WO1998023784A1 - Steel having excellent machinability and machined component - Google Patents

Steel having excellent machinability and machined component Download PDF

Info

Publication number
WO1998023784A1
WO1998023784A1 PCT/JP1997/004297 JP9704297W WO9823784A1 WO 1998023784 A1 WO1998023784 A1 WO 1998023784A1 JP 9704297 W JP9704297 W JP 9704297W WO 9823784 A1 WO9823784 A1 WO 9823784A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
content
steel material
machinability
carbosulfide
Prior art date
Application number
PCT/JP1997/004297
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Watari
Yasutaka Okada
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP00197497A external-priority patent/JP3494271B2/en
Priority claimed from JP01604797A external-priority patent/JP3534146B2/en
Priority claimed from JP04313897A external-priority patent/JP3489376B2/en
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to KR1019980704909A priority Critical patent/KR100268536B1/en
Priority to EP97913441A priority patent/EP0903418B1/en
Priority to DE69718784T priority patent/DE69718784T2/en
Priority to CA002243123A priority patent/CA2243123C/en
Publication of WO1998023784A1 publication Critical patent/WO1998023784A1/en
Priority to US09/103,566 priority patent/US5922145A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the present invention relates to a steel material excellent in machinability and a part processed by cutting. More specifically, steel materials that have good machinability and are suitable as materials for structural parts of various machines such as automobiles and other transport machinery, industrial machinery, construction machinery, etc. Shafts, connecting rods, gears, etc., related to various machine structural parts machined by cutting. Background art
  • various mechanical structural parts such as transport machines, industrial machines, and construction machines are: (a) rough-worked to a predetermined shape by hot working, and then finished to a desired shape by cutting. In general, quenching and tempering were performed, or (b) hot working and quenching and tempering were performed, followed by cutting to obtain a desired shape.
  • machinability improving elements such as Pb, Te, Bi, Ca and S, singly or in combination
  • free-cutting elements such as Pb, Te, Bi, Ca and S
  • desired mechanical properties for example, toughness / fatigue strength
  • a technique of performing the hot working and the quenching / tempering treatment (b) and then performing a cutting work is disclosed in, for example, JP-A-6-212347.
  • This is "a hot forged product having high fatigue strength and a method for producing the same", in which steel having a specific chemical composition is quenched immediately after hot forging and then tempered to precipitate TiC.
  • the hot forgings described in this publication merely specify the amount of N as the chemical composition of steel as less than 0.1 in N / Ti, which is the ratio to the amount of Ti, so that it is not necessarily a good coating. In some cases, it may not be possible to secure machinability. In other words, if the N content of steel containing 0.01 to 0.20% Ti in weight% is specified as less than 0.1 in NZTi, a large amount of hard TiN is formed and the machinability increases. In some cases, and also in toughness.
  • An object of the present invention is to provide a steel material which has good machinability and is suitable as a material for structural parts of various machines such as automobiles, transportation machines, industrial machines, construction machines, and the like.
  • the gist of the present invention is as follows.
  • the composition is more than 90%
  • Ti carbosulfide in the present invention includes simple Ti sulfide.
  • maximum diameter (of Ti carbosulfide) refers to "the longest diameter of an individual Ti carbosulfide.”
  • the cleanliness of Ti carbosulfide is a value obtained by measuring 60 fields of view using the “microscopic test method for nonmetallic inclusions in steel” specified in JIS G 0555, with the magnification of an optical microscope set to 400 times.
  • non-heat treated steel refers to a steel material in which "quenching and tempering” as a so-called “temper treatment” is omitted.
  • available steel material it includes “a steel material that has been subjected to aging treatment equivalent to tempering after cooling after hot working”.
  • Tempoered steel refers to steel that has been “quenched and tempered”.
  • the tissue ratio means the tissue ratio when observed under a microscope, that is, the area ratio.
  • 90% or more of ferrite and perlite means that the sum of the proportions of frite and perlite is 90% or more in an organization where ferrite and perlite are mixed. It means something.
  • bainite refers to a state in which bainite occupies 90% or more of the organization when no ferrite is included in the organization.
  • Boinite is 90% or more means that the sum of the proportions of ferrite and bayite is 90% or more in an organization where vanite and ferrite are mixed.
  • “50% or more of martensite” means that 50% or more of the organization is martensite.
  • the above (IV) relates to “tempered steel material” which has been quenched and tempered. Therefore, the above martensite refers to a tempered martensite, that is, “tempered martensite”. , Simply referred to as “martensite”.
  • the present inventors have found that the chemical composition and microstructure of steel affect machinability and mechanical properties. The experiment was repeated to examine the effects.
  • Ti carbosulfide has a greater machinability improvement effect than MnS. This is based on the fact that the melting point of Ti carbosulfide is lower than that of MnS, so that the lubrication of the rake face of the tool during cutting is increased.
  • Ti carbosulfide generated during steelmaking does not form a solid solution in the matrix at the normal heating temperature for hot working and the normal heating temperature for tempering. Therefore, Ti carbosulfide exhibits a so-called “pinning effect” in the austenite region, and is effective in preventing austenite grains from becoming coarse.
  • Ti carbosulfide is used for normal tempering in tempering. Does not dissolve in the matrix even at the heating temperature or the heating temperature for aging treatment equivalent to tempering.
  • the balance between strength and toughness is good for steel materials in which 9% or more of the structure is bainite, or steel with bainite and bainite.
  • Non-heat treated steel with a specific chemical composition and 90% or more of the structure is made of graphite and pearlite.
  • the proportion of the fluoride is 20 to 70% in area ratio and the particle size of ferrite. If the JIS particle size number is 5 or more, the average value of the pearlite lamellar spacing is 0.2 or less, and at least one of the conditions is satisfied, a good balance between strength and toughness can be obtained.
  • fn 3 0.5 S i (%) + n () +1.13 C r (%) +1.98 Ni (%) (3)
  • the present invention has been completed based on the above findings.
  • C combines with S with Ti to form Ti carbosulfide and has an effect of enhancing machinability. Further, C is an effective element for securing strength. However, if the content is less than 0.05%, these effects cannot be obtained. On the other hand, if C is contained in excess of 0.6%, the toughness will decrease. Therefore, the content of C is set to 0.05 to 0.6%.
  • condition X steels in which 90% or more of the structure is fly and pearlite shall be 0.2 to 0.6%. It is more preferably 0.25 to 0.5%.
  • the C content of non-heat treated steel materials (90% or more of the structure is bainite or fly and bainite (hereinafter referred to as “condition Y steel” for simplicity)) is 0.05 to 0.3. %, Preferably 0.:! More preferably, it is set to 0.24%.
  • condition Z steel a tempered steel material in which 50% or more of the structure is martensite
  • the machinability improving effect of S in the present invention can be obtained for the first time by forming Ti carbosulfide by complex addition of an appropriate amount of C and Ti.
  • an S content of 0.002% or more is required as described above.
  • the effect on machinability does not change even if S is contained in excess of 0.2%, but coarse MnS is regenerated in the steel, causing problems such as ground flaws. I will.
  • the hot workability is significantly deteriorated, making hot plastic working difficult and toughness may be reduced. Therefore, the content of S is set to 0.002 to 0.2%.
  • the S content of the “steel material under the condition X” is preferably 0.01 to 0.2%, more preferably 0.02 to 0.17%.
  • the S content of the “steel material of condition Y” is preferably set to 0.005 to 0.17%.
  • Ti is an important alloying element for controlling inclusions in the present invention. If the content is less than 0.04%, S cannot be sufficiently converted to Ti carbosulfide, so that machinability cannot be enhanced. On the other hand, if the content exceeds 1.0%, not only the machinability improvement effect is saturated but the cost is increased, but also the toughness and hot workability are significantly deteriorated. Therefore, the Ti content is set to 0.04 to: L. 0%.
  • the Ti content of the “steel under condition X” is preferably in the range of 08 to 0.8%.
  • the Ti content of the “steel material with condition ⁇ ” be 0.06 to 0.8%.
  • the Ti content of the “steel material of condition Z” is also 0.06 to 0.8%.
  • N 0.008% or less
  • N has a large affinity for Ti, it easily bonds to Ti to form Ti N and fixes Ti, so that when N is contained in a large amount, the above-mentioned Ti carbosulfide is used.
  • the effect of improving machinability cannot be fully exhibited.
  • coarse TiN reduces toughness and machinability. Therefore, the N content was set to 0.008% or less.
  • the upper limit of the N content is preferably set to ⁇ 0.006%.
  • Nd need not be added.
  • Nd 2 S 3 has the effect of tip shake and has the effect of improving machinability.
  • the content of Nd is preferably 0.005% or more.
  • the content of Nd was set to 0 to 0.1%.
  • the preferred upper limit of the Nd content is 0.08%.
  • Se need not be added. If added, it has the effect of further improving the machinability of the steel. In order to surely obtain this effect, it is preferable that the content of ⁇ 6 is 0.1% or more. However, if the content exceeds 0.5%, the above-mentioned effect is only saturated, and instead, coarse inclusions are formed and the fatigue strength and / or toughness are reduced. Therefore, the content of Se was set to 0 to 0.5%.
  • Te need not be added. If added, it has the effect of further increasing the machinability of steel. To ensure this effect, the content of Te is preferably 0.005% or more. However, if the content exceeds 0.05%, not only the above-mentioned effect is saturated, but rather coarse inclusions are formed, resulting in a decrease in fatigue strength and Z or toughness. Furthermore, the addition of a large amount of Te causes deterioration of hot workability, and particularly when the content exceeds 0.05%, flaws are generated on the surface of the hot-worked steel material. Therefore, the content of Te was set to 0 to 0.5%.
  • Ca need not be added. If added, it has the effect of greatly enhancing the machinability of steel. To ensure this effect, it is preferable that Ca has a content of 0.001% or more. However, if the content exceeds 0.01%, not only the above-mentioned effect is saturated, but rather coarse inclusions are formed and the fatigue strength and Z or toughness are reduced. Therefore, the content of Ca was set to 0 to 0.01%.
  • the content of Pb is preferably set to 0.05% or more.
  • the content exceeds 0.5% not only the above-mentioned effect is saturated, but rather, coarse inclusions are formed and the fatigue strength and the Z or toughness are reduced.
  • the addition of a large amount of Pb causes deterioration of hot workability, and particularly when the content exceeds 0.5%, flaws are generated on the surface of the hot-worked steel material. Therefore, the content of Pb was set to 0 to 0.5%.
  • B i may not be added. When added, it has the effect of greatly improving the machinability of steel.
  • the content of Bi is preferably 0.05% or more. However, its content exceeds 0.4% As a result, the above effects are saturated, and instead the force is generated, and coarse inclusions are generated, resulting in a decrease in fatigue strength and Z or toughness. Further, the hot workability is deteriorated, so that the surface of the hot worked steel material is flawed. Therefore, the Bi content was set to 0 to 0.4%.
  • Non-heat treated steel material (“Condition X steel”) in which 90% or more of the structure is made of fly and powder
  • Si has the effect of deoxidizing steel and strengthening the frit phase.
  • the increase in the Si content enhances the lubricating effect on the chip surface during cutting and extends the tool life, thereby improving the machinability.
  • the content of S i is preferably set to 0.05 to 1.5%.
  • the content of S i is preferably 0.3 to 1.3%, and more preferably 0.5 to 1.3%.
  • Mn has an effect of improving fatigue strength by solid solution strengthening. However, if the content is less than 0.1%, it is difficult to obtain the effect. On the other hand, if the Mn content exceeds 2.0%, the durability ratio (fatigue strength Z tensile strength) and the yield ratio (yield strength Z tensile strength) may be reduced in the case of the “steel material of condition X”. . Therefore, the content of Mn is preferably set to 0.1 to 2.0%. The Mn content is preferably set to 0.4 to 2.7%, and more preferably set to 0.5 to 1.7%.
  • P may be added intentionally. This is because “Steel under condition X” has the effect of increasing the tensile strength and fatigue strength. In order to ensure this effect, it is preferable that the content of P be 0.01% or more. However, if the content exceeds 0.07%, the toughness is remarkably deteriorated, and the hot workability is further reduced. Therefore, the content of P is preferably set to 0.07% or less. In addition, when P is added positively, the content is preferably set to 0.015 to 0.05%.
  • A1 is an effective element for deoxidizing steel. However, if the content is less than 0.002%, it is difficult to obtain the desired effect. If the content exceeds 0.05%, the effect is saturated and the machinability may be reduced. Therefore, the content of A1 is preferably set to 0.002 to 0.05%. Preferably, the content of A1 is 0.005 to 0.03%.
  • Cu need not be added. If added, it has the effect of improving the strength of the steel, especially the fatigue strength, by precipitation strengthening. To ensure this effect, it is preferable that the content of Cu be 0.2% or more. However, if the content exceeds 1.0%, in addition to the deterioration of hot workability, precipitates may be coarsened and the above-mentioned effects may be saturated or, on the contrary, may be reduced. Furthermore, The costs are only increasing. Therefore, the content of Cu is preferably set to 0 to 1.0%.
  • Ni need not be added. If added, it has the effect of increasing the strength. C To ensure this effect, the Ni content is preferably at least 0.02%. However, if the content exceeds 2.0%, this effect is saturated and the cost increases. Therefore, the content of Ni is preferably set to 0 to 2.0%.
  • Mo may not be added. If added, it has the effect of refining the microstructure of ferrite and pearlite and improving the strength of the steel, especially the fatigue strength. To ensure this effect, the Mo content is preferably set to 0.05% or more. However, if the content exceeds ⁇ .5%, the structure after hot working is rather abnormally coarsened and the fatigue strength is reduced. Therefore, the content of Mo is preferably set to 0 to 0.5%.
  • V need not be added. If added, it precipitates as fine nitrides and carbonitrides, and has the effect of improving the strength of steel, especially fatigue strength. To ensure this effect, V should be contained at a content of 0.05% or more. No. However, if the content exceeds 0.3%, the precipitates become coarse, so that the above-mentioned effects may be saturated or may be rather reduced. In addition, raw material costs are only increasing. Therefore, the content of V is preferably set to 0 to 0.3%.
  • N b need not be added. If added, it precipitates as fine nitrides or carbonitrides, preventing the austenite grains from coarsening and has the effect of improving the strength of the steel, particularly the fatigue strength.
  • the content of Nb is preferably set to 0.05% or more. However, if the content exceeds 0.1%, the above-mentioned effects are only saturated, and coarse hard carbonitrides are produced, which may damage the tool and cause a decrease in machinability. Therefore, the content of Nb is preferably set to 0 to 0.1%. The upper limit of the Nb content is preferably set to 0.05%.
  • oxygen
  • oxygen
  • the content of ⁇ as an impurity element is preferably set to 0.015% or less. No.
  • the content of ⁇ is more preferably not more than 0.01%.
  • Si has the effect of increasing the deoxidizing and hardenability of steel. Further, in the case of “steel material of condition Y”, the machinability is improved because the lubrication of the chip surface during cutting is increased and the tool life is extended with the increase of the Si content. However, if the content is less than 0.05%, the effect of addition is poor. On the other hand, if it exceeds 1.5%, not only the above effect is saturated but also the toughness is deteriorated. Therefore, the content of Si is preferably set to 0.05 to 1.5%. In addition, the Si content is preferably set to 0.5 to 1.3%.
  • A1 is a strong deoxidizing element.
  • the content is preferably 0.002% or more. However, if the content exceeds 0.05%, the effect is saturated and the cost is increased. Therefore, the content of A1 should be 0.002 to 0.05%. Preferably, the A1 content is 0.005 to 0.04%.
  • the content of Cu is preferably set to 0.2% or more. However, if the content exceeds 1.0%, in addition to deterioration of hot workability, precipitates may become coarse and the above-mentioned effects may be saturated, or toughness may be reduced. In addition, costs are only increasing. Therefore, the content of Cu is preferably set to 0 to 1.0%.
  • Mo may not be added. If added, it will enhance hardenability and It has the effect of refining the structure and improving the strength of the steel. To ensure this effect, the content of Mo is preferably set to 0.05% or more. However, if its content exceeds 0.5%, the structure after hot working is rather abnormally coarsened and the toughness is reduced. For this reason, the content of Mo is preferably set to 0 to 0.5%.
  • V need not be added. If added, it precipitates as fine nitrides and carbonitrides, and has the effect of increasing the strength of steel and enhancing the lubricity of chips during cutting to improve machinability. In order to surely obtain such an effect, it is preferable that the content of V is ⁇ .05% or more. However, if the content exceeds 0.30%, the precipitates become coarse, so that the above effects may be saturated or the toughness may be reduced. In addition, raw material costs are only increasing. Therefore, the content of V is preferably set to 0 to 0.30%.
  • Nb need not be added. If added, it precipitates as fine nitrides or carbonitrides, has the effect of preventing austenite grains from coarsening and improving the strength and toughness of the steel.
  • the content of Nb is preferably set to 0.005% or more. However, if the content exceeds 0.1%, not only the above-mentioned effects are saturated, but also coarse hard carbonitrides are formed, which may damage the tool and cause a decrease in machinability. Therefore, the content of Nb is preferably set to 0 to 0.1%.
  • the B content is preferably 0.0003% or more. However, if the content exceeds 0.02%, the above effect may be saturated or, on the contrary, the toughness may be reduced. For this reason, the content of B is preferably set to 0 to 0.02%.
  • the value of fn3 represented by the above equation (3) has a correlation with the structure and toughness of a non-heat treated steel having a specific chemical composition, and this value is 2.5 to 4.5. %,
  • the main structure of the non-heat treated steel is bainite or ferrite and bainite, and a good balance of strength and toughness can be obtained.
  • Si, Mn, Cr and Ni related to fn 3 have the effect of increasing the hardenability of steel.However, if the value of fn 3 is less than 2.5%, the desired effect of improving the hardenability is not obtained, and the toughness is reduced. May drop.
  • the value of fn 3 represented by the equation (3) is preferably set to 2.5 to 4.5%.
  • the content of each element other than Si described above need not be particularly limited, since the above fn3 may satisfy 2.5 to 4.5%.
  • the contents of Mn, Cr and Ni are preferably 0.4 to 3.5%, 3.0% or less, and 2.0% or less, respectively.
  • ⁇ (oxygen) as an impurity element forms hard oxide-based inclusions, which may damage the cutting tool during cutting and reduce machinability.
  • the content of ⁇ as an impurity element is preferably set to 0.015% or less in order to maintain good machinability.
  • the content of ⁇ is more preferably not more than 0.01%.
  • the content of P as an impurity element is preferably set to 0.05% or less from the viewpoint of securing the toughness of the steel.
  • Si has the effect of increasing the deoxidizing and hardenability of steel. Furthermore, in the case of “steel material of condition Z”, the machinability is improved because the lubrication of the chip surface during cutting is increased and the tool life is prolonged as the Si content increases. However, if the content is less than ..05%, the effect of addition is poor, while if it exceeds 1.5%, not only the above effect is saturated, but also the toughness is deteriorated. Therefore, the content of S i is preferably set to 0.05 to 1.5%.
  • Mn has the effect of improving the hardenability of steel and improving the fatigue strength by solid solution strengthening. However, if the content is less than 0.4%, the effect cannot be obtained. If the content exceeds 2.0%, not only this effect is saturated, but also the hardness becomes too hard to lower the toughness. Therefore, the content of Mn is preferably set to 0.4 to 2.0%.
  • A1 is a strong deoxidizing element.
  • the content is preferably 0.002% or more. However, if the content exceeds 0.05%, the effect is saturated and the cost is increased. Therefore, the content of A1 should be 0.002 to 0.05%.
  • the A1 content is preferably 0.005 to 0.04%.
  • Cu need not be added. If added, it has the effect of increasing the strength of the steel without lowering the toughness and further enhancing the machinability. To ensure this effect, it is preferable that the content of (11 is 0.2% or more. However, if the content exceeds 1.0%, the hot workability is deteriorated. However, the above-mentioned effect may be saturated or may be rather deteriorated due to coarsening of the precipitates, and the cost may be increased only, so that the content of Cu should be 0 to 1.0%. Is good.
  • Ni need not be added. If added, it has the effect of improving the hardenability of steel. To ensure this effect, the Ni content is preferably set to 0.02% or more. However, if the content exceeds 2.0%, this effect is saturated and the cost increases. Therefore, the content of Ni is preferably set to 0 to 2.0%.
  • the content of Cr is 0.03% or more. However, if the content exceeds 2.0%, not only the above-mentioned effects are saturated, but also the steel becomes too hard and the toughness is reduced. For this reason, the content of Cr is preferably set to 0 to 2.0%.
  • Mo may not be added. If added, it has the effect of increasing the hardenability of steel. To ensure this effect, the content of Mo is preferably set to 0.05% or more. However, if the content exceeds 0.5%, not only this effect is saturated, but also the hardness becomes too high, the toughness is reduced, and the cost is increased. For this reason, the content of Mo is 0-0. A good value is 5%.
  • V need not be added. If added, it precipitates as fine nitrides and carbonitrides, and has the effect of improving the strength of steel, especially fatigue strength. To ensure this effect, it is preferable that V has a content of 0.05% or more. However, when the content exceeds 0.3%, the precipitates are coarsened, so that the above-mentioned effects may be saturated or may be reduced. In addition, raw material costs are only increasing. Therefore, the content of V is preferably set to 0 to 0.3%.
  • Nb need not be added. If added, it precipitates as fine nitrides or carbonitrides, prevents austenite grains from coarsening, and has the effect of improving the strength of steel, particularly fatigue strength and toughness. To ensure this effect, it is preferable that the content of Nb be 0.005% or more. However, if the content exceeds 0.1%, not only the above effect is saturated, but also coarse hard carbonitrides are generated, which may damage the tool and lower the machinability. Therefore, the content of Nb is preferably set to 0 to 0.1%. The upper limit of the Nb content is preferably 0.05%.
  • the B need not be added. If added, it has the effect of improving the hardenability and increasing the strength and toughness of the steel. To ensure this effect, the B content is preferably 0.0003% or more. However, if the content exceeds 0.02%, the above effect may be saturated or, on the contrary, the toughness may be reduced. For this reason, the content of B is preferably set to 0 to 0.02%.
  • ⁇ (oxygen) as an impurity element forms hard oxide-based inclusions, which may damage the cutting tool during cutting and reduce machinability.
  • ⁇ content exceeds 0.015%, the machinability may be significantly reduced. Therefore, even in the case of "steel material of condition Z", the content as an impurity element should be reduced in order to maintain good machinability.
  • the content of 0 is more preferably set to 0.01% or less.
  • the content of P is determined from the viewpoint of securing the toughness of steel.
  • Ti carbosulfide in the present invention also includes a single Ti sulfide.
  • the amount of Ti carbosulfide having a maximum diameter of 10 m or less is less than 0.05% in cleanliness, the effect of improving the machinability by Ti carbosulfide cannot be exhibited.
  • the above-mentioned cleanliness is preferably set to 0.08% or more. If the cleanliness value of the above-mentioned Ti carbosulfide is too large, the fatigue strength may be reduced. Therefore, the upper limit of the cleanliness of the above-mentioned Ti carbosulfide is preferably about 2.0%. No. The reason for limiting the size of Ti carbosulfide to a maximum diameter of 10 m or less is that if it exceeds 10 m, the fatigue strength and Z or toughness are reduced.
  • the maximum diameter of Ti carbosulfide be 7 ⁇ m or less. If the maximum diameter of Ti carbosulfide is too small, the effect of improving machinability will be reduced. Therefore, the lower limit of the maximum diameter of Ti carbosulfide is preferably about 0.5 ⁇ m.
  • Ti carbosulfide is basically determined by the contents of Ti, S and N in the steel. However, to keep the size and cleanliness of Ti carbosulfide at specified values, it is important to prevent excessive formation of Ti oxides. For this purpose, it may not be sufficient if the steel has the chemical composition described in the above item (A). For example, a steelmaking method in which deoxidation is sufficiently performed with Si and A1 and finally Ti is added. It is desirable to adopt
  • Ti carbosulfide can be easily distinguished from other inclusions by color and shape when the specimen taken from steel material is mirror-polished and the polished surface is used as a test surface and observed with an optical microscope at a magnification of 400 or more. it can. That is, when observed under an optical microscope under the above conditions, the “color” of Ti carbosulfide is extremely light gray, and its “shape” is recognized as a granular shape (spherical shape) corresponding to the B-based inclusion of JIS.
  • the detailed determination of Ti carbosulfide can also be performed by observing the test surface with an electron microscope equipped with an analysis function such as an EDX (energy dispersive X-ray analyzer).
  • the cleanliness of Ti carbosulfides was measured in 60 visual fields using the ⁇ microscopic test method for steel nonmetallic inclusions '' specified in JIS G 0555, with the magnification of the optical microscope set to 400 times. It refers to the measured value.
  • the steel slab having the chemical composition described in ( ⁇ ) described above is used, for example, from 150 After heating to 130 ° C, hot working such as hot forging is performed, and after finishing at a temperature of 900 ° C or more, at a cooling rate of 60 ° C / min or less, at least 5 ° C ⁇ Air cooling or cooling to 0 ° C is sufficient.
  • the term “cooling rate” as used herein refers to a cooling rate of a steel material surface.
  • the percentage of ferrite is 20 to 70% in area ratio
  • the grain size of ferrite is 5 or more in JIS grain size number
  • the average value of pearlite lamellar intervals is 0.
  • the balance between strength and toughness is improved. Therefore, if a good balance between strength and toughness is required, 90% or more of the structure should be bainite or X-lite and bainite. Further, when the above-mentioned steel material is a non-heat treated steel material, it is possible to reduce the cost and energy required for the heat treatment.
  • the steel slab having the chemical composition described in ( ⁇ ) described above must be used.
  • hot forging After finishing at a temperature of 900 ° C or more, air cooling or cooling to at least 300 ° C at a cooling rate of 60 ° C / min or less is recommended.
  • the “forming ratio” is A. ( ⁇ . ⁇ ) when is the cross-sectional area before processing and A is the cross-sectional area after processing.
  • the grain size of old austenite grains in the organization is 4 or more in JIS grain size number
  • 90% or more of the structure is bainite or a non-heat treated steel material composed of ferrite and bainite (that is, A good balance between strength and toughness can be ensured in “condition Y steel”.
  • “old austenite grains” in non-heat treated steel materials refer to austenite grains immediately before transformation of bainite diplite or the like occurs due to heating and hot working.
  • the former austenite grains can be easily corroded with nickel and observed with an optical microscope. Judgment is completed.
  • a slab having the chemical composition described in (IV) described above is used, for example, by adding 105 After heating to 0 to 130 ° C, hot working such as hot forging is performed at a forming ratio of 1.5 or more, and after finishing at a temperature of 900 ° C or more, 60 ° CZ Air cooling or cooling to at least 300 ° C at a cooling rate of less than 1 minute, then heating to 800 ° C (: up to 950 ° C and holding for 20-150 minutes And then quenched using a cooling medium such as water or oil, and further heated to a temperature range of 400 to 700 ° C, held for 20 to 150 minutes, and then cooled for 2 ° CZ or more. It may be air-cooled, allowed to cool, or in some cases, water-cooled, oil-cooled, and tempered. , So-called "direct quenching" may be used
  • the structure be martensite.
  • the remaining part of the structure other than martensite is composed of two phases: austenite and frit, a structure transformed from austenite by quenching, a perlite and bainite tempered. This is the structure in which the ferrite when quenched from the region has been tempered, or the structure in which the austenite that remains without transformation after quenching (so-called “retained austenite”) has been tempered. Substantially 100% of the organization may be martensite.
  • the grain size of the former austenite grains is 5 or more in the JIS grain size number, extremely good strength and toughness can be obtained for tempered steel materials (50% or more of the tissue is made of martensite) A stable balance can be ensured.
  • "old austenite grains" in the tempered steel material means austenite grains immediately before quenching. In the case of a tempered steel material in which 50% or more of the structure is martensite, for example, after quenching the steel material, or after quenching and tempering the steel material, cut out a sample and add a surfactant Corrosion with an acid-based aqueous solution and observation with an optical microscope Thus, the old austenite grains can be easily determined.
  • Steels 1 to 36 in Tables 1 to 3 are steels of the examples of the present invention whose chemical composition is within the range specified in the present invention.
  • steels 37 to 46 in Table 4 are steels of comparative examples in which any of the elements is out of the range of the content specified in the present invention (
  • these steels were heated to 1250 ° C and then hot forged to finish at 1 000 ° C to produce round bars with a diameter of 60 mm.
  • the cooling conditions after hot forging were air-cooled or allowed to cool to 300 ° C so that the cooling rate was 5 to 35 ° CZ, and the structure of the round bar was adjusted to achieve a tensile strength of approximately 845 to 35 ° C. 8
  • the range was set to 70 MPa.
  • Steel 6, Steel 7, Steel 9, Steel 11 Steel 29 to 36, Steel 40, Steel 45 and Steel 46 were cooled to 770 to 900 ° C for 1 hour after cooling after hot forging. Heating, water quenching, and tempering at 550 to 560 (air cooling after tempering) were performed to adjust the structure and strength level.
  • a test specimen was sampled in accordance with JIS G 0555, Fig. 3 centering on the R / 2 part, and a mirror-polished surface with a width of 15 mm and a height of 20 mm was taken.
  • the maximum diameter of Ti carbosulfide was also investigated by observing 60 visual fields with a 400-fold optical microscope. After this, the mirror-polished test surface was further corroded with nails and observed with an optical microscope with a magnification of 100 times to observe the structure at the R / 2 part, and the ratio (area ratio) of each structure was determined. investigated.
  • Machinability was also evaluated by drill drilling tests. That is, a hole with a depth of 5 O mm was drilled in the length direction using a round bar with a length of 55 mm and a round bar with a diameter of 60 mm, and the hole immediately before it became impossible to drill due to abrasion of the cutting edge
  • the machinability was investigated using the number of as the machinability evaluation index.
  • the drilling conditions were 6 mm straight shank drills of JIS high speed tool steel S KH59. Using water-soluble lubricant, feed 0.20 mm / rev, speed 980 r
  • Tables 5 to 8 show the results of the above various tests. Tables 5 to 8 also show the conditions of quenching and tempering for steel 6, steel 9, steel 9, steel 11, steel 29 to 36, steel 40, steel 45, and steel 46.
  • F indicates flight
  • P indicates perlite
  • B indicates bainite
  • M indicates martensite
  • F indicates flight
  • P indicates perlite
  • B indicates bainite
  • M indicates martensite
  • F indicates the flight
  • P indicates the perlite
  • B indicates the bainite
  • M indicates the martensite.
  • F indicates a light
  • P indicates a perlite
  • B indicates a bainite
  • M indicates a martensite.
  • the asterisk indicates that the condition is outside the conditions specified in the present invention.
  • the * mark in steel indicates that the chemical composition is out of condition.
  • the steel contains C, S, Ti and N within the range specified in the present invention, and the maximum diameter of Ti carbosulfide in steel is 10 m or less and its cleanliness is 0.05%.
  • the machinability evaluation index exceeds 200.
  • the cleanliness of the Ti carbosulfide is low. Since it is less than 0.05%, the machinability index is as low as 51. In the case of Test Nos.
  • any one of the C, Ti and N contents of the test steels Steel 37, Steel 39 and Steel 40 was out of the range specified in the present invention.
  • the gender index is low at 58, 40 and 45 respectively.
  • the S content of the test steel, Steel 38 was outside the range specified in the present invention, and the cleanliness of Ti carbosulfide was below 0.05%. Is as low as 3 1.
  • steels 41 to 46 whose Nd, Se, Te, Ca, Pb, and Bi contents were out of the ranges specified in the present invention were used as test steels.
  • the machinability is good, compared to the case of Test Nos. 2 to 7 where steels 2 to 7 in which the contents of each of the above elements are within the range specified in the present invention are used as test steels, It is clear that the strength and / or toughness is poor.
  • Steels 47 to 54 having the chemical compositions shown in Table 9 were melted using a 150 kg vacuum melting furnace or a 3-ton vacuum melting furnace. Steels 47-49 were melted in a 3-ton vacuum melting furnace, and all others were melted in a 150 kg vacuum melting furnace. In order to prevent the formation of Ti oxides, the size and cleanliness of Ti carbosulfide were adjusted by adding Ti at the end of the deoxidation with Si and A1 and adding various elements. Steels 47 to 54 in Table 9 are all steels according to the present invention whose chemical composition is within the range specified in the present invention.
  • these steels were heated to 1250 ° C and then hot forged to finish at 1 000 ° C to produce round bars with a diameter of 60 mm.
  • the cooling conditions after hot forging were air-cooled or allowed to cool to 400 ° C so that the cooling rate was 5 to 35 ° CZ, and the structure was mainly composed of ferrite and perlite. The tensile strength was adjusted.
  • test pieces were collected from the round bar obtained in the same manner as in Example 1 and investigated.
  • a JIS 14A tensile test specimen from the R / 2 part position from the surface of the round bar, a JIS 14A tensile test specimen, an Ono-type rotating bending test specimen (parallel part having a diameter of 8 mm and a length of 18.4 mm) and JIS No. 3 impact test specimens (2 mm U notch test specimens) were sampled, and their tensile strength, fatigue strength (fatigue limit) and toughness (impact value) at room temperature were investigated.
  • a test piece was taken from the surface of the round bar, centering on the RZ2 position, in accordance with Figure 3 of JIS G 0555, and a mirror-polished test surface with a width of 15 mm and a height of 20 mm was magnified. Observed 60 visual fields with a 400 ⁇ optical microscope, and measured the cleanliness of Ti carbosulfide while separating it from other inclusions. The maximum diameter of Ti carbosulfide was also investigated by observing 60 visual fields with a 400-fold optical microscope. Thereafter, the mirror-polished test surface was further corroded with sodium and observed with an optical microscope having a magnification of 100 times to observe the structure of the RZ2 portion, and the ratio (area ratio) of each structure was examined. For steels 51 to 53 of test numbers 51 to 53, the average particle diameter lamella spacing was measured by taking JIS fine grain size numbers and taking scanning electron micrographs. I asked.
  • Machinability was also evaluated by drill drilling tests.
  • the test conditions and evaluation method are as described in Example 1.
  • Table 10 shows the results of the various tests described above.
  • F stands for frilite
  • P stands for pearlite
  • B stands for bainite
  • M stands for mancite
  • Steels 55 to 59 having the chemical compositions shown in Table 11 were melted using a 150 kg vacuum melting furnace or a 3-ton vacuum melting furnace. Steel 55 and steel 56 were melted in a 3-ton vacuum melting furnace, and all others were melted in a 150 kg vacuum melting furnace. In this example, too, in order to prevent the formation of Ti oxides, sufficient deoxidation was performed with Si and A1 and various elements were added. The degree was adjusted. Steels 55 to 59 in Table 11 are all steels of the present invention whose chemical composition is within the range specified in the present invention.
  • these steels were heated to 1250 ° C and then hot forged to finish at 1 000 ° C to produce round bars with a diameter of 60 mm.
  • the cooling conditions after hot forging were air-cooled or allowed to cool to 300 ° C so that the cooling rate was 5 to 35 ° CZ, and the structure was mainly composed of bainite or ferrite.
  • the tensile strength was adjusted so as to be composed of paynight.
  • Steel 57 and steel 58 were also subjected to aging treatment (Test Nos. 60 and 61) which were cooled after hot forging, then heated at 560 ° C for 1 hour and air-cooled.
  • test pieces were collected from the round bar obtained in the same manner as in Example 1 and investigated.
  • JIS 14A tensile test specimen, Ono-type rotary bending test specimen (parallel part having a diameter of 8 mm and length of 18.4 mm) and JIS 3A No. 2 impact test specimens (2 mmU notch rupee test specimens) were sampled and their tensile strength, fatigue strength (fatigue limit) and toughness (impact value) at room temperature were investigated.
  • a test piece was taken from the surface of the round bar, centering on the RZ2 position, in accordance with Figure 3 of JIS G 0555, and a mirror-polished test surface with a width of 15 mm and a height of 20 mm was magnified. Observed 60 visual fields with a 400 ⁇ optical microscope, and measured the cleanliness of Ti carbosulfide while separating it from other inclusions. The maximum diameter of Ti carbosulfide was also investigated by observing 60 visual fields with a 400-fold optical microscope. Thereafter, the mirror-polished test surface was further corroded with nickel and observed with an optical microscope at a magnification of 1 ⁇ 0 to observe the structure at the RZ2 portion, and the ratio (area ratio) of each structure was investigated.
  • Machinability was also evaluated by drill drilling tests.
  • the test conditions and evaluation method are as described in Example 1.
  • Table 12 shows the results of the various tests described above. Table 12 also shows the conditions of aging treatment performed on steel 57 and steel 58 in test numbers 60 and 61 ( 1 2
  • Steels 60 to 64 with the chemical compositions shown in Table 13 were melted using a 150 kg vacuum melting furnace or a 3-ton vacuum melting furnace. Steel 60 and steel 61 were melted in a 3-ton vacuum melting furnace, and the others were melted in a 150 kg vacuum melting furnace. In this example, too, in order to prevent the formation of Ti oxide, Ti and A1 were sufficiently deoxidized and various elements were added. The cleanliness was adjusted. Steels 60 to 64 in Table 13 are all steels according to the present invention whose chemical compositions are within the range specified by the present invention.
  • these steels were heated to 1250 ° C and then hot forged to finish at 1 000 ° C to produce round bars with a diameter of 60 mm.
  • the cooling conditions after hot forging were air-cooled or allowed to cool to 300 ° C so that the cooling rate was 5 to 35 ° C / min. After that, it was heated to 850 to 900 ° C for 1 hour, water-quenched, and tempered at 550 ° C (cooling after tempering was air-cooled) to adjust the tissue and strength level.
  • test pieces were sampled from the thus obtained round bar in the same manner as in Example 1 and investigated.
  • a JIS 14A tensile test specimen from the R / 2 part position from the surface of the round bar, a JIS 14A tensile test specimen, an Ono-type rotating bending test specimen (parallel part having a diameter of 8 mm and a length of 18.4 mm) and JIS No. 3 impact test specimens (2 mm U notch test specimens) were sampled, and the tensile strength, fatigue strength (fatigue limit) and toughness (impact value) at room temperature were investigated.
  • a test piece was sampled in accordance with Fig. 3 of J1S G0555, centering on the RZ2 position, and a mirror-polished test surface with a width of 15 mm and a height of 20 mm was magnified.
  • the maximum diameter of Ti carbosulfide was also investigated by observing 60 visual fields with a 400-fold optical microscope. After this, the mirror-polished test surface was further corroded with sodium and observed with an optical microscope at a magnification of 100 to observe the structure at the R / 2 position, and the ratio (area ratio) of each structure was investigated. .
  • Machinability was also evaluated by drill drilling tests.
  • the test conditions and evaluation method are as described in Example 1.
  • Table 14 shows the results of the various tests described above. Table 14 also shows the quenching and tempering conditions for steels 60 to 64. 14
  • F indicates X-lite
  • P indicates perlite
  • B indicates bainite
  • M indicates martensite
  • hot die forging is performed so that the finishing temperature becomes 1 000 ° C or more, and the cooling rate after hot die forging is set at a cooling rate of 5 to 35 ° C. / Min and air cooled or allowed to cool to 300 ° C to produce a crankshaft base material, which was cut and finished into the final crankshaft.
  • the cooling rate after hot die forging is set at a cooling rate of 5 to 35 ° C. / Min and air cooled or allowed to cool to 300 ° C to produce a crankshaft base material, which was cut and finished into the final crankshaft.
  • Specimens were sampled according to JIS G 0555, Fig. 3, centered at a position 15mm from the surface of the pin (diameter 70mm) of the cast material of the crankshaft, and the mirror-polished width was used.
  • the surface to be inspected having a height of 15 mm and a height of 20 mm, was observed in 60 visual fields with an optical microscope having a magnification of 400 times, and its cleanliness was measured while distinguishing Ti carbosulfide from other inclusions.
  • the maximum diameter of Ti carbosulfide was also investigated by observing 60 fields of view with an optical microscope with a magnification of 400x.
  • the mirror-polished test surface was further corroded with Na and observed under an optical microscope at a magnification of 100 to observe the structure, and the ratio (area ratio) of each structure was examined.
  • the test specimen was collected in a direction parallel to the axial direction of the crankshaft, and the JIS 14A tensile test specimen and the Ono-type rotary bending test specimen (the diameter of the parallel part was 8 mm and its length was 18.4 mm) and JIS No. 3 impact test specimens (2 mm U notched Charby test specimens) were sampled and the tensile strength, fatigue strength (fatigue limit) and toughness (impact value) at room temperature were investigated.
  • Table 15 shows the results of the above various tests. Table 15 also shows the hardening and tempering conditions for test numbers 68, 69, 73, 79, and 80.
  • F indicates ferrite
  • P indicates private
  • B indicates bainite
  • M indicates martensite.
  • the asterisk indicates that the condition is out of the conditions specified in the present invention.
  • the * mark in steel indicates that the chemical composition is out of condition.
  • crankshaft base material manufactured from the steel material according to the present invention has excellent machinability. Further, it is apparent that the crankshaft using the steel material according to the present invention as a raw material has a better balance between strength and toughness than the crankshaft using a steel material of a comparative example as a material.
  • the steel material of the present invention has excellent machinability and a good balance of strength and toughness, it is used as a material for structural parts of various machines such as automobiles, transportation machines, industrial machines, and construction machines. can do. By using this steel material as a material and performing cutting, various mechanical structural parts can be manufactured relatively easily.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

A steel with excellent machinability containing 0.05 - 0.6 wt.% of C, 0.002 - 0.2 wt.% of S, 0.04 - 1.0 wt.% of Ti, not more than 0.008 wt.% of N, 0 - 0.1 wt.% of Nd, 0 - 0.5 wt.% of Se, 0 - 0.05 wt.% of Te, 0 - 0.01 wt.% of Ca, 0 - 0.5 wt.% of Pb and 0 - 0.4 wt.% of Bi. The maximum diameter of titanium carbide/sulfide in this steel is not larger than 10 νm and its content is not less than 0.05 % in terms of cleanness. The steel is a suitable material for structural components of various machines such as automobiles and other transportation machines, industrial machines, building machines, etc., for instance, crankshafts, connecting rods, gears, etc. which are subjected to machining.

Description

明細: 被削性に優れた鋼材及び切削加工を受けた部品 技術分野  Description: Steel with excellent machinability and machined parts
本発明は、 被削性に優れた鋼材及び切削による加工を受けた部品に関 する。 より詳しく は、 良好な被削性を有し、 自動車を初めとする輸送用 機械、 産業用機械、 建設用機械など各種機械の構造部品の素材として好 適な鋼材、 及びその鋼材を素材としクランクシャフト 、 コネクティ ング ロッ ド、 ギアなど切削による加工を受けた各種の機械構造部品に関する。 背景技術  The present invention relates to a steel material excellent in machinability and a part processed by cutting. More specifically, steel materials that have good machinability and are suitable as materials for structural parts of various machines such as automobiles and other transport machinery, industrial machinery, construction machinery, etc. Shafts, connecting rods, gears, etc., related to various machine structural parts machined by cutting. Background art
従来、 輸送用機械、 産業用機械、 建設用機械などの各種機械構造部品 は、 ( a ) 熱間加工で所定の形状に粗加工し、 次いで、 切削加工によつ て所望形状に仕上げた後、 焼入れと焼戻しの調質処理を施すか、 ( b ) 熱間加工及び焼入れ焼戻し処理を施した後、 切削加工によつて所望形状 に仕上げるのが一般的であつた。  Conventionally, various mechanical structural parts such as transport machines, industrial machines, and construction machines are: (a) rough-worked to a predetermined shape by hot working, and then finished to a desired shape by cutting. In general, quenching and tempering were performed, or (b) hot working and quenching and tempering were performed, followed by cutting to obtain a desired shape.
しかし、 機械構造部品が高強度化するに伴って、 切削加工のコスト が 嵩んできた。 そこで、 切削加工を容易にし、 低コスト 化を図るために被 削性に優れた快削鋼に対する要求がますます大きく なつている。  However, as the strength of mechanical structural parts has increased, the cost of cutting has increased. Therefore, there is an increasing demand for free-cutting steel with excellent machinability in order to facilitate cutting and reduce costs.
鋼に P b、 T e 、 B i 、 C a 及び Sなどの快削元素( 被削性改善元素) を単独あるいは複合添加すれば被削性が向上することはよく知られてい る。 このため、 従来は機械構造用鋼を初めとする鋼に前記の快削元素を 添加して被削性を改善する方法が採られてきた。 しかし、 機械構造用鋼 などに単に快削元素を添加しただけの場合には、 所望の機械的特性(例 えば、 靭性ゃ疲労強度) を確保できないことが多い。  It is well known that machinability can be improved by adding free-cutting elements (machinability improving elements) such as Pb, Te, Bi, Ca and S, singly or in combination, to steel. For this reason, conventionally, there has been adopted a method of improving the machinability by adding the above-mentioned free-cutting elements to steels for machine structural use and the like. However, simply adding a free-cutting element to steel for machine structural use and the like often fails to ensure desired mechanical properties (for example, toughness / fatigue strength).
こうした状況の下、 上記( a ) の熱間加工後に切削加工してから焼入 れ焼戻し処理を施す技術が、 例えば、 特開平 2 —1 1 1 842号公報と 特開平 6 — 279849号公報に開示されている。 すなわち、 鋼中の C を黒鉛として存在させ、 この黒鉛の切欠きと潤滑の効果を利用すること によつて被削性を向上させた 「被削性、 焼入性に優れた熱間圧延鋼材」 と 「被削性に優れた機械構造用鋼の製造方法」 である。 Under these circumstances, after the hot working of (a) above, Techniques for performing a tempering process are disclosed in, for example, JP-A-2-111842 and JP-A-6-279849. In other words, C in steel is present as graphite, and the machinability is improved by utilizing the notch and lubrication effects of this graphite. “Hot rolled steel with excellent machinability and hardenability” ”And“ Method for producing machine structural steel with excellent machinability ”.
しかし、 特開平 2 - 1 1 1 842号公報に提案された鋼材は、 Bを添 加し B窒化物( B N) を黒鉛の析出核として黒鉛化を促進させるため、 Bの添加が必須であり、 凝固時に割れを生じ易いという問題を含んでい る。 一方、 特開平 6—279849号公報に記載の方法は、 A1 添加と ともに鋼中〇 ( 酸素) を低く 規制することで熱間圧延ままの状態で黒鉛 化を促進させるものである。 このため、 熱間圧延後に 5時間以上の黒鉛 化焼なまし処理を施す必要があり、 必ずしも経済的とはいえない。  However, in the steel material proposed in Japanese Patent Application Laid-Open No. 2-111842, the addition of B is essential because B is added and B nitride (BN) is used as graphite precipitation nuclei to promote graphitization. However, there is a problem that cracks are likely to occur during solidification. On the other hand, the method described in Japanese Patent Application Laid-Open No. 6-279849 promotes graphitization in the hot-rolled state by controlling the content of steel (oxygen) to be low together with the addition of A1. For this reason, it is necessary to perform a graphitizing annealing treatment for 5 hours or more after hot rolling, which is not necessarily economical.
一方、 上記( b ) の熱間加工及び焼入れ焼戻し処理を施した後、 切削 加工する技術が、 例えば、 特開平 6 —2 1 2347号公報に開示されて いる。 これは、 特定の化学組成を有する鋼を熱間鍛造後直ちに焼入れし、 その後焼戻し処理を行って Ti Cを析出させる 「高疲労強度を有する熱 間鍛造品及びその製造方法」 である。 しかしこの公報に記載の熱間鍛造 品は、 鋼の化学組成としての N量を Ti 量との比率である N/Ti で 0. 1 未満と規定しているだけであるため、 必ずしも良好な被削性を確保で きない場合がある。 つまり、 重量%で、 0. 0 1 〜0. 20 %の Ti を 含む鋼の N含有量を NZTi で 0. 1 未満と規定しただけでは、 硬質の Ti Nが多量に形成されて被削性の劣化を生ずる場合があり、 更に、 靭 性の劣化を生ずることもある。  On the other hand, a technique of performing the hot working and the quenching / tempering treatment (b) and then performing a cutting work is disclosed in, for example, JP-A-6-212347. This is "a hot forged product having high fatigue strength and a method for producing the same", in which steel having a specific chemical composition is quenched immediately after hot forging and then tempered to precipitate TiC. However, the hot forgings described in this publication merely specify the amount of N as the chemical composition of steel as less than 0.1 in N / Ti, which is the ratio to the amount of Ti, so that it is not necessarily a good coating. In some cases, it may not be possible to secure machinability. In other words, if the N content of steel containing 0.01 to 0.20% Ti in weight% is specified as less than 0.1 in NZTi, a large amount of hard TiN is formed and the machinability increases. In some cases, and also in toughness.
鉄と鋼( V o 1 . 57 ( 1 97 1年) S 484 ) には、 脱酸調整快削 鋼に Ti を添加すれば被削性が高まる場合のあることが報告されている ( しかし、 Ti の多量の添加は Ti Nが多量に生成することもあって工具 摩耗を増大させ、 被削性の点からは好ましく ないことも述べられている ( 例えば、 C : 0. 45 %、 S i : 0. 29 %、 Mn : 0. 78 %、 P : 0. 0 1 7 %、 S : 0. 04 1 %、 A 1 : 0. 006 %、 N: 0. 00For iron and steel (Vo 1.57 (1971) S484), it has been reported that machinability may be enhanced by adding Ti to deoxidized adjusted free-cutting steel ( but It is also stated that the addition of a large amount of Ti increases tool wear due to the large amount of TiN generated, which is not desirable from the viewpoint of machinability ( For example, C: 0.45%, S i: 0.29%, Mn: 0.78%, P: 0.017%, S: 0.041%, A1: 0.006%, N : 0.00
87 %、 T i 0. 228 %、 〇 : 0. 004 %及び C a : 0. 00 1 %を含有する Iでは却ってド リ ル寿命が低下して被削性が劣つている。 このように、 Iに単に Ti を添加するだけでは被削性は向上するもので はない。 発明の開示 In the case of I containing 87%, Ti 0.228%, 〇: 0.004% and Ca: 0.001%, the drill life is rather shortened and the machinability is poor. Thus, the mere addition of Ti to I does not improve machinability. Disclosure of the invention
本発明の目的は、 良好な被削性を有し、 自動車を初めとする輸送用機 械、 産業用機械、 建設用機械など各種機械の構造部品の素材として好適 な鋼材、 及びその鋼材を素材としクランクシャフ ト 、 コネクティ ング口 ッ ド、 ギアなど切削による加工を受けた各種の機械構造部品を提供する v_ご め 。  An object of the present invention is to provide a steel material which has good machinability and is suitable as a material for structural parts of various machines such as automobiles, transportation machines, industrial machines, construction machines, and the like. We provide a variety of machine structural parts that have been machined by cutting, such as crankshafts, connecting ports, and gears.
本発明の要旨は以下のとおり である。  The gist of the present invention is as follows.
( I ) 重量%で、 C : 0. 05〜0. 6 %、 S : 0. 002〜0. 2 %、 Ti : 0. 04〜; L . 0 %、 N: 0. 008 %以下、 Nd : 0〜0 · 1 %、 S e : 0〜0. 5 %、 Te : 0〜0. 05 %、 C a : 0〜0. 0 1 %、 P b : 0〜0. 5 %、 B i : 0〜0. 4 %を含む化学組成で、 鋼 中の Ti 炭硫化物の最大直径が 1 0 m以下、 且つ、 その量が清浄度で 0. 05 %以上である被削性に優れた鋼材。  (I) By weight%, C: 0.05 to 0.6%, S: 0.002 to 0.2%, Ti: 0.04 to; L. 0%, N: 0.008% or less, Nd : 0 to 0.1%, Se: 0 to 0.5%, Te: 0 to 0.05%, Ca: 0 to 0.01%, Pb: 0 to 0.5%, Bi : With a chemical composition containing 0 to 0.4%, the maximum diameter of Ti carbosulfide in steel is 10m or less and its amount is 0.05% or more in cleanliness. Excellent machinability Steel.
( Π ) C: 0. 2〜0. 6 %、 S i : 0. 05〜1. 5 %、 Mn : 0. 1 〜2. 0 %、 P: 0. 07 %以下、 S : 0. 0 1 〜0. 2 %、 A1 : 0. 002〜0. 05 %、 C u : 0〜1. 0 %、 Ni : 0〜2. 0 %、 C r : 0〜2. 0 %、 Mo : 0〜0. 5 %、 V: 0〜0. 3 %、 Nb : 0〜0. 1 %を含み、 残部が F e及び不可避不純物からなる化学組成で. 更に、 組織の 90 %以上がフヱライ ト とパ一ライ ト である上記( I ) に 記載の非調質鋼材。 ( ΠΙ) C: 0. 05〜0. 3 %、 S i : 0. 05〜; L . 5 %、 Al : 0. 002〜0. 05 %、 C u : 0〜l . 0 %、 Mo : 0〜0. 5 %、 V: 0〜0. 30 %、 Nb : 0〜0. 1 %、 B : 0〜0. 02 %を含み、 下記の式で表される f n 3の値が 2. 5〜4. 5 %を満たし、 残部が F e及び不可避不純物からなる化学組成で、 更に、 組織の 90 %以上がベ イナイ ト 、 又は、 フェライ ト とベイナイ ト である上記( I ) に記載の非 調質鋼材。 (Π) C: 0.2 to 0.6%, S i: 0.05 to 1.5%, Mn: 0.1 to 2.0%, P: 0.07% or less, S: 0.0 1 to 0.2%, A1: 0.002 to 0.05%, Cu: 0 to 1.0%, Ni: 0 to 2.0%, Cr: 0 to 2.0%, Mo: 0 ~ 0.5%, V: 0 ~ 0.3%, Nb: 0 ~ 0.1%, with the balance being Fe and unavoidable impurities. The composition is more than 90% The non-heat treated steel material according to the above (I), which is a parent light. (ΠΙ) C: 0.05-0.3%, Si: 0.05-; L. 5%, Al: 0.002-0.05%, Cu: 0-1.0%, Mo: 0 to 0.5%, V: 0 to 0.30%, Nb: 0 to 0.1%, B: 0 to 0.02%, the value of fn 3 expressed by the following formula is 2. 5 to 4.5%, the balance being Fe and unavoidable impurities, and 90% or more of the tissue is bainite or ferrite and bainite. Non-heat treated steel.
f n 3 =0. 5 S i ( %) +Mn ( %) +1. 1 3 C r ( %) +1. 98 N i ( %)  f n 3 = 0.5 S i (%) + Mn (%) +1.13 C r (%) +1.98 N i (%)
( IV) C: 0. 1 〜0. 6 %、 S i : 0. 05〜1 . 5 %、 Mn : 0. 4〜2. 0 %、 A 1 : 0. 002〜0. 05 %、 C u : 0〜1. 0 %、 N i : 0〜2. 0 %、 C r : 0〜2. 0 %、 Mo : 0〜0. 5 %、 V: 0〜0. 3 %、 Nb : 0〜0. 1 %、 B: 0〜0. 02 %を含み、 残部 が F e及び不可避不純物からなる化学組成で、 更に、 組識の 50 %以上 がマルテンサイ ト である上記( I ) に記載の調質鋼材。  (IV) C: 0.1 to 0.6%, Si: 0.05 to 1.5%, Mn: 0.4 to 2.0%, A1: 0.002 to 0.05%, C u: 0 to 1.0%, Ni: 0 to 2.0%, Cr: 0 to 2.0%, Mo: 0 to 0.5%, V: 0 to 0.3%, Nb: 0 0.1%, B: 0 to 0.02%, the balance being a chemical composition composed of Fe and unavoidable impurities, and 50% or more of the tissue is martensite, as described in (I) above. Tempered steel material.
( V) 上記( I ) に記載の鋼材を素材とし、 切削による加工を受けた 部口 do  (V) The steel material described in (I) above is used as the material, and is processed by cutting.
( I) 上記( Π) に記載の非調質鋼材を素材とし、 切削による加工を 受けた部品。  (I) Parts made from the non-heat treated steel material described in (i) above and processed by cutting.
( ) 上記( m) に記載の非調質鋼材を素材とし、 切削による加工を 受けた部品。  () Parts made from the non-heat treated steel described in (m) above and processed by cutting.
( ) 上記( IV) に記載の調質鋼材を素材とし、 切削による加工を受 けた部品。  () Parts made from the tempered steel described in (IV) above and processed by cutting.
なお、 本発明でいう 「Ti 炭硫化物」 には単なる Ti 硫化物をも含む ものとする。  Note that the “Ti carbosulfide” in the present invention includes simple Ti sulfide.
本明細書でいう 「 ( Ti 炭硫化物の) 最大直径」 とは 「個々の Ti 炭 硫化物における最も長い径」 のことを指す。 Ti 炭硫化物の清浄度は、 光学顕微鏡の倍率を 400倍として、 JIS G 0555に規定された 「鋼の非金属介在物の顕微鏡試験方法」 によって 6 0視野測定した値をいう。 As used herein, "maximum diameter (of Ti carbosulfide)" refers to "the longest diameter of an individual Ti carbosulfide." The cleanliness of Ti carbosulfide is a value obtained by measuring 60 fields of view using the “microscopic test method for nonmetallic inclusions in steel” specified in JIS G 0555, with the magnification of an optical microscope set to 400 times.
なお、 本明細書でいう 「非調質鋼材」 とは所謂 「調質処理」 としての 「焼入れと焼戻し」 を省略した鋼材のことをいい、 「熱間加工後冷却し たままの状態で使用できる鋼材」 の他に 「熱間加工後の冷却の後で焼戻 しに相当する時効処理を行った鋼材」 を含むものである。 「調質鋼材」 とは 「焼入れと焼戻し」 が施された鋼材のことをいう。  In this specification, the term "non-heat treated steel" refers to a steel material in which "quenching and tempering" as a so-called "temper treatment" is omitted. In addition to “available steel material”, it includes “a steel material that has been subjected to aging treatment equivalent to tempering after cooling after hot working”. “Tempered steel” refers to steel that has been “quenched and tempered”.
組織の割合は顕微鏡観察したときの組織割合、 つまり面積率のことを いう。  The tissue ratio means the tissue ratio when observed under a microscope, that is, the area ratio.
上記( Π) に関して、 「 フ ェ ライ ト とパーライ ト が 90 %以上」 とは, フェライ ト とパーライ ト とが混在する場合の組織においてフヱライ ト と パーライ ト の占める割合の和が 90 %以上であることをいう。  Regarding (iv) above, “90% or more of ferrite and perlite” means that the sum of the proportions of frite and perlite is 90% or more in an organization where ferrite and perlite are mixed. It means something.
上記( ΠΙ) に関して、 「ベイナイ ト が 90 %以上」 とは組織中にフェ ライ ト が含まれない場合において組織の 90 %以上をべィナイ ト が占め ている状態をいい、 「 フ ェライ ト とベイナイ ト が 90 %以上」 とはべィ ナイ ト とフ ェライ ト が混在する場合の組織においてフ ェ ライ ト とベイナ イ ト の占める割合の和が 90 %以上であることをいう。  Regarding (上 記) above, “90% or more of bainite” refers to a state in which bainite occupies 90% or more of the organization when no ferrite is included in the organization. “Bainite is 90% or more” means that the sum of the proportions of ferrite and bayite is 90% or more in an organization where vanite and ferrite are mixed.
上記( IV) に関して、 「マルテンサイ ト が 50 %以上」 とは組織の 5 0 %以上をマルテンサイ ト が占めている状態をいう。 なお、 前記( IV) は焼入れと焼戻しを施された 「調質鋼材」 に関するものであり、 したが つて上記のマルテンサイ ト は焼戻しを受けたマルテンサイ ト 、 つまり 「焼戻しマルテンサイ ト 」 を指すが、 以下、 単に 「マルテンサイ ト 」 と いう。 発明を実施するための最良の形態  Regarding (IV) above, “50% or more of martensite” means that 50% or more of the organization is martensite. The above (IV) relates to “tempered steel material” which has been quenched and tempered. Therefore, the above martensite refers to a tempered martensite, that is, “tempered martensite”. , Simply referred to as “martensite”. BEST MODE FOR CARRYING OUT THE INVENTION
本発明者らは、 鋼材の化学組成と組織が被削性と機械的性質に及ぼす 影響について検討するため実験を繰り返した。 The present inventors have found that the chemical composition and microstructure of steel affect machinability and mechanical properties. The experiment was repeated to examine the effects.
その結果、 先ず、 ( a ) 鋼に適正量の Ti を添加し、 ( b ) 鋼中の介 在物制御として硫化物を Ti 炭硫化物に変え、 ( c ) 上記 Ti 炭硫化物 を微細に分散させれば、 鋼材の被削性が飛躍的に向上することを見いだ した。  As a result, first, (a) an appropriate amount of Ti was added to the steel, (b) sulfide was changed to Ti carbosulfide to control inclusions in the steel, and (c) the Ti carbosulfide was refined. It has been found that if dispersed, the machinability of steel materials will be dramatically improved.
そこで更に研究を続けた結果、 下記( d ) 〜( p ) の事項を知見した c ( d ) 適正量の Sを含有した鋼に Ti を積極的に添加して行く と、 鋼中 に Ti 炭硫化物が形成される。 Therefore, as a result of further research, the following items (d) to (p) were found. C (d) When Ti was actively added to steel containing an appropriate amount of S, Ti coal was added to the steel. Sulfides are formed.
( e ) 鋼中に上記の Ti 炭硫化物が生成すると、 Mn Sの生成量が減少 する。  (e) When the above-mentioned Ti carbosulfide is formed in the steel, the amount of MnS generated decreases.
( f ) 鋼中の S含有量が同じ場合には、 Ti 炭硫化物は Mn Sより も大 きな被削性改善効果を有する。 これは、 Ti 炭硫化物の融点が Mn Sの それよりも低いため、 切削加工時に工具のすく い面での潤滑作用が大き く なることに基づく。  (f) For the same S content in steel, Ti carbosulfide has a greater machinability improvement effect than MnS. This is based on the fact that the melting point of Ti carbosulfide is lower than that of MnS, so that the lubrication of the rake face of the tool during cutting is increased.
( g ) Ti 炭硫化物の被削性改善効果を充分発揮させるためには、 N含 有量を◦ . 008 %以下と低く 制限して Ti Nの析出を抑制することが 重要である。  (g) In order to sufficiently exhibit the machinability improving effect of Ti carbosulfide, it is important to limit the N content to as low as 008% or less to suppress the precipitation of TiN.
( h ) N含有量を規制することは鋼中の Ti Nの減少につながり、 これ によつて機械的性質のうちの靭性を高めることもできる。  (h) Controlling the N content leads to a decrease in TiN in the steel, which can also increase the toughness of the mechanical properties.
( i ) Ti 炭硫化物によって被削性を高めるためには、 Ti 炭硫化物の サイズと、 その清浄度で表される量( 以下、 単に 「清浄度」 という) を 適正化しておく ことが重要である。  (i) In order to enhance machinability with Ti carbosulfide, it is necessary to optimize the size of Ti carbosulfide and the amount expressed by its cleanliness (hereinafter simply referred to as “cleanliness”). is important.
( j ) 製鋼時に生成した Ti 炭硫化物は、 通常の熱間加工のための加熱 温度及び調質処理における通常の焼入れのための加熱温度では基地に固 溶しない。 このため、 Ti 炭硫化物はオーステナイト 領域において所謂 「ピンニング効果」 を発揮し、 オーステナイト 粒の粗大化防止に有効で ある。 勿論、 Ti 炭硫化物は、 調質処理における通常の焼戻しのための 加熱温度や、 焼戻しに相当する時効処理のための加熱温度でも基地に固 溶しない。 (j) Ti carbosulfide generated during steelmaking does not form a solid solution in the matrix at the normal heating temperature for hot working and the normal heating temperature for tempering. Therefore, Ti carbosulfide exhibits a so-called “pinning effect” in the austenite region, and is effective in preventing austenite grains from becoming coarse. Of course, Ti carbosulfide is used for normal tempering in tempering. Does not dissolve in the matrix even at the heating temperature or the heating temperature for aging treatment equivalent to tempering.
( k ) 組織の 90 %以上がフ ライ ト とパーラィ ト である鋼材では、 変 態歪による曲がり や残留応力の発生が極めて小さい。  (k) In steel materials in which 90% or more of the microstructure is frit and parlite, bending and residual stress due to transformation strain are extremely small.
( 1 ) 組織の 9◦ %以上がベイナイ ト 、 又は、 フ ヱライ ト とベイナイ ト である鋼材の強度と靭性のバランスは良好である。  (1) The balance between strength and toughness is good for steel materials in which 9% or more of the structure is bainite, or steel with bainite and bainite.
( m) 組織の 50 %以上がマルテンサイ ト である鋼材の強度と靭性のバ ランスは極めて良好である。  (m) The balance between strength and toughness of a steel material in which 50% or more of the structure is martensite is extremely good.
( n ) 特定の化学組成を有し、 組織の 90 %以上がフヱライ ト とパーラ イ ト である非調質鋼材において、 フ ライ ト の割合が面積率で 20〜7 0 %、 フェライ ト の粒度が J I S粒度番号で 5以上、 パーライ ト のラメ ラ間隔の平均値が 0. 2 以下、 の少なく とも 1 つの条件を満足すれ ば、 良好な強度と靭性のバランスが得られる。  (n) Non-heat treated steel with a specific chemical composition and 90% or more of the structure is made of graphite and pearlite.The proportion of the fluoride is 20 to 70% in area ratio and the particle size of ferrite. If the JIS particle size number is 5 or more, the average value of the pearlite lamellar spacing is 0.2 or less, and at least one of the conditions is satisfied, a good balance between strength and toughness can be obtained.
( o ) 下記( 1 ) 式で表される f n 1 の値が 0 %より大きい場合及び 又は下記( 2 ) 式で表される f n 2の値が 2より大きい場合、 Ti 炭硫 化物の被削性向上効果は大きく なる。 なお、 ( 2 ) 式で表される f n 2 の値が 2より大きい場合、 Ti 炭硫化物のピンニング効果も大きく なつ て、 大きな強度や優れた靭性が得られる。  (o) When the value of fn 1 represented by the following formula (1) is greater than 0% and / or when the value of fn 2 represented by the following formula (2) is greater than 2, The effect of improving the performance increases. When the value of f n 2 represented by the formula (2) is larger than 2, the pinning effect of Ti carbosulfide is increased, and a large strength and excellent toughness can be obtained.
f n 1 =Ti ( % ) — 1. 2 S ( %) ( 1 )  f n 1 = Ti (%) — 1.2 S (%) (1)
f n 2 =Ti ( %) /S ( %) ( 2 )  f n 2 = Ti (%) / S (%) (2)
( ) 下記( 3 ) 式で表される f n 3の値は特定の化学組成を有する非 調質鋼材の組織及び靭性と相関を有し、 この値が特定の範囲にあれば組 織の 90 %以上がベイナイ ト 、 又は、 フ ェライ ト とベイナイ ト になる。 f n 3 =0. 5 S i ( %) + n ( ) +1. 1 3 C r ( %) +1. 98 Ni ( %) ( 3 )  () The value of fn 3 expressed by the following formula (3) correlates with the structure and toughness of non-heat treated steel having a specific chemical composition. If this value is within a specific range, 90% of the structure The above is bainite, or ferrite and bainite. f n 3 = 0.5 S i (%) + n () +1.13 C r (%) +1.98 Ni (%) (3)
本発明は上記の知見に基づいて完成されたものである。  The present invention has been completed based on the above findings.
以下、 本発明の各要件について詳しく 説明する。 なお、 各元素の含有 量の 「%」 表示は 「重量%」 を意味する。 Hereinafter, each requirement of the present invention will be described in detail. The content of each element The “%” indication of the amount means “% by weight”.
( A) 鋼材の化学組成  (A) Chemical composition of steel
C:  C:
Cは、 Sとともに Ti と結合して Ti の炭硫化物を形成し、 被削性を 高める作用を有する。 更に、 Cは強度を確保するのにも有効な元素であ る。 しかし、 その含有量が 0. 05 %未満ではそれらの効果が得られな い。 一方、 Cを 0. 6 %を超えて含有させると靭性が低下するようにな る。 したがって、 Cの含有量を 0. 05〜0. 6 %とした。  C combines with S with Ti to form Ti carbosulfide and has an effect of enhancing machinability. Further, C is an effective element for securing strength. However, if the content is less than 0.05%, these effects cannot be obtained. On the other hand, if C is contained in excess of 0.6%, the toughness will decrease. Therefore, the content of C is set to 0.05 to 0.6%.
なお、 組織の 90 %以上がフヱライ ト とパーライ ト である非調質鋼材 ( 以下、 簡単のために 「条件 Xの鋼材」 という) の C含有量は、 0. 2 〜0. 6 %とすることが好ましく 、 0. 25〜0. 5 %とすることが一 層好ましい。  Note that the C content of non-heat treated steel materials (hereinafter referred to as “condition X steels” for simplicity) in which 90% or more of the structure is fly and pearlite shall be 0.2 to 0.6%. It is more preferably 0.25 to 0.5%.
組織の 90 %以上がベイナイ ト 、 又は、 フヱライ ト とベイナイ ト であ る非調質鋼材( 以下、 簡単のために 「条件 Yの鋼材」 という) の C含有 量は 0. 05〜0. 3 %とすることが好ましく 、 0. :! 〜 0. 24 %と することがより好ましい。  The C content of non-heat treated steel materials (90% or more of the structure is bainite or fly and bainite (hereinafter referred to as “condition Y steel” for simplicity)) is 0.05 to 0.3. %, Preferably 0.:! More preferably, it is set to 0.24%.
組織の 50 %以上がマルテンサイ ト である調質鋼材( 以下、 簡単のた めに 「条件 Zの鋼材」 という) の C含有量は 0. 1 〜0. 6 %とするこ とが好ましい。  It is preferable that the C content of a tempered steel material in which 50% or more of the structure is martensite (hereinafter referred to as “condition Z steel” for simplicity) is 0.1 to 0.6%.
S :  S:
Sは、 Cとともに Ti と結合して Ti 炭硫化物を形成し、 被削性を高 める作用を有する。 しかし、 その含有量が 0. 002 %未満ではその効 果が得られない。  S combines with C and Ti with Ti to form Ti carbosulfide and has the effect of improving machinability. However, if the content is less than 0.002%, the effect cannot be obtained.
従来、 快削鋼に Sを添加する 目的は、 Mn Sを形成させて被削性を改 善させることにあった。 しかし、 本発明者らの検討によると、 上記の M n Sの被削性向上作用は、 切削時の切り 屑と工具表面との潤滑性を高め る機能に基づく ことが判明した。 しかも Mn Sは巨大化し、 鋼材本体の 地疵を大きく し、 欠陥となる場合がある。 Conventionally, the purpose of adding S to free-cutting steel has been to improve the machinability by forming MnS. However, according to the study by the present inventors, it has been found that the above-described action of improving the machinability of MnS is based on a function of enhancing lubricity between chips and the tool surface during cutting. Moreover, Mn S has become huge, The flaws may be enlarged, resulting in defects.
本発明における Sの被削性改善作用は、 適正量の Cと Ti との複合添 加によって Ti 炭硫化物を形成させることで初めて得られる。 このため には、 上記したように 0. 002 %以上の Sの含有量が必要である。 一 方、 Sを 0. 2 %を超えて含有させても被削性に与える効果に変化はな いが、 鋼中に粗大な Mn Sが再び生じるようになり、 地疵等の問題が生 じる。 更に、 熱間での加工性が著しく 劣化して熱間での塑性加工が困難 になるし、 靭性が低下することもある。 したがって、 Sの含有量を 0. 002〜0. 2 %とした。  The machinability improving effect of S in the present invention can be obtained for the first time by forming Ti carbosulfide by complex addition of an appropriate amount of C and Ti. For this purpose, an S content of 0.002% or more is required as described above. On the other hand, the effect on machinability does not change even if S is contained in excess of 0.2%, but coarse MnS is regenerated in the steel, causing problems such as ground flaws. I will. In addition, the hot workability is significantly deteriorated, making hot plastic working difficult and toughness may be reduced. Therefore, the content of S is set to 0.002 to 0.2%.
なお、 「条件 Xの鋼材」 の S含有量は、 0. 0 1 〜0. 2 %とするこ とが好ましく 、 0. 02〜0. 1 7 %とすることが一層好ましい。  The S content of the “steel material under the condition X” is preferably 0.01 to 0.2%, more preferably 0.02 to 0.17%.
「条件 Yの鋼材」 の S含有量は 0. 005〜0. 1 7 %とすることが 好ましい。  The S content of the “steel material of condition Y” is preferably set to 0.005 to 0.17%.
Ti :  Ti:
Ti は、 本発明において介在物を制御するための重要な合金元素であ る。 その含有量が 0. 04 %未満では Sを充分 Ti 炭硫化物に変えるこ とができないので、 被削性を高めることができない。 一方、 1. 0 %を 超えて含有させても、 被削性改善効果が飽和してコスト が嵩むばかりか、 靭性及び熱間加工性が著しく 劣化してしまう。 したがって、 Ti 含有量 を 0. 04〜: L . 0 %とした。  Ti is an important alloying element for controlling inclusions in the present invention. If the content is less than 0.04%, S cannot be sufficiently converted to Ti carbosulfide, so that machinability cannot be enhanced. On the other hand, if the content exceeds 1.0%, not only the machinability improvement effect is saturated but the cost is increased, but also the toughness and hot workability are significantly deteriorated. Therefore, the Ti content is set to 0.04 to: L. 0%.
なお、 「条件 Xの鋼材」 の Ti 含有量は、 ◦ . 08〜0. 8 %とする ことが好ましい。  The Ti content of the “steel under condition X” is preferably in the range of 08 to 0.8%.
「条件 γの鋼材」 の Ti 含有量は 0. 06〜0. 8 %とすることが好 ましい。  It is preferable that the Ti content of the “steel material with condition γ” be 0.06 to 0.8%.
「条件 Zの鋼材」 の Ti 含有量も 0. 06〜0. 8 %とすることが好 ましい。  It is preferable that the Ti content of the “steel material of condition Z” is also 0.06 to 0.8%.
N: 0. 008 %以下 本発明においては、 Nの含有量を低く 制御することが極めて重要であ る。 すなわち、 Nは Ti との親和力が大きいために容易に Ti と結合し て Ti Nを形成し、 Ti を固定してしまうので、 Nを多量に含有する場 合には前記した Ti 炭硫化物の被削性向上効果が充分に発揮できないこ ととなる。 更に、 粗大な Ti Nは靭性及び被削性を低下させてしまう。 したがって、 N含有量を 0. 008 %以下とした。 なお、 Ti 炭硫化物 の効果を高めるために N含有量の上限は◦ . 006 %とすることが好ま しい。 N: 0.008% or less In the present invention, it is extremely important to control the N content low. That is, since N has a large affinity for Ti, it easily bonds to Ti to form Ti N and fixes Ti, so that when N is contained in a large amount, the above-mentioned Ti carbosulfide is used. The effect of improving machinability cannot be fully exhibited. Further, coarse TiN reduces toughness and machinability. Therefore, the N content was set to 0.008% or less. In order to enhance the effect of Ti carbosulfide, the upper limit of the N content is preferably set to ◦ 0.006%.
Nd :  Nd:
Ndは添加しなく ても良い。 添加すれば、 Nd 2S 3と してチップブレ 一力一の作用を有し被削性を向上させる効果を有する。 更に、 Nd 2S 3 が溶鋼の比較的高温域で微細に分散して生成することにともなって、 後 工程での熱間加工や焼入れのための加熱時におけるオーステナイ ト 粒の 成長が抑制されて組織が微細化し、 鋼が高強度化及び高靭性化する効果 もある。 前記の効果を確実に得るには、 Ndは 0. 005 %以上の含有 量とすることが好ましい。 しかし、 その含有量が 0. 1 %を超えると N d 2S 3自体が粗大化して却って靭性の低下をきたす。 したがって、 Nd の含有量を 0〜0. 1 %とした。 なお、 Nd含有量の好ましい上限値は 0. 08 %である。 s e : Nd need not be added. When added, Nd 2 S 3 has the effect of tip shake and has the effect of improving machinability. Furthermore, as Nd 2 S 3 is finely dispersed and generated in the relatively high temperature range of the molten steel, the growth of austenite grains during heating for hot working and quenching in the subsequent process is suppressed. It also has the effect of making the structure finer and increasing the strength and toughness of the steel. In order to surely obtain the above-mentioned effects, the content of Nd is preferably 0.005% or more. However, if the content exceeds 0.1%, Nd 2 S 3 itself becomes coarse, resulting in a decrease in toughness. Therefore, the content of Nd was set to 0 to 0.1%. The preferred upper limit of the Nd content is 0.08%. s e:
S e は添加しなく ても良い。 添加すれば、 鋼の被削性を一段と向上さ せる効果を有する。 この効果を確実に得るには、 ≤ 6 は0. 1 %以上の 含有量とすることが好ましい。 しかし、 その含有量が 0. 5 %を超える と前記の効果が飽和するばかり 力、、 却つて粗大介在物を生成して疲労強 度及び/又は靭性の低下をきたす。 したがって、 S eの含有量を 0〜0. 5 %とした。  Se need not be added. If added, it has the effect of further improving the machinability of the steel. In order to surely obtain this effect, it is preferable that the content of ≤6 is 0.1% or more. However, if the content exceeds 0.5%, the above-mentioned effect is only saturated, and instead, coarse inclusions are formed and the fatigue strength and / or toughness are reduced. Therefore, the content of Se was set to 0 to 0.5%.
Te : Te も添加しなく ても良い。 添加すれば、 鋼の被削性を一段と高める 効果を有する。 この効果を確実に得るには、 Teは 0. 005 %以上の 含有量とすることが好ましい。 しかし、 その含有量が 0. 05 %を超え ると前記の効果が飽和するばかりか、 却つて粗大介在物を生成して疲労 強度及び Z又は靭性の低下をもたらす。 更に、 Teの多量添加は熱間加 ェ性の劣化を招き、 特に含有量が 0. 05 %を超えると熱間加工した鋼 材の表面に疵が生じてしまう。 したがって、 Teの含有量を 0〜0. ◦ 5 %とした。 Te: Te need not be added. If added, it has the effect of further increasing the machinability of steel. To ensure this effect, the content of Te is preferably 0.005% or more. However, if the content exceeds 0.05%, not only the above-mentioned effect is saturated, but rather coarse inclusions are formed, resulting in a decrease in fatigue strength and Z or toughness. Furthermore, the addition of a large amount of Te causes deterioration of hot workability, and particularly when the content exceeds 0.05%, flaws are generated on the surface of the hot-worked steel material. Therefore, the content of Te was set to 0 to 0.5%.
C a :  C a:
C a は添加しなく ても良い。 添加すれば、 鋼の被削性を大きく 高める 作用がある。 この効果を確実に得るには、 C aは 0. 00 1 %以上の含 有量とすることが好ましい。 しかし、 その含有量が 0. 0 1 %を超える と前記の効果が飽和するばかり か、 却つて粗大介在物を生成して疲労強 度及び Z又は靭性の低下をきたす。 したがって、 Caの含有量を 0〜0. 0 1 %とした。  Ca need not be added. If added, it has the effect of greatly enhancing the machinability of steel. To ensure this effect, it is preferable that Ca has a content of 0.001% or more. However, if the content exceeds 0.01%, not only the above-mentioned effect is saturated, but rather coarse inclusions are formed and the fatigue strength and Z or toughness are reduced. Therefore, the content of Ca was set to 0 to 0.01%.
P b :  P b:
P bは添加しなく ても良い。 添加すれば、 鋼の被削性を一段と高める 作用がある。 この効果を確実に得るには、 P bは 0. 05 %以上の含有 量とすることが好ましい。 しかし、 その含有量が 0. 5 %を超えると前 記の効果が飽和するばかりか、 却って粗大介在物を生成して疲労強度及 び Z又は靭性の低下をきたす。 更に、 P bの多量添加は熱間加工性の劣 化を招き、 特に含有量が 0. 5 %を超えると熱間加工した鋼材の表面に 疵が生じてしまう。 したがって、 P bの含有量を 0〜0. 5 %とした。  Pb need not be added. If added, it has the effect of further increasing the machinability of the steel. To ensure this effect, the content of Pb is preferably set to 0.05% or more. However, when the content exceeds 0.5%, not only the above-mentioned effect is saturated, but rather, coarse inclusions are formed and the fatigue strength and the Z or toughness are reduced. Furthermore, the addition of a large amount of Pb causes deterioration of hot workability, and particularly when the content exceeds 0.5%, flaws are generated on the surface of the hot-worked steel material. Therefore, the content of Pb was set to 0 to 0.5%.
B i :  B i :
B i は添加しなく ても良い。 添加すれば、 鋼の被削性を大きく 向上さ せる効果を有する。 この効果を確実に得るには、 Bi は 0. 05 %以上 の含有量とすることが好ましい。 しかし、 その含有量が 0. 4 %を超え ると前記の効果が飽和するばかり力、、 却つて粗大介在物を生成して疲労 強度及び Z又は靭性の低下をきたす。 更に、 熱間加工性が劣化するので、 熱間加工した鋼材の表面に疵が生じてしまう。 したがって、 Bi の含有 量を 0〜0. 4 %とした。 B i may not be added. When added, it has the effect of greatly improving the machinability of steel. To ensure this effect, the content of Bi is preferably 0.05% or more. However, its content exceeds 0.4% As a result, the above effects are saturated, and instead the force is generated, and coarse inclusions are generated, resulting in a decrease in fatigue strength and Z or toughness. Further, the hot workability is deteriorated, so that the surface of the hot worked steel material is flawed. Therefore, the Bi content was set to 0 to 0.4%.
被削性に関する限り、 本発明の 「被削性に優れた鋼材」 は、 既に述べ た(:、 S、 Ti 、 N、 Nd、 S e、 Te、 Ca、 P b及び B i 以外の元 素に対しては、 特別な限定を加える必要はない。 しかし、 鋼材には被削 性とともに他の特性も要求されることが多い。 例えば、 変態歪による曲 がり や残留応力の発生を小さく したいとか、 強度と靭性のバランスを良 好にしたいといった要求である。 こうした場合には、 鋼材の組織との関 係で、 既に述べた C、 S、 Ti 、 N、 Nd、 S e、 Te、 Ca、 P b及 び Bi 以外の元素の化学組成を決定すれば良い。  As far as the machinability is concerned, the “steel material excellent in machinability” of the present invention has already been described (: S, Ti, N, Nd, Se, Te, Ca, Pb and elements other than Bi) However, there is no need to impose any special restrictions on steel, but steel materials often require other properties in addition to machinability, such as reducing the occurrence of bending and residual stress due to transformation strain. In such a case, it is necessary to improve the balance between strength and toughness.In such a case, C, S, Ti, N, Nd, Se, Te, Ca, What is necessary is just to determine the chemical composition of elements other than Pb and Bi.
以下、 C、 S、 Ti 、 N、 Nd、 S e、 Te、 C a、 P b及び B i 以 外の元素の化学組成について、 前記した 「条件 Xの鋼材」 、 「条件 Yの 鋼材」 及び 「条件 Zの鋼材」 の場合に分けて説明する。  Hereinafter, regarding the chemical composition of elements other than C, S, Ti, N, Nd, Se, Te, Ca, Pb, and Bi, the above-mentioned "steel material of condition X", "steel material of condition Y" and The explanation is made separately for the case of “steel material of condition Z”.
( A - 1 ) 組織の 90 %以上がフヱライ ト とパ一ライ ト である非調質 鋼材( 「条件 Xの鋼材」 ) の場合  (A-1) Non-heat treated steel material (“Condition X steel”) in which 90% or more of the structure is made of fly and powder
S i :  S i:
S i は、 鋼の脱酸及びフヱライ ト 相を強化する作用がある。 更に、 S i 含有量の増加に伴い切削時の切り屑表面の潤滑作用が高まって工具寿 命が延びるので、 被削性を改善する作用も有する。 しかし、 その含有量 が 0. 05 %未満では添加効果に乏しく 、 一方、 1. 5 %を超えると前 記効果が飽和するばかり か靭性が劣化するようになる。 したがって、 S i の含有量は 0. 05〜1. 5 %とするのが良い。 なお、 S i 含有量は. 0. 3〜1. 3 %とすることが好ましく 、 0. 5〜1. 3 %とすれば一 層好ましい。  Si has the effect of deoxidizing steel and strengthening the frit phase. In addition, the increase in the Si content enhances the lubricating effect on the chip surface during cutting and extends the tool life, thereby improving the machinability. However, if the content is less than 0.05%, the effect of addition is poor. On the other hand, if the content exceeds 1.5%, not only the above effect is saturated, but also the toughness deteriorates. Therefore, the content of S i is preferably set to 0.05 to 1.5%. The content of S i is preferably 0.3 to 1.3%, and more preferably 0.5 to 1.3%.
Mn : Mnは、 固溶強化によって疲労強度を向上させる効果を有する。 しか し、 その含有量が 0. 1 %未満ではその効果が得難い。 一方、 Mn含有 量が 2. 0 %を超えると、 「条件 Xの鋼材」 の場合、 耐久比( 疲労強度 Z引張強度) や降伏比( 降伏強度 Z引張強度) が低下してしまうことが ある。 したがって、 Mnの含有量は 0. 1 〜2. 0 %とするのが良い。 なお、 Mn含有量は 0. 4〜2. ◦ %とすることが好ましく 、 0. 5〜 1 . 7 %とすれば一層好ましい。 Mn: Mn has an effect of improving fatigue strength by solid solution strengthening. However, if the content is less than 0.1%, it is difficult to obtain the effect. On the other hand, if the Mn content exceeds 2.0%, the durability ratio (fatigue strength Z tensile strength) and the yield ratio (yield strength Z tensile strength) may be reduced in the case of the “steel material of condition X”. . Therefore, the content of Mn is preferably set to 0.1 to 2.0%. The Mn content is preferably set to 0.4 to 2.7%, and more preferably set to 0.5 to 1.7%.
P :  P:
Pは、 意図的に添加しても良い。 「条件 Xの鋼材」 においては、 引張 強度や疲労強度を高める作用を有するからである。 この効果を確実に得 るには、 Pは 0. 0 1 %以上の含有量とすることが好ましい。 しかし、 その含有量が 0. 07 %を超えると靭性が著しく 劣化し、 更に熱間加工 性も低下する。 したがって、 Pの含有量は 0. 07 %以下とするのが良 い。 なお、 Pを積極的に添加する場合の含有量は 0. 0 1 5〜0. 05 %とすることが望ましい。  P may be added intentionally. This is because “Steel under condition X” has the effect of increasing the tensile strength and fatigue strength. In order to ensure this effect, it is preferable that the content of P be 0.01% or more. However, if the content exceeds 0.07%, the toughness is remarkably deteriorated, and the hot workability is further reduced. Therefore, the content of P is preferably set to 0.07% or less. In addition, when P is added positively, the content is preferably set to 0.015 to 0.05%.
A1 :  A1:
A1 は、 鋼の脱酸に有効な元素である。 しかし、 その含有量が 0. 0 02 %未満では所望の効果が得難く 、 0. 05 %を超えるとその効果が 飽和するとともに、 却って被削性を低下させることがある。 このため、 A1 の含有量は 0. 002〜0. 05 %とするのが良い。 なお、 A1 の 含有量は 0. 005〜0. 03 %とすることが好ましい。  A1 is an effective element for deoxidizing steel. However, if the content is less than 0.002%, it is difficult to obtain the desired effect. If the content exceeds 0.05%, the effect is saturated and the machinability may be reduced. Therefore, the content of A1 is preferably set to 0.002 to 0.05%. Preferably, the content of A1 is 0.005 to 0.03%.
C u :  C u:
C uは添加しなく ても良い。 添加すれば、 析出強化により鋼の強度、 特に疲労強度を向上させる効果を有する。 この効果を確実に得るには、 C uは 0. 2 %以上の含有量とすることが好ましい。 しかし、 その含有 量が 1. 0 %を超えると熱間加工性が劣化することに加えて、 析出物が 粗大化して前記の効果が飽和したり、 却って低下することがある。 更に, コスト も嵩むばかりである。 したがって、 C uの含有量は 0〜 1. 0 % とするのが良い。 Cu need not be added. If added, it has the effect of improving the strength of the steel, especially the fatigue strength, by precipitation strengthening. To ensure this effect, it is preferable that the content of Cu be 0.2% or more. However, if the content exceeds 1.0%, in addition to the deterioration of hot workability, precipitates may be coarsened and the above-mentioned effects may be saturated or, on the contrary, may be reduced. Furthermore, The costs are only increasing. Therefore, the content of Cu is preferably set to 0 to 1.0%.
Ni :  Ni:
Ni は添加しなく ても良い。 添加すれば、 強度を高める効果を有する c この効果を確実に得るには、 Ni の含有量は 0. 02 %以上とすること が好ましい。 しかし、 その含有量が 2. 0 %を超えるとこの効果が飽和 するのでコスト が嵩む。 このため、 Ni の含有量は 0〜2. 0 %とする のが良い。 Ni need not be added. If added, it has the effect of increasing the strength. C To ensure this effect, the Ni content is preferably at least 0.02%. However, if the content exceeds 2.0%, this effect is saturated and the cost increases. Therefore, the content of Ni is preferably set to 0 to 2.0%.
C r :  C r:
C r は添加しなく ても良い。 添加すれば、 固溶強化によって疲労強度 を向上させる効果がある。 この効果を確実に得るには、 C r は 0. 02 %以上の含有量とすることが好ましい。 しかし、 その含有量が 2. 0 % を超えると、 「条件 Xの鋼材」 の場合、 耐久比や降伏比が低下してしま うことがある。 したがって、 C r の含有量は 0〜2. 0 %とするのが良 い。 なお、 C r を添加する場合にはその含有量を◦ . 05〜1. 5 %と することが好ましい。  Cr need not be added. If added, it has the effect of improving fatigue strength by solid solution strengthening. To ensure this effect, the content of Cr is preferably set to 0.02% or more. However, if the content exceeds 2.0%, in the case of “steel material of condition X”, the durability ratio and the yield ratio may decrease. Therefore, the content of Cr is preferably set to 0 to 2.0%. In addition, when Cr is added, its content is preferably in the range of 0.05 to 1.5%.
Mo :  Mo:
Moは添加しなく ても良い。 添加すれば、 フェライ ト とパーライ ト か らなる組織を微細化して鋼の強度、 特に疲労強度を向上させる効果を有 する。 この効果を確実に得るには、 Moの含有量は 0. 05 %以上とす ることが好ましい。 しかし、 その含有量が◦ . 5 %を超えると熱間加工 後の組織が却って異常に粗大化し、 疲労強度が低下してしまう。 このた め、 Moの含有量は 0〜0. 5 %とするのが良い。  Mo may not be added. If added, it has the effect of refining the microstructure of ferrite and pearlite and improving the strength of the steel, especially the fatigue strength. To ensure this effect, the Mo content is preferably set to 0.05% or more. However, if the content exceeds ◦ .5%, the structure after hot working is rather abnormally coarsened and the fatigue strength is reduced. Therefore, the content of Mo is preferably set to 0 to 0.5%.
V:  V:
Vは添加しなく ても良い。 添加すれば、 微細な窒化物や炭窒化物とし て析出し、 鋼の強度、 特に疲労強度を向上させる効果を有する。 この効 果を確実に得るには、 Vは 0. 05 %以上の含有量とすることが好まし い。 しかし、 その含有量が 0 . 3 %を超えると析出物が粗大化するので 前記の効果が飽和したり、 却って低下することがある。 更に、 原料コス ト も嵩むばかり である。 したがって、 Vの含有量は 0 〜0 . 3 %とする のが良い。V need not be added. If added, it precipitates as fine nitrides and carbonitrides, and has the effect of improving the strength of steel, especially fatigue strength. To ensure this effect, V should be contained at a content of 0.05% or more. No. However, if the content exceeds 0.3%, the precipitates become coarse, so that the above-mentioned effects may be saturated or may be rather reduced. In addition, raw material costs are only increasing. Therefore, the content of V is preferably set to 0 to 0.3%.
b :  b:
N b は添加しなく ても良い。 添加すれば、 微細な窒化物や炭窒化物と して析出し、 オーステナイ ト 粒の粗大化を防止するとともに、 鋼の強度、 特に疲労強度を向上させる効果を有する。 この効果を確実に得るには、 N b は 0 . 0 0 5 %以上の含有量とすることが好ましい。 しかし、 その 含有量が 0 . 1 %を超えると前記の効果が飽和するばかり力、、 粗大な硬 質の炭窒化物が生じて工具を損傷し、 被削性の低下を招く ことがある。 したがって、 N b の含有量は 0 〜0 . 1 %とするのが良い。 なお、 N b 含有量の上限は 0 . 0 5 %とすることが好ましい。  N b need not be added. If added, it precipitates as fine nitrides or carbonitrides, preventing the austenite grains from coarsening and has the effect of improving the strength of the steel, particularly the fatigue strength. In order to surely obtain this effect, the content of Nb is preferably set to 0.05% or more. However, if the content exceeds 0.1%, the above-mentioned effects are only saturated, and coarse hard carbonitrides are produced, which may damage the tool and cause a decrease in machinability. Therefore, the content of Nb is preferably set to 0 to 0.1%. The upper limit of the Nb content is preferably set to 0.05%.
f n 1 、 f n 2 :  f n 1, f n 2:
既に述べたように、 前記( 1 ) 式で表される f n 1 の値が 0 %ょり大 きい場合及び Z又は前記( 2 ) 式で表される f n 2 の値が 2 より大きい 場合、 T i 炭硫化物の被削性向上効果は大きく なる。 更に、 ( 2 ) 式で 表される f n 2 の値が 2 より大きい場合には、 T i 炭硫化物のピンニン グ効果も大きく なつて、 引張強度や疲労強度が大きく なる。 したがって, f n 1 の値を 0 %より大きく するか、 f n 2 の値を 2 より大きく するこ とが好ましい。 なお、 上記 f n 1 と n 2 の値の上限は特に規定される ものではなく 、 成分面か'らの上限値であつても良い。  As described above, when the value of fn 1 represented by the above equation (1) is much larger than 0% and when the value of Z or fn 2 represented by the above equation (2) is larger than 2, T i The effect of carbosulfide on machinability improvement is great. Further, when the value of f n 2 represented by the equation (2) is larger than 2, the pinning effect of the Ti carbosulfide increases, and the tensile strength and fatigue strength increase. Therefore, it is preferred that the value of f n1 be greater than 0% or that the value of f n 2 be greater than 2. The upper limits of the values of f n1 and n 2 are not particularly defined, but may be the upper limits from the component plane.
ところで、 不純物元素としての〇 ( 酸素) は硬質な酸化物系介在物を 形成し、 これが切削時に切削工具を損傷させて被削性を低下させてしま う場合がある。 特に、 〇含有量が 0 . 0 1 5 %を超えると被削性の著し い低下を招く 場合がある。 したがって、 良好な被削性を維持するために 不純物元素としての〇はその含有量を 0 . 0 1 5 %以下とすることが良 い。 なお、 〇の含有量は 0. 0 1 %以下とすることがより好ましい。 ( A -2 ) 組織の 90 %以上がベイナイ ト 、 又は、 フ ェライ ト とペイ ナイ ト である非調質鋼材( 「条件 Yの鋼材」 ) の場合 By the way, 〇 (oxygen) as an impurity element forms hard oxide-based inclusions, which may damage the cutting tool during cutting and reduce machinability. In particular, when the 〇 content exceeds 0.015%, the machinability may be significantly reduced. Therefore, in order to maintain good machinability, the content of 〇 as an impurity element is preferably set to 0.015% or less. No. The content of 〇 is more preferably not more than 0.01%. (A -2) Non-heat treated steel material (“Condition Y steel”) in which 90% or more of the organization is bainite or ferrite and payite
S i :  S i:
S i は、 鋼の脱酸及び焼入れ性を高める作用を有する。 更に、 「条件 Yの鋼材」 の場合にも、 S i 含有量の増加に伴い切削時の切り屑表面の 潤滑作用が高まって工具寿命が延びるので、 被削性が改善される。 しか し、 その含有量が 0. 05 %未満では添加効果に乏しく 、 一方、 1. 5 %を超えると前記効果が飽和するばかり か靭性が劣化するようになる。 したがって、 S i の含有量は 0. 05〜1 . 5 %とするのが良い。 なお, S i 含有量は、 0. 5〜1. 3 %とすることが好ましい。  Si has the effect of increasing the deoxidizing and hardenability of steel. Further, in the case of “steel material of condition Y”, the machinability is improved because the lubrication of the chip surface during cutting is increased and the tool life is extended with the increase of the Si content. However, if the content is less than 0.05%, the effect of addition is poor. On the other hand, if it exceeds 1.5%, not only the above effect is saturated but also the toughness is deteriorated. Therefore, the content of Si is preferably set to 0.05 to 1.5%. In addition, the Si content is preferably set to 0.5 to 1.3%.
A1 :  A1:
A1 は、 強力な脱酸作用を持つ元素である。 その効果を確保するため には 0. 002 %以上の含有量とするのが良い。 しかし、 0. 05 %を 超えて含有させてもその効果が飽和しコスト が嵩むばかりである。 した がって、 A1 の含有量は 0. 002〜0. 05 %とするのが良い。 なお, A1 含有量は 0. 005〜0. 04 %とすることが好ましい。  A1 is a strong deoxidizing element. In order to secure the effect, the content is preferably 0.002% or more. However, if the content exceeds 0.05%, the effect is saturated and the cost is increased. Therefore, the content of A1 should be 0.002 to 0.05%. Preferably, the A1 content is 0.005 to 0.04%.
C u :  C u:
C uは添加しなく ても良い。 添加すれば、 靭性を低下させることなく 鋼の強度を高め、 更に被削性を高める効果を有する。 この効果を確実に 得るには、 Cuは 0. 2 %以上の含有量とすることが好ましい。 しかし, その含有量が 1. 0 %を超えると熱間加工性が劣化することに加えて、 析出物が粗大化して前記の効果が飽和したり、 靭性が低下することがあ る。 更に、 コスト も嵩むばかり である。 したがって、 C uの含有量は 0 〜 1 . 0 %とするのが良い。  Cu need not be added. If added, it has the effect of increasing the strength of the steel without lowering the toughness and further enhancing the machinability. In order to surely obtain this effect, the content of Cu is preferably set to 0.2% or more. However, if the content exceeds 1.0%, in addition to deterioration of hot workability, precipitates may become coarse and the above-mentioned effects may be saturated, or toughness may be reduced. In addition, costs are only increasing. Therefore, the content of Cu is preferably set to 0 to 1.0%.
Mo :  Mo:
Moは添加しなく ても良い。 添加すれば、 焼入れ性を高めるとともに 組織を微細化して鋼の強度を向上させる効果を有する。 この効果を確実 に得るには、 Moの含有量は 0. 05 %以上とすることが好ましい。 し かし、 その含有量が 0. 5 %を超えると熱間加工後の組織が却って異常 に粗大化し、 靭性が低下してしまう。 このため、 Moの含有量は 0〜0. 5 %とするのが良い。 Mo may not be added. If added, it will enhance hardenability and It has the effect of refining the structure and improving the strength of the steel. To ensure this effect, the content of Mo is preferably set to 0.05% or more. However, if its content exceeds 0.5%, the structure after hot working is rather abnormally coarsened and the toughness is reduced. For this reason, the content of Mo is preferably set to 0 to 0.5%.
V:  V:
Vは添加しなく ても良い。 添加すれば、 微細な窒化物や炭窒化物とし て析出し、 鋼の強度を高めるとともに、 切削時に切り 屑の潤滑性を高め て被削性を向上させる作用を有する。 こうした効果を確実に得るには、 Vは◦ . 05 %以上の含有量とすることが好ましい。 しかし、 その含有 量が 0. 30 %を超えると析出物が粗大化するので前記の効果が飽和し たり、 靭性が低下することがある。 更に、 原料コスト も嵩むばかり であ る。 したがって、 Vの含有量は 0〜0. 30 %とするのが良い。  V need not be added. If added, it precipitates as fine nitrides and carbonitrides, and has the effect of increasing the strength of steel and enhancing the lubricity of chips during cutting to improve machinability. In order to surely obtain such an effect, it is preferable that the content of V is ◦ .05% or more. However, if the content exceeds 0.30%, the precipitates become coarse, so that the above effects may be saturated or the toughness may be reduced. In addition, raw material costs are only increasing. Therefore, the content of V is preferably set to 0 to 0.30%.
Nb :  Nb:
Nbは添加しなく ても良い。 添加すれば、 微細な窒化物や炭窒化物と して析出し、 オーステナイ ト 粒の粗大化を防止するとともに、 鋼の強度, 靭性を向上させる効果を有する。 この効果を確実に得るには、 Nbは 0. 005 %以上の含有量とすることが好ましい。 しかし、 その含有量が 0. 1 %を超えると前記の効果が飽和するばかり か、 粗大な硬質の炭窒化物 が生じて工具を損傷し、 被削性の低下を招く ことがある。 したがって、 Nbの含有量は 0〜0. 1 %とするのが良い。  Nb need not be added. If added, it precipitates as fine nitrides or carbonitrides, has the effect of preventing austenite grains from coarsening and improving the strength and toughness of the steel. In order to surely obtain this effect, the content of Nb is preferably set to 0.005% or more. However, if the content exceeds 0.1%, not only the above-mentioned effects are saturated, but also coarse hard carbonitrides are formed, which may damage the tool and cause a decrease in machinability. Therefore, the content of Nb is preferably set to 0 to 0.1%.
B:  B:
Bは添加しなく ても良い。 添加すれば、 焼入れ性が向上して鋼の強度. 靭性を高める効果を有する。 この効果を確実に得るには、 Bの含有量は 0. 0003 %以上とすることが好ましい。 しかし、 その含有量が 0. 02 %を超えると前記の効果が飽和したり、 却つて靭性が低下すること がある。 このため、 Bの含有量は 0〜0. 02 %とするのが良い。 f n 3 : B need not be added. If added, it has the effect of improving the hardenability and increasing the strength and toughness of the steel. To ensure this effect, the B content is preferably 0.0003% or more. However, if the content exceeds 0.02%, the above effect may be saturated or, on the contrary, the toughness may be reduced. For this reason, the content of B is preferably set to 0 to 0.02%. fn 3:
既に述べたように、 前記( 3 ) 式で表される f n 3の値は特定の化学 組成を有する非調質鋼材の組織及び靭性と相関を有し、 この値が 2. 5 〜4. 5 %の場合に非調質鋼の主たる組織がベイナイ ト 、 又は、 フェラ イ ト とベイナイ ト になって良好な強度と靭性のバランスが得られる。 f n 3に関する S i 、 Mn、 C r 及び Ni は鋼の焼入れ性を高める効 果を有するが、 この f n 3の値が 2. 5 %未満では所望の焼入れ性向上 効果が得られず、 靭性が低下することがある。 一方、 f n 3の値が 4. 5 %を超えると焼入れ性が高く なりすぎて、 却って靭性が低下すること がある。 したがって、 ( 3 ) 式で表される f n 3に関して 2. 5〜4. 5 %とするのが良い。 なお、 既に述べた S i 以外の各元素の含有量は、 上記 f n 3が 2. 5〜4. 5 %を満足すれば良いので特に制限しなく て も良い。 しかし、 Mn、 C r 及び Ni の含有量はそれぞれ 0. 4〜3. 5 %、 3. 0 %以下、 2. 0 %以下とするのが好ましい。  As described above, the value of fn3 represented by the above equation (3) has a correlation with the structure and toughness of a non-heat treated steel having a specific chemical composition, and this value is 2.5 to 4.5. %, The main structure of the non-heat treated steel is bainite or ferrite and bainite, and a good balance of strength and toughness can be obtained. Si, Mn, Cr and Ni related to fn 3 have the effect of increasing the hardenability of steel.However, if the value of fn 3 is less than 2.5%, the desired effect of improving the hardenability is not obtained, and the toughness is reduced. May drop. On the other hand, if the value of fn3 exceeds 4.5%, the hardenability becomes too high, and on the contrary, the toughness may decrease. Therefore, the value of f n 3 represented by the equation (3) is preferably set to 2.5 to 4.5%. Note that the content of each element other than Si described above need not be particularly limited, since the above fn3 may satisfy 2.5 to 4.5%. However, the contents of Mn, Cr and Ni are preferably 0.4 to 3.5%, 3.0% or less, and 2.0% or less, respectively.
f n 1 , f n 2 :  f n 1, f n 2:
「条件 Yの鋼材」 の場合にも、 既に述べたように、 前記( 1 ) 式で表 される f n 1 の値が 0 %より大きい場合及び Z又は前記( 2 ) 式で表さ れる f n 2の値が 2より大きい場合、 Ti 炭硫化物の被削性向上効果は 大きく なる。 更に、 ( 2 ) 式で表される f n 2の値が 2より大きい場合 には、 Ti 炭硫化物のピンニング効果も大きく なつて、 引張強度や疲労 強度が大きく なる。 したがって、 f n l の値を 0 %より大きく するか、 f n 2の値を 2より大きく することが好ましい。 なお、 上記 f n 1 と f n 2の値の上限は特に規定されるものではなく 、 成分面からの上限値で あつても良い。  As described above, also in the case of “steel material of condition Y”, when the value of fn 1 represented by the above equation (1) is larger than 0%, and when Z or fn 2 represented by the above equation (2), When the value of is larger than 2, the effect of improving the machinability of Ti carbosulfide increases. Further, when the value of f n 2 represented by the formula (2) is larger than 2, the pinning effect of Ti carbosulfide increases, and the tensile strength and fatigue strength increase. Therefore, it is preferred that the value of f nl be greater than 0% or that the value of f n 2 be greater than 2. The upper limits of the values of f n1 and f n2 are not particularly limited, and may be the upper limits from the component plane.
ところで、 不純物元素としての〇 ( 酸素) は硬質な酸化物系介在物を 形成し、 これが切削時に切削工具を損傷させて被削性を低下させてしま う場合がある。 特に、 〇含有量が 0. 0 1 5 %を超えると被削性の著し い低下を招く 場合がある。 したがって、 「条件 Yの鋼材」 の場合にも、 良好な被削性を維持するために不純物元素としての〇はその含有量を 0. 0 1 5 %以下とすることが良い。 なお、 〇の含有量は 0. 0 1 %以下と することがより好ましい。 By the way, 〇 (oxygen) as an impurity element forms hard oxide-based inclusions, which may damage the cutting tool during cutting and reduce machinability. In particular, when the content exceeds 0.015%, In some cases, it may cause a significant decrease. Therefore, even in the case of “steel material of condition Y”, the content of 〇 as an impurity element is preferably set to 0.015% or less in order to maintain good machinability. The content of 〇 is more preferably not more than 0.01%.
更に、 不純物元素としての Pは、 鋼の靭性確保の点からその含有量を 0. 05 %以下とするのが良い。  Further, the content of P as an impurity element is preferably set to 0.05% or less from the viewpoint of securing the toughness of the steel.
( A -3 ) 組織の 50 %以上がマルテンサイ ト である調質鋼材( 「条 件 Zの鋼材」 ) の場合  (A -3) In the case of tempered steel material (“Steel with condition Z”) in which 50% or more of the structure is martensite
S i :  S i:
S i は、 鋼の脱酸及び焼入れ性を高める作用を有する。 更に、 「条件 Zの鋼材」 の場合にも、 S i 含有量の増加に伴い切削時の切り屑表面の 潤滑作用が高まって工具寿命が延びるので、 被削性が改善される。 しか し、 その含有量が◦ . 05 %未満では添加効果に乏しく 、 一方、 1. 5 %を超えると前記効果が飽和するばかり か靭性が劣化するようになる。 したがって、 S i の含有量は 0. 05〜1. 5 %とするのが良い。  Si has the effect of increasing the deoxidizing and hardenability of steel. Furthermore, in the case of “steel material of condition Z”, the machinability is improved because the lubrication of the chip surface during cutting is increased and the tool life is prolonged as the Si content increases. However, if the content is less than ..05%, the effect of addition is poor, while if it exceeds 1.5%, not only the above effect is saturated, but also the toughness is deteriorated. Therefore, the content of S i is preferably set to 0.05 to 1.5%.
Mn :  Mn:
Mnは、 鋼の焼入れ性を高めるとともに固溶強化によって疲労強度を 向上させる効果を有する。 しかし、 その含有量が 0. 4 %未満ではその 効果が得られず、 2. 0 %を超えるとこの効果が飽和するだけでなく 、 むしろ硬く なりすぎて靭性が低下するようになる。 したがって、 Mnの 含有量は 0. 4〜2. 0 %とするのが良い。  Mn has the effect of improving the hardenability of steel and improving the fatigue strength by solid solution strengthening. However, if the content is less than 0.4%, the effect cannot be obtained. If the content exceeds 2.0%, not only this effect is saturated, but also the hardness becomes too hard to lower the toughness. Therefore, the content of Mn is preferably set to 0.4 to 2.0%.
A1 :  A1:
A1 は、 強力な脱酸作用を持つ元素である。 その効果を確保するため には 0. 002 %以上の含有量とするのが良い。 しかし、 0. 05 %を 超えて含有させてもその効果が飽和しコスト が嵩むばかりである。 した がって、 A1 の含有量は 0. 002〜0. 05 %とするのが良い。 なお A1 含有量は 0. 005〜0. 04 %とすることが好ましい。 C u : A1 is a strong deoxidizing element. In order to secure the effect, the content is preferably 0.002% or more. However, if the content exceeds 0.05%, the effect is saturated and the cost is increased. Therefore, the content of A1 should be 0.002 to 0.05%. The A1 content is preferably 0.005 to 0.04%. C u:
C uは添加しなく ても良い。 添加すれば、 靭性を低下させることなく 鋼の強度を高め、 更に被削性を高める効果を有する。 この効果を確実に 得るには、 ( 11 は0. 2 %以上の含有量とすることが好ましい。 しかし、 その含有量が 1 . 0 %を超えると熱間加工性が劣化することに加えて、 析出物が粗大化して前記の効果が飽和したり、 却つて低下することがあ る。 更に、 コスト も嵩むばかり である。 したがって、 C uの含有量は 0 〜1 . 0 %とするのが良い。  Cu need not be added. If added, it has the effect of increasing the strength of the steel without lowering the toughness and further enhancing the machinability. To ensure this effect, it is preferable that the content of (11 is 0.2% or more. However, if the content exceeds 1.0%, the hot workability is deteriorated. However, the above-mentioned effect may be saturated or may be rather deteriorated due to coarsening of the precipitates, and the cost may be increased only, so that the content of Cu should be 0 to 1.0%. Is good.
N i :  N i:
Ni は添加しなく ても良い。 添加すれば、 鋼の焼入れ性を向上させる 効果を有する。 この効果を確実に得るには、 Ni の含有量は 0. 02 % 以上とすることが好ましい。 しかし、 その含有量が 2. 0 %を超えると この効果が飽和するのでコスト が嵩む。 このため、 Ni の含有量は 0〜 2. 0 %とするのが良い。  Ni need not be added. If added, it has the effect of improving the hardenability of steel. To ensure this effect, the Ni content is preferably set to 0.02% or more. However, if the content exceeds 2.0%, this effect is saturated and the cost increases. Therefore, the content of Ni is preferably set to 0 to 2.0%.
C r :  C r:
C r は添加しなく てもよい。 添加すれば、 鋼の焼入れ性を高めるとと もに固溶強化によつて疲労強度を向上させる効果がある。 こうした効果 を確実に得るには、 C r は 0. 03 %以上の含有量とすることが好まし い。 しかし、 その含有量が 2. 0 %を超えると前記の効果が飽和するだ けでなく 、 むしろ硬く なりすぎて靭性が低下するようになる。 このため, C r の含有量は 0〜2. 0 %とするのが良い。  Cr need not be added. If added, it has the effect of improving the hardenability of the steel and improving the fatigue strength by solid solution strengthening. To ensure these effects, it is preferable that the content of Cr is 0.03% or more. However, if the content exceeds 2.0%, not only the above-mentioned effects are saturated, but also the steel becomes too hard and the toughness is reduced. For this reason, the content of Cr is preferably set to 0 to 2.0%.
Mo :  Mo:
Moは添加しなく ても良い。 添加すれば、 鋼の焼入れ性を高める効果 を有する。 この効果を確実に得るには、 Moの含有量は 0. 05 %以上 とすることが好ましい。 しかし、 その含有量が 0. 5 %を超えるとこの 効果が飽和するだけでなく 、 むしろ硬く なりすぎて靭性が低下するよう になるし、 コスト も嵩んでしまう。 このため、 Moの含有量は 0〜0. 5 %とするのが良い。 Mo may not be added. If added, it has the effect of increasing the hardenability of steel. To ensure this effect, the content of Mo is preferably set to 0.05% or more. However, if the content exceeds 0.5%, not only this effect is saturated, but also the hardness becomes too high, the toughness is reduced, and the cost is increased. For this reason, the content of Mo is 0-0. A good value is 5%.
V:  V:
Vは添加しなく ても良い。 添加すれば、 微細な窒化物や炭窒化物とし て析出し、 鋼の強度、 特に疲労強度を向上させる効果を有する。 この効 果を確実に得るには、 Vは 0. 05 %以上の含有量とすることが好まし い。 しかし、 その含有量が 0. 3 %を超えると析出物が粗大化するので 前記の効果が飽和したり、 却って低下することがある。 更に、 原料コス ト も嵩むばかり である。 したがって、 Vの含有量は 0〜0. 3 %とする のが良い。  V need not be added. If added, it precipitates as fine nitrides and carbonitrides, and has the effect of improving the strength of steel, especially fatigue strength. To ensure this effect, it is preferable that V has a content of 0.05% or more. However, when the content exceeds 0.3%, the precipitates are coarsened, so that the above-mentioned effects may be saturated or may be reduced. In addition, raw material costs are only increasing. Therefore, the content of V is preferably set to 0 to 0.3%.
Nb :  Nb:
Nbは添加しなく ても良い。 添加すれば、 微細な窒化物や炭窒化物と して析出し、 オーステナイ ト 粒の粗大化を防止するとともに、 鋼の強度, 特に疲労強度と靭性とを向上させる効果を有する。 この効果を確実に得 るには、 Nbは 0. 005 %以上の含有量とすることが好ましい。 しか し、 その含有量が 0. 1 %を超えると前記の効果が飽和するばかりか、 粗大な硬質の炭窒化物が生じて工具を損傷し、 被削性の低下を招く こと がある。 したがって、 Nbの含有量は 0〜0. 1 %とするのが良い。 な お、 Nb含有量の上限は 0. 05 %とすることが好ましい。  Nb need not be added. If added, it precipitates as fine nitrides or carbonitrides, prevents austenite grains from coarsening, and has the effect of improving the strength of steel, particularly fatigue strength and toughness. To ensure this effect, it is preferable that the content of Nb be 0.005% or more. However, if the content exceeds 0.1%, not only the above effect is saturated, but also coarse hard carbonitrides are generated, which may damage the tool and lower the machinability. Therefore, the content of Nb is preferably set to 0 to 0.1%. The upper limit of the Nb content is preferably 0.05%.
B:  B:
Bは添加しなく ても良い。 添加すれば、 焼入れ性が向上して鋼の強度, 靭性を高める効果を有する。 この効果を確実に得るには、 Bの含有量は 0. 0003 %以上とすることが好ましい。 しかし、 その含有量が 0. 02 %を超えると前記の効果が飽和したり、 却って靭性が低下すること がある。 このため、 Bの含有量は 0〜0. 02 %とするのが良い。  B need not be added. If added, it has the effect of improving the hardenability and increasing the strength and toughness of the steel. To ensure this effect, the B content is preferably 0.0003% or more. However, if the content exceeds 0.02%, the above effect may be saturated or, on the contrary, the toughness may be reduced. For this reason, the content of B is preferably set to 0 to 0.02%.
f n 1 , f n 2 :  f n 1, f n 2:
条件 Zの鋼材の場合にも、 既に述べたように、 前記( 1 ) 式で表され る f n 1 の値が 0 %より大きい場合及びノ又は前記( 2 ) 式で表される f n 2の値が 2より大きい場合、 Ti 炭硫化物の被削性向上効果は大き く なる。 更に、 ( 2 ) 式で表される f n 2の値が 2より 大きい場合には、 Ti 炭硫化物のピンニング効果も大きく なつて、 引張強度や疲労強度が 大きく なる。 したがって、 f n l の値を 0 %より大きく するか、 f n 2 の値を 2より大きく することが好ましい。 なお、 上記 n 1 と f n 2の 値の上限は特に規定されるものではなく 、 成分面からの上限値であって も良い。 As described above, also in the case of the steel material of the condition Z, when the value of fn 1 represented by the above equation (1) is larger than 0%, and when the value of fn 1 is represented by the equation (2) or When the value of fn2 is larger than 2, the effect of improving the machinability of Ti carbosulfide becomes large. Further, when the value of fn 2 represented by the formula (2) is larger than 2, the pinning effect of Ti carbosulfide is increased, and the tensile strength and fatigue strength are increased. Therefore, it is preferable to make the value of fnl larger than 0% or make the value of fn 2 larger than 2. The upper limits of the values of n 1 and fn 2 are not particularly limited, and may be the upper limits from the component plane.
ところで、 不純物元素としての〇 ( 酸素) は硬質な酸化物系介在物を 形成し、 これが切削時に切削工具を損傷させて被削性を低下させてしま う場合がある。 特に、 〇含有量が 0. 0 1 5 %を超えると被削性の著し い低下を招く 場合がある。 したがって、 「条件 Zの鋼材」 の場合にも、 良好な被削性を維持するために不純物元素としての〇はその含有量を〇 . By the way, 〇 (oxygen) as an impurity element forms hard oxide-based inclusions, which may damage the cutting tool during cutting and reduce machinability. In particular, if the 〇 content exceeds 0.015%, the machinability may be significantly reduced. Therefore, even in the case of "steel material of condition Z", the content as an impurity element should be reduced in order to maintain good machinability.
0 1 5 %以下とすることが良い。 なお、 0の含有量は 0. 0 1 %以下と することがより好ましい。 It is good to be 0 15% or less. The content of 0 is more preferably set to 0.01% or less.
更に、 不純物元素としての Pは、 鋼の靭性確保の点からその含有量を Furthermore, as an impurity element, the content of P is determined from the viewpoint of securing the toughness of steel.
0. 05 %以下とするのが良い。 It is better to make it 0.05% or less.
( B ) Ti 炭硫化物のサイズと清浄度  (B) Size and cleanliness of Ti carbosulfide
上記( A) に記載した化学組成を有する鋼材の被削性を Ti 炭硫化物 によって高めるためには、 Ti 炭硫化物のサイズと清浄度を適正化して おく ことが重要である。 なお、 本発明でいう 「 Ti 炭硫化物」 には単な る Ti 硫化物も含むことは既に述べたとおりである。  In order to improve the machinability of steel having the chemical composition described in (A) above with Ti carbosulfide, it is important to optimize the size and cleanliness of Ti carbosulfide. As described above, the term “Ti carbosulfide” in the present invention also includes a single Ti sulfide.
最大直径が 1 0 m以下の Ti 炭硫化物の量が清浄度で 0. 05 %未 満の場合には、 Ti 炭硫化物による被削性向上効果が発揮できない。 前 記の清浄度は 0. 08 %以上とすることが好ましい。 上記の Ti 炭硫化 物の清浄度の値が大きすぎると疲労強度が低下する場合があるので、 上 記の Ti 炭硫化物の清浄度の上限値は 2. 0 %程度とすることが好まし い。 ここで、 Ti 炭硫化物のサイズを最大直径で 1 0 m以下に制限する のは、 1 0 mを超えると疲労強度及び Z又は靭性が低下してしまうか らである。 なお、 Ti 炭硫化物の最大直径は 7 ^m以下とすることが好 ましい。 この Ti 炭硫化物の最大直径が小さすぎると被削性向上効果が 小さく なつてしまうので、 Ti 炭硫化物の最大直径の下限値は 0. 5 〃 m程度とすることが好ましい。 If the amount of Ti carbosulfide having a maximum diameter of 10 m or less is less than 0.05% in cleanliness, the effect of improving the machinability by Ti carbosulfide cannot be exhibited. The above-mentioned cleanliness is preferably set to 0.08% or more. If the cleanliness value of the above-mentioned Ti carbosulfide is too large, the fatigue strength may be reduced. Therefore, the upper limit of the cleanliness of the above-mentioned Ti carbosulfide is preferably about 2.0%. No. The reason for limiting the size of Ti carbosulfide to a maximum diameter of 10 m or less is that if it exceeds 10 m, the fatigue strength and Z or toughness are reduced. It is preferable that the maximum diameter of Ti carbosulfide be 7 ^ m or less. If the maximum diameter of Ti carbosulfide is too small, the effect of improving machinability will be reduced. Therefore, the lower limit of the maximum diameter of Ti carbosulfide is preferably about 0.5 μm.
Ti 炭硫化物の形態は基本的には鋼中の Ti 、 S及び Nの含有量で決 定される。 しかし、 Ti 炭硫化物のサイズと清浄度を規定の値とするた めには、 Ti の酸化物が過剰に生成することを防ぐことが重要である。 このためは、 鋼が前記( A) 項で述べた化学組成を有しているだけでは 充分でない場合があるので、 例えば、 S i 及び A1 で充分脱酸し、 最後 に Ti を添加する製鋼法を採ることが望ましい。  The form of Ti carbosulfide is basically determined by the contents of Ti, S and N in the steel. However, to keep the size and cleanliness of Ti carbosulfide at specified values, it is important to prevent excessive formation of Ti oxides. For this purpose, it may not be sufficient if the steel has the chemical composition described in the above item (A). For example, a steelmaking method in which deoxidation is sufficiently performed with Si and A1 and finally Ti is added. It is desirable to adopt
なお、 Ti 炭硫化物は、 鋼材から採取した試験片を鏡面研磨し、 その 研磨面を被検面として倍率 400倍以上で光学顕微鏡観察すれば、 色と 形状から容易に他の介在物と識別できる。 すなわち、 前記の条件で光学 顕微鏡観察すれば、 Ti 炭硫化物の 「色」 は極めて薄い灰色で、 その 「形状」 は J I Sの B系介在物に相当する粒状( 球状) として認められ る。 Ti 炭硫化物の詳細判定は、 前記の被検面を EDX ( エネルギー分 散型 X線分析装置) などの分析機能を備えた電子顕微鏡で観察すること によって行うこともできる。  Note that Ti carbosulfide can be easily distinguished from other inclusions by color and shape when the specimen taken from steel material is mirror-polished and the polished surface is used as a test surface and observed with an optical microscope at a magnification of 400 or more. it can. That is, when observed under an optical microscope under the above conditions, the “color” of Ti carbosulfide is extremely light gray, and its “shape” is recognized as a granular shape (spherical shape) corresponding to the B-based inclusion of JIS. The detailed determination of Ti carbosulfide can also be performed by observing the test surface with an electron microscope equipped with an analysis function such as an EDX (energy dispersive X-ray analyzer).
こ こで、 Ti 炭硫化物の清浄度は、 既に述べたように、 光学顕微鏡の 倍率を 400倍として、 JIS G 0555に規定された 「鋼の非金属介在物の 顕微鏡試験方法」 によって 60視野測定した値をいう。  Here, as described above, the cleanliness of Ti carbosulfides was measured in 60 visual fields using the `` microscopic test method for steel nonmetallic inclusions '' specified in JIS G 0555, with the magnification of the optical microscope set to 400 times. It refers to the measured value.
( C ) 鋼材の組織  (C) Structure of steel
被削性に関する限り、 本発明の 「被削性に優れた鋼材」 に関しては、 前記( A) の C、 S、 Ti 、 N、 Nd、 S e、 Te、 C a、 P b及び B i の含有量と、 上記( B) の Ti 炭硫化物のサイズと清浄度、 を規定す るだけで充分である。 しかし、 鋼材に被削性とともに他の特性が要求さ れる場合には、 鋼材の組織も一緒に規定すれば良い。 As far as machinability is concerned, regarding the “steel material excellent in machinability” of the present invention, C, S, Ti, N, Nd, Se, Te, Ca, Pb and Bi of (A) Content and the size and cleanliness of Ti carbosulfide in (B) above Is enough. However, when other properties are required in addition to machinability of the steel, the structure of the steel may be specified together.
先ず、 鋼材の組織の 9 0 %以上がフ ライ ト とパーライ ト である場合、 変態歪による曲がりや残留応力の発生は大きな問題にはならない。 した がって、 鋼材の組織の 9 0 %以上をフヱライ ト とパーライ ト にすれば、 例えば、 仕上げ工程としての曲がり取り ( 矯正工程) が不要となり、 コ ス ト ダウンにつながる。 更に、 上記の鋼材が非調質鋼材である場合には、 調質処理するための多く のエネルギーとコスト を削減することもできる。 非調質鋼材の組織の 9 0 %以上をフヱライ ト とパーライ ト からなるよ うにするためには、 既に述べた ( Π ) に記載の化学組成の鋼片を、 例え ば、 1 0 5 0 〜 1 3 0 0 °Cに加熱してから、 熱間鍛造などの熱間加工を 行い、 9 0 0 °C以上の温度で仕上げた後 6 0 °C /分以下の冷却速度で、 少なく とも 5◦ 0 °Cまで空冷あるいは放冷すれば良い。 なお、 本明細書 でいう 「冷却速度」 とは鋼材表面の冷却速度を指す。  First, when 90% or more of the microstructure of the steel is made of fly and pearlite, bending and residual stress due to transformation strain do not pose a major problem. Therefore, if 90% or more of the structure of the steel material is made of fly and pearlite, for example, the bending (straightening process) as a finishing process becomes unnecessary, leading to cost reduction. Furthermore, when the above-mentioned steel material is a non-heat treated steel material, much energy and cost for the heat treatment can be reduced. In order to make 90% or more of the structure of the non-heat-treated steel material consist of flylite and pearlite, the steel slab having the chemical composition described in (Π) described above is used, for example, from 150 After heating to 130 ° C, hot working such as hot forging is performed, and after finishing at a temperature of 900 ° C or more, at a cooling rate of 60 ° C / min or less, at least 5 ° C ◦ Air cooling or cooling to 0 ° C is sufficient. The term “cooling rate” as used herein refers to a cooling rate of a steel material surface.
上記組織の非調質鋼材の場合、 フ ェ ライ ト の割合が面積率で 2 0 〜7 0 %、 フェライ ト の粒度が J I S 粒度番号で 5 以上、 パーライ ト のラメ ラ間隔の平均値が 0 . 2 m以下、 の少なく とも 1 つの条件を満足すれ ば、 良好な強度と靱性のバランスが得られる。  In the case of non-heat treated steel with the above structure, the percentage of ferrite is 20 to 70% in area ratio, the grain size of ferrite is 5 or more in JIS grain size number, and the average value of pearlite lamellar intervals is 0. A good balance between strength and toughness can be obtained if at least one condition of .2 m or less is satisfied.
次に、 鋼材の組織の 9 0 %以上がペイナイ ト 、 又は、 フェライ ト とベ イナイ ト である場合、 強度と靭性のバランスが良好になる。 したがって, 良好な強度と靭性のバランスが要求される場合には、 組織の 9 0 %以上 をべイナイ ト 、 又は、 フ Xライ ト とベイナイ ト にすれば良い。 更に、 上 記の鋼材が非調質鋼材である場合には、 調質処理するための多く のエネ ルギ一とコスト を削減することができる。  Next, when 90% or more of the structure of the steel material is payite or ferrite and bainite, the balance between strength and toughness is improved. Therefore, if a good balance between strength and toughness is required, 90% or more of the structure should be bainite or X-lite and bainite. Further, when the above-mentioned steel material is a non-heat treated steel material, it is possible to reduce the cost and energy required for the heat treatment.
非調質鋼材の組織の 9 0 %以上をべイナイ ト 、 又は、 フ ヱライ ト とベ イナイ ト からなるようにするためには、 既に述べた ( ΠΙ ) に記載の化学 組成の鋼片を、 例えば、 1 0 5 0 〜 1 3 0 0 °Cに加熱してから、 熱間鍛 造などの熱間加工を行い、 9 0 0 °C以上の温度で仕上げた後 6 0 °C /分 以下の冷却速度で、 少なく とも 3 0 0 °Cまで空冷あるいは放冷すれば良 い。 In order to make 90% or more of the structure of the non-heat treated steel material consist of bainite or a mixture of the fly and the bainite, the steel slab having the chemical composition described in (ΠΙ) described above must be used. For example, after heating to 150-130 ° C, hot forging After finishing at a temperature of 900 ° C or more, air cooling or cooling to at least 300 ° C at a cooling rate of 60 ° C / min or less is recommended.
非調質鋼材の場合、 熱間加工時の成形比が大きく なるほど組織が微細 化して強度と靭性のバランスが良好になる。 このため、 前記熱間加工に 際して成形比を 1 . 5 以上とすることが好ましい。 なお、 「成形比」 と は A。を加工前の断面積、 Aを加工後の断面積とした場合の ( Α。ΖΑ ) のことを指す。  In the case of non-heat treated steel, the higher the forming ratio during hot working, the finer the structure and the better the balance between strength and toughness. Therefore, it is preferable to set the molding ratio to 1.5 or more during the hot working. The “forming ratio” is A. (Α.ΖΑ) when is the cross-sectional area before processing and A is the cross-sectional area after processing.
組識における旧オーステナイ ト 粒の結晶粒度が J I S 粒度番号で 4 以 上の場合、 組織の 9 0 %以上がベイナイ ト 、 又は、 フ ェ ライ ト とベイナ ィ ト からなる非調質鋼材( つまり、 「条件 Yの鋼材」 ) に良好な強度と 靭性のバランスを安定して確保させることができる。 こ こで、 非調質鋼 材における 「 旧オーステナイ ト 粒」 とは、 加熱と熱間加工を受けべィナ イ ト ゃフヱライ ト などが変態生成する直前のオーステナイ ト 粒のことを いう。 組織の 9 ◦ %以上がベイナイ ト 、 又は、 フ ェライ ト とベイナイ ト である非調質鋼材の場合には、 ナイ タルで腐食して光学顕微鏡で観察す ることによってこの旧オーステナイ ト 粒を容易に判定でぎる。  If the grain size of old austenite grains in the organization is 4 or more in JIS grain size number, 90% or more of the structure is bainite or a non-heat treated steel material composed of ferrite and bainite (that is, A good balance between strength and toughness can be ensured in “condition Y steel”. Here, “old austenite grains” in non-heat treated steel materials refer to austenite grains immediately before transformation of bainite diplite or the like occurs due to heating and hot working. In the case of a non-heat treated steel material in which 9% or more of the structure is bainite or ferrite and bainite, the former austenite grains can be easily corroded with nickel and observed with an optical microscope. Judgment is completed.
熱間加工と冷却を行つた後に 2 0 0 〜7 0 0 °Cの温度で 2 0 〜1 5 0 分程度加熱する時効処理を行えば、 特に強度と靭性のバランスが優れた ものとなる。  If aging treatment is performed at a temperature of 200 to 700 ° C. for about 20 to 150 minutes after performing hot working and cooling, a particularly excellent balance between strength and toughness can be obtained.
最後に、 鋼材の組織の 5 0 %以上がマルテンサイ ト である場合、 強度 と靭性のバランスが一層良好になる。 したがって、 一層良好な強度と靭 性のバランスが要求される場合には、 組織の 5 0 %以上をマルテンサイ ト にすれば良い。 更に、 上記の鋼材が調質鋼材である場合には、 極めて 良好な強度と靭性のバランスが得られる。  Finally, if more than 50% of the steel structure is martensite, the balance between strength and toughness is better. Therefore, if a better balance between strength and toughness is required, 50% or more of the structure should be made of martensite. Further, when the above steel material is a tempered steel material, an extremely good balance between strength and toughness can be obtained.
調質鋼材の組織の 5 0 %以上をマルテンサイ ト からなるようにするた めには、 既に述べた ( IV ) に記載の化学組成の鋼片を、 例えば、 1 0 5 0 〜 1 3 0 0 °Cに加熱してから、 1 . 5 以上の成形比で熱間鍛造などの 熱間加工を行い、 9 0 0 °C以上の温度で仕上げた後、 6 0 °C Z分以下の 冷却速度で少なく とも 3 0 0 °Cまで空冷あるいは放冷し、 次いで、 8 0 0 ° (:〜 9 5 0 での温度域に加熱して 2 0 〜 1 5 0 分保持した後で水や油 などの冷却媒体を用いて焼入れし、 更に、 4 0 0 〜7 0 0 °Cの温度域に 加熱して 2 0 〜 1 5 0 分保持してから 2 °C Z分以上の冷却速度で空冷、 放冷、 場合によっては水冷、 油冷して焼戻しすれば良い。 焼入れ処理と して、 熱間加工後にオーステナイ ト 領域、 又はオーステナイ ト とフェラ イ ト の 2相領域からそのまま焼入れする、 所謂 「直接焼入れ」 を用いて も良い In order to make 50% or more of the structure of the tempered steel material consist of martensite, a slab having the chemical composition described in (IV) described above is used, for example, by adding 105 After heating to 0 to 130 ° C, hot working such as hot forging is performed at a forming ratio of 1.5 or more, and after finishing at a temperature of 900 ° C or more, 60 ° CZ Air cooling or cooling to at least 300 ° C at a cooling rate of less than 1 minute, then heating to 800 ° C (: up to 950 ° C and holding for 20-150 minutes And then quenched using a cooling medium such as water or oil, and further heated to a temperature range of 400 to 700 ° C, held for 20 to 150 minutes, and then cooled for 2 ° CZ or more. It may be air-cooled, allowed to cool, or in some cases, water-cooled, oil-cooled, and tempered. , So-called "direct quenching" may be used
極めて優れた強度と靭性のバランスをより安定して調質鋼材に確保さ せるためには、 その組織の 8 0 %以上をマルテンサイ ト とすることが好 ましい。 なお、 組織におけるマルテンサイ ト 以外の残り の部分は、 焼入 れ処理でオーステナィ ト から変態したフ ヱライ ト 、 パーライ ト 及びべィ ナイ ト が焼戻しを受けた組織、 オーステナイ ト とフ ライ ト の 2 相領域 から焼入れた場合のフ ェライ 卜 が焼戻しを受けた組織や、 焼入れ処理し ても変態せずに残ったオーステナイ ト ( 所謂 「残留オーステナイ ト 」 ) が焼戻しを受けた組織である。 実質的に組織の 1 0 0 %がマルテンサイ ト であつても良い。  In order to more stably secure the balance between excellent strength and toughness in the tempered steel, it is preferable that 80% or more of the structure be martensite. The remaining part of the structure other than martensite is composed of two phases: austenite and frit, a structure transformed from austenite by quenching, a perlite and bainite tempered. This is the structure in which the ferrite when quenched from the region has been tempered, or the structure in which the austenite that remains without transformation after quenching (so-called “retained austenite”) has been tempered. Substantially 100% of the organization may be martensite.
旧オーステナイ ト 粒の結晶粒度が J I S粒度番号で 5 以上の場合、 組 織の 5 0 %以上がマルテンサイ ト からなる調質鋼材( つまり、 「条件 Z の鋼材」 ) に極めて良好な強度と靭性のバランスを安定して確保させる ことができる。 ここで、 調質鋼材における 「 旧オーステナイ ト 粒」 とは. 焼入れ直前のオーステナイ ト 粒のことをいう。 組織の 5 0 %以上がマル テンサイ ト である調質鋼材の場合には、 例えば、 鋼材を焼入れした後、 又は、 鋼材を焼入れ焼戻しした後に試料を切り 出し、 界面活性剤を添加 したピク リ ン酸系の水溶液で腐食して光学顕微鏡で観察することによつ て、 この旧オーステナイ ト 粒を容易に判定することができる。 If the grain size of the former austenite grains is 5 or more in the JIS grain size number, extremely good strength and toughness can be obtained for tempered steel materials (50% or more of the tissue is made of martensite) A stable balance can be ensured. Here, "old austenite grains" in the tempered steel material means austenite grains immediately before quenching. In the case of a tempered steel material in which 50% or more of the structure is martensite, for example, after quenching the steel material, or after quenching and tempering the steel material, cut out a sample and add a surfactant Corrosion with an acid-based aqueous solution and observation with an optical microscope Thus, the old austenite grains can be easily determined.
( 実施例) ( Example)
次に実施例によって本発明をより具体的に説明するが、 本発明はこれ らの実施例に限定されるものではない。  Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
( 実施例 1 )  (Example 1)
表 1 〜4に示す化学組成の鋼を 1 50 k g真空溶解炉又は 3ト ン真空 溶解炉を用いて溶製した。 3ト ン真空溶解炉で溶製したのは鋼 1 、 鋼 6 及び鋼 36〜40であり、 他はすべて 1 50 k g真空溶解炉で溶製した ものである。 なお、 鋼 36と鋼 38を除いて、 Ti 酸化物の生成を防ぐ ために、 S i 及び A1 で充分脱酸し種々の元素を添加した最後に Ti を 添加して、 Ti 炭硫化物のサイズと清浄度を調整するようにした。 鋼 3 6と鋼 38については S i 及び A1 で脱酸する際に同時に Ti を添加し た。  Steels with the chemical compositions shown in Tables 1 to 4 were melted using a 150-kg vacuum melting furnace or a 3-ton vacuum melting furnace. Steel 1, steel 6 and steels 36 to 40 were melted in a 3-ton vacuum melting furnace, and all others were melted in a 150 kg vacuum melting furnace. Except for steels 36 and 38, in order to prevent the formation of Ti oxides, deoxidize sufficiently with Si and A1 and add various elements. And the cleanliness was adjusted. For steels 36 and 38, Ti was added at the same time as deoxidation at Si and A1.
表 1 〜3における鋼 1 〜36は化学組成が本発明で規定する範囲内に ある本発明例の鋼である。 一方、 表 4における鋼 37〜46は各元素の いずれかが本発明で規定する含有量の範囲から外れた比較例の鋼である ( Steels 1 to 36 in Tables 1 to 3 are steels of the examples of the present invention whose chemical composition is within the range specified in the present invention. On the other hand, steels 37 to 46 in Table 4 are steels of comparative examples in which any of the elements is out of the range of the content specified in the present invention (
Figure imgf000030_0001
表 2
Figure imgf000030_0001
Table 2
Figure imgf000031_0001
Figure imgf000031_0001
f n 1 =T i (%) - 1. 2 S (%) , f n2 = Ti (%) /S (%) f n3 = 0. 5S i (%) +Mn (%) + 1. 13Cr (%) +1. 98Ni (%) fn 1 = T i (%)-1.2 S (%), f n2 = Ti (%) / S (%) f n3 = 0.5 S i (%) + Mn (%) + 1.13Cr (% ) + 1.98Ni (%)
Figure imgf000032_0001
表 4
Figure imgf000032_0001
Table 4
Figure imgf000033_0001
Figure imgf000033_0001
f n3 = 0. 5S i (%) +Mn (%) + 1 . 13Cr ( ) +1. 98N i (%) アンダーラィンは本発明で規定する^ ί牛カゝら外れて tヽることを^ f n3 = 0.5 S i (%) + Mn (%) + 1.13Cr () +1.98 N i (%) ^
次いで、 これらの鋼を 1 250 °Cに加熱してから 1 000 °Cで仕上げ る熱間鍛造を行って直径 60 mmの丸棒を作製した。 なお、 熱間鍛造後 の冷却条件を冷却速度が 5〜35 °CZ分となるように空冷又は放冷して 300 °Cまで冷却し、 丸棒の組織を調整して引張強度がほぼ 845〜8 70 MP aの範囲になるようにした。 なお、 鋼 6、 鋼 7、 鋼 9、 鋼 1 1 鋼 29〜36、 鋼 40、 鋼 45及び鋼 46については、 熱間鍛造後の冷 却を行った後、 770〜900 °Cに 1 時間加熱してから水焼入れし、 5 50〜560でで焼戻し処理( 焼戻し後の冷却は空冷) を施して組織と 強度レベルの調整を行った。 ' こうして得られた丸棒の表面から 1 5 mmの位置( RZ2部位置、 R は丸棒の半径) から、 J I S 1 4 A号の引張試験片、 小野式回転曲げ試 験片 ( 平行部の直径が 8 mmでその長さが 1 8. 4 mm) 及び J I S 3 号衝撃試験片( 2 mmUノッチシャ ルピー試験片) を採取し、 室温での 引張強度、 疲労強度( 疲労限度) 及び靭性( 衝撃値) を調査した。 Next, these steels were heated to 1250 ° C and then hot forged to finish at 1 000 ° C to produce round bars with a diameter of 60 mm. The cooling conditions after hot forging were air-cooled or allowed to cool to 300 ° C so that the cooling rate was 5 to 35 ° CZ, and the structure of the round bar was adjusted to achieve a tensile strength of approximately 845 to 35 ° C. 8 The range was set to 70 MPa. Steel 6, Steel 7, Steel 9, Steel 11 Steel 29 to 36, Steel 40, Steel 45 and Steel 46 were cooled to 770 to 900 ° C for 1 hour after cooling after hot forging. Heating, water quenching, and tempering at 550 to 560 (air cooling after tempering) were performed to adjust the structure and strength level. '' From the position of 15 mm from the surface of the round bar thus obtained (RZ2 position, R is the radius of the round bar), JIS 14A tensile test specimen, Ono type rotary bending test specimen (parallel part Samples of 8 mm in diameter and 18.4 mm in length and JIS No. 3 impact test pieces (2 mm U notch sharpie test pieces) were taken out at room temperature for tensile strength, fatigue strength (fatigue limit) and toughness (impact). Values) were investigated.
丸棒の表面から R/2部位置を中心にして、 JIS G 0555の図 3に則つ て試験片を採取し、 鏡面研磨した幅が 1 5 mmで高さが 20 mmの被検 面を、 倍率が 400倍の光学顕微鏡で 60視野観察して、 Ti 炭硫化物 を他の介在物と区分しながらその清浄度を測定した。 Ti 炭硫化物の最 大直径も、 倍率が 400倍の光学顕微鏡で 60視野観察して調査した。 この後更に、 鏡面研磨した被検面をナイ 夕ルで腐食して倍率が 1 00倍 の光学顕微鏡で観察して R/2部位置の組織観察を行い、 各組織の割合 ( 面積率) を調査した。  From the surface of the round bar, a test specimen was sampled in accordance with JIS G 0555, Fig. 3 centering on the R / 2 part, and a mirror-polished surface with a width of 15 mm and a height of 20 mm was taken. By observing 60 visual fields with an optical microscope having a magnification of 400 times, the cleanliness of the Ti carbosulfide was measured while separating it from other inclusions. The maximum diameter of Ti carbosulfide was also investigated by observing 60 visual fields with a 400-fold optical microscope. After this, the mirror-polished test surface was further corroded with nails and observed with an optical microscope with a magnification of 100 times to observe the structure at the R / 2 part, and the ratio (area ratio) of each structure was determined. investigated.
ド リ ル穿孔試験による被削性の評価も行った。 すなわち、 直径 60 m mの丸棒を 55 mmの長さの輪切り にしたものを用いてその長さ方向に 深さ 5 O mmの穴をあけ、 刃先摩損により穿孔不能となった時の直前の 穴の数を被削性評価指数として被削性を調査した。 穿孔条件は J I S高 速度工具鋼 S KH59の 6 mmス ト レート シャ ンクド リ ルを使用し、 水溶性の潤滑剤を用いて、 送り 0. 20 mm/r e v、 回転数 980 rMachinability was also evaluated by drill drilling tests. That is, a hole with a depth of 5 O mm was drilled in the length direction using a round bar with a length of 55 mm and a round bar with a diameter of 60 mm, and the hole immediately before it became impossible to drill due to abrasion of the cutting edge The machinability was investigated using the number of as the machinability evaluation index. The drilling conditions were 6 mm straight shank drills of JIS high speed tool steel S KH59. Using water-soluble lubricant, feed 0.20 mm / rev, speed 980 r
P mで ίττつに。 Pττ at P m.
表 5〜8に、 上記の各種試験の結果を示す。 なお、 表 5〜8には鋼 6 鋼 7、 鋼 9、 鋼 1 1、 鋼 29〜36、 鋼 40、 鋼 45及び鋼 46につい ての焼入れと焼戻しの条件も併記した。 Tables 5 to 8 show the results of the above various tests. Tables 5 to 8 also show the conditions of quenching and tempering for steel 6, steel 9, steel 9, steel 11, steel 29 to 36, steel 40, steel 45, and steel 46.
5 Five
Figure imgf000036_0001
Figure imgf000036_0001
組織欄において、 Fはフ ライ ト、 Pはパーライ ト、 Bはべイナィ ト、 Mはマルテンサイ トを示す。 In the organization column, F indicates flight, P indicates perlite, B indicates bainite, and M indicates martensite.
表 6 Table 6
Figure imgf000037_0001
Figure imgf000037_0001
組織欄において、 Fはフ ライ ト、 Pはパーライ ト、 Bはべイナィ ト、 Mはマルテンサイ トを示す。 In the organization column, F indicates flight, P indicates perlite, B indicates bainite, and M indicates martensite.
7 7
Figure imgf000038_0001
Figure imgf000038_0001
組織攔において、 Fはフ ライ ト、 Pはパーライ ト、 Bはべイナイ ト、 Mはマルテンサイ トを示す。 In organization II, F indicates the flight, P indicates the perlite, B indicates the bainite, and M indicates the martensite.
表 8 Table 8
Figure imgf000039_0001
Figure imgf000039_0001
組織欄において、 Fはフヱライ ト、 Pはパーライ ト、 Bはべイナィ ト、 Mはマルテンサイ トを示す。  In the organization column, F indicates a light, P indicates a perlite, B indicates a bainite, and M indicates a martensite.
*印は本発明で規定する条件から外れている 二とを示す。 なお、 鋼における *印は化学組成の条件外れを示す。 The asterisk indicates that the condition is outside the conditions specified in the present invention. The * mark in steel indicates that the chemical composition is out of condition.
表 5〜8から、 本発明で規定する範囲の C、 S、 Ti 及び Nを含有し, 更に鋼中の Ti 炭硫化物の最大直径が 1 0 m以下で、 その清浄度が 0. 05 %以上である試験番号 1 〜35の場合、 被削性評価指数は 200を 超えることがわかる。 これに対して、 試験番号 36の場合は、 供試鋼で ある鋼 36の C、 S、 Ti 及び Nの含有量は本発明で規定する範囲にあ るものの、 Ti 炭硫化物の清浄度が 0. 05 %を下回るため被削性評価 指数は 5 1 と低い。 試験番号 37、 39及び 40の場合は、 供試鋼であ る鋼 37、 鋼 39及び鋼 40の C、 Ti 及び Nの含有量のいずれかが本 発明で規定する範囲から外れるため、 被削性評価指数はそれぞれ 58、 40、 45と低い。 試験番号 38の場合、 供試鋼である鋼 38の S含有 量が本発明で規定する範囲から外れ、 更に、 Ti 炭硫化物の清浄度も 0. 05 %を下回る'ため被削性評価指数は 3 1 と低い。 From Tables 5 to 8, it is found that the steel contains C, S, Ti and N within the range specified in the present invention, and the maximum diameter of Ti carbosulfide in steel is 10 m or less and its cleanliness is 0.05%. In the case of Test Nos. 1 to 35, the machinability evaluation index exceeds 200. On the other hand, in the case of Test No. 36, although the contents of C, S, Ti and N of steel 36 as the test steel are within the range specified in the present invention, the cleanliness of the Ti carbosulfide is low. Since it is less than 0.05%, the machinability index is as low as 51. In the case of Test Nos. 37, 39 and 40, any one of the C, Ti and N contents of the test steels Steel 37, Steel 39 and Steel 40 was out of the range specified in the present invention. The gender index is low at 58, 40 and 45 respectively. In the case of Test No. 38, the S content of the test steel, Steel 38, was outside the range specified in the present invention, and the cleanliness of Ti carbosulfide was below 0.05%. Is as low as 3 1.
このように、 引張強度レベルをほぼ等しく して被削性を評価した場合- 本発明に係る鋼材の被削性が優れていることが明らかである。  As described above, when the machinability was evaluated with the tensile strength levels almost equal, it is clear that the machinability of the steel material according to the present invention is excellent.
—方、 Nd、 S e、 Te、 Ca、 P b、 B i の含有量がそれぞれ本発 明で規定する範囲から外れた鋼 4 1 〜46を供試鋼とする試験番号 4 1 〜46の場合には、 被削性は良好であるものの、 上記元素のそれぞれの 含有量が本発明で規定する範囲にある鋼 2〜7を供試鋼とする試験番号 2〜7の場合に比べて疲労強度及び/又は靭性が劣ることが明らかであ る。  On the other hand, steels 41 to 46 whose Nd, Se, Te, Ca, Pb, and Bi contents were out of the ranges specified in the present invention were used as test steels. In this case, although the machinability is good, compared to the case of Test Nos. 2 to 7 where steels 2 to 7 in which the contents of each of the above elements are within the range specified in the present invention are used as test steels, It is clear that the strength and / or toughness is poor.
なお、 表 5〜8から、 本発明に係る場合、 Ti 炭硫化物の最大直径が 0. 5〜7 で、 清浄度が 0. 08〜2. 0 %であれば被削性と疲労 強度のバランスが優れることが明らかである。 更に、 組織の 90 %以上 がべイナイ ト 、 又は、 フヱライ ト とベイナイ ト である場合には、 強度と 靭性のバランスが良好になり、 組織の 50 %以上がマルテンサイ ト であ る場合には、 強度と靭性のバランスが極めて良好になることも明らかで ある。 ( 実施例 2 ) In addition, from Tables 5 to 8, in the case of the present invention, when the maximum diameter of Ti carbosulfide is 0.5 to 7 and the cleanliness is 0.08 to 2.0%, the machinability and fatigue strength are reduced. It is clear that the balance is excellent. Furthermore, if 90% or more of the organization is bainite or a combination of fly and bainite, the balance between strength and toughness is good, and if 50% or more of the organization is martensite, It is also clear that the balance between strength and toughness is very good. (Example 2)
表 9に示す化学組成の鋼 47〜54を 1 50 k g真空溶解炉又は 3 ト ン真空溶解炉を用いて溶製した。 3ト ン真空溶解炉で溶製したのは鋼 4 7〜49で、 他はすべて 1 50 k g真空溶解炉で溶製したものである。 なお、 Ti 酸化物の生成を防ぐために、 S i 及び A1 で充分脱酸し種々 の元素を添加した最後に Ti を添加して、 Ti 炭硫化物のサイズと清浄 度を調整するようにした。 表 9における鋼 47〜54はいずれも化学組 成が本発明で規定する範囲内にある本発明例の鋼である。 Steels 47 to 54 having the chemical compositions shown in Table 9 were melted using a 150 kg vacuum melting furnace or a 3-ton vacuum melting furnace. Steels 47-49 were melted in a 3-ton vacuum melting furnace, and all others were melted in a 150 kg vacuum melting furnace. In order to prevent the formation of Ti oxides, the size and cleanliness of Ti carbosulfide were adjusted by adding Ti at the end of the deoxidation with Si and A1 and adding various elements. Steels 47 to 54 in Table 9 are all steels according to the present invention whose chemical composition is within the range specified in the present invention.
8卜6 OAV6iz.6fcvl:£ , 8 U6 OAV6iz.6fcvl: £,
(%) ί N86 · ΐ+ ( ) J38 ΐ · ΐ + (%) U + (%) 1 S9 * 0 = Gu J (%) ί N86 · ΐ + () J38 ΐ · ΐ + (%) U + (%) 1 S9 * 0 = Gu J
(%) S/ ( ) ΐ丄 (%) SZ · ΐ - (%) ΐ Χ= ΐ u J (%) S / () ΐ 丄 (%) SZ · ΐ-(%) ΐ Χ = ΐ u J
LZ τ Z 'ΐ SO Ό - LQ "0 ZOO'O - ― - - 8Γ0 - ΟΟ Ό 610 Ό 02 ·0 ΙΗΌ 620 Ό 09 ΌLZ τ Z 'ΐ SO Ό-LQ "0 ZOO'O-―--8Γ0-ΟΟ Ό 610 Ό 02 · 0 ΙΗΌ 620 Ό 09 Ό
QL 1 00 's 29 Ό 60 Ό 100 Ό 0 "0 OS'O 9800 Ό 610-0 01 Ό ΟΗ Ό 610 Ό 001 92 Ό Z '0 SSQL 1 00 's 29 Ό 60 Ό 100 Ό 0 "0 OS'O 9800 Ό 610-0 01 Ό ΟΗ Ό 610 Ό 001 92 Ό Z' 0 SS
161 SI ^ Ό SI Ό ζεο 'ο Z\ "0 ΪΓΟ 6800 Ό 020 ·0 89 "0 Ό ·0 90 ·ΐ 08 Ό LZ Ό161 SI ^ Ό SI ζ ζεο 'ο Z \ "0 ΪΓΟ 6800 Ό 020 · 0 89" 0 Ό · 0 90 · ΐ 08 Ό LZ Ό
U U '9 LV Ό ZOO '0 0 "0 L\ ·0 ΗΟΟ Ό 020 Ό 8S Ό £60 ·0 ΐΖΟ Ό iO gg ·0 ^ ,0 ISU U '9 LV Ό ZOO' 0 0 "0 L \ 0 ΗΟΟ Ό 020 Ό 8S Ό £ 60 · 0 ΐΖΟ Ό iO gg · 0 ^, 0 IS
S8 Ό ss ' 0 8ΗΓ0 ΖΖ Ό 9ΐΌ 6S00 ·0 0S0 ·0 09 ·0 28Γ0 ISO Ό 89 ·0 6C ·0 Π Ό 09S8 Ό ss' 0 8 ΗΓ 0 ΖΖ Ό 9 ΐΌ 6S00 00 0S0 0909 09 00 28 Γ0 ISO Ό89 06C 00 Ό Ό09
A6 ·ΐ O'Oi- 69 '0 H) Ό 10 '0 SI Ό H) Ό OS ·0 ■ Ό 6Ϊ0Ό OA ·0 ΟΪΟΌ S80O 66 ·0 88 Ό 9 ΌA6 OΐOi- 69 '0 H) Ό 10' 0 SI Ό H) Ό OS 00 Ό 6Ϊ0 ΌOA 00 ΟΪΟΌ S80O 66 00 88 Ό 9 Ό
69 Ί 9ム '9 i,S"0 80 "0 SI Ό Ζ\ Ό Ό 12 Ό ΟΓΟ画 ·0 1Z0 "0 69 ·0 ΖΟΙ Ό 880 S01 08 9Z ·0 οε 'τ LL'Q 90 Ό- 80 Ό εοοΌ 09 Ό 6800 Ό 6Ζ0 Ό ΠΌ SH Ό 9S0 Ό OS ·ϊ 9 ,0 t'O69 Ί 9 m '9 i, S "0 80" 0 SI Ό Ζ \ Ό Ό 12 Ό Plan · 0 1Z0 "0 69 · 0 ΖΟΙ Ό 880 S01 08 9Z Ε εοοΌ 09 Ό 6800 Ό 6Ζ0 Ό ΠΌ SH Ό 9S0 Ό OS · ϊ 9,, 0 t'O
ZUJ !9 3丄 9S a Λ 0W JQ !Ν Ν IV !1 S ά m !S 3 ZUJ! 9 3 丄 9S a Λ 0W JQ! Ν Ν IV! 1 S ά m! S 3
<¾¾fcbQ¾aj:觸 (%«) ¾ί W m  <¾¾fcbQ¾aj : Touch (% «) ¾ί W m
6 6
次いで、 これらの鋼を 1 250 °Cに加熱してから 1 000 °Cで仕上げ る熱間鍛造を行って直径 60 mmの丸棒を作製した。 なお、 熱間鍛造後 の冷却条件を冷却速度が 5〜 35 °CZ分となるように空冷又は放冷して 400 °Cまで冷却し、 組織が主にフエライ ト · パーライ ト からなるよう にして引張強度を調整した。 Next, these steels were heated to 1250 ° C and then hot forged to finish at 1 000 ° C to produce round bars with a diameter of 60 mm. The cooling conditions after hot forging were air-cooled or allowed to cool to 400 ° C so that the cooling rate was 5 to 35 ° CZ, and the structure was mainly composed of ferrite and perlite. The tensile strength was adjusted.
こ うして得られた丸棒から実施例 1 の場合と同様に各種試験片を採取 して調査を行った。 すなわち、 丸棒の表面から R/2部位置から、 J I S 1 4 A号の引張試験片、 小野式回転曲げ試験片( 平行部の直径が 8 m mでその長さが 1 8. 4 mm) 及び J I S 3号衝撃試験片( 2 mmUノ ツチシャルビ一試験片) を採取し、 室温での引張強度、 疲労強度 ( 疲労 限度) 及び靭性( 衝撃値) を調査した。  Various test pieces were collected from the round bar obtained in the same manner as in Example 1 and investigated. In other words, from the R / 2 part position from the surface of the round bar, a JIS 14A tensile test specimen, an Ono-type rotating bending test specimen (parallel part having a diameter of 8 mm and a length of 18.4 mm) and JIS No. 3 impact test specimens (2 mm U notch test specimens) were sampled, and their tensile strength, fatigue strength (fatigue limit) and toughness (impact value) at room temperature were investigated.
丸棒の表面から RZ2部位置を中心にして、 JIS G 0555の図 3に則つ て試験片を採取し、 鏡面研磨した幅が 1 5 mmで高さが 20 mmの被検 面を、 倍率が 400倍の光学顕微鏡で 60視野観察して、 Ti 炭硫化物 を他の介在物と区分しながらその清浄度を測定した。 Ti 炭硫化物の最 大直径も、 倍率が 400倍の光学顕微鏡で 60視野観察して調査した。 この後更に、 鏡面研磨した被検面をナイ タルで腐食して倍率が 1 00倍 の光学顕微鏡で観察して RZ2部位置の組織観察を行い、 各組織の割合 ( 面積率) を調査した。 試験番号 5 1 〜53の鋼5 1 〜53を供試鋼と するものは、 J I Sのフヱライ ト 粒度番号の測定を行うとともに、 走査 電子顕微鏡写真を撮影してパーライ ト のラメラ間隔の平均値を求めた。  A test piece was taken from the surface of the round bar, centering on the RZ2 position, in accordance with Figure 3 of JIS G 0555, and a mirror-polished test surface with a width of 15 mm and a height of 20 mm was magnified. Observed 60 visual fields with a 400 × optical microscope, and measured the cleanliness of Ti carbosulfide while separating it from other inclusions. The maximum diameter of Ti carbosulfide was also investigated by observing 60 visual fields with a 400-fold optical microscope. Thereafter, the mirror-polished test surface was further corroded with sodium and observed with an optical microscope having a magnification of 100 times to observe the structure of the RZ2 portion, and the ratio (area ratio) of each structure was examined. For steels 51 to 53 of test numbers 51 to 53, the average particle diameter lamella spacing was measured by taking JIS fine grain size numbers and taking scanning electron micrographs. I asked.
ド リ ル穿孔試験による被削性の評価も行った。 試験条件及び評価方法 は実施例 1 で述べたものである。  Machinability was also evaluated by drill drilling tests. The test conditions and evaluation method are as described in Example 1.
表 1 0に、 上記の各種試験の結果を示す。 表 10 Table 10 shows the results of the various tests described above. Table 10
試 T i炭硫化物 組 織 機 械 的 性 質 焼入れ'顧し条件 験 鋼 5 直径清浄度 F P B M 引 疲労艇 耐久比 シャルピー 被削性焼入れの '赚しの Test Ti Carbosulfide Tissues Mechanical properties Quenching conditions Test steel 5 Diameter cleanliness F P B M Pulling Fatigue boat Durability ratio Charpy Machinability hardening
J IS粒 ラメラ間隔の TS aw ひ wZTS 衝撃値 評価指数加 力 号 (^m) ( ) (%)度番号 (%)平職 ( ) (%) (%) (MP a) (MP a) (J/cra2) CO COJ IS grain TS Law at lamellar spacing wZTS Impact value Evaluation index Power (^ m) () (%) Degree number (%) Employment () (%) (%) (MP a) (MP a) ( J / cra 2 ) CO CO
47 47 6.4 0.21 22 78 0 0 835 376 66 302 47 47 6.4 0.21 22 78 0 0 835 376 66 302
48 48 7. 1 1.19 55 45 0 0 878 400 64 320  48 48 7.1 1 1.19 55 45 0 0 878 400 64 320
49 49 7. 2 1.21 24 76 0 0 865 433 0. 50 64 319  49 49 7.2 1.21 24 76 0 0 865 433 0.50 64 319
50 50 6. 5 1.03 43 55 2 0 827 379 0. 46 68 333  50 50 6.5 1.03 43 55 2 0 827 379 0.46 68 333
51 51 4. 3 0.26 43 9 52 0.15 5 0 843 405
Figure imgf000044_0001
71 336
51 51 4.3 0.26 43 9 52 0.15 5 0 843 405
Figure imgf000044_0001
71 336
52 52 3. 8 0.24 54 9 44 0.16 3 0 884 424 0. 48 70 338  52 52 3.8 0.24 54 9 44 0.16 3 0 884 424 0.48 70 338
53 53 1. 3 0.12 52 6 41 0.13 7 0 859 399 0. 46 73 334  53 53 1.3 0.12 52 6 41 0.13 7 0 859 399 0.46 73 334
54 54 5. 8 0.25 20 80 0 0 833 383 68 308  54 54 5.8 0.25 20 80 0 0 833 383 68 308
繊欄において、 Fはフヱライト、 Pはパ一ライト、 Bはべイナィト、 Mはマ ンサイトを示す。  In the column, F stands for frilite, P stands for pearlite, B stands for bainite, and M stands for mancite.
フェライトの JIS 番号、ノ、。一ライトのラメラ間隔 (7Η¾^ίΒの項が「一」 になっているものは測定していない :とを示す  JIS number of ferrite, no. The lamella spacing of one light (No measurement was made for items where the 7Η¾ ^ 項 term is "1".
o 〇 o 〇
〇 ο ① 〇 ο ①
表 1 0から、 組織の 90 %以上がフ xライ ト とパーライ ト からなる非 調質鋼材の場合、 フ ヱライ ト の割合が面積率で 20〜70 %、 フ ヱライ ト の粒度が J I S粒度番号で 5以上、 パーライ ト のラメラ間隔の平均値 が 0. 2 m以下、 の少なく とも 1 つの条件を満足すれば、 良好な強度 と靭性のバランスが得られることが明らかである。 更に、 前記( 1 ) 式 で表される f n 1 の値が 0 %より大きい場合及び/又は前記( 2 ) 式で 表される ί η 2の値が 2より大きい場合、 被削性指数も大きく なること が明らかである。 ( 2 ) 式で表される f η 2の値が 2より大きい場合に は、 疲労強度も大きい。 From Table 10, it can be seen from Table 10 that if 90% or more of the structure is non-heat treated steel consisting of xlite and pearlite, the percentage of the graphite is 20 to 70% by area and the particle size of the graphite is JIS particle number. It is clear that a good balance between strength and toughness can be obtained if at least one of the conditions is satisfied, ie, 5 or more and the average value of the pearlite lamella spacing is 0.2 m or less. Further, when the value of fn 1 represented by the above formula (1) is larger than 0% and / or when the value of ίη 2 represented by the above formula (2) is larger than 2, the machinability index becomes large. It is clear that When the value of f η 2 represented by equation (2) is larger than 2, the fatigue strength is also large.
( 実施例 3 )  (Example 3)
表 1 1 に示す化学組成の鋼 55〜59を 1 50 k g真空溶解炉又は 3 ト ン真空溶解炉を用いて溶製した。 3ト ン真空溶解炉で溶製したのは鋼 55及び鋼 56で、 他はすべて 1 50 k g真空溶解炉で溶製したもので ある。 なお、 この実施例の場合にも、 Ti 酸化物の生成を防ぐために、 S i 及び A1 で充分脱酸し種々の元素を添加した最後に Ti を添加して, Ti 炭硫化物のサイズと清浄度を調整するようにした。 表 1 1 における 鋼 55〜59はいずれも化学組成が本発明で規定する範囲内にある本発 明例の鋼である。 Steels 55 to 59 having the chemical compositions shown in Table 11 were melted using a 150 kg vacuum melting furnace or a 3-ton vacuum melting furnace. Steel 55 and steel 56 were melted in a 3-ton vacuum melting furnace, and all others were melted in a 150 kg vacuum melting furnace. In this example, too, in order to prevent the formation of Ti oxides, sufficient deoxidation was performed with Si and A1 and various elements were added. The degree was adjusted. Steels 55 to 59 in Table 11 are all steels of the present invention whose chemical composition is within the range specified in the present invention.
Figure imgf000046_0001
次いで、 これらの鋼を 1 250 °Cに加熱してから 1 000 °Cで仕上げ る熱間鍛造を行って直径 60 mmの丸棒を作製した。 なお、 熱間鍛造後 の冷却条件を冷却速度が 5〜35 °CZ分となるように空冷又は放冷して 300 °Cまで冷却し、 組織が主にべィナイ ト 、 又は、 フ ェライ ト とペイ ナイ ト からなるようにして引張強度を調整した。 なお、 鋼 57及び鋼 5 8は、 熱間鍛造後の冷却を行った後、 560 °Cで 1 時間加熱後空冷する 時効処理を施したもの ( 試験番号 60、 6 1 ) についても調査した。
Figure imgf000046_0001
Next, these steels were heated to 1250 ° C and then hot forged to finish at 1 000 ° C to produce round bars with a diameter of 60 mm. The cooling conditions after hot forging were air-cooled or allowed to cool to 300 ° C so that the cooling rate was 5 to 35 ° CZ, and the structure was mainly composed of bainite or ferrite. The tensile strength was adjusted so as to be composed of paynight. Steel 57 and steel 58 were also subjected to aging treatment (Test Nos. 60 and 61) which were cooled after hot forging, then heated at 560 ° C for 1 hour and air-cooled.
こ うして得られた丸棒から実施例 1 の場合と同様に各種試験片を採取 して調査を行った。 すなわち、 丸棒の表面から RZ2部位置から、 J I S 1 4 A号の引張試験片、 小野式回転曲げ試験片( 平行部の直径が 8 m mでその長さが 1 8. 4 mm) 及び J I S 3号衝撃試験片 ( 2 mmUノ ツチシャ ルピー試験片) を採取し、 室温での引張強度、 疲労強度 ( 疲労 限度) 及び靭性( 衝撃値) を調査した。  Various test pieces were collected from the round bar obtained in the same manner as in Example 1 and investigated. JIS 14A tensile test specimen, Ono-type rotary bending test specimen (parallel part having a diameter of 8 mm and length of 18.4 mm) and JIS 3A No. 2 impact test specimens (2 mmU notch rupee test specimens) were sampled and their tensile strength, fatigue strength (fatigue limit) and toughness (impact value) at room temperature were investigated.
丸棒の表面から RZ2部位置を中心にして、 JIS G 0555の図 3に則つ て試験片を採取し、 鏡面研磨した幅が 1 5 mmで高さが 20 mmの被検 面を、 倍率が 400倍の光学顕微鏡で 60視野観察して、 Ti 炭硫化物 を他の介在物と区分しながらその清浄度を測定した。 Ti 炭硫化物の最 大直径も、 倍率が 400倍の光学顕微鏡で 60視野観察して調査した。 この後更に、 鏡面研磨した被検面をナイ タルで腐食して倍率 1 ◦ 0倍で 光学顕微鏡観察して RZ2部位置の組織観察を行い、 各組織の割合( 面 積率) を調査した。  A test piece was taken from the surface of the round bar, centering on the RZ2 position, in accordance with Figure 3 of JIS G 0555, and a mirror-polished test surface with a width of 15 mm and a height of 20 mm was magnified. Observed 60 visual fields with a 400 × optical microscope, and measured the cleanliness of Ti carbosulfide while separating it from other inclusions. The maximum diameter of Ti carbosulfide was also investigated by observing 60 visual fields with a 400-fold optical microscope. Thereafter, the mirror-polished test surface was further corroded with nickel and observed with an optical microscope at a magnification of 1 × 0 to observe the structure at the RZ2 portion, and the ratio (area ratio) of each structure was investigated.
ド リ ル穿孔試験による被削性の評価も行った。 試験条件及び評価方法 は実施例 1 で述べたものである。  Machinability was also evaluated by drill drilling tests. The test conditions and evaluation method are as described in Example 1.
表 1 2に、 上記の各種試験の結果を示す。 なお、 表 1 2には試験番号 60 , 61 で鋼 57、 鋼 58について行つた時効処理の条件も併記した ( 1 2 Table 12 shows the results of the various tests described above. Table 12 also shows the conditions of aging treatment performed on steel 57 and steel 58 in test numbers 60 and 61 ( 1 2
Figure imgf000048_0001
Figure imgf000048_0001
組織欄において、 Fはフェライ ト、 Ρはパ一ライ ト、 Βはべイナィ ト、 Μはマルテンサイ トを示す。 試験番号 6 0 、 6 1において 「焼戻しの加熱温度」 欄に記載したものは、 「時効処理の温度」 である, In the organization column, F indicates ferrite, Ρ indicates personal light, Β indicates bainite, and Μ indicates martensite. In Test Nos. 60 and 61, what is described in the column of `` Tempering heating temperature '' is `` Tempering temperature ''.
表 1 2から、 組織の 90 %以上がペイナイ ト 、 又は、 フ Xライ ト とベ イナイ ト からなる非調質鋼材の場合、 熱間加工と冷却を行つた後に時効 処理を行えば、 良好な強度と靭性のバランスが得られることが明らかで ある。 更に、 前記( 1 ) 式で表される f n l の値が 0 %より大きい場合 及び Z又は前記( 2 ) 式で表される f n 2の値が 2より 大きい場合、 被 削性指数も大きく なることが明らかである。 ( 2 ) 式で表される f n 2 の値が 2より大きい場合には、 疲労強度も大きい。 According to Table 12, if 90% or more of the organization is made of non-heat treated steel consisting of payinite or X-lite and bainite, good aging after hot working and cooling It is clear that a balance between strength and toughness can be obtained. Further, when the value of fnl represented by the above formula (1) is larger than 0%, and when the value of Z or fn2 represented by the above formula (2) is larger than 2, the machinability index also increases. Is evident. When the value of f n 2 represented by equation (2) is larger than 2, the fatigue strength is also large.
( 実施例 4 )  (Example 4)
表 1 3に示す化学組成の鋼 60〜 64を 1 50 k g真空溶解炉又は 3 ト ン真空溶解炉を用いて溶製した。 3ト ン真空溶解炉で溶製したのは鋼 60及び鋼 6 1 で、 他は 1 50 k g真空溶解炉で溶製したものである。 なお、 この実施例の場合にも、 Ti 酸化物の生成を防ぐために、 S i 及 び A1 で充分脱酸し種々の元素を添加した最後に Ti を添加して、 Ti 炭硫化物のサイズと清浄度を調整するようにした。 表 1 3における鋼 6 0〜64はいずれも化学組成が本発明で規定する範囲内にある本発明例 の鋼である。 Steels 60 to 64 with the chemical compositions shown in Table 13 were melted using a 150 kg vacuum melting furnace or a 3-ton vacuum melting furnace. Steel 60 and steel 61 were melted in a 3-ton vacuum melting furnace, and the others were melted in a 150 kg vacuum melting furnace. In this example, too, in order to prevent the formation of Ti oxide, Ti and A1 were sufficiently deoxidized and various elements were added. The cleanliness was adjusted. Steels 60 to 64 in Table 13 are all steels according to the present invention whose chemical compositions are within the range specified by the present invention.
Figure imgf000050_0001
Figure imgf000050_0002
Figure imgf000050_0001
Figure imgf000050_0002
8 ΐ 拏 ο 8 Halla ο
次いで、 これらの鋼を 1 250 °Cに加熱してから 1 000 °Cで仕上げ る熱間鍛造を行って直径 60 mmの丸棒を作製した。 なお、 熱間鍛造後 の冷却条件を冷却速度が 5〜35 °C/分となるように空冷又は放冷して 300 °Cまで冷却した。 その後、 850〜900 °Cに 1 時間加熱してか ら水焼入れし、 550 °Cで焼戻し処理( 焼戻し後の冷却は空冷) して組 織と強度レベルの調整を行つた。 Next, these steels were heated to 1250 ° C and then hot forged to finish at 1 000 ° C to produce round bars with a diameter of 60 mm. The cooling conditions after hot forging were air-cooled or allowed to cool to 300 ° C so that the cooling rate was 5 to 35 ° C / min. After that, it was heated to 850 to 900 ° C for 1 hour, water-quenched, and tempered at 550 ° C (cooling after tempering was air-cooled) to adjust the tissue and strength level.
こうして得られた丸棒から実施例 1 の場合と同様に各種試験片を採取 して調査を行った。 すなわち、 丸棒の表面から R/2部位置から、 J I S 1 4 A号の引張試験片、 小野式回転曲げ試験片( 平行部の直径が 8 m mでその長さが 1 8. 4 mm) 及び J I S 3号衝撃試験片( 2 mmUノ ツチシャルビ一試験片) を採取し、 室温での引張強度、 疲労強度( 疲労 限度) 及び靭性( 衝撃値) を調査した。  Various test pieces were sampled from the thus obtained round bar in the same manner as in Example 1 and investigated. In other words, from the R / 2 part position from the surface of the round bar, a JIS 14A tensile test specimen, an Ono-type rotating bending test specimen (parallel part having a diameter of 8 mm and a length of 18.4 mm) and JIS No. 3 impact test specimens (2 mm U notch test specimens) were sampled, and the tensile strength, fatigue strength (fatigue limit) and toughness (impact value) at room temperature were investigated.
丸棒の表面から RZ2部位置を中心にして、 J1S G 0555の図 3に則つ て試験片を採取し、 鏡面研磨した幅が 1 5 mmで高さが 20 mmの被検 面を、 倍率が 400倍の光学顕微鏡で 60視野観察して、 Ti 炭硫化物 を他の介在物と区分しながらその清浄度を測定した。 Ti 炭硫化物の最 大直径も、 倍率が 400倍の光学顕微鏡で 60視野観察して調査した。 この後更に、 鏡面研磨した被検面をナイ タルで腐食して倍率 1 00倍で 光学顕微鏡観察して R/2部位置の組織観察を行い、 各組織の割合( 面 積率) を調査した。  From the surface of the round bar, a test piece was sampled in accordance with Fig. 3 of J1S G0555, centering on the RZ2 position, and a mirror-polished test surface with a width of 15 mm and a height of 20 mm was magnified. Observed 60 visual fields with a 400 × optical microscope, and measured the cleanliness of Ti carbosulfide while separating it from other inclusions. The maximum diameter of Ti carbosulfide was also investigated by observing 60 visual fields with a 400-fold optical microscope. After this, the mirror-polished test surface was further corroded with sodium and observed with an optical microscope at a magnification of 100 to observe the structure at the R / 2 position, and the ratio (area ratio) of each structure was investigated. .
ド リ ル穿孔試験による被削性の評価も行った。 試験条件及び評価方法 は実施例 1 で述べたものである。  Machinability was also evaluated by drill drilling tests. The test conditions and evaluation method are as described in Example 1.
表 1 4に、 上記の各種試験の結果を示す。 なお、 表 1 4には鋼 60〜 64についての焼入れと焼戻しの条件も併記した。 1 4 Table 14 shows the results of the various tests described above. Table 14 also shows the quenching and tempering conditions for steels 60 to 64. 14
Figure imgf000052_0001
Figure imgf000052_0001
組織欄において、 Fはフ Xライ ト、 Pはパーライ ト、 Bはべイナイ ト、 Mはマルテンサイ トを示す。 In the organization column, F indicates X-lite, P indicates perlite, B indicates bainite, and M indicates martensite.
表 1 4から、 組織の 50 %以上がマルテンサイ ト からなる調質鋼材の 場合、 極めて良好な強度と靭性のバランスが得られることが明らかであ る。 更に、 前記( 1 ) 式で表される f n 1 の値が 0 %より大きい場合及 び/又は前記( 2 ) 式で表される f n 2の値が 2より大きい場合、 被削 性指数も大きく なることが明らかである。 ( 2 ) 式で表される f n 2の 値が 2より大きい場合には、 疲労強度も大きい。 From Table 14, it is clear that an extremely good balance of strength and toughness can be obtained when the tempered steel is composed of at least 50% of martensite. Further, when the value of fn 1 represented by the above equation (1) is greater than 0% and / or when the value of fn 2 represented by the above equation (2) is greater than 2, the machinability index also increases. It is clear that When the value of f n 2 represented by equation (2) is larger than 2, the fatigue strength is also large.
( 実施例 5 )  (Example 5)
既に述べた実施例 1 〜4において 3ト ン真空溶解炉を用いて溶製した 鋼 1 、 鋼 6、 鋼 36〜40、 鋼 47〜49、 鋼 55、 鋼 56、 鋼 60及 び鋼 6 1 の一部を 1 250 °Cに加熱してから 1 000 °Cで仕上げる熱間 鍛造を行い室温まで放冷して 1 25 mm角の角棒を作製した。  Steel 1, steel 6, steel 36 to 40, steel 47 to 49, steel 55, steel 56, steel 60, and steel 61 melted using a three-ton vacuum melting furnace in Examples 1 to 4 described above. Was heated to 1250 ° C and then finished at 1 000 ° C by hot forging and allowed to cool to room temperature to produce a 125 mm square bar.
次いで、 これらの角棒を 1 250 °Cに加熱後、 仕上げ温度が 1 000 °C以上になるように熱間型鍛造し、 熱間型鍛造後の冷却条件を冷却速度 が 5〜35 °C/分となるように空冷又は放冷して 300 °Cまで冷却して クランクシャ フ ト の素形材を作製し、 切削加工して最終のクランクシャ フ ト に仕上げた。 なお、 試験番号 68、 69、 73、 79及び 80につ いては、 熱間型鍛造後の冷却を行つた後、 890〜9◦ 0 °Cに 1 時間加 熱してから水焼入れし、 550 °Cで焼戻し ( 焼戻し後の冷却は空冷) 処 理を施してクランクシャ フ ト の素形材を作製し、 切削加工して最終のク ランクシャ フ ト に仕上げた。  Next, after heating these square bars to 1250 ° C, hot die forging is performed so that the finishing temperature becomes 1 000 ° C or more, and the cooling rate after hot die forging is set at a cooling rate of 5 to 35 ° C. / Min and air cooled or allowed to cool to 300 ° C to produce a crankshaft base material, which was cut and finished into the final crankshaft. For test numbers 68, 69, 73, 79, and 80, after cooling after hot die forging, heat to 890 to 9 ° C for 1 hour, then quench with water to 550 ° C. The steel was tempered with C (cooling after tempering was air-cooled) to produce a crankshaft base material, which was then cut and finished into the final crankshaft.
最終の製品形状に仕上げるための表面の切削は、 J I Sの呼び記号 CN MG12041N-UX の形状でコ一ティ ング処理をした超硬チッ プを使用し、 乾 式、 切削速度 1 00 mZ分、 切り込み 1 . 5 mm, 送り 0. 25 mm/ r e vの条件で行つた。 その後、 J I S高速度工具鋼 S KH59の 6 mmスト レート シャンクドリ ルを使用し、 水溶性の潤滑剤を用いて、 送 り 0. S O mmZr e v 回転数 980 r p mでクランクシャ フ ト の油 穴加工を行った。 ド リ ルによる油穴加工時に、 ド リ ルの刃先摩損により 穿孔不能となつた時の直前の作製クランクシャ フ ト の数で実体の被削性 評価とした。 For cutting the surface to finish the final product shape, use a carbide chip coated with the shape of JIS nominal symbol CN MG12041N-UX, dry type, cutting speed of 100 mZ, cutting depth It was performed under the conditions of 1.5 mm, feed 0.25 mm / rev. Then, using a 6 mm straight shank drill of JIS high-speed tool steel S KH59, using a water-soluble lubricant, feed the oil.SO mmZr ev Drill the crankshaft oil hole at 980 rpm. went. When drilling oil holes with drills The machinability of the body was evaluated by the number of crankshafts produced immediately before drilling was impossible.
上記したクランクシャ フ ト の素形材のピン部( 直径 70 mm) の表面 から 1 5 mmの位置を中心にして、 JIS G 0555の図 3に則つて試験片を 採取し、 鏡面研磨した幅が 1 5 mmで高さが 20 mmの被検面を、 倍率 が 400倍の光学顕微鏡で 60視野観察して、 Ti 炭硫化物を他の介在 物と区分しながらその清浄度を測定した。 Ti 炭硫化物の最大直径も、 倍率が 400倍の光学顕微鏡で 60視野観察して調査した。 この後更に, 鏡面研磨した被検面をナイ タルで腐食して倍率 1 00倍で光学顕微鏡観 察して組織観察を行い、 各組織の割合( 面積率) を調査した。 更に、 試 験片の採取方向がクランク軸の軸方向と平行になるようにして、 J I S 1 4 A号の引張試験片、 小野式回転曲げ試験片 ( 平行部の直径が 8 mm でその長さが 1 8. 4 mm) 及び J I S 3号衝擊試験片 ( 2 mmUノ ッ チシャルビー試験片) を採取し、 室温での引張強度、 疲労強度( 疲労限 度) 及び靭性( 衝撃値) を調査した。  Specimens were sampled according to JIS G 0555, Fig. 3, centered at a position 15mm from the surface of the pin (diameter 70mm) of the cast material of the crankshaft, and the mirror-polished width was used. The surface to be inspected, having a height of 15 mm and a height of 20 mm, was observed in 60 visual fields with an optical microscope having a magnification of 400 times, and its cleanliness was measured while distinguishing Ti carbosulfide from other inclusions. The maximum diameter of Ti carbosulfide was also investigated by observing 60 fields of view with an optical microscope with a magnification of 400x. Thereafter, the mirror-polished test surface was further corroded with Na and observed under an optical microscope at a magnification of 100 to observe the structure, and the ratio (area ratio) of each structure was examined. In addition, the test specimen was collected in a direction parallel to the axial direction of the crankshaft, and the JIS 14A tensile test specimen and the Ono-type rotary bending test specimen (the diameter of the parallel part was 8 mm and its length was 18.4 mm) and JIS No. 3 impact test specimens (2 mm U notched Charby test specimens) were sampled and the tensile strength, fatigue strength (fatigue limit) and toughness (impact value) at room temperature were investigated.
表 1 5に、 上記の各種試験の結果を示す。 なお、 表 1 5には試験番号 68、 69、 73、 79、 80についての焼入れと焼戻しの条件も併記 した。 Table 15 shows the results of the above various tests. Table 15 also shows the hardening and tempering conditions for test numbers 68, 69, 73, 79, and 80.
1 5 1 5
Figure imgf000055_0001
Figure imgf000055_0001
組織欄において、 Fはフェライ ト、 Pはパ- ライ ト、 Bはべイナィ ト、 Mはマルテンサイ トを示す。  In the organization column, F indicates ferrite, P indicates private, B indicates bainite, and M indicates martensite.
*印は本発明で規定する条件から外れていることを示す。 なお、 鋼における *印は化学組成の条件外れを示す。 The asterisk indicates that the condition is out of the conditions specified in the present invention. The * mark in steel indicates that the chemical composition is out of condition.
表 1 5 から、 本発明に係る鋼材から作製したクランク シャ フ ト の素形 材は被削性に優れることが明らかである。 更に、 本発明に係る鋼材を素 材としたクランクシャ フ ト は比較例の鋼材を素材としたクランクシャ フ ト に比べて強度と靭性のバランスに優れていることも明らかである。 産業上の利用可能性 From Table 15, it is clear that the crankshaft base material manufactured from the steel material according to the present invention has excellent machinability. Further, it is apparent that the crankshaft using the steel material according to the present invention as a raw material has a better balance between strength and toughness than the crankshaft using a steel material of a comparative example as a material. Industrial applicability
本発明の鋼材は、 被削性に優れるとともに良好な強度と靭性のバラン スを有するので、 自動車を初めとする輸送用機械、 産業用機械、 建設用 機械など各種機械の構造部品の素材として利用することができる。 この 鋼材を素材とし、 切削加工を行うことで比較的容易に各種の機械構造部 品を製造することができる。  Since the steel material of the present invention has excellent machinability and a good balance of strength and toughness, it is used as a material for structural parts of various machines such as automobiles, transportation machines, industrial machines, and construction machines. can do. By using this steel material as a material and performing cutting, various mechanical structural parts can be manufactured relatively easily.

Claims

請求の範囲 The scope of the claims
1 . 重量%で、 C : 0. 05〜0. 6 %、 S : 0. 002〜0. 2 %, Ti : 0. 04〜: L . 0 %、 N: 0. 008 %以下、 Nd : 0〜0. 1 %、 S e : 0〜0. 5 %、 Te : 0〜0. 05 %、 C a : 0〜0. 0 1 %、 P b : 0〜0. 5 %、 B i : 0〜0. 4 %を含む化学組成で、 鋼中 の Ti 炭硫化物の最大直径が 1 0 以下、 且つ、 その量が清浄度で 0.1.0% by weight, C: 0.05 to 0.6%, S: 0.002 to 0.2%, Ti: 0.04 to: L. 0%, N: 0.008% or less, Nd: 0 to 0.1%, S e: 0 to 0.5%, Te: 0 to 0.05%, Ca: 0 to 0.05%, Pb: 0 to 0.5%, B i: With a chemical composition containing 0-0.4%, the maximum diameter of Ti carbosulfide in steel is 10 or less, and the amount is 0.3% in cleanliness.
05 %以上である被削性に優れた鋼材。 Steel material with excellent machinability of more than 05%.
2. Ti 炭硫化物の最大直径が 0. 5〜7 m、 且つ、 その量が清浄 度で 0. 08〜2. 0 %である請求の範囲 1 に記載の鋼材。  2. The steel material according to claim 1, wherein the maximum diameter of Ti carbosulfide is 0.5 to 7 m and the amount thereof is 0.08 to 2.0% in terms of cleanliness.
3. 組織の 90 %以上がフ ヱライト とパ一ライト である請求の範囲 1 又は 2に記載の鋼材。  3. The steel material according to claim 1 or 2, wherein 90% or more of the structure is perlite and pearlite.
4. 組織の 90 %以上がベイナイ ト 、 又は、 フ ェライ ト とベイナイト である請求の範囲 1 又は 2に記載の鋼材。  4. The steel material according to claim 1 or 2, wherein 90% or more of the structure is bainite, or ferrite and bainite.
5. 組織の 50 %以上がマルテンサイ ト である請求の範囲 1 又は 2に 記載の鋼材。  5. The steel material according to claim 1 or 2, wherein 50% or more of the structure is martensite.
6. C: 0. 2〜0. 6 %、 S i : 0. 05〜1. 5 %、 Mn : 0. 1 〜2. 0 %、 P : 0. 07 %以下、 S : 0. 0 1 〜0. 2 %、 A1 : 0. 002〜0. 05 %、 C u : 0〜l . 0 %、 Ni : 0〜2. 0 %、 C r : 0〜2. 0 %、 Mo : 0〜0. 5 %、 V: 0〜0. 3 %、 Nb : 0〜0. 1 %を含み、 残部が F e及び不可避不純物からなる化学組成で, 更に、 組織の 90 %以上がフ : ϋライ ト とパーライ ト である請求の範囲 1 に記載の非調質鋼材。  6. C: 0.2 to 0.6%, Si: 0.05 to 1.5%, Mn: 0.1 to 2.0%, P: 0.07% or less, S: 0.01 ~ 0.2%, A1: 0.002 to 0.05%, Cu: 0 to 1.0%, Ni: 0 to 2.0%, Cr: 0 to 2.0%, Mo: 0 to 0.5%, V: 0-0.3%, Nb: 0-0.1%, with the balance being Fe and unavoidable impurities, and more than 90% of the tissue is free 2. The non-heat treated steel material according to claim 1, wherein the steel is a steel and a pearlite.
7. Ti 炭硫化物の最大直径が 0. 5〜7 m、 且つ、 その量が清浄 度で 0. 08〜2. 0 %である請求の範囲 6に記載の非調質鋼材。  7. The non-heat treated steel material according to claim 6, wherein the maximum diameter of Ti carbosulfide is 0.5 to 7 m and the amount thereof is 0.08 to 2.0% in terms of cleanliness.
8. フ ェライ ト の割合が面積率で 20〜70 %、 フ ェライ ト 粒度が J 8. The percentage of ferrite is 20-70% in area ratio, and the ferrite grain size is J
1 S粒度番号で 5以上、 パーライト のラメラ間隔の平均値が 0. 2 〃m 以下の少なく とも 1 つを満たす請求の範囲 6又は 7に記載の被削性に優 れた非調質鋼材。 1 S particle size number of 5 or more, average lamella spacing of perlite is 0.2 μm The non-heat-treated non-heat treated steel material according to claim 6 or 7, which satisfies at least one of the following.
9. 下記( 1 ) 式で表される f n 1 の値が 0 %より大、 下記( 2 ) 式 で表される f n 2の値が 2以上の少なく とも 1 つを満たす請求の範囲 6 〜8のいずれかに記載の非調質鋼材。  9. Claims 6 to 8 wherein the value of fn 1 represented by the following formula (1) is greater than 0% and the value of fn 2 represented by the following formula (2) satisfies at least one of 2 or more. Non-heat treated steel material according to any one of the above.
f n 1 -Ti ( ) - 1 . 2 S ( %) • · · · ( 1 )  f n 1 -Ti ()-1.2 S (%) • (1)
f n 2 =Ti ( %) /S ( %) · · · • ( 2 )  f n 2 = Ti (%) / S (%)
1 0. C: 0. 05〜0. 3 %、 S i 0. 05〜; L . 5 %. Al : 0. 002〜0. 05 %、 C u : 0〜1 0 %、 Mo : 0〜0. 5 %、 V: 0〜0. 30 %、 Nb : 0〜0. 1 %、 B: 0〜0. 02 %を含み, 下記( 3 ) 式で表される f n 3の値が 2. 5〜4. 5 %を満たし、 残部 が F e 及び不可避不純物からなる化学組成で、 更に、 組織の 90 %以上 がべイナイ ト 、 又は、 フ ェライ ト とベイナイ ト である請求の範囲 1 に記 載の非調質鋼材。  1 0. C: 0.05 to 0.3%, S i 0.05 to L. 5%. Al: 0.002 to 0.05%, Cu: 0 to 10%, Mo: 0 to 0.5%, V: 0 to 0.30%, Nb: 0 to 0.1%, B: 0 to 0.02%, the value of fn 3 expressed by the following formula (3) is 2. The composition of claim 1 which satisfies 5-4.5% and the balance is a chemical composition consisting of Fe and unavoidable impurities, and 90% or more of the tissue is bainite or ferrite and bainite. Non-heat treated steel material.
f n 3 =0. 5 S i ( %) +Mn ( % ) +1 . 1 3 C r ( % ) +1. 98 Ni ( %) ( 3 )  f n 3 = 0.5 S i (%) + Mn (%) +1 .13 Cr (%) +1.98 Ni (%) (3)
1 1. Ti 炭硫化物の最大直径が 0. 5〜7 m、 且つ、 その量が清 浄度で 0. 08〜2. 0 %である請求の範囲 1 0に記載の非調質鋼材。  11. The non-heat treated steel material according to claim 10, wherein the maximum diameter of Ti carbosulfide is 0.5 to 7 m and the amount thereof is 0.08 to 2.0% in purity.
1 2. 下記( 1 ) 式で表される f n 1 の値が 0 %より大、 下記( 2 ) 式で表される f n 2の値が 2以上の少なく とも 1 つを満たす請求の範囲 1 2. Claims where the value of f n 1 represented by the following equation (1) is greater than 0% and the value of f n 2 represented by the following equation (2) satisfies at least 1
1 0又は 1 1 に記載の非調質鋼材。 10. The non-heat treated steel material according to 10 or 11.
f n 1 =Ti ( %) 一 1. 2 S ( ) ( 1 )  f n 1 = Ti (%) 1 1.2 S () (1)
f n 2 =Ti ( %) /S ( %) ( 2 )  f n 2 = Ti (%) / S (%) (2)
1 3. C: 0. 1 〜0. 6 %、 S i : 0. 05〜; L . 5 %、 Mn: 0. 4〜2. 0 %、 Al : 0. 002〜0. 05 %、 C u : 0〜1. 0 %、 1 3. C: 0.1 to 0.6%, Si: 0.05 to; L. 5%, Mn: 0.4 to 2.0%, Al: 0.002 to 0.05%, C u: 0 to 1.0%,
Ni : 0〜2. 0 %、 C r : 0〜2. 0 %、 Mo : 0〜0. 5 %、 V : 0〜0. 3 %、 Nb : 0〜0. 1 %、 B: 0〜0. 02 %を含み、 残部 が F e 及び不可避不純物からなる化学組成で、 更に、 組識の 50 %以上 がマルテンサイ ト である請求の範囲 1 に記載の調質鋼材。 Ni: 0 to 2.0%, Cr: 0 to 2.0%, Mo: 0 to 0.5%, V: 0 to 0.3%, Nb: 0 to 0.1%, B: 0 to Including 0.02%, the rest The tempered steel material according to claim 1, wherein is a chemical composition comprising Fe and unavoidable impurities, and 50% or more of the tissue is martensite.
1 4. Ti 炭硫化物の最大直径が 0. 5〜ア m、 且つ、 その量が清 浄度で 0. 08〜2. ◦ %である請求の範囲 1 3に記載の調質鋼材。  14. The tempered steel material according to claim 13, wherein the maximum diameter of Ti carbosulfide is 0.5 to Am and the amount thereof is 0.08 to 2. ◦% in purity.
1 5. 下記( 1 ) 式で表される f n 1 の値が 0 %より大、 下記( 2 ) 式で表される f n 2の値が 2以上の少なく とも 1 つを満たす請求の範囲 1 3又は 1 4に記載の調質鋼材。  1 5. Claims wherein the value of fn 1 represented by the following formula (1) is greater than 0% and the value of fn 2 represented by the following formula (2) satisfies at least one of 2 or more. Or a tempered steel material according to 14.
f n 1 =Ti ( %) - 1. 2 S ( %) ( 1 )  f n 1 = Ti (%)-1.2 S (%) (1)
f n 2 =Ti ( %) /S ( %) ( 2 )  f n 2 = Ti (%) / S (%) (2)
1 6. 請求の範囲 1 に記載の鋼材を素材とし、 切削による加工を受け た ρβロロ。  1 6. ρβ roll made from the steel material according to claim 1 and processed by cutting.
1 7. 請求の範囲 6に記載の非調質鋼材を素材とし、 切削による加工 を受けた部品。  1 7. A part made from the non-heat treated steel according to claim 6 and processed by cutting.
1 8. 請求の範囲 1 0に記載の非調質鋼材を素材とし、 切削による加 ェを受けた部品。  1 8. A part made from the non-heat treated steel described in Claim 10 and subjected to cutting.
1 9. 請求の範囲 1 3に記載の調質鋼材を素材とし、 切削による加工 を受けた部品。  1 9. Parts made from the tempered steel described in Claims 13 and processed by cutting.
PCT/JP1997/004297 1996-11-25 1997-11-25 Steel having excellent machinability and machined component WO1998023784A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1019980704909A KR100268536B1 (en) 1996-11-25 1997-11-25 Steel having excellent machinability and machined component
EP97913441A EP0903418B1 (en) 1996-11-25 1997-11-25 Steel having excellent machinability and machined component
DE69718784T DE69718784T2 (en) 1996-11-25 1997-11-25 STEEL WITH EXCELLENT PROCESSABILITY AND COMPONENT PRODUCED WITH IT
CA002243123A CA2243123C (en) 1996-11-25 1997-11-25 Steel products excellent in machinability and machined steel parts
US09/103,566 US5922145A (en) 1996-11-25 1998-06-24 Steel products excellent in machinability and machined steel parts

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP31367396 1996-11-25
JP8/313673 1996-11-25
JP00197497A JP3494271B2 (en) 1997-01-09 1997-01-09 Free-cutting non-heat treated steel with excellent strength and toughness
JP9/1974 1997-01-09
JP01604797A JP3534146B2 (en) 1997-01-30 1997-01-30 Non-heat treated steel excellent in fatigue resistance and method for producing the same
JP9/16047 1997-01-30
JP9/43138 1997-02-27
JP9/43062 1997-02-27
JP4306297 1997-02-27
JP04313897A JP3489376B2 (en) 1997-02-27 1997-02-27 High-strength, high-toughness free-cut non-heat treated steel
JP7736997 1997-03-28
JP7734697 1997-03-28
JP9/77369 1997-03-28
JP9/77346 1997-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/103,566 Continuation US5922145A (en) 1996-11-25 1998-06-24 Steel products excellent in machinability and machined steel parts

Publications (1)

Publication Number Publication Date
WO1998023784A1 true WO1998023784A1 (en) 1998-06-04

Family

ID=27563166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004297 WO1998023784A1 (en) 1996-11-25 1997-11-25 Steel having excellent machinability and machined component

Country Status (6)

Country Link
EP (1) EP0903418B1 (en)
KR (1) KR100268536B1 (en)
CN (1) CN1095503C (en)
CA (1) CA2243123C (en)
DE (1) DE69718784T2 (en)
WO (1) WO1998023784A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069198A1 (en) * 1999-01-28 2001-01-17 Sumitomo Metal Industries, Ltd. Machine structural steel product

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3445478B2 (en) * 1997-11-18 2003-09-08 いすゞ自動車株式会社 Machine structural steel and fracture splitting machine parts using the same
JP3355132B2 (en) * 1998-05-01 2002-12-09 新日本製鐵株式会社 Machine structural steel with excellent fracture separation and durability
EP1431412B1 (en) * 1999-09-03 2006-08-16 Kiyohito Ishida Free cutting alloy
US7381369B2 (en) 1999-09-03 2008-06-03 Kiyohito Ishida Free cutting alloy
US7297214B2 (en) 1999-09-03 2007-11-20 Kiyohito Ishida Free cutting alloy
US6238455B1 (en) * 1999-10-22 2001-05-29 Crs Holdings, Inc. High-strength, titanium-bearing, powder metallurgy stainless steel article with enhanced machinability
JP2003049241A (en) * 2001-06-01 2003-02-21 Daido Steel Co Ltd Free-cutting steel
JP2003049240A (en) * 2001-06-01 2003-02-21 Daido Steel Co Ltd Free-cutting steel
US6764645B2 (en) * 2001-11-28 2004-07-20 Diado Steel Co., Ltd. Steel for machine structural use having good machinability and chip-breakability
JP4267260B2 (en) * 2002-06-14 2009-05-27 新日本製鐵株式会社 Steel with excellent machinability
JP2004162176A (en) * 2002-10-10 2004-06-10 Daido Steel Co Ltd Corrosion-resistant steel excellent in cold workability and cuttability
JP3918787B2 (en) * 2003-08-01 2007-05-23 住友金属工業株式会社 Low carbon free cutting steel
CN100447273C (en) * 2003-12-01 2008-12-31 株式会社神户制钢所 Low carbon composite free-cutting steel product excellent in roughness of finished surface and method for production thereof
KR100716345B1 (en) * 2005-11-16 2007-05-11 현대자동차주식회사 Method for manufacturing microalloy steel spindle for automobile
DE102007023309A1 (en) * 2007-05-16 2008-11-20 Benteler Stahl/Rohr Gmbh Use of a steel alloy for axle tubes and axle tube made of a steel alloy
CN104099535A (en) * 2007-09-28 2014-10-15 新日铁住金株式会社 Surface carburizing steel with excellent cold forging performance and low-carburizing deformation characteristic
WO2009101951A1 (en) * 2008-02-12 2009-08-20 Sumitomo Metal Industries, Ltd. Steel material for thermal cutting with oxygen
ES2391312T3 (en) * 2008-03-10 2012-11-23 Swiss Steel Ag Longitudinal hot rolled product and manufacturing process
CN102989943A (en) * 2012-08-22 2013-03-27 昌利锻造有限公司 Processing method of automotive balancing shaft
CN102989941A (en) * 2012-08-22 2013-03-27 昌利锻造有限公司 Machining method of MAC (Measurement and Control) lever
KR101306241B1 (en) * 2013-01-18 2013-09-10 주식회사 세아베스틸 Direct - quenched low carbon micro-alloyed steels having high strength and high impact toughness and method for manufacturing thereof
WO2014156188A1 (en) * 2013-03-29 2014-10-02 Jfeスチール株式会社 Steel structure for hydrogen, and method for manufacturing pressure accumulator for hydrogen and line pipe for hydrogen
JP6292765B2 (en) * 2013-05-01 2018-03-14 本田技研工業株式会社 Soft nitriding crankshaft and manufacturing method thereof
RU2564502C1 (en) * 2014-07-16 2015-10-10 Закрытое акционерное общество "Омутнинский металлургический завод" Low-alloyed structural steel with increased machinability
CN104152811A (en) * 2014-07-25 2014-11-19 安徽霍山科皖特种铸造有限责任公司 High-ductility steel
CN104152798B (en) * 2014-08-26 2016-08-24 武汉钢铁(集团)公司 The automobile connecting bar automatic steel of tensile strength >=1200MPa and production method
KR101717996B1 (en) * 2015-12-11 2017-03-20 주식회사 세아베스틸 High Strength Micro-alloyed Steels for Hot Forged Engine Piston and Method For Manufacturing the Same
KR101837862B1 (en) 2016-11-24 2018-03-12 현대제철 주식회사 Manufacturing method for non-heat treated steel and non-heat treated steel thereof
CN109207840B (en) * 2017-06-29 2020-12-22 宝山钢铁股份有限公司 Free-cutting non-quenched and tempered steel and manufacturing method thereof
US20190161838A1 (en) * 2017-11-28 2019-05-30 GM Global Technology Operations LLC High-strength bainitic steel
EP3770291B1 (en) * 2018-03-23 2024-01-17 Nippon Steel Corporation Steel
DE112019006504T5 (en) 2018-12-27 2021-09-16 Jtekt Corporation STEEL MATERIAL AS BASE MATERIAL FOR CARBONITRATED BEARING COMPONENTS
DE102019123334A1 (en) * 2019-08-30 2021-03-04 Mannesmann Precision Tubes Gmbh Steel material for a drive shaft, method for producing a drive shaft from this steel material and drive shaft therefrom
CN112063924B (en) * 2020-09-08 2022-05-20 鞍钢股份有限公司 High-carbon selenium-tin-containing free-cutting steel and production method thereof
CN114086064A (en) * 2021-11-01 2022-02-25 北京福田戴姆勒汽车有限公司 Bainite non-quenched and tempered steel, steering trailing arm and preparation method of steering trailing arm
KR102458518B1 (en) * 2022-04-05 2022-10-25 신승호 Front cover for wear-resistant hydraulic breakers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965918A (en) * 1972-10-31 1974-06-26
JPH01319651A (en) * 1988-06-20 1989-12-25 Daido Steel Co Ltd Free cutting steel having excellent warm workability

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722974B2 (en) * 1975-01-28 1982-05-15
JPS59173250A (en) * 1983-03-23 1984-10-01 Daido Steel Co Ltd Free cutting spring grade steel and preparation thereof
US5102619A (en) * 1989-06-06 1992-04-07 Latrobe Steel Company Ferrous alloys having enhanced fracture toughness and method of manufacturing thereof
JPH04285118A (en) * 1991-03-13 1992-10-09 Nippon Steel Corp Production of hot forged non-heattreated steel having high strength and high toughness
EP0767247A4 (en) * 1995-02-23 1999-11-24 Nippon Steel Corp Cold-rolled steel sheet and hot-dipped galvanized steel sheet excellent in uniform workability, and process for producing the sheets

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965918A (en) * 1972-10-31 1974-06-26
JPH01319651A (en) * 1988-06-20 1989-12-25 Daido Steel Co Ltd Free cutting steel having excellent warm workability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0903418A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069198A1 (en) * 1999-01-28 2001-01-17 Sumitomo Metal Industries, Ltd. Machine structural steel product
EP1069198A4 (en) * 1999-01-28 2002-02-06 Sumitomo Metal Ind Machine structural steel product
US6475305B1 (en) 1999-01-28 2002-11-05 Sumitomo Metal Industries, Ltd. Machine structural steel product

Also Published As

Publication number Publication date
CA2243123A1 (en) 1998-06-04
EP0903418B1 (en) 2003-01-29
CN1205036A (en) 1999-01-13
KR19990076784A (en) 1999-10-15
CA2243123C (en) 2002-01-29
EP0903418A4 (en) 1999-04-21
EP0903418A1 (en) 1999-03-24
CN1095503C (en) 2002-12-04
KR100268536B1 (en) 2000-10-16
DE69718784D1 (en) 2003-03-06
DE69718784T2 (en) 2003-12-18

Similar Documents

Publication Publication Date Title
WO1998023784A1 (en) Steel having excellent machinability and machined component
JP5152441B2 (en) Steel parts for machine structure and manufacturing method thereof
WO2012161321A1 (en) Steel component for mechanical structural use and manufacturing method for same
JP5801529B2 (en) Non-heat treated steel for hot forging with high bending fatigue strength and small deformation due to repeated stress, and method for producing the same
JP4267234B2 (en) Hot rolled steel for machine structure with excellent forgeability and machinability
JP3489434B2 (en) High-strength free-cut non-heat treated steel
JP5152440B2 (en) Steel parts for machine structure and manufacturing method thereof
JP3416869B2 (en) Low ductility non-heat treated steel with excellent machinability
JP6477382B2 (en) Free-cutting steel
JP6477383B2 (en) Free-cutting steel
JP3489656B2 (en) High-strength, high-toughness tempered steel with excellent machinability
JP3644275B2 (en) Martensitic bainite-type non-tempered steel material excellent in machinability and manufacturing method thereof
JP2009108357A (en) Non-heat treated steel for martensite type hot-forging, and hot-forged non-heat treated steel part
JP3475706B2 (en) High-strength, high-toughness tempered steel with excellent machinability
JP3489376B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JP3494271B2 (en) Free-cutting non-heat treated steel with excellent strength and toughness
JP3489655B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JP3395642B2 (en) Coarse-grained case hardened steel material, surface-hardened part excellent in strength and toughness, and method for producing the same
JP3534146B2 (en) Non-heat treated steel excellent in fatigue resistance and method for producing the same
JP3472675B2 (en) High-strength free-cut non-heat treated steel
JP4768117B2 (en) Steel and machine parts with excellent machinability and cold workability
JP3849296B2 (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel
JPH11229082A (en) Ferritic-pearlitic type non-refining steel excellent in machinability
JP3353698B2 (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized parts using the steel
JP3416868B2 (en) High-strength, low-ductility non-heat treated steel with excellent machinability

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97191416.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09103566

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019980704909

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2243123

Country of ref document: CA

Ref document number: 2243123

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1997913441

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997913441

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980704909

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980704909

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997913441

Country of ref document: EP