WO2003106724A1 - Steel excellent in machinability - Google Patents

Steel excellent in machinability Download PDF

Info

Publication number
WO2003106724A1
WO2003106724A1 PCT/JP2003/007502 JP0307502W WO03106724A1 WO 2003106724 A1 WO2003106724 A1 WO 2003106724A1 JP 0307502 W JP0307502 W JP 0307502W WO 03106724 A1 WO03106724 A1 WO 03106724A1
Authority
WO
WIPO (PCT)
Prior art keywords
machinability
steel
cutting
comparative example
effect
Prior art date
Application number
PCT/JP2003/007502
Other languages
French (fr)
Japanese (ja)
Inventor
橋村 雅之
水野 淳
平田 浩
内藤 賢一郎
萩原 博
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to KR1020047020308A priority Critical patent/KR100683923B1/en
Publication of WO2003106724A1 publication Critical patent/WO2003106724A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the present invention relates to steel used for parts such as automobiles and general machines, and more particularly to steel excellent in machinability such as tool life during cutting, cutting surface roughness and chip handling. Background art
  • SUM23 and SUM24L which are called low-carbon free-cutting steels with less than 0.2% C, have been developed with emphasis on machinability. It has been known that it is effective to add machinability improving elements such as S and Pb to improve machinability. However, in recent years, Pb has tended to avoid its use as an environmental burden, and its use has been reduced.
  • SUM23 Sulfur free-cutting steel which is used as a base, easily adheres to the cutting edge, causing irregularities on the cutting surface due to the falling-off of the cutting edge and the chip separation phenomenon, deteriorating the surface roughness. Therefore, from the viewpoint of machinability, there is a problem that accuracy is reduced due to deterioration of surface roughness.
  • chip disposability it is considered better if chips are short and easy to separate, but simple addition of S has a large ductility of the matrix, so it was not sufficiently divided and could not be improved significantly.
  • Elements other than S such as Te, Bi, and P, are also known as machinability improving elements.However, even if machinability can be improved to some extent, cracks are likely to occur during rolling and hot forging. It is said that it is desirable to have as little as possible.
  • steel containing 0.2% or more of C has a relatively high strength because it contains many alloying elements such as C, Cr, and Mo.
  • the problem of the formation of the cutting edge and the resulting unevenness (roughness) of the cutting surface is small, and the surface roughness is relatively good because it is originally a hard material.
  • S which is a machinability improving element
  • the resulting MnS will be elongated by rolling or forging, resulting in anisotropy in mechanical properties. Application to parts is greatly restricted.
  • S is not added to high-strength steel to improve machinability, and in most cases, machinability is sacrificed. Disclosure of the invention
  • the present invention reduces both the tool life and surface roughness of so-called low carbon steels with a C content of less than 0.15% while avoiding defects in rolling, forging, and product performance. It is an object of the present invention to provide a steel having improved and excellent machinability.
  • the mechanical properties Anisotropic And steel with excellent machinability.
  • Cutting is a breaking phenomenon that separates chips, and promoting it is one of the key points.
  • the present inventors have conducted extensive studies and conducted extensive studies. As a result, not only increasing the amount of S but also including Zn as a basic component embrittles the matrix and facilitates blasting. It has been found that the tool life can be extended and the unevenness of the cutting surface can be suppressed.
  • the present invention has been made based on the above findings, and the gist is as follows.
  • a steel excellent in machinability characterized by containing A steel excellent in machinability characterized by containing.
  • Ni 0.05 to 7%
  • Cu 0.02 to 3% and one or two of them are contained, and when 0.3% or more is contained, Ni% ⁇ Cu% is satisfied.
  • FIG. 1 is a diagram showing an outline of a plunge cutting test, in which (a) shows a plunge cutting test method, and (b) shows a tool movement.
  • FIG. 2 is a view showing an Ono-type rotary bending test piece with a notch.
  • Fig. 3 is a schematic diagram showing carburizing conditions, (a) is a schematic diagram showing carburizing and quenching, and (b) is a schematic diagram showing normalizing conditions.
  • the basic idea of the present invention is to improve machinability without impairing mechanical properties by including Zn as an essential component of steel in addition to S.
  • Zn is a particularly important element in the present invention.
  • Zn has the effect of embrittlement of steel, has the effect of improving machinability, Has the effect of improving
  • MnS coarse inclusions
  • deterioration of mechanical properties can be suppressed to a minimum. This effect is particularly noticeable as anisotropy.
  • good machinability can be obtained when Zn is added. This is thought to be because the embrittlement effect of Zn becomes significant when the temperature rises due to the cutting heat.
  • a lubrication effect is created at the tool / workpiece interface.
  • Zn If less than 0.001%, the effect is small. On the other hand, since Zn is very easy to evaporate during smelting, it is necessary to add a large amount of Zn in order to keep Zn in molten steel and maintain Zn content exceeding 0.5% after solidification. Since it is not industrially feasible in terms of cost, the upper limit was set at 0.5%. Therefore, the range of Zn content in the steel of the present invention is limited to 0.001 to 0.5%.
  • machinability-improving elements such as Sn, B, and Te can be contained, but Sn alone does not improve machinability, and machinability is enhanced by interaction with Zn. Is improved.
  • C has a significant effect on machinability because it relates to the basic strength of steel and the amount of oxygen in the steel. If the strength is increased by adding a large amount of C, the machinability decreases, so the upper limit was set to 1.5%. On the other hand, it is necessary to control the amount of oxygen appropriately to prevent the formation of hard oxides that reduce machinability and to suppress the adverse effects of solid solution oxygen at high temperatures such as pinholes during the solidification process. . If the C content is simply reduced too much simply by blowing, not only does the cost increase, but also a large amount of oxygen in the steel remains, causing problems such as pinholes. Therefore, the lower limit of 0.001% of C, which can easily prevent problems such as pinholes, was set as the lower limit. Si: 3% or less
  • Mn is necessary as a deoxidizing element and to fix and disperse sulfur in steel as MnS. It is also necessary to soften the oxides in steel and make the oxides harmless. The effect depends on the amount of S added, but if it is less than 0.01%, the added S cannot be sufficiently fixed as MnS, and S becomes FeS and becomes brittle. When the amount of Mn increases, the hardness of the substrate increases, and machinability and cold workability decrease. Therefore, the upper limit was set to 3.0%.
  • the upper limit of P must be set to 0.2% because the hardness of the base material increases in steel, which deteriorates not only cold workability but also hot workability and forming properties.
  • the lower limit is set to 0.001%, which is an element that facilitates cutting by embrittlement and is effective in improving machinability.
  • MnS improves machinability, but elongated MnS is one of the causes of anisotropy during forging. Large MnS should be avoided, but a large amount is preferable from the viewpoint of improving machinability. Therefore, it is preferable to finely disperse MnS.
  • 0.0001% or more is required, and 0.001% or more is preferable.
  • the content exceeds 1.2%, coarse MnS is inevitably generated, and cracks occur during production due to deterioration of the structural characteristics and hot deformation characteristics due to FeS and the like.
  • N 0.0001-0.02%
  • N hardens steel if it is solid solution N. In particular, in cutting, it hardens near the cutting edge due to dynamic strain aging and shortens the tool life, but also has the effect of improving the cutting surface roughness.
  • BN is generated to improve machinability. If the N content is less than 0.0001%, the effect of improving the surface roughness by the dissolved nitrogen and the effect of improving the machinability by BN are not recognized, so the lower limit was set. On the other hand, if the N content exceeds 0.02%, a large amount of solid solution nitrogen is present, and the tool life is rather shortened. In addition, bubbles are generated during the production, causing flaws and the like. Therefore, in the present invention, the upper limit is set to 0.02% at which such adverse effects become remarkable.
  • O is free, it becomes bubbles during cooling and causes pinholes. Control is also required to soften the oxides and suppress hard oxides that are harmful to machinability.
  • oxides are used as precipitation nuclei when MnS is finely dispersed. If the O content is less than 0.0005%, MnS cannot be sufficiently finely dispersed, and coarse MnS is generated, which adversely affects mechanical properties. Therefore, the lower limit was 0.0005%. Further, if the O content exceeds 0.05%, bubbles are generated during the production and pinholes are formed.
  • Sn is a soft metal, and is distributed at grain boundaries and the like in steel and embrittles the steel. This improves machinability. If the content is less than 0.002%, the effect is not recognized. If the content exceeds 0.5%, the steel is embrittled to make mirror making and rolling difficult. Therefore, the range was set to 0.002 to 0.5%.
  • B is effective in improving machinability. This effect is not remarkable at less than 0.0005%, and the effect is saturated even if added over 0.05%, Therefore, if too much BN is precipitated, cracking will occur during manufacturing due to deterioration of the mirror-forming properties and hot deformation properties. Therefore, the range was 0.0005 to 0.05%.
  • Cr is an element that imparts hardenability and temper softening resistance. Corrosion resistance can be obtained by adding a large amount. Therefore, it is added to steels that require high strength. In that case, it is necessary to add 0.01% or more. However, if added in large amounts, Cr carbides are formed and become brittle, so the upper limit was set at 7%.
  • Mo is an element that imparts temper softening resistance and improves hardenability. The effect is not recognized at less than 0.01%, and the effect is saturated even if added over 3%, so the addition range was 0.01% to 3%.
  • V forms carbonitrides and can strengthen the steel by secondary precipitation hardening. If it is less than 0.01%, there is no effect on increasing the strength, and if it exceeds 3%, a large amount of carbonitride precipitates and the mechanical properties are rather impaired, so the upper limit was set.
  • Nb also forms carbonitrides and can strengthen the steel by secondary precipitation hardening. If the content is less than 0.001%, there is no effect on increasing the strength. If the content exceeds 0.2%, a large amount of carbonitride precipitates and the mechanical properties are rather impaired.
  • Ti also forms carbonitrides and strengthens the steel. It is also a deoxidizing element, and it is possible to improve machinability by forming a soft oxide. You. If less than 0.001%, the effect is not recognized, and even if added over 0.5%, the effect is saturated. Also, Ti becomes a nitride even at high temperatures and suppresses growth of austenite grains. Therefore, the upper limit was set to 0.5%.
  • W forms carbonitrides and can strengthen the steel by secondary precipitation hardening. If it is less than 0.01%, there is no effect on increasing the strength, and if it exceeds 3%, coarse carbonitrides are precipitated and the mechanical properties are rather impaired. Therefore, the upper limit was set.
  • Ni is effective in strengthening the fly, improving ductility and improving hardenability and corrosion resistance. If the content is less than 0.05%, the effect is not recognized. Even if the content exceeds 7%, the effect is saturated in terms of mechanical properties, so the upper limit is set.
  • Cu is effective in strengthening ferrite, improving ductility, improving hardenability, and improving corrosion resistance. If the content is less than 0.02%, the effect is not recognized. Even if added over 3%, the effect is saturated in terms of mechanical properties, so the upper limit is set. In addition, when Cu is added alone, the hot ductility is extremely lowered, which causes troubles such as cracking and rolling problems. When the addition amount exceeds 0.3%, it is preferable to add Ni so that Ni% ⁇ Cu% in order to avoid manufacturing trouble.
  • A1 the steel in our deoxidizing element forming the A1 2 0 3 or A1N.
  • This is effective for preventing the austenite grain size from becoming coarse during quenching and for improving toughness.
  • the content is less than 0.001%, the effect is not recognized. If the content is more than 2%, coarse inclusions are generated, and the mechanical properties are rather deteriorated. You.
  • A1 2 0 3 will cause the tool damage during cutting so hard, may promote wear. Therefore austenite coarsening effect of such grains is saturated, and the upper limit of 2% of adverse effects A1 2 0 3 becomes remarkable.
  • Particularly preferred to Rukoto to 0.015% or less that does not produce a large amount of A1 2 0 3 in the case of priority the machinability is preferably 0.005% or less in the case of further prioritize softening oxide .
  • Ca is a deoxidizing element that generates soft oxides and not only improves machinability, but also dissolves in MnS to reduce its deformability, and MnS shape even when rolled or hot forged Has the function of suppressing distraction. Therefore, it is an effective element for reducing anisotropy. If the content is less than 0.0002%, the effect is not remarkable. Even if the content exceeds 0.01%, not only the yield will be extremely deteriorated, but also a large amount of hard Ca0, CaS, etc. will be generated and the coating will be damaged. Decreases machinability. Therefore, the component range was defined as 0.0002 to 0.01%.
  • Zr is a deoxidizing element and produces an oxide.
  • the oxides serve as precipitation nuclei for MnS and are effective in fine and uniform dispersion of MnS.
  • it has the function of dissolving in MnS to reduce its deformability, and suppressing the elongation of the MnS shape even in rolling or hot forging. Therefore, it is an element effective for reducing anisotropy. 0.
  • the effect is less than 0,003% is not significant, not only the yield be added exceeds 5% 0.5 becomes extremely poor to generate such a large amount Zr0 2 and ZrS hard, cutting rather be Reduce the nature. Therefore, the range of components was specified to be 0.0003 to 0.5%.
  • Mg is a deoxidizing element and produces oxides.
  • the oxides serve as precipitation nuclei for MnS and are effective in fine and uniform dispersion of MnS. Therefore, it is an effective element for reducing anisotropy. Below 0.00002%, the effect is not noticeable However, even if added in excess of 0.02%, the yield will be extremely poor and the effect will be saturated. Therefore, the component range was defined as 0.0002 to 0.02%.
  • Te is a machinability improving element.
  • the formation of MnTe and the coexistence with MnS have the effect of reducing the deformability of MnS and suppressing the elongation of the MnS shape. Therefore, it is an element effective for reducing anisotropy. This effect is not observed at less than 0.001%, and saturates at more than 0.5%.
  • Pb and Bi are elements that are effective in improving machinability.
  • the effect is not recognized at less than 0.01%, and when added over 0.7%, not only does the machinability improvement effect saturate, but also the hot forging properties deteriorate and cause flaws. Cheap. Therefore, the respective contents were set to 0.01 to 0.7%.
  • Figure 1 shows the outline of the experimental method. That is, as shown in Fig. 1 (a), the test material 2 rotating in the cutting direction 1 is cut by the tool 3, and as shown in Fig. 1 (b), the tool 3 is moved to To form Table 4 shows the cutting conditions.
  • the surface roughness (10-point surface roughness Rz wm) when machining 200 grooves was measured. Specified.
  • the chip has a curl shape, but if the curl is less than 5 turns and the chip breaks and short chips are generated, “ ⁇ ” indicates that The case where a long chip that does not break even when exceeding this is generated is denoted as “X”.
  • Table 5 shows the chemical composition of the sample evaluated for the machinability and mechanical properties of the steel based on, and Table 6 shows the evaluation results.
  • a part of each specimen was melted in a 270 t converter, then disassembled and rolled into billets, and further rolled into ⁇ 65 mm steel bars. The others were melted and rolled in a 2 t vacuum melting furnace.
  • Impact value (JZ cm 2 was evaluated by preparing a U-notch specimen with a depth of 2 according to JIS.
  • Table 3 shows the cutting conditions in the drilling test for the machinability evaluation of Examples 41 to 43 containing about 0.1% C.
  • the machinability was evaluated at the highest cutting speed (so-called VL1000) capable of cutting up to the accumulated hole depth lOOOOmin.
  • the surface roughness was evaluated by so-called plunge cutting, in which the tool shape was transferred by a parting-off tool.
  • plunge cutting in which the tool shape was transferred by a parting-off tool.
  • the surface roughness was evaluated by the plunge cutting shown in Table 4.
  • Examples 44-46 containing about 0.3% C and Examples 47-77 with more C content the impact value and its anisotropy were shown in order to emphasize the mechanical properties.
  • the impact value of the sample cut out from the cross section direction of the steel bar is shown (“C direction” column)
  • (an impact value of the transverse direction sample) / (an impact value of the longitudinal sample) is shown as anisotropy.
  • (Anisotropic" column) The larger the value is, the smaller the anisotropy is.
  • the evaluation of the machinability of Examples 47 to 77 was carried out with the drilling property VL1000, and evaluated under the cutting conditions shown in Table 7. In these cases, the cutting surface roughness was not evaluated.
  • Example 41 43 the inventive example outperformed the comparative example in VL1000 and surface roughness.
  • the invention example shows a hardness HV, an impact value of the sample in the cross section direction and an impact value of the sample in the cross section direction of the comparative example containing substantially the same C and other alloying elements. Although the impact value of the sample in the longitudinal direction is almost the same,
  • VL1000 is good and has excellent machinability.
  • Table 8 shows examples in which a large amount of alloying elements were added to improve the hardenability of steel.
  • Example 7882 a steel based on SCr420 was subjected to normalization (920 ° C x lhr ⁇ air cooling) and then subjected to a cutting test.
  • the machinability was evaluated in a drilling test with the same cutting conditions as in Table 5, and the evaluation item was the highest cutting speed (so-called VL1000) that could be cut up to a cumulative hole depth of 1000 mm.
  • the unit of this VL1000 is m / min. The larger the value, the better the tool life.
  • an Ono-type rotary bending test piece with a notch formed with a notch of R 1.16 on a 9 mm diameter test piece was prepared, and Figs.
  • Table 9 shows examples based on steel with improved hardenability by further adding a large amount of alloying elements.
  • a part of the test material was melted in a 270 t converter, then disassembled and rolled into billets, and further rolled to ⁇ 50 mm. The others were melted and rolled in a 2 t vacuum melting furnace.
  • the machinability was evaluated by a drilling test and the cutting conditions were the same as in Table 7, and the evaluation item was the highest cutting speed (so-called VL1000) capable of cutting to a cumulative hole depth of 1000.
  • the hardness was adjusted to about HV310 by quenching and tempering using SCM440 as a base steel, and the machinability was evaluated with VL1000.
  • the impact value was evaluated as a mechanical property. The impact value was measured by cutting a sample from the longitudinal direction of the bar and using a JIS3 test piece (2 mmU notch test piece).
  • JIS3 test piece 2 mmU notch test piece
  • the bearing steel was used as a base, and the steel was softened by spheroidizing annealing at 700 ° C for 20 hours, and the machinability VL1000 was measured.
  • the invention example had almost the same hardness as the comparative example, the machinability VL1000 was large and was superior to the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

A steel excellent in machinability, characterized in that it comprises, in mass %, 0.001 to 1.5 % of C, 3 % or less of Si, 0.01 to 3 % of Mn:, 0.001 to 0.2 % of P, 0.0001 to 1.2 % of S, 0.001 to 0.5 % of Zn, 0.0001 to 0.02 % of N, and 0.0005 to 0.05 % of O. Optionally, the steel may further comprise 0.002 to 0.5 % of Sn and/or 0.0005 to 0.05 % of B, which elements are both a machinability imparting element.

Description

明 細 書 被削性に優れた鋼 技術分野  Description Steel with excellent machinability Technical field
本発明は、 自動車や一般機械などの部品に用いられる鋼に関する ものであり、 特に切削時の工具寿命、 切削表面粗さおよび切り屑処 理性等の被削性に優れた鋼に関するものである。 背景技術  The present invention relates to steel used for parts such as automobiles and general machines, and more particularly to steel excellent in machinability such as tool life during cutting, cutting surface roughness and chip handling. Background art
一般機械や自動車は多種の部品を組み合わせて製造されているが 、 その部品は要求精度と製造効率の観点から、 多くの場合、 切削ェ 程を経て製造されている。 その際、 コス ト低減と生産能率の向上が 求められ、 鋼にも被削性の向上が求められている。  General machines and automobiles are manufactured by combining various types of parts, but the parts are often manufactured through a cutting process from the viewpoint of required accuracy and manufacturing efficiency. At that time, cost reduction and improvement in production efficiency are required, and steel is also required to have improved machinability.
C添加量が 0. 2 %未満の低炭快削鋼と呼ばれる SUM23や SUM24Lは 被削性を重要視して開発されてきた。 これまで被削性を向上させる ために S, Pbなどの被削性向上元素を添加するのが有効であること が知られている。 しかし、 近年、 Pbは環境負荷と して使用を避ける 傾向にあり、 その使用量を低減する方向にある。  SUM23 and SUM24L, which are called low-carbon free-cutting steels with less than 0.2% C, have been developed with emphasis on machinability. It has been known that it is effective to add machinability improving elements such as S and Pb to improve machinability. However, in recent years, Pb has tended to avoid its use as an environmental burden, and its use has been reduced.
これまでも Pbを添加しない場合には、 Sのように MnSのような切 削環境下で軟質どなる介在物を形成して被削性を向上させる手法が 使われている。 しかし、 いわゆる低炭鉛快削鋼 SUM24Lには低炭硫黄 快削鋼 SUM23と同量の Sが添加されている。 したがって、 被削性を 向上させるには従来以上の S量を添加する必要がある。 しかし、 多 量 S添加では MnSを単に粗大にするだけで被削性向上に有効な MnS 分布にならないだけでなく、 圧延、 鍛造等において破壌起点になつ て圧延疵等の製造上の問題を多く引き起こす。 さらに、 SUM23をべ ースとする硫黄快削鋼では構成刃先が付着しやすく、 構成刃先の脱 落および切り屑分離現象に伴う、 切削表面に凹凸が生じ表面粗さが 劣化する。 従って、 被削性の観点からも表面粗さが劣化による精度 低下が問題である。 切り屑処理性においても、 切り屑が短く分断し やすい方が良好とされているが、 単なる S添加だけではマト リ ック スの延性が大きいため、 十分に分断されず大きく改善できなかった Until now, when Pb is not added, a method has been used to improve the machinability by forming soft inclusions in a cutting environment like MnS like S. However, the so-called low-carbon lead free-cutting steel SUM24L contains the same amount of S as the low-carbon sulfur free-cutting steel SUM23. Therefore, it is necessary to add more S than before to improve machinability. However, the addition of large amounts of S does not only result in MnS distribution that is effective for improving machinability simply by making MnS coarse, but also causes rolling problems such as rolling flaws in rolling and forging, etc. Cause a lot. In addition, SUM23 Sulfur free-cutting steel, which is used as a base, easily adheres to the cutting edge, causing irregularities on the cutting surface due to the falling-off of the cutting edge and the chip separation phenomenon, deteriorating the surface roughness. Therefore, from the viewpoint of machinability, there is a problem that accuracy is reduced due to deterioration of surface roughness. In terms of chip disposability, it is considered better if chips are short and easy to separate, but simple addition of S has a large ductility of the matrix, so it was not sufficiently divided and could not be improved significantly.
S以外の元素、 Te, Bi , P等も被削性向上元素として知られてい るが、 ある程度被削性を向上させることができても、 圧延や熱間鍛 造時に割れを生じ易くなるため、 極力少ない方が望ましいとされて いる。 Elements other than S, such as Te, Bi, and P, are also known as machinability improving elements.However, even if machinability can be improved to some extent, cracks are likely to occur during rolling and hot forging. It is said that it is desirable to have as little as possible.
また、 0. 2%以上の Cを含有する鋼では C, Cr, Mo等の合金元素 を多く含み比較的高強度を有する。 .このような構造用鋼の場合、 構 成刃先生成とそれによつて生じる切削表面の凹凸 (粗さ) の問題は 小さく、 元来が硬い材料なので、 表面粗さは比較的良好である。 し かし、 基本的な強度が高いために被削性向上元素の Sを多く添加す ると、 生成される MnSが圧延や鍛造で伸延するために機械的性質に 異方性を生じるため、 部品への適用には大きく制約をうける。 また 、 高強度鋼には被削性向上のための S添加は行われず、 被削性を犠 牲にする場合が殆どである。 発明の開示  Also, steel containing 0.2% or more of C has a relatively high strength because it contains many alloying elements such as C, Cr, and Mo. In the case of such structural steel, the problem of the formation of the cutting edge and the resulting unevenness (roughness) of the cutting surface is small, and the surface roughness is relatively good because it is originally a hard material. However, if a large amount of S, which is a machinability improving element, is added due to its high basic strength, the resulting MnS will be elongated by rolling or forging, resulting in anisotropy in mechanical properties. Application to parts is greatly restricted. In addition, S is not added to high-strength steel to improve machinability, and in most cases, machinability is sacrificed. Disclosure of the invention
上記のような情況から、 本発明は、 圧延や鍛造および製品性能上 の不具合を避けつつ、 C含有量が 0. 15%に満たないいわゆる低炭素 鋼に関しては工具寿命と表面粗さの両者を改善した優れた被削性を 有する鋼を提供することを課題とするものであり、 また、 0. 15%以 上の Cを含有する構造用鋼、 高強度鋼の場合には機械的性質 (異方 性も含む) と被削性が両立する鋼を提供することを課題とする。 切削は切り屑を分離する破壊現象であり、 それを促進させること がーつのポイントとなる。 しかし、 前述したごとく、 Sを単純に増 量するだけでは限界がある。 Under the circumstances described above, the present invention reduces both the tool life and surface roughness of so-called low carbon steels with a C content of less than 0.15% while avoiding defects in rolling, forging, and product performance. It is an object of the present invention to provide a steel having improved and excellent machinability. In the case of a structural steel containing 0.15% or more of C and a high-strength steel, the mechanical properties ( Anisotropic And steel with excellent machinability. Cutting is a breaking phenomenon that separates chips, and promoting it is one of the key points. However, as mentioned above, there is a limit to simply increasing S.
そこで、 本発明者らは実験を重ね鋭意研究した結果、 Sを増量す るだけでなく、 基本成分として Znを含有させることによ りマ ト リ ツ クスを脆化させ、 破壌を容易にして工具寿命を延長すると共に切削 表面の凹凸を抑制できることを知見した。  Therefore, the present inventors have conducted extensive studies and conducted extensive studies. As a result, not only increasing the amount of S but also including Zn as a basic component embrittles the matrix and facilitates blasting. It has been found that the tool life can be extended and the unevenness of the cutting surface can be suppressed.
本発明は以上の知見に基づいてなされたものであって、 その要旨 は以下のとおりである。  The present invention has been made based on the above findings, and the gist is as follows.
( 1 ) 質量%で、  (1) In mass%,
C : 0.001-1.5 %、  C: 0.001-1.5%,
Si: 3 %以下、 Si: 3% or less,
Mn: 0.01〜 3 %、 Mn: 0.01-3%,
P : 0.001〜0.2 %、 P: 0.001 to 0.2%,
S : 0.0001〜1.2 %、 S: 0.0001-1.2%,
Zn: 0.001— 0.5 %、 Zn: 0.001—0.5%,
N : 0.0001〜0, 02%、 N: 0.0001-0, 02%,
O : 0.0005~0.05% O: 0.0005-0.05%
を含有することを特徴とする被削性に優れた鋼。 A steel excellent in machinability characterized by containing.
( 2 ) さらに、 質量%で、 Sn: 0.002〜0.5 %を含有することを 特徴とする上記 ( 1 ) 記載の被削性に優れた鋼。  (2) The steel excellent in machinability according to the above (1), further comprising Sn: 0.002 to 0.5% by mass%.
( 3 ) さらに、 質量%で、 B : 0.0005〜0.05%を含有することを 特徴とする上記 ( 1 ) または ( 2 ) 記載の被削性に優れた鋼。  (3) The steel excellent in machinability according to the above (1) or (2), further containing B: 0.0005 to 0.05% by mass%.
( 4) さらに、 質量0 /0で、 Cr : 0.01〜 7 %、 Mo : 0.01〜 3 %、 V : 0.01〜3.0 %、 Nb: 0.001〜0.2 %、 Ti: 0·001〜0·5 %、 W :(4) In addition, the mass 0/0, Cr: 0.01~ 7 %, Mo: 0.01~ 3%, V: 0.01~3.0%, Nb: 0.001~0.2%, Ti: 0 · 001~0 · 5%, W:
0.01〜 3 %の内の 1種または 2種以上を含有することを特徴とする 上記 ( 1 ) 〜 ( 3 ) の内のいずれかに記載の被削性に優れた鋼。It is characterized by containing one or more of 0.01 to 3% The steel excellent in machinability according to any one of the above (1) to (3).
( 5 ) さらに、 質量0 /。で、 Ni:0.05〜 7 %、 Cu:0.02〜 3 %の内の 1種または 2種を含有すると共に、 が 0.3%以上を含む場合は Ni %≥Cu%を満足することを特徴とする上記 ( 1 ) 〜 (4 ) の内のい ずれかに記載の被削性に優れた鋼。 (5) Furthermore, mass 0 /. Wherein Ni: 0.05 to 7%, Cu: 0.02 to 3% and one or two of them are contained, and when 0.3% or more is contained, Ni% ≥ Cu% is satisfied. A steel excellent in machinability according to any one of (1) to (4).
( 6 ) さらに、 質量0 /。で、 A1: 0.001〜 2 %、 Ca: 0· 0002〜0· 01 %、 Zr: 0.0003〜0.5 %、 Mg: 0.0002〜 0.02%の内の 1種または 2 種以上を含有することを特徴とする上記 ( 1 ) 〜 ( 5 ) の内のいず れかに記載の被削性に優れた鋼。 (6) Furthermore, mass 0 /. A1: 0.001 to 2%, Ca: 0002 to 0.01%, Zr: 0.0003 to 0.5%, Mg: 0.0002 to 0.02%, characterized by containing one or more of the following: The steel excellent in machinability according to any one of the above (1) to (5).
( 7 ) さらに、 質量0 /0で、 Te: 0.001〜0.5 %、 Pb : 0.01〜0.7 %、 Bi: 0.01〜 7 %の内の 1種または 2種以上を含有することを 特徴とする上記 ( 1 ) 〜 ( 6 ) の内のいずれかに記載の被削性に優 れた鋼。 図面の簡単な説明 (7) In addition, the mass 0/0, Te: 0.001~0.5% , Pb: 0.01~0.7%, Bi: above, characterized in that it contains one or more of from 0.01 to 7% ( 1) A steel excellent in machinability according to any one of the above 6) to 6). BRIEF DESCRIPTION OF THE FIGURES
図 1は、 プランジ切削試験の概要を示す図で、 ( a ) はプランジ 切削試験方法、 ( b ) は工具の動きを示す図である。  FIG. 1 is a diagram showing an outline of a plunge cutting test, in which (a) shows a plunge cutting test method, and (b) shows a tool movement.
図 2は、 ノ ツチ部付の小野式回転曲げ試験片を示す図である。 図 3は、 浸炭条件を示す模式図で、 ( a ) は浸炭焼入を (b ) は 焼準の条件を示す模式図である。  FIG. 2 is a view showing an Ono-type rotary bending test piece with a notch. Fig. 3 is a schematic diagram showing carburizing conditions, (a) is a schematic diagram showing carburizing and quenching, and (b) is a schematic diagram showing normalizing conditions.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の基本思想は、 鋼の必須成分として Sの他に Znを含有させ ることによ り、 機械的性質を損なう ことなく、 被削性を向上させる ことにある。  The basic idea of the present invention is to improve machinability without impairing mechanical properties by including Zn as an essential component of steel in addition to S.
即ち、 Znは、 本発明で特に重要な元素である。 Znには鋼を脆化さ せる効果があり、 被削性を向上させる効果を持ち、 特に切削表面粗 さを改善する効果がある。 また、 従来から知られている MnSのよう な粗大な介在物の形態をと らず、 マ ト リ ックス中に存在するために 機械的性質の劣化は最低限に抑制することができる。 この効果は特 に異方性と して顕著に認められる。 逆に同程度の機械的性質を有し ていても、 Znが添加されている場合には良好な被削性を得ることが できる。 これは切削熱によって温度上昇したときに Znの脆化効果が 顕著になるためと考えられる。 さらに、 切削中には工具/被削材界 面で潤滑効果を生み出すと考えられる。 Zn: 0. 001 %未満ではその 効果が小さい。 一方、 Znは溶製時に非常に気化しやすいことから、 Znを溶鋼中に残留させ、 凝固後も 0. 5%を超える Zn量を維持するに は、 多量の Znの投入が必要であり、 コス トの点から工業的に成立し ないため 0. 5%を上限とした。 従って、 本発明鋼の Znの成分範囲を 0. 001〜0. 5 %に限定した。 That is, Zn is a particularly important element in the present invention. Zn has the effect of embrittlement of steel, has the effect of improving machinability, Has the effect of improving In addition, since it does not take the form of coarse inclusions such as MnS, which is conventionally known, and exists in the matrix, deterioration of mechanical properties can be suppressed to a minimum. This effect is particularly noticeable as anisotropy. Conversely, even if they have similar mechanical properties, good machinability can be obtained when Zn is added. This is thought to be because the embrittlement effect of Zn becomes significant when the temperature rises due to the cutting heat. In addition, it is believed that during cutting, a lubrication effect is created at the tool / workpiece interface. Zn: If less than 0.001%, the effect is small. On the other hand, since Zn is very easy to evaporate during smelting, it is necessary to add a large amount of Zn in order to keep Zn in molten steel and maintain Zn content exceeding 0.5% after solidification. Since it is not industrially feasible in terms of cost, the upper limit was set at 0.5%. Therefore, the range of Zn content in the steel of the present invention is limited to 0.001 to 0.5%.
Znに加えて、 さらに、 Sn , B , Te等の被削性向上元素を含有させ ることができるが、 Snは単独では被削性は向上せず、 Znとの相互作 用により被削性が向上する。  In addition to Zn, machinability-improving elements such as Sn, B, and Te can be contained, but Sn alone does not improve machinability, and machinability is enhanced by interaction with Zn. Is improved.
以下に、 Zn以外の鋼成分を限定した理由を説明する。  The reason for limiting the steel components other than Zn will be described below.
C : 0. 001〜1. 5 %  C: 0.001 to 1.5%
Cは、 鋼材の基本強度と鋼中の酸素量に関係するので被削性に大 きな影響を及ぼす。 Cを多く添加して強度を高めると被削性を低下 させるのでその上限を 1. 5%とした。 一方、 被削性を低下させる硬 質酸化物生成を防止しつつ、 凝固過程でのピンホール等の高温での 固溶酸素の弊害を抑制するため、 酸素量を適量に制御する必要があ る。 単純に吹鍊によって C量を低減させすぎるとコス 卜がかさむだ けでなく、 鋼中酸素量が多量に残留してピンホール等の不具合の原 因となる。 従って、 ピンホール等の不具合を容易に防止できる C量 0. 001 %を下限とした。 Si: 3 %以下 C has a significant effect on machinability because it relates to the basic strength of steel and the amount of oxygen in the steel. If the strength is increased by adding a large amount of C, the machinability decreases, so the upper limit was set to 1.5%. On the other hand, it is necessary to control the amount of oxygen appropriately to prevent the formation of hard oxides that reduce machinability and to suppress the adverse effects of solid solution oxygen at high temperatures such as pinholes during the solidification process. . If the C content is simply reduced too much simply by blowing, not only does the cost increase, but also a large amount of oxygen in the steel remains, causing problems such as pinholes. Therefore, the lower limit of 0.001% of C, which can easily prevent problems such as pinholes, was set as the lower limit. Si: 3% or less
S iの過度な添加は熱間延性が低下して圧延等が困難になるが、 適 度な添加は機械的性質を付与したり、 酸化物を軟質化させ、 被削性 を向上させる。 その上限は 3 %であり、 それ以上では熱間延性が低 下して圧延等が困難になり工業生産が困難になる。 また、 硬質酸化 物を生じて被削性を低下させるなどの弊害も生じる。  Excessive addition of Si lowers the hot ductility and makes rolling and the like difficult, but proper addition imparts mechanical properties and softens oxides to improve machinability. The upper limit is 3%, and if it is more than this, the hot ductility is lowered and rolling becomes difficult, and industrial production becomes difficult. Further, adverse effects such as reduction of machinability due to generation of hard oxides also occur.
Mn: 0. 01〜3. 0 %  Mn: 0.01 to 3.0%
Mnは、 脱酸元素と して、 また鋼中硫黄を MnSとして固定 .分散さ せるために必要である。 また鋼中酸化物を軟質化させ、 酸化物を無 害化させるために必要である。 その効果は添加する S量にも依存す るが、 0. 01 %未満では添加 Sを MnSとして十分に固定できず、 Sが FeSとなり脆くなる。 Mn量が大きくなると素地の硬さが大きくなり 被削性や冷間加工性が低下するので、 3. 0%を上限とした。  Mn is necessary as a deoxidizing element and to fix and disperse sulfur in steel as MnS. It is also necessary to soften the oxides in steel and make the oxides harmless. The effect depends on the amount of S added, but if it is less than 0.01%, the added S cannot be sufficiently fixed as MnS, and S becomes FeS and becomes brittle. When the amount of Mn increases, the hardness of the substrate increases, and machinability and cold workability decrease. Therefore, the upper limit was set to 3.0%.
P : 0. 001〜0. 2 %  P: 0.001 to 0.2%
Pは、 鋼中において素地の硬さが大きくなり、 冷間加工性だけで なく、 熱間加工性ゃ铸造特性が低下するので、 その上限を 0. 2%に しなければならない。 一方、 脆化させることで切削を容易にして被 削性向上に効果がある元素で下限値を 0. 001 %とした。  The upper limit of P must be set to 0.2% because the hardness of the base material increases in steel, which deteriorates not only cold workability but also hot workability and forming properties. On the other hand, the lower limit is set to 0.001%, which is an element that facilitates cutting by embrittlement and is effective in improving machinability.
S : 0. 0001〜1. 2 %  S: 0.0001 to 1.2%
Sは、 Mnと結合して MnS介在物として存在する。 MnSは被削性を 向上させるが、 伸延した MnSは鍛造時の異方性を生じる原因の一つ である。 大きな MnSは避けるべきであるが、 被削性向上の観点から は多量の添加が好ましい。 従って MnSを微細分散させることが好ま しい。 被削性向上には 0. 0001 %以上の添加が必要で、 好ましくは 0 . 001 %以上の添加がよい。 一方、 1. 2%を越えると粗大 MnSの生成 が避けられないだけでなく、 FeS等による錶造特性、 熱間変形特性 の劣化から製造中に割れを生じるので、 これを上限とした。 N : 0.0001〜0.02% S binds to Mn and exists as an MnS inclusion. MnS improves machinability, but elongated MnS is one of the causes of anisotropy during forging. Large MnS should be avoided, but a large amount is preferable from the viewpoint of improving machinability. Therefore, it is preferable to finely disperse MnS. To improve machinability, 0.0001% or more is required, and 0.001% or more is preferable. On the other hand, if the content exceeds 1.2%, coarse MnS is inevitably generated, and cracks occur during production due to deterioration of the structural characteristics and hot deformation characteristics due to FeS and the like. N: 0.0001-0.02%
Nは、 固溶 Nの場合、 鋼を硬化させる。 特に切削においては動的 ひずみ時効によって刃先近傍で硬化し、 工具の寿命を低下させるが 、 切削表面粗さを改善する効果もある。 また Bと結びついて BNを生 成して被削性を向上させる。 N含有量が 0.0001%未満では固溶窒素 による表面粗さ向上効果や BNによる被削性改善効果が認められない ので、 これを下限とした。 また N含有量が 0.02%を越えると固溶窒 素が多量に存在するためかえつて工具寿命を低下させる。 また鍚造 途中に気泡を生成し、 疵などの原因となる。 従って本発明ではそれ らの弊害が顕著になる 0.02%を上限とした。  N hardens steel if it is solid solution N. In particular, in cutting, it hardens near the cutting edge due to dynamic strain aging and shortens the tool life, but also has the effect of improving the cutting surface roughness. In combination with B, BN is generated to improve machinability. If the N content is less than 0.0001%, the effect of improving the surface roughness by the dissolved nitrogen and the effect of improving the machinability by BN are not recognized, so the lower limit was set. On the other hand, if the N content exceeds 0.02%, a large amount of solid solution nitrogen is present, and the tool life is rather shortened. In addition, bubbles are generated during the production, causing flaws and the like. Therefore, in the present invention, the upper limit is set to 0.02% at which such adverse effects become remarkable.
O : 0.0005〜0.05%  O: 0.0005-0.05%
Oは、 freeで存在する場合には冷却時に気泡となり、 ピンホール の原因となる。 また酸化物を軟質化し、 被削性に有害な硬質酸化物 を抑制するためにも制御が必要である。 さらに MnSの微細分散させ る際にも析出核として酸化物を利用する。 O含有量が 0.0005%未満 では十分に MnSを微細分散させることができず、 粗大な MnSを生じ 、 機械的性質にも悪影響を及ぼす。 従って 0.0005%を下限とした。 さらに O含有量が 0.05%を越えると铸造中に気泡となり ピンホール となるため、 0.05%以下とした。  If O is free, it becomes bubbles during cooling and causes pinholes. Control is also required to soften the oxides and suppress hard oxides that are harmful to machinability. In addition, oxides are used as precipitation nuclei when MnS is finely dispersed. If the O content is less than 0.0005%, MnS cannot be sufficiently finely dispersed, and coarse MnS is generated, which adversely affects mechanical properties. Therefore, the lower limit was 0.0005%. Further, if the O content exceeds 0.05%, bubbles are generated during the production and pinholes are formed.
Sn: 0.002〜0.5 %  Sn: 0.002 to 0.5%
Snは、 軟質金属であり、 鋼中では粒界等に分布して鋼を脆化させ る。 このことで被削性を向上させる。 0.002%以下ではその効果が 認められず、 0.5%を越えると、 鋼を脆化させることで鏡造および 圧延を困難にする。 したがってその範囲を 0.002〜0.5 %とした。  Sn is a soft metal, and is distributed at grain boundaries and the like in steel and embrittles the steel. This improves machinability. If the content is less than 0.002%, the effect is not recognized. If the content exceeds 0.5%, the steel is embrittled to make mirror making and rolling difficult. Therefore, the range was set to 0.002 to 0.5%.
B : 0.0005〜0.05%  B: 0.0005-0.05%
Bは、 被削性向上に効果がある。 この効果は 0.0005%未満では顕 著でなく、 0.05%を超えて添加してもその効果が飽和し、 熱履歴に よって BNが多く析出しすぎるとかえつて鏡造特性、 熱間変形特性の 劣化から製造中に割れを生じる。 そこで 0. 0005〜0. 05%を範囲とし た。 B is effective in improving machinability. This effect is not remarkable at less than 0.0005%, and the effect is saturated even if added over 0.05%, Therefore, if too much BN is precipitated, cracking will occur during manufacturing due to deterioration of the mirror-forming properties and hot deformation properties. Therefore, the range was 0.0005 to 0.05%.
Cr : 0. 01〜 7 %  Cr: 0.01 to 7%
Crは焼入れ性向上、 焼戻し軟化抵抗付与元素である。 また多量に 添加することで耐食性を得られる。 そのため高強度化が必要な鋼に は添加される。 その場合、 0. 01%以上の添加を必要とする。 しかし 多量に添加すると Cr炭化物を生成し脆化させるため、 7 %を上限と した。  Cr is an element that imparts hardenability and temper softening resistance. Corrosion resistance can be obtained by adding a large amount. Therefore, it is added to steels that require high strength. In that case, it is necessary to add 0.01% or more. However, if added in large amounts, Cr carbides are formed and become brittle, so the upper limit was set at 7%.
Mo : 0. 01〜 3 %  Mo: 0.01-1%
Moは、 焼戻し軟化抵抗を付与するとともに、 焼入れ性を向上させ る元素である。 0. 01 %未満ではその効果が認められず、 3 %を超え て添加してもその効果が飽和しているので、 0. 01 %〜 3 %を添加範 囲とした。  Mo is an element that imparts temper softening resistance and improves hardenability. The effect is not recognized at less than 0.01%, and the effect is saturated even if added over 3%, so the addition range was 0.01% to 3%.
V : 0. 01〜3. 0 %  V: 0.01 to 3.0%
Vは、 炭窒化物を形成し、 二次析出硬化により鋼を強化すること ができる。 0. 01 %未満では高強度化に効果はなく、 3 %を超えて添 加すると多くの炭窒化物を析出し、 かえって機械的性質を損なうの で、 これを上限とした。  V forms carbonitrides and can strengthen the steel by secondary precipitation hardening. If it is less than 0.01%, there is no effect on increasing the strength, and if it exceeds 3%, a large amount of carbonitride precipitates and the mechanical properties are rather impaired, so the upper limit was set.
Nb: 0. 001〜0. 2 %  Nb: 0.001 to 0.2%
Nbも炭窒化物を形成し、 二次析出硬化によ り鋼を強化することが できる。 0. 001 %未満では高強度化に効果はなく、 0. 2%を超えて 添加すると多くの炭窒化物を析出し、 かえって機械的性質を損なう ので、 これを上限とした。  Nb also forms carbonitrides and can strengthen the steel by secondary precipitation hardening. If the content is less than 0.001%, there is no effect on increasing the strength. If the content exceeds 0.2%, a large amount of carbonitride precipitates and the mechanical properties are rather impaired.
Ti : 0. 001〜0. 5 %  Ti: 0.001 to 0.5%
Tiも炭窒化物を形成し、 鋼を強化する。 また脱酸元素でもあり、 軟質酸化物を形成させることで被削性を向上させることが可能であ る。 0. 001 %未満ではその効果が認められず、 0. 5%を超えて添加 してもその効果が飽和する。 また、 Tiは高温でも窒化物となりォー ステナイ ト粒の成長を抑制する。 そこで上限を 0. 5%とした。 Ti also forms carbonitrides and strengthens the steel. It is also a deoxidizing element, and it is possible to improve machinability by forming a soft oxide. You. If less than 0.001%, the effect is not recognized, and even if added over 0.5%, the effect is saturated. Also, Ti becomes a nitride even at high temperatures and suppresses growth of austenite grains. Therefore, the upper limit was set to 0.5%.
W : 0. 01〜 3 %  W: 0.01-1%
Wは、 炭窒化物を形成し、 二次析出硬化により鋼を強化すること ができる。 0. 01 %未満では高強度化に効果はなく、 3 %を超えて添 加すると粗大な炭窒化物を析出し、 かえって機械的性質を損なうの で、 これを上限とした。  W forms carbonitrides and can strengthen the steel by secondary precipitation hardening. If it is less than 0.01%, there is no effect on increasing the strength, and if it exceeds 3%, coarse carbonitrides are precipitated and the mechanical properties are rather impaired. Therefore, the upper limit was set.
Ni: 0. 05〜 7 %  Ni: 0.05 to 7%
Niは、 フ ライ トを強化し、 延性を延性向上させるとともに焼入 れ性向上、 耐食性向上にも有効である。 0. 05%未満ではその効果は 認められず、 7 %を超えて添加しても、 機械的性質の点では効果が 飽和するので、 これを上限とした。  Ni is effective in strengthening the fly, improving ductility and improving hardenability and corrosion resistance. If the content is less than 0.05%, the effect is not recognized. Even if the content exceeds 7%, the effect is saturated in terms of mechanical properties, so the upper limit is set.
Cu: 0. 02〜 3 %  Cu: 0.02-3%
Cuは、 フェライ トを強化し、 延性を延性向上させると ともに焼入 れ性向上、 耐食性向上にも有効である。 0. 02%未満ではその効果は 認められず、 3 %を超えて添加しても、 機械的性質の点では効果が 飽和するので、 これを上限とした。 また Cuは単独で添加すると熱間 延性を極端に低下させて、 割れ等の铸造、 圧延における トラブルの 原因となる。 その添加量が 0. 3%を越える場合には、 製造上のトラ ブルをそれを避けるために、 Niの添加量を Ni %≥ Cu%となるように 添加することが好ましい。  Cu is effective in strengthening ferrite, improving ductility, improving hardenability, and improving corrosion resistance. If the content is less than 0.02%, the effect is not recognized. Even if added over 3%, the effect is saturated in terms of mechanical properties, so the upper limit is set. In addition, when Cu is added alone, the hot ductility is extremely lowered, which causes troubles such as cracking and rolling problems. When the addition amount exceeds 0.3%, it is preferable to add Ni so that Ni% ≥ Cu% in order to avoid manufacturing trouble.
A1 : 0. 001〜 2 %  A1: 0.001 to 2%
A1は、 脱酸元素で鋼中では A12 03や A1Nを形成する。 それにより 焼入れ時のオーステナイ ト粒径の粗大化防止さらには靱性の向上に 有効である。 しかし 0. 001 %未満ではその効果が認められず、 2 % を越えると粗大な介在物を生じて、 かえって機械的性質を低下させ る。 さらに A12 03は硬質なので切削時に工具損傷の原因となり、 摩 耗を促進する場合がある。 そこでオーステナイ ト粒等の粗大化効果 が飽和し、 A12 03の弊害が顕著となる 2 %を上限とした。 特に被削 性を優先する場合には A12 03を多量に生成しない 0. 015 %以下にす ることが好ましく、 さらに酸化物の軟質化を優先させる場合には 0 . 005 %以下が好ましい。 A1, the steel in our deoxidizing element forming the A1 2 0 3 or A1N. This is effective for preventing the austenite grain size from becoming coarse during quenching and for improving toughness. However, if the content is less than 0.001%, the effect is not recognized.If the content is more than 2%, coarse inclusions are generated, and the mechanical properties are rather deteriorated. You. Furthermore A1 2 0 3 will cause the tool damage during cutting so hard, may promote wear. Therefore austenite coarsening effect of such grains is saturated, and the upper limit of 2% of adverse effects A1 2 0 3 becomes remarkable. Particularly preferred to Rukoto to 0.015% or less that does not produce a large amount of A1 2 0 3 in the case of priority the machinability is preferably 0.005% or less in the case of further prioritize softening oxide .
Ca: 0. 0002〜0. 01 %  Ca: 0.0002-0.01%
Caは、 脱酸元素であり、 軟質酸化物を生成し、 被削性を向上させ るだけでなく、 MnSに固溶してその変形能を低下させ、 圧延や熱間 鍛造しても MnS形状の伸延を抑制する働きがある。 したがって異方 性の低減に有効な元素である。 0. 0002 %未満ではその効果は顕著で はなく、 0. 01 %を超えて添加しても歩留まりが極端に悪くなるばか りでなく、 硬質の Ca0, CaSなどを大量に生成し、 かえって被削性を 低下させる。 したがって成分範囲を 0. 0002〜0. 01 %と規定した。  Ca is a deoxidizing element that generates soft oxides and not only improves machinability, but also dissolves in MnS to reduce its deformability, and MnS shape even when rolled or hot forged Has the function of suppressing distraction. Therefore, it is an effective element for reducing anisotropy. If the content is less than 0.0002%, the effect is not remarkable. Even if the content exceeds 0.01%, not only the yield will be extremely deteriorated, but also a large amount of hard Ca0, CaS, etc. will be generated and the coating will be damaged. Decreases machinability. Therefore, the component range was defined as 0.0002 to 0.01%.
Zr: 0. 0003〜0. 5 %  Zr: 0.0003-0.5%
Zrは、 脱酸元素であり、 酸化物を生成する。 酸化物は MnSの析出 核になり MnSの微細均一分散に効果がある。 また MnSに固溶してそ の変形能を低下させ、 圧延や熱間鍛造しても MnS形状の伸延を抑制 する働きがある。 したがって異方性の低減に有効な元素である。 0. 0003%未満ではその効果は顕著ではなく、 0. 5%を越えて添加して も歩留まりが極端に悪くなるばかりでなく、 硬質の Zr02や ZrSなど を大量に生成し、 かえって被削性を低下させる。 したがって成分範 囲を 0. 0003〜0. 5 %と規定した。 Zr is a deoxidizing element and produces an oxide. The oxides serve as precipitation nuclei for MnS and are effective in fine and uniform dispersion of MnS. In addition, it has the function of dissolving in MnS to reduce its deformability, and suppressing the elongation of the MnS shape even in rolling or hot forging. Therefore, it is an element effective for reducing anisotropy. 0. The effect is less than 0,003% is not significant, not only the yield be added exceeds 5% 0.5 becomes extremely poor to generate such a large amount Zr0 2 and ZrS hard, cutting rather be Reduce the nature. Therefore, the range of components was specified to be 0.0003 to 0.5%.
Mg: 0. 0002〜0. 02%  Mg: 0.0002-0.02%
Mgは、 脱酸元素であり、 酸化物を生成する。 酸化物は MnSの析出 核になり MnSの微細均一分散に効果がある。 したがって異方性の低 減に有効な元素である。 0. 0002%未満ではその効果は顕著ではなく 、 0. 02%を超えて添加しても歩留まりが極端に悪くなるばかりで効 果は飽和する。 したがって成分範囲を 0. 0002〜0. 02%と規定した。 Mg is a deoxidizing element and produces oxides. The oxides serve as precipitation nuclei for MnS and are effective in fine and uniform dispersion of MnS. Therefore, it is an effective element for reducing anisotropy. Below 0.00002%, the effect is not noticeable However, even if added in excess of 0.02%, the yield will be extremely poor and the effect will be saturated. Therefore, the component range was defined as 0.0002 to 0.02%.
Te: 0. 001〜0. 5 %  Te: 0.001 to 0.5%
Teは、 被削性向上元素である。 また MnTeを生成したり、 MnSと共 存することで MnSの変形能を低下させて MnS形状の伸延を抑制する 働きがある。 したがって異方性の低減に有効な元素である。 この効 果は 0. 001 %未満では認められず、 0. 5%を超えると効果が飽和す る。  Te is a machinability improving element. In addition, the formation of MnTe and the coexistence with MnS have the effect of reducing the deformability of MnS and suppressing the elongation of the MnS shape. Therefore, it is an element effective for reducing anisotropy. This effect is not observed at less than 0.001%, and saturates at more than 0.5%.
Pb , Bi: 0. 01〜0. 7 %  Pb, Bi: 0.01 to 0.7%
Pbおよび Biは、 被削性向上に効果のある元素である。 その効果は 0. 01 %未満では認められず、 0. 7%を超えて添加しても被削性向上 効果が飽和するだけでなく、 熱間鍛造特性が低下して疵の原因とな りやすい。 そのことからそれぞれの含有量を 0. 01〜0. 7 %とした。 実施例  Pb and Bi are elements that are effective in improving machinability. The effect is not recognized at less than 0.01%, and when added over 0.7%, not only does the machinability improvement effect saturate, but also the hot forging properties deteriorate and cause flaws. Cheap. Therefore, the respective contents were set to 0.01 to 0.7%. Example
本発明の効果を実施例によって説明する。 表 1に示す化学成分を 有する供試材の一部は 270 t転炉で溶製後、 ビレッ トに分解圧延、 さらに φ 50mmの棒鋼に圧延した。 他は 2 t —真空溶解炉にて溶製、 圧延した。 表 2の実施例 1〜40に示す材料の被削性評価はドリル穿 孔試験で表 3に切削条件を示す。 累積穴深さ lOOOmniまで切削可能な 最高の切削速度 (いわゆる VL1000) で被削性を評価した。  The effects of the present invention will be described with reference to examples. Some of the test materials having the chemical components shown in Table 1 were melted in a 270 t converter, then disassembled and rolled into billets, and further rolled into φ50 mm steel bars. The others were melted and rolled in a 2 t vacuum melting furnace. For the evaluation of the machinability of the materials shown in Examples 1 to 40 in Table 2, the cutting conditions are shown in Table 3 in the drilling test. The machinability was evaluated at the highest cutting speed (so-called VL1000) that can cut to the accumulated hole depth lOOmni.
さらに表面粗さは突切工具によって工具形状を転写する、 いわゆ るプランジ切削によって評価した。 その実験方法の概要を図 1に示 す。 即ち、 図 1 ( a ) に示すように、 切削方向 1に回転する試験材 2を工具 3により切削し、 図 1 ( b ) に示すように、 工具 3を動か して表面粗さ測定面 4を形成する。 また切削条件を表 4に示す。 実 験では 200溝加工した場合の表面粗さ (10点表面粗さ Rz w m ) を測 定した。 ここで表 2に示す切り屑処理性に関して、 切り屑はカール 形状となるが、 カールが 5卷き以下で切り屑が破断し、 短い切り屑 を生成している場合を 「〇」 、 5巻をこえても破断しない長い切り 屑を生成している場合を 「X」 と表記した。 Furthermore, the surface roughness was evaluated by so-called plunge cutting, in which the tool shape was transferred by a parting-off tool. Figure 1 shows the outline of the experimental method. That is, as shown in Fig. 1 (a), the test material 2 rotating in the cutting direction 1 is cut by the tool 3, and as shown in Fig. 1 (b), the tool 3 is moved to To form Table 4 shows the cutting conditions. In the experiment, the surface roughness (10-point surface roughness Rz wm) when machining 200 grooves was measured. Specified. Regarding the chip disposability shown in Table 2, the chip has a curl shape, but if the curl is less than 5 turns and the chip breaks and short chips are generated, “〇” indicates that The case where a long chip that does not break even when exceeding this is generated is denoted as “X”.
表 1  table 1
施例 化 学 成 分 (masS%) Example Chemical component (mas S %)
No. 区分 C Si Mn P S Zn Sn B Te Pb Bi N 0 No. Category C Si Mn P S Zn Sn B Te Pb Bi N 0
1 発明例 0. 009 0. 007 1. 540 0. 071 0. 502 0. 0098 0. 0167 0. 01781 Invention example 0.009 0.007 1.540 0.071 0.502 0.0098 0.0167 0.0178
2 発明例 0. 018 0. 012 1. 512 0. 078 0. 494 0. 0063 0. 014 ― 0. 0176 0. 01902 Invention example 0.0018 0. 012 1.512 0. 078 0. 494 0. 0063 0. 014-0. 0176 0. 0190
3 発明例 0. 008 0. 008 1. 090 0. 090 0. 530 0. 0075 0. 016 ― 0. 0099 0. 01793 Invention example 0.0008 0. 008 1. 090 0. 090 0. 530 0. 0075 0. 016-0.000099 0.
4 発明例 0. 014 0. 015 1. 688 0. 080 0. 550 0. 0039 0. 009 0. 0020 0. 0083 0. 01794 Invention example 0.0014 0.015 1.688 0.080 0.550 0.0039 0.009 0.0020 0000.0083 0.0179
5 比較例 0. 011 0. 013 1. 410 0. 074 0. 458 0. 0111 0. 01655 Comparative example 0.011 0. 013 1.410 0. 074 0. 458 0. 0111 0. 0165
6 比較例 0. 019 0. 013 1. 430 0. 071 0. 468 0. 029 0.0131 0. 01596 Comparative Example 0.019 0.013 1.430 0.071 0.468 0.029 0.0131 0.01159
7 発明例 0. 051 0, 013 1. 606 0. 079 0. 526 0. 0064 0. 0091 0. 01737 Invention example 0.051 0, 013 1.606 0. 079 0. 526 0. 0064 0. 0091 0. 0173
8 発明例 0, 024 0. 004 1. 429 0. 077 0. 467 0. 1181 0. 0143 0. 01988 Inventive example 0, 024 0.004 1.429 0. 077 0. 467 0. 1181 0. 0143 0. 0198
9 発明例 0. 036 0. 005 1. 471 0. 082 0. 481 0. 4462 一 0.0083 0. 02019 Invention example 0.036 0.005 1.471 0.082 0.481 0.44462 1 0.0083 0.0201
10 発明例 0. 057 0. 007 0. 919 0, 081 0. 452 0. 0054 0. 0030 0. 0094 0. 018310 Invention example 0.057 0.007 0.919 0, 081 0.452 0.0054 0.0030 0.0094 0.0183
11 発明例 0. 057 0. 011 1. 651 0. 079 0. 540 0. 0058 0. 013 0. 0126 0. 019111 Inventive example 0.057 0. 011 1.651 0. 079 0.540 0.0058 0.013 0.0126 0.0191
12 明例 0. 023 0. 010 0. 988 0. 076 0. 476 0. 0070 0. 015 0. 0165 0. 018312 Illustrative example 0.023 0.010 0.988 0.076 0.476 0.0070 0.015 0.0165 0.0183
13 発明例 0. 050 0. 005 1. 409 0. 081 0. 459 0. 0067 0. 015 0. 0024 0. 0126 0, 019613 Inventive example 0.050 0.005 005 1.409 0. 081 0.459 0.0067 0.015 0.0024 0.0126 0, 0196
14 比較例 0. 024 0. 009 1. 424 0. 082 0. 464 0.0132 0. 015014 Comparative Example 0.024 0.00.09 1.424 0.082 0.464 0.0132 0.0150
15 発明例 0. 076 0. 010 0. 983 0. 074 0. 322 0. 0051 _ 0.0103 0. 019715 Invention example 0.076 0.010 0.983 0.074 0.322 0.0051 _ 0.0103 0.0197
16 発明例 0. 071 0. 003 0. 897 0. 077 0. 299 0. 0034 0. 007 一 0. 0117 0. 019816 Invention example 0.071 0.003 0.897 0.077 0.299 0.0034 0.007 1 0.0117 0.0198
17 発明例 0. 073 0. 003 0. 909 0. 077 0. 300 0. 0049 0. Oil 0. 0034 0. 0098 0. 020017 Invention example 0.073 0.003 0.909 0.077 0.300 0.0049 0.Oil 0.0034 0.0098 0.0200
18 発明例 0. 083 0. 007 0. 861 0. 088 0. 287 0. 0059 0. 275 0. 0137 0. 015118 Invention example 0.083 0.007 0.861 0.088 0.287 0.0059 0.275 0.0137 0.0151
19 発明例 0. 072 0. 004 0. 907 0. 071 0. 297 0. 0092 0. 020 一 0. 271 0. 0143 0. 017719 Invention example 0.072 0.004 0.907 0.071 0.297 0.0092 0.020-1.271.0.0143 0.0177
20 発明例 0. 084 0. 014 1. 002 0. 071 0. 331 0. 0085 0. 019 0. 0027 0. 186 0.0142 0. 018620 Invention example 0.084 0.014 1.002 0.071 0.331 0.0085 0.019 0.0027 0.186 0.0142 0.0186
21 発明例 0. 078 0. 013 0. 889 0. 085 0. 292 0. 0049 ― 0. 113 0. 0084 0. 019921 Inventive example 0.078 0. 013 0.889 0.085 0.292 0.0049-0.113 0.0084 0.0199
22 比較例 0. 079 0. 014 1. 068 0. 089 0. 348 0. 0145 0. 020222 Comparative Example 0.079 0.014 1.068 0.089 0.348 0.0145 0.0202
23 比較例 0. 080 0. 003 1. 065 0. 075 0, 347 0. 279 0. 0119 0. 018623 Comparative Example 0.080 0.003 1.065 0.075 0, 347 0.279 0.0119 0.0186
24 比較例 0. 071 0. 010 0. 909 0. 072 0. 299 0. 177 0. 0178 0. 015724 Comparative Example 0.071 0.010 0.909 0.072 0.299 0.177 0.0178 0.0157
25 比較例 0. 071 0. 002 0. 911 0. 089 0. 300 0. 119 0.0120 0. 020825 Comparative example 0.071 0.002 0.911 0.089 0.300 0.119 0.0120 0.0208
26 比較例 0. 076 0. 004 1. 59 0. 084 0. 479 0. 057 0.0099 0. 017126 Comparative Example 0.076 0.004 1.59 0.084 0.479 0.057 0.0099 0.0171
27 発明例 0. 073 0. 012 1. 533 0. 073 0. 503 0. 0039 0. 0104 0. 019727 Invention example 0.073 0.012 1.533 0.073 0.503 0.0039 0.0104 0.0197
28 発明例 0. 073 0. 008 1. 426 0. 086 0. 465 0. 0079 0. 009 0. 0131 0. 018228 Invention example 0.073 0.008 1.426 0.086 0.465 0.0079 0.009 0.0131 0.0182
29 発明例 0. 073 0. 005 1. 013 0. 085 0. 491 0. 0070 0. 017 0. 0119 0. 020029 Invention example 0.073 0.005 1.013 0.085 0.491 0.0070 0.017 0.0119 0.0200
30 発明例 0. 079 0. 007 1. 589 0. 072 0. 521 0. 0066 0. 017 0. 0028 0. 0130 0. 019430 Inventive example 0.079 0.007 1.589 0.072 0.521 0.0066 0.017 0.0028 0.0130 0.0194
31 比較例 0. 087 0. 015 1. 624 0. 082 0. 530 0. 0176 0. 016531 Comparative Example 0.087 0.015 1.624 0.082 0.530 0.0176 0.0165
32 発明例 0. 080 0. 002 2. 204 0. 079 0. 720 0. 0046 0.0146 0. 015232 Inventive example 0.080 0.002 2.204 0.079 0.720 0.0046 0.0146 0.0152
33 発明例 0. 079 0. Oil 2. 188 0. 082 0. 712 0. 0060 0. 0090 0. 020233 Inventive example 0.079 0.Oil 2.188 0.082 0.712 0.0060 0.0090 0.0202
34 発明例 0. 088 0. 002 2. 147 0. 084 0. 699 0. 0088 0. 010 0. 0105 0. 015534 Invention example 0.088 0.002 2.147 0.084 0.699 0.0088 0.010 0.0105 0.0155
35 発明例 0. 081 0.014 2. 203 0. 078 0. 717 0. 0035 0. 019 0. 0018 0. 0140 0. 020435 Inventive example 0.081 0.014 2.203 0.078 0.717 0.0035 0.019 0.0018 0.0140 0.0204
36 比較例 0. 077 0. 003 2. 056 0. 077 0. 672 0. 0141 0. 018936 Comparative Example 0.077 0.003 2.056 0.077 0.672 0. 0141 0.0189
37 発明例 0. 075 0. 012 0. 332 0. 083 0. 087 0. 0043 0.0142 0. 020637 Invention Example 0.075 0.012 0.332 0.083 0.087 0.0043 0.0142 0.0206
38 発明例 0. 081 0. 002 0. 346 0. 089 0. 088 0. 0095 0. 020 0.0163 0. 016938 Invention example 0.081 0.002 0.346 0.089 0.088 0.0095 0.020 0.0163 0.0169
39 発明例 0. 078 0. 006 0. 384 0. 087 0. 096 0. 0056 0. 012 0. 0017 0. 0129 0. 017739 Invention Example 0.078 0.006 0.384 0.087 0.096 0.0056 0.012 0.0017 0.0129 0.0177
40 比較例 0. 071 0. 012 0. 326 0. 090 0, 083 0. 0178 0. 0174 表 2 40 Comparative Example 0.071 0. 012 0. 326 0. 090 0, 083 0. 0178 0. 0174 Table 2
Figure imgf000015_0001
表 3
Figure imgf000015_0001
Table 3
Figure imgf000016_0001
表 4
Figure imgf000016_0001
Table 4
Figure imgf000016_0002
発明例はいずれも比較例に対して ドリル工具寿命に優れるととも に、 プランジ切削における表面粗さが良好であった。 これは C, S 等の添加量が異なっても、 その順位が変わることはなく、 Zn, Sn , B等の元素が添加された場合、 同一 C, S等の比較鋼に比べ、 工具 寿命と表面粗さに優れた。 S量の多い方が被削性が良好な傾向にあ つたが、 S量が比較的少量の場合でも切り屑処理性に改善が見られ た。
Figure imgf000016_0002
All of the inventive examples were superior to the comparative example in terms of drill tool life, and had good surface roughness in plunge cutting. This is because even if the addition amounts of C, S, etc. are different, the order does not change. When elements such as Zn, Sn, B, etc. are added, the tool life and Excellent surface roughness. The higher the S content, the better the machinability, but even when the S content was relatively small, the chip controllability was improved.
一方、 実施例中の比較例 6および 26のように Snが添加された場合 でも Znが添加されていなければ被削性は向上しなかった。  On the other hand, even when Sn was added as in Comparative Examples 6 and 26 in the examples, machinability was not improved unless Zn was added.
さらに従来から知られている Te, Pb , Bi等の被削性向上元素の含 まれる場合であっても Z ηを添加した方がより優れた被削性を示した 同じく、 構造用炭素鋼をベースとした鋼の被削性、 機械的性質を 評価したサンプルの化学成分を表 5に評価結果を表 6に示す。 それ ぞれの供試材は一部は 270 t転炉で溶製後、 ビレッ トに分解圧延、 さらに φ 65mmの棒鋼に圧延した。 他は 2 t —真空溶解炉にて溶製、 圧延した。 衝撃値 ( J Z cm2 は JI Sに準拠して 2 深さの Uノ ッチ試験片 を作成して評価した。 In addition, even when conventional machinability-improving elements such as Te, Pb, and Bi were included, the addition of Z η showed better machinability. Table 5 shows the chemical composition of the sample evaluated for the machinability and mechanical properties of the steel based on, and Table 6 shows the evaluation results. A part of each specimen was melted in a 270 t converter, then disassembled and rolled into billets, and further rolled into φ65 mm steel bars. The others were melted and rolled in a 2 t vacuum melting furnace. Impact value (JZ cm 2 was evaluated by preparing a U-notch specimen with a depth of 2 according to JIS.
0. 1 %程度の Cを含有する実施例 41〜43に関する被削性評価はド リル穿孔試験で表 3に切削条件を示す。 累積穴深さ lOOOminまで切削 可能な最高の切削速度 (いわゆる VL1000) で被削性を評価した。  Table 3 shows the cutting conditions in the drilling test for the machinability evaluation of Examples 41 to 43 containing about 0.1% C. The machinability was evaluated at the highest cutting speed (so-called VL1000) capable of cutting up to the accumulated hole depth lOOOOmin.
さらに表面粗さは突切工具によって工具形状を転写する、 いわゆ るプランジ切削によって評価した。 実験では 200溝加工した場合の 表面粗さを測定した。 表 4に示すブランジ切削により表面粗さを評 価した。  Furthermore, the surface roughness was evaluated by so-called plunge cutting, in which the tool shape was transferred by a parting-off tool. In the experiment, we measured the surface roughness when machining 200 grooves. The surface roughness was evaluated by the plunge cutting shown in Table 4.
約 0. 3%の Cを含有する実施例 44〜 46およびそれらを超える C量 の実施例 47〜77に関しては機械的性質を重要視するため、 衝撃値お よびその異方性を示した。 ここでは棒鋼の横断面方向から切り出し た試料の衝擊値を示す ( 「C方向」 欄) とともに、 異方性として ( 横断面方向試料の衝撃値) / (長手方向試料の衝撃値) を示した ( 「異方性」 欄) 。 この値が大きいほど異方性が少ないことを示す。 なお実施例 47〜77の被削性評価はドリル穿孔特性 VL1000で行い、 表 7に示す切削条件で評価した。 これらの場合、 切削表面粗さは評 価していない。 For Examples 44-46 containing about 0.3% C and Examples 47-77 with more C content, the impact value and its anisotropy were shown in order to emphasize the mechanical properties. Here, the impact value of the sample cut out from the cross section direction of the steel bar is shown (“C direction” column), and (an impact value of the transverse direction sample) / (an impact value of the longitudinal sample) is shown as anisotropy. ("Anisotropic" column). The larger the value is, the smaller the anisotropy is. The evaluation of the machinability of Examples 47 to 77 was carried out with the drilling property VL1000, and evaluated under the cutting conditions shown in Table 7. In these cases, the cutting surface roughness was not evaluated.
Figure imgf000018_0001
表 6
Figure imgf000018_0001
Table 6
実施例 被削性 硬さ Example Machinability Hardness
No . 区分 VL1000 表面粗さ HV C方向 異方性 No. Category VL1000 Surface roughness HV C direction Anisotropy
41 発明例 65 20. 3 128 — 41 Invention example 65 20. 3 128 —
42 発明例 65 21. 2 132 — ― 42 Invention 65 21. 2 132--
43 比較例 45 33. 5 132 — —43 Comparative Example 45 33. 5 132 — —
44 発明例 52 — 167 53. 4 0. 5544 Invention example 52 — 167 53. 4 0.55
45 発明例 57 — 165 53. 4 0. 5345 Invention Example 57 — 165 53. 4 0.53
46 比較例 43 ― 174 52. 1 0. 5546 Comparative Example 43 ― 174 52.1 0.55
47 発明例 47 一 194 41. 6 0. 5247 Invention Example 47 1 194 41.6.0.52
48 発明例 50 184 38. 1 0. 5548 Invention 50 184 38.1 0.55
49 比較例 37 196 38. 0 0. 5949 Comparative Example 37 196 38.0 0.59
50 発明例 44 一 206 36. 2 0. 4550 Invention example 44 1 206 36.2 0.45
51 発明例 36 ― 215 35. 3 0. 4651 Invention 36-215 35.3 0.46
52 比較例 25 ― 203 35. 9 0. 4852 Comparative Example 25 ― 203 35.9 0.48
53 比較例 46 ― 199 18. 9 0. 2953 Comparative Example 46 ― 199 18.9 0.29
54 発明例 45 210 35. 4 0. 4454 Invention 45 210 35.4 0.44
55 発明例 37 一 202 37. 3 0. 5855 Invention 37 37 202 37.3 0.58
56 比較例 26 一 208 36. 9 0. 5356 Comparative Example 26 1 208 36.9 0.53
57 発明例 43 ― 206 36. 6 0. 5457 Invention 43-206 36.6 0.55
58 発明例 44 ― 212 35. 9 0. 5158 Invention Example 44 ― 212 35.9 0.51
59 比較例 26 ― 212 37. 7 0. 5159 Comparative Example 26 ― 212 37.7 0.51
60 発明例 38 ― 201 37. 3 0. 5160 Invention 38-201 37.3 0.55
61 発明例 42 ― 205 35. 9 0. 4661 Invention example 42 ― 205 35.9 0.46
62 比較例 25 ― 202 36. 4 0. 5162 Comparative Example 25 ― 202 36.4 0.45
63 発明例 45 198 41. 4 0. 6363 Invention example 45 198 41.4 4 0.63
64 発明例 50 — 192 39. 8 0. 5264 Invention 50-192 39.8 0.52
65 比較例 34 — 193 41. 4 0. 5465 Comparative Example 34 — 193 41. 4 0.54
66 発明例 50 — 202 41. 5 0. 6666 Inventive example 50 — 202 41.5 0.66
67 発明例 50 — 192 39. 0 0. 5367 Invention 50-192 39.0 0.53
68 比較例 35 196 41. 2 0. 5468 Comparative Example 35 196 41. 2 0.54
69 発明例 46 ― 205 38. 5 0. 5169 Invention 46-205 38.5 0.51
70 発明例 48 204 40. 0 0. 6470 Inventive example 48 204 40.0 0.64
71 比較例 31 201 39. 6 0. 5571 Comparative Example 31 201 39.6 0.55
72 発明例 48 06 40. 4 0. 5972 Invention example 48 06 40.4 0.59
73 発明例 48 192 38. 7 0. 5073 Invention 48 192 38.7 0.50
74 比較例 31 208 38. 6 0. 4874 Comparative Example 31 208 38.6 0.48
75 発明例 47 193 38. 9 0. 5975 Invention 47 193 38.9 0.59
76 発明例 48 205 41. 2 0. 5276 Invention example 48 205 41.2 0.52
77 比較例 35 203 40. 4 0. 64 表 7 77 Comparative Example 35 203 40.4 0.64 Table 7
Figure imgf000020_0001
実施例 41 43の比較では発明例は VL1000および表面粗さで比較例 より勝っていた。 また実施例 44 77に関しては、 発明例はほぼ同等 の Cおよび他の合金元素を含有した比較例に対して硬度 HV、 横断面 方向試料の衝撃値および (横断面方向試料の衝撃値) / (長手方向 試料の衝撃値) は、 ほぼ同等であるにも拘わらず、 発明例の方が、
Figure imgf000020_0001
In the comparison of Example 41 43, the inventive example outperformed the comparative example in VL1000 and surface roughness. Also, with regard to Example 4477, the invention example shows a hardness HV, an impact value of the sample in the cross section direction and an impact value of the sample in the cross section direction of the comparative example containing substantially the same C and other alloying elements. Although the impact value of the sample in the longitudinal direction is almost the same,
VL1000が良好で被削性に優れることがわかる。 It can be seen that VL1000 is good and has excellent machinability.
さらに比較例 53のように Sを増量することで被削性を向上させた 場合、 衝撃値の異方性が低下するため、 構造用鋼としての性能が発 明例 47 48より劣ると考えられた。  Furthermore, when the machinability was improved by increasing the amount of S as in Comparative Example 53, the anisotropy of the impact value was reduced, and the performance as structural steel was considered to be inferior to that of Invention Example 47 48. Was.
表 8に、 合金元素を多量に添加し、 焼入れ性を向上させた鋼をべ ースとした実施例を示す。 供試材は一部は 270 t転炉で溶製後、 ビ レッ トに分解圧延、 さらに φ 50mmに圧延した。 他は 2 t —真空溶解 炉にて溶製、 圧延した。  Table 8 shows examples in which a large amount of alloying elements were added to improve the hardenability of steel. Some of the test materials were melted in a 270 t converter, then disassembled and rolled into billets, and further rolled to φ50 mm. The others were melted and rolled in a 2 t vacuum melting furnace.
実施例 78 82は SCr420をベースとした鋼に関して、 焼準(920°C X l hr→空冷) を施した後、 切削試験に供した。 被削性評価はドリル 穿孔試験で切削条件は表 5 と同じ、 評価項目は累積穴深さ 1000mmま で切削可能な最高の切削速度 (いわゆる VL1000) である。 この VL10 00の単位は m /min で、 大きい程良好な工具寿命に優れる。 さらに 硬度を測定するとともに、 図 2に示すように 9 mm φの試験片に R 1. 16 のノ ツチを形成したノ ツチ付き小野式回転曲げ試験片を作成し 、 図 3 ( a ) 及び (b ) に示す条件で浸炭した後に疲労特性を評価 した。 その結果、 図 3 ( b ) に示す焼準後の硬さはほとんど同一にも関 わらず VL1000は開発鋼の方が優れていた。 浸炭後の疲労特性はほぼ 同等であり、 本発明の技術が被削性を向上させるものの、 その後の 歯車性能を低下させないことがわかる。 In Example 7882, a steel based on SCr420 was subjected to normalization (920 ° C x lhr → air cooling) and then subjected to a cutting test. The machinability was evaluated in a drilling test with the same cutting conditions as in Table 5, and the evaluation item was the highest cutting speed (so-called VL1000) that could be cut up to a cumulative hole depth of 1000 mm. The unit of this VL1000 is m / min. The larger the value, the better the tool life. In addition to measuring the hardness, as shown in Fig. 2, an Ono-type rotary bending test piece with a notch formed with a notch of R 1.16 on a 9 mm diameter test piece was prepared, and Figs. 3 (a) and ( b) Fatigue properties were evaluated after carburizing under the conditions shown in b). As a result, although the hardness after normalizing shown in Fig. 3 (b) was almost the same, the developed steel was superior to VL1000. The fatigue characteristics after carburization are almost the same, and it can be seen that the technology of the present invention improves machinability but does not lower the subsequent gear performance.
表 8 Table 8
実施例 化 学 成 分 (mass%) 被削性 硬度 疲労限 Examples Chemical components (mass%) Machinability Hardness Fatigue limit
No. 区分 C ' Si Mn P s Zn Sn B Cr Al N 0 VLIOOO HV MPaNo. Category C 'Si Mn P s Zn Sn B Cr Al N 0 VLIOOO HV MPa
78 発明例 0.21 0.19 0.71 0.016 0.013 0.0075 1.05 0.032 0.0056 0.0021 66 157 49978 Invention example 0.21 0.19 0.71 0.016 0.013 0.0075 1.05 0.032 0.0056 0.0021 66 157 499
79 発明例 0.20 0.19 0.70 0.018 0.017 0.0032 0.0027 0.94 0.034 0.0050 0.0059 70 153 50579 Invention example 0.20 0.19 0.70 0.018 0.017 0.0032 0.0027 0.94 0.034 0.0050 0.0059 70 153 505
80 発明例 0.18 0.19 0.72 0.014 0.013 0.0078 0.0163 1.09 0.032 0.0045 0.0056 72 149 49680 Invention Example 0.18 0.19 0.72 0.014 0.013 0.0078 0.0163 1.09 0.032 0.0045 0.0056 72 149 496
81 比較例 0.21 0.19 0.79 0.020 0.013 0.94 0.026 0.0056 0.0052 54 150 50281 Comparative Example 0.21 0.19 0.79 0.020 0.013 0.94 0.026 0.0056 0.0052 54 150 502
82 比較例 0.19 0.19 0.71 0.016 0.046 0.91 0.018 0.0060 0.0042 73 149 485 82 Comparative Example 0.19 0.19 0.71 0.016 0.046 0.91 0.018 0.0060 0.0042 73 149 485
表 9に、 さらに合金元素を多量に添加し、 焼入れ性を向上させた 鋼をベース とした実施例を示す。 供試材は一部は 270 t転炉で溶製 後、 ビレッ トに分解圧延、 さらに φ 50mmに圧延した。 他は 2 t —真 空溶解炉にて溶製、 圧延した。 被削性評価はドリル穿孔試験で切削 条件は表 7 と同じ、 評価項目は累積穴深さ 1000 まで切削可能な最 高の切削速度 (いわゆる VL1000) である。 Table 9 shows examples based on steel with improved hardenability by further adding a large amount of alloying elements. A part of the test material was melted in a 270 t converter, then disassembled and rolled into billets, and further rolled to φ50 mm. The others were melted and rolled in a 2 t vacuum melting furnace. The machinability was evaluated by a drilling test and the cutting conditions were the same as in Table 7, and the evaluation item was the highest cutting speed (so-called VL1000) capable of cutting to a cumulative hole depth of 1000.
実施例 83〜88は SCM440をベース鋼として、 焼入れ焼戻し処理によ つて硬度を HV310程度に合わせ、 被削性評価は VL1000で行った。 ま た機械的性質として衝擊値を評価した。 衝撃値は試料を棒鋼の長手 方向から切り出し、 J I S3号試験片 ( 2 mmU切欠き試験片) によって 測定した。 その結果、 発明例は比較例に対してほぼ同一の硬度、 衝 撃値 ( J / cm2 ) を有するにもかかわらず、 被削性 VL1000は比較例 よりも大きく、 優れていた。 In Examples 83 to 88, the hardness was adjusted to about HV310 by quenching and tempering using SCM440 as a base steel, and the machinability was evaluated with VL1000. The impact value was evaluated as a mechanical property. The impact value was measured by cutting a sample from the longitudinal direction of the bar and using a JIS3 test piece (2 mmU notch test piece). As a result, although the invention example had almost the same hardness and impact value (J / cm 2 ) as the comparative example, the machinability VL1000 was larger and superior to the comparative example.
また実施例 89〜94は軸受け鋼をベース とし、 球状化焼鈍処理 700 °C X 20hr保定により軟質化させ、 被削性 VL1000を測定した。 その結 果、 発明例は比較例と比較して、 ほぼ同等の硬度を有しているにも 関わらず、 被削性 VL1000は大きく、 比較例よ り優れていた。 In Examples 89 to 94, the bearing steel was used as a base, and the steel was softened by spheroidizing annealing at 700 ° C for 20 hours, and the machinability VL1000 was measured. As a result, although the invention example had almost the same hardness as the comparative example, the machinability VL1000 was large and was superior to the comparative example.
表 9 Table 9
実施例 ィ匕 学 成 分 (mass96) 被削性 硬度 衝撃値 Example I-Dakugaku component (mass96) Machinability Hardness Impact value
No. 区分 C Si Mn P s Zn Sn B Cr Mo W Ni Cu Al N 0 VLIOOO HV 長手方向No. Category C Si Mn Ps Zn Sn B Cr Mo W Ni Cu Al N 0 VLIOOO HV Longitudinal direction
83 発明例 0.39 0.19 0.75 0.013 0.017 0.0067 1.02 0.17 0.026 0.0053 0.0013 13 315 61.883 Invention Example 0.39 0.19 0.75 0.013 0.017 0.0067 1.02 0.17 0.026 0.0053 0.0013 13 315 61.8
84 発明例 0.40 0.20 0.74 0.013 0.017 0.0065 0.0148 0.97 0.22 0.031 0.0064 0.0015 10 309 77.384 Inventive example 0.40 0.20 0.74 0.013 0.017 0.0065 0.0148 0.97 0.22 0.031 0.0064 0.0015 10 309 77.3
85 比較例 0.43 0.19 0.74 0.013 0.016 0.91 0.28 0.018 0.0046 0.0017 7 308 64.985 Comparative Example 0.43 0.19 0.74 0.013 0.016 0.91 0.28 0.018 0.0046 0.0017 7 308 64.9
86 発明例 0.39 0.21 0.72 0.013 0.019 0.0094 1.10 0.33 0.033 0.0060 0.0016 13 307 75.386 Inventive example 0.39 0.21 0.72 0.013 0.019 0.0094 1.10 0.33 0.033 0.0060 0.0016 13 307 75.3
87 発明例 0.42 0.21 0.71 0.014 0.018 0.0098 0.0207 1.07 0.29 0.021 0.0055 0.0014 12 317 69.587 Inventive example 0.42 0.21 0.71 0.014 0.018 0.0098 0.0207 1.07 0.29 0.021 0.0055 0.0014 12 317 69.5
88 比較例 0.39 0.19 0.79 0.013 0.018 0.95 0.21 0.016 0.0052 0.0014 8 305 70.988 Comparative Example 0.39 0.19 0.79 0.013 0.018 0.95 0.21 0.016 0.0052 0.0014 8 305 70.9
89 発明例 0.22 0.22 0.59 0.018 0.020 0.0034 0.48 89 Invention example 0.22 0.22 0.59 0.018 0.020 0.0034 0.48
to 0.17 1.82 0.030 0.0055 0.0036 34 266 107.4 to 0.17 1.82 0.030 0.0055 0.0036 34 266 107.4
90 発明例 0.19 0.19 0.55 0.017 0.014 0.0062 0.0024 0.47 0.24 1.76 0.10 0.021 0.0050 0.0030 35 273 101.5 90 Invention 0.19 0.19 0.55 0.017 0.014 0.0062 0.0024 0.47 0.24 1.76 0.10 0.021 0.0050 0.0030 35 273 101.5
91 比較例 0.20 0.18 0.57 0.017 0.016 0.46 0.25 1.83 0.09 0.026 0.0056 0.0051 29 275 105.991 Comparative Example 0.20 0.18 0.57 0.017 0.016 0.46 0.25 1.83 0.09 0.026 0.0056 0.0051 29 275 105.9
92 発明例 0.98 0.30 0.51 0.028 0.027 0.0058 1.50 0.029 0.0065 0.0009 24 276 92 Inventive example 0.98 0.30 0.51 0.028 0.027 0.0058 1.50 0.029 0.0065 0.0009 24 276
93 発明例 0.98 0.33 0.53 0.018 0.020 0.0099 0.0213 1.44 0.034 0.0056 0.0009 23 272  93 Inventive example 0.98 0.33 0.53 0.018 0.020 0.0099 0.0213 1.44 0.034 0.0056 0.0009 23 272
94 比較例 0.99 0.21 0.52 0.017 0.024 1.49 0.019 0.0045 0.0011 15 271 94 Comparative Example 0.99 0.21 0.52 0.017 0.024 1.49 0.019 0.0045 0.0011 15 271
産業上の利用可能性 Industrial applicability
本発明鋼によれば、 鋼中マ ト リ ックスの破断を促進することで、 According to the steel of the present invention, by promoting the fracture of the matrix in the steel,
0. 15%未満の C量のいわゆる低炭快削鋼においては工具寿命と切削 表面粗さを改善し、 Pbを含まない場合でも良好な工具寿命と切削表 面粗さを得ることができ、 また、 0. 15%以上の Cを含む構造用鋼に おいても、 被削性を向上させるとともに、 機械的性質の劣化、 特に 異方性を最低限に抑制することができる。 あるいは同程度の機械的 性質を有する鋼よりも本発明鋼は良好な被削性を得ることができる For so-called low-carbon free-cutting steel with a C content of less than 0.15%, tool life and cutting surface roughness can be improved, and good tool life and cutting surface roughness can be obtained even without Pb. Even for structural steels containing 0.15% or more of C, machinability can be improved and mechanical properties, especially anisotropy, can be minimized. Alternatively, the steel of the present invention can obtain better machinability than steel having similar mechanical properties.

Claims

請 求 の 範 囲 The scope of the claims
1. 質量%で、 1. In mass%,
C : 0.001〜1.5 %、  C: 0.001-1.5%,
Si : 3 %以下、 Si: 3% or less,
Mn: 0.01〜 3 %、 Mn: 0.01-3%,
P : 0.001〜0.2 %、 P: 0.001 to 0.2%,
S : 0.0001〜1.2 %、  S: 0.0001-1.2%,
Zn: 0.00;!〜 0.5 %、 Zn: 0.00 ;! ~ 0.5%,
N : 0.0001〜0.02%、 N: 0.0001-0.02%,
O : 0.0005〜0.05% O: 0.0005-0.05%
を含有することを特徴どする被削性に優れた鋼。 Excellent machinability steel characterized by containing.
2. さらに、 質量0 /oで、 Sn: 0.002〜0.5 %を含有することを特 徴とする請求項 1記載の被削性に優れた鋼。 2. The steel with excellent machinability according to claim 1, further comprising Sn: 0.002 to 0.5% at a mass of 0 / o.
3. さらに、 質量%で、 B : 0.0005〜0.05%を含有することを特 徴とする請求項 1 または 2記載の被削性に優れた鋼。  3. The steel with excellent machinability according to claim 1 or 2, further comprising B: 0.0005 to 0.05% by mass%.
4. さらに、 質量%で、  4. In addition, in mass%,
Cr: 0.01〜 7 %、 Cr: 0.01-7%,
Mo: 0.01〜 3 %、 Mo: 0.01-3%,
V : 0.0:!〜 3 %、 V: 0.0:! ~ 3%,
Nb: 0.001〜0.2 %、 Nb: 0.001 to 0.2%,
Ti: 0.001〜0.5 %、 Ti: 0.001-0.5%,
W : 0.0:!〜 3 % W: 0.0 :! ~ 3%
の内の 1種または 2種以上を含有することを特徴とする請求項 1〜 3の内のいずれかに記載の被削性に優れた鋼。 The steel with excellent machinability according to any one of claims 1 to 3, wherein the steel comprises one or more of the following.
5. さらに、 質量0 /0で、 Ni:0.05〜 7 %、 Cu:0.02〜 3 %の内の 1 ' 種または 2種を含有すると共に、 Cuが 0.3%以上を含む場合は Ni% ≥Cu%を満足することを特徴とする請求項 1〜 4の内のいずれかに 記載の被削性に優れた鋼。 5. In addition, the mass 0/0, Ni: 0.05~ 7 %, Cu: with containing 1 'species or two of 0.02 to 3%, if the Cu contains more than 0.3% Ni% The steel with excellent machinability according to any one of claims 1 to 4, wherein the steel satisfies ≥Cu%.
6 . さらに、 質量%で、  6. In addition, in mass%,
A1: 0. 001〜 2 %、 A1: 0.001 to 2%,
Ca: 0. 0002〜0. 01 %、  Ca: 0.0002-0.01%,
Zr: 0. 0003〜0. 5 %、 Zr: 0.0003-0.5%,
Mg: 0. 0002〜0. 02% Mg: 0.0002-0.02%
の内の 1種または 2種以上を含有することを特徴とする請求項 1〜 5の内のいずれかに記載の被削性に優れた鋼。 The steel excellent in machinability according to any one of claims 1 to 5, wherein the steel comprises one or more of the following.
7 . さらに、 質量%で、  7. In addition, in mass%,
Te: 0. 001〜0. 5 %、 Te: 0.001 to 0.5%,
Pb: 0. 01~ 0. 7 %、  Pb: 0.01 to 0.7%,
Bi: 0. 01〜0. 7 % Bi: 0.01 to 0.7%
の内の 1種または 2種以上を含有することを特徴とする請求項 1〜 6の内のいずれかに記載の被削性に優れた鋼。 The steel with excellent machinability according to any one of claims 1 to 6, wherein the steel comprises one or more of the following.
PCT/JP2003/007502 2002-06-14 2003-06-12 Steel excellent in machinability WO2003106724A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020047020308A KR100683923B1 (en) 2002-06-14 2003-06-12 Steel excellent in machinability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-174645 2002-06-14
JP2002174645A JP4267260B2 (en) 2002-06-14 2002-06-14 Steel with excellent machinability

Publications (1)

Publication Number Publication Date
WO2003106724A1 true WO2003106724A1 (en) 2003-12-24

Family

ID=29727986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007502 WO2003106724A1 (en) 2002-06-14 2003-06-12 Steel excellent in machinability

Country Status (5)

Country Link
JP (1) JP4267260B2 (en)
KR (1) KR100683923B1 (en)
CN (1) CN100355927C (en)
TW (1) TWI306476B (en)
WO (1) WO2003106724A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI789124B (en) * 2021-11-19 2023-01-01 財團法人金屬工業研究發展中心 Method of manufacturing a carbon steel component

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488396B2 (en) * 2002-11-15 2009-02-10 Nippon Steel Corporation Superior in machinability and method of production of same
JP4041781B2 (en) * 2003-08-12 2008-01-30 株式会社神戸製鋼所 Steel material with excellent corrosion resistance
JP4507865B2 (en) * 2004-12-06 2010-07-21 住友金属工業株式会社 Low carbon free cutting steel
JP4876638B2 (en) * 2006-03-08 2012-02-15 住友金属工業株式会社 Low carbon sulfur free cutting steel
JP4473928B2 (en) * 2007-04-18 2010-06-02 新日本製鐵株式会社 Hot-worked steel with excellent machinability and impact value
KR101330756B1 (en) * 2009-04-14 2013-11-18 신닛테츠스미킨 카부시키카이샤 Low-specific gravity steel for forging having excellent machinability
CN101906596B (en) * 2010-07-05 2015-09-02 郁寿林 A kind of high-sulfur antifriction abrasion-resistant casting steel
EP2682491B1 (en) * 2011-03-03 2018-07-04 Hitachi Metals, Ltd. Hot work tool steel having excellent toughness, and process of producing same
JP5907415B2 (en) * 2011-03-03 2016-04-26 日立金属株式会社 Hot work tool steel with excellent toughness
TWI448565B (en) * 2011-05-30 2014-08-11 Kobe Steel Ltd Steel with improved rolling fatigue characteristics
CN102433505A (en) * 2011-12-14 2012-05-02 虞海盈 Material for producing rolling bearings
CN103388107B (en) * 2013-08-09 2015-03-11 武汉钢铁(集团)公司 Coppery BN (Boron Nitride) type free-cutting steel and production method thereof
CN103643139A (en) * 2013-11-12 2014-03-19 铜陵市肆得科技有限责任公司 Alloy steel material for water pump bearings and preparation method thereof
CN103741077A (en) * 2013-12-24 2014-04-23 中兴能源装备股份有限公司 Rolled steel
CN105349883A (en) * 2015-12-07 2016-02-24 张家港市新凯带钢制造有限公司 Corrosion-resistant alloy steel
CN105755382A (en) * 2016-03-31 2016-07-13 苏州睿昕汽车配件有限公司 Anticorrosion automobile accessory alloy steel material and preparation method thereof
CN106148818B (en) * 2016-06-23 2018-09-11 南通市嘉业机械制造有限公司 A kind of manufacturing method and its temperature control system of piercing plug for seamless steel tubes
HUE052450T2 (en) * 2017-06-06 2021-04-28 Bgh Edelstahl Siegen Gmbh Precipitation hardening steel and use of such a steel for thermoforming tools
KR102010052B1 (en) * 2017-10-19 2019-08-12 주식회사 포스코 Medium carbon free cutting steel having excellent hot workability and method for manufacturing the same
CN107747024A (en) * 2017-10-31 2018-03-02 桂林加宏汽车修理有限公司 A kind of high-temperature steel alloy
CN108798586A (en) * 2018-04-17 2018-11-13 常熟市虹桥铸钢有限公司 A kind of preventer
CN108677085A (en) * 2018-04-17 2018-10-19 常熟市虹桥铸钢有限公司 A kind of preparation method of petroleum machinery preventer casting
CN108677086A (en) * 2018-04-17 2018-10-19 常熟市虹桥铸钢有限公司 A kind of petroleum machinery preventer casting
KR102103382B1 (en) * 2018-10-29 2020-04-22 주식회사 포스코 Steel material and manufacturing method thereof
CN112063924B (en) * 2020-09-08 2022-05-20 鞍钢股份有限公司 High-carbon selenium-tin-containing free-cutting steel and production method thereof
CN115896617A (en) * 2022-11-04 2023-04-04 湖南高华新材料科技有限公司 Low-cost super steel material structure component and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973950A (en) * 1974-09-17 1976-08-10 Daido Seiko Kabushiki Kaisha Low carbon calcium-sulfur containing free-cutting steel
EP0027510A1 (en) * 1979-08-29 1981-04-29 Inland Steel Company Bismuth containing steel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903418B1 (en) * 1996-11-25 2003-01-29 Sumitomo Metal Industries, Ltd. Steel having excellent machinability and machined component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973950A (en) * 1974-09-17 1976-08-10 Daido Seiko Kabushiki Kaisha Low carbon calcium-sulfur containing free-cutting steel
EP0027510A1 (en) * 1979-08-29 1981-04-29 Inland Steel Company Bismuth containing steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI789124B (en) * 2021-11-19 2023-01-01 財團法人金屬工業研究發展中心 Method of manufacturing a carbon steel component

Also Published As

Publication number Publication date
JP2004018925A (en) 2004-01-22
TW200401041A (en) 2004-01-16
CN1659297A (en) 2005-08-24
TWI306476B (en) 2009-02-21
CN100355927C (en) 2007-12-19
KR100683923B1 (en) 2007-02-16
JP4267260B2 (en) 2009-05-27
KR20050008823A (en) 2005-01-21

Similar Documents

Publication Publication Date Title
WO2003106724A1 (en) Steel excellent in machinability
EP2381003B1 (en) Steel for high-frequency hardening
JP5079788B2 (en) Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts
JP4568362B2 (en) Machine structural steel with excellent machinability and strength characteristics
AU2005264481B2 (en) Steel for steel pipe
JPH1129839A (en) Spring steel with high toughness
WO2016158361A1 (en) Wire material for use in bolts that has excellent acid pickling properties and resistance to delayed fracture after quenching and tempering, and bolt
JP2008013788A (en) Steel for mechanical structural use having excellent machinability and strength property
JP4451808B2 (en) Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
JP2004176176A (en) Steel superior in machinability
JP4847681B2 (en) Ti-containing case-hardened steel
JP2000282172A (en) Steel for machine structure excellent in machinability and toughness, and machine structural parts
JP2002194484A (en) Steel for machine structure
JP2000282169A (en) Steel excellent in forgeability and machinability
JP3739958B2 (en) Steel with excellent machinability and its manufacturing method
JP2012001765A (en) Bar steel for steering rack bar and method for manufacturing bar steel
WO2005021815A1 (en) Hot forged non-heat treated steel for induction hardening
JP5077814B2 (en) Shaft and manufacturing method thereof
JP3565428B2 (en) Steel for machine structure
JP4213948B2 (en) Steel with excellent machinability
JP4348164B2 (en) Steel with excellent machinability
JPH11236646A (en) Grain coarsening-resistant case hardening steel, surface hardened parts excellent in strength and toughness and production thereof
JP2989766B2 (en) Case hardened steel with excellent fatigue properties and machinability
JP5361293B2 (en) Carburized parts with excellent static strength
JP2018154903A (en) Steel for machine structural use and cutting method therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038134446

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047020308

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020047020308

Country of ref document: KR

122 Ep: pct application non-entry in european phase