JP4568362B2 - Machine structural steel with excellent machinability and strength characteristics - Google Patents

Machine structural steel with excellent machinability and strength characteristics Download PDF

Info

Publication number
JP4568362B2
JP4568362B2 JP2008519751A JP2008519751A JP4568362B2 JP 4568362 B2 JP4568362 B2 JP 4568362B2 JP 2008519751 A JP2008519751 A JP 2008519751A JP 2008519751 A JP2008519751 A JP 2008519751A JP 4568362 B2 JP4568362 B2 JP 4568362B2
Authority
JP
Japan
Prior art keywords
steel
machinability
content
amount
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008519751A
Other languages
Japanese (ja)
Other versions
JPWO2008084749A1 (en
Inventor
慶 宮西
雅之 橋村
水野  淳
健一郎 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2008084749A1 publication Critical patent/JPWO2008084749A1/en
Application granted granted Critical
Publication of JP4568362B2 publication Critical patent/JP4568362B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、切削加工が施される機械構造用鋼に関し、特に、ハイスドリルによる比較的低速域での切削加工から超鋼コーティング工具による長手旋削等比較的高速域での切削加工まで幅広い切削速度領域に適用可能な被削性と強度特性に優れた機械構造用鋼に関する。   The present invention relates to a machine structural steel to which cutting is performed, and in particular, a wide cutting speed range from cutting in a relatively low speed range with a high-speed drill to cutting in a relatively high speed range such as longitudinal turning with a super steel coating tool. The present invention relates to a machine structural steel excellent in machinability and strength properties applicable to the steel.

近年、鋼の高強度化が進んでいるが、その反面、加工性が低下するという問題が生じている。このため、強度を保持しつつ切削能率を低下させない鋼に対するニーズが高まっている。従来、鋼の被削性を向上させるためには、S,Pb及びBi等の被削性向上元素を添加するのが有効であることが知られている。しかしながら、Pb及びBiは被削性を向上し、鍛造への影響も比較的少ないとされているが、強度特性を低減させることが知られている。
また、近時、Pbを環境負荷として使用を避ける傾向があり、その使用量を低減する方向にある。更に、Sは、MnSのような切削環境下で軟質となる介在物を形成して被削性を向上させるが、MnSの寸法はPb等の粒子に比べて大きく、応力集中元となりやすい。特に、鍛造及び圧延により伸延すると、MnSにより異方性が生じ、鋼の特定の方向が極端に弱くなる。また、鋼を設計する上でもそのような異方性を考慮する必要が生じる。従って、Sを添加する場合は、その異方性を低限化する技術が必要になる。
上述したように、被削性向上に有効な元素を添加しても、強度特性が低下するため、強度特性と被削性との両立は困難である。このため、鋼の被削性と強度特性とを両立化するには、更なる技術革新が必要である。
そこで、従来、例えば、固溶V、固溶Nb及び固溶Alから選択される1種以上を合計で0.005質量%以上含有させると共に、固溶Nを0.001%以上含有させることで、切削中に切削熱により生成した窒化物を工具に付着させて工具保護膜として機能させ、切削工具寿命を延長することができる機械構造用鋼が提案されている(特開2004−107787号公報参照)。また、C,Si,Mn,S及びMgの含有量を規定すると共に、Mg含有量とS含有量との比を規定し、更に、鋼中の硫化物系介在物のアスペクト比及び個数を最適化することにより、切屑処理性及び機械的特性の向上を図った機械構造用鋼も提案されている(特許第3706560号公報参照)。この特許第3706560号公報に記載の機械構造用鋼では、Mgを0.02%以下(0%を含まない)とすると共に、Alを含有する場合はその含有量を0.1%以下に規制している。
In recent years, the strength of steel has been increased, but on the other hand, there is a problem that workability is lowered. For this reason, the need for steel that does not decrease cutting efficiency while maintaining strength is increasing. Conventionally, in order to improve the machinability of steel, it is known that it is effective to add machinability improving elements such as S, Pb and Bi. However, Pb and Bi improve machinability and have a relatively small influence on forging, but are known to reduce strength characteristics.
In addition, recently, there is a tendency to avoid using Pb as an environmental load, and it is in the direction of reducing its usage. Further, S forms inclusions that become soft under a cutting environment such as MnS to improve machinability, but the size of MnS is larger than that of particles such as Pb and is likely to become a stress concentration source. In particular, when the steel is stretched by forging and rolling, anisotropy occurs due to MnS, and the specific direction of the steel becomes extremely weak. Moreover, it is necessary to consider such anisotropy in designing the steel. Therefore, when S is added, a technique for reducing the anisotropy is required.
As described above, even if an element effective for improving the machinability is added, the strength characteristics are lowered, so that it is difficult to achieve both the strength characteristics and the machinability. For this reason, further technological innovation is required to achieve both the machinability and strength characteristics of steel.
Therefore, conventionally, for example, one or more selected from solid solution V, solid solution Nb, and solid solution Al is contained in a total amount of 0.005% by mass or more, and solid solution N is contained in an amount of 0.001% or more during cutting. There has been proposed a steel for machine structural use that allows nitride generated by cutting heat to adhere to a tool to function as a tool protection film and extend the life of the cutting tool (see Japanese Patent Application Laid-Open No. 2004-107787). In addition, the content of C, Si, Mn, S and Mg is specified, the ratio of Mg content to S content is specified, and the aspect ratio and number of sulfide inclusions in steel are optimized. As a result, a steel for machine structural use that has improved chip disposal and mechanical properties has also been proposed (see Japanese Patent No. 3706560). In the steel for machine structure described in Japanese Patent No. 3706560, Mg is set to 0.02% or less (not including 0%), and when Al is contained, its content is restricted to 0.1% or less.

しかしながら、上述の従来の技術には、以下に示す問題点がある。即ち、特開2004−107787号公報に記載の鋼は、切削による発熱量がある程度以上ないと、上述した現象が起こらないと推定される。このため、効果を発揮させる切削速度がある程度の高速切削に限定され、低速域での効果が期待できないという問題点がある。また、特許第3706560号公報に記載の鋼では、強度特性については何ら配慮されていない。更に、特許第3706560号公報に記載の鋼は、切削工具寿命及び降伏比については、何ら配慮されていないため、十分な強度特性が得られないという問題点がある。
本発明は、上述した問題点に鑑みて案出されたものであり、幅広い切削速度領域において良好な被削性を有し、且つ、高い衝撃特性と高い降伏比を併せ持つ機械構造用鋼を提供することを目的とする。
However, the above-described conventional techniques have the following problems. That is, it is estimated that the steel described in Japanese Patent Application Laid-Open No. 2004-107787 does not cause the above-described phenomenon unless the amount of heat generated by cutting is more than a certain level. For this reason, there is a problem that the cutting speed at which the effect is exhibited is limited to high speed cutting to some extent, and the effect in the low speed region cannot be expected. In the steel described in Japanese Patent No. 3706560, no consideration is given to the strength characteristics. Furthermore, the steel described in Japanese Patent No. 3706560 has a problem that sufficient strength characteristics cannot be obtained because no consideration is given to the cutting tool life and the yield ratio.
The present invention has been devised in view of the above-mentioned problems, and provides a machine structural steel having good machinability in a wide cutting speed region and having both high impact characteristics and a high yield ratio. The purpose is to do.

本発明に係る被削性と強度特性に優れた機械構造用鋼は、質量%で、C:0.1〜0.85%、Si:0.01〜1.5%、Mn:0.05〜2.0%、P:0.005〜0.2%、S:0.001〜0.15%、全Al:0.05%を超え0.3%以下、Sb:0.0150%未満(0%含む)及び全N:0.0035〜0.020%を含有すると共に、固溶N:0.0020%以下に制限し、残部がFe及び不可避的不純物からなることを特徴とする。
この機械構造用鋼は、更に、質量%で、Ca:0.0003〜0.0015%を含有していてもよい。
また、質量%で、Ti:0.001〜0.1%、Nb:0.005〜0.2%、W:0.01〜1.0%及びV:0.01〜1.0%からなる群から選択された1種又は2種以上の元素を含有していてもよい。
更に、質量%で、Mg:0.0001〜0.0040%を含有していてもよい。
更にまた、質量%で、Sn:0.005〜2.0%、Zn:0.0005〜0.5%、B:0.0005〜0.015%及びTe:0.0003〜0.2%からなる群から選択された1種又は2種以上の元素を含有していてもよい。
更にまた、質量%で、Cr:0.01〜2.0%を含有していてもよい。
更にまた、質量%で、Ni:0.05〜2.0%及びCu:0.01〜2.0%からなる群から選択された1種又は2種の元素を含有していてもよい。
The steel for machine structural use having excellent machinability and strength characteristics according to the present invention is mass%, C: 0.1 to 0.85%, Si: 0.01 to 1.5%, Mn: 0.05 to 2.0%, P: 0.005 to 0.2%. , S: 0.001 to 0.15%, total Al: more than 0.05% and not more than 0.3%, Sb: less than 0.0150% (including 0%) and total N: 0.0035 to 0.020%, and solid solution N: 0.0020% or less It is limited, and the balance is made of Fe and inevitable impurities.
This steel for machine structure may further contain Ca: 0.0003 to 0.0015% by mass.
Moreover, it contains one or more elements selected from the group consisting of Ti: 0.001 to 0.1%, Nb: 0.005 to 0.2%, W: 0.01 to 1.0%, and V: 0.01 to 1.0% by mass%. You may do it.
Furthermore, it may contain Mg: 0.0001 to 0.0040% by mass%.
Furthermore, one or more elements selected from the group consisting of Sn: 0.005 to 2.0%, Zn: 0.0005 to 0.5%, B: 0.0005 to 0.015%, and Te: 0.0003 to 0.2% in mass%. You may contain.
Furthermore, Cr: 0.01-2.0% may be contained by the mass%.
Furthermore, it may contain one or two elements selected from the group consisting of Ni: 0.05 to 2.0% and Cu: 0.01 to 2.0% by mass%.

本発明によれば、幅広い切削速度領域において良好な被削性を有し、且つ、高い衝撃特性と高い降伏比を併せ持つ機械構造用鋼を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the steel for machine structures which has favorable machinability in a wide cutting speed area | region, and has a high impact characteristic and a high yield ratio can be provided.

以下、本発明を実施するための最良の形態について、詳細に説明する。本発明に係る被削性と強度特性に優れた機械構造用鋼(以下、単に機械構造用鋼ともいう)においては、上述した課題を解決するため、鋼の成分組成として、Al及びその他の窒化物生成元素とNの添加量調整をすると共に、適切な熱処理を付与することにより、被削性と衝撃特性に有害な固溶Nを低く抑え、また、高温脆化により被削性を向上させる固溶Al、マトリックス脆化効果を有するSbの適量確保及び高温脆化効果とへきかい性の結晶構造とにより被削性を向上させるAlNを適量確保することにより、低速から高速までの幅広い切削速度域に対して有効な切削性能を保有し、更に、Al添加量を高めることにより、従来のAl−キルド鋼に比べて鋳片段階での偏析が小さく、均一分散性の高いMnS(SIMSの分類によるIII型MnS)を多くして、高い衝撃特性を併せ持つ機械構造用鋼とするものであり、更にはAlNの微細析出及び固溶Alにより、高い降伏比を得るものである。
即ち、本発明の機械構造用鋼は、質量%で、C:0.1〜0.85%、Si:0.01〜1.5%、Mn:0.05〜2.0%、P:0.005〜0.2%、S:0.001〜0.15%、全Al:0.05%を超え0.3%以下、Sb:0.0150%未満(0%含む)及び全N:0.0035〜0.020%を含有すると共に、固溶N:0.0020%以下に制限し、残部がFe及び不可避的不純物からなる組成を有する。
Hereinafter, the best mode for carrying out the present invention will be described in detail. In order to solve the above-described problems, in the steel for machine structure excellent in machinability and strength characteristics according to the present invention (hereinafter also simply referred to as machine structure steel), as a component composition of the steel, Al and other nitrides Adjusting the amount of addition of product-generating elements and N, and applying appropriate heat treatment to keep solid solution N harmful to machinability and impact characteristics low, and improve machinability by high temperature embrittlement A wide range of cutting speeds from low to high speeds by securing an appropriate amount of solid solution Al and Sb having matrix embrittlement effect and securing an appropriate amount of AlN which improves machinability by high temperature embrittlement effect and crystal structure of cracking. With effective cutting performance, and by increasing the amount of Al added, the segregation at the slab stage is smaller than that of conventional Al-killed steel, and MnS with high uniform dispersibility (according to SIMS classification) (III type MnS) increases, high impact Is intended to machine structural steel for both sex, even by fine precipitation and solid solution of Al AlN, it is to obtain a high yield ratio.
That is, the steel for machine structural use according to the present invention is in mass%, C: 0.1 to 0.85%, Si: 0.01 to 1.5%, Mn: 0.05 to 2.0%, P: 0.005 to 0.2%, S: 0.001 to 0.15%, Total Al: more than 0.05% and less than 0.3%, Sb: less than 0.0150% (including 0%) and total N: 0.0035% to 0.020%, solid solution N: limited to 0.0020% or less, the balance being Fe and inevitable It has a composition consisting of mechanical impurities.

先ず、本発明の機械構造用鋼における各成分元素及びその含有量について説明する。なお、以下の説明においては、組成における質量%は、単に%と記載する。   First, each component element and its content in the steel for machine structure of the present invention will be described. In the following description, mass% in the composition is simply described as%.

C:0.1〜0.85%
Cは、鋼材の基本強度に大きな影響を及ぼす元素である。しかしながら、C含有量が0.1%未満の場合、十分な強度が得られず、他の合金元素をさらに多量に投入せざるを得なくなる。一方、C含有量が0.85%を超えると、過共析に近くなり、硬質の炭化物を多く析出するため、被削性が著しく低下する。よって、本発明においては、十分な強度を得るため、C含有量は0.1〜0.85%とする。好ましい下限は0.2%である。
C: 0.1-0.85%
C is an element that greatly affects the basic strength of steel. However, if the C content is less than 0.1%, sufficient strength cannot be obtained, and a larger amount of other alloy elements must be added. On the other hand, if the C content exceeds 0.85%, it becomes close to hypereutectoid and a large amount of hard carbide precipitates, so that machinability is remarkably lowered. Therefore, in the present invention, in order to obtain sufficient strength, the C content is set to 0.1 to 0.85%. A preferred lower limit is 0.2%.

Si:0.01〜1.5%
Siは、一般に脱酸元素として添加されているが、フェライトの強化及び焼戻し軟化抵抗を付与する効果もある。しかしながら、Si含有量が0.01%未満の場合、十分な脱酸効果が得られない。一方、Si含有量が1.5%を超えると、脆化等の材料特性が低下し、更には被削性も劣化する。よって、Si含有量は0.01〜1.5%とする。好ましい上限は1.0%である。
Si: 0.01-1.5%
Although Si is generally added as a deoxidizing element, it also has the effect of imparting ferrite strengthening and temper softening resistance. However, when the Si content is less than 0.01%, a sufficient deoxidizing effect cannot be obtained. On the other hand, when the Si content exceeds 1.5%, material properties such as embrittlement are deteriorated, and machinability is also deteriorated. Therefore, the Si content is set to 0.01 to 1.5%. A preferred upper limit is 1.0%.

Mn:0.05〜2.0%
Mnは、鋼中の硫黄(S)をMnSとして固定・分散させると共に、マトリックスに固溶させて焼入れ性の向上や焼入れ後の強度を確保するために必要な元素である。しかしながら、Mn含有量が0.05%未満であると、鋼中のSがFeと結合してFeSとなり、鋼が脆くなる。一方、Mn含有量が増えると、具体的には、Mn含有量が2.0%を超えると、素地の硬さが大きくなり冷間加工性が低下すると共に、強度や焼入れ性に及ぼす影響も飽和する。よって、Mn含有量は0.05〜2.0%とする。
Mn: 0.05-2.0%
Mn is an element necessary to fix and disperse sulfur (S) in steel as MnS and to dissolve in a matrix to improve hardenability and ensure strength after quenching. However, if the Mn content is less than 0.05%, S in the steel combines with Fe to become FeS, and the steel becomes brittle. On the other hand, when the Mn content increases, specifically, when the Mn content exceeds 2.0%, the hardness of the substrate increases and cold workability deteriorates, and the effects on strength and hardenability are saturated. . Therefore, the Mn content is set to 0.05 to 2.0%.

P:0.005〜0.2%
Pは、被削性を良好にする効果があるが、P含有量が0.005%未満の場合、その効果が得られない。また、P含有量が増えると、具体的には、P含有量が0.2%を超えると、鋼中において素地の硬さが大きくなり、冷間加工性だけでなく、熱間加工性及び鋳造特性も低下する。よって、P含有量は0.005〜0.2%とする。
P: 0.005-0.2%
P has an effect of improving machinability, but when the P content is less than 0.005%, the effect cannot be obtained. In addition, when the P content increases, specifically, when the P content exceeds 0.2%, the hardness of the substrate increases in the steel, and not only cold workability but also hot workability and casting characteristics. Also decreases. Therefore, the P content is set to 0.005 to 0.2%.

S:0.001〜0.15%
Sは、Mnと結合としてMnS介在物として存在する。MnSは、被削性を向上させる効果があるが、その効果を顕著に得るためには、Sを0.001%以上添加する必要がある。一方、S含有量が0.15%を超えると、鋼の衝撃値が大幅に低下する。よって、S添加により被削性向上を図る場合は、S含有量を0.001〜0.15%とする。
S: 0.001 to 0.15%
S exists as an MnS inclusion as a bond with Mn. MnS has an effect of improving machinability, but in order to obtain the effect remarkably, it is necessary to add S 0.001% or more. On the other hand, when the S content exceeds 0.15%, the impact value of the steel is significantly reduced. Therefore, when improving machinability by adding S, the S content is set to 0.001 to 0.15%.

全Al:0.05%を超え0.3%以下
Alは、酸化物を形成する以外に、整粒化及び被削性に有効なAlNを析出させ、更には固溶Alとなり被削性を向上させる効果がある。この被削性に有効な固溶Alを十分に生成するためには、0.05%を超える量を添加する必要がある。また、Alは、MnSの晶・析出形態にも影響を及ぼす。そして、0.05%を超える量のAlを添加すると、従来のAl−キルド鋼に比べて鋳片段階での偏析が小さくなり、均一分散性が高いMnS(SIMSの分類によるIII型MnS)を多くすることができるため、高い衝撃特性を併せ持つ機械構造用鋼が得られ、更には、AlNの微細析出及び固溶Alにより、高い降伏比が得られる。しかしながら、全Al含有量が0.3%を超えると、被削性が低下し始める。よって、全Al含有量は0.05%を超え0.3%以下とする。好ましい下限は0.08%、より好ましい下限は0.1%超である。
Total Al: more than 0.05% and less than 0.3%
In addition to forming an oxide, Al has the effect of precipitating AlN effective for grain size adjustment and machinability, and further becoming solid solution Al to improve machinability. In order to sufficiently generate solid solution Al effective for the machinability, it is necessary to add an amount exceeding 0.05%. Al also affects the MnS crystal / precipitation form. Addition of more than 0.05% Al reduces segregation at the slab stage compared to conventional Al-killed steel, and increases MnS (III-type MnS by SIMS classification) with high uniform dispersibility. Therefore, a steel for mechanical structure having high impact characteristics can be obtained, and furthermore, a high yield ratio can be obtained by fine precipitation of AlN and solute Al. However, when the total Al content exceeds 0.3%, the machinability starts to decrease. Therefore, the total Al content exceeds 0.05% and is 0.3% or less. A preferred lower limit is 0.08%, and a more preferred lower limit is more than 0.1%.

Sb:0.0150%未満(0%含む)
Sbは、フェライトを適度に脆化して、被削性を向上させる効果がある。この効果は、特に固溶Al量が多い場合に顕著であるが、Sb含有量が0.0005%未満では認められない。一方、Sb含有量が増えると、具体的には、Sb含有量が0.0150%以上の場合、Sbのマクロ偏析が過多となり、衝撃値が大きく低下する。よってSb含有量は0.0005%以上0.0150%未満とする。高い被削性が必要でない場合や全Alが0.1%超の場合は無添加(0%)とすることもできる。
Sb: Less than 0.0150% (including 0%)
Sb has the effect of moderately embrittlement of ferrite and improving machinability. This effect is particularly remarkable when the amount of solid solution Al is large, but is not observed when the Sb content is less than 0.0005%. On the other hand, when the Sb content increases, specifically, when the Sb content is 0.0150% or more, macrosegregation of Sb becomes excessive, and the impact value greatly decreases. Therefore, the Sb content is 0.0005% or more and less than 0.0150%. When high machinability is not required or when the total Al exceeds 0.1%, it can be added without addition (0%).

全N:0.0035〜0.020%
Nは、固溶N以外に、Ti,Al又はV等の窒化物としても存在し、オーステナイト粒の成長を抑制する。しかしながら、全N量が0.0035%未満では、顕著な効果は得られない。一方、全N量が0.020%を超えると、圧延工程において圧延疵の原因となる。よって、全N量は0.0035〜0.020%とする。
Total N: 0.0035 to 0.020%
N is present as a nitride such as Ti, Al or V in addition to solute N, and suppresses the growth of austenite grains. However, if the total N amount is less than 0.0035%, a remarkable effect cannot be obtained. On the other hand, if the total N amount exceeds 0.020%, it will cause rolling defects in the rolling process. Therefore, the total N amount is 0.0035 to 0.020%.

固溶N:0.0020%以下
固溶Nは、鋼を硬化させる。特に、切削においては、動的ひずみ時効によって刃先近傍で硬化して、工具の寿命を低下させ、また、圧延においては、圧延疵の原因となる。固溶N量が多いと、具体的には、固溶N量が0.0020%を超えると、切削時に、局所硬さ増加に伴う切削抵抗の上昇により、工具摩耗を助長する。よって、固溶N量は0.0020%以下に抑制する。これにより、工具摩擦を改善することができる。また、固溶N量が多いと、マトリックス脆化を引き起こし、衝撃特性が悪化するが、固溶N量を0.0020%以下に抑制すると、このマトリックス脆化も改善することができる。ここでいう固溶N量は、全N量からAlN,NbN,TiN及びVN等の窒化物に含まれるN量を引いた値であり、例えば、不活性ガス融解−熱伝導度法により全N量を測定すると共に、非水溶媒電解液による定電位電解腐食法のSPEED法及び0.1μmのフィルターにより電解抽出した残渣をインドフェノール吸光度法により窒化物中N量を測定し、下記数式(1)により算出することができる。
(固溶N量)=(全N量)−(窒化物中N量)…(1)
なお、固溶N量は、以下に示す方法により低く抑えることができる。
窒化物の微細析出による固溶Nの低減のためには、機械構造用鋼として使用されることを考慮すると、粒粗大化抑制の観点からは微細析出が好ましい。窒化物の微細析出による固溶N量の低減のためには、Nと窒化物生成元素量とにより完全溶体化する高温保持が必須であるが、それを考慮すると1100℃以上、好ましくは1200℃以上、さらに好ましくは1250℃以上での溶体化のための熱処理を行った後、焼準、浸炭等の熱処理を行い析出させる。特にAlNの場合には850℃付近で長時間保定することで析出量を増加させ固溶Nを低減することが可能である。ここでいう長時間とは0.8時間以上、好ましくは1時間以上、さらに好ましくは1.2時間以上のことを指す。
また、本発明の機械構造用鋼においては、上記各成分に加えて、Caを含有していてもよい。
Solid solution N: 0.0020% or less Solid solution N hardens steel. In particular, in cutting, it hardens in the vicinity of the cutting edge due to dynamic strain aging, thereby shortening the tool life, and in rolling, it becomes a cause of rolling wrinkles. When the amount of solute N is large, specifically, when the amount of solute N exceeds 0.0020%, tool wear is promoted due to an increase in cutting resistance accompanying an increase in local hardness during cutting. Therefore, the solid solution N amount is suppressed to 0.0020% or less. Thereby, tool friction can be improved. Further, if the amount of solute N is large, matrix embrittlement is caused and impact properties are deteriorated. However, if the amount of solute N is suppressed to 0.0020% or less, this matrix embrittlement can also be improved. The solid solution N amount here is a value obtained by subtracting the N amount contained in nitrides such as AlN, NbN, TiN and VN from the total N amount. For example, the total N amount is determined by the inert gas melting-thermal conductivity method. The amount of N in the nitride was measured by the SPEED method of the potentiostatic electrolytic corrosion method using a nonaqueous solvent electrolytic solution and the electrolytic extraction of the 0.1 μm filter by the indophenol absorbance method, and the following formula (1) Can be calculated.
(Solubility N amount) = (Total N amount) − (N amount in nitride) (1)
In addition, the amount of solid solution N can be restrained low by the method shown below.
In order to reduce the solute N by fine precipitation of nitrides, fine precipitation is preferable from the viewpoint of suppressing grain coarsening, considering that it is used as steel for machine structures. In order to reduce the amount of solute N due to fine precipitation of nitrides, it is essential to maintain a high temperature at which the solution is completely formed by N and the amount of nitride-forming elements, but considering this, 1100 ° C or higher, preferably 1200 ° C More preferably, after heat treatment for solution treatment at 1250 ° C. or higher, precipitation is performed by heat treatment such as normalization or carburization. In particular, in the case of AlN, it is possible to increase the amount of precipitation and reduce the solid solution N by holding at around 850 ° C. for a long time. The long time here means 0.8 hours or more, preferably 1 hour or more, more preferably 1.2 hours or more.
Moreover, in the steel for machine structure of this invention, in addition to said each component, you may contain Ca.

Ca:0.0003〜0.0015%
Caは、脱酸元素であり、鋼中で酸化物を生成する。全Al含有量が0.05%を超え0.3%以下である本発明の機械構造用鋼では、カルシウムアルミネート(CaOAl2O3)が形成するが、このCaOAl2O3は、Al2O3に比べて低融点酸化物であるため、高速切削時に工具保護膜となり、被削性を向上させる効果がある。しかしながら、Ca含有量が0.0003%未満の場合、この被削性向上効果が得られず、また、Ca含有量が0.0015%を超えると、鋼中にCaSが生成し、却って被削性が低下する。よって、Caを添加する場合は、その含有量を0.0003〜0.0015%とする。
Ca: 0.0003 to 0.0015%
Ca is a deoxidizing element and generates an oxide in steel. Calcium aluminate (CaOAl 2 O 3 ) is formed in the mechanical structural steel of the present invention having a total Al content of more than 0.05% and not more than 0.3%. This CaOAl 2 O 3 is compared to Al 2 O 3 Since it is a low melting point oxide, it becomes a tool protective film during high-speed cutting, and has the effect of improving machinability. However, when the Ca content is less than 0.0003%, this machinability improvement effect cannot be obtained, and when the Ca content exceeds 0.0015%, CaS is generated in the steel, and the machinability is reduced. . Therefore, when adding Ca, the content is made 0.0003 to 0.0015%.

更に、本発明の機械構造用鋼においては、炭窒化物を形成させ、高強度化が必要な場合には、上記各成分に加えて、Ti:0.001〜0.1%、Nb:0.005〜0.2%、W:0.01〜1.0%及びV:0.01〜1.0%からなる群から選択された1種又は2種以上の元素を含有してもよい。   Furthermore, in the steel for machine structure of the present invention, when carbonitride is formed and high strength is required, in addition to the above components, Ti: 0.001 to 0.1%, Nb: 0.005 to 0.2%, You may contain 1 type, or 2 or more types of elements selected from the group which consists of W: 0.01-1.0% and V: 0.01-1.0%.

Ti:0.001〜0.1%
Tiは、炭窒化物を形成し、オーステナイト粒の成長の抑制や強化に寄与する元素であり、高強度化が必要な鋼、及び低歪を要求される鋼には、粗大粒防止のための整粒化元素として使用される。また、Tiは、脱酸元素でもあり、軟質酸化物を形成させることにより、被削性を向上させる効果もある。しかしながら、Ti含有量が0.001%未満の場合、その効果が認められず、また、Ti含有量が0.1%を超えると、熱間割れの原因となる未固溶の粗大な炭窒化物を析出し、却って機械的性質が損なわれる。よって、Tiを添加する場合は、その含有量を0.001〜0.1%とする。
Ti: 0.001 to 0.1%
Ti is an element that forms carbonitrides and contributes to the suppression and strengthening of austenite grain growth. For steels that require high strength and steels that require low strain, Used as a sizing element. Ti is also a deoxidizing element and has the effect of improving machinability by forming a soft oxide. However, when the Ti content is less than 0.001%, the effect is not recognized, and when the Ti content exceeds 0.1%, undissolved coarse carbonitrides that cause hot cracking are precipitated. On the other hand, the mechanical properties are impaired. Therefore, when adding Ti, the content is made 0.001 to 0.1%.

Nb:0.005〜0.2%
Nbも炭窒化物を形成し、二次析出硬化による鋼の強化、オーステナイト粒の成長の抑制及び強化に寄与する元素であり、高強度化が必要な鋼及び低歪を要求される鋼には、粗大粒防止のための整粒化元素として使用される。しかしながら、Nb含有量が0.005%未満の場合、高強度化の効果は得られず、また、0.2%を超えてNbを添加すると、時間割れの原因となる未固溶の粗大な炭窒化物を析出し、却って機械的性質が損なわれる。よって、Nbを添加する場合は、その含有量を0.005〜0.2%とする。
Nb: 0.005-0.2%
Nb is also an element that forms carbonitrides and contributes to the strengthening of steel by secondary precipitation hardening and the suppression and strengthening of austenite grain growth.For steels that require high strength and steels that require low strain, It is used as a sizing element for preventing coarse grains. However, when the Nb content is less than 0.005%, the effect of increasing the strength cannot be obtained, and when Nb is added over 0.2%, undissolved coarse carbonitride that causes time cracking is not obtained. It precipitates and on the other hand mechanical properties are impaired. Therefore, when adding Nb, the content is made 0.005 to 0.2%.

W:0.01〜1.0%
Wも炭窒化物を形成し、二次析出硬化により鋼を強化することができる元素である。しかしながら、W含有量が0.01%未満の場合、高強度化の効果は得られず、また、1.0%を超えてWを添加すると、熱間割れの原因となる未固溶の粗大な炭窒化物を析出し、却って機械的性質が損なわれる。よって、Wを添加する場合は、その含有量を0.01〜1.0%とする。
W: 0.01-1.0%
W is also an element that forms carbonitride and can strengthen steel by secondary precipitation hardening. However, when the W content is less than 0.01%, the effect of increasing the strength cannot be obtained, and when W is added in excess of 1.0%, undissolved coarse carbonitride that causes hot cracking. On the contrary, the mechanical properties are impaired. Therefore, when adding W, the content is made 0.01 to 1.0%.

V:0.01〜1.0%
Vも炭窒化物を形成し、二次析出硬化により鋼を強化することができる元素であり、高強度化が必要な鋼には適宜添加される。しかしながら、V含有量が0.01%未満の場合、高強度化の効果は得られず、また、1.0%を超えてVを添加すると、熱間割れの原因となる未固溶の粗大な炭窒化物を析出し、却って機械的性質が損なわれる。よって、Vを添加する場合は、その含有量を0.05〜1.0%とする。
更にまた、本発明の機械構造用鋼において、脱酸調整により硫化物形態制御を行う場合には、上記各成分に加えて、Mg:0.0001〜0.0040%、Zr:0.0003〜0.01%及びRem:0.0001〜0.015%からなる群から選択された1種又は2種以上の元素を添加することもできる。
V: 0.01 to 1.0%
V is also an element that forms carbonitride and can strengthen the steel by secondary precipitation hardening, and is appropriately added to steel that requires high strength. However, when the V content is less than 0.01%, the effect of increasing the strength cannot be obtained, and when V is added exceeding 1.0%, undissolved coarse carbonitride that causes hot cracking. On the contrary, the mechanical properties are impaired. Therefore, when adding V, the content is made 0.05 to 1.0%.
Furthermore, in the steel for machine structure of the present invention, when the sulfide form control is performed by adjusting the deoxidation, in addition to the above components, Mg: 0.0001 to 0.0040%, Zr: 0.0003 to 0.01%, and Rem: 0.0001 One or more elements selected from the group consisting of ˜0.015% can also be added.

Mg:0.0001〜0.0040%
Mgは脱酸元素であり、鋼中で酸化物を生成する。そして、Al脱酸前提の場合には、被削性に有害なAl2O3を、比較的軟質で微細に分散するMgO又はAl2O3・MgOに改質する。また、その酸化物はMnSの核となりやすく、MnSを微細分散させる効果もある。しかしながら、Mg含有量が0.0001%未満では、これらの効果が認められない。また、Mgは、MnSとの複合硫化物を生成して、MnSを球状化するが、Mgを過剰に添加すると、具体的には、Mg含有量が0.0040%を超えると、単独のMgS生成を促進して被削性を劣化させる。よって、Mgを添加する場合は、その含有量を0.0001〜0.0040%とする。
Mg: 0.0001-0.0040%
Mg is a deoxidizing element and generates an oxide in steel. In the case of Al deoxidation, Al 2 O 3 harmful to machinability is modified into MgO or Al 2 O 3 .MgO that is relatively soft and finely dispersed. Further, the oxide tends to be a nucleus of MnS, and has an effect of finely dispersing MnS. However, when the Mg content is less than 0.0001%, these effects are not recognized. In addition, Mg forms a composite sulfide with MnS and spheroidizes MnS, but when Mg is added excessively, specifically, when the Mg content exceeds 0.0040%, single MgS generation is generated. Promotes and degrades machinability. Therefore, when adding Mg, the content shall be 0.0001 to 0.0040%.

Sn:0.005〜2.0%
Snは、フェライトを脆化させて工具寿命を延ばすと共に、表面粗さを向上させる効果がある。しかしながら、Sn含有量が0.005%未満の場合、その効果は認められず、また、2.0%を超えてSnを添加しても、その効果は飽和する。よって、Snを添加する場合は、その含有量を0.005〜2.0%とする。
Sn: 0.005-2.0%
Sn has the effect of embrittlement of ferrite to extend the tool life and improve the surface roughness. However, when the Sn content is less than 0.005%, the effect is not recognized, and even if Sn is added in excess of 2.0%, the effect is saturated. Therefore, when adding Sn, let the content be 0.005-2.0%.

Zn:0.0005〜0.5%
Znは、フェライトを脆化させて工具寿命を延ばすと共に、表面粗さを向上させる効果がある。しかしながら、Zn含有量が0.0005%未満の場合、その効果は認められず、また、0.5%を超えてZnを添加しても、その効果は飽和する。よって、Znを添加する場合は、その含有量を0.0005〜0.5%とする。
Zn: 0.0005-0.5%
Zn has the effect of embrittlement of ferrite to extend the tool life and improve the surface roughness. However, when the Zn content is less than 0.0005%, the effect is not recognized, and even if Zn is added in excess of 0.5%, the effect is saturated. Therefore, when adding Zn, the content is made 0.0005 to 0.5%.

B:0.0005〜0.015%
Bは、固溶している場合は粒界強化及び焼入れ性に効果があり、析出する場合にはBNとして析出するため被削性に効果がある。これらの効果は、B含有量が0.0005%未満では顕著ではない。一方、0.015%を超えてBを添加してもその効果が飽和すると共に、BNが多く析出しすぎるため、却って鋼の機械的性質が損なわれる。よって、Bを添加する場合は、その含有量を0.0005〜0.015%とする。
B: 0.0005 to 0.015%
B is effective in grain boundary strengthening and hardenability when dissolved, and is effective as machinability because it precipitates as BN when precipitated. These effects are not significant when the B content is less than 0.0005%. On the other hand, even if B is added in excess of 0.015%, the effect is saturated and too much BN is precipitated, so that the mechanical properties of the steel are impaired. Therefore, when adding B, the content shall be 0.0005 to 0.015%.

Te:0.0003〜0.2%
Teは、被削性向上元素である。また、MnTeを生成したり、MnSと共存することでMnSの変形能を低下させ、MnS形状の伸延を抑制する働きがある。このように、Teは異方性の低減に有効な元素である。しかしながら、Te含有量が0.0003%未満の場合、これらの効果は認められず、また、Te含有量が0.2%を超えると、その効果が飽和するだけでなく、熱間延性が低下して疵の原因になりやすい。よって、Teを添加する場合は、その含有量を0.0003〜0.2%とする。
Te: 0.0003-0.2%
Te is a machinability improving element. In addition, by producing MnTe or coexisting with MnS, it has a function of reducing the deformability of MnS and suppressing the extension of the MnS shape. Thus, Te is an effective element for reducing anisotropy. However, when the Te content is less than 0.0003%, these effects are not observed, and when the Te content exceeds 0.2%, not only the effect is saturated, but the hot ductility is reduced and Prone to cause. Therefore, when adding Te, the content is made 0.0003 to 0.2%.

Cr:0.01〜2.0%
Crは、焼入れ性を向上すると共に、焼戻し軟化抵抗を付与する元素であり、高強度化が必要な鋼には添加される。しかしながら、Cr含有量が0.01%未満の場合には、これらの効果が得られず、また、Crを多量に添加すると、具体的には、Cr含有量が2.0%を超えると、Cr炭化物が生成して鋼が脆化する。よって、Crを添加する場合は、その含有量を0.01〜2.0%とする。
Cr: 0.01-2.0%
Cr is an element that improves hardenability and imparts temper softening resistance, and is added to steel that requires high strength. However, when the Cr content is less than 0.01%, these effects cannot be obtained, and when a large amount of Cr is added, specifically, when the Cr content exceeds 2.0%, Cr carbide is generated. Steel becomes brittle. Therefore, when adding Cr, the content is made 0.01 to 2.0%.

Ni:0.05〜2.0%
Niは、フェライトを強化し、延性を向上させると共に、焼入れ性向上及び耐食性向上にも有効な元素である。しかしながら、Ni含有量が0.05%未満の場合、その効果は認められず、また、2.0%を超えてNiを添加しても、機械的性質の点では効果が飽和し、被削性が低下する。よって、Niを添加する場合は、その含有量を0.05〜2.0%とする。
Ni: 0.05-2.0%
Ni is an element effective for strengthening ferrite and improving ductility, as well as improving hardenability and corrosion resistance. However, when the Ni content is less than 0.05%, the effect is not recognized, and even if Ni is added over 2.0%, the effect is saturated in terms of mechanical properties and the machinability is lowered. . Therefore, when adding Ni, the content is made 0.05 to 2.0%.

Cu:0.01〜2.0%
Cuは、フェライトを強化すると共に、焼入れ性向上及び耐食性向上にも有効な元素である。しかしながら、Cu含有量が0.01%未満の場合、その効果は認められず、また、2.0%を超えてCuを添加しても、機械的性質の点では効果が飽和する。よって、Cuを添加する場合は、その含有量を0.01〜2.0%とする。なお、Cuは、特に熱間延性を低下させ、圧延時の疵の原因となりやすいため、Niと同時に添加することが好ましい。
Cu: 0.01-2.0%
Cu is an element effective for strengthening ferrite and improving hardenability and corrosion resistance. However, when the Cu content is less than 0.01%, the effect is not recognized, and even if Cu is added over 2.0%, the effect is saturated in terms of mechanical properties. Therefore, when adding Cu, the content is made 0.01 to 2.0%. Cu is particularly preferable to be added simultaneously with Ni because it lowers the hot ductility and tends to cause defects during rolling.

上述の如く、本発明の機械構造用鋼においては、固溶N量を低減しているため、従来の機械構造用鋼に比べて、被削性及び衝撃特性を向上させることができる。また、全Al含有量及びSb含有量を適正化することにより、被削性向上効果がある固溶Al,Sb及びAlNを適量確保しているため、低速から高速までの幅広い切削速度域に対して有効な切削性能が得られる。更に、このAlNの微細析出及び固溶Alにより、高い降伏比が得られる。更にまた、MnSの析出に影響する元素の含有量を適正化して、均一分散性が高いMnSの量を多くしているため、衝撃特性にも優れている。   As described above, in the machine structural steel of the present invention, since the amount of solute N is reduced, the machinability and impact characteristics can be improved as compared with the conventional machine structural steel. In addition, by optimizing the total Al content and Sb content, the proper amount of solid solution Al, Sb, and AlN that have the effect of improving machinability is secured, so it can be used for a wide range of cutting speeds from low speed to high speed. Effective cutting performance. Furthermore, a high yield ratio is obtained by the fine precipitation of AlN and solute Al. Furthermore, since the content of elements that affect the precipitation of MnS is optimized and the amount of MnS having high uniform dispersibility is increased, the impact characteristics are also excellent.

次に、実施例及び比較例を挙げて、本発明の効果について具体的に説明する。本実施例においては、表1及び表2に示す組成の鋼150kgを真空溶解炉で溶製後、1250℃の温度条件下で熱間鍛造し、直径が65mmの円柱状に鍛伸した。そして、この実施例及び比較例の各鋼材について、下記に示す方法で被削性試験、シャルピー衝撃試験及び引張り試験を行ない、その特性を評価した。なお、表2における下線は、本発明の範囲外であることを示す。

Figure 0004568362
Figure 0004568362
Next, the effects of the present invention will be specifically described with reference to examples and comparative examples. In this example, 150 kg of steel having the composition shown in Tables 1 and 2 was melted in a vacuum melting furnace and then hot forged under a temperature condition of 1250 ° C. to forge into a cylindrical shape having a diameter of 65 mm. And about each steel material of this Example and the comparative example, the machinability test, the Charpy impact test, and the tension test were done by the method shown below, and the characteristic was evaluated. In addition, the underline in Table 2 shows that it is outside the scope of the present invention.
Figure 0004568362
Figure 0004568362

被削性試験
被削性試験は、先ず、1250℃に加熱して温間で鍛伸した実施例及び比較例の各鋼材に対して、850℃の温度条件下で1時間、比較例No.49,No.50については0.5時間焼準した後、空冷する熱処理を施した。その後、熱処理後の各鋼材から被削性評価用試験片を切出し、下記表3に示す切削条件でドリル穿孔試験を行なうと共に、下記表4に示す条件で長手旋削試験を行い、実施例及び比較例の各鋼材の被削性を評価した。その際、評価指標としては、ドリル穿孔試験では累積穴深さ1000mmまで切削可能な最大切削速度VL1000を、長手旋削試験で10分後の逃げ面最大磨耗幅VB maxを夫々採用した。

Figure 0004568362
Figure 0004568362
Machinability test In the machinability test, first, each steel material of Examples and Comparative Examples heated to 1250 ° C. and forged in warm condition was subjected to a comparative example No. 1 at 850 ° C. for 1 hour. For No. 49 and No. 50, after normalizing for 0.5 hour, heat treatment was applied to air cooling. Thereafter, a test piece for machinability evaluation was cut out from each steel material after the heat treatment, and a drill drilling test was conducted under the cutting conditions shown in Table 3 below, and a longitudinal turning test was conducted under the conditions shown in Table 4 below. The machinability of each steel material of the example was evaluated. At that time, as an evaluation index, in the drill drilling test, the maximum cutting speed VL1000 capable of cutting to a cumulative hole depth of 1000 mm is used, and the flank maximum wear width VB after 10 minutes in the longitudinal turning test. Max was adopted respectively.
Figure 0004568362
Figure 0004568362

シャルピー衝撃試験
図1はシャルピー衝撃試験用試験片の切出し部位を示す図である。シャルピー衝撃試験においては、先ず、図1に示すように、前述の切削性試験同様の方法及び条件で熱処理した各鋼材1から、中心軸が鋼材1の鍛伸方向に対して垂直になるようにして、直径が25mmの円柱材2を切出した。次に、各円柱材2に対して、850℃の温度条件下で1時間、比較例No.49,No.50については0.5時間保持した後、60℃まで冷却する油焼入れを行い、更に、550℃の温度条件下で30分間保持した後水冷する焼戻しを行った。その後、各円柱材2を機械加工して、JIS Z 2202に規定されているシャルピー試験片3を作製し、JIS Z 2242に規定されている方法で、室温におけるシャルピー衝撃試験を実施した。その際、評価指標としては、単位面積当たりの吸収エネルギー(J/cm2)を採用した。
Charpy Impact Test FIG. 1 is a diagram showing a cut-out site of a Charpy impact test specimen. In the Charpy impact test, first, as shown in FIG. 1, the center axis is perpendicular to the forging direction of the steel material 1 from each steel material 1 heat-treated by the same method and conditions as the above-described machinability test. Then, a cylindrical member 2 having a diameter of 25 mm was cut out. Next, each columnar material 2 was held for 1 hour under the temperature condition of 850 ° C., and Comparative Examples No. 49 and No. 50 were held for 0.5 hour, followed by oil quenching to cool to 60 ° C., Tempering was performed by maintaining the temperature at 550 ° C. for 30 minutes and then water cooling. Thereafter, each cylindrical member 2 was machined to produce a Charpy test piece 3 defined in JIS Z 2202, and a Charpy impact test at room temperature was performed by the method defined in JIS Z 2242. At that time, absorbed energy per unit area (J / cm 2 ) was adopted as an evaluation index.

引張試験
鍛伸方向と平行に採取した円柱材2に、前述したシャルピー衝撃試験と同様の方法及び条件で油焼入れ及び焼戻しを行なった後、平行部の直径が8mmで、平行部の長さが30mmの引張試験片に加工し、JIS Z 2241に規定されている方法に基づき、室温下での引張試験を行った。その際、評価指標としては、降伏比(=(0.2%耐力YP)/(引張強さTS))を採用した。
以上の試験の結果を表5及び表6に示す。

Figure 0004568362
Figure 0004568362
表1、表2及び表5に示すNo.1〜No.42の鋼材は本発明の実施例であり、表2及び表6に示すNo.43〜No.51の鋼材は本発明の比較例である。表5及び表6に示すように、実施例No.1〜No.42の鋼材では、評価指標であるVL1000、VB max、Impact Value(吸収エネルギー)及びYP/TS(降伏比)の全てにおいて良好な値を示していたが、比較例の鋼材では、これらのうちの少なくとも1つ以上の特性が、実施例の鋼材に比べて劣っていた。具体的には、比較例No.43〜No.46の鋼材は全Al含有量が本発明の範囲を下回っているため、被削性の評価指標であるVL1000及び降伏比(YP/TS)が実施例の鋼材よりも劣っている。また、比較例No.47の鋼材は、全Al含有量が本発明の範囲を極端に下回っているため、固溶N量が本発明の範囲を上回り、実施例の鋼材よりも被削性(VL1000、VB max)、衝撃値(Impact Value)及び降伏比(YS/TS)が劣っていた。
比較例No.48の鋼材は、全Al含有量が本発明の範囲を上回っているため、硬さが増加し、被削性(VL1000、VB max)が劣っていた。比較例No.49、No.50の鋼材は、実施例の鋼材に比べてAlNが析出しやすい850℃での温度保持時間が短いため、固溶N量が本発明の範囲を上回り、実施例の鋼材よりも被削性(VL1000、VB max)及び衝撃値(Impact Value)が劣っていた。比較例No.51〜No.54の鋼材は、Sb含有量が本発明の範囲を上回っているため、実施例の鋼材よりも衝撃値(Impact Value)が劣っていた。 Tensile test After cylindrical quenching and tempering were performed in the same manner and under the same conditions as the Charpy impact test described above, the diameter of the parallel part was 8 mm and the length of the parallel part was measured. A 30 mm tensile test piece was processed, and a tensile test was performed at room temperature based on the method specified in JIS Z 2241. At that time, the yield ratio (= (0.2% yield strength YP) / (tensile strength TS)) was adopted as an evaluation index.
The results of the above tests are shown in Tables 5 and 6.
Figure 0004568362
Figure 0004568362
The steel materials No. 1 to No. 42 shown in Tables 1, 2 and 5 are examples of the present invention, and the steel materials No. 43 to No. 51 shown in Tables 2 and 6 are comparative examples of the present invention. It is. As shown in Table 5 and Table 6, in the steel materials of Examples No. 1 to No. 42, evaluation indexes VL1000 and VB The values of max, impact value (absorbed energy) and YP / TS (yield ratio) all showed good values. However, in the steel material of the comparative example, at least one of these characteristics is the steel material of the example. It was inferior to. Specifically, since the total Al content of the steel materials of Comparative Examples No. 43 to No. 46 is below the range of the present invention, the VL1000 and the yield ratio (YP / TS), which are evaluation indexes of machinability, It is inferior to the steel material of an Example. Further, the steel material of Comparative Example No. 47 has a total Al content that is extremely lower than the range of the present invention, so the amount of solute N exceeds the range of the present invention, and the machinability ( VL1000, VB max), impact value (Ympact Value) and yield ratio (YS / TS) were inferior.
In the steel material of Comparative Example No. 48, the total Al content exceeds the range of the present invention, so the hardness increases and machinability (VL1000, VB max) was inferior. The steel materials of Comparative Examples No. 49 and No. 50 have a shorter temperature holding time at 850 ° C. where AlN is more likely to precipitate than the steel materials of the examples, so the amount of solute N exceeds the range of the present invention. Machinability (VL1000, VB) max) and Impact Value were inferior. The steel materials of Comparative Examples No. 51 to No. 54 were inferior in impact value (Impact Value) to the steel materials of the examples because the Sb content exceeded the range of the present invention.

本実施例においては、表7及び表8に示す組成の鋼150kgを真空溶解炉で溶製後、1250℃の温度条件下で熱間鍛造し、直径が65mmの円柱状に鍛伸した。そして、この実施例及び比較例の鋼材について、下記に示す方法で被削性試験、シャルピー衝撃試験及び引張り試験を行ない、その特性を評価した。なお、表7及び表8における下線は、本発明の範囲外であることを示す。

Figure 0004568362
Figure 0004568362
In this example, 150 kg of steel having the composition shown in Table 7 and Table 8 was melted in a vacuum melting furnace, and then hot forged under a temperature condition of 1250 ° C. to forge into a cylindrical shape having a diameter of 65 mm. And about the steel material of this Example and the comparative example, the machinability test, the Charpy impact test, and the tension test were done by the method shown below, and the characteristic was evaluated. In addition, the underline in Table 7 and Table 8 shows that it is outside the scope of the present invention.
Figure 0004568362
Figure 0004568362

被削性試験
被削性試験は、先ず、1250℃に加熱して温間で鍛伸した実施例及び比較例の各鋼材に対して、850℃の温度条件下で1時間、比較例No.48,No.49,No.97〜No.101については0.5時間焼準した後、空冷する熱処理を施した。その後、熱処理後の各鋼材から被削性評価用試験片を切出し、表9に示す切削条件でドリル穿孔試験を行なうと共に、表10に示す条件で長手旋削試験を行い、実施例及び比較例の各鋼材の被削性を評価した。その際、評価指標としては、ドリル穿孔試験では累積穴深さ1000mmまで切削可能な最大切削速度VL1000を、長手旋削試験で10分後の逃げ面最大磨耗幅VB maxを夫々を採用した。

Figure 0004568362
Figure 0004568362
Machinability test In the machinability test, first, each steel material of Examples and Comparative Examples heated to 1250 ° C. and forged in warm condition was subjected to a comparative example No. 1 at 850 ° C. for 1 hour. No. 48, No. 49, No. 97 to No. 101 were subjected to heat treatment for air cooling after normalizing for 0.5 hour. Thereafter, a test piece for machinability evaluation was cut out from each steel material after the heat treatment, and a drill drilling test was conducted under the cutting conditions shown in Table 9, and a longitudinal turning test was conducted under the conditions shown in Table 10, and Examples and Comparative Examples The machinability of each steel material was evaluated. At that time, as an evaluation index, in the drill drilling test, the maximum cutting speed VL1000 capable of cutting to a cumulative hole depth of 1000 mm is used, and the flank maximum wear width VB after 10 minutes in the longitudinal turning test. Each adopted max.
Figure 0004568362
Figure 0004568362

シャルピー衝撃試験
図1はシャルピー衝撃試験用試験片の切出し部位を示す図である。シャルピー衝撃試験においては、先ず、図1に示すように、前述の切削性試験同様の方法及び条件で熱処理した各鋼材1から、中心軸が鋼材1の鍛伸方向に対して垂直になるようにして、直径が25mmの円柱材2を切出した。次に、各円柱材2に対して、850℃の温度条件下で1時間、比較例No.48,No.49,No.97〜No.101については0.5時間保持した後、60℃まで冷却する油焼入れを行い、更に、550℃の温度条件下で30分間保持した後水冷する焼戻しを行った。その後、各円柱材2を機械加工して、JIS Z 2202に規定されているシャルピー試験片3を作製し、JIS Z 2242に規定されている方法で、室温におけるシャルピー衝撃試験を実施した。その際、評価指標としては、単位面積当たりの吸収エネルギー(J/cm2)を採用した。
Charpy Impact Test FIG. 1 is a diagram showing a cut-out site of a Charpy impact test specimen. In the Charpy impact test, first, as shown in FIG. 1, the center axis is perpendicular to the forging direction of the steel material 1 from each steel material 1 heat-treated by the same method and conditions as the above-described machinability test. Then, a cylindrical member 2 having a diameter of 25 mm was cut out. Next, each cylindrical member 2 was held for 1 hour under the temperature condition of 850 ° C., and Comparative Examples No. 48, No. 49, No. 97 to No. 101 were held for 0.5 hour, and then cooled to 60 ° C. Further, tempering was performed, followed by water-cooling after holding for 30 minutes at a temperature of 550 ° C. Thereafter, each cylindrical member 2 was machined to produce a Charpy test piece 3 defined in JIS Z 2202, and a Charpy impact test at room temperature was performed by the method defined in JIS Z 2242. At that time, absorbed energy per unit area (J / cm 2 ) was adopted as an evaluation index.

引張試験
前述したシャルピー衝撃試験と同様の方法及び条件で油焼入れ及び焼戻しを行なった各円柱材2を、平行部の直径が8mmで、長さが30mmの引張試験片に加工し、JIS Z 2241に規定されている方法に基づき、室温下での引張試験を行った。その際、評価指標としては、降伏比(=(0.2%耐力YP)/(引張強さTS))を採用した。
以上の試験の結果を表11及び表12にまとめて示す。

Figure 0004568362
Figure 0004568362
なお、表7及び表11に示すNo.1の鋼材は請求項1の実施例であり、No.2〜No.42の鋼材は請求項2の実施例である。また表8及び表12に示すNo.52〜No.93は請求項1の実施例である。更に、比較例No.43〜No.49の鋼材は、S含有量及びCa含有量については請求項2の規定を満足しており、比較例No.94〜No.101の鋼材は、S含有量及びCa含有量については請求項1の規定を満足しているものである。
表11及び表12に示すように、実施例No.1〜No.42及びNo.52〜No.93の鋼材では、評価指標であるVL1000、VB max、Impact Value(吸収エネルギー)及びYP/TS(降伏比)の全てにおいて良好な値を示していたが、比較例の鋼材では、これらのうちの少なくとも1つ以上の特性が、実施例の鋼材に比べて劣っていた。具体的には、比較例No.43〜No.46の鋼材は全Al含有量が本発明の範囲を下回っているため、被削性(VL1000)及び降伏比(YP/TS)が実施例の鋼材よりも劣っていた。また、比較例No.47の鋼材は、全Al含有量が本発明の範囲を極端に下回っているため、固溶N量が本発明の範囲を上回り、実施例の鋼材よりも被削性(VL1000、VB max)、衝撃値(Impact Value)及び降伏比(YS/TS)が劣っていた。 Tensile test Each cylindrical material 2 that has been oil-quenched and tempered under the same method and conditions as the Charpy impact test described above is processed into a tensile test piece with a parallel part diameter of 8 mm and a length of 30 mm. JIS Z 2241 Based on the method prescribed in the above, a tensile test at room temperature was performed. At that time, the yield ratio (= (0.2% yield strength YP) / (tensile strength TS)) was adopted as an evaluation index.
The results of the above tests are summarized in Tables 11 and 12.
Figure 0004568362
Figure 0004568362
In addition, the No. 1 steel materials shown in Table 7 and Table 11 are Examples of Claim 1, and the No. 2 to No. 42 steel materials are Examples of Claim 2. No. 52 to No. 93 shown in Tables 8 and 12 are examples of claim 1. Furthermore, the steel materials of Comparative Examples No. 43 to No. 49 satisfy the provisions of claim 2 regarding the S content and the Ca content, and the steel materials of Comparative Examples No. 94 to No. 101 contain S. Regarding the amount and Ca content, the provisions of claim 1 are satisfied.
As shown in Table 11 and Table 12, in the steel materials of Examples No. 1 to No. 42 and No. 52 to No. 93, VL1000 and VB which are evaluation indexes The values of max, impact value (absorbed energy) and YP / TS (yield ratio) all showed good values. However, in the steel material of the comparative example, at least one of these characteristics is the steel material of the example. It was inferior to. Specifically, since the steel materials of Comparative Examples No. 43 to No. 46 have a total Al content lower than the range of the present invention, the machinability (VL1000) and the yield ratio (YP / TS) are those of the examples. It was inferior to steel. Further, the steel material of Comparative Example No. 47 has a total Al content that is extremely lower than the range of the present invention, so the amount of solute N exceeds the range of the present invention, and the machinability ( VL1000, VB max), impact value (Ympact Value) and yield ratio (YS / TS) were inferior.

比較例No.48及びNo.49の鋼材は、実施例の鋼材に比べてAlNが析出しやすい850℃での温度保持時間が短いため、固溶N量が本発明の範囲を上回り、実施例の鋼材よりも被削性(VL1000、VB max)及び衝撃値(Impact Value)が劣っていた。更に、比較例No.94〜No.96の鋼材は、全Al含有量が本発明の範囲を下回っているため、被削性(VL1000、VB max)及び降伏比(YP/TS)が実施例の鋼材よりも劣っていた。更に、比較例No.97〜No.101の鋼材は、実施例の鋼材に比べてAlNが析出しやすい850℃での温度保持時間が短いため、固溶N量が本発明の範囲を上回り、実施例の鋼材よりも被削性(VL1000、VB max)及び衝撃値(Impact Value)が劣っていた。 The steel materials of Comparative Examples No. 48 and No. 49 have a shorter temperature holding time at 850 ° C. where AlN is more likely to precipitate than the steel materials of the examples, so the amount of solute N exceeds the range of the present invention. Machinability (VL1000, VB) max) and Impact Value were inferior. Further, the steel materials of Comparative Examples No. 94 to No. 96 have machinability (VL1000, VB) because the total Al content is below the range of the present invention. max) and yield ratio (YP / TS) were inferior to the steel materials of the examples. Furthermore, the steel materials of Comparative Examples No. 97 to No. 101 have a shorter temperature holding time at 850 ° C. at which AlN is more likely to precipitate than the steel materials of the Examples, so the amount of solute N exceeds the range of the present invention. Machinability (VL1000, VB) max) and Impact Value were inferior.

本発明によれば、幅広い切削速度領域において良好な被削性を有し、且つ、高い衝撃特性と高い降伏比を併せ持つ機械構造用鋼を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the steel for machine structures which has favorable machinability in a wide cutting speed area | region, and has a high impact characteristic and a high yield ratio can be provided.

図1は、シャルピー衝撃試験用試験片の切出し部位を示す図である。FIG. 1 is a diagram showing a cutout portion of a test piece for a Charpy impact test.

Claims (2)

質量%で、
C:0.1〜0.85%、
Si:0.01〜1.5%、
Mn:0.05〜2.0%、
P:0.005〜0.2%、
S:0.001〜0.15%、
全Al:0.05%超0.3%以下、
Sb:0.0150%未満(0%含む)及び
全N:0.0035〜0.020%を含有すると共に、
固溶N:0.0020%以下に制限し、
残部がFe及び不可避的不純物からなることを特徴とする被削性と強度特性に優れた機械構造用鋼。
% By mass
C: 0.1 to 0.85%
Si: 0.01 to 1.5%
Mn: 0.05-2.0%,
P: 0.005-0.2%
S: 0.001 to 0.15%,
Total Al: more than 0.05% and 0.3% or less,
Sb: less than 0.0150% (including 0%) and total N: 0.0035 to 0.020%,
Solid solution N: limited to 0.0020% or less,
A machine structural steel excellent in machinability and strength characteristics, characterized in that the balance consists of Fe and inevitable impurities.
更に、質量%で、Ca:0.0003〜0.0015%、Ti:0.001〜0.1%、Nb:0.005〜0.2%、W:0.01〜1.0%、V:0.01〜1.0%、Mg:0.0001〜0.0040%、Sn:0.005〜2.0%、Zn:0.0005〜0.5%、B:0.0005〜0.015%、Te:0.0003〜0.2%、Cr:0.01〜2.0%、Ni:0.05〜2.0%及びCu:0.01〜2.0%の1種又は2種以上を含有することを特徴とする請求項1に記載の被削性と強度特性に優れた機械構造用鋼。  Furthermore, in mass%, Ca: 0.0003 to 0.0015%, Ti: 0.001 to 0.1%, Nb: 0.005 to 0.2%, W: 0.01 to 1.0%, V: 0.01 to 1.0%, Mg: 0.0001 to 0.0040%, Sn: One of 0.005-2.0%, Zn: 0.0005-0.5%, B: 0.0005-0.015%, Te: 0.0003-0.2%, Cr: 0.01-2.0%, Ni: 0.05-2.0% and Cu: 0.01-2.0% The steel for machine structure excellent in machinability and strength characteristics according to claim 1, comprising two or more kinds.
JP2008519751A 2006-12-25 2007-12-25 Machine structural steel with excellent machinability and strength characteristics Expired - Fee Related JP4568362B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006347928 2006-12-25
JP2006347928 2006-12-25
PCT/JP2007/075350 WO2008084749A1 (en) 2006-12-25 2007-12-25 Steel for machine structure excelling in machinability and strength property

Publications (2)

Publication Number Publication Date
JPWO2008084749A1 JPWO2008084749A1 (en) 2010-04-30
JP4568362B2 true JP4568362B2 (en) 2010-10-27

Family

ID=39608640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008519751A Expired - Fee Related JP4568362B2 (en) 2006-12-25 2007-12-25 Machine structural steel with excellent machinability and strength characteristics

Country Status (8)

Country Link
US (2) US20090274573A1 (en)
EP (1) EP2060647B1 (en)
JP (1) JP4568362B2 (en)
KR (2) KR20110133501A (en)
CN (1) CN101410541B (en)
AU (2) AU2007342838B2 (en)
BR (2) BRPI0710842B1 (en)
WO (1) WO2008084749A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9303302B2 (en) 2011-05-25 2016-04-05 Kobe Steel, Ltd. Steel with excellent rolling-contact fatigue properties

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2439189C1 (en) 2007-10-29 2012-01-10 Ниппон Стил Корпорейшн Hot-formed green steel of martensitic class and hot-formed green steel part
JP5375212B2 (en) * 2009-03-06 2013-12-25 Jfeスチール株式会社 Steel material with excellent machinability and torsional fatigue strength
KR20120040733A (en) * 2009-09-30 2012-04-27 제이에프이 스틸 가부시키가이샤 Steel material for structures having excellent weather resistance and steel structure
EP2484789A4 (en) * 2009-10-02 2016-02-24 Kobe Steel Ltd Steel for machine structural use, manufacturing method for same, case hardened steel components, and manufacturing method for same
CN102741440B (en) * 2010-05-31 2014-08-20 新日铁住金株式会社 Steel material for quenching and method of producing same
CN102666002B (en) * 2010-08-18 2014-09-10 新日铁住金高新材料株式会社 Solder ball for semiconductor mounting and electronic member
RU2502822C1 (en) * 2012-12-18 2013-12-27 Юлия Алексеевна Щепочкина Steel
CN103233186A (en) * 2013-05-28 2013-08-07 滁州迪蒙德模具制造有限公司 Steel for compression mold and production method thereof
CN103352180B (en) * 2013-06-23 2015-11-25 浙江浦宁不锈钢有限公司 A kind of manufacture method of carbon alloy
CN106536775B (en) 2014-07-03 2018-05-04 新日铁住金株式会社 Mechanical structure rolling bar steel and its manufacture method
JP6217859B2 (en) * 2014-07-03 2017-10-25 新日鐵住金株式会社 Rolled steel bar for machine structure and manufacturing method thereof
RU2561558C1 (en) * 2014-09-15 2015-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Easy-to-machine structural chromium-manganese-nickel steel
RU2606825C1 (en) * 2015-06-24 2017-01-10 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") High-strength wear-resistant steel for agricultural machines (versions)
CN105543702A (en) * 2015-12-28 2016-05-04 合肥中澜新材料科技有限公司 High-strength alloy automobile door
CN105838983A (en) * 2016-05-23 2016-08-10 安徽鑫宏机械有限公司 Styrene-butadiene latex modified and cast-infiltrated crusher wear-resistant hammer for complex ores and production method thereof
CN106048462A (en) * 2016-05-23 2016-10-26 安徽鑫宏机械有限公司 Crusher abrasion-resistant hammer head for polyurethane modified casting infiltration compound ore and production method of crusher abrasion-resistant hammer head
CN106086670A (en) * 2016-06-15 2016-11-09 成都高普石油工程技术有限公司 A kind of steel of petroleum drilling and mining drill bit
US20180057915A1 (en) * 2016-08-30 2018-03-01 GM Global Technology Operations LLC Steel alloys and cylinder liners thereof
JP6794043B2 (en) * 2016-12-12 2020-12-02 山陽特殊製鋼株式会社 Steel for plastic molding dies with excellent workability and mirror surface
CN106756557B (en) * 2016-12-26 2018-04-06 江苏华久辐条制造有限公司 A kind of high-strength tensile type cold-strip steel and preparation method thereof
CN108396252B (en) * 2017-02-08 2020-01-07 鞍钢股份有限公司 390 MPa-grade LP steel plate and production method thereof
CN108396245B (en) * 2017-02-08 2019-12-13 鞍钢股份有限公司 345 MPa-level LP steel plate and production method thereof
CN107160120A (en) * 2017-05-13 2017-09-15 合肥鼎鑫模具有限公司 A kind of processing method of car panel die trimming edge
CN107254643A (en) * 2017-06-13 2017-10-17 合肥博创机械制造有限公司 A kind of ship steel material and preparation method thereof
CN107815614A (en) * 2017-10-29 2018-03-20 江苏鼎荣电气集团有限公司 A kind of tensile type cable testing bridge and its production technology
US20210262050A1 (en) * 2018-08-31 2021-08-26 Höganäs Ab (Publ) Modified high speed steel particle, powder metallurgy method using the same, and sintered part obtained therefrom
CN109457194B (en) * 2018-10-29 2020-07-28 包头钢铁(集团)有限责任公司 Hardenability-maintaining free-cutting steel and heat treatment method thereof
CN110819900A (en) * 2019-11-19 2020-02-21 马鞍山钢铁股份有限公司 Steel with excellent corrosion resistance for high-strength elastic snap ring and heat treatment method thereof
CN113549830B (en) * 2021-07-16 2022-05-20 鞍钢股份有限公司 Medium carbon spheroidized sorbite tool steel with high surface hardness and excellent bending property and production method thereof
CN113913704B (en) * 2021-12-13 2022-03-11 北京科技大学 Tellurium-sulfur co-processed aluminum deoxidized steel and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741851A (en) * 1993-08-02 1995-02-10 Kawasaki Steel Corp Production of structural steel for machine excellent in machinability, cold forgeability and fatigue strength property
JPH07150293A (en) * 1993-11-26 1995-06-13 Kawasaki Steel Corp Graphite composite free cutting steel
JPH07188847A (en) * 1993-12-28 1995-07-25 Kawasaki Steel Corp Machine-structural carbon steel excellent in machiniability
JPH07316718A (en) * 1994-05-24 1995-12-05 Kawasaki Steel Corp Bearing member excellent in characteristic of retarding microstructural change due to repeated stress load and also in heat treatment productivity
JP2003277881A (en) * 2002-03-25 2003-10-02 Jfe Steel Kk Bearing member having excellent rolling fatigue property of high frequency heat treated part and workability

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3259487A (en) * 1963-01-31 1966-07-05 United States Steel Corp High-strength wire rope
GB1342582A (en) * 1970-03-20 1974-01-03 British Steel Corp Rail steel
US4929419A (en) * 1988-03-16 1990-05-29 Carpenter Technology Corporation Heat, corrosion, and wear resistant steel alloy and article
EP0399054B1 (en) * 1988-12-10 1995-08-30 Kawasaki Steel Corporation Production method of crystal member having controlled crystal orientation
US5776267A (en) * 1995-10-27 1998-07-07 Kabushiki Kaisha Kobe Seiko Sho Spring steel with excellent resistance to hydrogen embrittlement and fatigue
JP3534166B2 (en) * 1998-05-12 2004-06-07 住友金属工業株式会社 Machine structural steel with excellent machinability, resistance to coarsening and resistance to case crash
KR100420304B1 (en) * 2000-08-30 2004-03-04 가부시키가이샤 고베 세이코쇼 Machine structure steel superior in chip disposability and mechanical properties
JP3706560B2 (en) 2000-08-30 2005-10-12 株式会社神戸製鋼所 Mechanical structural steel with excellent chip control and mechanical properties
WO2002048417A1 (en) * 2000-12-14 2002-06-20 Posco STEEL PLATE TO BE PRECIPITATING TiN + ZrN FOR WELDED STRUCTURES, METHOD FOR MANUFACTURING THE SAME AND WELDING FABRIC USING THE SAME
JP4205406B2 (en) * 2002-07-25 2009-01-07 株式会社神戸製鋼所 Machine structural steel with excellent cutting tool life and its manufacturing method
FR2848226B1 (en) * 2002-12-05 2006-06-09 Ascometal Sa STEEL FOR MECHANICAL CONSTRUCTION, METHOD FOR HOT SHAPING A PIECE OF THIS STEEL, AND PIECE THUS OBTAINED
JP4057930B2 (en) * 2003-02-21 2008-03-05 新日本製鐵株式会社 Machine structural steel excellent in cold workability and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741851A (en) * 1993-08-02 1995-02-10 Kawasaki Steel Corp Production of structural steel for machine excellent in machinability, cold forgeability and fatigue strength property
JPH07150293A (en) * 1993-11-26 1995-06-13 Kawasaki Steel Corp Graphite composite free cutting steel
JPH07188847A (en) * 1993-12-28 1995-07-25 Kawasaki Steel Corp Machine-structural carbon steel excellent in machiniability
JPH07316718A (en) * 1994-05-24 1995-12-05 Kawasaki Steel Corp Bearing member excellent in characteristic of retarding microstructural change due to repeated stress load and also in heat treatment productivity
JP2003277881A (en) * 2002-03-25 2003-10-02 Jfe Steel Kk Bearing member having excellent rolling fatigue property of high frequency heat treated part and workability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9303302B2 (en) 2011-05-25 2016-04-05 Kobe Steel, Ltd. Steel with excellent rolling-contact fatigue properties

Also Published As

Publication number Publication date
AU2007342838A1 (en) 2008-07-17
EP2060647A4 (en) 2016-07-13
KR101162743B1 (en) 2012-07-05
AU2007342838B2 (en) 2010-04-01
WO2008084749A1 (en) 2008-07-17
BRPI0710842B1 (en) 2018-09-11
AU2010200638A1 (en) 2010-03-11
US20090274573A1 (en) 2009-11-05
US20100124515A1 (en) 2010-05-20
KR20080102382A (en) 2008-11-25
AU2010200638B2 (en) 2013-05-02
BR122013026772B1 (en) 2018-01-09
JPWO2008084749A1 (en) 2010-04-30
KR20110133501A (en) 2011-12-12
BRPI0710842A2 (en) 2011-08-23
EP2060647B1 (en) 2017-11-15
CN101410541B (en) 2011-11-16
CN101410541A (en) 2009-04-15
EP2060647A1 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP4568362B2 (en) Machine structural steel with excellent machinability and strength characteristics
JP4473928B2 (en) Hot-worked steel with excellent machinability and impact value
JP5031931B2 (en) Hardened steel and power transmission parts
JP5079788B2 (en) Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts
JP2008013788A (en) Steel for mechanical structural use having excellent machinability and strength property
JP5181619B2 (en) Hardened steel with excellent machinability and hardenability
JPH1129839A (en) Spring steel with high toughness
JP3196579B2 (en) Free-cutting non-heat treated steel with excellent strength and toughness
JPH11293390A (en) High strength free cutting non-heat treated steel
JP3954751B2 (en) Steel with excellent forgeability and machinability
JP5181621B2 (en) Non-tempered steel for martensitic hot forging and hot-forged non-tempered steel parts
JP3739958B2 (en) Steel with excellent machinability and its manufacturing method
JP4807949B2 (en) Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics
JP3489656B2 (en) High-strength, high-toughness tempered steel with excellent machinability
JP3489655B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JPH10237582A (en) Free cutting non-heat treated steel with high strength and high toughness
JP2002194483A (en) Steel for machine structure
AU2013202251B2 (en) Machine structural steel excellent in machinability and strength properties
JP2002115033A (en) Free-cutting ferritic stainless steel
JP2005113163A (en) High strength non-heat treated steel for nitriding
JP2004176177A (en) Steel superior in machinability

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

R151 Written notification of patent or utility model registration

Ref document number: 4568362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees