non-heat-treated steel material having excellent fatigue resistance as shown in the following (1) and (2):
The method for producing a non-heat-treated steel material having excellent fatigue resistance characteristics shown in FIG.

【0012】(1)重量%で、C:0.2〜0.6%、
Si:0.05〜1.5%、Mn:0.1〜2.0%、
P:0.01〜0.07%、S:0.01〜0.20
%、Ti:0.25%を超え1.0%まで、Al:0.
002〜0.05%、N:0.008%以下、Cr:0
〜2.0%、V:0〜0.3%、Nb:0〜0.05
%、Mo:0〜0.5%、Cu:0〜1.0%、Nd:
0〜0.1%、Pb:0〜0.50%、Ca:0〜0.
01%、Se:0〜0.5%、Te:0〜0.05%、
Bi:0〜0.4%、残部はFe及び不可避不純物の組
成であって、組織がJIS粒度番号6以上のフェライト
とラメラ間隔の平均が0.2μm以下のパーライトから
なるフェライト・パーライト組織である耐疲労特性に優
れた非調質鋼材。
(1) By weight%, C: 0.2-0.6%,
Si: 0.05 to 1.5%, Mn: 0.1 to 2.0%,
P: 0.01 to 0.07%, S: 0.01 to 0.20
%, Ti: more than 0.25% to 1.0%, Al: 0.
002-0.05%, N: 0.008% or less, Cr: 0
-2.0%, V: 0-0.3%, Nb: 0-0.05
%, Mo: 0 to 0.5%, Cu: 0 to 1.0%, Nd:
0 to 0.1%, Pb: 0 to 0.50%, Ca: 0 to 0.
01%, Se: 0 to 0.5%, Te: 0 to 0.05%,
Bi: 0 to 0.4%, the balance being the composition of Fe and unavoidable impurities, the structure being a ferrite-pearlite structure composed of ferrite having a JIS particle size number of 6 or more and pearlite having an average lamella spacing of 0.2 μm or less. Non-heat treated steel with excellent fatigue resistance.

【0013】(2)上記(1)に記載の化学組成を有す
る鋼を、1050〜1300℃の温度域の温度に加熱し
た後900℃以上の温度域で熱間加工を行い、次いで5
〜30℃/分の冷却速度で冷却して、JIS粒度番号6
以上のフェライトとラメラ間隔の平均が0.2μm以下
のパーライトからなるフェライト・パーライト組織とす
ることを特徴とする耐疲労特性に優れた非調質鋼材の製
造方法。
(2) The steel having the chemical composition described in the above (1) is heated to a temperature in a temperature range of 1050 to 1300 ° C., then hot-worked in a temperature range of 900 ° C. or higher, and then
Cool at a cooling rate of 3030 ° C./min.
A method for producing a non-heat treated steel excellent in fatigue resistance, characterized by having a ferrite-pearlite structure composed of pearlite having an average ferrite and lamellar spacing of 0.2 μm or less.

【0014】[0014]

【発明の実施の形態】本発明者らは、前記した目的を達
成するため非調質鋼材の化学組成及び組織について研究
を重ねた結果、下記の知見を得た。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted research on the chemical composition and structure of a non-heat treated steel material in order to achieve the above-mentioned object, and have obtained the following findings.

【0015】フェライト・パーライト組織の場合には
疲労強度は降伏強度(YS)と正の良い相関を示す。し
たがって、疲労強度を高めるためにはYSを向上させれ
ば良い。引張強度(TS)を上げることは被削性の点か
ら好ましくないので、フェライト・パーライト組織のT
Sを上げずにYSを高めることで被削性と高い疲労強度
(疲労限度(σw))を兼備できる。
In the case of a ferrite-pearlite structure, the fatigue strength shows a positive correlation with the yield strength (YS). Therefore, in order to increase the fatigue strength, YS may be improved. It is not preferable to increase the tensile strength (TS) from the viewpoint of machinability.
By increasing YS without increasing S, machinability and high fatigue strength (fatigue limit (σw)) can be obtained.

【0016】フェライト粒の微細化とパーライトラメ
ラ間隔の微細化はフェライト・パーライト組織のTSを
それほど上げることなくYSを高めるのに有効である。
The refinement of ferrite grains and the pearlite lamellar spacing are effective for increasing YS without increasing TS of ferrite / pearlite structure so much.

【0017】N量を規制した鋼材に適正量のTiを含
有させて熱間加工後の冷却条件を適正化すれば、フェラ
イト・パーライト組織のTSをそれほど上げることなく
YSを高めることができ、疲労強度が飛躍的に向上す
る。これは、(イ)冷却中に微細なTiCが析出してフ
ェライトが強化することと、(ロ)熱間加工における加
熱時に未固溶で存在するTiCによりオーステナイト粒
の成長が抑制されることで微細な組織が得られ、この組
織の微細化によって強化(微細強化)することによるも
のである。
[0017] If a proper amount of Ti is contained in a steel material whose N amount is regulated and cooling conditions after hot working are optimized, YS can be increased without increasing TS of ferrite-pearlite structure so much, and fatigue can be improved. The strength is dramatically improved. This is because (a) fine TiC precipitates during cooling and the ferrite is strengthened, and (ii) the growth of austenite grains is suppressed by TiC which is not dissolved in the heating during hot working. This is because a fine structure is obtained and the structure is strengthened (finely strengthened) by making the structure finer.

【0018】適正な条件の下で鋼にTiを積極的に添
加すると、鋼中にTiの炭硫化物が形成される。
When Ti is actively added to steel under appropriate conditions, Ti carbosulfide is formed in the steel.

【0019】鋼中に上記したTiの炭硫化物が生成す
ると、MnSの生成量が減少する。
When the above-mentioned Ti carbosulfide is formed in the steel, the amount of MnS formed decreases.

【0020】鋼中のS含有量が同じ場合には、Tiの
炭硫化物はMnSよりも大きな被削性改善効果を有す
る。これは、Tiの炭硫化物の融点がMnSのそれより
も低いため、切削加工時に工具のすくい面での潤滑作用
が大きくなることに基づく。
When the S content in steel is the same, Ti carbosulfide has a greater machinability improving effect than MnS. This is based on the fact that the melting point of the carbosulfide of Ti is lower than that of MnS, so that the lubricating action on the rake face of the tool during cutting is increased.

【0021】Tiの炭硫化物の効果を充分発揮させる
ためには、N含有量を低く制限することが重要である。
これは、N含有量が多いとTiNとしてTiが固定され
てしまい、Tiの炭硫化物の生成が抑制されてしまうた
めである。
In order to sufficiently exert the effect of the carbosulfide of Ti, it is important to limit the N content to a low level.
This is because if the N content is large, Ti is fixed as TiN, and the generation of Ti carbosulfide is suppressed.

【0022】製鋼時に生成したTiの炭硫化物は、通
常の熱間加工のための加熱温度では基地に固溶しない。
The titanium carbosulfide produced during steelmaking does not form a solid solution in the matrix at the normal heating temperature for hot working.

【0023】本発明は上記の知見に基づいて完成された
ものである。
The present invention has been completed based on the above findings.

【0024】以下、本発明の各要件について詳しく説明
する。なお、成分含有量の「%」は「重量%」を意味す
る。
Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the component content means “% by weight”.

【0025】(A)鋼の化学組成 C:Cは強度を確保するのに有効な元素である。その効
果を確保するためには0.2%以上の含有量を必要とす
る。しかし、0.6%を超えて含有すると切削加工時に
工具寿命が低下する。更に、フェライト・パーライト組
織におけるフェライト相の体積率が低下し、それに伴っ
てフェライト強化の効果が薄れて疲労強度が低下する。
したがって、Cの含有量を0.2〜0.6%とした。な
お、C含有量は0.25〜0.5%とすることが好まし
い。
(A) Chemical composition of steel C: C is an element effective for securing strength. To ensure the effect, a content of 0.2% or more is required. However, if the content exceeds 0.6%, the tool life is shortened during cutting. Further, the volume fraction of the ferrite phase in the ferrite-pearlite structure is reduced, and the effect of ferrite strengthening is weakened and the fatigue strength is reduced.
Therefore, the content of C is set to 0.2 to 0.6%. Note that the C content is preferably set to 0.25 to 0.5%.

【0026】Si:Siは、鋼の脱酸及びフェライト相
を強化する作用がある。更に、Si含有量の増加に伴い
切削時の切り屑表面の潤滑作用が高まって工具寿命が延
びるので、被削性を改善する作用も有する。しかし、そ
の含有量が0.05%未満では添加効果に乏しく、一
方、1.5%を超えると前記効果が飽和するばかりか却
って被削性が劣化するようになるので、その含有量を
0.05〜1.5%とした。なお、Siの好ましい含有
量は0.5〜1.3%である。
Si: Si has the effect of deoxidizing steel and strengthening the ferrite phase. Further, the increase in the Si content enhances the lubricating effect on the chip surface during cutting and extends the life of the tool, thereby improving the machinability. However, if the content is less than 0.05%, the effect of addition is poor. On the other hand, if the content exceeds 1.5%, not only the effect is saturated, but also the machinability deteriorates. 0.05 to 1.5%. In addition, the preferable content of Si is 0.5 to 1.3%.

【0027】Mn:Mnは、固溶強化によって疲労強度
を向上させる効果を有する。しかし、その含有量が0.
1%未満では所望の効果が得られず、2.0%を超える
と焼入れ性が高くなりすぎてベイナイト組織や島状マル
テンサイト組織の生成を促進し、耐久比(σw/TS)
及び降伏比(YS/TS)が低下するようになる。した
がって、Mnの含有量を0.1〜2.0%とした。な
お、Mn含有量は0.5〜1.7%とすることが好まし
い。
Mn: Mn has the effect of improving the fatigue strength by solid solution strengthening. However, when its content is 0.1.
If it is less than 1%, the desired effect cannot be obtained, and if it exceeds 2.0%, the hardenability becomes too high to promote the formation of bainite structure and island martensite structure, and the durability ratio (σw / TS)
And the yield ratio (YS / TS) decreases. Therefore, the content of Mn is set to 0.1 to 2.0%. The Mn content is preferably set to 0.5 to 1.7%.

【0028】P:Pは、固溶強化元素であり引張強度及
び疲労強度を向上させる効果がある。しかし、その含有
量が0.01%未満では添加効果に乏しく、一方、0.
07%を超えるとその効果が飽和するとともに靭性の劣
化及び延性(加工性)の低下をもたらすので、その含有
量を0.01〜0.07%とした。なお、Pの好ましい
含有量は0.015〜0.05%である。
P: P is a solid solution strengthening element and has an effect of improving tensile strength and fatigue strength. However, when the content is less than 0.01%, the effect of addition is poor.
When the content exceeds 07%, the effect is saturated and the toughness is deteriorated and the ductility (workability) is reduced. Therefore, the content is set to 0.01 to 0.07%. In addition, the preferable content of P is 0.015 to 0.05%.

【0029】S:Sは、被削性の向上に有効な元素であ
る。CとともにTiと結合してTiの炭硫化物を形成
し、被削性を高める作用を有する。更に、Mnと結合し
たMnSやNdを添加した場合のNdと結合したNd2
3が微細分散析出することによってフェライト生成核
密度を高くし、フェライト量を増加させるとともにフェ
ライト粒を微細化する効果を有する。しかし、その含有
量が0.01%未満では所望の効果が得られず、0.2
%を超えるとMnSが過剰に生成するのでTi炭硫化物
による被削性向上効果が低下するばかりか、却って靭性
が劣化するようになるので、その含有量を0.01〜
0.2%とした。なお、S含有量は0.02〜0.17
%とすることが好ましい。
S: S is an element effective for improving machinability. It combines with C and Ti to form Ti carbosulfide and has an effect of enhancing machinability. Further, when MnS or Nd bonded to Mn is added, Nd 2 bonded to Nd is added.
By finely dispersing and depositing S 3 , the ferrite generation nucleus density is increased, the ferrite amount is increased, and the ferrite grains are refined. However, if the content is less than 0.01%, the desired effect cannot be obtained,
%, MnS is excessively generated, so that not only the effect of improving the machinability by Ti carbosulfide is lowered but also the toughness is deteriorated.
0.2%. In addition, S content is 0.02-0.17.
% Is preferable.

【0030】Ti:Tiは、本発明において重要な元素
である。冷却中に微細なTiCとして析出して鋼を析出
強化するとともに、熱間加工のための加熱時にオーステ
ナイト中に固溶しないで残った未固溶TiCのピンニン
グ効果によってオーステナイト粒の成長が抑制されるの
で組織が微細になって、微細強化(粒界強化)の効果が
生ずる。加えて、前記の析出強化と微細強化とが重畳し
て疲労強度を改善する作用を有する。更に、C及びSと
結合してTi炭硫化物を形成し、被削性を高める作用も
有する。しかし、その含有量が0.25%以下では所望
の効果が得られず、1.0%を超えるとTiCあるいは
Ti炭硫化物が凝集粗大化して却って疲労強度が低下す
る。したがって、Tiの含有量を0.25%超えて1.
0%までとした。なお、安定して疲労強度を向上させる
ためには、Tiの含有量を0.27〜0.8%とするこ
とが好ましい。
Ti: Ti is an important element in the present invention. Precipitates as fine TiC during cooling and precipitates and strengthens the steel, and the growth of austenite grains is suppressed by the pinning effect of undissolved TiC remaining without being dissolved in austenite during heating for hot working. Therefore, the structure becomes fine, and the effect of fine strengthening (grain boundary strengthening) occurs. In addition, the precipitation strengthening and the fine strengthening overlap to have an effect of improving the fatigue strength. Further, it has an effect of forming Ti carbosulfide by combining with C and S to enhance machinability. However, if the content is 0.25% or less, the desired effect cannot be obtained. If the content exceeds 1.0%, TiC or Ti carbosulfide is coagulated and coarsened, and the fatigue strength is rather lowered. Therefore, when the content of Ti exceeds 0.25% and the content of 1.
It was set to 0%. In order to stably improve the fatigue strength, the content of Ti is preferably set to 0.27 to 0.8%.

【0031】Al:Alは、鋼の脱酸の安定化及び均質
化を図るのに有効な元素である。しかし、その含有量が
0.002%未満では所望の効果が得られず、0.05
%を超えるとその効果が飽和するとともに、却って鋼の
被削性を低下させることになるのでその含有量を0.0
02〜0.05%とした。なお、Al含有量は0.00
5〜0.03%とすることが好ましい。
Al: Al is an element effective for stabilizing and homogenizing steel deoxidation. However, if the content is less than 0.002%, the desired effect cannot be obtained, and 0.05%
%, The effect is saturated and the machinability of the steel is rather deteriorated.
02-0.05%. The Al content is 0.00
The content is preferably set to 5 to 0.03%.

【0032】N:本発明においてはNの含有量を低く制
御することが極めて重要である。すなわち、NはTiと
の親和力が大きいために容易にTiと結合してTiNを
生成し、Tiを固定してしまうので、Nを多量に含有す
る場合には前記したTiCによる強化効果及びTiの炭
硫化物による被削性向上効果が充分に発揮できないこと
となる。N含有量が0.008%未満の場合に前記した
TiC及びTi炭硫化物の効果が確保される。なお、T
iC及びTi炭硫化物の効果を高めるために、N含有量
の上限は0.006%とすることが好ましい。
N: In the present invention, it is extremely important to control the content of N to be low. That is, since N has a large affinity for Ti, it easily binds to Ti to generate TiN and fixes Ti, so that when N is contained in a large amount, the strengthening effect by TiC and the Ti The effect of improving the machinability by the carbon sulfide cannot be sufficiently exhibited. When the N content is less than 0.008%, the above-described effects of TiC and Ti carbosulfide are ensured. Note that T
In order to enhance the effects of iC and Ti carbosulfide, the upper limit of the N content is preferably set to 0.006%.

【0033】Cr:Crは添加しなくても良い。添加す
れば、固溶強化によって疲労強度を向上させる効果があ
る。この効果を確実に得るには、Crは0.02%以上
の含有量とすることが好ましい。しかし、その含有量が
2.0%を超えると焼入れ性が高くなりすぎてベイナイ
ト組織あるいは島状マルテンサイト組織の生成を促進
し、耐久比(σw/TS)並びに降伏比(YS/TS)
が低下するようになる。したがって、Crの含有量を0
〜2.0%とした。なお、Crを添加する場合にはその
含有量を0.05〜1.5%とすることがより好まし
い。
Cr: Cr need not be added. If added, there is an effect of improving the fatigue strength by solid solution strengthening. To ensure this effect, the content of Cr is preferably set to 0.02% or more. However, if the content exceeds 2.0%, the hardenability becomes too high, and the formation of bainite structure or island martensite structure is promoted, and the durability ratio (σw / TS) and the yield ratio (YS / TS)
Will decrease. Therefore, the content of Cr is reduced to 0.
To 2.0%. When Cr is added, the content is more preferably set to 0.05 to 1.5%.

【0034】V:Vは添加しなくても良い。添加すれ
ば、微細な窒化物や炭窒化物として析出し、鋼の強度、
特に疲労強度を向上させる効果を有する。この効果を確
実に得るには、Vは0.05%以上の含有量とすること
が好ましい。しかし、その含有量が0.3%を超えると
析出物が粗大化するので前記の効果が飽和したり、却っ
て低下したりする。更に、原料コストも嵩むばかりであ
る。したがって、Vの含有量を0〜0.3%とした。
V: V may not be added. If added, it precipitates as fine nitrides and carbonitrides,
In particular, it has the effect of improving fatigue strength. In order to ensure this effect, it is preferable that the content of V is 0.05% or more. However, if the content exceeds 0.3%, the precipitates are coarsened, so that the above-mentioned effects are saturated or rather reduced. In addition, the raw material cost only increases. Therefore, the content of V is set to 0 to 0.3%.

【0035】Nb:Nbは添加しなくても良い。添加す
れば、微細な窒化物や炭窒化物として析出し、オ−ステ
ナイト粒の粗大化を防止するとともに、鋼の強度、特に
疲労強度を向上させる効果を有する。この効果を確実に
得るには、Nbは0.005%以上の含有量とすること
が好ましい。しかし、その含有量が0.05%を超える
と前記の効果が飽和するばかりか、粗大な窒化物が生じ
て工具を損傷し、被削性の低下を招く。したがって、N
bの含有量を0〜0.05%とした。
Nb: Nb may not be added. If added, it precipitates as fine nitrides or carbonitrides, has the effect of preventing austenite grains from coarsening and improving the strength of steel, especially fatigue strength. In order to surely obtain this effect, the content of Nb is preferably set to 0.005% or more. However, if the content exceeds 0.05%, not only the above-mentioned effect is saturated, but also coarse nitrides are formed, which damages the tool and lowers the machinability. Therefore, N
The content of b was set to 0 to 0.05%.

【0036】Mo:Moは添加しなくても良い。添加す
れば、フェライト・パーライト組織を微細化して鋼の強
度、特に疲労強度を向上させる効果を有する。この効果
を確実に得るには、Moの含有量は0.05%以上とす
ることが好ましい。しかし、その含有量が0.5%を超
えると熱間加工後の組織が却って異常粗大化し、疲労強
度が低下してしまう。このため、Moの含有量を0〜
0.5%とした。
Mo: Mo may not be added. If added, it has the effect of refining the ferrite-pearlite structure and improving the strength of the steel, especially the fatigue strength. To ensure this effect, the Mo content is preferably set to 0.05% or more. However, if the content exceeds 0.5%, the structure after hot working is rather abnormally coarsened and the fatigue strength is reduced. Therefore, the content of Mo is 0 to
0.5%.

【0037】Cu:Cuは添加しなくても良い。添加す
れば、析出強化により鋼の強度、特に疲労強度を向上さ
せる効果を有する。この効果を確実に得るには、Cuは
0.2%以上の含有量とすることが好ましい。しかし、
その含有量が1.0%を超えると熱間加工性が劣化する
ことに加えて、析出物が粗大化して前記の効果が飽和し
たり却って低下したりする。更に、コストも嵩むばかり
である。したがって、Cuの含有量を0〜1.0%とし
た。
Cu: Cu need not be added. If added, it has the effect of improving the strength of the steel, especially the fatigue strength, by precipitation strengthening. In order to ensure this effect, it is preferable that the content of Cu be 0.2% or more. But,
If the content exceeds 1.0%, in addition to the deterioration of hot workability, the precipitates become coarse and the above-mentioned effects are saturated or rather deteriorated. In addition, costs are only increasing. Therefore, the content of Cu is set to 0 to 1.0%.

【0038】Nd:Ndは添加しなくても良い。添加す
れば、Nd23としてチップブレーカーの作用を有し被
削性を向上させる効果を有する。更に、Nd23が溶鋼
の比較的高温域で微細に分散して生成することにともな
って、MnSを微細に分散析出させてフェライト生成核
密度を高め、フェライト量を増加させるとともにフェラ
イト粒を微細化して、微細なフェライト・パーライト組
織として鋼を高強度・高靭性化する効果もある。前記の
効果を確実に得るには、Ndは0.005%以上の含有
量とすることが好ましい。しかし、その含有量が0.1
%を超えるとNd23自体が粗大化して却って疲労強度
及び靭性の低下をきたす。したがって、Ndの含有量を
0〜0.1%とした。なお、Nd含有量の好ましい上限
値は0.08%である。
Nd: Nd may not be added. If added, Nd 2 S 3 acts as a chip breaker and has the effect of improving machinability. Further, as Nd 2 S 3 is finely dispersed and generated in a relatively high temperature range of molten steel, MnS is finely dispersed and precipitated to increase the ferrite generation nucleus density, increase the amount of ferrite, and increase the ferrite grain size. It also has the effect of making the steel finer and having a finer ferrite-pearlite structure to increase the strength and toughness of the steel. In order to surely obtain the above-mentioned effects, the content of Nd is preferably set to 0.005% or more. However, the content is 0.1
%, The Nd 2 S 3 itself becomes coarse, resulting in a decrease in fatigue strength and toughness. Therefore, the content of Nd is set to 0 to 0.1%. Note that a preferable upper limit of the Nd content is 0.08%.

【0039】Pb:Pbは添加しなくても良い。添加す
れば、鋼の被削性を一段と高める作用がある。この効果
を確実に得るには、Pbは0.05%以上の含有量とす
ることが好ましい。しかし、その含有量が0.50%を
超えると前記の効果が飽和するばかりか、却って粗大介
在物を生成して疲労強度の低下をきたす。更に、熱間加
工性が劣化するので鋼材の表面に疵が生じてしまう。し
たがって、Pbの含有量を0〜0.50%とした。
Pb: Pb may not be added. If added, it has the effect of further increasing the machinability of the steel. In order to surely obtain this effect, the content of Pb is preferably set to 0.05% or more. However, if the content exceeds 0.50%, not only the above-mentioned effects are saturated, but rather coarse inclusions are formed and the fatigue strength is lowered. Further, the hot workability is deteriorated, so that the surface of the steel material is flawed. Therefore, the content of Pb was set to 0 to 0.50%.

【0040】Ca:Caは添加しなくても良い。添加す
れば、鋼の被削性を高める作用がある。この効果を確実
に得るには、Caは0.001%以上の含有量とするこ
とが好ましい。しかし、その含有量が0.01%を超え
ると前記の効果が飽和するばかりか、却って粗大介在物
を生成して疲労強度の低下をきたす。したがって、Ca
の含有量を0〜0.01%とした。
Ca: Ca may not be added. If added, it has the effect of increasing the machinability of the steel. In order to surely obtain this effect, the content of Ca is preferably set to 0.001% or more. However, if the content exceeds 0.01%, not only the above-mentioned effects are saturated, but rather coarse inclusions are formed, and the fatigue strength is lowered. Therefore, Ca
Was set to 0 to 0.01%.

【0041】Se:Seは添加しなくても良い。添加す
れば、鋼の被削性を向上させる効果を有する。この効果
を確実に得るには、Seは0.1%以上の含有量とする
ことが好ましい。しかし、その含有量が0.5%を超え
ると前記の効果が飽和するばかりか、却って粗大介在物
を生成して疲労強度の低下をきたす。したがって、Se
の含有量を0〜0.5%とした。
Se: Se need not be added. If added, it has the effect of improving the machinability of the steel. To ensure this effect, the content of Se is preferably set to 0.1% or more. However, if the content exceeds 0.5%, not only the above-mentioned effect is saturated, but rather coarse inclusions are formed and the fatigue strength is lowered. Therefore, Se
Was set to 0 to 0.5%.

【0042】Te:Teも添加しなくても良い。添加す
れば、鋼の被削性を一段と高める効果を有する。この効
果を確実に得るには、Teは0.005%以上の含有量
とすることが好ましい。しかし、その含有量が0.05
%を超えると前記の効果が飽和するばかりか、却って粗
大介在物を生成して疲労強度の低下をもたらす。更に、
熱間加工性が著しく劣化するので鋼材の表面に疵が生じ
てしまう。したがって、Teの含有量を0〜0.05%
とした。
Te: Te need not be added. If added, it has the effect of further increasing the machinability of the steel. To ensure this effect, the content of Te is preferably 0.005% or more. However, the content is 0.05
%, The above effect is not only saturated, but rather, coarse inclusions are formed to lower the fatigue strength. Furthermore,
Since the hot workability is significantly deteriorated, flaws are formed on the surface of the steel material. Therefore, the content of Te is set to 0 to 0.05%.
And

【0043】Bi:Biは添加しなくても良い。添加す
れば、鋼の被削性を向上させる効果を有する。この効果
を確実に得るには、Biは0.05%以上の含有量とす
ることが好ましい。しかし、その含有量が0.4%を超
えると前記の効果が飽和するばかりか、却って粗大介在
物を生成して疲労強度の低下をきたす。更に、熱間加工
性が劣化するので鋼材の表面に疵が生じてしまう。した
がって、Biの含有量を0〜0.4%とした。
Bi: Bi may not be added. If added, it has the effect of improving the machinability of the steel. To ensure this effect, the content of Bi is preferably set to 0.05% or more. However, when the content exceeds 0.4%, not only the above-mentioned effect is saturated, but also coarse inclusions are formed and the fatigue strength is lowered. Further, the hot workability is deteriorated, so that the surface of the steel material is flawed. Therefore, the content of Bi is set to 0 to 0.4%.

【0044】(B)鋼材の組織 上記の化学組成を有する鋼であっても、熱間加工後の組
織がベイナイトやマルテンサイトといった所謂「低温変
態生成物」からなるものでは、被削性が劣化する。更
に、熱間加工後の冷却過程で、製品に大きな変態歪が生
じて曲がりが大きくなるため曲がり取りの矯正工程が必
要となってコストアップにつながる。したがって、良好
な被削性を得るとともに変態歪を小さくするために鋼の
組織は、先ずフェライト・パーライト組織とする必要が
ある。なお、前記の化学組成は熱間加工後に鋼材を適正
な条件で冷却すれば「低温変態生成物」が生成しないよ
うに配慮されたものである。
(B) Structure of Steel Material Even if the steel has the above chemical composition, if the structure after hot working is made of a so-called “low-temperature transformation product” such as bainite or martensite, the machinability deteriorates. I do. Further, in the cooling process after the hot working, a large transformation strain is generated in the product and the bending becomes large, so that a bending correction step is required, which leads to an increase in cost. Therefore, in order to obtain good machinability and reduce transformation strain, the steel structure must first be a ferrite-pearlite structure. The above chemical composition is designed so that "low-temperature transformation products" are not generated if the steel is cooled under appropriate conditions after hot working.

【0045】フェライト・パーライト組織において、フ
ェライトがJIS粒度番号6以上の細粒であり、且つパ
ーライトラメラ間隔の平均が0.2μm以下の場合にフ
ェライト・パーライト組織のTSを上げることなくYS
を高めることができるので、被削性を低下させることな
く疲労強度を高めることができる。したがって、鋼材の
組織を、JIS粒度番号6以上のフェライトとラメラ間
隔の平均が0.2μm以下のパーライトからなるフェラ
イト・パーライト組織とした。
In the ferrite / pearlite structure, when the ferrite is fine grains having a JIS particle size number of 6 or more and the average of the pearlite lamella spacing is 0.2 μm or less, YS without increasing the TS of the ferrite / pearlite structure.
Therefore, fatigue strength can be increased without lowering machinability. Therefore, the structure of the steel material was a ferrite / pearlite structure composed of ferrite having a JIS grain size number of 6 or more and pearlite having an average of lamellar spacing of 0.2 μm or less.

【0046】フェライト粒とパーライトラメラ間隔の平
均は、微細であればあるほど前記した効果(フェライト
・パーライト組織のTSを上げることなくYSを高める
効果)が大きいので、フェライトのJIS粒度番号の上
限及びパーライトラメラ間隔の平均の下限は特に規定さ
れるものではない。
The average of the ferrite grain and pearlite lamella spacing is such that the smaller the average, the greater the above-mentioned effect (the effect of increasing YS without increasing the TS of the ferrite / pearlite structure). The lower limit of the average of the pearlite lamella intervals is not particularly defined.

【0047】なお、本発明でいうパーライトのラメラ間
隔は、例えば、ナイタルで腐食した試料の走査電子顕微
鏡組織や前記試料から採取した2段レプリカの透過電子
顕微鏡組織を用いた通常の方法によって容易に求めるこ
とができる。
The lamella spacing of pearlite in the present invention can be easily determined by a conventional method using, for example, a scanning electron microscope structure of a sample corroded by nital or a transmission electron microscope structure of a two-step replica taken from the sample. You can ask.

【0048】(C)熱間加工 鋼材を前記の所望組織とするためには、熱間での加工
は、1050〜1300℃の温度域の温度に加熱した
後、900℃以上の温度域で行う必要がある。
(C) Hot working In order to obtain the desired structure of the steel material, hot working is performed at a temperature in a temperature range of 1,050 to 1,300 ° C. and then in a temperature range of 900 ° C. or more. There is a need.

【0049】1300℃を超える高温加熱の場合には、
オ−ステナイト粒の粗大化が著しいため所望のサイズの
フェライト・パーライト組織が得られないという品質面
での問題があることに加えて、コストアップになるとい
う経済面での不利もある。又、1050℃を下回る温度
域で加熱した場合には、Tiのオ−ステナイト中への固
溶が充分でないため、熱間加工後に適正な冷却条件で冷
却しても微細なTiCの析出が充分生じず、所望の組織
及び機械的性質が得られない。したがって、本発明にお
いては熱間加工の加熱温度を1050〜1300℃に限
定した。
In the case of high-temperature heating exceeding 1300 ° C.,
In addition to the quality problem that a ferrite-pearlite structure of a desired size cannot be obtained due to remarkable coarsening of austenite grains, there is an economic disadvantage that the cost is increased. Further, when heating is performed in a temperature range lower than 1050 ° C., since solid solution of Ti in austenite is not sufficient, fine TiC precipitates sufficiently even if cooled under appropriate cooling conditions after hot working. No desired texture and mechanical properties are obtained. Therefore, in the present invention, the heating temperature of the hot working is limited to 1050 to 1300 ° C.

【0050】熱間加工を900℃以上の温度域で行うの
は、900℃を下回る温度域で熱間加工すれば加工中に
TiCが加工誘起析出してしまうので再結晶が抑制さ
れ、所望の組織が得難いためである。又、鋼材の変形抵
抗が高くなって疵の発生や割れにつながることにもな
る。このため、熱間加工は900℃以上の温度域で行う
こととした。この加工温度の上限は1050℃程度とす
るのが良い。また熱間加工時の加工度は断面減少率で1
0〜90%程度とすることが好ましい。なお、所望の特
性をより安定して得るために、上記の熱間加工時の加工
度を断面減少率で30〜90%程度とすることが一層好
ましい。
The reason why the hot working is performed in a temperature range of 900 ° C. or more is that if the hot working is performed in a temperature range lower than 900 ° C., TiC precipitates during the working during the working, so that recrystallization is suppressed and the desired recrystallization is suppressed. This is because it is difficult to obtain an organization. Further, the deformation resistance of the steel material is increased, which leads to generation of flaws and cracks. Therefore, the hot working is performed in a temperature range of 900 ° C. or more. The upper limit of the processing temperature is preferably about 1050 ° C. The degree of working during hot working is 1 in area reduction rate.
It is preferable to set it to about 0 to 90%. In order to obtain the desired characteristics more stably, it is more preferable that the working ratio at the time of the above-mentioned hot working is about 30 to 90% in terms of a cross-sectional reduction rate.

【0051】(D)熱間加工後の冷却 熱間加工終了後は鋼材を5〜30℃/分の冷却速度で少
なくとも500℃まで空冷あるいは放冷する必要があ
る。30℃/分を超える冷却速度で冷却した場合には、
微細なTiCの充分な量の析出が生じないので所望の組
織と機械的性質が得られない。一方、5℃/分未満の冷
却速度ではTiCが粗大化してしまい所望の微細な組織
が得られず、機械的性質も所望のものが得られない。な
お、5〜30℃/分の冷却速度で500℃まで冷却した
後の冷却速度は特に規制しなくても良い。
(D) Cooling after hot working After the hot working is completed, the steel material needs to be air-cooled or cooled to at least 500 ° C at a cooling rate of 5 to 30 ° C / min. When cooling at a cooling rate exceeding 30 ° C./min,
Since a sufficient amount of fine TiC is not deposited, the desired structure and mechanical properties cannot be obtained. On the other hand, if the cooling rate is less than 5 ° C./min, TiC becomes coarse, and a desired fine structure cannot be obtained, and desired mechanical properties cannot be obtained. The cooling rate after cooling to 500 ° C. at a cooling rate of 5 to 30 ° C./min may not be particularly limited.

【0052】上記の(A)に示した成分組成を有する鋼
材に、上記の(C)及び(D)に示した条件で熱間加工
・冷却を行うことにより、上記の(B)に示した組織を
有する非調質鋼材を製造することができる。
The steel having the component composition shown in the above (A) was subjected to hot working and cooling under the conditions shown in the above (C) and (D), whereby the steel shown in the above (B) was obtained. A non-heat treated steel material having a structure can be manufactured.

【0053】[0053]

【実施例】表1〜5に示す化学組成の鋼を150kg真
空溶解炉を用い通常の方法によって溶製した。表1にお
ける鋼1〜5、表2における鋼14〜21、表3におけ
る鋼27〜31、表4における鋼37〜46及び表5に
おける鋼47〜56は本発明例の鋼、表1における鋼6
〜13、表2における鋼22〜26及び表3における鋼
32〜36は成分のいずれかが本発明で規定する含有量
の範囲から外れた比較例の鋼である。
EXAMPLES Steel having the chemical composition shown in Tables 1 to 5 was melted by a usual method using a 150 kg vacuum melting furnace. The steels 1 to 5 in Table 1, the steels 14 to 21 in Table 2, the steels 27 to 31 in Table 3, the steels 37 to 46 in Table 4, and the steels 47 to 56 in Table 5 are steels of the present invention and steels in Table 1. 6
13, steels 22 to 26 in Table 2 and steels 32 to 36 in Table 3 are steels of comparative examples in which any of the components is out of the range of the content specified in the present invention.

【0054】[0054]

【表1】 [Table 1]

【0055】[0055]

【表2】 [Table 2]

【0056】[0056]

【表3】 [Table 3]

【0057】[0057]

【表4】 [Table 4]

【0058】[0058]

【表5】 [Table 5]

【0059】次いで、これらの鋼を1250℃の温度に
1時間加熱してから900℃以上で仕上げる熱間鍛造を
1回あるいは2〜3回行って直径60mmの丸棒を作製
した。なお、直径60mmの丸棒とするための最終の熱
間鍛造工程において、熱間鍛造後の冷却条件は15℃/
分とし常温まで冷却した。
Next, these steels were heated to a temperature of 1250 ° C. for 1 hour and then hot forged to finish at 900 ° C. or more once or 2-3 times to produce round bars having a diameter of 60 mm. In the final hot forging step for obtaining a round bar having a diameter of 60 mm, the cooling condition after hot forging was 15 ° C. /
And cooled to room temperature.

【0060】こうして得られた丸棒の表面から15mm
の位置(R/2部位置、Rは丸棒の半径)から、JIS
14A号の引張試験片、小野式回転曲げ試験片(平行部
の直径が8mmでその長さが18.4mm)を採取し、
室温での引張強度(TS)と疲労強度(σw)を調査し
た。又、光学顕微鏡による組織(相)の調査を行うとと
もに、走査電子顕微鏡写真からパーライトラメラ間隔
(平均値)を求めた。
15 mm from the surface of the thus obtained round bar
From the position (R / 2 part position, R is the radius of the round bar)
A 14A tensile test specimen and an Ono-type rotary bending test specimen (parallel portion having a diameter of 8 mm and a length of 18.4 mm) were collected.
The tensile strength (TS) and the fatigue strength (σw) at room temperature were investigated. In addition, the structure (phase) was examined with an optical microscope, and the pearlite lamella spacing (average value) was determined from a scanning electron micrograph.

【0061】ドリル穿孔試験による被削性の評価も行っ
た。すなわち、直径60mmの丸棒を45mmの長さの
輪切りにしたものを用いてその長さ方向に深さ40mm
の孔をあけ、刃先摩損により穿孔不能となった時の孔の
個数を判定した。穿孔条件はJIS高速度工具鋼SKH
51のφ6mmドリルを使用し、水溶性の潤滑剤を用い
て、送り0.15mm/rev、回転数980rpmで
行った。
The machinability was evaluated by a drilling test. That is, a round bar having a diameter of 60 mm was cut into 45 mm-length round bars, and a depth of 40 mm was used in the length direction.
Were drilled, and the number of holes when drilling was impossible due to abrasion of the cutting edge was determined. Drilling conditions are JIS high speed tool steel SKH
Using a 51 φ6 mm drill, a water-soluble lubricant was used at a feed rate of 0.15 mm / rev and a rotation speed of 980 rpm.

【0062】これらの結果を表6、7に示す。又、図1
〜4に疲労強度と被削性の関係を整理して示す。なお、
図1は鋼1〜13について、図2は鋼14〜26につい
て、図3は鋼27〜36について、図4は鋼37〜56
の本発明例の鋼と全ての比較例の鋼(鋼6〜13、鋼2
2〜26、鋼32〜36)について疲労強度と被削性の
関係を整理したものである。
Tables 6 and 7 show the results. Also, FIG.
4 to 4 show the relationship between fatigue strength and machinability. In addition,
1 is for steels 1 to 13, FIG. 2 is for steels 14 to 26, FIG. 3 is for steels 27 to 36, and FIG.
Steel of the present invention and steels of all comparative examples (steel 6 to 13, steel 2)
2 to 26 and steels 32 to 36) in which the relationship between fatigue strength and machinability is arranged.

【0063】[0063]

【表6】 [Table 6]

【0064】[0064]

【表7】 [Table 7]

【0065】表6、表7及び図1〜4から、本発明例の
鋼は高い疲労強度を有し、しかもその疲労強度レベルで
の被削性が良好であること、つまり、疲労強度−被削性
バランスに優れていることが明らかである。
From Tables 6 and 7, and FIGS. 1 to 4, the steel of the present invention has high fatigue strength, and has good machinability at that fatigue strength level, that is, fatigue strength-workability. It is clear that the balance is excellent.

【0066】これに対して比較例の鋼の場合には、明ら
かに疲労強度−被削性バランスの点で劣っている。
On the other hand, the steel of the comparative example is clearly inferior in terms of the balance between fatigue strength and machinability.

【0067】[0067]

【発明の効果】本発明の非調質鋼材は高い疲労強度を有
し、しかもその疲労強度レベルでの被削性が良好である
ので機械構造部品などの素材として利用することができ
る。この耐疲労特性に優れた非調質鋼材は本発明方法に
よって比較的容易に低コストで製造することができる。
The non-heat treated steel material of the present invention has a high fatigue strength and has good machinability at the level of the fatigue strength, so that it can be used as a material for machine structural parts and the like. The non-heat treated steel excellent in fatigue resistance can be relatively easily manufactured at low cost by the method of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で用いた鋼1〜13の疲労強度と被削性
の関係を示した図である。
FIG. 1 is a view showing a relationship between fatigue strength and machinability of steels 1 to 13 used in Examples.

【図2】実施例で用いた鋼14〜26の疲労強度と被削
性の関係を示した図である。
FIG. 2 is a diagram showing a relationship between fatigue strength and machinability of steels 14 to 26 used in Examples.

【図3】実施例で用いた鋼27〜36の疲労強度と被削
性の関係を示した図である。
FIG. 3 is a diagram showing a relationship between fatigue strength and machinability of steels 27 to 36 used in Examples.

【図4】実施例で用いた鋼6〜13、鋼22〜26、鋼
32〜56の疲労強度と被削性の関係を示した図であ
る。
FIG. 4 is a diagram showing the relationship between the fatigue strength and machinability of steels 6 to 13, steels 22 to 26, and steels 32 to 56 used in Examples.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.2〜0.6%、Si:
0.05〜1.5%、Mn:0.1〜2.0%、P:
0.01〜0.07%、S:0.01〜0.20%、T
i:0.25%を超え1.0%まで、Al:0.002
〜0.05%、N:0.008%以下、Cr:0〜2.
0%、V:0〜0.3%、Nb:0〜0.05%、M
o:0〜0.5%、Cu:0〜1.0%、Nd:0〜
0.1%、Pb:0〜0.50%、Ca:0〜0.01
%、Se:0〜0.5%、Te:0〜0.05%、B
i:0〜0.4%、残部はFe及び不可避不純物の組成
であって、組織がJIS粒度番号6以上のフェライトと
ラメラ間隔の平均が0.2μm以下のパーライトからな
るフェライト・パーライト組織である耐疲労特性に優れ
た非調質鋼材。
C .: 0.2 to 0.6% by weight, Si:
0.05-1.5%, Mn: 0.1-2.0%, P:
0.01 to 0.07%, S: 0.01 to 0.20%, T
i: more than 0.25% to 1.0%, Al: 0.002
-0.05%, N: 0.008% or less, Cr: 0-2.
0%, V: 0 to 0.3%, Nb: 0 to 0.05%, M
o: 0 to 0.5%, Cu: 0 to 1.0%, Nd: 0 to 0%
0.1%, Pb: 0 to 0.50%, Ca: 0 to 0.01
%, Se: 0 to 0.5%, Te: 0 to 0.05%, B
i: 0 to 0.4%, the balance being the composition of Fe and unavoidable impurities, the structure being a ferrite-pearlite structure composed of ferrite having a JIS particle size number of 6 or more and pearlite having an average lamellar spacing of 0.2 μm or less. Non-heat treated steel with excellent fatigue resistance.
【請求項2】請求項1に記載の化学組成を有する鋼を、
1050〜1300℃の温度域の温度に加熱した後90
0℃以上の温度域で熱間加工を行い、次いで5〜30℃
/分の冷却速度で冷却して、JIS粒度番号6以上のフ
ェライトとラメラ間隔の平均が0.2μm以下のパーラ
イトからなるフェライト・パーライト組織とすることを
特徴とする耐疲労特性に優れた非調質鋼材の製造方法。
2. A steel having the chemical composition according to claim 1,
After heating to a temperature in the temperature range of 1,050 to 1,300 ° C, 90
Perform hot working in a temperature range of 0 ° C or higher, then 5 to 30 ° C
At a cooling rate of / min to obtain a ferrite-pearlite structure comprising ferrite having a JIS particle size number of 6 or more and pearlite having an average lamellar spacing of 0.2 μm or less, characterized by excellent fatigue resistance. Method of manufacturing high quality steel.
JP01604797A 1996-11-25 1997-01-30 Non-heat treated steel excellent in fatigue resistance and method for producing the same Expired - Fee Related JP3534146B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP01604797A JP3534146B2 (en) 1997-01-30 1997-01-30 Non-heat treated steel excellent in fatigue resistance and method for producing the same
CN97191416A CN1095503C (en) 1996-11-25 1997-11-25 Steel having excellent machinability and machined component using said steel
EP97913441A EP0903418B1 (en) 1996-11-25 1997-11-25 Steel having excellent machinability and machined component
CA002243123A CA2243123C (en) 1996-11-25 1997-11-25 Steel products excellent in machinability and machined steel parts
DE69718784T DE69718784T2 (en) 1996-11-25 1997-11-25 STEEL WITH EXCELLENT PROCESSABILITY AND COMPONENT PRODUCED WITH IT
PCT/JP1997/004297 WO1998023784A1 (en) 1996-11-25 1997-11-25 Steel having excellent machinability and machined component
KR1019980704909A KR100268536B1 (en) 1996-11-25 1997-11-25 Steel having excellent machinability and machined component
US09/103,566 US5922145A (en) 1996-11-25 1998-06-24 Steel products excellent in machinability and machined steel parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01604797A JP3534146B2 (en) 1997-01-30 1997-01-30 Non-heat treated steel excellent in fatigue resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10212559A true JPH10212559A (en) 1998-08-11
JP3534146B2 JP3534146B2 (en) 2004-06-07

Family

ID=11905673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01604797A Expired - Fee Related JP3534146B2 (en) 1996-11-25 1997-01-30 Non-heat treated steel excellent in fatigue resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3534146B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010066065A (en) * 1999-12-31 2001-07-11 이계안 Manufacturing method of quenching and trenching crank shaft for the diesel engine
JP2004137542A (en) * 2002-10-17 2004-05-13 Sumitomo Metal Ind Ltd Method for manufacturing hot-forged member of microalloyed steel
US8026191B2 (en) 2007-01-26 2011-09-27 Wonjin Worldwide Co., Ltd. Carbon-containing refractory composition containing no resinous binder
CN114196884A (en) * 2021-12-13 2022-03-18 芜湖新兴铸管有限责任公司 400 MPa-grade microalloyed corrosion-resistant reinforcing steel bar and production method thereof
CN114959500A (en) * 2022-06-29 2022-08-30 马鞍山钢铁股份有限公司 Non-quenched and tempered steel for Nb-Ti composite reinforced medium-carbon fractured connecting rod, produced fractured connecting rod and forging and cooling control process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010066065A (en) * 1999-12-31 2001-07-11 이계안 Manufacturing method of quenching and trenching crank shaft for the diesel engine
JP2004137542A (en) * 2002-10-17 2004-05-13 Sumitomo Metal Ind Ltd Method for manufacturing hot-forged member of microalloyed steel
US8026191B2 (en) 2007-01-26 2011-09-27 Wonjin Worldwide Co., Ltd. Carbon-containing refractory composition containing no resinous binder
CN114196884A (en) * 2021-12-13 2022-03-18 芜湖新兴铸管有限责任公司 400 MPa-grade microalloyed corrosion-resistant reinforcing steel bar and production method thereof
CN114959500A (en) * 2022-06-29 2022-08-30 马鞍山钢铁股份有限公司 Non-quenched and tempered steel for Nb-Ti composite reinforced medium-carbon fractured connecting rod, produced fractured connecting rod and forging and cooling control process

Also Published As

Publication number Publication date
JP3534146B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
JPWO2009057731A1 (en) Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts
JP4802435B2 (en) Non-tempered steel with small material anisotropy and excellent strength, toughness and machinability, and method for producing the same
JP3241897B2 (en) Non-heat treated steel for hot forging with excellent tensile strength, fatigue strength and machinability
JP3489434B2 (en) High-strength free-cut non-heat treated steel
JP3196579B2 (en) Free-cutting non-heat treated steel with excellent strength and toughness
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
JP2000328193A (en) Non-refining steel for hot forging excellent in wear resistance
JP3149741B2 (en) Non-heat treated steel excellent in fatigue resistance and its manufacturing method
JP3534146B2 (en) Non-heat treated steel excellent in fatigue resistance and method for producing the same
KR101458348B1 (en) Untempered steel for hot casting, hot-casted untempered article and method for producing same
JP3489656B2 (en) High-strength, high-toughness tempered steel with excellent machinability
JP3739958B2 (en) Steel with excellent machinability and its manufacturing method
JPH1129842A (en) Ferrite-pearlite type non-heat treated steel
JP3494271B2 (en) Free-cutting non-heat treated steel with excellent strength and toughness
JP3472675B2 (en) High-strength free-cut non-heat treated steel
JP3489376B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JP4232242B2 (en) High strength high toughness non-tempered steel
JP3395642B2 (en) Coarse-grained case hardened steel material, surface-hardened part excellent in strength and toughness, and method for producing the same
JP3489655B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JP2011256447A (en) High strength steel excellent in machinability, and manufacturing method therefor
JP3849296B2 (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel
JPH10324952A (en) Heat treated steel product having high strength and high toughness and excellent in machinability
JPH10265891A (en) Ferrite/pearlite type non-heat treated steel
JPH07102340A (en) Production of non-heattreated steel excellent in fatigue characteristic
JPH0673490A (en) High toughness non-heat-treated rolled bar steel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees