JP3849296B2 - Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel - Google Patents

Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel

Info

Publication number
JP3849296B2
JP3849296B2 JP13663598A JP13663598A JP3849296B2 JP 3849296 B2 JP3849296 B2 JP 3849296B2 JP 13663598 A JP13663598 A JP 13663598A JP 13663598 A JP13663598 A JP 13663598A JP 3849296 B2 JP3849296 B2 JP 3849296B2
Authority
JP
Japan
Prior art keywords
steel
hardness
less
carbosulfide
carbon sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13663598A
Other languages
Japanese (ja)
Other versions
JPH11335732A (en
Inventor
八寿男 黒川
芳彦 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13663598A priority Critical patent/JP3849296B2/en
Publication of JPH11335732A publication Critical patent/JPH11335732A/en
Application granted granted Critical
Publication of JP3849296B2 publication Critical patent/JP3849296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軟窒化用鋼材の製造方法及びその鋼材を用いた軟窒化部品に関し、より詳しくは耐疲労特性、耐摩耗性、耐ピッチング性や耐スポーリング性に優れた軟窒化部品と、その軟窒化部品の素材となる被削性に優れた軟窒化用鋼材の製造方法に関する。なお、本明細書では、繰り返し面圧の負荷により材料表面が剥離する疲労現象のうち、剥離が比較的小さいものを「ピッチング」、剥離が比較的大きなものを「スポーリング」と呼ぶ。
【0002】
【従来の技術】
自動車や産業機械に使用される多くの部品、例えば歯車や軸受などには、一般に大きな疲労強度や耐摩耗性が要求される。そのため前記部品は、所謂「表面硬化処理」を施して製造されてきた。
【0003】
表面硬化処理としては一般に、浸炭焼入れ、高周波焼入れ、炎焼入れ、窒化や軟窒化などの処理が知られている。このうち、浸炭焼入れ、高周波焼入れや炎焼入れといったオーステナイト状態の高温域から急冷(焼入れ)して表面を硬化させる処理では、部品に大きな焼入れ歪が生じてしまう。更に、場合によっては焼入れした部品に焼割れが生ずることもある。
【0004】
このため、所要部品に対して特に低歪であることが要求される場合には、窒化や軟窒化処理が施されている。
【0005】
しかし、一般の窒化処理は、アンモニアの気流中で500〜550℃に20〜100時間加熱後徐冷する所謂「ガス窒化」処理であるため生産性が低くコストが嵩む。このため、窒化温度が550℃前後の液体窒化法が開発されているが、この方法の場合にも窒化には12時間程度を要するので、必ずしも量産部品を低コストで効率よく製造するのに適した方法とは言えない。イオン窒化法によれば短時間で窒化が可能ではあるが、温度測定が困難なことや、陰極となる被処理部品の配置や形状、質量などによって温度や窒化層が不安定になったりするので、この方法もやはり量産部品の製造に適しているとは言い難い。
【0006】
一方、軟窒化処理は、570℃程度の温度のシアン系化合物の塩浴、又はRXガス(RXガスは吸熱型変成ガスの商標)にアンモニアを添加したガス中に保持することにより、鋼材表面からN(窒素)とO(酸素)を鋼中に侵入させて表層部を硬化させる方法で、短時間処理が可能である。このうち前者のシアン系化合物の塩浴を用いる方法は、廃液の処理にコストが嵩むため、後者のガスを用いる「ガス軟窒化法」が、低歪が要求される量産品に適した表面硬化処理方法として重用されている。
【0007】
従来、軟窒化用鋼としては、例えば、JIS G 4105に規定されているクロムモリブデン鋼鋼材(SCM435など)やJIS G 4202のアルミニウムクロムモリブデン鋼鋼材(SACM645)が多く使用されてきた。
【0008】
しかし、SCM435を初めとするJISに規定されたクロムモリブデン鋼鋼材を素材鋼とした部品の場合、軟窒化処理後の表面からビッカース硬度(Hv)500の位置までの距離(以下、「有効硬化深さ」という)は0.05mm程度と小さい。更に、表面から0.025mmの位置におけるマイクロビッカース硬度(以下、「表面硬度」という)もHv600以上にならない場合が多い。このため、疲労強度や耐摩耗性の点で充分に満足できるものではなかった。
【0009】
一方、上記の欠点を改良するためにSACM645には窒化特性向上元素であるAl及びCrが多量に添加されている。しかし、SACM645を素材鋼とした場合も、軟窒化処理によって表面硬度はHvで800〜1100と非常に高くなるものの、有効硬化深さは0.08mm程度と小さい。したがって、表面部から芯部(以下、軟窒化処理後の表面硬化されていない部分を「芯部」という)への硬度勾配が急激になりすぎる。そのため、高負荷の下で運転される歯車や軸受などでは、表面硬化部と芯部の境界付近から剥離現象が起きやすく、耐ピッチング性あるいは耐スポ−リング性が劣っていた。更に、SACM645は溶製、鋳造、熱間加工が比較的困難であるし、冷間加工性が悪く複雑な形状の部品にはプレス成形が難しいという問題もあった。
【0010】
特開昭58−71357号公報には、JIS規格鋼の問題点を解決した「軟窒化用鋼」が開示されている。この公報で提案された鋼を素材鋼として用いれば、確かに疲労強度、耐摩耗性に優れるとともに耐ピッチング性、耐スポーリング性にも優れた軟窒化部品を得ることは可能である。しかし、Siなどの強化に有効な元素の含有量を低減して冷間加工性を向上させた鋼であるため、軟窒化によって表面部は硬化するものの、逆に芯部は軟窒化時の加熱で軟化するので、軟窒化後に芯部硬度が低くなりすぎて疲労特性が劣化する場合もあった。
【0011】
更に、JIS規格鋼であるSCM435などのクロムモリブデン鋼やアルミニウムクロムモリブデン鋼のSACM645及び上記の特開昭58−71357号公報で提案された鋼の場合には被削性が劣るため、これを熱間鍛造や冷間鍛造した後に所望の軟窒化部品の形状に成形するための切削加工のコストが嵩んでしまう。このため、切削加工を容易にし、低コスト化を図るために被削性に優れた軟窒化用鋼材に対する要求がますます大きくなっている。
【0012】
従来、被削性を高めるために、鋼にPb、Te、Bi、Ca及びSなどの快削元素を単独あるいは複合添加することが行われてきた。しかし、前記したJIS規格鋼や特開昭58−71357号公報で提案された鋼に、単に上記の快削元素を添加しただけの場合には、所望の機械的性質、なかでも疲労強度を確保できないことが多い。
【0013】
鉄と鋼(vol.57(1971年)S484)には、脱酸調整快削鋼にTiを添加すれば被削性が高まる場合のあることが報告されている。しかし、Tiの多量の添加はTiNが多量に生成されることもあって工具摩耗を増大させ、被削性の点からは好ましくないことも述べられている。例えば、C:0.45%、Si:0.29%、Mn:0.78%、P:0.017%、S:0.041%、Al:0.006%、N:0.0087%、Ti:0.228%、O:0.004%及びCa:0.001%を含有する鋼では却ってドリル寿命が低下して被削性が劣っている。このように、鋼に単にTiを添加するだけでは被削性は向上するものではない。
【0014】
又、硫黄快削鋼の硫化物形態制御の目的でZrが添加されることがあるが、例えば、鉄と鋼(vol.62(1976年)p.885)に記されているように、Zrは被削性に対してはほとんど影響を及ぼさない。つまり、鋼に単にZrを添加するだけでは被削性は向上するものではない。
【0015】
【発明が解決しようとする課題】
本発明は、上記現状に鑑みなされたもので、被削性と冷間加工性に優れた鋼材を素材とし、冷間加工後に軟窒化処理するだけで優れた疲労特性、耐摩耗性、耐ピッチング性や耐スポーリング性を呈する軟窒化部品を提供することを課題とする。更に、本発明は、上記軟窒化部品の素材となる被削性に優れた軟窒化用鋼材の製造方法を提供することも課題とする。
【0016】
【課題を解決するための手段】
本発明の要旨は、下記(1)及び(2)に示す被削性に優れた軟窒化用鋼材の製造方法、並びに(3)に示すその鋼材を用いた軟窒化部品にある。
【0017】
(1)重量%で、C:0.15〜0.45%、Si:0.10%を超え0.50%以下、Mn:0.5〜2.5%、S:0.002〜0.2%、Cr:0.5〜2%、V:0.05〜0.5%、Ti:0〜1.0%、Zr:0〜1.0%で、且つ、Ti(%)+Zr(%):0.04〜1.0%、Al:0.01〜0.3%、N:0.008%以下、Pb:0〜0.35%及びCa:0〜0.01%を含み、下記(1)式で表されるfn1の値が0%を超え、残部はFe及び不可避不純物の化学組成で、更に、鋼中のTi炭硫化物及びZr炭硫化物の最大直径が10μm以下で、且つ、その量の和がJIS G 0555 に規定の清浄度で0.05%以上である鋼を、熱間加工後に球状化焼鈍して硬度をHv180以下とし、次いで冷間加工して硬度をHv250以上にすることを特徴とする被削性に優れた軟窒化用鋼材の製造方法。
【0018】
fn1=Ti(%)+Zr(%)−1.2S(%)・・・・(1)。
(2)重量%で、C:0.15〜0.45%、Si:0.05〜0.50%、Mn:0.5〜2.5%、S:0.002〜0.2%、Cr:0.5〜2%、V:0.05〜0.5%、Ti:0〜1.0%、Zr:0〜1.0%で、且つ、Ti(%)+Zr(%):0.04〜1.0%、Al:0.01〜0.3%、N:0.008%以下、Pb:0〜0.35%、Ca:0〜0.01%、並びに、Mo:0.02〜0.3%及びW:0.04〜0.5%の1種以上を含み、(1)式で表されるfn1の値が0%を超え、残部はFe及び不可避不純物の化学組成で、更に、鋼中のTi炭硫化物及びZr炭硫化物の最大直径が10μm以下で、且つ、その量の和がJIS G 0555 に規定の清浄度で0.05%以上である鋼を、熱間加工後に球状化焼鈍して硬度をHv180以下とし、次いで冷間加工して硬度をHv250以上にすることを特徴とする被削性に優れた軟窒化用鋼材の製造方法。
【0019】
(3)上記(1)又は(2)に記載の化学組成、大きさ及び量のTi炭硫化物とZr炭硫化物、並びに球状化組織を備え、表面硬度がHv600以上、且つ、有効硬化深さが0.1mm以上、芯部硬度がHv250以上であることを特徴とする軟窒化部品。
【0020】
なお、本発明でいう「Ti炭硫化物」には単なるTi硫化物を、又、「Zr炭硫化物」には単なるZr硫化物をそれぞれ含むものとする。又、「(Ti及びZrの炭硫化物の)最大直径」とは「個々のTi及びZrの炭硫化物における最も長い径」のことを指す。Ti炭硫化物の清浄度やZr炭硫化物の清浄度は、光学顕微鏡の倍率を400倍として、JIS G 0555に規定された「鋼の非金属介在物の顕微鏡試験方法」によって60視野測定した値をいう。
【0021】
又、既に述べたように、「表面硬度」は表面から0.025mmの位置におけるマイクロビッカース硬度、「有効硬化深さ」は軟窒化処理後の表面からビッカース硬度が500の位置までの距離、「芯部」は軟窒化処理後の表面硬化されていない部分である。
【0022】
以下において、上記(1)〜(3)に記載のものをそれぞれ(1)〜(3)の発明という。
【0023】
本発明者らは、軟窒化部品の素材となる鋼材の化学組成、各製造工程における適正なミクロ組織や機械的性質に関して調査・研究を行った。その結果、次の知見を得るに到った。
【0024】
(a)軟窒化部品の耐疲労特性や耐ピッチング性を向上させるには、いずれも表面硬度と有効硬化深さを大きくすれば良い。又、耐摩耗性を向上させるには、表面硬度を大きくすれば良い。一方、耐スポーリング性を向上させるには、有効硬化深さを大きくすれば良い。
【0025】
(b)軟窒化処理を施し、表面硬度をHv600以上、有効硬化深さを0.1mm以上とすれば、軟窒化部品の耐疲労特性、耐摩耗性、耐ピッチング性及び耐スポーリング性を著しく高めることができる。
【0026】
(c)鋼材を球状化焼鈍して硬度をHv180以下に低下させれば、冷間加工性が向上して金型寿命を大幅に改善できる。
【0027】
(d)素材鋼の化学組成を調整して、球状化焼鈍で硬度をHv180以下にした鋼材を冷間加工で加工硬化させ、Hv250以上の硬度にすれば、これに軟窒化処理を施しても芯部硬度の低下は極めて小さく、Hv250以上の値が保てる。
【0028】
なお、特に断らない限り、軟窒化する前の状態(例えば球状化焼鈍後、冷間加工後)の硬度とは、軟窒化後の芯部に相当する部分(例えば「中心部」)の硬度のことをいう。
【0029】
(e)軟窒化後の芯部硬度がHv250以上であれば、例えば、自動車のミッションギアのように高い負荷が加わる部品においても、部品内部を起点として曲げ疲労が生ずることはない。
【0030】
(f)上記の(a)〜(e)から、優れた冷間加工性を有する鋼を素材鋼とし、これに冷間加工を施して加工硬化により充分な硬度を確保し、次に軟窒化して硬く深い窒化層を形成させるが、この軟窒化のための加熱で前記の加工硬化による硬度(すなわち芯部硬度)を維持するか、硬度低下を小さく抑えることができれば、軟窒化部品に大きな耐疲労特性、耐摩耗性、耐ピッチング性及び耐スポーリング性を付与できる。
【0031】
(g)鋼に適正量のTiやZrを添加し、鋼中の介在物制御として硫化物をTi炭硫化物やZr炭硫化物に変え、こうした炭硫化物を微細に分散させれば、鋼材の被削性が飛躍的に向上する。
そこで、更に研究を続けた結果、下記の事項を見いだした。
【0032】
(h)Sとのバランスを考慮して鋼にTiとZrのいずれかを積極的に添加して行くと、鋼中にTi炭硫化物あるいはZr炭硫化物が形成され、Ti及びZrを添加すると、鋼中にはTi炭硫化物とZr炭硫化物とが形成される。
【0033】
(i)鋼中に上記したTi炭硫化物やZr炭硫化物が生成すると、MnSの生成量が減少する。
【0034】
(j)鋼中のS含有量が同じ場合には、Ti炭硫化物やZr炭硫化物はMnSよりも大きな被削性改善効果を有する。これは、Ti炭硫化物やZr炭硫化物の融点がMnSのそれよりも低いため、切削加工時に工具のすくい面での潤滑作用が大きくなることに基づく。
【0035】
(k)Ti炭硫化物やZr炭硫化物の効果を充分発揮させるためには、N含有量を低くすることが重要である。これは、N含有量が多いとTiNやZrNとしてTiやZrが固定されてしまい、Ti炭硫化物やZr炭硫化物の生成が抑制されてしまうためである。
【0036】
(l)製鋼時に生成したTi炭硫化物やZr炭硫化物は、通常の熱間加工のための加熱温度及び焼準における通常の加熱温度では基地に固溶しない。したがって、オーステナイト領域において所謂「ピン止め作用」が発揮されるので、オーステナイト粒の粗大化防止に有効である。勿論、Ti炭硫化物やZr炭硫化物は軟窒化処理の加熱温度でも基地に固溶しない。
【0037】
(m)Ti炭硫化物やZr炭硫化物によって被削性を高めるとともに大きな強度、特に、大きな疲労強度を確保するためには、Ti炭硫化物やZr炭硫化物のサイズと、その清浄度で表される量(以下、単に「清浄度」という)を適正化しておくことが重要である。
【0038】
本発明は、上記の知見に基づいて完成されたものである。
【0039】
【発明の実施の形態】
以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「重量%」を意味する。
【0040】
(A)素材鋼の化学組成
C:
Cは、SとともにTiやZrと結合してTi炭硫化物やZr炭硫化物を形成し、被削性を高める作用を有する。更に、Cは、強度を確保するのにも有効な元素である。しかし、その含有量が0.15%未満では所望の強度(冷間加工後に軟窒化処理した後の芯部硬度、すなわち最終製品である軟窒化部品の芯部硬度としてHv250以上)が確保できない。一方、0.45%を超えると芯部の延性、靭性の低下をきたすとともに、冷間加工性を劣化させてしまう。更に、軟窒化後の表面硬度及び硬化深さが却って減少するようになる。したがって、Cの含有量を0.15〜0.45%とした。
【0041】
Si:
Siは、鋼の焼入れ性を高めるとともに強度を向上させる作用を有する。しかし、(1)の発明に係るMoやWを含まない鋼を素材鋼とする軟窒化用鋼材の場合には、Siの含有量が0.10%以下では、又、(2)の発明に係る0.02%以上のMoと0.04%以上のWの1種以上を含む鋼を素材鋼とする軟窒化用鋼材の場合には、Siの含有量が0.05%未満では、それぞれ前記した所望の強度が確保できない。一方、上記のいずれの発明に係る鋼を素材鋼とする軟窒化用鋼材の場合にも、Siの含有量が0.50%を超えると靭性の劣化を招いて、冷間加工性に悪影響を及ぼす。
【0042】
したがって、(1)の発明に関しては、素材鋼のSi含有量を0.10%を超え0.50%以下とした。
【0043】
又、(2)の発明に関しては、素材鋼のSi含有量を0.05〜0.50%とした。
【0044】
Mn:
Mnは、焼入れ性の向上と芯部強度の確保に有効な元素である。しかし、その含有量が0.5%未満では添加効果に乏しく、一方、2.5%を超えて含有させると偏析を生じて冷間加工性の劣化をもたらす。したがって、Mnの含有量を0.5〜2.5%とした。なお、Mnの含有量は0.5〜1.5%とすることが好ましい。
【0045】
S:
Sは、CとともにTiやZrと結合してTi炭硫化物やZr炭硫化物を形成し、被削性を高める作用を有する。しかし、その含有量が0.002%未満では所望の効果が得られない。
【0046】
従来、快削鋼にSを添加する目的は、MnSを形成させて被削性を改善させることにあった。しかし、本発明者らの検討によると、上記のMnSの被削性向上作用は、切削時の切り屑と工具表面との潤滑性を高める機能に基づくことが判明した。しかもMnSは巨大化し、鋼材本体の地疵を大きくし、欠陥となる場合がある。本発明におけるSの被削性改善作用は、適正量のCとTiやZrとの複合添加によってTi炭硫化物やZr炭硫化物を形成させることで初めて得られる。このためには、上記したように0.002%以上のSの含有量が必要である。一方、Sを0.2%を超えて含有させても被削性に与える効果に変化はないが、鋼中に粗大なMnSが再び生じるようになり、地疵等の問題が生じる。更に、熱間での加工性が著しく劣化し熱間加工が困難になるし、靭性が低下することもある。したがって、Sの含有量を0.002〜0.2%とした。なお、Sの好ましい含有量は0.004〜0.1%である。
【0047】
Cr:
Crは、軟窒化時に鋼材表面から侵入してくるNと結合して、表面硬度を高めるとともに硬化深さを大きくするのに極めて有効な元素である。しかし、その含有量が0.5%未満では上記の作用が期待できない。一方、Crを2%を超えて含有させると、軟窒化によって表面硬度が高くなりすぎるために、表面から芯部にかけての硬度勾配が急激なものとなってしまい、却って耐スポーリング性や耐ピッチング性が劣化してしまう。したがって、Crの含有量を0.5〜2%とした。
【0048】
V:
Vは、軟窒化処理時に鋼材表面から侵入してくるN及びCと結合して微細なバナジウム炭窒化物として析出することにより、表面硬度を高め、更に、硬化深さを大きくする作用を有する。V添加鋼においては上記のCr添加の場合に比べて、表面硬度の上昇割合が小さいのに対して硬化深さの増大割合は極めて大きく、且つ前記炭窒化物が析出して芯部硬度を高めるため、硬化深さの大きい、表面から芯部への硬度勾配が緩やかな硬化曲線が得られる。しかし、V含有量が0.05%未満では添加効果に乏しく、一方、0.5%を超えて含有させても前記の効果が飽和してコストが嵩むばかりか、却って脆化現象の発現をきたすようになる。したがって、V含有量を0.05〜0.5%とした。なお、V含有量は0.1〜0.3%とすることが好ましい。
【0049】
Ti、Zr:
Ti、Zrは本発明において介在物を制御するための重要な合金元素であって、それぞれC及びSと結合してTi炭硫化物やZr炭硫化物を形成し、被削性を高める作用を有する。
【0050】
上記の効果は、TiとZrの含有量に関し、Ti(%)+Zr(%)の値が0.04%以上の場合に確実に得られる。しかし、Ti(%)+Zr(%)の値で1.0%を超えるTiとZrを含有させても被削性向上効果は飽和するのでコストが嵩んでしまう。なお、Ti(%)+Zr(%)の値が0.04〜1.0%でありさえすれば良いので、必ずしもTiとZrを複合して含有させる必要はない。Zrを添加しない、つまりTiを単独で添加する場合に、Tiを1.0%を超えて含有させるとTi炭硫化物による被削性向上効果が飽和してコストが嵩むばかりか、Ti炭硫化物が粗大化して却って靭性の低下を招いてしまう。逆に、Tiを添加しない、つまりZrを単独で添加する場合に、Zrを1.0%を超えて含有させるとZr炭硫化物による被削性向上効果が飽和してコストが嵩むばかりか、Zr炭硫化物が粗大化して却って靭性の低下を招いてしまう。したがって、TiとZrの含有量をいずれも0〜1.0%で、且つ、Ti(%)+Zr(%)の値を0.04〜1.0%とした。なお、良好な被削性と靭性を安定して得るためには、TiとZrの含有量の上限はそれぞれ0.8%とすることが好ましい。
【0051】
Al:
Alは、鋼の脱酸の安定化及び均質化を図る作用がある。更に、軟窒化時の侵入Nと結合して表面硬度を高める効果を有する。しかし、その含有量が0.01%未満では上記の作用が期待できない。一方、0.3%を超えると硬化深さを小さくしてしまう。したがって、Alの含有量を0.01〜0.3%とした。なお、Al含有量は0.01〜0.15とすることが好ましい。
【0052】
N:
本発明においてはNの含有量は低いほど良い。すなわち、NはTiやZrとの親和力が大きいために容易にTiやZrと結合してTiNやZrNを生成し、TiやZrを固定してしまうので、Nを多量に含有する場合には前記したTi炭硫化物やZr炭硫化物の被削性向上効果が充分に発揮できないこととなる。特に、TiやZrの含有量が低めの場合には、N含有量の影響が顕著となる。更に、粗大なTiNやZrNは靭性及び被削性を低下させてしまう。したがって、N含有量を0.008%以下とした。なお、Ti炭硫化物やZr炭硫化物の効果を高めるために、N含有量の上限は0.006%とすることが好ましい。
【0053】
Pb:
Pbは添加しなくても良い。添加すれば、鋼の被削性を一段と高める作用を有する。この効果を確実に得るには、Pbは0.03%以上の含有量とすることが好ましい。しかし、Pbを0.35%を超えて含有させると熱間加工性が劣化して熱間圧延や熱間鍛造などの熱間加工時に割れの発生を招くことが多くなる。したがって、Pbの含有量を0〜0.35%とした。
【0054】
Ca:
Caは添加しなくても良い。添加すれば、鋼の被削性を一段と高める作用を有する。この効果を確実に得るには、Caは0.001%以上の含有量とすることが好ましい。一方、Caを0.01%を超えて含有させるには特殊な溶製技術や設備を要してコストが嵩む。したがって、Caの含有量を0〜0.01%とした。
【0055】
Mo、W:
Mo及びWは、鋼の焼入れ性を高めて軟窒化時の芯部の軟化抵抗を高め、前記した所望の強度を確保するのに有効な元素である。又、焼準後の組織をベイナイト含有組織とする効果も有する。
【0056】
しかし、(1)の発明に係るSiを0.10%を超えて含む鋼を素材鋼とする軟窒化用鋼材の場合には、前記した所望の強度を、最終製品である軟窒化部品に対して容易に付与できるため、MoとWはいずれも含有させる必要はない。
【0057】
(2)の発明に関しては、特に0.10%以下のSiしか含有しない鋼を素材鋼とする軟窒化用鋼材の場合(この発明にあっては、Si:0.05〜0.10%の場合)には、0.02%以上のMo及び0.04%以上のWの少なくともいずれかを含有していなければ、MoやWの添加効果が得難い。なお、(2)の発明において、Siを0.10%を超えて含む鋼を素材鋼とする軟窒化用鋼材あっては、0.02%以上のMo及び0.04%以上のWの1種以上が含有されていると、所望の強度を最終製品である軟窒化部品に付与することが極めて容易となり、又、焼準後の組織も容易にベイナイト含有組織にすることが可能である。
【0058】
一方、(2)の発明に関して、(a)Siの含有量が0.10%以下である鋼を素材鋼とする軟窒化用鋼材、(b)0.10%を超えるSiを含有する鋼を素材鋼とする軟窒化用鋼材、のいずれの場合にも、Moの含有量が0.3%を超えたりWの含有量が0.5%を超えると、所望の強度確保の効果及び焼準後の組織をベイナイト含有組織とする効果は飽和するのでコストが嵩むばかりとなる。したがって、(2)の発明に関しては、0.02〜0.3%のMo及び0.04〜0.5%のWの1種以上を含有させることとした。
【0059】
fn1:
N含有量の上限を0.008%とし、前述の(1)式で表されるfn1が0%を超える値(fn1=Ti(%)+Zr(%)−1.2×S(%)>0%)の場合に前記したTi炭硫化物やZr炭硫化物の被削性向上効果が確保できる。fn1が0%以下の値(fn1≦0%)の場合には、S量が過剰となるため、その分MnSが過剰生成してTi炭硫化物やZr炭硫化物による被削性向上効果が低下してしまう。したがって、(1)式で表されるfn1に関して0%を超える値(fn1>0%)と規定した。このfn1の値の上限は特に規定されるものではなく、Ti(%)+Zr(%)の値が1.0%でSが0.002%の場合の値であっても良い。
【0060】
(B)Ti炭硫化物及びZr炭硫化物のサイズと清浄度
上記の化学組成を有する鋼材の被削性をTi炭硫化物やZr炭硫化物によって高めるとともに大きな強度をも確保するためには、Ti炭硫化物やZr炭硫化物のサイズと清浄度(TiとZrを複合添加する場合にはTi炭硫化物とZr炭硫化物の清浄度の和)で表される量を適正化しておくことが重要である。
【0061】
鋼中のTi炭硫化物及びZr炭硫化物の最大直径が10μmを超えると疲労強度が低下してしまう。なお、Ti炭硫化物及びZr炭硫化物の最大直径はいずれも7μm以下とすることが好ましい。Ti炭硫化物とZr炭硫化物は、それらの最大直径が小さすぎると被削性向上効果が小さくなってしまう。したがって、Ti炭硫化物とZr炭硫化物の最大直径の下限値は0.5μm程度とすることが好ましい。
【0062】
最大直径が10μm以下のTi炭硫化物及びZr炭硫化物の量の和が清浄度で0.05%未満の場合には、Ti炭硫化物及びZr炭硫化物による被削性向上効果が発揮できない。したがって、Ti炭硫化物及びZr炭硫化物の最大直径が10μm以下で、且つその量の和を清浄度で0.05%以上とした。なお、前記の清浄度の和は0.08%以上とすることが好ましい。上記のTi炭硫化物とZr炭硫化物の清浄度の和の値が大きすぎると疲労強度が低下する場合があるので、上記の清浄度の和の上限値は2.0%程度とすることが好ましい。
【0063】
上記したようなTi炭硫化物とZr炭硫化物の形態は基本的にはTi、Zr、S及びNの含有量で決定される。しかし、Ti炭硫化物やZr炭硫化物のサイズと清浄度(清浄度の和)を上述の値とするためには、TiやZrの酸化物が過剰に生成することを防ぐことが重要である。このためには、鋼が前記(A)項で述べた化学組成を有しているだけでは充分でない場合があるので、例えば、Si及びAlで充分脱酸し、最後にTiやZrを添加する製鋼法を採れば良い。
【0064】
なお、Ti炭硫化物とZr炭硫化物は、鋼材から採取した試験片を鏡面研磨し、その研磨面を被検面として倍率400倍以上で光学顕微鏡観察すれば、色と形状から容易に他の介在物と識別できる。すなわち、前記の条件で光学顕微鏡観察すれば、Ti炭硫化物及びZr炭硫化物の「色」は極めて薄い灰色で、「形状」はJISのB系介在物やC系介在物に相当する粒状(球状)として認められる。Ti炭硫化物及びZr炭硫化物の詳細判定は、前記の被検面をEDX(エネルギー分散型X線分析装置)などの分析機能を備えた電子顕微鏡で観察することによって行うこともできる。
【0065】
前記のTi炭硫化物やZr炭硫化物の清浄度は、既に述べたように、光学顕微鏡の倍率を400倍として、JIS G 0555に規定された「鋼の非金属介在物の顕微鏡試験方法」によって60視野測定した値をいう。なお、Ti炭硫化物やZr炭硫化物の最大直径も、倍率が400倍の光学顕微鏡で60視野観察して調査すれば良い。
【0066】
(C)球状化焼鈍
球状化焼鈍は前記(A)に示した化学組成と、上記(B)に示したサイズと量のTi炭硫化物やZr炭硫化物をもつ鋼材を、熱間加工(例えば熱間圧延や熱間鍛造など)した後に、その硬度を低下させて冷間加工性を高めるとともに、それによって金型寿命を大幅に改善し、最終製品である所要の軟窒化部品の製造コストを低く抑えるのに必須の処理である。
【0067】
球状化焼鈍後の硬度がHvで180を超えると、金型の寿命が大幅に低下してしまうため、最終製品である所望の軟窒化部品の製造コストが著しく高くなる。したがって、球状化焼鈍後の硬度はHv180以下としなければならない。なお、球状化焼鈍の硬度の下限値については、特に制限する必要はない。
【0068】
この球状化焼鈍は、通常の方法で行えば良い。
【0069】
(D)冷間加工
球状化焼鈍して硬度をHv180以下に調整した上記(C)の鋼材を、次に冷間加工して所望の軟窒化部品の粗形状に仕上げ、更に切削加工して所望の軟窒化部品の形状に仕上げる。勿論、精密冷間加工して切削加工せずに所望の軟窒化部品の形状に仕上げても良いし、球状化焼鈍後に冷間加工の前あるいは前後で切削加工を行って所望の軟窒化部品の形状に仕上げても良い。
【0070】
なお、(1)及び(2)の発明に係る「軟窒化用鋼材」とは、前記冷間加工と切削加工(あるいは精密冷間加工)によって所望形状に成形されたもののことで、軟窒化される前のものをいう。
【0071】
上記の冷間加工は、例えば、冷間鍛造、冷間転造や冷間引き抜きなど、通常の方法で行えば良いが、加工した部品の硬度をHv250以上にする必要がある。何故ならば、硬度をHv180以下に調整された上記(C)の鋼材は、冷間での加工を受けて硬度がHv250以上に上昇すれば、これに軟窒化処理を施しても、軟窒化時の加熱による芯部硬度の低下は極めて小さく、Hv250以上の値が保てるからである。そして、軟窒化後の芯部硬度がHv250以上であれば、既に述べたように、例えば、自動車のミッションギアのように高い負荷が加わる部品においても、部品内部を起点として曲げ疲労が生ずることはない。
【0072】
上記(C)に示した球状化焼鈍して硬度をHv180以下に調整した鋼材を冷間加工して、硬度をHv250以上とするには、減面率で20%以上の加工が加わるように寸法調整しておけば良い。
【0073】
なお、冷間加工後の硬度の上限値は特に制限する必要はない。すなわち、設備上加えることが可能な最高の減面率で加工して、極めて大きな硬度となっても良い。
【0074】
これまでに述べた製造方法によって、(1)及び(2)の発明に係る「軟窒化用鋼材」が得られる。この鋼材は、次に述べる軟窒化処理を施されて、(3)の発明に係る軟窒化部品となる。
【0075】
(E)軟窒化
上記(D)の冷間加工を行って、あるいは、冷間加工とその前又は/及びその後で切削加工を行って所要形状に成形した部品(軟窒化用鋼材)には、この後更に、軟窒化処理が施される。この軟窒化の方法は何ら制限しなくても良く、通常の方法で行えば良い。軟窒化処理を施し、表面硬度をHv600以上、有効硬化深さを0.1mm以上とすれば、軟窒化部品の耐疲労特性、耐摩耗性、耐ピッチング性及び耐スポーリング性を著しく高めることができるのである。
【0076】
上記(D)に示した冷間加工、あるいは、冷間加工とその前又は/及びその後で切削加工を施された部品(軟窒化用鋼材)を軟窒化して表面硬度をHv600以上、有効硬化深さを0.1mm以上とするには、例えば、当該部品を570℃程度の温度の、RXガスにアンモニアを添加したガス中に3〜9時間保持し、その後油中に冷却すれば良い。
【0077】
なお、軟窒化後の表面硬度及び有効硬化深さの上限値は特に制限しなくても良い。しかし、軟窒化後の表面硬度については、Hv900程度を上限とすることが好ましい。
【0078】
(3)の発明に係る軟窒化部品は、素材鋼材である前記(A)の化学組成と(B)に示すサイズと量のTi炭硫化物やZr炭硫化物をもつ鋼材を、例えば、通常の方法によって溶製した後、熱間で圧延又は鍛造し、必要に応じて焼準を施し、(C)に示した球状化焼鈍を行い、次いで(D)に示した冷間加工によって、あるいは、(D)に示した冷間加工とその前又は/及びその後の切削加工によって、所望の部品形状に成形してから、軟窒化処理し、この後更に必要に応じて研削や研磨を施して製造される。
【0079】
ここで、本発明が対象とする化学組成を有する素材鋼材においては、熱間加工後に焼準して、少なくとも表層から0.5mmを超える深さまでの領域の組織をベイナイトを含む組織(ベイナイト単相組織、あるいはベイナイト、並びに、フェライト、パーライト及びマルテンサイトの1種以上の混合組織)とすれば、球状化焼鈍後の炭化物(主としてセメンタイト)の球状化率が向上する。したがって、球状化焼鈍で冷間加工前の硬度を大きく低下させることができる。冷間加工前の鋼材の硬度を下げることは、冷間加工性の向上につながり、金型寿命が延びて金型コストの削減が図れる。更に、球状化焼鈍時間を短縮することができて、生産性の向上と製造コストの低減が図れる。このため、(1)及び(2)の発明の軟窒化用鋼材の製造方法においては、熱間加工後に焼準してから球状化焼鈍することが好ましい。
【0080】
【実施例】
表1、表2に示す化学組成の鋼を180kg真空溶解炉を用いて溶製した。なお、鋼7〜9を除いて、Ti酸化物及びZr酸化物の生成を防ぐために、Si及びAlで充分脱酸し種々の元素を添加した最後にTiとZrを添加して、Ti炭硫化物とZr炭硫化物のサイズと清浄度(清浄度の和)を調整するようにした。鋼7〜9についてはSi及びAlで脱酸する際に同時にTiとZrを添加した。
【0081】
表1における鋼1〜5及び鋼7〜9は化学組成が本発明で規定する範囲内にある本発明例、表2における鋼10〜21は成分のいずれかが本発明で規定する含有量の範囲から外れた比較例である。比較例に係る鋼のうち鋼19及び鋼20はそれぞれJIS規格のSCM435及びSACM645に相当する鋼にTi及びZrを添加したものである。
【0082】
【表1】

Figure 0003849296
【0083】
【表2】
Figure 0003849296
【0084】
次いで、これらの鋼を通常の方法によって鋼片にした後、1250℃に加熱してから、1250〜950℃の温度で熱間鍛造して、直径30mm及び38mmの丸棒とした。この後、C含有量に応じて870〜925℃で焼準し、次いで図1に示すヒートパターンで球状化焼鈍した。
【0085】
なお、鋼2及び鋼9については、比較のために、熱間鍛造のままで、すなわち熱間鍛造後に焼準を行わないで球状化焼鈍したものも準備した。
【0086】
(実施例1)
上記のようにして得られた直径が30mmの丸棒を用いて、下記の各種調査を行った。
【0087】
すなわち、熱間鍛造のままの丸棒から、JIS G 0555の図1に則って試験片を採取し、鏡面研磨した幅が15mmで高さが20mmの被検面を、倍率が400倍の光学顕微鏡で60視野観察して、Ti炭硫化物及びZr炭硫化物を他の介在物と区分しながらその清浄度(清浄度の和)を測定した。Ti炭硫化物及びZr炭硫化物の最大直径も、倍率が400倍の光学顕微鏡で60視野観察して調査した。
【0088】
焼準のままの丸棒からは、直径が30mmで厚さが20mmの試験片を切り出し、ナイタルで腐食して倍率400倍の光学顕微鏡による組織観察を行った。
【0089】
球状化焼鈍後の各丸棒からは、直径が30mmで厚さが20mmの硬度試験片と直径が10mmで長さが15mmの冷間加工用試験片を作製した。
【0090】
上記の硬度試験片を用いて、マイクロビッカース硬度計により中央部のHv硬度測定を行った。
【0091】
又、上記の冷間加工用試験片を用いて、500t高速プレス機による通常の方法で冷間(室温)拘束型据え込み試験を行い、限界据え込み率を測定した。なお、各条件ごとに3回の据え込み試験を行い、3個の試験片のすべてに割れが発生しない最大加工率(減面率)を限界据え込み率として評価した。
【0092】
一方、前記のようにして得られた球状化焼鈍後の直径30mmの各丸棒を、直径25mmにピーリング加工し、この後、通常の方法によって冷間(室温)で直径20.9mm(減面率30.1%)までドローベンチを用いて引き抜き加工した。次いで、RXガスにアンモニアガスを1:1の割合で添加した温度が570℃のガス中で6時間保持して軟窒化処理を施し、その後油中へ冷却した。
【0093】
引き抜きままの丸棒からは、直径が20.9mmで厚さが20mmの硬度試験片を作製し、マイクロビッカース硬度計を用いて中央部の硬度測定を行った。又、軟窒化処理した丸棒からも、直径が20.9mmで厚さが20mmの硬度試験片を作製し、マイクロビッカース硬度計により表面硬度(表面から0.025mmの位置におけるHv硬度)、有効硬化深さ(表面からHv500の位置までの距離)及び中央部硬度の測定を行った。
【0094】
被削性評価のため、ドリル穿孔試験も実施した。すなわち、既に述べた球状化焼鈍後の直径30mmの丸棒及び引き抜き加工後の直径20.9mmの丸棒を25mmの長さに輪切りにしたものを用いて、R/2部(Rは丸棒の半径)についてその長さ方向に貫通孔をあけ、刃先摩損により穿孔不能となったときの貫通孔の個数を数え、被削性の評価を行った。穿孔条件は、JIS高速度工具鋼SKH51のφ5mmストレートシャンクドリルを使用し、水溶性の潤滑剤を用いて、送り0.15mm/rev、回転数980rpmで行った。
【0095】
表3に各種の試験結果をまとめて示す。なお、表の「Ti、Zr炭硫化物」とした欄において、TiとZrとを複合添加した場合には「最大直径」はいずれか大きい方の炭硫化物の値であり、清浄度は清浄度の和を意味する。
【0096】
【表3】
Figure 0003849296
【0097】
表3から、化学組成及び最大直径が10μm以下の「Ti、Zr炭硫化物」の清浄度が本発明で規定する範囲内にある本発明例に係る場合は、球状化焼鈍後の硬度はいずれもHvで180を下回るもので、限界据え込み率は80%を超えているし、被削性も良好である。そして、減面率30.1%の冷間加工(引き抜き加工)によって、容易にHv250を超える硬度が得られているし、冷間引き抜き後の被削性も良好である。更に、軟窒化後にはHv600を超える表面硬度と、0.1mmを超える有効硬化深さが得られており、しかも軟窒化のための570℃での6時間の熱処理を受けても、中央部硬度(芯部硬度)はHv250を超える値に維持されている。
【0098】
これに対して比較例に係る場合には、(イ)球状化焼鈍後の硬度がHv180を超える、(ロ)冷間加工後の硬度が低いために軟窒化後の芯部硬度も低い、(ハ)冷間加工後の硬度はHv250を超えるものの軟窒化後の芯部硬度はHv250を下回る、(ニ)軟窒化後の表面硬度がHv600を下回る、(ホ)軟窒化後の有効硬化深さが0.1mmを下回る、(ヘ)ドリル穿孔試験における貫通孔個数が100を大きく下回り被削性に劣る、のいずれか1つ以上に該当する。このため、冷間鍛造時の金型寿命が短くて金型コストが嵩むし、所望の軟窒化部品の形状に成形するための切削加工のコストも嵩むので、所望の軟窒化部品の製造コストは極めて高いものとなってしまう。あるいは、製造コストは低くても軟窒化部品の耐疲労特性、耐摩耗性、耐ピッチング性及び耐スポーリング性は劣ったものとなってしまう。
【0099】
(実施例2)
前記のようにして得られた直径が38mmの丸棒を用いて、下記の各種調査を行った。
【0100】
すなわち、実施例1の場合と同様に、熱間鍛造のままの丸棒から、JIS G 0555の図1に則って試験片を採取し、鏡面研磨した幅が15mmで高さが20mmの被検面を、倍率が400倍の光学顕微鏡で60視野観察して、Ti炭硫化物及びZr炭硫化物を他の介在物と区分しながらその清浄度(清浄度の和)を測定した。Ti炭硫化物及びZr炭硫化物の最大直径も、倍率が400倍の光学顕微鏡で60視野観察して調査した。
【0101】
球状化焼鈍後の各丸棒からは、直径が38mmで厚さが20mmの硬度試験片を作製し、これを用いて、マイクロビッカース硬度計により中央部のHv硬度測定を行った。
【0102】
更に、球状化焼鈍後の直径38mmの各丸棒を、直径36mmにピーリング加工し、この後、通常の方法によって冷間(室温)で直径30mm(減面率30.6%)までドローベンチを用いて引き抜き加工した。この後、図2に示す転動疲労試験片(小ローラー)と環状半円溝付きの小野式回転曲げ疲労試験片(JIS Z 2274のD=10mm、d=8mm、ρ=t=1mm、D0 =12mmの試験片)を作製した。
【0103】
次いで、前記の各試験片を、RXガスにアンモニアガスを1:1の割合で添加した温度が570℃のガス中で6時間保持して軟窒化処理を施し、その後油中へ冷却した。なお、直径30mm×長さ100mmの冷間引き抜きままのものに対しても、同時に上記の処理を施した。
【0104】
引き抜きままの丸棒からは、直径が30mmで厚さが20mmの硬度試験片を作製し、マイクロビッカース硬度計を用いて中央部の硬度測定を行った。又、軟窒化処理した丸棒からも、直径が30mmで厚さが20mmの硬度試験片を作製し、マイクロビッカース硬度計により表面硬度(表面から0.025mmの位置におけるHv硬度)、有効硬化深さ(表面からHv500の位置までの距離)及び中央部硬度の測定を行った。
【0105】
一方、軟窒化処理した小野式回転曲げ疲労試験片と転動疲労試験片を用いて、疲労特性を調査した。
【0106】
すなわち、常温(室温)、大気中、回転数3000rpmの条件で小野式回転曲げ疲労試験を行い、曲げ疲労強度(疲労限)を求めた。
【0107】
又、回転数1000rpm、潤滑油の温度80℃、すべり率40%の条件でローラーピッチング試験機を用いて、面疲労強度を求めた。なお、相手材となる大ローラーには、JISのSUJ2を用いて硬度をロックウェルC硬度(HRC)で61に調整し、外径130mm、内径45mm、厚さ18mmに加工したものを使用した。そして、前記の試験条件で107 回の回転が可能な面圧を「面疲労強度」として評価した。
【0108】
表4に各種の試験結果をまとめて示す。なお、この表についても「Ti、Zr炭硫化物」とした欄において、TiとZrとを複合添加した場合には「最大直径」はいずれか大きい方の炭硫化物の値であり、清浄度は清浄度の和を意味する。
【0109】
【表4】
Figure 0003849296
【0110】
表4から、化学組成及び最大直径が10μm以下の「Ti、Zr炭硫化物」の清浄度が本発明で規定する範囲内にある本発明例に係る場合は、前記の実施例1におけると同様に、球状化焼鈍後の硬度はいずれもHvで180を下回っている。そして、減面率で30.6%の冷間加工(引き抜き加工)によって、容易にHv250を超える硬度が得られている。更に、軟窒化後にはHv600を超える表面硬度と、0.1mmを超える有効硬化深さが得られており、しかも軟窒化のための570℃での6時間の熱処理を受けても中央部硬度(芯部硬度)はHv250を超える値に維持されている。
【0111】
更に、曲げ疲労強度は50kgf/mm2 を超えており、面疲労強度も240kgf/mm2 を超える値が得られている。
【0112】
これに対して比較例に係る場合には、(イ)球状化焼鈍後の硬度がHv180を超える、(ロ)冷間加工後の硬度が低いために軟窒化後の芯部硬度も低い、(ハ)冷間加工後の硬度はHv250を超えるものの軟窒化後の芯部硬度はHv250を下回る、(ニ)軟窒化後の表面硬度がHv600を下回る、(ホ)軟窒化後の有効硬化深さが0.1mmを下回る、のいずれか1つ以上に該当する。更に、曲げ疲労強度は高々46kgf/mm2 (鋼13に係る場合)であるし、面疲労強度も鋼15と鋼18に係る場合の233kgf/mm2 が最高で、本発明例に係る場合と比較して明らかに劣っている。
【0113】
【発明の効果】
本発明の軟窒化部品は、耐疲労特性、耐摩耗性、耐ピッチング性及び耐スポーリング性に優れることから、自動車用や産業機械用の歯車など大きな疲労強度や耐摩耗性が要求される部品として利用することができる。この軟窒化部品の素材となる被削性に優れた軟窒化用鋼材は、本発明の方法によって比較的容易に製造することができる。
【図面の簡単な説明】
【図1】実施例における球状化焼鈍のヒートパターンを示す図である。
【図2】実施例で用いた転動疲労試験片の形状を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a steel material for nitrocarburizing and a nitrocarburized component using the steel material, and more specifically, a nitrocarburized component having excellent fatigue resistance, wear resistance, pitting resistance and spalling resistance, and its The present invention relates to a method for producing a steel material for nitrocarburizing excellent in machinability, which is a material for nitrocarburized parts. In the present specification, of the fatigue phenomenon in which the material surface peels due to repeated surface pressure load, the relatively small peel is called “pitching”, and the relatively large peel is called “spoling”.
[0002]
[Prior art]
Many parts used in automobiles and industrial machines, such as gears and bearings, generally require high fatigue strength and wear resistance. Therefore, the parts have been manufactured by applying a so-called “surface hardening treatment”.
[0003]
As the surface hardening treatment, treatments such as carburizing quenching, induction quenching, flame quenching, nitriding and soft nitriding are generally known. Among these, in the process of quenching (quenching) from the high temperature range of the austenite state such as carburizing quenching, induction quenching, and flame quenching, the surface is hardened, resulting in large quenching distortion. Further, in some cases, the cracked part may be cracked.
[0004]
For this reason, nitriding or soft nitriding is performed when the required parts are required to have particularly low strain.
[0005]
However, the general nitriding treatment is a so-called “gas nitriding” treatment in which heating is performed at 500 to 550 ° C. for 20 to 100 hours in an ammonia stream and then gradually cooling, so that productivity is low and cost is increased. For this reason, a liquid nitriding method with a nitriding temperature of around 550 ° C. has been developed, but this method also requires about 12 hours for nitriding, so it is not necessarily suitable for efficiently producing mass-produced parts at low cost. It's not a good method. Although ion nitriding can be used for nitriding in a short time, temperature measurement is difficult, and the temperature and nitrided layer may become unstable depending on the arrangement, shape, mass, etc. of the part to be processed as the cathode. This method is also not suitable for manufacturing mass-produced parts.
[0006]
On the other hand, soft nitriding treatment is carried out from the steel surface by holding in a salt bath of a cyanide compound at a temperature of about 570 ° C. or a gas in which ammonia is added to RX gas (RX gas is a trademark of endothermic modified gas). N (nitrogen) and O (oxygen) are allowed to penetrate into the steel to harden the surface layer and can be processed in a short time. Of these, the former method using a salt bath of a cyanide compound adds cost to the treatment of the waste liquid, so the “gas soft nitriding method” using the latter gas is a surface hardening suitable for mass-produced products requiring low distortion. It is heavily used as a processing method.
[0007]
Conventionally, as a soft nitriding steel, for example, a chromium molybdenum steel material (such as SCM435) defined in JIS G 4105 and an aluminum chromium molybdenum steel material (SACM645) defined in JIS G 4202 have been frequently used.
[0008]
However, in the case of a component made of chrome molybdenum steel material stipulated in JIS such as SCM435, the distance from the surface after soft nitriding to the position of Vickers hardness (Hv) 500 (hereinafter referred to as “effective hardening depth”). Is referred to as “0.05 mm”. Furthermore, the micro Vickers hardness (hereinafter referred to as “surface hardness”) at a position of 0.025 mm from the surface often does not become Hv600 or more. For this reason, it was not fully satisfactory in terms of fatigue strength and wear resistance.
[0009]
On the other hand, in order to improve the above drawbacks, a large amount of Al and Cr, which are elements for improving nitriding characteristics, are added to SACM645. However, even when SACM645 is used as the material steel, the surface hardness is very high at 800 to 1100 in Hv by soft nitriding, but the effective hardening depth is as small as about 0.08 mm. Therefore, the hardness gradient from the surface portion to the core portion (hereinafter, the portion not subjected to surface hardening after the soft nitriding treatment is referred to as “core portion”) becomes too steep. Therefore, in gears and bearings that are operated under high loads, a peeling phenomenon is likely to occur from the vicinity of the boundary between the surface hardened portion and the core portion, and the pitching resistance or the spoiling resistance is poor. Furthermore, SACM645 has problems that it is relatively difficult to melt, cast, and hot work, and that cold workability is poor and it is difficult to press-mold parts with complicated shapes.
[0010]
Japanese Laid-Open Patent Publication No. 58-71357 discloses “soft nitriding steel” that solves the problems of JIS standard steel. If the steel proposed in this publication is used as a material steel, it is possible to obtain a nitrocarburized component that is surely excellent in fatigue strength and wear resistance, and also excellent in pitting resistance and spalling resistance. However, because it is a steel that has improved cold workability by reducing the content of elements effective for strengthening such as Si, the surface is hardened by soft nitriding, but the core is heated during soft nitriding. Since the core portion hardness becomes too low after soft nitriding, the fatigue characteristics may deteriorate.
[0011]
Further, in the case of chrome-molybdenum steel such as SCM435, which is JIS standard steel, SACM645 of aluminum-chromium-molybdenum steel, and the steel proposed in the above-mentioned JP-A-58-71357, the machinability is inferior. The cost of cutting for forming into the shape of a desired soft nitriding part after hot forging or cold forging is increased. For this reason, there is an increasing demand for a steel material for nitrocarburizing that has excellent machinability in order to facilitate cutting and reduce costs.
[0012]
Conventionally, in order to improve machinability, free cutting elements such as Pb, Te, Bi, Ca and S have been added to steel alone or in combination. However, when the above free-cutting elements are simply added to the JIS standard steel or the steel proposed in JP-A-58-71357, the desired mechanical properties, particularly fatigue strength, are ensured. There are many things that cannot be done.
[0013]
In iron and steel (vol. 57 (1971) S484), it has been reported that if Ti is added to a deoxidized adjusted free cutting steel, the machinability may be increased. However, it is also stated that the addition of a large amount of Ti increases the tool wear due to the generation of a large amount of TiN, which is not preferable from the viewpoint of machinability. For example, C: 0.45%, Si: 0.29%, Mn: 0.78%, P: 0.017%, S: 0.041%, Al: 0.006%, N: 0.0087% In the steel containing Ti: 0.228%, O: 0.004% and Ca: 0.001%, the drill life is reduced and the machinability is inferior. Thus, machinability is not improved by simply adding Ti to steel.
[0014]
Zr may be added for the purpose of controlling the sulfide form of sulfur free-cutting steel. For example, as described in iron and steel (vol. 62 (1976) p. 885), Zr Has little effect on machinability. That is, machinability is not improved by simply adding Zr to steel.
[0015]
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, and is made of a steel material excellent in machinability and cold workability, and has excellent fatigue properties, wear resistance, and pitting resistance simply by soft nitriding after cold working. It is an object of the present invention to provide a soft nitriding component that exhibits high performance and spalling resistance. Furthermore, another object of the present invention is to provide a method for producing a nitrocarburized steel material having excellent machinability as a material for the nitrocarburized component.
[0016]
[Means for Solving the Problems]
The gist of the present invention resides in a method for producing a soft nitriding steel material having excellent machinability as shown in the following (1) and (2), and a soft nitriding component using the steel material as shown in (3).
[0017]
  (1)% by weight, C: 0.15 to 0.45%, Si: more than 0.10% and 0.50% or less, Mn:0.5-2.5%, S: 0.002-0.2%, Cr: 0.5-2%, V: 0.05-0.5%, Ti:0 to 1.0%, Zr:0 to 1.0%And Ti (%) + Zr (%): 0.04 to 1.0%, Al: 0.01 to 0.3%, N: 0.008% or less, Pb: 0 to 0.35% and Ca: 0 to 0.01% included, below(1)The value of fn1 represented by the formula exceeds 0%, the balance is the chemical composition of Fe and inevitable impurities, and the maximum diameter of Ti carbosulfide and Zr carbosulfide in steel is 10 μm or less, and The sum of the quantitiesJIS G 0555 Specified inExcellent in machinability, characterized in that a steel having a cleanness of 0.05% or more is spheroidized and annealed after hot working to have a hardness of Hv180 or less, and then cold worked to have a hardness of Hv250 or more. A method of manufacturing a steel material for soft nitriding.
[0018]
  fn1 = Ti (%) + Zr (%) − 1.2S (%)...(1).
  (2) By weight, C: 0.15 to 0.45%, Si: 0.05 to 0.50%, Mn:0.5-2.5%, S: 0.002-0.2%, Cr: 0.5-2%, V: 0.05-0.5%, Ti:0 to 1.0%, Zr:0 to 1.0%And Ti (%) + Zr (%): 0.04 to 1.0%, Al: 0.01 to 0.3%, N: 0.008% or less, Pb: 0 to 0.35%, Ca: 0 to 0.01%, and Mo: 0.02 to 0.3% and W: 0.04 to 0.5%, including one or more,in frontRecord(1)The value of fn1 represented by the formula exceeds 0%, the balance is the chemical composition of Fe and inevitable impurities, and the maximum diameter of Ti carbosulfide and Zr carbosulfide in steel is 10 μm or less, and The sum of the quantitiesJIS G 0555 Specified inExcellent in machinability, characterized in that a steel having a cleanness of 0.05% or more is spheroidized and annealed after hot working to have a hardness of Hv180 or less, and then cold worked to have a hardness of Hv250 or more. A method of manufacturing a steel material for soft nitriding.
[0019]
(3) It has the chemical composition, size and amount of Ti carbon sulfide, Zr carbon sulfide, and spheroidized structure described in (1) or (2) above, has a surface hardness of Hv600 or more, and an effective hardening depth. A soft nitrided part having a thickness of 0.1 mm or more and a core hardness of Hv250 or more.
[0020]
In the present invention, “Ti carbon sulfide” includes simple Ti sulfide, and “Zr carbon sulfide” includes simple Zr sulfide. The “maximum diameter (of Ti and Zr carbosulfides)” refers to “the longest diameter of individual Ti and Zr carbosulfides”. The cleanliness of Ti carbosulfide and Zr carbosulfide were measured by 60 fields of view according to the “microscopic test method for non-metallic inclusions in steel” defined in JIS G 0555, with an optical microscope magnification of 400 times. Value.
[0021]
As described above, “surface hardness” is a micro Vickers hardness at a position of 0.025 mm from the surface, “effective hardening depth” is a distance from the surface after soft nitriding to a position where the Vickers hardness is 500, “ The “core portion” is a portion that has not been surface hardened after the soft nitriding treatment.
[0022]
Hereinafter, those described in (1) to (3) above are referred to as inventions (1) to (3), respectively.
[0023]
The present inventors investigated and studied the chemical composition of the steel material used as the material of the soft nitrided part, the appropriate microstructure and mechanical properties in each manufacturing process. As a result, the following knowledge was obtained.
[0024]
(A) In order to improve the fatigue resistance and pitting resistance of the nitrocarburized component, both the surface hardness and the effective curing depth may be increased. In order to improve the wear resistance, the surface hardness may be increased. On the other hand, in order to improve the spalling resistance, the effective curing depth may be increased.
[0025]
(B) When soft nitriding is performed, the surface hardness is Hv 600 or more, and the effective hardening depth is 0.1 mm or more, the fatigue resistance, wear resistance, pitting resistance and spalling resistance of the soft nitriding parts are remarkably increased. Can be increased.
[0026]
(C) If the steel material is spheroidized and annealed to reduce the hardness to Hv180 or less, the cold workability is improved and the mold life can be greatly improved.
[0027]
(D) By adjusting the chemical composition of the material steel and spheroidizing and hardening the steel material having a hardness of Hv180 or less by cold working to obtain a hardness of Hv250 or more, the steel material can be subjected to soft nitriding treatment The decrease in core hardness is extremely small and can maintain a value of Hv250 or higher.
[0028]
Unless otherwise specified, the hardness before soft nitriding (for example, after spheroidizing annealing and after cold working) is the hardness of the portion corresponding to the core after soft nitriding (for example, “center”). That means.
[0029]
(E) If the core hardness after soft nitriding is Hv250 or higher, for example, even in a part to which a high load is applied like a transmission gear of an automobile, bending fatigue does not occur starting from the inside of the part.
[0030]
(F) From the above (a) to (e), a steel having excellent cold workability is used as a material steel, and this is subjected to cold working to ensure sufficient hardness by work hardening, and then soft nitriding Thus, a hard and deep nitrided layer is formed. If the hardness for the work hardening (that is, the core hardness) is maintained by heating for soft nitriding, or if the decrease in hardness can be suppressed to a small level, the nitrocarburized component is large. It can impart fatigue resistance, wear resistance, pitting resistance and spalling resistance.
[0031]
(G) If an appropriate amount of Ti or Zr is added to steel, the sulfide is changed to Ti carbosulfide or Zr carbosulfide as an inclusion control in the steel, and these carbosulfides are finely dispersed, steel material The machinability of steel is dramatically improved.
Therefore, as a result of further research, the following items were found.
[0032]
(H) When Ti or Zr is actively added to the steel in consideration of the balance with S, Ti carbon sulfide or Zr carbon sulfide is formed in the steel, and Ti and Zr are added. Then, Ti carbon sulfide and Zr carbon sulfide are formed in the steel.
[0033]
(I) When the above-described Ti carbon sulfide or Zr carbon sulfide is generated in the steel, the amount of MnS generated decreases.
[0034]
(J) When the S content in the steel is the same, Ti carbon sulfide and Zr carbon sulfide have a greater machinability improving effect than MnS. This is based on the fact that the lubricating action on the rake face of the tool is increased during cutting because the melting point of Ti carbosulfide or Zr carbosulfide is lower than that of MnS.
[0035]
(K) In order to sufficiently exhibit the effects of Ti carbosulfide and Zr carbosulfide, it is important to reduce the N content. This is because when the N content is large, Ti and Zr are fixed as TiN and ZrN, and the production of Ti carbon sulfide and Zr carbon sulfide is suppressed.
[0036]
(L) Ti carbon sulfide and Zr carbon sulfide generated during steelmaking are not dissolved in the base at the heating temperature for normal hot working and the normal heating temperature in normalization. Therefore, since the so-called “pinning action” is exhibited in the austenite region, it is effective in preventing the austenite grains from becoming coarse. Of course, Ti carbosulfide and Zr carbosulfide are not dissolved in the base even at the heating temperature of the soft nitriding treatment.
[0037]
(M) In order to enhance machinability and ensure high strength, particularly high fatigue strength, with Ti carbosulfide or Zr carbosulfide, the size and cleanliness of Ti carbosulfide or Zr carbosulfide It is important to optimize the amount represented by (hereinafter simply referred to as “cleanliness”).
[0038]
The present invention has been completed based on the above findings.
[0039]
DETAILED DESCRIPTION OF THE INVENTION
Hereafter, each requirement of this invention is demonstrated in detail. In addition, "%" display of the content of each element means "wt%".
[0040]
(A) Chemical composition of steel
C:
C combines with S and Ti and Zr to form Ti carbosulfide and Zr carbosulfide, and has the effect of improving machinability. Further, C is an element effective for securing strength. However, if the content is less than 0.15%, desired strength (core hardness after soft nitriding after cold working, that is, Hv 250 or more as the core hardness of the soft nitrided part as the final product) cannot be secured. On the other hand, if it exceeds 0.45%, the ductility and toughness of the core part are lowered, and the cold workability is deteriorated. Furthermore, the surface hardness and hardening depth after soft nitriding are reduced. Therefore, the content of C is set to 0.15 to 0.45%.
[0041]
Si:
Si has the effect of increasing the hardenability of the steel and improving the strength. However, in the case of a steel for soft nitriding using steel containing no Mo or W according to the invention of (1) as a raw steel, if the Si content is 0.10% or less, the invention of (2) In the case of a steel material for soft nitriding made of steel containing one or more of 0.02% or more of Mo and 0.04% or more of W, when the Si content is less than 0.05%, The desired strength described above cannot be ensured. On the other hand, in the case of a steel for soft nitriding that uses the steel according to any of the above inventions as a raw material steel, if the Si content exceeds 0.50%, the toughness is deteriorated and the cold workability is adversely affected. Effect.
[0042]
Therefore, regarding the invention of (1), the Si content of the material steel is set to exceed 0.10% and to 0.50% or less.
[0043]
Moreover, regarding the invention of (2), the Si content of the material steel was set to 0.05 to 0.50%.
[0044]
  Mn:
  Mn is an element effective for improving the hardenability and securing the core strength. But its content is0.5If it is less than%, the effect of addition is poor. On the other hand, if it exceeds 2.5%, segregation occurs and the cold workability deteriorates. Therefore, the content of Mn0.5˜2.5%. In addition, it is preferable that content of Mn shall be 0.5 to 1.5%.
[0045]
S:
S combines with C and Ti and Zr to form Ti carbosulfide and Zr carbosulfide, and has the effect of improving machinability. However, if the content is less than 0.002%, the desired effect cannot be obtained.
[0046]
Conventionally, the purpose of adding S to free-cutting steel was to improve machinability by forming MnS. However, according to studies by the present inventors, it has been found that the above-described machinability improving effect of MnS is based on the function of improving the lubricity between chips and the tool surface during cutting. Moreover, MnS becomes enormous and the ground of the steel material body is enlarged, which may become a defect. The effect of improving the machinability of S in the present invention can be obtained for the first time by forming Ti carbosulfide or Zr carbosulfide by the combined addition of an appropriate amount of C and Ti or Zr. For this purpose, as described above, an S content of 0.002% or more is necessary. On the other hand, even if S is contained in an amount exceeding 0.2%, there is no change in the effect on machinability, but coarse MnS is generated again in the steel, causing problems such as ground. Furthermore, hot workability is remarkably deteriorated and hot working becomes difficult, and toughness may be lowered. Therefore, the content of S is set to 0.002 to 0.2%. In addition, the preferable content of S is 0.004 to 0.1%.
[0047]
Cr:
Cr is an extremely effective element for combining with N that penetrates from the steel surface during soft nitriding to increase the surface hardness and increase the depth of hardening. However, if the content is less than 0.5%, the above effect cannot be expected. On the other hand, when Cr exceeds 2%, the surface hardness becomes too high due to soft nitriding, so the hardness gradient from the surface to the core becomes steep, and on the contrary, spalling resistance and pitting resistance Will deteriorate. Therefore, the Cr content is set to 0.5 to 2%.
[0048]
V:
V combines with N and C entering from the steel surface during soft nitriding treatment and precipitates as fine vanadium carbonitride, thereby increasing the surface hardness and further increasing the hardening depth. In the V-added steel, the rate of increase in surface hardness is small compared with the case of adding Cr, whereas the rate of increase in hardening depth is extremely large, and the carbonitride precipitates to increase the core hardness. Therefore, a curing curve having a large curing depth and a gentle hardness gradient from the surface to the core can be obtained. However, if the V content is less than 0.05%, the effect of addition is poor. On the other hand, if the V content exceeds 0.5%, the above effect is saturated and the cost increases, but on the contrary, the embrittlement phenomenon appears. Come to come. Therefore, the V content is set to 0.05 to 0.5%. The V content is preferably 0.1 to 0.3%.
[0049]
Ti, Zr:
Ti and Zr are important alloying elements for controlling inclusions in the present invention, and combine with C and S, respectively, to form Ti carbosulfide and Zr carbosulfide, thereby improving the machinability. Have.
[0050]
  The above effect can be obtained reliably when the value of Ti (%) + Zr (%) is 0.04% or more with respect to the contents of Ti and Zr. However, even if Ti and Zr exceeding 1.0% in terms of Ti (%) + Zr (%) are contained, the machinability improving effect is saturated and the cost increases. Note that it is only necessary that the value of Ti (%) + Zr (%) be 0.04 to 1.0%, and therefore it is not always necessary to contain Ti and Zr in combination. When Zr is not added, that is, when Ti is added alone, if Ti is contained in excess of 1.0%, the effect of improving the machinability by Ti carbon sulfide is saturated and the cost is increased. A thing will coarsen and it will cause the fall of toughness. Conversely, when Ti is not added, that is, when Zr is added alone, if Zr is contained in excess of 1.0%, the machinability improving effect by Zr carbon sulfide is saturated and the cost increases. Zr carbosulfide becomes coarse and on the contrary it causes a decrease in toughness. Therefore, the contents of Ti and Zr are both0 to 1.0%And the value of Ti (%) + Zr (%) was 0.04 to 1.0%. In order to stably obtain good machinability and toughness, the upper limits of the Ti and Zr contents are each preferably 0.8%.
[0051]
Al:
Al has an action of stabilizing and homogenizing deoxidation of steel. Further, it has an effect of increasing the surface hardness by combining with the penetration N during soft nitriding. However, if the content is less than 0.01%, the above effect cannot be expected. On the other hand, if it exceeds 0.3%, the curing depth is reduced. Therefore, the content of Al is set to 0.01 to 0.3%. In addition, it is preferable that Al content shall be 0.01-0.15.
[0052]
N:
In the present invention, the lower the N content, the better. That is, since N has a high affinity with Ti and Zr, it easily binds to Ti and Zr to form TiN and ZrN, and Ti and Zr are fixed. Therefore, when N is contained in a large amount, The effect of improving the machinability of Ti Ti sulphides and Zr sulphides cannot be sufficiently exhibited. In particular, when the content of Ti or Zr is low, the influence of the N content becomes significant. Furthermore, coarse TiN and ZrN reduce toughness and machinability. Therefore, the N content is set to 0.008% or less. In order to enhance the effects of Ti carbosulfide and Zr carbosulfide, the upper limit of the N content is preferably 0.006%.
[0053]
Pb:
Pb may not be added. If added, it has the effect of further improving the machinability of the steel. In order to reliably obtain this effect, the Pb content is preferably 0.03% or more. However, when Pb exceeds 0.35%, hot workability is deteriorated and cracking often occurs during hot working such as hot rolling or hot forging. Therefore, the content of Pb is set to 0 to 0.35%.
[0054]
Ca:
Ca need not be added. If added, it has the effect of further improving the machinability of the steel. In order to reliably obtain this effect, Ca is preferably contained in a content of 0.001% or more. On the other hand, in order to contain Ca in excess of 0.01%, a special melting technique and equipment are required and the cost increases. Therefore, the content of Ca is set to 0 to 0.01%.
[0055]
Mo, W:
Mo and W are elements that are effective in increasing the hardenability of the steel to increase the softening resistance of the core during soft nitriding and ensuring the above-described desired strength. Moreover, it has the effect of making the structure after normalization a bainite-containing structure.
[0056]
However, in the case of a steel for soft nitriding made of steel containing more than 0.10% of Si according to the invention of (1), the above-mentioned desired strength is obtained for the soft nitrided part as the final product. Therefore, it is not necessary to contain both Mo and W.
[0057]
With regard to the invention of (2), in the case of a steel material for soft nitriding in which the steel containing only 0.10% or less of Si is used as the material steel (in this invention, Si: 0.05 to 0.10% In the case), if it does not contain at least one of 0.02% or more of Mo and 0.04% or more of W, it is difficult to obtain the effect of adding Mo or W. In addition, in the invention of (2), in the steel for soft nitriding whose raw material steel is Si containing more than 0.10%, 1 of Mo of 0.02% or more and W of 0.04% or more. If more than seeds are contained, it becomes extremely easy to impart desired strength to the soft-nitrided part that is the final product, and the structure after normalization can be easily converted to a bainite-containing structure.
[0058]
On the other hand, regarding the invention of (2), (a) a steel for soft nitriding whose steel is steel having a Si content of 0.10% or less, and (b) a steel containing Si exceeding 0.10%. In any case of the soft nitriding steel used as the material steel, if the Mo content exceeds 0.3% or the W content exceeds 0.5%, the desired strength securing effect and normalization are achieved. Since the effect of making the subsequent structure a bainite-containing structure is saturated, the cost is increased. Therefore, in the invention of (2), one or more of 0.02 to 0.3% Mo and 0.04 to 0.5% W are included.
[0059]
  fn1:
  The upper limit of N content is 0.008%,(1)In the case where fn1 represented by the formula exceeds 0% (fn1 = Ti (%) + Zr (%) − 1.2 × S (%)> 0%), the above-described Ti carbon sulfide or Zr carbon sulfide The machinability improvement effect can be ensured. When the value of fn1 is 0% or less (fn1 ≦ 0%), the amount of S becomes excessive, so that MnS is excessively generated and the machinability improvement effect by Ti carbosulfide or Zr carbosulfide is improved. It will decline. Therefore,(1)With respect to fn1 represented by the formula, a value exceeding 0% (fn1> 0%) was defined. The upper limit of the value of fn1 is not particularly defined, and may be a value when the value of Ti (%) + Zr (%) is 1.0% and S is 0.002%.
[0060]
(B) Size and cleanliness of Ti carbosulfides and Zr carbosulfides
In order to enhance the machinability of the steel material having the above-described chemical composition by Ti carbon sulfide or Zr carbon sulfide, and to ensure a large strength, the size and cleanliness of Ti carbon sulfide or Zr carbon sulfide (Ti When adding Zr and Zr in combination, it is important to optimize the amount expressed by the sum of the cleanliness of Ti carbosulfide and Zr carbosulfide.
[0061]
When the maximum diameter of Ti carbon sulfide and Zr carbon sulfide in steel exceeds 10 μm, the fatigue strength is lowered. In addition, it is preferable that both the maximum diameters of Ti carbon sulfide and Zr carbon sulfide are 7 μm or less. When the maximum diameter of Ti carbon sulfide and Zr carbon sulfide is too small, the machinability improving effect is reduced. Therefore, it is preferable that the lower limit value of the maximum diameter of Ti carbon sulfide and Zr carbon sulfide is about 0.5 μm.
[0062]
When the sum of the amount of Ti carbosulfide and Zr carbosulfide having a maximum diameter of 10 μm or less is less than 0.05% in terms of cleanliness, the effect of improving machinability by Ti carbosulfide and Zr carbosulfide is exhibited. Can not. Therefore, the maximum diameter of Ti carbosulfide and Zr carbosulfide is 10 μm or less, and the sum of the amounts is 0.05% or more in terms of cleanliness. The sum of the cleanliness is preferably 0.08% or more. If the value of the sum of the cleanliness of Ti carbosulfide and Zr carbosulfide is too large, the fatigue strength may decrease. Therefore, the upper limit of the sum of cleanliness should be about 2.0%. Is preferred.
[0063]
The form of Ti carbon sulfide and Zr carbon sulfide as described above is basically determined by the contents of Ti, Zr, S and N. However, in order to obtain the above values for the size and cleanliness (sum of cleanliness) of Ti carbosulfide and Zr carbosulfide, it is important to prevent excessive formation of oxides of Ti and Zr. is there. For this purpose, it may not be sufficient that the steel has the chemical composition described in the above section (A). For example, the steel is sufficiently deoxidized with Si and Al, and finally Ti and Zr are added. What is necessary is just to take the steelmaking method.
[0064]
In addition, Ti carbosulfide and Zr carbosulfide can be easily changed from color and shape by mirror-polishing a test piece taken from a steel material and observing the polished surface as a test surface with an optical microscope at a magnification of 400 times or more. Can be distinguished from inclusions. That is, when observed under an optical microscope under the above-mentioned conditions, the “color” of Ti carbosulfide and Zr carbosulfide is very light gray, and the “shape” is a granular shape corresponding to JIS B-type inclusions or C-type inclusions. Recognized as (spherical). Detailed determination of Ti carbosulfides and Zr carbosulfides can also be performed by observing the test surface with an electron microscope having an analysis function such as EDX (energy dispersive X-ray analyzer).
[0065]
As described above, the cleanliness of the Ti carbosulfide or Zr carbosulfide is defined by JIS G 0555, “Microscopic test method for non-metallic inclusions in steel” with an optical microscope magnification of 400 times. The value measured by 60 visual fields. Note that the maximum diameter of the Ti carbon sulfide or Zr carbon sulfide may be examined by observing 60 visual fields with an optical microscope having a magnification of 400 times.
[0066]
(C) Spheroidizing annealing
Spheroidizing annealing is performed by hot-working (for example, hot rolling or heat treatment) a steel material having the chemical composition shown in (A) above and the size and amount of Ti carbon sulfide or Zr carbon sulfide shown in (B) above. Essential to reduce the hardness and increase the cold workability, thereby significantly improving the die life and lowering the manufacturing cost of the required final nitrocarburized parts. It is processing of.
[0067]
When the hardness after spheroidizing annealing exceeds 180 in Hv, the life of the mold is significantly reduced, and the manufacturing cost of the desired soft nitrided part as the final product is significantly increased. Therefore, the hardness after spheroidizing annealing must be Hv180 or less. In addition, it is not necessary to restrict | limit especially about the lower limit of the hardness of spheroidization annealing.
[0068]
This spheroidizing annealing may be performed by a normal method.
[0069]
(D) Cold working
The steel material of (C) above, which has been spheroidized and adjusted to a hardness of Hv180 or less, is then cold worked to finish the rough shape of the desired soft nitrided part, and further cut to form the desired soft nitrided part shape. Finish. Of course, precision cold working may be used to finish the shape of the desired soft nitrided part without cutting, or after spheroidizing annealing, cutting may be performed before or after cold working to obtain the desired soft nitrided part. You may finish in a shape.
[0070]
The “soft nitriding steel” according to the inventions of (1) and (2) is formed into a desired shape by the cold working and cutting (or precision cold working) and is soft nitrided. This is the one before.
[0071]
The above cold working may be performed by a normal method such as cold forging, cold rolling, or cold drawing, but the processed part needs to have a hardness of Hv250 or more. This is because the steel material of (C) whose hardness is adjusted to Hv 180 or less is subjected to cold working, and if the hardness rises to Hv 250 or more, even if it is subjected to soft nitriding treatment, This is because the decrease in core hardness due to heating is extremely small, and a value of Hv 250 or higher can be maintained. And if the core hardness after soft nitriding is Hv250 or more, as already mentioned, for example, even in a part to which a high load is applied like a transmission gear of an automobile, bending fatigue occurs from the inside of the part as a starting point. Absent.
[0072]
In order to cold work the steel material having a hardness adjusted to Hv 180 or less by spheroidizing annealing shown in the above (C), and to make the hardness Hv 250 or more, the dimension is such that 20% or more of processing is applied at the area reduction rate. Adjust it.
[0073]
In addition, it is not necessary to restrict | limit especially the upper limit of the hardness after cold working. That is, processing may be performed with the highest reduction in area that can be applied on the equipment, and the hardness may be extremely large.
[0074]
The “steel material for soft nitriding” according to the inventions (1) and (2) can be obtained by the production methods described so far. The steel material is subjected to the soft nitriding treatment described below to become a soft nitrided part according to the invention of (3).
[0075]
(E) Soft nitriding
The parts (steel material for nitrocarburizing) formed into the required shape by performing the cold working of (D) above, or by performing the cold working and before or / and after that, are further softened thereafter. Nitriding is performed. This soft nitriding method does not have to be limited at all, and may be performed by a normal method. When soft nitriding is performed, the surface hardness is Hv 600 or more, and the effective hardening depth is 0.1 mm or more, the fatigue resistance, wear resistance, pitting resistance and spalling resistance of the soft nitriding parts can be remarkably improved. It can be done.
[0076]
The cold work shown in (D) above, or the part (steel material for soft nitriding) that has been subjected to the cold working and before or / and after that is soft nitrided to have a surface hardness of Hv 600 or more and effective hardening. In order to set the depth to 0.1 mm or more, for example, the part may be held in a gas of about 570 ° C. added with ammonia in RX gas for 3 to 9 hours, and then cooled in oil.
[0077]
The upper limit values of the surface hardness and effective hardening depth after soft nitriding need not be particularly limited. However, it is preferable that the upper limit of the surface hardness after soft nitriding is about Hv900.
[0078]
The soft nitrided component according to the invention of (3) is a steel material having a chemical composition of (A), which is a raw steel material, and a Ti carbon sulfide or Zr carbon sulfide of the size and amount shown in (B), for example. After being melted by the above method, it is hot rolled or forged, subjected to normalization as necessary, and subjected to spheroidizing annealing shown in (C), and then by cold working shown in (D), or After forming into the desired part shape by the cold working shown in (D) and the cutting process before and / or after that, soft nitriding is performed, and then grinding or polishing is performed as necessary. Manufactured.
[0079]
Here, in the material steel material having the chemical composition targeted by the present invention, it is normalized after hot working, and the structure in the region from at least the surface layer to a depth exceeding 0.5 mm is a structure containing bainite (bainite single phase). If the structure, or bainite, and one or more mixed structures of ferrite, pearlite, and martensite), the spheroidization rate of carbide (mainly cementite) after spheroidizing annealing is improved. Therefore, the hardness before cold working can be greatly reduced by spheroidizing annealing. Lowering the hardness of the steel material before cold working leads to improvement of cold workability, extending the mold life and reducing the mold cost. Furthermore, the spheroidizing annealing time can be shortened, and the productivity can be improved and the manufacturing cost can be reduced. For this reason, in the manufacturing method of the steel for soft nitriding of invention of (1) and (2), it is preferable to normalize after hot processing and to spheroidize annealing.
[0080]
【Example】
Steels having chemical compositions shown in Tables 1 and 2 were melted using a 180 kg vacuum melting furnace. In addition, in order to prevent the formation of Ti oxides and Zr oxides except for steels 7 to 9, Ti and Zr were added at the end of adding various elements after sufficiently deoxidizing with Si and Al, and Ti carbonitride The size and cleanliness (sum of cleanliness) of the product and Zr carbosulfide were adjusted. For steels 7 to 9, Ti and Zr were simultaneously added when deoxidizing with Si and Al.
[0081]
  Steel 1 to 1 in Table 15 and steel 7 ~9 is an example of the present invention in which the chemical composition is within the range defined by the present invention, and steels 10 to 21 in Table 2 are comparative examples in which any of the components deviates from the content range defined by the present invention. Among the steels according to the comparative examples, Steel 19 and Steel 20 are obtained by adding Ti and Zr to steel corresponding to JIS standard SCM435 and SACM645, respectively.
[0082]
[Table 1]
Figure 0003849296
[0083]
[Table 2]
Figure 0003849296
[0084]
Next, these steels were made into steel pieces by a normal method, heated to 1250 ° C., and then hot forged at a temperature of 1250 to 950 ° C. to obtain round bars with diameters of 30 mm and 38 mm. Then, it normalized at 870-925 degreeC according to C content, and spheroidized annealing was then carried out with the heat pattern shown in FIG.
[0085]
In addition, about the steel 2 and the steel 9, what was spheroidizing-annealed without performing normalization after a hot forging, ie, the hot forging was prepared for the comparison.
[0086]
(Example 1)
The following various investigations were performed using a round bar having a diameter of 30 mm obtained as described above.
[0087]
That is, a test piece was collected from a round bar as hot forged in accordance with FIG. 1 of JIS G 0555, and a mirror-polished test surface having a width of 15 mm and a height of 20 mm was optically magnified by 400 times. The cleanliness (sum of cleanliness) was measured while observing 60 fields of view with a microscope and distinguishing Ti carbosulfides and Zr carbosulfides from other inclusions. The maximum diameters of Ti carbosulfide and Zr carbosulfide were also examined by observing 60 visual fields with an optical microscope having a magnification of 400 times.
[0088]
A test piece having a diameter of 30 mm and a thickness of 20 mm was cut out from the round bar as it was normalized, and it was corroded with a nital, and the structure was observed with an optical microscope at a magnification of 400 times.
[0089]
From each round bar after spheroidizing annealing, a hardness test piece having a diameter of 30 mm and a thickness of 20 mm and a test piece for cold working having a diameter of 10 mm and a length of 15 mm were prepared.
[0090]
Using the above hardness test piece, the Hv hardness of the central part was measured with a micro Vickers hardness tester.
[0091]
Further, a cold (room temperature) restraint type upsetting test was performed by a normal method using a 500-t high-speed press using the above-mentioned test piece for cold working, and a limit upsetting rate was measured. In addition, the upsetting test was performed three times for each condition, and the maximum working rate (area reduction rate) at which no cracks occurred in all three test pieces was evaluated as the limit upsetting rate.
[0092]
On the other hand, each round bar having a diameter of 30 mm after spheroidizing annealing obtained as described above is peeled to a diameter of 25 mm, and thereafter, the diameter is 20.9 mm (reduced surface area) in the cold (room temperature) by a normal method. The material was drawn using a draw bench to a rate of 30.1%. Next, a soft nitriding treatment was performed by holding ammonia gas at a ratio of 1: 1 to RX gas in a gas having a temperature of 570 ° C. for 6 hours, and then cooling into oil.
[0093]
A hardness test piece having a diameter of 20.9 mm and a thickness of 20 mm was prepared from the drawn round bar, and the hardness of the central portion was measured using a micro Vickers hardness tester. In addition, a hardness test piece having a diameter of 20.9 mm and a thickness of 20 mm was prepared from a soft-nitrided round bar, and surface hardness (Hv hardness at a position of 0.025 mm from the surface) was measured with a micro Vickers hardness meter. The curing depth (distance from the surface to the position of Hv500) and the central hardness were measured.
[0094]
A drill drilling test was also conducted for machinability evaluation. That is, by using a round bar having a diameter of 30 mm after spheroidizing annealing and a round bar having a diameter of 20.9 mm after drawing and rounded to a length of 25 mm, R / 2 part (R is a round bar) The number of through-holes when drilling was impossible due to blade edge abrasion was counted, and machinability was evaluated. The piercing conditions were performed using a JIS high-speed tool steel SKH51 φ5 mm straight shank drill and using a water-soluble lubricant at a feed of 0.15 mm / rev and a rotation speed of 980 rpm.
[0095]
Table 3 summarizes various test results. In the column of “Ti, Zr carbosulfides” in the table, when Ti and Zr are added together, the “maximum diameter” is the value of the larger carbosulfide, and the cleanliness is clean. Means the sum of degrees.
[0096]
[Table 3]
Figure 0003849296
[0097]
From Table 3, when the chemical composition and the cleanness of “Ti, Zr carbosulfide” having a maximum diameter of 10 μm or less are within the range defined by the present invention, the hardness after spheroidizing annealing is any Hv is less than 180, the limit upsetting rate exceeds 80%, and the machinability is also good. And the hardness exceeding Hv250 is easily obtained by cold working (drawing) with a surface reduction rate of 30.1%, and the machinability after cold drawing is also good. Furthermore, after soft nitriding, a surface hardness exceeding Hv600 and an effective hardening depth exceeding 0.1 mm were obtained, and even if subjected to a heat treatment at 570 ° C. for 6 hours for soft nitriding, the hardness at the center (Core hardness) is maintained at a value exceeding Hv250.
[0098]
On the other hand, in the case of the comparative example, (i) the hardness after spheroidizing annealing exceeds Hv180, (b) the hardness after cold nitriding is low because the hardness after cold working is low, ( C) Hardness after cold working exceeds Hv250, but core hardness after soft nitriding is lower than Hv250, (d) Surface hardness after soft nitriding is lower than Hv600, (e) Effective hardening depth after soft nitriding Is less than 0.1 mm, and (f) the number of through-holes in the drill drilling test is significantly less than 100 and inferior in machinability. For this reason, the die life at the time of cold forging is short, the die cost is increased, and the cost of cutting for forming into the shape of the desired nitrocarburized component is also increased, so the manufacturing cost of the desired nitrocarburized component is It will be extremely expensive. Or even if the manufacturing cost is low, the fatigue resistance, wear resistance, pitting resistance and spalling resistance of the nitrocarburized parts are inferior.
[0099]
(Example 2)
The following various investigations were performed using the round bar with a diameter of 38 mm obtained as described above.
[0100]
That is, in the same manner as in Example 1, a test piece was collected from a round bar that had been hot forged in accordance with FIG. 1 of JIS G 0555, and the mirror-polished width was 15 mm and the height was 20 mm. The surface was observed in 60 visual fields with an optical microscope having a magnification of 400 times, and the cleanliness (the sum of cleanliness) was measured while distinguishing Ti carbosulfides and Zr carbosulfides from other inclusions. The maximum diameters of Ti carbosulfide and Zr carbosulfide were also examined by observing 60 visual fields with an optical microscope having a magnification of 400 times.
[0101]
From each round bar after spheroidizing annealing, a hardness test piece having a diameter of 38 mm and a thickness of 20 mm was prepared, and using this, the Hv hardness of the central portion was measured with a micro Vickers hardness meter.
[0102]
Further, each round bar having a diameter of 38 mm after spheroidizing annealing is peeled to a diameter of 36 mm, and thereafter, a draw bench is formed to a diameter of 30 mm (reduction rate of 30.6%) in the cold (room temperature) by a normal method. Used to draw. After this, the rolling fatigue test piece (small roller) shown in FIG. 2 and the Ono type rotating bending fatigue test piece with an annular semicircular groove (JIS Z 2274 D = 10 mm, d = 8 mm, ρ = t = 1 mm, D0 = 12 mm test piece).
[0103]
Next, each test piece was subjected to soft nitriding treatment by holding ammonia gas in a ratio of 1: 1 to RX gas at a temperature of 570 ° C. for 6 hours, and then cooled into oil. In addition, the above-described treatment was also applied to a cold-drawn one having a diameter of 30 mm and a length of 100 mm.
[0104]
A hardness test piece having a diameter of 30 mm and a thickness of 20 mm was prepared from the drawn round bar, and the hardness of the central portion was measured using a micro Vickers hardness tester. In addition, a hardness test piece having a diameter of 30 mm and a thickness of 20 mm was prepared from a soft-nitrided round bar, and the surface hardness (Hv hardness at a position of 0.025 mm from the surface) and effective curing depth were measured with a micro Vickers hardness tester. The thickness (distance from the surface to the position of Hv500) and the central hardness were measured.
[0105]
On the other hand, fatigue characteristics were investigated using an ono-type rotating bending fatigue test piece and a rolling fatigue test piece subjected to soft nitriding.
[0106]
That is, the Ono type rotating bending fatigue test was performed under the conditions of room temperature (room temperature), air, and a rotational speed of 3000 rpm, and bending fatigue strength (fatigue limit) was obtained.
[0107]
In addition, the surface fatigue strength was determined using a roller pitching tester under the conditions of a rotational speed of 1000 rpm, a lubricating oil temperature of 80 ° C., and a slip ratio of 40%. In addition, the large roller used as a counterpart material was adjusted to a hardness of 61 by Rockwell C hardness (HRC) using SUJ2 of JIS, and processed into an outer diameter of 130 mm, an inner diameter of 45 mm, and a thickness of 18 mm. And 10 under the above test conditions.7 The surface pressure at which rotation was possible was evaluated as “surface fatigue strength”.
[0108]
Table 4 summarizes various test results. In this table, in the column of “Ti, Zr carbosulfide”, when Ti and Zr are added together, the “maximum diameter” is the value of the larger carbosulfide, and the cleanliness level Means the sum of cleanliness.
[0109]
[Table 4]
Figure 0003849296
[0110]
From Table 4, when the chemical composition and the cleanliness of “Ti, Zr carbosulfide” having a maximum diameter of 10 μm or less are within the range defined by the present invention, the same as in Example 1 above. In addition, the hardness after spheroidizing annealing is lower than 180 in Hv. A hardness exceeding Hv250 is easily obtained by cold working (drawing) with a reduction in area of 30.6%. Furthermore, after soft nitriding, a surface hardness exceeding Hv 600 and an effective hardening depth exceeding 0.1 mm were obtained, and the central part hardness (even if subjected to heat treatment at 570 ° C. for nitro nitriding for 6 hours) The core hardness is maintained at a value exceeding Hv250.
[0111]
Furthermore, the bending fatigue strength is 50 kgf / mm.2 The surface fatigue strength is 240 kgf / mm2 A value exceeding is obtained.
[0112]
On the other hand, in the case of the comparative example, (i) the hardness after spheroidizing annealing exceeds Hv180, (b) the hardness after soft nitriding is low because the hardness after cold working is low, ( C) Hardness after cold working exceeds Hv250, but core hardness after soft nitriding is lower than Hv250, (d) Surface hardness after soft nitriding is lower than Hv600, (e) Effective hardening depth after soft nitriding Corresponds to any one or more of less than 0.1 mm. Furthermore, the bending fatigue strength is at most 46 kgf / mm.2 (When steel 13 is concerned) and surface fatigue strength is 233 kgf / mm when steel 15 and steel 18 are concerned2 Is clearly inferior to the case according to the example of the present invention.
[0113]
【The invention's effect】
The soft nitrided parts of the present invention are excellent in fatigue resistance, wear resistance, pitting resistance and spalling resistance, and therefore parts requiring high fatigue strength and wear resistance such as gears for automobiles and industrial machines. Can be used as The steel material for nitrocarburizing excellent in machinability, which is a material of the nitrocarburized component, can be relatively easily manufactured by the method of the present invention.
[Brief description of the drawings]
FIG. 1 is a diagram showing a heat pattern of spheroidizing annealing in an example.
FIG. 2 is a view showing the shape of a rolling fatigue test piece used in Examples.

Claims (3)

重量%で、C:0.15〜0.45%、Si:0.10%を超え0.50%以下、Mn:0.5〜2.5%、S:0.002〜0.2%、Cr:0.5〜2%、V:0.05〜0.5%、Ti:0〜1.0%、Zr:0〜1.0%で、且つ、Ti(%)+Zr(%):0.04〜1.0%、Al:0.01〜0.3%、N:0.008%以下、Pb:0〜0.35%及びCa:0〜0.01%を含み、下記(1)式で表されるfn1の値が0%を超え、残部はFe及び不可避不純物の化学組成で、更に、鋼中のTi炭硫化物及びZr炭硫化物の最大直径が10μm以下で、且つ、その量の和がJIS G 0555 に規定の清浄度で0.05%以上である鋼を、熱間加工後に球状化焼鈍して硬度をHv180以下とし、次いで冷間加工して硬度をHv250以上にすることを特徴とする被削性に優れた軟窒化用鋼材の製造方法。
fn1=Ti(%)+Zr(%)−1.2S(%)・・・・(1)
By weight%, C: 0.15 to 0.45%, Si: more than 0.10% and 0.50% or less, Mn: 0.5 to 2.5%, S: 0.002 to 0.2% , Cr: 0.5-2%, V: 0.05-0.5%, Ti: 0-1.0% , Zr: 0-1.0% , and Ti (%) + Zr (%) : 0.04 to 1.0%, Al: 0.01 to 0.3%, N: 0.008% or less, Pb: 0 to 0.35% and Ca: 0 to 0.01%, The value of fn1 represented by the formula (1) exceeds 0%, the balance is the chemical composition of Fe and inevitable impurities, and the maximum diameter of Ti carbon sulfide and Zr carbon sulfide in steel is 10 μm or less, and, the amount of steel sum is not less than 0.05% by cleanliness specified in JIS G 0555, after hot working and annealing spheroidizing hardness and Hv180 or less, then the hardness cold working Hv2 Method for producing a superior soft nitriding steel material machinability characterized by zero or more.
fn1 = Ti (%) + Zr (%) − 1.2S (%) (1)
重量%で、C:0.15〜0.45%、Si:0.05〜0.50%、Mn:0.5〜2.5%、S:0.002〜0.2%、Cr:0.5〜2%、V:0.05〜0.5%、Ti:0〜1.0%、Zr:0〜1.0%で、且つ、Ti(%)+Zr(%):0.04〜1.0%、Al:0.01〜0.3%、N:0.008%以下、Pb:0〜0.35%、Ca:0〜0.01%、並びに、Mo:0.02〜0.3%及びW:0.04〜0.5%の1種以上を含み、(1)式で表されるfn1の値が0%を超え、残部はFe及び不可避不純物の化学組成で、更に、鋼中のTi炭硫化物及びZr炭硫化物の最大直径が10μm以下で、且つ、その量の和がJIS G 0555 に規定の清浄度で0.05%以上である鋼を、熱間加工後に球状化焼鈍して硬度をHv180以下とし、次いで冷間加工して硬度をHv250以上にすることを特徴とする被削性に優れた軟窒化用鋼材の製造方法。
fn1=Ti(%)+Zr(%)−1.2S(%)・・・・(1)
C: 0.15-0.45%, Si: 0.05-0.50%, Mn: 0.5-2.5 %, S: 0.002-0.2%, Cr: 0.5 to 2%, V: 0.05 to 0.5%, Ti: 0 to 1.0% , Zr: 0 to 1.0% , and Ti (%) + Zr (%): 0. 04 to 1.0%, Al: 0.01 to 0.3%, N: 0.008% or less, Pb: 0 to 0.35%, Ca: 0 to 0.01%, and Mo: 0.0. 02 to 0.3% and W: include one or more from 0.04 to 0.5%, the value of fn1 represented by the following SL (1) is greater than 0%, the balance of Fe and unavoidable impurities Steel having a chemical composition and a maximum diameter of Ti carbon sulfide and Zr carbon sulfide in the steel of 10 μm or less, and the sum of the amounts is 0.05% or more with the cleanliness specified in JIS G 0555 Spheroidizing annealing after hot working The hardness and Hv180 or less, then the manufacturing method of the excellent soft-nitriding steel material machinability, characterized by the processed Hv250 or more hardness cold.
fn1 = Ti (%) + Zr (%) − 1.2S (%) (1)
請求項1又は請求項2に記載の化学組成、大きさ及び量のTi炭硫化物とZr炭硫化物、並びに球状化組織を備え、表面硬度がHv600以上、且つ、有効硬化深さが0.1mm以上、芯部硬度がHv250以上であることを特徴とする軟窒化部品。  The chemical composition, the size and the amount of Ti carbon sulfide and Zr carbon sulfide, and the spheroidized structure according to claim 1 or 2, the surface hardness is Hv600 or more, and the effective hardening depth is 0.1. A soft nitrided part having a core hardness of 1 mm or more and Hv 250 or more.
JP13663598A 1998-05-19 1998-05-19 Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel Expired - Fee Related JP3849296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13663598A JP3849296B2 (en) 1998-05-19 1998-05-19 Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13663598A JP3849296B2 (en) 1998-05-19 1998-05-19 Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel

Publications (2)

Publication Number Publication Date
JPH11335732A JPH11335732A (en) 1999-12-07
JP3849296B2 true JP3849296B2 (en) 2006-11-22

Family

ID=15179927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13663598A Expired - Fee Related JP3849296B2 (en) 1998-05-19 1998-05-19 Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel

Country Status (1)

Country Link
JP (1) JP3849296B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114775A1 (en) 2010-03-16 2011-09-22 新日本製鐵株式会社 Steel for nitrocarburization, nitrocarburized components, and production method for same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1498282A (en) * 2001-03-23 2004-05-19 ס�ѽ�����ҵ��ʽ���� Cast steel and foundry metal molds
JP2006199993A (en) * 2005-01-19 2006-08-03 Nippon Steel Corp Steel for case hardening excellent in cold forgeability and temper softening resistance
WO2010070958A1 (en) * 2008-12-19 2010-06-24 新日本製鐵株式会社 Hardfacing steel for machine structure, and steel component for machine structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114775A1 (en) 2010-03-16 2011-09-22 新日本製鐵株式会社 Steel for nitrocarburization, nitrocarburized components, and production method for same
US9284632B2 (en) 2010-03-16 2016-03-15 Nippon Steel & Sumitomo Metal Corporation Steel for nitrocarburizing, nitrocarburized steel part, and producing method of nitrocarburized steel part
US10196720B2 (en) 2010-03-16 2019-02-05 Nippon Steel & Sumitomo Metal Corporation Steel for nitrocarburizing, nitrocarburized steel part, and producing method of nitrocarburized steel part

Also Published As

Publication number Publication date
JPH11335732A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
CN110036129B (en) Steel for soft nitriding and member
KR101726251B1 (en) Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component
JP2010163671A (en) Steel for soft nitriding
JP5299118B2 (en) Vacuum carburizing steel and vacuum carburized parts
JP5886119B2 (en) Case-hardened steel
JP6098769B2 (en) Soft nitriding steel and parts and methods for producing them
JP5528082B2 (en) Soft nitriding gear
JP2006307271A (en) Case hardening steel having excellent crystal grain coarsening resistance and cold workability and in which softening can be obviated, and method for producing the same
JP2011089189A (en) Alloy steel for machine structural use
JPH11229032A (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized parts using the steel
JP2018197371A (en) Bearing steel and bearing component
JP3849296B2 (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel
JP3855418B2 (en) Method of manufacturing nitrocarburizing steel material and nitrocarburized component using the steel material
JPH10226817A (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized parts using the steel
JP3353698B2 (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized parts using the steel
JP3395642B2 (en) Coarse-grained case hardened steel material, surface-hardened part excellent in strength and toughness, and method for producing the same
JPH10226818A (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized parts using the steel
JP4464861B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
JP3900102B2 (en) Non-tempered steel and non-tempered steel products
JP3472675B2 (en) High-strength free-cut non-heat treated steel
JP3879251B2 (en) Manufacturing method of surface hardened parts with excellent strength and toughness
JPH10158780A (en) Cold tool steel for plasma carburizing
JP2007107046A (en) Induction hardening steel
JP3769918B2 (en) Coarse grain-resistant case-hardened steel, surface-hardened parts excellent in strength and toughness, and manufacturing method thereof
JPH09256045A (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized parts using the steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees