JP3489655B2 - High-strength, high-toughness free-cut non-heat treated steel - Google Patents

High-strength, high-toughness free-cut non-heat treated steel

Info

Publication number
JP3489655B2
JP3489655B2 JP03689798A JP3689798A JP3489655B2 JP 3489655 B2 JP3489655 B2 JP 3489655B2 JP 03689798 A JP03689798 A JP 03689798A JP 3689798 A JP3689798 A JP 3689798A JP 3489655 B2 JP3489655 B2 JP 3489655B2
Authority
JP
Japan
Prior art keywords
steel
carbosulfide
toughness
content
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03689798A
Other languages
Japanese (ja)
Other versions
JPH10298704A (en
Inventor
宏二 渡里
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP03689798A priority Critical patent/JP3489655B2/en
Publication of JPH10298704A publication Critical patent/JPH10298704A/en
Application granted granted Critical
Publication of JP3489655B2 publication Critical patent/JP3489655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高強度高靭性快削非
調質鋼材に関する。更に詳しくは、熱間加工後に焼入れ
焼戻しの調質処理を施さずとも優れた強度−靭性バラン
スを有するとともに被削性にも優れた機械構造部品など
の素材として好適な非調質鋼材に関するものである。
TECHNICAL FIELD The present invention relates to a high-strength and high-toughness free-cutting non-heat treated steel material. More specifically, it relates to a non-heat treated steel material suitable as a material for machine structural parts and the like, which has an excellent strength-toughness balance and is also excellent in machinability even without performing a tempering treatment after hot working. is there.

【0002】[0002]

【従来の技術】従来、高い引張強度と靭性を必要とする
機械構造部品などは、熱間加工で所定の形状に粗加工
し、次いで、切削加工によって所望形状に仕上げた後、
焼入れ焼戻しの調質処理を施すのが一般的であった。し
かしこの調質処理には多くのエネルギーとコストを費や
す。そこで近年、省エネルギーの社会的要請に応え、且
つ、一方では低コスト化を図るために、熱間加工のまま
で使用できる非調質鋼の開発が盛んに行われている。
2. Description of the Related Art Conventionally, mechanical structural parts, etc., which require high tensile strength and toughness, are roughly hot-worked into a predetermined shape, and then cut into a desired shape.
It was general to perform tempering treatment such as quenching and tempering. However, this conditioning process consumes a lot of energy and cost. Therefore, in recent years, non-heat treated steel that can be used as it is without hot working has been actively developed in order to meet the social demand for energy saving and at the same time reduce cost.

【0003】又、熱間加工後の切削加工を容易にする目
的から、被削性に優れた快削鋼に対する要求もますます
大きくなっている。
Further, for the purpose of facilitating the cutting work after the hot working, the demand for free-cutting steel excellent in machinability is increasing more and more.

【0004】一般に鋼の被削性は金属組織に大きく依存
し、フェライト・パーライト組織を有する鋼の場合には
被削性が良好であり、フェライト・ベイナイト組織やベ
イナイトあるいはマルテンサイトの単相組織の鋼にあっ
ては被削性が悪いことが知られている。又、Pb、T
e、Bi、Ca及びSなどの快削元素を単独あるいは複
合添加すれば被削性が向上することも周知の事実であ
る。したがって、従来は非調質鋼に前記の快削元素を添
加して熱間加工後の切削加工性(被削性)を改善する方
法が採られてきた。しかし、非調質鋼に単に快削元素を
添加しただけの場合には、所望の機械的特性、なかでも
靭性を確保できないことが多い。
Generally, the machinability of steel largely depends on the metal structure, and in the case of a steel having a ferrite / pearlite structure, the machinability is good, and the ferrite / bainite structure and the single-phase structure of bainite or martensite are formed. It is known that steel has poor machinability. Also, Pb, T
It is also well known that the machinability is improved by adding free-cutting elements such as e, Bi, Ca and S alone or in combination. Therefore, conventionally, a method of adding the above-mentioned free-cutting element to non-heat treated steel to improve the machinability (machinability) after hot working has been adopted. However, when the free-cutting element is simply added to the non-heat treated steel, it is often impossible to secure desired mechanical properties, especially toughness.

【0005】特開平6−145890号公報には「高強
度高靭性快削鋼」が開示されている。しかし、この公報
で提案された鋼に所望の高強度と高靭性を付与させるた
めには、その実施例における記載からも明らかなよう
に、浸炭焼入れ、高周波焼入れや焼入れ低温焼戻しとい
った処理が必須であるため熱処理コストが嵩む。しか
も、鋼を焼入れしてマルテンサイト変態させた場合には
大きな変態歪が生ずるので曲がりが大きくなるという問
題も生ずる。更に、特にC含有量が高い鋼を焼入れする
場合には焼割れに対する配慮も行う必要がある。
JP-A-6-145890 discloses "high-strength and high-toughness free-cutting steel". However, in order to impart the desired high strength and high toughness to the steel proposed in this publication, as is clear from the description in the examples, carburizing and quenching, induction hardening and quenching low temperature tempering are essential treatments. Therefore, the heat treatment cost increases. In addition, when the steel is hardened to undergo martensitic transformation, a large transformation strain is generated, which causes a problem of large bending. Furthermore, when quenching steel with a particularly high C content, it is necessary to consider quench cracking.

【0006】特開平7−166235号公報には、熱間
鍛造後に冷却した組織の80%以上がフェライト−ベイ
ナイトからなる特定の化学組成を有する鋼材を200〜
700℃で時効処理する「強靭性、耐久比、降伏比およ
び被削性に優れる亜熱間鍛造用鋼の製造方法」が開示さ
れている。しかし、この公報で提案された鋼はVを重量
%で0.30〜0.70%も含むものである。このた
め、その実施例における記載からも明らかなように、例
えば引張強度が1100MPa(112.2Kgf/m
2 )レベルでの衝撃値は40J/cm2(4.1kg
f・m/cm2)程度しかなく靭性が低い。したがっ
て、高い強度と良好な靭性が要求される場合には必ずし
も適用できないものである。更に、800〜1050℃
の低い温度域で熱間鍛造を施す必要があるため、鍛造時
に鋼材に割れが生ずる場合もある。
Japanese Unexamined Patent Publication No. 7-166235 discloses a steel material having a specific chemical composition in which 80% or more of the structure cooled after hot forging is ferrite-bainite.
A "method for producing a sub-hot forging steel having excellent toughness, durability ratio, yield ratio and machinability" which is aged at 700 ° C is disclosed. However, the steel proposed in this publication contains V in an amount of 0.30 to 0.70% by weight. Therefore, as is clear from the description of the example, for example, the tensile strength is 1100 MPa (112.2 Kgf / m).
The impact value at the m 2 ) level is 40 J / cm 2 (4.1 kg
f / m / cm 2 ) and the toughness is low. Therefore, it is not necessarily applicable when high strength and good toughness are required. Furthermore, 800-1050 ° C
Since it is necessary to perform hot forging at a low temperature range of, the steel material may be cracked during forging.

【0007】つまり、上記の各公報で提案された技術は
いずれも「非調質化」と「高強度高靭性鋼の被削性の向
上」を両立させたいとする産業界の要請には応えきれな
いものであった。
In other words, all of the techniques proposed in the above publications meet the demands of the industrial world for achieving both "non-tempering" and "improving machinability of high strength and high toughness steel". It was something I couldn't do.

【0008】特開平7−54100号公報には、特定の
化学組成を有する「被削性の優れたフェライト+ベイナ
イト型高強度熱間鍛造用非調質鋼」が開示されている。
しかし、この公報で提案された鋼はSiを重量%で3.
0〜5.0も含むものであるため、高強度化は達成でき
ても靭性が低く、高い強度と良好な靭性が要求される場
合には必ずしも適用できないものである。
Japanese Unexamined Patent Publication (Kokai) No. 7-54100 discloses "a ferrite + bainite type high strength non-heat treated steel for hot forging having excellent machinability" having a specific chemical composition.
However, the steel proposed in this publication has a Si content of 3.
Since it also includes 0 to 5.0, it has low toughness even if high strength can be achieved, and is not necessarily applicable when high strength and good toughness are required.

【0009】特開平7−268538号公報には、熱間
鍛造後に自然放冷したままでベイナイト+フェライトの
2相組織又はベイナイト組織で、引張強さが883MP
a以上、2mmUノッチシャルピー衝撃値が59J/c
2 以上である「被削性に優れた高靭性非調質鋼」が開
示されている。しかし、この公報で提案された鋼はN含
有量が0.01〜0.03%と高いため、強度−靭性バ
ランスの点で必ずしも満足できるものではない。つま
り、前記公報で提案された鋼の場合にはその実施例に記
載の引張強さと衝撃値との関係からも明らかなように、
特に引張強さが1100MPa以上の場合の衝撃値は6
0J/cm2 程度であり、高い靭性が要求される場合に
は必ずしも適用できないものである。
Japanese Unexamined Patent Publication (Kokai) No. 7-268538 discloses that after hot forging, it has a two-phase structure of bainite + ferrite or a bainite structure in which it is naturally cooled and has a tensile strength of 883MP.
Not less than a, 2mm U Notch Charpy impact value is 59J / c
A "high toughness non-heat treated steel excellent in machinability" of m 2 or more is disclosed. However, since the steel proposed in this publication has a high N content of 0.01 to 0.03%, it is not always satisfactory in terms of strength-toughness balance. That is, in the case of the steel proposed in the above publication, as is clear from the relationship between the tensile strength and the impact value described in the examples,
Especially when the tensile strength is 1100 MPa or more, the impact value is 6
It is about 0 J / cm 2 , which is not necessarily applicable when high toughness is required.

【0010】鉄と鋼(vol.57(1971年)S4
84)には、脱酸調整快削鋼にTiを添加すれば被削性
が高まる場合のあることが報告されている。しかし、T
iの多量の添加はTiNが多量に生成されることもあっ
て工具摩耗を増大させ、被削性の点からは好ましくない
ことも述べられている。例えば、C:0.45%、S
i:0.29%、Mn:0.78%、P:0.017
%、S:0.041%、Al:0.006%、N:0.
0087%、Ti:0.228%、O:0.004%及
びCa:0.001%を含有する鋼では却ってドリル寿
命が低下して被削性が劣っている。このように、鋼に単
にTiを添加するだけでは被削性は向上するものではな
い。
Iron and Steel (vol. 57 (1971) S4
84) has reported that machinability may be enhanced by adding Ti to the deoxidized controlled free-cutting steel. But T
It is also stated that the addition of a large amount of i increases tool wear due to the large amount of TiN produced, which is not preferable in terms of machinability. For example, C: 0.45%, S
i: 0.29%, Mn: 0.78%, P: 0.017
%, S: 0.041%, Al: 0.006%, N: 0.
Steel containing 0087%, Ti: 0.228%, O: 0.004% and Ca: 0.001% conversely has a shortened drill life and poor machinability. As described above, the machinability is not improved simply by adding Ti to steel.

【0011】又、硫黄快削鋼の硫化物形態制御の目的で
Zrが添加されることがあるが、例えば、鉄と鋼(vo
l.62(1976年)p.885)に記されているよ
うに、Zrは被削性に対してはほとんど影響を及ぼさな
い。つまり、鋼に単にZrを添加するだけでは被削性は
向上するものではない。
Zr may be added for the purpose of controlling the sulfide morphology of free-cutting sulfur steel. For example, iron and steel (vo
l. 62 (1976) p. 885), Zr has little effect on machinability. That is, the machinability cannot be improved simply by adding Zr to the steel.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上記現状に
鑑みなされたもので、通常の熱間加工と冷却の条件で、
それも非調質のままで高い強度と優れた靭性を有し、し
かも各々の強度レベルで被削性が良好な機械構造部品な
どの素材用として好適な鋼材を低コストで提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned current situation, and under the conditions of normal hot working and cooling,
It also aims to provide at low cost a steel material that has high strength and excellent toughness without being heat treated and that is suitable as a material for machine structural parts and the like that has good machinability at each strength level. And

【0013】[0013]

【課題を解決するための手段】本発明の要旨は、下記
(1)及び(2)に示す高強度高靭性快削非調質鋼材に
ある。
The gist of the present invention resides in a high-strength, high-toughness, free-cutting, non-heat treated steel material having the following (1) and (2).

【0014】 (1)重量%で、C:0.05〜0.3
%、Si:0.05〜1.5%、Mn:0.4〜3.5
、S:0.002〜0.2%、Ti:0.04〜1.
0%、Al:0.005〜0.05%、N:0.008
%以下、Cr:0〜3.0%、Ni:0〜2.0%
V:0〜0.3%、Nb:0〜0.1%、Mo:0〜
0.5%、Cu:0〜1.0%、B:0〜0.02%、
Nd:0〜0.1%、Pb:0〜0.5%、Ca:0〜
0.01%、Se:0〜0.5%、Te:0〜0.05
%、Bi:0〜0.4%、下記(1) で表されるfn1
が0%を超え、下記(2) で表されるfn2が2.5〜
4.5%、残部はFe及び不可避不純物の化学組成で、
鋼中のTi炭硫化物の最大直径が10μm以下で、且
つ、その量が清浄度で0.05%以上で、更に、組織の
90%以上がベイナイト又はフェライト・ベイナイト組
織である高強度高靭性快削非調質鋼材。
(1) C: 0.05 to 0.3 by weight%
%, Si : 0.05 to 1.5 %, Mn: 0.4 to 3.5
% , S: 0.002-0.2%, Ti: 0.04-1.
0%, Al: 0.005-0.05%, N: 0.008
% Or less, Cr: 0 to 3.0%, Ni: 0 to 2.0% ,
V: 0-0.3%, Nb: 0-0.1%, Mo: 0-
0.5%, Cu: 0 to 1.0%, B: 0 to 0.02%,
Nd: 0-0.1%, Pb: 0-0.5%, Ca: 0-
0.01%, Se: 0 to 0.5%, Te: 0 to 0.05
%, Bi : 0 to 0.4%, fn1 represented by the following formula (1)
Exceeds 0% and fn2 represented by the following formula (2) is 2.5 to
4.5%, the balance is the chemical composition of Fe and unavoidable impurities,
High strength and high toughness in which the maximum diameter of Ti carbosulfide in steel is 10 μm or less, the amount is 0.05% or more in cleanliness, and 90% or more of the structure is bainite or ferrite bainite structure. Free-cutting non-heat treated steel.

【0015】 fn1=Ti(%)−1.2S(%)・
・・・・(1) fn2=0.5Si(%)+Mn(%)+1.13Cr
(%)+1.98Ni(%)・・・・・(2) (2)重量%で、C:0.05〜0.3%、Si:0.
05〜1.5%、Mn:0.4〜3.5%、S:0.0
02〜0.2%、Ti:0〜1.0%、Zr:1.0%
以下で、且つ、Ti(%)+Zr(%):0.04〜
1.0%、Al:0.005〜0.05%、N:0.0
08%以下、Cr:0〜3.0%、Ni:0〜2.0
、V:0〜0.3%、Nb:0〜0.1%、Mo:0
〜0.5%、W:0〜0.8%、Cu:0〜1.0%、
B:0〜0.02%、Nd:0〜0.1%、Pb:0〜
0.5%、Ca:0〜0.01%、Se:0〜0.5
%、Te:0〜0.05%、Bi:0〜0.4%、下記
(3) で表されるfn3が0%を超え、下記(2) で表さ
れるfn2が2.5〜4.5%、残部はFe及び不可避
不純物の化学組成で、鋼中のTi炭硫化物及びZr炭硫
化物の最大直径が10μm以下で、且つ、その量の和が
清浄度で0.05%以上で、更に、組織の90%以上が
ベイナイト又はフェライト・ベイナイト組織である高強
度高靭性快削非調質鋼材。
Fn1 = Ti (%)-1.2S (%)
... (1) fn2 = 0.5Si (%) + Mn (%) + 1.13Cr
(%) + 1.98Ni (%) (2) (2)% by weight, C: 0.05-0.3%, Si: 0.
05-1.5%, Mn: 0.4-3.5% , S: 0.0
02~0.2%, Ti: 0~1.0%, Zr: 1.0%
Below, and Ti (%) + Zr (%): 0.04 ~
1.0%, Al: 0.005-0.05%, N: 0.0
08% or less, Cr: 0 to 3.0%, Ni: 0 to 2.0
% , V: 0 to 0.3%, Nb: 0 to 0.1%, Mo: 0
~ 0.5%, W: 0-0.8%, Cu: 0-1.0%,
B: 0 to 0.02%, Nd: 0 to 0.1%, Pb: 0
0.5%, Ca: 0-0.01%, Se: 0-0.5
%, Te: 0 to 0.05%, Bi: 0 to 0.4%, the following
Fn3 represented by the formula (3) exceeds 0%, fn2 represented by the following formula (2) is 2.5 to 4.5%, and the balance is the chemical composition of Fe and unavoidable impurities. The maximum diameter of carbosulfide and Zr carbosulfide is 10 μm or less, and the sum of the amounts is 0.05% or more in cleanliness, and 90% or more of the structure is bainite or ferrite bainite structure. High-strength, tough, free-cutting, non-heat treated steel.

【0016】 fn3=Ti(%)+Zr(%)−1.
2S(%)・・・・・(3) fn2=0.5Si(%)+Mn(%)+1.13Cr
(%)+1.98Ni(%)・・・・・(2) なお、本発明でいう「Ti炭硫化物」には単なるTi硫
化物を、又、「Zr炭硫化物」には単なるZr硫化物を
それぞれ含むものとする。又、「(Ti及びZrの炭硫
化物の)最大直径」とは「個々のTi及びZrの炭硫化
物における最も長い径」のことを指す。Ti炭硫化物の
清浄度やZr炭硫化物の清浄度は、光学顕微鏡の倍率を
400倍として、JIS G 0555に規定された「鋼の非金属
介在物の顕微鏡試験方法」によって60視野測定した値
をいう。
Fn3 = Ti (%) + Zr (%)-1.
2S (%) ・ ・ ・ ・ ・(3) fn2 = 0.5Si (%) + Mn (%) + 1.13Cr
(%) + 1.98Ni (%) (2) In the present invention, "Ti carbosulfide" is simply Ti sulfide, and "Zr carbosulfide" is simply Zr sulfide. It includes each thing. In addition, the "maximum diameter (of Ti and Zr carbosulfide)" refers to "the longest diameter in each Ti and Zr carbosulfide". The cleanliness of Ti carbosulfide and Zr carbosulfide was measured in 60 fields of view by the "microscopic test method for non-metallic inclusions of steel" defined in JIS G 0555, with a magnification of 400 of an optical microscope. Says the value.

【0017】組織の割合は顕微鏡観察した時の組織割合
のことをいう。なお、「ベイナイトが90%以上」とは
組織中にフェライトが含まれない場合において組織の9
0%以上をベイナイトが占めている状態をいい、「フェ
ライト・ベイナイトが90%以上」とはベイナイトとフ
ェライトが混在する場合の組織においてフェライトとベ
イナイトの占める割合の和が90%以上であることをい
う。
The proportion of tissue means the proportion of tissue when observed under a microscope. It should be noted that "90% or more of bainite" means that when the structure does not contain ferrite,
Bainite occupies 0% or more, and "90% or more of ferrite / bainite" means that the sum of the proportions of ferrite and bainite in the structure when bainite and ferrite are mixed is 90% or more. Say.

【0018】本明細書でいう「非調質鋼材」とは所謂
「調質処理」としての「焼入れ・焼戻し」を省略した鋼
材のことをいい、「熱間加工後冷却したままの状態で使
用できる鋼材」の他に「熱間加工後の冷却の後で焼戻し
に相当する時効処理を行った鋼材」を含むものである。
As used herein, the term "non-heat treated steel material" refers to a steel material in which "quenching / tempering" as so-called "heat treatment" is omitted, "used after being hot-worked and in a cooled state". In addition to "a steel material that can be formed", "a steel material that has been subjected to an aging treatment corresponding to tempering after cooling after hot working" is included.

【0019】以下、上記の(1)、(2)に記載のもの
をそれぞれ(1)、(2)の発明という。
The following items (1) and (2) are respectively referred to as inventions (1) and (2).

【0020】本発明者らは、非調質鋼材の化学組成及び
組織について研究を重ねた結果、TiとZrの少なくと
もいずれかを添加した鋼を熱間加工した後、適正な冷却
速度で冷却すれば、鋼材の被削性が飛躍的に向上するこ
とを見いだした。そこで更に研究を続けた結果、下記の
事項を知見した。
The inventors of the present invention have conducted extensive research on the chemical composition and structure of non-heat treated steel materials, and as a result, after hot working the steel to which at least one of Ti and Zr is added, the steel is cooled at an appropriate cooling rate. Then, it was found that the machinability of steel material was dramatically improved. Therefore, as a result of further research, the following matters were found.

【0021】(a)Sとのバランスを考慮して鋼にTi
とZrのいずれかを積極的に添加すると、鋼中にTi炭
硫化物あるいはZr炭硫化物が形成され、Ti及びZr
を添加すると、鋼中にはTi炭硫化物とZr炭硫化物と
が形成される。
(A) In consideration of the balance with S, Ti is added to steel.
And Zr are positively added, Ti carbosulfide or Zr carbosulfide is formed in the steel, and Ti and Zr
When Ti is added, Ti carbosulfide and Zr carbosulfide are formed in the steel.

【0022】(b)鋼中に上記したTi炭硫化物やZr
炭硫化物が生成すると、MnSの生成量が減少する。
(B) The above-mentioned Ti carbosulfide and Zr in steel
The production of carbosulfide reduces the amount of MnS produced.

【0023】(c)鋼中のS含有量が同じ場合には、T
i炭硫化物やZr炭硫化物はMnSよりも大きな被削性
改善効果を有する。これは、Ti炭硫化物やZr炭硫化
物の融点がMnSのそれよりも低いため、切削加工時に
工具のすくい面での潤滑作用が大きくなることに基づ
く。
(C) If the S content in the steel is the same, T
i carbosulfide and Zr carbosulfide have a greater machinability improving effect than MnS. This is based on the fact that the melting point of Ti carbosulfide and Zr carbosulfide is lower than that of MnS, so that the lubricating action on the rake face of the tool is increased during cutting.

【0024】(d)Ti炭硫化物やZr炭硫化物の効果
を充分発揮させるためには、N含有量を低く制限するこ
とが重要である。これは、N含有量が多いとTiNやZ
rNとしてTiやZrが固定されてしまい、Ti炭硫化
物やZr炭硫化物の生成が抑制されてしまうためであ
る。
(D) In order to fully exert the effects of Ti carbosulfide and Zr carbosulfide, it is important to limit the N content to a low level. This is because when N content is high, TiN and Z
This is because Ti and Zr are fixed as rN and the generation of Ti carbosulfide and Zr carbosulfide is suppressed.

【0025】(e)Ti炭硫化物やZr炭硫化物によっ
て被削性を高めるとともに靭性を確保するためには、T
i炭硫化物やZr炭硫化物のサイズと、その清浄度で表
される量(以下、単に「清浄度」という)を適正化して
おくことが重要である。
(E) In order to improve the machinability and secure the toughness by using Ti carbosulfide or Zr carbosulfide, T
It is important to optimize the size of i carbosulfide or Zr carbosulfide and the amount represented by the cleanliness (hereinafter, simply referred to as "cleanliness").

【0026】(f)製鋼時に生成したTi炭硫化物やZ
r炭硫化物は、通常の熱間加工のための加熱温度では基
地に固溶しない。
(F) Ti carbosulfide and Z produced during steelmaking
rCarbosulfide does not form a solid solution in the matrix at the heating temperature for normal hot working.

【0027】(g)N量を規制することは鋼中のTiN
やZrNの減少につながり、これによって靭性を飛躍的
に向上させることもできる。
(G) To control the amount of N is TiN in steel.
It also leads to a decrease in ZrN, which can dramatically improve the toughness.

【0028】更に、非調質鋼材の化学組成及び組織と強
度及び靭性との関係について検討した結果、次の(h)
の事項が明らかになった。
Furthermore, as a result of examining the relationship between the chemical composition and structure of the non-heat treated steel and the strength and toughness, the following (h)
The matter became clear.

【0029】 (h)特定の化学組成を有する鋼の組織
及び靭性は前記の(2) と相関を有し、この値が特定の
範囲にある場合に、非調質鋼の主たる組織がベイナイト
又はフェライト・ベイナイトになって良好な強度−靭性
バランスが得られる。
(H) The structure and toughness of steel having a specific chemical composition have a correlation with the above formula (2) , and when this value is in a specific range, the main structure of non-heat treated steel is bainite. Alternatively, it becomes ferrite bainite and a good strength-toughness balance can be obtained.

【0030】本発明は上記の知見に基づいて完成された
ものである。
The present invention has been completed based on the above findings.

【0031】[0031]

【発明の実施の形態】以下、本発明の各要件について詳
しく説明する。なお、化学成分の含有量の「%」は「重
量%」を意味する。
BEST MODE FOR CARRYING OUT THE INVENTION Each requirement of the present invention will be described in detail below. In addition, "%" of the content of a chemical component means "weight%."

【0032】(A)鋼材の化学組成 C:Cは、SとともにTiやZrと結合してTi炭硫化
物やZr炭硫化物を形成し、被削性を高める作用を有す
る。Cは、鋼の強度を確保するのにも有効な元素であ
る。前記の効果を確保するためにはCは0.05%以上
の含有量を必要とする。しかし、0.3%を超えて含有
するとパーライト組織が生成され靭性が低下するように
なる。したがって、Cの含有量を0.05〜0.3%と
した。なお、C含有量は0.10〜0.24%とするこ
とが好ましい。
(A) The chemical composition C: C of the steel material has a function of combining with S and Ti or Zr to form Ti carbosulfide or Zr carbosulfide and improving the machinability. C is an element effective for ensuring the strength of steel. In order to secure the above effects, the content of C is required to be 0.05% or more. However, if the content exceeds 0.3%, a pearlite structure is generated and the toughness decreases. Therefore, the content of C is set to 0.05 to 0.3%. The C content is preferably 0.10 to 0.24%.

【0033】Si:Siは、鋼の脱酸促進作用と焼入れ
性を高める作用を有する。更に、Si含有量の増加に伴
い切削時の切り屑表面の潤滑作用が高まって工具寿命が
延びるので、被削性を改善する作用も有する。しかし、
その含有量が0.05%未満では添加効果に乏しく、一
方、1.5%を超えると前記効果が飽和するばかりか却
って靭性が劣化するようになるので、その含有量を0.
05〜1.5%とした。なお、Siの好ましい含有量は
0.5〜1.3%である。
Si: Si has a function of promoting deoxidation of steel and a function of enhancing hardenability. Furthermore, as the Si content increases, the lubricating effect on the chip surface during cutting increases and the tool life is extended, so that it also has the effect of improving machinability. But,
If the content is less than 0.05%, the effect of addition is poor, while if it exceeds 1.5%, the effect is saturated and the toughness rather deteriorates.
It was set to 05 to 1.5%. In addition, the preferable content of Si is 0.5 to 1.3%.

【0034】S:Sは、CとともにTiやZrと結合し
てTi炭硫化物やZr炭硫化物を形成し、被削性を高め
る作用を有する。しかし、その含有量が0.002%未
満では所望の効果が得られない。一方、0.2%を超え
るとMnSが過剰に生成するのでTi炭硫化物やZr炭
硫化物による被削性向上効果が低下してしまう。したが
って、Sの含有量を0.002〜0.2%とした。
S: S, together with C, forms a Ti carbosulfide or a Zr carbosulfide by combining with Ti or Zr, and has the action of enhancing the machinability. However, if the content is less than 0.002%, the desired effect cannot be obtained. On the other hand, if it exceeds 0.2%, MnS is excessively generated, so that the effect of improving the machinability by Ti carbosulfide or Zr carbosulfide decreases. Therefore, the content of S is set to 0.002 to 0.2%.

【0035】Ti、Zr:Ti、Zrは本発明において
重要な元素であって、それぞれC及びSと結合してTi
炭硫化物やZr炭硫化物を形成し、被削性を高める作用
を有する。
Ti, Zr: Ti and Zr are important elements in the present invention, and are bonded to C and S, respectively, to form Ti.
It forms a carbosulfide or a Zr carbosulfide, and has the effect of enhancing machinability.

【0036】 Tiを単独で添加する場合、その含有量
が0.04%以上の場合に前記の効果が確実に得られ
る。しかし、Tiを1.0%を超えて含有させてもTi
炭硫化物による被削性向上効果が飽和してコストが嵩む
ばかりか、炭硫化物が粗大化して却って靭性の低下を招
く。したがって、(1)の発明にあってはTiの含有量
を0.04〜1.0%とした。なお、(1)の発明の場
合に、良好な被削性と靭性を安定して得るためには、T
iの含有量を0.06〜0.8%とすることが好まし
い。 一方、上記の被削性を高める効果は、TiとZr
の含有量に関し、Ti(%)+Zr(%)の値が0.0
4%以上の場合にも確実に得られる。しかし、Ti
(%)+Zr(%)の値で1.0%を超えるTiとZr
を含有させても被削性向上効果は飽和するのでコストが
嵩んでしまう。なお、Ti(%)+Zr(%)の値が
0.04〜1.0%でありさえすれば良いので、必ずし
もTiとZrを複合して含有させる必要はない。Zrを
添加しない場合は前記した(1)の発明になり、この場
合はTiを1.0%を超えて含有させるとTi炭硫化物
による被削性向上効果が飽和してコストが嵩むばかり
か、Ti炭硫化物が粗大化して却って靭性の低下を招い
てしまう。Tiを添加しない、つまりZrを単独で添加
する場合に、Zrを1.0%を超えて含有させるとZr
炭硫化物による被削性向上効果が飽和してコストが嵩む
ばかりか、Zr炭硫化物が粗大化して却って靭性の低下
を招いてしまう。したがって(2)の発明にあっては、
Tiの含有量を0〜1.0%、Zrの含有量を1.0%
以下とし、且つ、Ti(%)+Zr(%)の値を0.0
4〜1.0%とした。なお、(2)の発明の場合に、良
好な被削性と靭性を安定して得るためには、TiとZr
の含有量の上限はそれぞれ0.8%とすることが好まし
い。
When Ti is added alone, the above effect can be reliably obtained when the content thereof is 0.04% or more. However, even if Ti exceeds 1.0%, Ti
Not only does the machinability improving effect of carbosulfide saturate and the cost increases, but also the carbosulfide becomes coarser, which rather leads to a decrease in toughness. Therefore, in the invention of (1), the content of Ti is set to 0.04 to 1.0%. In the case of the invention (1), in order to stably obtain good machinability and toughness, T
The content of i is preferably 0.06 to 0.8%. On the other hand, the effect of improving the machinability is that Ti and Zr
Value of Ti (%) + Zr (%) is 0.0
Even if it is 4% or more, it is surely obtained. However, Ti
(%) + Zr (%) value of Ti and Zr exceeding 1.0%
Even if it is included, the machinability improving effect is saturated, so the cost increases. Since it is only necessary that the value of Ti (%) + Zr (%) is 0.04 to 1.0%, it is not always necessary to combine Ti and Zr. When Zr is not added, the invention of the above (1) is obtained. In this case, if Ti is contained in an amount of more than 1.0%, the machinability improving effect of Ti carbosulfide is saturated and the cost increases. , Ti carbosulfide coarsens, and rather causes deterioration of toughness. When Ti is not added, that is, when Zr is added alone, if Zr exceeds 1.0%, Zr
Not only the machinability improving effect of carbon sulfide is saturated and the cost is increased, but also Zr carbosulfide is coarsened, which rather causes reduction in toughness. Therefore, in the invention of (2),
0 to 1.0% Ti content, 1.0% Zr content
And the value of Ti (%) + Zr (%) is 0.0 or less.
It was set to 4 to 1.0%. In the case of the invention (2), in order to stably obtain good machinability and toughness, Ti and Zr
The upper limit of the content of each is preferably 0.8%.

【0037】Al:Alは、強力な脱酸作用を持つ元素
である。その効果を確保するためには0.005%以上
の含有量を必要とする。しかし、0.05%を超えて含
有させてもその効果が飽和しコストが嵩むばかりであ
る。したがって、Alの含有量を0.005〜0.05
%とした。なお、Al含有量は0.005〜0.04%
とすることが好ましい。
Al: Al is an element having a strong deoxidizing action. In order to secure the effect, the content of 0.005% or more is required. However, even if the content exceeds 0.05%, the effect is saturated and the cost only increases. Therefore, the content of Al is 0.005 to 0.05.
%. The Al content is 0.005-0.04%
It is preferable that

【0038】N:本発明においてはNの含有量を低く制
御することが極めて重要である。すなわち、NはTiや
Zrとの親和力が大きいために容易にTiやZrと結合
してTiNやZrNを生成し、TiやZrを固定してし
まうので、Nを多量に含有する場合には前記したTi炭
硫化物やZr炭硫化物の被削性向上効果が充分に発揮で
きないこととなる。特に、TiやZrの含有量が低めの
場合には、N含有量の影響が顕著となる。更に、粗大な
TiNやZrNは靭性を低下させる。
N: In the present invention, it is extremely important to control the N content to be low. That is, since N has a large affinity with Ti and Zr, it easily binds to Ti and Zr to form TiN and ZrN, and fixes Ti and Zr. Therefore, when N is contained in a large amount, Therefore, the effect of improving the machinability of the Ti carbosulfide and the Zr carbosulfide cannot be sufficiently exhibited. In particular, when the content of Ti or Zr is low, the influence of the N content becomes remarkable. Furthermore, coarse TiN and ZrN reduce toughness.

【0039】 (1)の発明の場合、N含有量が0.0
08%以下で、且つ前述の(1) で表されるfn1が正
の値の場合に前記したTi炭硫化物の効果が確保され
る。なお、Ti炭硫化物の効果を高めるために、(1)
の発明におけるN含有量の上限は0.006%とするこ
とが好ましい。
In the case of the invention of (1), the N content is 0.0
When the content is 08% or less and fn1 represented by the formula (1) is a positive value, the effect of the Ti carbosulfide described above is secured. In order to enhance the effect of Ti carbosulfide, (1)
The upper limit of the N content in the invention is preferably 0.006%.

【0040】 (2)の発明の場合、N含有量が0.0
08%以下で、且つ前述の(3) で表されるfn3が正
の値の場合に前記したTi炭硫化物とZr炭硫化物の効
果が確保される。なお、Ti炭硫化物とZr炭硫化物の
効果を高めるために、(2)の発明においても、N含有
量の上限は0.006%とすることが好ましい。
In the case of the invention of (2), the N content is 0.0
The effect of the Ti carbosulfide and the Zr carbosulfide described above is ensured when the content is 08% or less and fn3 represented by the formula (3) is a positive value. In addition, in order to enhance the effects of Ti carbosulfide and Zr carbosulfide, the upper limit of the N content is preferably 0.006% also in the invention of (2).

【0041】V:Vは添加しなくても良い。添加すれ
ば、微細な窒化物や炭窒化物として析出し、鋼の強度を
高めるとともに、切削時に切り屑の潤滑性を高めて被削
性を向上させる作用を有する。こうした効果を確実に得
るには、Vは0.05%以上の含有量とすることが好ま
しい。しかし、その含有量が0.3%を超えると析出物
が粗大化するので前記の効果が飽和したり、靭性が低下
したりする。更に、原料コストも嵩むばかりである。し
たがって、Vの含有量を0〜0.3%とした。
V: V may not be added. If added, it precipitates as fine nitrides or carbonitrides, which has the effects of increasing the strength of steel and improving the lubricity of chips during cutting to improve machinability. In order to surely obtain such effects, it is preferable that the content of V be 0.05% or more. However, if its content exceeds 0.3%, the precipitates become coarse, so that the above-mentioned effect is saturated or the toughness is lowered. Furthermore, the raw material cost only increases. Therefore, the content of V is set to 0 to 0.3%.

【0042】Nb:Nbは添加しなくても良い。添加す
れば、微細な炭窒化物として析出し、オ−ステナイト粒
の粗大化を防止するとともに、鋼の強度、靭性を向上さ
せる効果を有する。この効果を確実に得るには、Nbは
0.005%以上の含有量とすることが好ましい。しか
し、その含有量が0.1%を超えると前記の効果が飽和
するばかりか、粗大な硬質の炭窒化物が生じて工具を損
傷し、被削性の低下を招く。したがって、Nbの含有量
を0〜0.1%とした。
Nb: Nb may not be added. If added, it precipitates as fine carbonitrides, has the effects of preventing coarsening of austenite grains and improving the strength and toughness of steel. In order to reliably obtain this effect, the Nb content is preferably 0.005% or more. However, if the content exceeds 0.1%, not only the above effects are saturated, but also coarse hard carbonitrides are generated, which damages the tool and causes a decrease in machinability. Therefore, the content of Nb is set to 0 to 0.1%.

【0043】Mo:Moは添加しなくても良い。添加す
れば、ベイナイトの生成を容易にし、且つ、組織を微細
化して鋼の強度、靭性を向上させる効果を有する。この
効果を確実に得るには、Moの含有量は0.05%以上
とすることが好ましい。しかし、その含有量が0.5%
を超えると熱間加工後の組織が却って異常に粗大化し、
靭性が低下してしまう。このため、Moの含有量を0〜
0.5%とした。
Mo: Mo may not be added. If added, it has the effects of facilitating the formation of bainite and refining the structure to improve the strength and toughness of steel. In order to reliably obtain this effect, the Mo content is preferably 0.05% or more. However, its content is 0.5%
If it exceeds, the structure after hot working rather becomes abnormally coarse,
The toughness will decrease. Therefore, the content of Mo is 0 to
It was set to 0.5%.

【0044】W:Wは添加しなくても良い。添加すれ
ば、ベイナイトの生成を容易にし、且つ、組織を微細化
して鋼の強度、靭性を向上させる効果を有する。この効
果を確実に得るには、Wの含有量は0.05%以上とす
ることが好ましい。しかし、その含有量が0.8%を超
えると熱間加工後の組織が却って異常に粗大化し、靭性
が低下してしまう。このため、(2)の発明において、
Wの含有量を0〜0.8%とした。
W: W may not be added. If added, it has the effects of facilitating the formation of bainite and refining the structure to improve the strength and toughness of steel. In order to surely obtain this effect, the W content is preferably 0.05% or more. However, if its content exceeds 0.8%, the structure after hot working will rather become coarser and the toughness will decrease. Therefore, in the invention of (2),
The content of W was 0 to 0.8%.

【0045】Cu:Cuは添加しなくても良い。添加す
れば、靭性を低下させることなく鋼の強度を高め、更に
被削性を高める効果を有する。この効果を確実に得るに
は、Cuは0.2%以上の含有量とすることが好まし
い。しかし、その含有量が1.0%を超えると熱間加工
性が劣化することに加えて、析出物が粗大化して前記の
効果が飽和したり靭性が低下したりする。更に、コスト
も嵩むばかりである。したがって、Cuの含有量を0〜
1.0%とした。
Cu: Cu may not be added. If added, it has the effect of increasing the strength of the steel without lowering the toughness and further increasing the machinability. In order to reliably obtain this effect, the content of Cu is preferably 0.2% or more. However, if its content exceeds 1.0%, not only the hot workability is deteriorated, but also the precipitates are coarsened to saturate the above-mentioned effects and the toughness is lowered. In addition, the cost is high. Therefore, the Cu content is 0 to
It was 1.0%.

【0046】B:Bは添加しなくても良い。添加すれ
ば、焼入れ性が向上して鋼の強度、靭性を向上させる効
果を有する。この効果を確実に得るには、Bの含有量は
0.0003%以上とすることが好ましい。しかし、そ
の含有量が0.02%を超えると前記の効果が飽和した
り、却って靭性が低下したりする。このため、Bの含有
量を0〜0.02%とした。
B: B may not be added. If added, it has the effect of improving the hardenability and improving the strength and toughness of the steel. In order to surely obtain this effect, the B content is preferably 0.0003% or more. However, if the content exceeds 0.02%, the above effects are saturated, or rather, the toughness is reduced. Therefore, the content of B is set to 0 to 0.02%.

【0047】Nd:Ndは添加しなくても良い。添加す
れば、Nd23としてチップブレーカーの作用を有し被
削性を向上させる効果を有する。更に、Nd23が溶鋼
の比較的高温域で微細に分散して生成することにともな
って、MnSが微細に分散析出し、この微細に分散析出
したMnSのピンニング効果により後工程での熱間加工
のための加熱時におけるオーステナイト粒の成長が抑制
されて組織が微細化し、これによって鋼が高強度・高靭
性化する効果もある。前記の効果を確実に得るには、N
dは0.005%以上の含有量とすることが好ましい。
しかし、その含有量が0.1%を超えるとNd23自体
が粗大化して却って靭性の低下をきたす。したがって、
Ndの含有量を0〜0.1%とした。なお、Nd含有量
の好ましい上限値は0.08%である。
Nd: Nd need not be added. If added, Nd 2 S 3 acts as a chip breaker and has the effect of improving machinability. Further, Nd 2 S 3 is finely dispersed and formed in a relatively high temperature region of the molten steel, so that MnS is finely dispersed and precipitated, and the pinning effect of the finely dispersed and precipitated MnS causes heat in a later step. The growth of austenite grains during heating for hot working is suppressed and the structure is refined, which also has the effect of increasing the strength and toughness of the steel. To ensure the above effect, N
The content of d is preferably 0.005% or more.
However, if its content exceeds 0.1%, the Nd 2 S 3 itself becomes coarse and the toughness is rather deteriorated. Therefore,
The content of Nd was set to 0 to 0.1%. The preferable upper limit of the Nd content is 0.08%.

【0048】Pb:Pbは添加しなくても良い。添加す
れば、鋼の被削性、なかでも切り屑処理性を一段と高め
る作用がある。この効果を確実に得るには、Pbは0.
05%以上の含有量とすることが好ましい。しかし、そ
の含有量が0.5%を超えると前記の効果が飽和するば
かりか、却って粗大介在物を生成して靭性の低下をきた
す。更に、Pbの多量の添加は熱間加工性の劣化を招
き、特に含有量が0.5%を超えると熱間加工した鋼材
の表面に疵が生じてしまう。したがって、Pbの含有量
を0〜0.5%とした。
Pb: Pb may not be added. If added, it has the effect of further improving the machinability of steel, especially the chip disposability. To ensure this effect, Pb should be 0.
It is preferable to set the content to 05% or more. However, if the content exceeds 0.5%, not only the above effect is saturated, but rather, coarse inclusions are formed and the toughness deteriorates. Furthermore, addition of a large amount of Pb causes deterioration of hot workability, and particularly when the content exceeds 0.5%, a flaw is generated on the surface of the hot worked steel material. Therefore, the Pb content is set to 0 to 0.5%.

【0049】Ca:Caは添加しなくても良い。添加す
れば、鋼の被削性を大きく高める作用がある。この効果
を確実に得るには、Caは0.001%以上の含有量と
することが好ましい。しかし、その含有量が0.01%
を超えると前記の効果が飽和するばかりか、却って粗大
介在物を生成して靭性の低下をきたす。したがって、C
aの含有量を0〜0.01%とした。
Ca: Ca may not be added. If added, it has the effect of greatly improving the machinability of steel. In order to reliably obtain this effect, the content of Ca is preferably 0.001% or more. However, its content is 0.01%
If it exceeds, not only the above effect is saturated, but rather, coarse inclusions are generated, resulting in a decrease in toughness. Therefore, C
The content of a was 0 to 0.01%.

【0050】Se:Seは添加しなくても良い。添加す
れば、鋼の被削性を一段と向上させる効果を有する。こ
の効果を確実に得るには、Seは0.1%以上の含有量
とすることが好ましい。しかし、その含有量が0.5%
を超えると前記の効果が飽和するばかりか、却って粗大
介在物を生成して靭性の低下をきたす。したがって、S
eの含有量を0〜0.5%とした。
Se: Se may not be added. If added, it has the effect of further improving the machinability of steel. In order to reliably obtain this effect, it is preferable that the content of Se is 0.1% or more. However, its content is 0.5%
If it exceeds, not only the above effect is saturated, but rather, coarse inclusions are generated, resulting in a decrease in toughness. Therefore, S
The content of e was 0 to 0.5%.

【0051】Te:Teも添加しなくても良い。添加す
れば、鋼の被削性を一段と高める効果を有する。この効
果を確実に得るには、Teは0.005%以上の含有量
とすることが好ましい。しかし、その含有量が0.05
%を超えると前記の効果が飽和するばかりか、却って粗
大介在物を生成して靭性の低下をもたらす。更に、Te
の多量の添加は熱間加工性の著しい劣化を招き、特に含
有量が0.05%を超えると熱間加工した鋼材の表面に
疵が生じてしまう。したがって、Teの含有量を0〜
0.05%とした。
Te: Te may not be added. If added, it has the effect of further improving the machinability of steel. In order to reliably obtain this effect, the content of Te is preferably 0.005% or more. However, its content is 0.05
If it exceeds%, not only the above-mentioned effect is saturated, but rather, coarse inclusions are formed to cause a decrease in toughness. Furthermore, Te
Addition of a large amount of causes a remarkable deterioration in hot workability, and especially when the content exceeds 0.05%, a flaw occurs on the surface of the hot worked steel material. Therefore, the content of Te is 0 to
It was set to 0.05%.

【0052】Bi:Biは添加しなくても良い。添加す
れば、鋼の被削性を大きく向上させる効果を有する。こ
の効果を確実に得るには、Biは0.05%以上の含有
量とすることが好ましい。しかし、その含有量が0.4
%を超えると前記の効果が飽和するばかりか、却って粗
大介在物を生成して靭性の低下をきたす。更に、熱間加
工性が劣化するので、熱間加工した鋼材の表面に疵が生
じてしまう。したがって、Biの含有量を0〜0.4%
とした。
Bi: Bi need not be added. If added, it has the effect of significantly improving the machinability of steel. In order to reliably obtain this effect, the Bi content is preferably 0.05% or more. However, its content is 0.4
If it exceeds 0.1%, not only the above effect is saturated, but rather, coarse inclusions are formed and the toughness is deteriorated. Further, since the hot workability is deteriorated, the surface of the hot-worked steel material is flawed. Therefore, the Bi content is 0 to 0.4%.
And

【0053】 fn1、fn3: (1)の発明において、N含有量が0.008%以下
で、前述の(1) で表されるfn1が0%を超える値
(fn1=Ti(%)−1.2S(%)>0%)の場合
に前記したTi炭硫化物の被削性向上効果が確保でき
る。fn1が0%以下の値(fn1≦0%)の場合に
は、S量が過剰となるため、その分MnSが過剰生成し
てTi炭硫化物による被削性向上効果が低下してしま
う。したがって、(1)の発明にあっては(1) で表さ
れるfn1に関して0%を超える値(fn1>0%)と
規定した。このfn1の値の上限は特に規定されるもの
ではなく、Tiが1.0%でSが0.002%の場合の
値であっても良い。
Fn1, fn3: In the invention of (1) , a value of fn1 represented by the above formula (1) exceeding 0% when the N content is 0.008% or less (fn1 = Ti (%) − In the case of 1.2S (%)> 0%), the above-described machinability improving effect of Ti carbosulfide can be secured. When fn1 is a value of 0% or less (fn1 ≦ 0%), the amount of S becomes excessive, so that MnS is excessively generated and the machinability improving effect of Ti carbosulfide decreases. Therefore, in the invention of (1), the value of fn1 represented by the equation (1 ) is defined as a value exceeding 0% (fn1> 0%). The upper limit of the value of fn1 is not particularly specified, and may be the value when Ti is 1.0% and S is 0.002%.

【0054】 (2)の発明において、N含有量が0.
008%以下で、前述の(3) で表されるfn3が0%
を超える値(fn3=Ti(%)+Zr(%)−1.2
S(%)>0%)の場合に前記したTi炭硫化物とZr
炭硫化物の被削性向上効果が確保できる。fn3が0%
以下の値(fn3≦0%)の場合には、S量が過剰とな
るため、その分MnSが過剰生成してTi炭硫化物とZ
r炭硫化物による被削性向上効果が低下してしまう。し
たがって、(2)の発明にあっては(3) で表されるf
n3に関して0%を超える値(fn3>0%)と規定し
た。このfn3の値の上限は特に規定されるものではな
く、Ti(%)+Zr(%)の値が1.0%でSが0.
002%の場合の値であっても良い。
In the invention of (2), the N content is 0.
If 008% or less, fn3 represented by the above formula (3) is 0%
Value (fn3 = Ti (%) + Zr (%)-1.2)
When S (%)> 0%), the above-mentioned Ti carbosulfide and Zr
The machinability improving effect of carbosulfide can be secured. fn3 is 0%
In the case of the following value (fn3 ≦ 0%), the amount of S becomes excessive, so that MnS is excessively generated and Ti carbosulfide and Z
The effect of improving the machinability due to r carbosulfide decreases. Therefore, in the invention of (2), f expressed by equation (3)
A value exceeding 0% (fn3> 0%) was defined for n3. The upper limit of the value of fn3 is not particularly specified, and the value of Ti (%) + Zr (%) is 1.0% and S is 0.
It may be a value in the case of 002%.

【0055】 fn2: 前述の(2) で表されるfn2は鋼の組織及び靭性と相
関を有し、この値が2.5〜4.5%の場合に非調質鋼
の主たる組織がベイナイト又はフェライト・ベイナイト
になって良好な強度−靭性バランスが得られる。
Fn2: fn2 represented by the above formula (2) has a correlation with the microstructure and toughness of steel, and when this value is 2.5 to 4.5%, the main microstructure of non-heat treated steel is It becomes bainite or ferrite bainite, and a good strength-toughness balance can be obtained.

【0056】 fn2に関するSi、Mn、Cr及びN
iは鋼の焼入れ性を高める効果を有するが、このfn2
の値が2.5%未満では所望の焼入れ性向上効果が得ら
れないのでパーライトの生成量が増加して靭性が低下す
る。一方、fn2の値が4.5%を超えると焼入れ性が
高くなりすぎて島状マルテンサイト組織の生成を促進
し、却って靭性が低下するようになる。したがって、本
発明では(2) で表されるfn2に関して2.5〜4.
5%とした。なお、Mnは0.4〜3.5%、Crは0
〜3.0%、Niは0〜2.0%の含有量とし、これら
の範囲内で、上記fn2が2.5〜4.5%を満足する
ように調整すれば良い
Si, Mn, Cr and N for fn2
i has the effect of enhancing the hardenability of steel, but this fn2
If the value is less than 2.5%, the desired effect of improving hardenability cannot be obtained, so the amount of pearlite produced increases and the toughness decreases. On the other hand, when the value of fn2 exceeds 4.5%, the hardenability becomes too high, which promotes the formation of the island martensite structure, and rather reduces the toughness. Therefore, in the present invention, fn2 represented by the equation (2) is 2.5 to 4 .
It was set to 5%. In addition, Mn is 0.4 to 3.5% and Cr is 0.
~ 3.0%, Ni content 0 ~ 2.0%,
Within the range, the above fn2 satisfies 2.5 to 4.5%.
You can adjust it like this .

【0057】なお、Pは粒界偏析を起こして靭性を著し
く劣化させるので、本発明鋼中の不純物元素としてのP
は、鋼の靭性確保の点から0.05%以下とすることが
好ましい。
Since P causes grain boundary segregation and significantly deteriorates toughness, P as an impurity element in the steel of the present invention.
Is preferably 0.05% or less from the viewpoint of ensuring the toughness of steel.

【0058】(B)Ti炭硫化物、Zr炭硫化物のサイ
ズと量 上記の化学組成を有する非調質鋼材の被削性をTi炭硫
化物やZr炭硫化物によって高めるとともに良好な強度
−靭性バランスをも確保するためには、Ti炭硫化物や
Zr炭硫化物のサイズと清浄度(TiとZrを複合添加
する場合にはTi炭硫化物とZr炭硫化物の清浄度の
和)で表される量を適正化しておくことが重要である。
(B) Size and Amount of Ti Carbosulfide, Zr Carbosulfide The machinability of the non-heat treated steel material having the above chemical composition is enhanced by Ti carbosulfide and Zr carbosulfide, and good strength- To ensure toughness balance, the size and cleanliness of Ti carbosulfide and Zr carbosulfide (sum of cleanliness of Ti carbosulfide and Zr carbosulfide when Ti and Zr are added together) It is important to optimize the amount represented by.

【0059】鋼中のTi炭硫化物及びZr炭硫化物の最
大直径が10μmを超えると靭性が低下してしまう。な
お、Ti炭硫化物及びZr炭硫化物の最大直径はいずれ
も7μm以下とすることが好ましい。Ti炭硫化物とZ
r炭硫化物は、それらの最大直径が小さすぎると被削性
向上効果が小さくなってしまう。したがって、Ti炭硫
化物とZr炭硫化物の最大直径の下限値は0.5μm程
度とすることが好ましい。
If the maximum diameter of Ti carbosulfide and Zr carbosulfide in steel exceeds 10 μm, the toughness is reduced. The maximum diameters of both Ti carbosulfide and Zr carbosulfide are preferably 7 μm or less. Ti carbosulfide and Z
If the maximum diameter of r carbosulfide is too small, the machinability improving effect will be reduced. Therefore, the lower limit of the maximum diameter of Ti carbosulfide and Zr carbosulfide is preferably about 0.5 μm.

【0060】(1)の発明において、最大直径が10μ
m以下のTi炭硫化物の量が清浄度で0.05%未満の
場合には、Ti炭硫化物による被削性向上効果が発揮で
きない。したがって、(1)の発明にあっては、Ti炭
硫化物の最大直径が10μm以下で清浄度を0.05%
以上とした。なお、前記の清浄度は0.08%以上とす
ることが好ましい。上記のTi炭硫化物の清浄度の値が
大きすぎると靭性が低下してしまうので、上記のTi炭
硫化物の清浄度の上限値は2.0%程度とすることが好
ましい。
In the invention of (1), the maximum diameter is 10 μm.
When the amount of Ti carbosulfide of m or less is less than 0.05% in cleanliness, the effect of improving the machinability by Ti carbosulfide cannot be exhibited. Therefore, in the invention of (1), the cleanliness is 0.05% when the maximum diameter of Ti carbosulfide is 10 μm or less.
That's it. The cleanliness degree is preferably 0.08% or more. If the cleanliness value of the above Ti carbosulfide is too large, the toughness decreases, so the upper limit value of the cleanliness of the above Ti carbosulfide is preferably about 2.0%.

【0061】(2)の発明において、最大直径が10μ
m以下のTi炭硫化物及びZr炭硫化物の量の和が清浄
度で0.05%未満の場合には、Ti炭硫化物及びZr
炭硫化物による被削性向上効果が発揮できない。したが
って、(2)の発明にあっては、Ti炭硫化物及びZr
炭硫化物の最大直径が10μm以下で、且つその量の和
を清浄度で0.05%以上とした。なお、前記の清浄度
の和は0.08%以上とすることが好ましい。上記のT
i炭硫化物とZr炭硫化物の清浄度の和の値が大きすぎ
ると靭性が低下してしまうので、上記の清浄度の和の上
限値は2.0%程度とすることが好ましい。
In the invention of (2), the maximum diameter is 10 μm.
When the sum of the amounts of Ti carbosulfide and Zr carbosulfide of m or less is less than 0.05% in terms of cleanliness, Ti carbosulfide and Zr
The machinability improving effect of carbosulfide cannot be exhibited. Therefore, in the invention of (2), Ti carbosulfide and Zr
The maximum diameter of carbosulfide was 10 μm or less, and the sum of the amounts was 0.05% or more in terms of cleanliness. The sum of the cleanliness is preferably 0.08% or more. T above
If the sum of the cleanliness of i carbosulfide and Zr carbosulfide is too large, the toughness decreases, so the upper limit of the above sum of cleanliness is preferably about 2.0%.

【0062】上記したようなTi炭硫化物とZr炭硫化
物の形態は基本的にはTi、Zr、S及びNの含有量で
決定される。しかし、Ti炭硫化物やZr炭硫化物のサ
イズと清浄度(清浄度の和)を上述の値とするために
は、TiやZrの酸化物が過剰に生成することを防ぐこ
とが重要である。このためには、鋼が前記(A)項で述
べた化学組成を有しているだけでは充分でない場合があ
るので、例えば、Si及びAlで充分脱酸し、最後にT
iやZrを添加する製鋼法を採れば良い。
The forms of the Ti carbosulfide and the Zr carbosulfide as described above are basically determined by the contents of Ti, Zr, S and N. However, in order to set the size and cleanliness (sum of cleanliness) of Ti carbosulfide and Zr carbosulfide to the above-mentioned values, it is important to prevent excessive generation of oxides of Ti and Zr. is there. For this purpose, it may not be sufficient for the steel to have the chemical composition described in the above section (A). Therefore, for example, sufficient deoxidation with Si and Al, and finally T
A steelmaking method in which i or Zr is added may be adopted.

【0063】なお、Ti炭硫化物とZr炭硫化物は、鋼
材から採取した試験片を鏡面研磨し、その研磨面を被検
面として倍率400倍以上で光学顕微鏡観察すれば、色
と形状から容易に他の介在物と識別できる。すなわち、
前記の条件で光学顕微鏡観察すれば、Ti炭硫化物及び
Zr炭硫化物の「色」は極めて薄い灰色で、「形状」は
JISのB系介在物やC系介在物に相当する粒状(球
状)として認められる。Ti炭硫化物及びZr炭硫化物
の詳細判定は、前記の被検面をEDX(エネルギー分散
型X線分析装置)などの分析機能を備えた電子顕微鏡で
観察することによって行うこともできる。
For Ti carbosulfide and Zr carbosulfide, a test piece taken from a steel material was mirror-polished, and the polished surface was observed under an optical microscope at a magnification of 400 times or more. It can be easily distinguished from other inclusions. That is,
When observed under an optical microscope under the above-mentioned conditions, the color of Ti carbosulfide and Zr carbosulfide is extremely light gray, and the “shape” is granular (spherical) corresponding to JIS B-type inclusions and C-type inclusions. ). Detailed determination of Ti carbosulfide and Zr carbosulfide can also be performed by observing the test surface with an electron microscope having an analysis function such as EDX (energy dispersive X-ray analyzer).

【0064】前記のTi炭硫化物やZr炭硫化物の清浄
度は、既に述べたように、光学顕微鏡の倍率を400倍
として、JIS G 0555に規定された「鋼の非金属介在物の
顕微鏡試験方法」によって60視野測定した値をいう。
なお、Ti炭硫化物やZr炭硫化物の最大直径も、倍率
が400倍の光学顕微鏡で60視野観察して調査すれば
良い。
As described above, the cleanliness of Ti carbosulfide and Zr carbosulfide is defined by JIS G 0555, "Microscope of non-metallic inclusions in steel," when the magnification of the optical microscope is 400 times. "Test method" means the value measured in 60 fields of view.
The maximum diameters of Ti carbosulfide and Zr carbosulfide may also be examined by observing 60 fields of view with an optical microscope having a magnification of 400 times.

【0065】又、既に述べたように、製鋼時に生成した
Ti炭硫化物やZr炭硫化物は、通常の熱間加工のため
の加熱温度では基地に固溶しない。したがって、オース
テナイト領域において所謂「ピン止め作用」が発揮され
るので、オーステナイト粒の粗大化防止にも有効であ
る。
Further, as described above, Ti carbosulfide and Zr carbosulfide produced during steelmaking do not form a solid solution in the matrix at the heating temperature for ordinary hot working. Therefore, a so-called "pinning effect" is exhibited in the austenite region, which is also effective in preventing coarsening of austenite grains.

【0066】(C)鋼材の組織 前記(A)項に記した化学組成、並びに、(B)項に記
したサイズ及び量(清浄度)のTi炭硫化物やZr炭硫
化物を有する非調質鋼材であっても、優れた強度−靭性
バランスを得るためには、その組織の90%以上をベイ
ナイト又はフェライト・ベイナイト組織とする必要があ
る。そのための製造方法としては例えば、鋼片を105
0℃を超えて1300℃以下の温度に加熱してから、例
えば熱間鍛造などの熱間加工を行い、900℃以上の温
度で仕上げた後60℃/分以下の冷却速度で、少なくと
も300℃まで空冷あるいは放冷する処理がある。な
お、前記(A)の化学組成は熱間加工後に鋼材を上記の
条件で冷却すれば所望の組識(組織の90%以上がベイ
ナイト又はフェライト・ベイナイト組織)が生成するよ
うに配慮されたものである。
(C) Structure of Steel Material Non-conditioning having Ti carbosulfide and Zr carbosulfide of the chemical composition described in the above (A) and the size and amount (cleanliness) described in the above (B). In order to obtain an excellent strength-toughness balance even in a high quality steel material, 90% or more of the structure must be bainite or ferrite bainite structure. As a manufacturing method therefor, for example, steel slab 105
After heating to a temperature higher than 0 ° C and lower than or equal to 1300 ° C, hot working such as hot forging is performed and finished at a temperature higher than or equal to 900 ° C, and then at a cooling rate of 60 ° C / min or lower, at least 300 ° C. There is a process of air cooling or cooling. The chemical composition of (A) is designed so that a desired structure (90% or more of the structure is bainite or ferrite-bainite structure) is formed when the steel material is cooled under the above conditions after hot working. Is.

【0067】熱間加工時の成形比が大きくなるほど組織
が微細化して強度−靭性バランスが良好になるので、前
記熱間加工に際して成形比を1.5以上とすることが好
ましい。本発明でいう「成形比」とは、A0 を加工前の
断面積、Aを加工後の断面積とした場合の(A0/A)
のことを指す。なお、組識における旧オーステナイト粒
の結晶粒度がJIS粒度番号4以上の場合にはその強度
−靭性バランスは優れたものとなる。前記の「旧オース
テナイト粒」とは、加熱と熱間加工を受けベイナイトや
フェライトなどが変態生成する直前のオーステナイト粒
のことをいう。本発明で規定する組織を有する非調質鋼
材の場合には、ナイタル腐食して光学顕微鏡で観察する
ことによってこの旧オーステナイト粒を容易に判定でき
る。
Since the structure becomes finer and the strength-toughness balance becomes better as the forming ratio during hot working increases, it is preferable to set the forming ratio to 1.5 or more during the hot working. The term "molding ratio" as used in the present invention means (A 0 / A) where A 0 is the cross-sectional area before processing and A is the cross-sectional area after processing.
Refers to. In addition, when the crystal grain size of the old austenite grains in the organization is JIS grain size number 4 or more, the strength-toughness balance becomes excellent. The above-mentioned "former austenite grains" refer to austenite grains immediately before transformation and formation of bainite, ferrite, etc. undergoes heating and hot working. In the case of the non-heat treated steel material having the structure defined in the present invention, the old austenite grains can be easily determined by performing the nital corrosion and observing with an optical microscope.

【0068】上記の熱間加工と冷却を行った後に200
〜700℃の温度で20〜150分程度加熱する時効処
理を行えば特に強度−靭性バランスが優れたものとな
る。
After performing the above hot working and cooling, 200
When the aging treatment is performed by heating at a temperature of ˜700 ° C. for about 20 to 150 minutes, the strength-toughness balance becomes particularly excellent.

【0069】[0069]

【実施例】【Example】

(実施例1)表1〜4に示す化学組成の鋼を150kg
真空溶解炉を用いて溶製した。なお、Ti酸化物の生成
を防ぐために、Si及びAlで充分脱酸し種々の元素を
添加した最後にTiを添加して、Ti炭硫化物のサイズ
と清浄度を調整するようにした。
(Example 1) 150 kg of steel having the chemical composition shown in Tables 1 to 4
It was melted using a vacuum melting furnace. In order to prevent formation of Ti oxide, Ti was added at the end after deoxidizing sufficiently with Si and Al and adding various elements to adjust the size and cleanliness of Ti carbosulfide.

【0070】表1、表2における鋼1〜24は化学組成
が本発明で規定する範囲内にある本発明例の鋼であり、
表3、表4における鋼25〜50はその成分のいずれか
が本発明で規定する含有量の範囲から外れた比較例の鋼
である。
Steels 1 to 24 in Tables 1 and 2 are steels of the examples of the present invention having a chemical composition within the range specified by the present invention.
Steels 25 to 50 in Tables 3 and 4 are steels of comparative examples in which any one of the components is out of the range of the content specified in the present invention.

【0071】[0071]

【表1】 [Table 1]

【0072】[0072]

【表2】 [Table 2]

【0073】[0073]

【表3】 [Table 3]

【0074】[0074]

【表4】 [Table 4]

【0075】次いで、これらの鋼を1250℃に加熱し
てから1000℃で仕上げる熱間鍛造を行って直径20
mmの丸棒及び板厚12mmの鋼板を作製した。これ
は、直径20mmの丸棒と板厚12mmの鋼板が同様の
組織を呈するためである。なお、熱間鍛造後の冷却条件
を冷却速度が5〜35℃/分となるように空冷又は放冷
して300℃まで冷却し、丸棒及び鋼板の組織を調整し
た。
Next, these steels are heated to 1250 ° C. and then hot forged at 1000 ° C. to finish them to a diameter of 20.
mm round bar and a steel plate having a plate thickness of 12 mm were produced. This is because the round bar having a diameter of 20 mm and the steel plate having a plate thickness of 12 mm have the same structure. The cooling conditions after hot forging were air-cooled or allowed to cool to a cooling rate of 5 to 35 ° C / min and cooled to 300 ° C to adjust the structures of the round bar and the steel sheet.

【0076】上記のようにして得られた丸棒の中心部か
ら、JIS14A号の引張試験片及びJIS3号の2m
mUノッチシャルピー衝撃試験片を採取し、室温での引
張強度とシャルピー吸収エネルギーを調査した。又、JI
S G 0555の図5に則って試験片を採取し、鏡面研磨した
300mm2 の被検面を、倍率が400倍の光学顕微鏡
で60視野観察して、Ti炭硫化物を他の介在物と区分
しながらその清浄度を測定した。又、Ti炭硫化物の最
大直径を、倍率が400倍の光学顕微鏡で60視野観察
して調査した。更に、この試験片をナイタルで腐食して
組識観察も行った。
From the center of the round bar obtained as described above, the tensile test piece of JIS No. 14A and 2 m of JIS No. 3 were measured.
The mU notch Charpy impact test piece was sampled and the tensile strength and the Charpy absorbed energy at room temperature were investigated. Also, JI
A test piece was sampled according to FIG. 5 of SG 0555, and the 300 mm 2 test surface that had been mirror-polished was observed in 60 fields of view with an optical microscope with a magnification of 400 times to distinguish Ti carbosulfide from other inclusions. While measuring the cleanliness. Further, the maximum diameter of Ti carbosulfide was examined by observing 60 fields with an optical microscope having a magnification of 400 times. Further, the test piece was corroded with nital and the tissue was observed.

【0077】ドリル穿孔試験による被削性の評価も行っ
た。すなわち、前記の厚さ12mmに仕上げた鋼板を平
面研削して10mm厚さまで減厚し、これを試験片とし
てその厚さ方向に貫通孔をあけ、刃先摩損により穿孔不
能となった時の貫通孔の個数を数え、被削性の評価を行
った。穿孔条件はJIS高速度工具鋼SKH51のφ5
mmテーパードリルを使用し、水溶性の潤滑剤を用い
て、送り0.20mm/rev、回転数980rpmで
行った。
Machinability was also evaluated by a drilling test. That is, the steel plate finished to the thickness of 12 mm is subjected to surface grinding to reduce the thickness to 10 mm, and a through hole is formed in the thickness direction as a test piece, and the through hole is used when it becomes impossible to punch due to the abrasion of the blade edge. The machinability was evaluated by counting the number of. Drilling conditions are JIS high speed tool steel SKH51 φ5
Using a mm taper drill and a water-soluble lubricant, the feed was 0.20 mm / rev and the rotation speed was 980 rpm.

【0078】表5、表6に上記の各種試験の結果を示
す。なお、表の組織欄における組織の割合(%)は、光
学顕微鏡観察した時の組織中にフェライトが含まれない
場合のベイナイトの占める割合、又はベイナイトとフェ
ライトが混在する組織におけるフェライトとベイナイト
の占める割合の和を意味する。
Tables 5 and 6 show the results of the above various tests. The proportion (%) of the structure in the structure column of the table is the ratio of bainite when ferrite is not contained in the structure when observed under an optical microscope, or the ratio of ferrite and bainite in the structure in which bainite and ferrite are mixed. It means the sum of proportions.

【0079】[0079]

【表5】 [Table 5]

【0080】[0080]

【表6】 [Table 6]

【0081】図1に本発明例の鋼である鋼1〜24並び
に、比較例の鋼である鋼25、鋼31〜33、鋼35〜
43及び鋼46〜50の引張強度と衝撃値の関係を示
す。又、図2に本発明例の鋼である鋼1〜24並びに、
比較例の鋼である鋼26〜30、鋼32、鋼34、鋼4
4及び鋼45の引張強度と被削性の関係を示す。
FIG. 1 shows steels 1 to 24 which are steels of the present invention and steels 25, 31 to 33 and 35 which are steels of comparative examples.
The relationship between the tensile strength of 43 and steel 46-50 and an impact value is shown. Further, in FIG. 2, steels 1 to 24, which are steels of the present invention, and
Steels 26 to 30, steels 32, 34, and steels 4 as comparative examples.
4 shows the relationship between the tensile strength of 4 and the steel 45 and machinability.

【0082】表5、表6及び図1、図2から、本発明例
の鋼1〜24は各々の強度レベルでの靭性(衝撃値)及
び被削性(貫通孔の数)が良好であることが明らかであ
る。
From Tables 5 and 6 and FIGS. 1 and 2, the steels 1 to 24 of the present invention have good toughness (impact value) and machinability (number of through holes) at each strength level. It is clear.

【0083】これに対して比較例の鋼の場合には、各々
の強度レベルでの靭性と被削性の少なくともいずれかが
劣っている。すなわち、鋼25、鋼31、鋼33、鋼3
5〜43及び鋼46〜50は靭性が、鋼26〜30、鋼
34、鋼44及び鋼45は被削性が、鋼32は靭性と被
削性の両特性が劣っている。
On the other hand, the steels of the comparative examples are inferior in at least one of toughness and machinability at each strength level. That is, steel 25, steel 31, steel 33, steel 3
5 to 43 and steels 46 to 50 are inferior in toughness, steels 26 to 30, steel 34, steel 44 and steel 45 are inferior in machinability, and steel 32 is inferior in both toughness and machinability.

【0084】(実施例2)上記の実施例1で得た本発明
例の鋼1〜5及び鋼11〜17の直径20mmの丸棒及
び板厚12mmの鋼板をそれぞれ表7に示す温度で時効
処理した。
(Example 2) A steel rod having a diameter of 20 mm and a steel plate having a thickness of 12 mm of steels 1 to 5 and steels 11 to 17 of the present invention obtained in the above Example 1 were aged at the temperatures shown in Table 7, respectively. Processed.

【0085】このようにして得られた丸棒の中心部か
ら、実施例1の場合と同様にJIS14A号の引張試験
片及びJIS3号の2mmUノッチシャルピー衝撃試験
片を採取し、室温での引張強度とシャルピー吸収エネル
ギーを調査した。又、前記の厚さ12mmの鋼板を平面
研削して10mm厚さまで減厚し、実施例1の場合と同
様にドリル穿孔試験による被削性の評価を行った。
From the center of the round bar thus obtained, a tensile test piece of JIS No. 14A and a 2 mm U notch Charpy impact test piece of JIS No. 3 were sampled in the same manner as in Example 1, and the tensile strength at room temperature was measured. And Charpy absorbed energy was investigated. Further, the steel plate having a thickness of 12 mm was subjected to surface grinding to reduce the thickness to 10 mm, and the machinability was evaluated by a drilling test as in the case of Example 1.

【0086】表7に各種の試験結果を併せて示す。Table 7 also shows the results of various tests.

【0087】[0087]

【表7】 [Table 7]

【0088】表7から本発明例の鋼に関してはこれに2
00〜700℃で時効処理を行えば特に強度−靭性バラ
ンスが優れたものとなることが明らかである。
From Table 7, for the steel of the present invention, 2
It is clear that when the aging treatment is performed at 00 to 700 ° C., the strength-toughness balance becomes particularly excellent.

【0089】(実施例3)表8〜11に示す化学組成の
鋼を150kg真空溶解炉を用いて溶製した。なお、T
i酸化物及びZr酸化物の生成を防ぐために、Si及び
Alで充分脱酸し種々の元素を添加した最後にTiとZ
rを添加して、Ti炭硫化物とZr炭硫化物のサイズと
清浄度(清浄度の和)を調整するようにした。
Example 3 Steels having the chemical compositions shown in Tables 8 to 11 were melted using a 150 kg vacuum melting furnace. In addition, T
In order to prevent the formation of i oxide and Zr oxide, Ti and Z were added after deoxidizing sufficiently with Si and Al and adding various elements.
r was added to adjust the size and cleanliness (sum of cleanliness) of Ti carbosulfide and Zr carbosulfide.

【0090】表8、表9における鋼51〜74は化学組
成が本発明で規定する範囲内にある本発明例の鋼であ
り、表10、表11における鋼75〜cはその成分のい
ずれかが本発明で規定する含有量の範囲から外れた比較
例の鋼である。
Steels 51 to 74 in Tables 8 and 9 are steels of the examples of the present invention whose chemical composition is within the range specified in the present invention, and steels 75 to c in Tables 10 and 11 are any of their components. Is a steel of a comparative example out of the range of the content specified in the present invention.

【0091】[0091]

【表8】 [Table 8]

【0092】[0092]

【表9】 [Table 9]

【0093】[0093]

【表10】 [Table 10]

【0094】[0094]

【表11】 [Table 11]

【0095】次いで、これらの鋼を1250℃に加熱し
てから1000℃で仕上げる熱間鍛造を行って直径20
mmの丸棒及び板厚12mmの鋼板を作製した。これ
は、既に述べたように直径20mmの丸棒と板厚12m
mの鋼板が同様の組織を呈するためである。なお、熱間
鍛造後の冷却条件を冷却速度が5〜35℃/分となるよ
うに空冷又は放冷して300℃まで冷却し、丸棒及び鋼
板の組織を調整した。
Then, these steels were heated to 1250 ° C. and then hot forged at 1000 ° C. to give a diameter of 20.
mm round bar and a steel plate having a plate thickness of 12 mm were produced. As mentioned above, this is a round bar with a diameter of 20 mm and a plate thickness of 12 m.
This is because the steel sheet of m exhibits the same structure. The cooling conditions after hot forging were air-cooled or allowed to cool to a cooling rate of 5 to 35 ° C / min and cooled to 300 ° C to adjust the structures of the round bar and the steel sheet.

【0096】上記のようにして得られた丸棒の中心部か
ら、JIS14A号の引張試験片及びJIS3号の2m
mUノッチシャルピー衝撃試験片を採取し、室温での引
張強度とシャルピー吸収エネルギーを調査した。又、JI
S G 0555の図5に則って試験片を採取し、鏡面研磨した
300mm2 の被検面を、倍率が400倍の光学顕微鏡
で60視野観察して、Ti炭硫化物及びZr炭硫化物を
他の介在物と区分しながらその清浄度(清浄度の和)も
測定した。Ti炭硫化物及びZr炭硫化物の最大直径
も、倍率が400倍の光学顕微鏡で60視野観察して調
査した。更に、この試験片をナイタルで腐食して組識観
察も行った。
From the center of the round bar obtained as described above, a tensile test piece of JIS No. 14A and 2 m of JIS No. 3 were obtained.
The mU notch Charpy impact test piece was sampled and the tensile strength and the Charpy absorbed energy at room temperature were investigated. Also, JI
A test piece was sampled according to Fig. 5 of SG 0555 and the 300 mm 2 test surface that had been mirror-polished was observed with an optical microscope at a magnification of 400 times for 60 fields of view to determine Ti carbosulfide and Zr carbosulfide. The cleanliness (sum of cleanliness) was also measured while distinguishing from the inclusions. The maximum diameters of Ti carbosulfide and Zr carbosulfide were also examined by observing 60 fields with an optical microscope at a magnification of 400 times. Further, the test piece was corroded with nital and the tissue was observed.

【0097】ドリル穿孔試験による被削性の評価も行っ
た。すなわち、前記の厚さ12mmに仕上げた鋼板を平
面研削して10mm厚さまで減厚し、これを試験片とし
てその厚さ方向に貫通孔をあけ、刃先摩損により穿孔不
能となった時の貫通孔の個数を数え、被削性の評価を行
った。穿孔条件はJIS高速度工具鋼SKH51のφ5
mmテーパードリルを使用し、水溶性の潤滑剤を用い
て、送り0.20mm/rev、回転数980rpmで
行った。
Machinability was also evaluated by a drilling test. That is, the steel plate finished to the thickness of 12 mm is subjected to surface grinding to reduce the thickness to 10 mm, and a through hole is formed in the thickness direction as a test piece, and the through hole is used when it becomes impossible to punch due to the abrasion of the blade edge. The machinability was evaluated by counting the number of. Drilling conditions are JIS high speed tool steel SKH51 φ5
Using a mm taper drill and a water-soluble lubricant, the feed was 0.20 mm / rev and the rotation speed was 980 rpm.

【0098】表12、表13に上記の各種試験の結果を
示す。なお、表の組織欄における組織の割合(%)は、
光学顕微鏡観察した時の組織中にフェライトが含まれな
い場合のベイナイトの占める割合、又はベイナイトとフ
ェライトが混在する組織におけるフェライトとベイナイ
トの占める割合の和を意味する。又、「Ti、Zr炭硫
化物」とした欄において、TiとZrとを複合添加した
場合には「最大直径」はいずれか大きい方の炭硫化物の
値であり、清浄度は清浄度の和を意味する。
Tables 12 and 13 show the results of the above various tests. The percentage of organizations in the organization column of the table is
It means the proportion of bainite in the case where ferrite is not contained in the structure when observed under an optical microscope, or the sum of the proportions of ferrite and bainite in the structure in which bainite and ferrite are mixed. Further, in the column of “Ti, Zr carbosulfide”, when Ti and Zr are added together, “maximum diameter” is the value of the larger carbosulfide, and the cleanliness is the cleanliness of the cleanliness. Means Japanese.

【0099】[0099]

【表12】 [Table 12]

【0100】[0100]

【表13】 [Table 13]

【0101】表12、表13から、本発明例の鋼51〜
74は各々の強度レベルでの靭性(シャルピー吸収エネ
ルギー)及び被削性(貫通孔の数)が良好であることが
明らかである。
From Tables 12 and 13, steels 51 to 51 of the present invention are shown.
It is clear that 74 has good toughness (Charpy absorbed energy) and machinability (number of through holes) at each strength level.

【0102】これに対して比較例の鋼の場合には、各々
の強度レベルでの靭性と被削性の少なくともいずれかが
劣っている。すなわち、鋼75、鋼81、鋼82、鋼8
4、鋼86〜95及び鋼98〜cは靭性が、鋼76〜8
0、鋼85、鋼96及び鋼97は被削性が、鋼83は靭
性と被削性の両特性が劣っている。
On the other hand, the steels of the comparative examples are inferior in at least one of toughness and machinability at each strength level. That is, steel 75, steel 81, steel 82, steel 8
4, steel 86 to 95 and steel 98 to c have toughness of steel 76 to 8
0, steel 85, steel 96 and steel 97 are inferior in machinability, and steel 83 is inferior in both toughness and machinability.

【0103】(実施例4)上記の実施例3で得た本発明
例の鋼51〜55及び鋼61〜67の直径20mmの丸
棒及び板厚12mmの鋼板をそれぞれ表14に示す温度
で時効処理した。
(Example 4) Steels 51 to 55 and steels 61 to 67 of the present invention obtained in Example 3 above were round-aged at a temperature shown in Table 14 and a round bar having a diameter of 20 mm and a steel plate having a thickness of 12 mm, respectively. Processed.

【0104】このようにして得られた丸棒の中心部か
ら、実施例3の場合と同様にJIS14A号の引張試験
片及びJIS3号の2mmUノッチシャルピー衝撃試験
片を採取し、室温での引張強度とシャルピー吸収エネル
ギーを調査した。又、前記の厚さ12mmの鋼板を平面
研削して10mm厚さまで減厚し、実施例3の場合と同
様にドリル穿孔試験による被削性の評価を行った。
From the center of the round bar thus obtained, a tensile test piece of JIS No. 14A and a 2 mm U notch Charpy impact test piece of JIS No. 3 were sampled in the same manner as in Example 3, and the tensile strength at room temperature was measured. And Charpy absorbed energy was investigated. Further, the steel plate having a thickness of 12 mm was subjected to surface grinding to reduce the thickness to 10 mm, and the machinability was evaluated by a drilling test as in the case of Example 3.

【0105】表14に各種の試験結果を併せて示す。Table 14 also shows the results of various tests.

【0106】[0106]

【表14】 [Table 14]

【0107】表14から本発明例の鋼に関してはこれに
200〜700℃で時効処理を行えば特に強度−靭性バ
ランスが優れたものとなることが明らかである。
It is apparent from Table 14 that the steel of the present invention has a particularly excellent strength-toughness balance when subjected to aging treatment at 200 to 700 ° C.

【0108】[0108]

【発明の効果】本発明の高強度高靭性快削非調質鋼材は
優れた靭性と被削性を兼ね備えているので、機械構造部
品などの素材として利用することができる。この高強度
高靭性快削非調質鋼材は比較的容易に低コストで製造す
ることができる。
The high-strength, high-toughness, free-cutting, non-heat treated steel of the present invention has both excellent toughness and machinability, and thus can be used as a material for machine structural parts and the like. This high-strength and high-toughness free-cutting non-heat treated steel material can be relatively easily manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で用いた本発明例の鋼である鋼1〜24
並びに、比較例の鋼である鋼25、鋼31〜33、鋼3
5〜43及び鋼46〜50の引張強度と衝撃値の関係を
示した図である。
1] Steels 1 to 24 which are steels of the present invention used in Examples
In addition, steel 25, steel 31 to 33, and steel 3 which are steels of comparative examples
It is the figure which showed the tensile strength of 5 to 43 and steel 46 to 50, and the relationship of an impact value.

【図2】実施例で用いた本発明例の鋼である鋼1〜24
並びに、比較例の鋼である鋼26〜30、鋼32、鋼3
4、鋼44及び鋼45の引張強度と被削性の関係を示し
た図である。
FIG. 2 Steels 1 to 24 which are steels of the present invention used in Examples
Also, steels 26 to 30, steels 32 and 3 which are steels of comparative examples.
It is the figure which showed the tensile strength and machinability of 4, steel 44, and steel 45.

フロントページの続き (56)参考文献 特開 昭50−20917(JP,A) 特開 平5−302116(JP,A) 特開 昭64−52020(JP,A) 特開 平6−212349(JP,A) 特開 平6−256895(JP,A) 特公 平5−27685(JP,B2) 特公 昭34−2405(JP,B1) 「材料とプロセス」vol.7 (1994)No.6、日本鉄鋼協会、P. 1839 「材料とプロセス」vol.7 (1994)No.3、日本鉄鋼協会、P. 819 「材料とプロセス」、vol.9 (1996)No.3、日本鉄鋼協会、P. 378Continued front page       (56) References JP-A-50-20917 (JP, A)                 JP-A-5-302116 (JP, A)                 JP 64-52020 (JP, A)                 JP-A-6-212349 (JP, A)                 JP-A-6-256895 (JP, A)                 Japanese Patent Publication 5-27685 (JP, B2)                 Japanese Patent Publication Sho 34-2405 (JP, B1)                 "Materials and processes" vol. 7               (1994) No. 6, Japan Iron and Steel Institute, P.               1839                 "Materials and processes" vol. 7               (1994) No. 3, Japan Iron and Steel Institute, P.               819                 "Materials and Processes", vol. 9               (1996) No. 3, Japan Iron and Steel Institute, P.               378

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C:0.05〜0.3%、S
i:0.05〜1.5%、Mn:0.4〜3.5%
S:0.002〜0.2%、Ti:0.04〜1.0
%、Al:0.005〜0.05%、N:0.008%
以下、Cr:0〜3.0%、Ni:0〜2.0%、V:
0〜0.3%、Nb:0〜0.1%、Mo:0〜0.5
%、Cu:0〜1.0%、B:0〜0.02%、Nd:
0〜0.1%、Pb:0〜0.5%、Ca:0〜0.0
1%、Se:0〜0.5%、Te:0〜0.05%、
:0〜0.4%、下記(1) で表されるfn1が0%
を超え、下記(2) で表されるfn2が2.5〜4.5
%、残部はFe及び不可避不純物の化学組成で、鋼中の
Ti炭硫化物の最大直径が10μm以下で、且つ、その
量が清浄度で0.05%以上で、更に、組織の90%以
上がベイナイト又はフェライト・ベイナイト組織である
高強度高靭性快削非調質鋼材。 fn1=Ti(%)−1.2S(%)・・・・・(1) fn2=0.5Si(%)+Mn(%)+1.13Cr
(%)+1.98Ni(%)・・・・・(2)
1. C: 0.05 to 0.3% by weight, S
i: 0.05 to 1.5% , Mn: 0.4 to 3.5% ,
S: 0.002-0.2%, Ti: 0.04-1.0
%, Al: 0.005-0.05%, N: 0.008%
Hereinafter, Cr: 0 to 3.0%, Ni: 0 to 2.0% , V:
0-0.3%, Nb: 0-0.1%, Mo: 0-0.5
%, Cu: 0 to 1.0%, B: 0 to 0.02%, Nd:
0-0.1%, Pb: 0-0.5%, Ca: 0-0.0
1%, Se: 0 to 0.5%, Te: 0 to 0.05%, B
i : 0 to 0.4%, fn1 represented by the following formula (1) is 0%
And fn2 represented by the following formula (2) is 2.5 to 4.5.
%, The balance is the chemical composition of Fe and unavoidable impurities, the maximum diameter of Ti carbosulfide in the steel is 10 μm or less, and the amount is 0.05% or more in cleanliness and 90% or more of the structure. A high-strength, high-toughness, free-cutting, non-heat treated steel with a bainite or ferrite bainite structure. fn1 = Ti (%)-1.2S (%) (1) fn2 = 0.5Si (%) + Mn (%) + 1.13Cr
(%) + 1.98Ni (%) ・ ・ ・ ・ ・(2)
【請求項2】重量%で、C:0.05〜0.3%、S
i:0.05〜1.5%、Mn:0.4〜3.5%
S:0.002〜0.2%、Ti:0〜1.0%、Z
r:1.0%以下で、且つ、Ti(%)+Zr(%):
0.04〜1.0%、Al:0.005〜0.05%、
N:0.008%以下、Cr:0〜3.0%、Ni:0
〜2.0%、V:0〜0.3%、Nb:0〜0.1%、
Mo:0〜0.5%、W:0〜0.8%、Cu:0〜
1.0%、B:0〜0.02%、Nd:0〜0.1%、
Pb:0〜0.5%、Ca:0〜0.01%、Se:0
〜0.5%、Te:0〜0.05%、Bi:0〜0.4
%、下記(3) で表されるfn3が0%を超え、下記(2)
で表されるfn2が2.5〜4.5%、残部はFe及
び不可避不純物の化学組成で、鋼中のTi炭硫化物及び
Zr炭硫化物の最大直径が10μm以下で、且つ、その
量の和が清浄度で0.05%以上で、更に、組織の90
%以上がベイナイト又はフェライト・ベイナイト組織で
ある高強度高靭性快削非調質鋼材。 fn3=Ti(%)+Zr(%)−1.2S(%)・・
・・・(3) fn2=0.5Si(%)+Mn(%)+1.13Cr
(%)+1.98Ni(%)・・・・・(2)
2. By weight%, C: 0.05-0.3%, S
i: 0.05 to 1.5% , Mn: 0.4 to 3.5% ,
S: 0.002~0.2%, Ti: 0~1.0 %, Z
r: 1.0% or less and Ti (%) + Zr (%):
0.04 to 1.0%, Al: 0.005 to 0.05%,
N: 0.008% or less, Cr: 0 to 3.0%, Ni: 0
~ 2.0% , V: 0 ~ 0.3%, Nb: 0 ~ 0.1%,
Mo: 0-0.5%, W: 0-0.8%, Cu: 0-
1.0%, B: 0 to 0.02%, Nd: 0 to 0.1%,
Pb: 0-0.5%, Ca: 0-0.01%, Se: 0
~ 0.5%, Te: 0 to 0.05%, Bi: 0 to 0.4
%, Fn3 represented by the following formula (3) exceeds 0%, and the following (2)
Fn2 represented by the formula is 2.5 to 4.5%, the balance is the chemical composition of Fe and unavoidable impurities, the maximum diameter of Ti carbosulfide and Zr carbosulfide in steel is 10 μm or less, and The sum of the amount of cleanliness is 0.05% or more,
A high-strength, high-toughness, free-cutting, non-heat treated steel with a bainite or ferrite-bainite structure of which% or more. fn3 = Ti (%) + Zr (%)-1.2S (%) ...
(3) fn2 = 0.5Si (%) + Mn (%) + 1.13Cr
(%) + 1.98Ni (%) ・ ・ ・ ・ ・(2)
JP03689798A 1997-02-27 1998-02-19 High-strength, high-toughness free-cut non-heat treated steel Expired - Fee Related JP3489655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03689798A JP3489655B2 (en) 1997-02-27 1998-02-19 High-strength, high-toughness free-cut non-heat treated steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4306297 1997-02-27
JP9-43062 1997-02-27
JP03689798A JP3489655B2 (en) 1997-02-27 1998-02-19 High-strength, high-toughness free-cut non-heat treated steel

Publications (2)

Publication Number Publication Date
JPH10298704A JPH10298704A (en) 1998-11-10
JP3489655B2 true JP3489655B2 (en) 2004-01-26

Family

ID=26375990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03689798A Expired - Fee Related JP3489655B2 (en) 1997-02-27 1998-02-19 High-strength, high-toughness free-cut non-heat treated steel

Country Status (1)

Country Link
JP (1) JP3489655B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353698B2 (en) * 1998-04-24 2002-12-03 住友金属工業株式会社 Method of manufacturing steel for nitrocarburizing and nitrocarburized parts using the steel
JP4761649B2 (en) * 2001-05-16 2011-08-31 清仁 石田 Corrosion resistant steel
KR101714903B1 (en) * 2014-11-03 2017-03-10 주식회사 포스코 Steel wire rod having high strength and impact toughness, and method for manufacturing thereof
JP6791179B2 (en) * 2018-02-28 2020-11-25 Jfeスチール株式会社 Non-microalloyed steel and its manufacturing method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
「材料とプロセス」、vol.9(1996)No.3、日本鉄鋼協会、P.378
「材料とプロセス」vol.7(1994)No.3、日本鉄鋼協会、P.819
「材料とプロセス」vol.7(1994)No.6、日本鉄鋼協会、P.1839

Also Published As

Publication number Publication date
JPH10298704A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
JP5079788B2 (en) Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts
US8980022B2 (en) Case hardening steel, carburized component, and manufacturing method of case hardening steel
WO1998023784A1 (en) Steel having excellent machinability and machined component
JP5801529B2 (en) Non-heat treated steel for hot forging with high bending fatigue strength and small deformation due to repeated stress, and method for producing the same
JP3489434B2 (en) High-strength free-cut non-heat treated steel
JP3196579B2 (en) Free-cutting non-heat treated steel with excellent strength and toughness
JP2000282172A (en) Steel for machine structure excellent in machinability and toughness, and machine structural parts
JP2017066460A (en) Age hardening steel
JP6477382B2 (en) Free-cutting steel
JP4528363B1 (en) Case-hardened steel with excellent cold workability, machinability, and fatigue characteristics after carburizing and quenching, and method for producing the same
JP3489655B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JP3489656B2 (en) High-strength, high-toughness tempered steel with excellent machinability
JP3739958B2 (en) Steel with excellent machinability and its manufacturing method
JP3489376B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JP3644275B2 (en) Martensitic bainite-type non-tempered steel material excellent in machinability and manufacturing method thereof
JP3494271B2 (en) Free-cutting non-heat treated steel with excellent strength and toughness
JP6477383B2 (en) Free-cutting steel
JP3890724B2 (en) Ferritic / pearlite non-heat treated steel with excellent machinability
JP2009108357A (en) Non-heat treated steel for martensite type hot-forging, and hot-forged non-heat treated steel part
JP3534146B2 (en) Non-heat treated steel excellent in fatigue resistance and method for producing the same
JP3395642B2 (en) Coarse-grained case hardened steel material, surface-hardened part excellent in strength and toughness, and method for producing the same
JP3472675B2 (en) High-strength free-cut non-heat treated steel
JP3475706B2 (en) High-strength, high-toughness tempered steel with excellent machinability
JP7410392B2 (en) Machine structural steel, machine structural parts and their manufacturing method
JP4144500B2 (en) Non-tempered steel with excellent balance between strength and machinability and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees