JP4267260B2 - Steel with excellent machinability - Google Patents

Steel with excellent machinability Download PDF

Info

Publication number
JP4267260B2
JP4267260B2 JP2002174645A JP2002174645A JP4267260B2 JP 4267260 B2 JP4267260 B2 JP 4267260B2 JP 2002174645 A JP2002174645 A JP 2002174645A JP 2002174645 A JP2002174645 A JP 2002174645A JP 4267260 B2 JP4267260 B2 JP 4267260B2
Authority
JP
Japan
Prior art keywords
steel
machinability
cutting
effect
mns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002174645A
Other languages
Japanese (ja)
Other versions
JP2004018925A (en
Inventor
雅之 橋村
水野  淳
浩 平田
賢一郎 内藤
博 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002174645A priority Critical patent/JP4267260B2/en
Priority to CNB038134446A priority patent/CN100355927C/en
Priority to KR1020047020308A priority patent/KR100683923B1/en
Priority to PCT/JP2003/007502 priority patent/WO2003106724A1/en
Priority to TW92116112A priority patent/TWI306476B/en
Publication of JP2004018925A publication Critical patent/JP2004018925A/en
Application granted granted Critical
Publication of JP4267260B2 publication Critical patent/JP4267260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Description

【0001】
【発明の属する技術分野】
本発明は自動車や一般機械などの部品に用いられる鋼に関するものであり、特に切削時の工具寿命、切削表面粗さおよび切り屑処理性等の被削性に優れた鋼に関するものである。
【0002】
【従来の技術】
一般機械や自動車は多種の部品を組み合わせて製造されているが、その部品は要求精度と製造効率の観点から、多くの場合、切削工程を経て製造されている。その際、コスト低減と生産能率の向上が求められ、鋼にも被削性の向上が求められている。
【0003】
C添加量が0.2%未満の低炭快削鋼と呼ばれるSUM23やSUM24Lは被削性を重要視して開発されてきた。これまで被削性を向上させるためにS、Pbなどの被削性向上元素を添加するのが有効であることが知られている。しかし、近年、Pbは環境負荷として使用を避ける傾向に有り、その使用量を低減する方向にある。
【0004】
これまでもPbを添加しない場合にはSのようにMnSのような切削環境下で軟質となる介在物を形成して被削性を向上させる手法が使われている。しかしいわゆる低炭鉛快削鋼SUM24Lには低炭硫黄快削鋼SUM23と同量のSが添加されている。したがって従来以上のS量を添加する必要がある。しかし多量S添加ではMnSを単に粗大にするだけで、被削性向上に有効なMnS分布にならないだけでなく、圧延、鍛造等において破壊起点になって圧延疵等の製造上の問題を多く引き起こす。さらにSUM23をベースとする硫黄快削鋼では構成刃先が付着しやすく、構成刃先の脱落および切り屑分離現象に伴う、切削表面に凹凸が生じ、表面粗さが劣化する。従って被削性の観点からも表面粗さが劣化による精度低下が問題である。切り屑処理性においても、切り屑が短く分断しやすい方が良好とされているが、単なるS添加だけではマトリックスの延性が大きいため、十分に分断されず、大きく改善できなかった。
S以外の元素、Te、Bi、P等も被削性向上元素として知られているが、ある程度被削性を向上させることができても、圧延や熱間鍛造時に割れを生じ易くなるため、極力少ない方が望ましいとされている。
【0005】
また0.2%以上のCを含有する鋼ではC、Cr、Mo等の合金元素を多く含み、比較的高強度を有する。このような構造用鋼の場合、構成刃先生成とそれによって生じる切削表面の凹凸(粗さ)の問題は小さく、元来が硬い材料なので、表面粗さは比較的良好である。しかし、基本的な強度が高いために被削性向上元素のSを多く添加すると、生成されるMnSが圧延や鍛造で伸延するために機械的性質に異方性を生じるため、部品への適用には大きく制約をうける。実質高強度鋼には被削性向上のためのS添加は行われず、被削性を犠牲にすることがほとんどである。
【0006】
【発明が解決しようとする課題】
上記のような情況から、本発明は、圧延や鍛造および製品性能上の不具合を避けつつ、C含有量が0.15%に満たないいわゆる低炭素鋼に関しては工具寿命と表面粗さの両者を改善した優れた被削性を有する鋼を供給することであり、また、0.15%以上のCを含有する構造用鋼、高強度鋼の場合には機械的性質(異方性も含む)と被削性が両立する鋼を提供することを課題とする。
【0007】
【課題を解決するための手段】
切削は切り屑を分離する破壊現象であり、それを促進させることが一つのポイントとなる。しかし、前述したごとく、Sを単純に増量するだけでは限界がある。
【0008】
そこで、本発明者らは実験を重ね鋭意研究した結果、Sを増量するだけでなく、基本成分としてZnを含有させることによりマトリックスを脆化させ、破壊を容易にして工具寿命を延長すると共に切削表面の凹凸を抑制できることを知見した。
【0009】
本発明は以上の知見に基づいてなされたものであって、その要旨は以下のとおりである。
【0010】
(1) 質量%で(以下、同じ)、
C:0.001〜1.5%、
Si:3%以下、
Mn:0.01〜3%、
P:0.001〜0.2%、
S:0.0001〜1.2%、
Zn:0.001〜0.5%、
N:0.0001〜0.02%、
O:0.0005〜0.05%
を含有し、残部Feおよび不可避的不純物からなることを特徴とする被削性に優れた鋼。
【0011】
(2) さらに、
Sn:0.002〜0.5%
を含有することを特徴とする上記(1)記載の被削性に優れた鋼。
(3) さらに、
B:0.0005〜0.05%、
を含有することを特徴とする上記(1)または(2)記載の被削性に優れた鋼。
【0012】
(4) さらに、
Cr:0.01〜7%
V:0.01〜3%、
Nb:0.001〜0.2%、
Ti:0.001〜0.5%
の内の1種を含有することを特徴とする上記(1)乃至(3)の内のいずれかに記載の被削性に優れた鋼。
【0013】
(5) さらに、
Cr:0.01〜7%
を含有し、さらに、
Mo:0.01〜3%、
W:0.01〜3%
の内の1種を含有することを特徴とする上記(1)乃至()の内のいずれかに記載の被削性に優れた鋼。
【0014】
(6) さらに、
Cr:0.01〜7%、
Mo:0.01〜3%、
を含有し、さらに、
Ni:0.05〜7%、
Cu:0.02〜3%
の内の1種または2種を含有すると共に、Cuが0.3%以上を含む場合はNi%≧Cu%を満足することを特徴とする上記(1)乃至()の内のいずれかに記載の被削性に優れた鋼。
【0015】
(7) さらに、
Al:0.001〜2%、
Zr:0.0003〜0.5%、
Mg:0.0002〜0.02%
の内の1種または2種以上を含有することを特徴とする上記(1)乃至(6)の内のいずれかに記載の被削性に優れた鋼。
【0016】
【発明の実施の形態】
本発明の基本思想は、鋼の必須成分としてSの他にZnを含有させることにより、機械的性質を損なうことなく、被削性を向上させることにある。
【0017】
即ち、Znは、本発明で特に重要な元素である。Znには鋼を脆化させる効果があり、被削性を向上させる効果を持つ。特に切削表面粗さを改善する効果がある。また従来から知られているMnSのような粗大な介在物の形態をとらず、マトリックス中に存在するために機械的性質の劣化は最低限に抑制することができる。この効果は特に異方性として顕著に認められる。逆に同程度の機械的性質を有していても、Znが添加されている場合には良好な被削性を得ることができる。これは切削熱によって温度上昇したときにZnの脆化効果が顕著になるためと考えられる。さらに切削中には工具/被削材界面で潤滑効果を生み出すと考えられる。Zn:0.001%未満ではその効果が小さい。一方、Znは溶製時に非常に気化しやすいことから、Znを溶鋼中に残留させ、凝固後も0.5%を超えるZn量を維持するには、多量のZnの投入が必要であり、コストの点から工業的に成立しないため0.5%を上限とした。従って、本発明鋼のZnの成分範囲を0.001〜0.5%に限定した。
【0018】
Znに加えて、さらに、Sn、B、Te等の被削性向上元素を含有させることができるが、Snは単独では被削性は向上せず、Znとの相互作用により被削性が向上する。
【0019】
以下に、Zn以外の鋼成分を限定した理由を説明する。
【0020】
C:0.001〜1.5%
Cは、鋼材の基本強度と鋼中の酸素量に関係するので被削性に大きな影響を及ぼす。Cを多く添加して強度を高めると被削性を低下させるのでその上限を1.5%とした。一方、被削性を低下させる硬質酸化物生成を防止しつつ、凝固過程でのピンホール等の高温での固溶酸素の弊害を抑制するため、酸素量を適量に制御する必要がある。単純に吹錬によってC量を低減させすぎるとコストがかさむだけでなく、鋼中酸素量が多量に残留してピンホール等の不具合の原因となる。従って、ピンホール等の不具合を容易に防止できるC量0.001%を下限とした。
【0021】
Si:3%以下
Siの過度な添加は熱間延性が低下して圧延等が困難になるが、適度な添加は機械的性質を付与したり、酸化物を軟質化させ、被削性を向上させる。その上限は3%であり、それ以上では熱間延性が低下して圧延等が困難になり工業生産が困難になる。また、硬質酸化物を生じて被削性を低下させるなどの弊害も生じる。
【0022】
Mn:0.01〜3.0%
Mnは、脱酸元素として、また鋼中硫黄をMnSとして固定・分散させるために必要である。また鋼中酸化物を軟質化させ、酸化物を無害化させるために必要である。その効果は添加するS量にも依存するが、0.01%未満では添加SをMnSとして十分に固定できず、SがFeSとなり脆くなる。Mn量が大きくなると素地の硬さが大きくなり被削性や冷間加工性が低下するので、3.0%を上限とした。
【0023】
P:0.001〜0.2%
Pは、鋼中において素地の硬さが大きくなり、冷間加工性だけでなく、熱間加工性や鋳造特性が低下するので、その上限を0.2%にしなければならない。一方、脆化させることで切削を容易にして被削性向上に効果がある元素で下限値を0.001%とした。
【0024】
S:0.0001〜1.2%
Sは、Mnと結合してMnS介在物として存在する。MnSは被削性を向上させるが、伸延したMnSは鍛造時の異方性を生じる原因の一つである。大きなMnSは避けるべきであるが、被削性向上の観点からは多量の添加が好ましい。従ってMnSを微細分散させることが好ましい。被削性向上には0.0001%以上の添加が必要で、好ましくは0.001%以上の添加がよい。一方、1.2%を越えると粗大MnSの生成が避けられないだけでなく、FeS等による鋳造特性、熱間変形特性の劣化から製造中に割れを生じるので、これを上限とした。
【0025】
N:0.0001〜0.02%
Nは、固溶Nの場合、鋼を硬化させる。特に切削においては動的ひずみ時効によって刃先近傍で硬化し、工具の寿命を低下させるが、切削表面粗さを改善する効果もある。またBと結びついてBNを生成して被削性を向上させる。N含有量が0.0001%未満では固溶窒素による表面粗さ向上効果やBNによる被削性改善効果が認められないので、これを下限とした。またN含有量が0.02%を越えると固溶窒素が多量に存在するためかえって工具寿命を低下させる。また鋳造途中に気泡を生成し、疵などの原因となる。従って本発明ではそれらの弊害が顕著になる0.02%を上限とした。
【0026】
O:0.0005〜0.05%
Oは、freeで存在する場合には冷却時に気泡となり、ピンホールの原因となる。また酸化物を軟質化し、被削性に有害な硬質酸化物を抑制するためにも制御が必要である。さらにMnSの微細分散させる際にも析出核として酸化物を利用する。O含有量が0.0005%未満では十分にMnSを微細分散させることができず、粗大なMnSを生じ、機械的性質にも悪影響を及ぼす。従って0.0005%を下限とした。さらにO含有量が0.05%を越えると鋳造中に気泡となりピンホールとなるため、0.05%以下とした。
【0027】
Sn:0.002〜0.5%
Snは、軟質金属であり、鋼中では粒界等に分布して鋼を脆化させる。このことで被削性を向上させる。0.002%以下ではその効果が認められず、0.5%を越えると、鋼を脆化させることで鋳造および圧延を困難にする。したがってその範囲を0.002〜0.5%とした。
【0028】
B:0.0005〜0.05%
Bは、被削性向上に効果がある。この効果は0.0005%未満では顕著でなく、0.05%を超えて添加してもその効果が飽和し、熱履歴によってBNが多く析出しすぎるとかえって鋳造特性、熱間変形特性の劣化から製造中に割れを生じる。そこで0.0005〜0.05%を範囲とした。
【0029】
Cr:0.01〜7%
Crは焼入れ性向上、焼戻し軟化抵抗付与元素である。また多量に添加することで耐食性を得られる。そのため高強度化が必要な鋼には添加される。その場合、0.01%以上の添加を必要とする。しかし多量に添加するとCr炭化物を生成し脆化させるため、7%を上限とした。
【0030】
Mo:0.01〜3%
Moは、焼戻し軟化抵抗を付与するとともに、焼入れ性を向上させる元素である。0.01%未満ではその効果が認められず、3%を超えて添加してもその効果が飽和しているので、0.01%〜3%を添加範囲とした。
【0031】
V:0.01〜3%
Vは、炭窒化物を形成し、二次析出硬化により鋼を強化することができる。0.01%未満では高強度化に効果はなく、3%を超えて添加すると多くの炭窒化物を析出し、かえって機械的性質を損なうので、これを上限とした。
【0032】
Nb:0.001〜0.2%
Nbも炭窒化物を形成し、二次析出硬化により鋼を強化することができる。0.001%未満では高強度化に効果はなく、0.2%を超えて添加すると多くの炭窒化物を析出し、かえって機械的性質を損なうので、これを上限とした。
【0033】
Ti:0.001〜0.5%
Tiも炭窒化物を形成し、鋼を強化する。また脱酸元素でもあり、軟質酸化物を形成させることで被削性を向上させることが可能である。0.001%未満ではその効果が認められず、0.5%を超えて添加してもその効果が飽和する。また、Tiは高温でも窒化物となりオーステナイト粒の成長を抑制する。そこで上限を0.5%とした。
【0034】
W:0.01〜3%
Wは、炭窒化物を形成し、二次析出硬化により鋼を強化することができる。0.01%未満では高強度化に効果はなく、3%を超えて添加すると粗大な炭窒化物を析出し、かえって機械的性質を損なうので、これを上限とした。
【0035】
Ni:0.05〜7%
Niは、フェライトを強化し、延性を延性向上させるとともに焼入れ性向上、耐食性向上にも有効である。0.05%未満ではその効果は認められず、7%を超えて添加しても、機械的性質の点では効果が飽和するので、これを上限とした。
【0036】
Cu:0.02〜3%
Cuは、フェライトを強化し、延性を延性向上させるとともに焼入れ性向上、耐食性向上にも有効である。0.02%未満ではその効果は認められず、3%を超えて添加しても、機械的性質の点では効果が飽和するので、これを上限とした。またCuは単独で添加すると熱間延性を極端に低下させて、割れ等の鋳造、圧延におけるトラブルの原因となる。その添加量が0.3%を越える場合には、製造上のトラブルをそれを避けるために、Niの添加量をNi%≧Cu%となるように添加することが好ましい。
【0037】
Al:0.001〜2%
Alは、脱酸元素で鋼中ではAl23やAlNを形成する。 それにより焼入れ時のオーステナイト粒径の粗大化防止さらには靭性の向上に有効である。しかし0.001%未満ではその効果が認められず、2%を越えると粗大な介在物を生じて、かえって機械的性質を低下させる。さらにAl23は硬質なので切削時に工具損傷の原因となり、摩耗を促進する場合がある。そこでオーステナイト粒等の粗大化効果が飽和し、Al23の弊害が顕著となる2%を上限とした。特に被削性を優先する場合にはAl23を多量に生成しない0.015%以下にすることが好ましく、さらに酸化物の軟質化を優先させる場合には0.005%以下が好ましい。
【0039】
Zr:0.0003〜0.5%
Zrは、脱酸元素であり、酸化物を生成する。酸化物はMnSの析出核になりMnSの微細均一分散に効果がある。またMnSに固溶してその変形能を低下させ、圧延や熱間鍛造してもMnS形状の伸延を抑制する働きがある。したがって異方性の低減に有効な元素である。0.0003%未満ではその効果は顕著ではなく、0.5%を越えて添加しても歩留まりが極端に悪くなるばかりでなく、硬質のZrO2やZrSなどを大量に生成し、かえって被削性を低下させる。したがって成分範囲を0.0003〜0.5%と規定した。
【0040】
Mg:0.0002〜0.02%
Mgは、脱酸元素であり、酸化物を生成する。酸化物はMnSの析出核になりMnSの微細均一分散に効果がある。したがって異方性の低減に有効な元素である。0.0002%未満ではその効果は顕著ではなく、0.02%を超えて添加しても歩留まりが極端に悪くなるばかりで効果は飽和する。したがって成分範囲を0.0002〜0.02%と規定した。
【0043】
【実施例】
本発明の効果を実施例によって説明する。表1に示す化学成分を有する供試材の一部は270t転炉で溶製後、ビレットに分解圧延、さらにφ50mmの棒鋼に圧延した。他は2t−真空溶解炉にて溶製、圧延した。表2の実施例1〜40に示す材料の被削性評価はドリル穿孔試験で表3に切削条件を示す。累積穴深さ1000mmまで切削可能な最高の切削速度(いわゆるVL1000)で被削性を評価した。このVL1000の単位はm/minで、大きい程良好な工具寿命に優れる(以下、同じ)。
【0044】
さらに表面粗さは突切工具によって工具形状を転写する、いわゆるプランジ切削によって評価した。その実験方法の概要を図1に示す。即ち、図1(a)に示すように、切削方向1に回転する試験材2を工具3により切削し、図1(b)に示すように、工具3を動かして表面粗さ測定面4を形成する。また切削条件を表4に示す。実験では200溝加工した場合の表面粗さ(10点表面粗さRzμm)を測定した。ここで表2に示す切り屑処理性に関して、切り屑はカール形状となるが、カールが5巻き以下で切り屑が破断し、短い切り屑を生成している場合を「○」、5巻をこえても破断しない長い切り屑を生成している場合を「×」と表記した。
【0045】
【表1】

Figure 0004267260
【0046】
【表2】
Figure 0004267260
【0047】
【表3】
Figure 0004267260
【0048】
【表4】
Figure 0004267260
【0049】
発明例はいずれも比較例に対してドリル工具寿命に優れるとともに、プランジ切削における表面粗さが良好であった。これはC、S等の添加量が異なっても、その順位が変わることはなく、Zn、Sn、B等の元素が添加された場合、同一C、S等の比較鋼に比べ、工具寿命と表面粗さに優れた。S量の多い方が被削性が良好な傾向にあったが、S量が比較的少量の場合でも切り屑処理性に改善が見られた。
【0050】
一方、実施例中の比較例6および26のようにSnが添加された場合でもZnが添加されていなければ被削性は向上しなかった。
【0051】
さらに従来から知られているTe、Pb、Bi等の被削性向上元素の含まれる場合であってもZnを添加した方がより優れた被削性を示した。
【0052】
同じく、構造用炭素鋼をベースとした鋼の被削性、機械的性質を評価したサンプルの化学成分を表5に評価結果を表6に示す。それぞれの供試材は一部は270t転炉で溶製後、ビレットに分解圧延、さらにφ65mmの棒鋼に圧延した。他は2t−真空溶解炉にて溶製、圧延した。
【0053】
衝撃値(J/cm)はJISに準拠して2mm深さのUノッチ試験片を作成して評価した。
【0054】
0.1%程度のCを含有する実施例41〜43に関する被削性評価はドリル穿孔試験で表3に切削条件を示す。累積穴深さ1000mmまで切削可能な最高の切削速度(いわゆるVL1000)で被削性を評価した。
【0055】
さらに表面粗さは突切工具によって工具形状を転写する、いわゆるプランジ切削によって評価した。実験では200溝加工した場合の表面粗さを測定した。表4に示すプランジ切削により表面粗さを評価した。
【0056】
約0.3%のCを含有する実施例44〜46およびそれらを超えるC量の実施例47〜71に関しては機械的性質を重要視するため、衝撃値およびその異方性を示した。ここでは棒鋼の横断面方向から切り出した試料の衝撃値を示す(「C方向」欄)とともに、異方性として (横断面方向試料の衝撃値)/(長手方向試料の衝撃値)を示した(「異方性」欄)。この値が大きいほど異方性が少ないことを示す。
【0057】
なお実施例44〜71の被削性評価はドリル穿孔特性VL1000で行い、表7に示す切削条件で評価した。これらの場合、切削表面粗さは評価していない。
【0058】
【表5】
Figure 0004267260
【0059】
【表6】
Figure 0004267260
【0060】
【表7】
Figure 0004267260
【0061】
実施例41〜43の比較では発明例はVL1000および表面粗さで比較例より勝っていた。また実施例44〜71に関しては、発明例はほぼ同等のCおよび他の合金元素を含有した比較例に対して硬度HV、横断面方向試料の衝撃値および(横断面方向試料の衝撃値)/(長手方向試料の衝撃値)は、ほぼ同等であるにも拘わらず、発明例の方が、VL1000が良好で被削性に優れることがわかる。
【0062】
さらに比較例53のようにSを増量することで被削性を向上させた場合、衝撃値の異方性が低下するため、構造用鋼としての性能が発明例47、48より劣ると考えられた。
【0063】
表8に、合金元素を多量に添加し、焼入れ性を向上させた鋼をベースとした実施例を示す。供試材は一部は270t転炉で溶製後、ビレットに分解圧延、さらにφ50mmに圧延した。他は2t−真空溶解炉にて溶製、圧延した。
【0064】
実施例78〜82はSCr420をベースとした鋼に関して、焼準(920℃×1hr→空冷)を施した後、切削試験に供した。被削性評価はドリル穿孔試験で切削条件は表5と同じ、評価項目は累積穴深さ1000mmまで切削可能な最高の切削速度(いわゆるVL1000)である。このVL1000の単位はm/minで、大きい程良好な工具寿命に優れる。さらに硬度を測定するとともに、図2に示すように9mmφの試験片にR1.16mmのノッチを形成したノッチ付き小野式回転曲げ試験片を作成し、図3(a)及び(b)に示す条件で浸炭焼入れし、焼戻した後に疲労特性を評価した。
【0065】
その結果、上記焼準後の硬さはほとんど同一にも関わらずVL1000は開発鋼の方が優れていた。浸炭焼入れ焼戻し後の疲労特性はほぼ同等であった。逆に比較例82は、Sを増量することで被削性VL1000を大きくしたが、その反面、浸炭焼入れ焼戻し後の疲労限度が他に比べて低くなった。本発明の技術が被削性を向上させるものの、その後の歯車性能を低下させないことがわかる。
【0066】
【表8】
Figure 0004267260
【0067】
表9に、さらに合金元素を多量に添加し、焼入れ性を向上させた鋼をベースとした実施例を示す。供試材は一部は270t転炉で溶製後、ビレットに分解圧延、さらにφ50mmに圧延した。他は2t−真空溶解炉にて溶製、圧延した。被削性評価はドリル穿孔試験で切削条件は表7と同じ、評価項目は累積穴深さ1000mmまで切削可能な最高の切削速度(いわゆるVL1000)である。
【0068】
実施例83〜88はSCM440をベース鋼として、焼入れ焼戻し処理によって硬度をHV310程度に合わせ、被削性評価はVL1000で行った。また機械的性質として衝撃値を評価した。衝撃値は試料を棒鋼の長手方向から切り出し、JIS3号試験片(2mmU切欠き試験片)によって測定した。その結果、発明例は比較例に対してほぼ同一の硬度、衝撃値(J/cm)を有するにもかかわらず、被削性VL1000は比較例よりも大きく、優れていた。
【0069】
また実施例89〜94は軸受け鋼をベースとし、球状化焼鈍処理700℃×20hr保定により軟質化させ、被削性VL1000を測定した。その結果、発明例は比較例と比較して、ほぼ同等の硬度を有しているにも関わらず、被削性VL1000は大きく、比較例より優れていた。
【0070】
【表9】
Figure 0004267260
【0071】
【発明の効果】
本発明鋼によれば、鋼中マトリックスの破断を促進することで、0.15%未満のC量のいわゆる低炭快削鋼においては工具寿命と切削表面粗さを改善し、Pbを含まない場合でも良好な工具寿命と切削表面粗さを得ることができ、また、0.15%以上のCを含む構造用鋼においても、被削性を向上させるとともに、機械的性質の劣化、特に異方性を最低限に抑制することができる。あるいは同程度の機械的性質を有する鋼よりも本発明鋼は良好な被削性を得ることができる。
【図面の簡単な説明】
【図1】プランジ切削試験の概要を示す図で、(a)はプランジ切削試験方法、(b)は工具の動きを示す図である。
【図2】ノッチ部付の小野式回転曲げ試験片を示す図である。
【図3】浸炭条件を示す模式図で、(a)は浸炭焼入を(b)は焼戻しの条件を示す模式図である。
【符号の説明】
1 切削方向
2 試験材
3 工具
4 表面粗さ測定面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to steel used for parts such as automobiles and general machines, and particularly relates to steel excellent in machinability such as tool life during cutting, cutting surface roughness, and chip disposal.
[0002]
[Prior art]
General machines and automobiles are manufactured by combining various parts, and the parts are often manufactured through a cutting process from the viewpoint of required accuracy and manufacturing efficiency. At that time, cost reduction and improvement in production efficiency are required, and steel is also required to improve machinability.
[0003]
SUM23 and SUM24L called low-carbon free-cutting steel with a C addition amount of less than 0.2% have been developed with an emphasis on machinability. It has been known that adding a machinability improving element such as S or Pb is effective for improving machinability. However, in recent years, Pb has a tendency to avoid use as an environmental load and tends to reduce its use amount.
[0004]
Until now, in the case where Pb is not added, a technique of improving the machinability by forming a soft inclusion such as S in a cutting environment such as MnS has been used. However, so-called low-carbon lead free-cutting steel SUM24L is added with the same amount of S as low-carbon sulfur free-cutting steel SUM23. Therefore, it is necessary to add more S than before. However, when a large amount of S is added, the MnS is merely coarsened, and not only the MnS distribution effective for improving the machinability is obtained, but also causes many problems in production such as rolling mills as a starting point of fracture in rolling, forging, etc. . Furthermore, in the sulfur free-cutting steel based on SUM23, the constituent cutting edges are likely to adhere, and the cutting surface is uneven due to the falling off of the constituent cutting edges and the chip separation phenomenon, and the surface roughness is deteriorated. Therefore, from the viewpoint of machinability, there is a problem that the surface roughness is degraded due to deterioration. In terms of chip disposal, it is considered better that the chips are short and easy to break, but the mere addition of S has a high ductility of the matrix.
Elements other than S, Te, Bi, P, etc. are also known as machinability improving elements, but even if machinability can be improved to some extent, cracking is likely to occur during rolling or hot forging, It is considered to be as small as possible.
[0005]
Further, steel containing 0.2% or more of C contains a large amount of alloy elements such as C, Cr, and Mo and has a relatively high strength. In the case of such structural steel, the problem of generation of the constituent cutting edge and the unevenness (roughness) of the cutting surface caused thereby is small, and since the material is originally hard, the surface roughness is relatively good. However, because the basic strength is high, adding a large amount of the machinability-enhancing element S causes anisotropy in the mechanical properties because the produced MnS is elongated by rolling or forging. There are significant restrictions. Substantially high-strength steel is not added with S for improving machinability, and the machinability is often sacrificed.
[0006]
[Problems to be solved by the invention]
From the circumstances as described above, the present invention avoids problems in rolling, forging and product performance, and has both tool life and surface roughness for so-called low carbon steel having a C content of less than 0.15%. It is to supply steel having improved machinability, and in the case of structural steel and high strength steel containing 0.15% or more of C, mechanical properties (including anisotropy) It is an object to provide a steel that is compatible with the machinability.
[0007]
[Means for Solving the Problems]
Cutting is a destructive phenomenon that separates chips, and promoting it is one point. However, as described above, there is a limit to simply increasing S.
[0008]
Therefore, the present inventors conducted extensive experiments and, as a result, not only increased the amount of S but also made Zn embrittled by containing Zn as a basic component, facilitating fracture and extending the tool life and cutting. It has been found that surface irregularities can be suppressed.
[0009]
The present invention has been made based on the above findings, and the gist thereof is as follows.
[0010]
(1) In mass% (hereinafter the same),
C: 0.001 to 1.5%,
Si: 3% or less,
Mn: 0.01 to 3%
P: 0.001 to 0.2%,
S: 0.0001 to 1.2%,
Zn: 0.001 to 0.5%,
N: 0.0001 to 0.02%,
O: 0.0005 to 0.05%
A steel excellent in machinability, characterized by comprising a balance Fe and inevitable impurities .
[0011]
(2) Furthermore,
Sn: 0.002-0.5%
The steel excellent in machinability according to the above (1), characterized by containing.
(3) Furthermore,
B: 0.0005 to 0.05%,
The steel excellent in machinability according to the above (1) or (2), characterized by comprising:
[0012]
(4) Furthermore,
Cr: 0.01~7%,
V: 0.01 to 3%
Nb: 0.001 to 0.2%,
Ti: 0.001~0.5%,
The steel excellent in machinability according to any one of the above (1) to (3), characterized by containing one of the above.
[0013]
(5) Furthermore,
Cr: 0.01-7%
In addition,
Mo: 0.01 to 3%,
W: 0.01 to 3%
The steel excellent in machinability according to any one of the above (1) to ( 3 ), comprising one of the above.
[0014]
(6) Furthermore,
Cr: 0.01-7%
Mo: 0.01 to 3%,
In addition,
Ni: 0.05-7%,
Cu: 0.02 to 3%
Any one of the above (1) to ( 3 ) is characterized in that it contains one or two of the above, and when Cu contains 0.3% or more, Ni% ≧ Cu% is satisfied . Steel with excellent machinability as described in 1.
[0015]
(7) Furthermore,
Al: 0.001-2%,
Zr: 0.0003 to 0.5%,
Mg: 0.0002 to 0.02%
The steel excellent in machinability according to any one of the above (1) to (6), characterized by containing one or more of the above.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The basic idea of the present invention is to improve machinability without impairing mechanical properties by containing Zn as an essential component of steel in addition to S.
[0017]
That is, Zn is an especially important element in the present invention. Zn has an effect of embrittlement of steel and has an effect of improving machinability. In particular, it has the effect of improving the cutting surface roughness. Further, since it is present in the matrix without taking the form of coarse inclusions such as conventionally known MnS, the deterioration of mechanical properties can be minimized. This effect is particularly noticeable as anisotropy. On the other hand, even if they have similar mechanical properties, good machinability can be obtained when Zn is added. This is considered to be because the embrittlement effect of Zn becomes remarkable when the temperature rises by cutting heat. Furthermore, it is thought that a lubricating effect is produced at the tool / workpiece interface during cutting. If the Zn content is less than 0.001%, the effect is small. On the other hand, since Zn is very easy to vaporize during melting, it is necessary to input a large amount of Zn in order to leave Zn in the molten steel and maintain a Zn content exceeding 0.5% even after solidification, Since it is not industrially established from the viewpoint of cost, 0.5% was made the upper limit. Therefore, the component range of Zn in the steel of the present invention is limited to 0.001 to 0.5%.
[0018]
In addition to Zn, machinability improving elements such as Sn, B, and Te can be further added. However, Sn alone does not improve machinability, and machinability is improved by interaction with Zn. To do.
[0019]
Below, the reason which limited steel components other than Zn is demonstrated.
[0020]
C: 0.001 to 1.5%
Since C is related to the basic strength of the steel material and the amount of oxygen in the steel, it greatly affects the machinability. When the strength is increased by adding a large amount of C, the machinability is lowered, so the upper limit was made 1.5%. On the other hand, it is necessary to control the amount of oxygen to an appropriate amount in order to prevent the generation of hard oxides that reduce machinability and to suppress the adverse effects of dissolved oxygen at high temperatures such as pinholes during the solidification process. If the amount of C is simply reduced by blowing, not only the cost is increased, but a large amount of oxygen remains in the steel, causing problems such as pinholes. Therefore, the lower limit is set to 0.001% of C, which can easily prevent problems such as pinholes.
[0021]
Si: 3% or less Excessive addition of Si reduces hot ductility and makes rolling difficult, but moderate addition imparts mechanical properties and softens oxides to improve machinability. Let The upper limit is 3%, and if it is more than that, the hot ductility is lowered and rolling or the like becomes difficult, making industrial production difficult. In addition, there are also adverse effects such as the generation of hard oxides that reduce machinability.
[0022]
Mn: 0.01 to 3.0%
Mn is necessary as a deoxidizing element and for fixing and dispersing sulfur in steel as MnS. It is also necessary to soften the oxide in steel and render the oxide harmless. The effect depends on the amount of S to be added, but if it is less than 0.01%, the added S cannot be sufficiently fixed as MnS, and S becomes FeS and becomes brittle. If the amount of Mn increases, the hardness of the substrate increases and the machinability and cold workability deteriorate, so 3.0% was made the upper limit.
[0023]
P: 0.001 to 0.2%
P increases the hardness of the substrate in the steel and lowers not only cold workability but also hot workability and casting characteristics, so the upper limit must be 0.2%. On the other hand, the lower limit value was made 0.001% with an element that is easy to cut by embrittlement and is effective in improving machinability.
[0024]
S: 0.0001 to 1.2%
S combines with Mn and exists as MnS inclusions. Although MnS improves machinability, the elongated MnS is one of the causes of anisotropy during forging. Large MnS should be avoided, but a large amount is preferable from the viewpoint of improving machinability. Therefore, it is preferable to finely disperse MnS. Addition of 0.0001% or more is necessary for improving machinability, and 0.001% or more is preferable. On the other hand, if it exceeds 1.2%, not only the formation of coarse MnS is unavoidable, but also cracks occur during production due to deterioration of casting characteristics and hot deformation characteristics due to FeS etc., so this was made the upper limit.
[0025]
N: 0.0001 to 0.02%
When N is a solute N, it hardens the steel. Especially in cutting, it hardens in the vicinity of the cutting edge due to dynamic strain aging and reduces the tool life, but also has the effect of improving the cutting surface roughness. Moreover, it combines with B to generate BN to improve machinability. When the N content is less than 0.0001%, the effect of improving the surface roughness due to solute nitrogen and the effect of improving the machinability due to BN are not recognized, so this was made the lower limit. On the other hand, if the N content exceeds 0.02%, a large amount of dissolved nitrogen is present, and the tool life is shortened. In addition, bubbles are generated during casting, causing wrinkles. Therefore, in the present invention, the upper limit is set to 0.02% at which those adverse effects become remarkable.
[0026]
O: 0.0005 to 0.05%
When O is present as free, it becomes bubbles during cooling and causes pinholes. Control is also necessary to soften the oxide and suppress hard oxides that are detrimental to machinability. Further, when finely dispersing MnS, an oxide is used as a precipitation nucleus. If the O content is less than 0.0005%, MnS cannot be sufficiently finely dispersed, resulting in coarse MnS, which adversely affects mechanical properties. Therefore, 0.0005% was made the lower limit. Further, if the O content exceeds 0.05%, bubbles are formed during casting, resulting in pinholes.
[0027]
Sn: 0.002-0.5%
Sn is a soft metal and is distributed at grain boundaries and the like in steel to embrittle the steel. This improves machinability. If it is 0.002% or less, the effect is not recognized. If it exceeds 0.5%, the steel becomes brittle, making casting and rolling difficult. Therefore, the range was made 0.002 to 0.5%.
[0028]
B: 0.0005 to 0.05%
B is effective in improving machinability. This effect is not significant when the content is less than 0.0005%, and even if added over 0.05%, the effect is saturated, and too much BN is precipitated due to the thermal history. On the contrary, the casting characteristics and hot deformation characteristics deteriorate. To crack during production. Therefore, the range is 0.0005 to 0.05%.
[0029]
Cr: 0.01-7%
Cr is an element for improving hardenability and imparting temper softening resistance. Moreover, corrosion resistance can be obtained by adding a large amount. Therefore, it is added to steel that requires high strength. In that case, addition of 0.01% or more is required. However, if added in a large amount, Cr carbide is formed and embrittled, so 7% was made the upper limit.
[0030]
Mo: 0.01 to 3%
Mo is an element that imparts temper softening resistance and improves hardenability. If less than 0.01%, the effect is not recognized, and even if added over 3%, the effect is saturated, so 0.01% to 3% was made the addition range.
[0031]
V: 0.01 to 3%
V forms carbonitride and can strengthen steel by secondary precipitation hardening. If it is less than 0.01%, there is no effect in increasing the strength, and if it is added in excess of 3%, many carbonitrides are precipitated, and on the contrary, the mechanical properties are impaired, so this was made the upper limit.
[0032]
Nb: 0.001 to 0.2%
Nb also forms carbonitrides and can strengthen the steel by secondary precipitation hardening. If it is less than 0.001%, there is no effect in increasing the strength. If it is added over 0.2%, a large amount of carbonitride precipitates, and on the contrary, the mechanical properties are impaired, so this was made the upper limit.
[0033]
Ti: 0.001 to 0.5%
Ti also forms carbonitrides and strengthens the steel. It is also a deoxidizing element, and it is possible to improve machinability by forming a soft oxide. If it is less than 0.001%, the effect is not recognized, and even if added over 0.5%, the effect is saturated. Further, Ti becomes a nitride even at a high temperature and suppresses the growth of austenite grains. Therefore, the upper limit was made 0.5%.
[0034]
W: 0.01 to 3%
W forms carbonitride and can strengthen the steel by secondary precipitation hardening. If it is less than 0.01%, there is no effect in increasing the strength, and if it is added in excess of 3%, coarse carbonitrides are precipitated, and on the contrary, the mechanical properties are impaired, so this was made the upper limit.
[0035]
Ni: 0.05-7%
Ni is effective for strengthening ferrite, improving ductility and improving hardenability and corrosion resistance. If less than 0.05%, the effect is not recognized, and even if added over 7%, the effect is saturated in terms of mechanical properties, so this was made the upper limit.
[0036]
Cu: 0.02 to 3%
Cu is effective for strengthening ferrite and improving ductility and improving hardenability and corrosion resistance. If less than 0.02%, the effect is not recognized, and even if added over 3%, the effect is saturated in terms of mechanical properties, so this was made the upper limit. Further, when Cu is added alone, hot ductility is extremely reduced, which causes troubles in casting and rolling such as cracks. When the added amount exceeds 0.3%, in order to avoid manufacturing trouble, it is preferable to add Ni so that Ni% ≧ Cu%.
[0037]
Al: 0.001-2%
Al is a deoxidizing element and forms Al 2 O 3 and AlN in steel. This is effective for preventing coarsening of the austenite grain size during quenching and for improving toughness. However, if it is less than 0.001%, the effect is not recognized, and if it exceeds 2%, coarse inclusions are formed, and mechanical properties are deteriorated. Furthermore, since Al 2 O 3 is hard, it may cause tool damage during cutting and may promote wear. Therefore, the upper limit is set to 2% at which the coarsening effect of austenite grains and the like is saturated and the adverse effect of Al 2 O 3 becomes remarkable. In particular, when priority is given to machinability, it is preferably 0.015% or less, which does not produce a large amount of Al 2 O 3, and when priority is given to softening of oxides, 0.005% or less is preferable.
[0039]
Zr: 0.0003 to 0.5%
Zr is a deoxidizing element and generates an oxide. The oxide becomes a precipitation nucleus of MnS and is effective in finely and uniformly dispersing MnS. Further, it has a function of reducing the deformability by dissolving in MnS and suppressing the extension of the MnS shape even when rolled or hot forged. Therefore, it is an effective element for reducing anisotropy. If it is less than 0.0003%, the effect is not remarkable, and even if added over 0.5%, the yield is not only extremely deteriorated, but also a large amount of hard ZrO 2 or ZrS is generated, and the work is cut instead. Reduce sex. Therefore, the component range was defined as 0.0003 to 0.5%.
[0040]
Mg: 0.0002 to 0.02%
Mg is a deoxidizing element and generates an oxide. The oxide becomes a precipitation nucleus of MnS and is effective in finely and uniformly dispersing MnS. Therefore, it is an effective element for reducing anisotropy. If it is less than 0.0002%, the effect is not remarkable, and even if added over 0.02%, the yield is extremely deteriorated and the effect is saturated. Therefore, the component range was defined as 0.0002 to 0.02%.
[0043]
【Example】
The effects of the present invention will be described with reference to examples. A part of the test material having chemical components shown in Table 1 was melted in a 270 t converter, decomposed and rolled into billets, and further rolled into φ50 mm steel bars. The others were melted and rolled in a 2t-vacuum melting furnace. The machinability evaluation of the materials shown in Examples 1 to 40 in Table 2 is a drill drilling test, and Table 3 shows the cutting conditions. The machinability was evaluated at the highest cutting speed (so-called VL1000) capable of cutting up to a cumulative hole depth of 1000 mm. The unit of VL1000 is m / min. The larger the value, the better the tool life (the same applies hereinafter).
[0044]
Furthermore, the surface roughness was evaluated by so-called plunge cutting in which the tool shape was transferred with a parting tool. An outline of the experimental method is shown in FIG. That is, as shown in FIG. 1A, the test material 2 rotating in the cutting direction 1 is cut by the tool 3, and as shown in FIG. Form. Table 4 shows the cutting conditions. In the experiment, the surface roughness (10-point surface roughness Rz μm) when 200 grooves were processed was measured. Here, regarding the chip disposability shown in Table 2, the chip has a curl shape, but when the curl is 5 or less turns, the chip is broken and a short chip is generated. The case where a long chip that does not break even when it is generated is indicated as “x”.
[0045]
[Table 1]
Figure 0004267260
[0046]
[Table 2]
Figure 0004267260
[0047]
[Table 3]
Figure 0004267260
[0048]
[Table 4]
Figure 0004267260
[0049]
All of the inventive examples were superior in drill tool life to the comparative examples, and the surface roughness in plunge cutting was good. Even if the addition amount of C, S, etc. is different, the order does not change. When an element such as Zn, Sn, B, etc. is added, the tool life is longer than that of the comparative steel of the same C, S, etc. Excellent surface roughness. Although the machinability tended to be better when the amount of S was larger, the chip disposability was improved even when the amount of S was relatively small.
[0050]
On the other hand, even when Sn was added as in Comparative Examples 6 and 26 in the examples, the machinability was not improved unless Zn was added.
[0051]
Furthermore, even when a conventionally known machinability-enhancing element such as Te, Pb, Bi or the like is included, the machinability is better when Zn is added.
[0052]
Similarly, Table 5 shows the chemical composition of samples for which machinability and mechanical properties of steel based on structural carbon steel were evaluated, and Table 6 shows the evaluation results. A part of each test material was melted in a 270 t converter, and then cracked into billets and further rolled into φ65 mm steel bars. The others were melted and rolled in a 2t-vacuum melting furnace.
[0053]
The impact value (J / cm 2 ) was evaluated by preparing a U-notch test piece having a depth of 2 mm in accordance with JIS.
[0054]
The machinability evaluation for Examples 41 to 43 containing about 0.1% of C shows the cutting conditions in Table 3 in a drill drilling test. The machinability was evaluated at the highest cutting speed (so-called VL1000) capable of cutting up to a cumulative hole depth of 1000 mm.
[0055]
Furthermore, the surface roughness was evaluated by so-called plunge cutting in which the tool shape was transferred with a parting tool. In the experiment, the surface roughness when 200 grooves were processed was measured. The surface roughness was evaluated by plunge cutting shown in Table 4.
[0056]
For Examples 44 to 46 containing about 0.3% of C and Examples 47 to 71 having an amount of C exceeding them, the impact value and its anisotropy were shown because the mechanical properties were regarded as important. Here, the impact value of the sample cut from the cross section direction of the steel bar is shown ("C direction" column) and the anisotropy is shown as (impact value of the cross section direction sample) / (long direction sample impact value). ("Anisotropy" column). Larger values indicate less anisotropy.
[0057]
Note machinability Evaluation of Examples 44 to 71 is carried out in drilling characteristics VL1000, were evaluated by cutting conditions shown in Table 7. In these cases, the cutting surface roughness is not evaluated.
[0058]
[Table 5]
Figure 0004267260
[0059]
[Table 6]
Figure 0004267260
[0060]
[Table 7]
Figure 0004267260
[0061]
In the comparison of Examples 41 to 43, the invention example was superior to the comparative example in terms of VL1000 and surface roughness. In addition, regarding Examples 44 to 71 , the invention example has a hardness HV, the impact value of the sample in the cross-sectional direction, and the impact value of the sample in the cross-sectional direction) / the comparative example containing substantially the same C and other alloy elements / Although the (impact value of the sample in the longitudinal direction) is almost the same, it can be seen that the inventive example has better VL1000 and better machinability.
[0062]
Further, when the machinability is improved by increasing the amount of S as in Comparative Example 53, the anisotropy of the impact value is lowered, so the performance as structural steel is considered to be inferior to that of Invention Examples 47 and 48. It was.
[0063]
Table 8 shows examples based on steel in which a large amount of alloying elements are added to improve hardenability. A part of the test material was melted in a 270 t converter, decomposed into billets, and further rolled to φ50 mm. The others were melted and rolled in a 2t-vacuum melting furnace.
[0064]
Examples 78 to 82 were subjected to a cutting test after normalizing (920 ° C. × 1 hr → air cooling) with respect to steel based on SCr420. The machinability evaluation is a drill drilling test, the cutting conditions are the same as in Table 5, and the evaluation item is the maximum cutting speed (so-called VL1000) that can cut to a cumulative hole depth of 1000 mm. The unit of VL1000 is m / min. The larger the value, the better the tool life. Further, while measuring the hardness, as shown in FIG. 2, a notched Ono type rotating bending test piece having a notch of R1.16 mm formed on a 9 mmφ test piece was prepared, and the conditions shown in FIGS. 3 (a) and 3 (b) in the case-hardened, it was to evaluate the fatigue characteristics after tempering.
[0065]
As a result, although the hardness after the above normalization was almost the same, VL1000 was superior to the developed steel. The fatigue properties after carburizing and tempering were almost the same. On the contrary, in Comparative Example 82, the machinability VL1000 was increased by increasing the amount of S, but on the other hand, the fatigue limit after carburizing and quenching and tempering was lower than the others. Although the technique of the present invention improves machinability, it can be seen that the subsequent gear performance is not deteriorated.
[0066]
[Table 8]
Figure 0004267260
[0067]
Table 9 shows examples based on steel in which a large amount of alloying elements are further added to improve the hardenability. A part of the test material was melted in a 270 t converter, decomposed into billets, and further rolled to φ50 mm. The others were melted and rolled in a 2t-vacuum melting furnace. The machinability evaluation is a drill drilling test, the cutting conditions are the same as in Table 7, and the evaluation item is the maximum cutting speed (so-called VL1000) that can cut to a cumulative hole depth of 1000 mm.
[0068]
In Examples 83 to 88, SCM440 was used as the base steel, and the hardness was adjusted to about HV310 by quenching and tempering, and machinability was evaluated at VL1000. Moreover, the impact value was evaluated as a mechanical property. The impact value was measured by cutting a sample from the longitudinal direction of the steel bar and using a JIS No. 3 test piece (2 mmU notch test piece). As a result, although the inventive example had substantially the same hardness and impact value (J / cm 2 ) as compared with the comparative example, the machinability VL1000 was larger and superior to the comparative example.
[0069]
Examples 89 to 94 were based on bearing steel, softened by spheroidizing annealing 700 ° C. × 20 hr, and machinability VL1000 was measured. As a result, the machinability VL1000 was large and superior to the comparative example, although the inventive example had substantially the same hardness as the comparative example.
[0070]
[Table 9]
Figure 0004267260
[0071]
【The invention's effect】
According to the steel of the present invention, by promoting the fracture of the matrix in the steel, the so-called low-carbon free-cutting steel with a C content of less than 0.15% improves the tool life and the cutting surface roughness and does not contain Pb. Even in this case, good tool life and cutting surface roughness can be obtained, and even in structural steel containing 0.15% or more of C, the machinability is improved and the mechanical properties are deteriorated. The directivity can be minimized. Alternatively, the steel of the present invention can obtain better machinability than steel having the same mechanical properties.
[Brief description of the drawings]
1A and 1B are diagrams showing an outline of a plunge cutting test, in which FIG. 1A shows a plunge cutting test method, and FIG. 1B shows a movement of a tool;
FIG. 2 is a view showing an Ono type rotating bending test piece with a notch.
[Figure 3] a schematic view showing the carburizing conditions, (a) a Re carburized is (b) is a schematic view showing the condition of the tempering.
[Explanation of symbols]
1 Cutting direction 2 Test material 3 Tool 4 Surface roughness measuring surface

Claims (7)

質量%で(以下、同じ)、
C:0.001〜1.5%、
Si:3%以下、
Mn:0.01〜3%、
P:0.001〜0.2%、
S:0.0001〜1.2%、
Zn:0.001〜0.5%、
N:0.0001〜0.02%、
O:0.0005〜0.05%
を含有し、残部Feおよび不可避的不純物からなることを特徴とする被削性に優れた鋼。
% By mass (hereinafter the same),
C: 0.001 to 1.5%,
Si: 3% or less,
Mn: 0.01 to 3%
P: 0.001 to 0.2%,
S: 0.0001 to 1.2%,
Zn: 0.001 to 0.5%,
N: 0.0001 to 0.02%,
O: 0.0005 to 0.05%
A steel excellent in machinability, characterized by comprising a balance Fe and inevitable impurities .
さらに、
Sn:0.002〜0.5%
を含有することを特徴とする請求項1記載の被削性に優れた鋼。
further,
Sn: 0.002-0.5%
The steel with excellent machinability according to claim 1, comprising:
さらに、
B:0.0005〜0.05%
を含有することを特徴とする請求項1または2記載の被削性に優れた鋼。
further,
B: 0.0005 to 0.05%
The steel having excellent machinability according to claim 1 or 2, characterized by comprising:
さらに、
Cr:0.01〜7%
V:0.01〜3%、
Nb:0.001〜0.2%、
Ti:0.001〜0.5%
の内の1種を含有することを特徴とする請求項1乃至3の内のいずれかに記載の被削性に優れた鋼。
further,
Cr: 0.01~7%,
V: 0.01 to 3%
Nb: 0.001 to 0.2%,
Ti: 0.001~0.5%,
Steel excellent in machinability according to any one of claims 1 to 3, characterized in that it contains one of the.
さらに、further,
Cr:0.01〜7%Cr: 0.01-7%
を含有し、さらに、In addition,
Mo:0.01〜3%、Mo: 0.01 to 3%,
W:0.01〜3%W: 0.01 to 3%
の内の1種を含有することを特徴とする請求項1乃至3の内のいずれかに記載の被削性に優れた鋼。The steel excellent in machinability according to any one of claims 1 to 3, wherein the steel contains one of the above.
さらに、
Cr:0.01〜7%、
Mo:0.01〜3%、
を含有し、さらに、
Ni:0.05〜7%、
Cu:0.02〜3%
の内の1種または2種を含有すると共に、Cuが0.3%以上を含む場合はNi%≧Cu%を満足することを特徴とする請求項1乃至3の内のいずれかに記載の被削性に優れた鋼。
further,
Cr: 0.01-7%
Mo: 0.01 to 3%,
In addition,
Ni: 0.05-7%,
Cu: 0.02 to 3%
The composition according to any one of claims 1 to 3 , wherein one or two of the above are contained, and when Cu includes 0.3% or more, Ni% ≥Cu% is satisfied. Steel with excellent machinability.
さらに、
Al:0.001〜2%
Zr:0.0003〜0.5%、
Mg:0.0002〜0.02%
の内の1種または2種以上を含有することを特徴とする請求項1乃至の内のいずれかに記載の被削性に優れた鋼。
further,
Al: 0.001~2%,
Zr: 0.0003 to 0.5%,
Mg: 0.0002 to 0.02%
The steel excellent in machinability according to any one of claims 1 to 6 , wherein the steel contains one or more of them.
JP2002174645A 2002-06-14 2002-06-14 Steel with excellent machinability Expired - Fee Related JP4267260B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002174645A JP4267260B2 (en) 2002-06-14 2002-06-14 Steel with excellent machinability
CNB038134446A CN100355927C (en) 2002-06-14 2003-06-12 Steel excellent in machinability
KR1020047020308A KR100683923B1 (en) 2002-06-14 2003-06-12 Steel excellent in machinability
PCT/JP2003/007502 WO2003106724A1 (en) 2002-06-14 2003-06-12 Steel excellent in machinability
TW92116112A TWI306476B (en) 2002-06-14 2003-06-13 A steel having excellent cuittability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174645A JP4267260B2 (en) 2002-06-14 2002-06-14 Steel with excellent machinability

Publications (2)

Publication Number Publication Date
JP2004018925A JP2004018925A (en) 2004-01-22
JP4267260B2 true JP4267260B2 (en) 2009-05-27

Family

ID=29727986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174645A Expired - Fee Related JP4267260B2 (en) 2002-06-14 2002-06-14 Steel with excellent machinability

Country Status (5)

Country Link
JP (1) JP4267260B2 (en)
KR (1) KR100683923B1 (en)
CN (1) CN100355927C (en)
TW (1) TWI306476B (en)
WO (1) WO2003106724A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60318745T2 (en) * 2002-11-15 2009-01-15 Nippon Steel Corp. STEEL WITH EXCELLENT CUT-OUTPUT AND MANUFACTURING METHOD THEREFOR
JP4041781B2 (en) * 2003-08-12 2008-01-30 株式会社神戸製鋼所 Steel material with excellent corrosion resistance
JP4507865B2 (en) * 2004-12-06 2010-07-21 住友金属工業株式会社 Low carbon free cutting steel
JP4876638B2 (en) * 2006-03-08 2012-02-15 住友金属工業株式会社 Low carbon sulfur free cutting steel
KR101239416B1 (en) * 2007-04-18 2013-03-05 신닛테츠스미킨 카부시키카이샤 Hot-worked steel material having excellent machinability and impact value
WO2010119911A1 (en) * 2009-04-14 2010-10-21 新日本製鐵株式会社 Low-specific gravity steel for forging having excellent machinability
CN101906596B (en) * 2010-07-05 2015-09-02 郁寿林 A kind of high-sulfur antifriction abrasion-resistant casting steel
JP5907415B2 (en) * 2011-03-03 2016-04-26 日立金属株式会社 Hot work tool steel with excellent toughness
WO2012118053A1 (en) * 2011-03-03 2012-09-07 日立金属株式会社 Hot work tool steel having excellent toughness, and process of producing same
TWI448565B (en) * 2011-05-30 2014-08-11 Kobe Steel Ltd Steel with improved rolling fatigue characteristics
CN102433505A (en) * 2011-12-14 2012-05-02 虞海盈 Material for producing rolling bearings
CN103388107B (en) * 2013-08-09 2015-03-11 武汉钢铁(集团)公司 Coppery BN (Boron Nitride) type free-cutting steel and production method thereof
CN103643139A (en) * 2013-11-12 2014-03-19 铜陵市肆得科技有限责任公司 Alloy steel material for water pump bearings and preparation method thereof
CN103741077A (en) * 2013-12-24 2014-04-23 中兴能源装备股份有限公司 Rolled steel
CN105349883A (en) * 2015-12-07 2016-02-24 张家港市新凯带钢制造有限公司 Corrosion-resistant alloy steel
CN105755382A (en) * 2016-03-31 2016-07-13 苏州睿昕汽车配件有限公司 Anticorrosion automobile accessory alloy steel material and preparation method thereof
CN106148818B (en) * 2016-06-23 2018-09-11 南通市嘉业机械制造有限公司 A kind of manufacturing method and its temperature control system of piercing plug for seamless steel tubes
HUE052450T2 (en) * 2017-06-06 2021-04-28 Bgh Edelstahl Siegen Gmbh Precipitation hardening steel and use of such a steel for thermoforming tools
KR102010052B1 (en) * 2017-10-19 2019-08-12 주식회사 포스코 Medium carbon free cutting steel having excellent hot workability and method for manufacturing the same
CN107747024A (en) * 2017-10-31 2018-03-02 桂林加宏汽车修理有限公司 A kind of high-temperature steel alloy
CN108677086A (en) * 2018-04-17 2018-10-19 常熟市虹桥铸钢有限公司 A kind of petroleum machinery preventer casting
CN108798586A (en) * 2018-04-17 2018-11-13 常熟市虹桥铸钢有限公司 A kind of preventer
CN108677085A (en) * 2018-04-17 2018-10-19 常熟市虹桥铸钢有限公司 A kind of preparation method of petroleum machinery preventer casting
KR102103382B1 (en) * 2018-10-29 2020-04-22 주식회사 포스코 Steel material and manufacturing method thereof
CN112063924B (en) * 2020-09-08 2022-05-20 鞍钢股份有限公司 High-carbon selenium-tin-containing free-cutting steel and production method thereof
TWI789124B (en) * 2021-11-19 2023-01-01 財團法人金屬工業研究發展中心 Method of manufacturing a carbon steel component
CN115896617A (en) * 2022-11-04 2023-04-04 湖南高华新材料科技有限公司 Low-cost super steel material structure component and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133716A (en) * 1974-09-17 1976-03-23 Daido Steel Co Ltd * teitansokarushiumu iokeikaisakuko *
US4255187A (en) * 1979-08-29 1981-03-10 Inland Steel Company Bismuth-containing steel
EP0903418B1 (en) * 1996-11-25 2003-01-29 Sumitomo Metal Industries, Ltd. Steel having excellent machinability and machined component

Also Published As

Publication number Publication date
WO2003106724A1 (en) 2003-12-24
TW200401041A (en) 2004-01-16
CN1659297A (en) 2005-08-24
KR100683923B1 (en) 2007-02-16
TWI306476B (en) 2009-02-21
KR20050008823A (en) 2005-01-21
CN100355927C (en) 2007-12-19
JP2004018925A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4267260B2 (en) Steel with excellent machinability
JPH1129839A (en) Spring steel with high toughness
KR20080102382A (en) Steel for machine structure excelling in machinability and strength property
JPWO2009057731A1 (en) Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts
JP5655366B2 (en) Bainite steel
JP2007289979A (en) Method for producing cast slab or steel ingot made of titanium-added case hardening steel and the cast slab or steel ingot, and case hardening steel made of the cast slab or steel ingot
JP4559959B2 (en) High strength spring steel
JP4415219B2 (en) Age hardened steel
CN109790602B (en) Steel
JP4264329B2 (en) Steel with excellent machinability
JP6620490B2 (en) Age-hardening steel
JP2636816B2 (en) Alloy tool steel
JP4847681B2 (en) Ti-containing case-hardened steel
JPH0925539A (en) Free cutting non-heat treated steel excellent in strength and toughness
JP2005336553A (en) Hot tool steel
JP2003034840A (en) Steel for machine structure superior in machinability
JP2000282169A (en) Steel excellent in forgeability and machinability
JP6903507B2 (en) Hot tool steel with excellent hardenability and toughness
JP3739958B2 (en) Steel with excellent machinability and its manufacturing method
JP3255611B2 (en) Free-cutting steel rod and wire excellent in drilling workability and method for producing the same
JP4213948B2 (en) Steel with excellent machinability
JP3256184B2 (en) Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them
JP4348164B2 (en) Steel with excellent machinability
JP2002012952A (en) Tool steel for cold working
JP2000345290A (en) Hot roll for copper and copper alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R151 Written notification of patent or utility model registration

Ref document number: 4267260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees