JP4807949B2 - Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics - Google Patents
Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics Download PDFInfo
- Publication number
- JP4807949B2 JP4807949B2 JP2004358665A JP2004358665A JP4807949B2 JP 4807949 B2 JP4807949 B2 JP 4807949B2 JP 2004358665 A JP2004358665 A JP 2004358665A JP 2004358665 A JP2004358665 A JP 2004358665A JP 4807949 B2 JP4807949 B2 JP 4807949B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- less
- steel bar
- effect
- precipitates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Articles (AREA)
Description
本発明は自動車などの輸送機器や、建設機械その他の産業機械などにおいて、浸炭処理して使用される機械部品用の素材となる肌焼用圧延棒鋼に関し、特に、高温浸炭特性が要求される軸受やCVT用プーリー、シャフト類、歯車、軸付き歯車などの素材として有用な肌焼用の棒状圧延鋼材に関するものである。 The present invention relates to a case-hardening rolled steel bar used as a material for machine parts used by carburizing in transportation equipment such as automobiles, construction machinery, and other industrial machines, and particularly bearings that require high-temperature carburizing characteristics. Further, the present invention relates to a rod-shaped rolled steel material for case hardening that is useful as a material for pulleys for CVT, shafts, gears, gears with shafts, and the like.
自動車、建設機械、その他の各種産業機械用として用いられる機械部品において、特に高強度が要求される部品には、従来から浸炭、窒化および浸炭窒化などの表面硬化熱処理(肌焼処理)が行なわれている。これらの用途には、通常、SCr、SCM、SNCMなどの如きJIS規格で定められた肌焼鋼を使用し、鍛造・切削等の機械加工により所望の部品形状に成形した後、浸炭、浸炭窒化などの表面硬化熱処理を施し、その後、研磨などの仕上工程を経て製造される。 Of machine parts used for automobiles, construction machinery, and other various industrial machines, parts that require particularly high strength are conventionally subjected to surface hardening heat treatment (skin hardening) such as carburizing, nitriding and carbonitriding. ing. For these applications, case-hardened steel defined by JIS standards such as SCr, SCM, SNCM, etc. is usually used. After forming into the desired part shape by machining such as forging and cutting, carburizing and carbonitriding It is manufactured through a finishing process such as polishing.
近年、上記の様な機械部品についても製造原価の低減、リードタイムの短縮などが望まれており、浸炭および浸炭窒化処理を高温化することによって熱処理時間を短縮することが行なわれている。しかし、浸炭および浸炭窒化処理温度を高めると、鋼材の結晶粒が粗大化し、熱処理歪量が増大するという問題が生じてくる。 In recent years, it has been desired to reduce the manufacturing cost and the lead time for the mechanical parts as described above, and the heat treatment time has been shortened by increasing the temperature of carburizing and carbonitriding. However, when the carburizing and carbonitriding temperature is increased, there arises a problem that the crystal grains of the steel material become coarse and the amount of heat treatment strain increases.
この様な状況の下で、鋼材中にAl,Nb,Tiなどの元素を含む炭化物や窒化物などの析出物を微細析出させることで結晶粒の粗大化を抑制し、更には浸炭窒化処理温度の上昇に対処すべく、より高い温度域においても結晶粒粗大化防止効果を発揮し得る様な鋼材の開発が進められている。例えば特許文献1には、肌焼鋼中に適量のNbを含有させ、この鋼材を圧延する際の条件を最適化することでNb炭窒化物よりなる析出物を微細且つ多量に生成させることによって、結晶粒粗大化温度の高温化を図っている。 Under such circumstances, the precipitation of carbides and nitrides containing elements such as Al, Nb, Ti, etc. in the steel material is finely precipitated to suppress the coarsening of crystal grains, and the carbonitriding temperature. In order to cope with the increase in the steel, development of a steel material capable of exhibiting the effect of preventing the coarsening of the crystal grains even in a higher temperature range is being developed. For example, in Patent Document 1, a proper amount of Nb is contained in case-hardened steel, and the precipitates made of Nb carbonitride are generated finely and in large quantities by optimizing the conditions for rolling the steel material. The crystal grain coarsening temperature is increased.
また特許文献2には、鋼中のNb,Al,Ti,Nの含有量を適正化することにより、高温条件下での結晶粒の粗大化を抑制する方法が開示されている。更に特許文献3では、鋼中のN,sol−Al,Ti,Nbの含有量を特定し、Nb炭窒化物やNb−Al複合炭窒化物を多数(5個/10μm2以上)析出させることで、結晶粒の粗大化防止を図っている。 Patent Document 2 discloses a method of suppressing the coarsening of crystal grains under high temperature conditions by optimizing the contents of Nb, Al, Ti, and N in steel. Furthermore, in Patent Document 3, the content of N, sol-Al, Ti, and Nb in steel is specified, and a large number (5/10 μm 2 or more) of Nb carbonitride and Nb-Al composite carbonitride are precipitated. Therefore, the coarsening of crystal grains is prevented.
ところが上記特許文献1に開示された方法では、1030℃程度の温度域までの結晶粒粗大化防止効果は得られるものの、1030℃を超える高温域になると満足のいく結晶粒粗大化防止効果が得られない。また特許文献2では、Nb,Ti,Al,Nの含有量を特定することでそれなりの結晶粒粗大化防止効果を得ることはできるが、その効果は高々1050℃までであり、1050℃を超える高温域では満足のいく結晶粒粗大化防止効果が得られない。これは、炭窒化物源となるNb,Ti,Alの含有量を定めるだけで、それらの元素を含む炭窒化物の析出状態までも加味した検討がなされていないことによるものと考えられる。更に上記特許文献3でも、得られる結晶粒粗大化防止効果はせいぜい1025℃までであり、これを超える高温域では十分な効果が得られない。これは、炭窒化物系析出物の数のみの制御で、サイズ分布までも考慮した検討がなされていないことによるものと考えられる。
前述した様に、浸炭窒化処理温度の上昇に対処するための結晶粒粗大化防止作用の高温化対策として、鋼材へのAl,Nb,Tiの複合添加は種々検討されているが、何れも満足し得るものとは言えず、更なる改善が求められる。 As described above, various additions of Al, Nb, and Ti to steel materials have been studied as countermeasures for increasing the temperature of the grain coarsening prevention action to cope with an increase in carbonitriding temperature, but all are satisfactory. It cannot be said that it can be done, and further improvement is required.
本発明はこの様な事情に着目してなされたものであって、その目的は、浸炭深さが求められる例えばCVT用プーリー等の棒状の機械部品用素材として、浸炭や浸炭窒化処理をより短時間で行ない得るよう、従来例よりも高温で浸炭を行なった場合でも優れた結晶粒粗大化防止効果を発揮し得る様な肌焼用圧延棒鋼を提供することにある。 The present invention has been made by paying attention to such circumstances, and its purpose is to shorten the carburizing and carbonitriding treatment as a material for rod-like machine parts such as a CVT pulley where a carburizing depth is required. The object is to provide a rolled steel bar for case hardening that can exhibit an excellent effect of preventing grain coarsening even when carburizing at a higher temperature than the conventional example so that it can be performed in a timely manner.
上記課題を解決することのできた本発明の構成は、質量%で、
C:0.05〜0.25%、
Si:0.05〜2.0%、
Mn:0.01〜1.5%、
S:0.005〜0.2%、
Cr:0.4〜1.5%、
N:0.0085〜0.0219%、
Al:0.058〜0.062%、
Nb:0.038〜0.100%、
Ti:0.008〜0.012%、
を含み、残部はFeおよび不可避不純物よりなる鋼からなり、鋼中のAl,Nb,Tiから選ばれる少なくとも1種の元素を含む円相当径100nm以上の全ての炭化物、窒化物および炭窒化物、それらの2種以上が付着し、もしくは複合した析出物の数が0.5×1012個/m2以下である、高温浸炭時の結晶粒粗大化防止特性に優れた肌焼用圧延棒鋼である。
The composition of the present invention that has solved the above-mentioned problems is in mass%,
C: 0.05 to 0.25%
Si: 0.05-2.0%,
Mn: 0.01 to 1.5%,
S: 0.005 to 0.2%,
Cr: 0.4 to 1.5%,
N: 0.0085 to 0.0219%,
Al: 0.058 to 0.062%,
Nb: 0.038 to 0.100%,
Ti: 0.008 to 0.012%,
And the balance is made of steel consisting of Fe and inevitable impurities, and all carbides, nitrides and carbonitrides having an equivalent circle diameter of 100 nm or more containing at least one element selected from Al, Nb, and Ti in the steel, It is a rolled steel bar for case-hardening having excellent crystal grain coarsening prevention characteristics during high-temperature carburization, in which two or more of them are attached or the number of combined precipitates is 0.5 × 10 12 pieces / m 2 or less.
本発明の上記鋼材には、上記成分に加えて、求められる特性に応じて下記1)〜6)に示す群から選ばれる1種以上の元素を含有させることも有効である。
1)Cu:1.0%以下(0%を含まない)および/またはNi:3.0%以下(0% を含まない)、
2)Mo:1.0%以下(0%を含まない)、
3)B:0.0005〜0.0030%、
4)Pb:0.1%以下(0%を含まない)および/またはBi:0.1%以下(0% を含まない)、
5)Mg:0.0001〜0.02%、Ca:0.0001〜0.02%、Te:0. 0005〜0.02%、REM:0.0005〜0.02%よりなる群から選択さ れる少なくとも1種、
6)Zr:0.2%以下(0%を含まない)および/またはV:0.5%以下(0%を 含まない)。
In addition to the above components, the steel material of the present invention is also effective to contain one or more elements selected from the groups shown in the following 1) to 6) according to the required properties.
1) Cu: 1.0% or less (not including 0%) and / or Ni: 3.0% or less (not including 0%),
2) Mo: 1.0% or less (excluding 0%),
3) B: 0.0005 to 0.0030%,
4) Pb: 0.1% or less (not including 0%) and / or Bi: 0.1% or less (not including 0%),
5) Mg: 0.0001 to 0.02%, Ca: 0.0001 to 0.02%, Te: 0. 0005 to 0.02%, REM: at least one selected from the group consisting of 0.0005 to 0.02%,
6) Zr: 0.2% or less (not including 0%) and / or V: 0.5% or less (not including 0%).
本発明によれば、鋼中のAl,Nb,Tiなどの含有量を特定すると共に、特に鋼中のAl,Nb,Tiから選ばれる少なくとも1種の元素を含む円相当径100nm以上の全ての炭化物、窒化物および炭窒化物、それらの2種以上が付着し、もしくは複合した析出物の数が0.5×1012個/m2以下に抑えることによって、より高温域での結晶粒粗大化防止効果を高めることができ、たとえば1050℃を超える温度域、更には1100℃を超える高温域においても結晶粒の粗大化を生じることのない肌焼用圧延棒鋼を提供できる。そのため、浸炭または浸炭窒化処理の短縮を期して処理温度を高めることができ、或いはより短い時間で深部まで浸炭窒化を進めることが可能となり、表層硬化特性や深部衝撃特性と共に寸法精度にも優れた肌焼部品を提供できる。 According to the present invention, the content of Al, Nb, Ti and the like in the steel is specified, and in particular, all of the equivalent circle diameters of 100 nm or more containing at least one element selected from Al, Nb, Ti in the steel. Carbide, nitride, carbonitride, two or more of them are attached, or the number of combined precipitates is suppressed to 0.5 × 10 12 pieces / m 2 or less to prevent grain coarsening at higher temperatures. The effect can be enhanced, and for example, it is possible to provide a rolled steel bar for case hardening that does not cause crystal grain coarsening even in a temperature range exceeding 1050 ° C., or even in a high temperature range exceeding 1100 ° C. Therefore, it is possible to increase the processing temperature in preparation for shortening the carburizing or carbonitriding process, or it is possible to advance the carbonitriding to the deep part in a shorter time, and it has excellent dimensional accuracy as well as surface layer hardening characteristics and deep part impact characteristics Case-hardened parts can be provided.
上記の様に本発明では、高温浸炭特性に優れた肌焼用圧延棒鋼として、鋼の化学成分を特定し、特に加熱時において結晶粒粗大化防止作用を発揮する微細析出物源となるAl,Nb,TiとN,Cの各含有率を特定範囲に制御し、且つ特にそれら析出物の粗大化を抑え極力微細なものとして多数生成させることにより、結晶粒粗大化防止作用をより効果的に発揮させるための手段として、鋼中のAl,Nb,Tiから選ばれる少なくとも1種の元素を含む円相当径100nm以上の全ての炭化物、窒化物および炭窒化物、それらの2種以上が付着し、もしくは複合した析出物(以下、これらを“Al・Nb・Ti含有析出物”ということがある)の数を0.5×1012個/m2以下に抑えたところに特徴を有している。 As described above, in the present invention, as a rolled steel bar for case hardening excellent in high-temperature carburizing characteristics, the chemical components of the steel are specified, and Al, which becomes a fine precipitate source that exhibits an effect of preventing grain coarsening particularly during heating, By controlling each content of Nb, Ti and N, C to a specific range, and suppressing the coarsening of the precipitates, and generating a large number of fine particles as much as possible, the effect of preventing the coarsening of grains is more effective. As a means for exhibiting, all carbides, nitrides and carbonitrides having an equivalent circle diameter of 100 nm or more containing at least one element selected from Al, Nb, and Ti in steel are adhered. Or the number of composite precipitates (hereinafter sometimes referred to as “Al / Nb / Ti-containing precipitates”) is suppressed to 0.5 × 10 12 / m 2 or less. Yes.
以下、本発明において鋼の化学成分を定めた理由を明らかにし、引き続いて、鋼中の上記Al・Nb・Ti含有析出物の数を0.5×1012個/m2以下に抑えた理由を明確にしていく。 Hereinafter, the reason why the chemical composition of the steel is determined in the present invention will be clarified, and subsequently, the reason why the number of the Al / Nb / Ti-containing precipitates in the steel is suppressed to 0.5 × 10 12 / m 2 or less will be clarified. I will make it.
まず、鋼の化学成分を定めた理由を説明する。 First, the reason for determining the chemical composition of steel will be described.
C:0.05〜0.30%;
Cは機械部品として必要な芯部硬さを確保する上で重要な元素であり、0.05%未満では硬さ不足により部品としての静的強度が不足気味となる。しかしC量が多過ぎると、硬くなり過ぎて鍛造性や被削性が悪くなるので、0.30%以下に抑える必要がある。この様な観点からより好ましいC含量は、0.15%以上、更に好ましくは0.17%以上で、0.25%以下、更に好ましくは0.23%以下である。
C: 0.05-0.30%;
C is an important element for securing the core hardness necessary for a machine part. If it is less than 0.05%, the static strength of the part is insufficient due to insufficient hardness. However, if the amount of C is too large, it becomes too hard and the forgeability and machinability deteriorate, so it is necessary to keep it to 0.30% or less. From such a viewpoint, the C content is more preferably 0.15% or more, further preferably 0.17% or more, and 0.25% or less, more preferably 0.23% or less.
Si:0.01〜2.0%;
Siは脱酸剤として作用し、酸化物系介在物量を低減して内部品質を高める作用を有すると共に、焼戻し処理時の硬さ低下を抑えて浸炭部品の表層硬さを確保するのに有効な元素であり、0.01%以上の添加を必要とする。しかしSi量が多過ぎると、鋼が硬くなり過ぎて切削性や鍛造性が悪くなるので、2.0%を上限と定めた。より好ましいSi含量は、0.02%以上、更に好ましくは0.05%以上で、0.8%以下、更に好ましくは0.6%以下である。
Si: 0.01-2.0%;
Si acts as a deoxidizer, has the effect of reducing the amount of oxide inclusions and improving the internal quality, and is effective in ensuring the surface hardness of carburized parts by suppressing the decrease in hardness during tempering treatment. It is an element and requires addition of 0.01% or more. However, if the amount of Si is too large, the steel becomes too hard and the machinability and forgeability deteriorate, so 2.0% was set as the upper limit. The Si content is more preferably 0.02% or more, further preferably 0.05% or more, 0.8% or less, and further preferably 0.6% or less.
Mn:0.01〜2.0%;
Mnは脱酸剤として作用し、酸化物系介在物を低減して鋼の内部品質を高める作用を有すると共に、浸炭焼入れ時の焼入性を著しく高める作用を有しており、こうした作用を有効に発揮させるには0.01%以上含有させる必要である。しかし多過ぎると、中心偏析が顕著となって内部品質を却って劣化させるばかりでなく、縞状組織が顕著となって内部特性のバラツキも大きくなり衝撃特性が低下するので、上限を2.0%とする。Mnのより好ましい含有量は0.2%以上、更に好ましく0.3%以上で、1.5%以下、更に好ましくは1.0%以下である。
Mn: 0.01 to 2.0%;
Mn acts as a deoxidizer, has the effect of increasing the internal quality of steel by reducing oxide inclusions, and has the effect of significantly increasing the hardenability during carburizing and quenching. It is necessary to make it contain 0.01% or more in order to make it exhibit. However, if the amount is too large, not only the center segregation becomes prominent and the internal quality is deteriorated, but also the striped structure becomes prominent and the variation of the internal characteristics increases and the impact characteristics deteriorate. And The more preferable content of Mn is 0.2% or more, more preferably 0.3% or more, 1.5% or less, and further preferably 1.0% or less.
S:0.005〜0.2%;
Sは、MnやTiなどと結合してMnS介在物やTiS介在物などを形成し、部品の衝撃強度に悪影響を及ぼすので、なるべく少なく抑えるのが好ましく、衝撃特性が求められる本発明では上限を0.2%と定めた。しかし反面Sは、切削性を高める作用を有しているので、切削性が強く求められる場合は適量含有させるのがよく、0.005%程度以上は含有させることが望ましい。通常の機械構造用鋼では0.01%程度以上、0.07%程度以下が好ましい。
S: 0.005 to 0.2%;
S combines with Mn, Ti, etc. to form MnS inclusions, TiS inclusions, etc., and adversely affects the impact strength of the parts. Therefore, it is preferable to suppress as much as possible, and in the present invention where impact characteristics are required, the upper limit is set. Set to 0.2%. However, S, on the other hand, has the effect of improving the machinability, so when the machinability is strongly required, it should be contained in an appropriate amount, and preferably about 0.005% or more. In normal steel for machine structural use, it is preferably about 0.01% or more and 0.07% or less.
Cr:0.01〜2.0%;
Crは、Ti,Nbなどの炭化物中に固溶してそれらの硬さを高める作用を有しており、耐摩耗性の向上に寄与する。そのため、歯車や軸受等の摺動部品ではよく用いられる合金元素であり、0.01%以上含有させることが望ましい。ちなみに、JIS規格の肌焼鋼(SCr420)ではCr含量を0.9〜1.2%と定めている。しかしCr含量が2.0%を超えると、鋼材が硬くなり過ぎて被削性や鍛造性が劣化するので、2.0%を上限と定めた。より好ましくは0.4%以上、更に好ましくは0.9%以上で、1.5%以下、更に好ましくは1.2%以下である。
Cr: 0.01-2.0%;
Cr has the effect of increasing its hardness by dissolving in carbides such as Ti and Nb, and contributes to the improvement of wear resistance. Therefore, it is an alloy element often used in sliding parts such as gears and bearings, and it is desirable to contain 0.01% or more. Incidentally, in the case of JIS standard case-hardened steel (SCr420), the Cr content is set to 0.9 to 1.2%. However, if the Cr content exceeds 2.0%, the steel material becomes too hard and the machinability and forgeability deteriorate, so 2.0% was set as the upper limit. More preferably, it is 0.4% or more, more preferably 0.9% or more, 1.5% or less, and further preferably 1.2% or less.
N:0.003〜0.030%;
Nは、Al,Ti,Nbと結合して窒化物や炭窒化物を形成し、浸炭加熱時におけるオーステナイト粒成長を抑制する作用を有しており、この作用を有効に発揮させるには0.003%以上含有させねばならず、好ましくは0.005%以上含有させるのがよい。しかしN量が多過ぎると、熱間加工性や衝撃特性に悪影響を及ぼす様になるので、多くとも0.030%以下、より好ましくは0.025%以下、更に好ましくは0.020%以下に抑えるのがよい。
N: 0.003-0.030%;
N combines with Al, Ti and Nb to form nitrides and carbonitrides, and has the effect of suppressing austenite grain growth during carburizing heating. It must be contained in an amount of 0.003% or more, preferably 0.005% or more. However, if the amount of N is too large, it will adversely affect hot workability and impact properties, so at most 0.030% or less, more preferably 0.025% or less, and even more preferably 0.020% or less. It is good to suppress.
Al:0.01〜0.12%;
Alは鋼材組織の結晶粒の調整に有効な元素である。即ちAlは、鋼中のNと結合して窒化物を生成するが、この窒化物は熱処理時における結晶粒の成長を抑制する作用を発揮するのである。しかも、Alを後述するNbやTiと複合添加すると、Al系の単独析出物よりも安定なAl窒化物とTi炭窒化物との複合析出物や、Al窒化物とNb炭窒化物との複合析出物、或いはAl窒化物とNb−Ti複合炭窒化物との複合析出物を形成し、高温浸炭時の結晶粒粗大化作用を高める。これらの作用を有効に発揮させるには、0.01%以上含有させる必要がある。しかしAl含量が多過ぎると、硬質で粗大な非金属介在物(Al2O3)が生成して衝撃強度を劣化させるので、0.12%を上限と定めた。Alのより好ましい含有量は0.015%以上、更に好ましくは0.02%以上で、0.10%以下、更に好ましくは0.07%以下である。
Al: 0.01 to 0.12%;
Al is an element effective for adjusting the crystal grains of the steel structure. That is, Al combines with N in the steel to form a nitride, which exhibits the action of suppressing the growth of crystal grains during heat treatment. In addition, when Al is added in combination with Nb or Ti, which will be described later, a composite precipitate of Al nitride and Ti carbonitride that is more stable than an Al-based single precipitate, or a composite of Al nitride and Nb carbonitride A precipitate or a composite precipitate of Al nitride and Nb—Ti composite carbonitride is formed to enhance the grain coarsening action during high-temperature carburization. In order to exhibit these effects effectively, it is necessary to contain 0.01% or more. However, if the Al content is too high, hard and coarse non-metallic inclusions (Al 2 O 3 ) are generated and the impact strength is deteriorated, so the upper limit was set to 0.12%. A more preferable content of Al is 0.015% or more, more preferably 0.02% or more, and 0.10% or less, and further preferably 0.07% or less.
Nb:0.01〜0.20%;
Nbは本発明において特に重要な役割を果たす元素であり、鋼中のNおよびCと結合して窒化物や炭化物もしくは炭窒化物を形成し、浸炭時の加熱工程で結晶粒粗大化の抑制に寄与する元素であり、0.01%未満では、高温で安定な窒化物や炭化物、もしくは炭窒化物が生成しないため、結晶粒粗大化防止効果が得られない。しかもNbは、AlやTiと複合添加することで、Nbを含む単独析出物よりも安定なAl窒化物とNb炭窒化物の複合析出物やNb−Ti複合炭窒化物、あるいはAl窒化物とNb−Ti複合炭窒化物の複合析出物を形成し、高温浸炭時の結晶粒粗大化防止作用の向上に寄与する。
Nb: 0.01-0.20%;
Nb is an element that plays an especially important role in the present invention, and combines with N and C in steel to form nitrides, carbides or carbonitrides, and suppresses grain coarsening in the heating process during carburizing. If it is less than 0.01%, nitrides, carbides, or carbonitrides that are stable at high temperatures are not generated, so that the effect of preventing grain coarsening cannot be obtained. Moreover, Nb is added in combination with Al or Ti, so that it is more stable than a single precipitate containing Nb and is a more stable composite of Al nitride and Nb carbonitride, Nb-Ti composite carbonitride, or Al nitride. A composite precipitate of Nb—Ti composite carbonitride is formed and contributes to an improvement in the effect of preventing grain coarsening during high temperature carburization.
しかし、Nb含量が多過ぎるとNbを含む粗大な析出物が生成し、後述するオストワルド粒成長を加速して結晶粒粗大化防止特性を逆に劣化させるので、0.20%以下に抑えるべきである。Nbのより好ましい含有率は0.02%以上、更に好ましくは0.03%以上で、0.15%以下、更に好ましくは0.10%以下である。 However, if the Nb content is too large, coarse precipitates containing Nb are formed, and the Ostwald grain growth described later is accelerated to reversely deteriorate the crystal grain coarsening prevention characteristic. Therefore, it should be suppressed to 0.20% or less. is there. A more preferable content of Nb is 0.02% or more, more preferably 0.03% or more, 0.15% or less, and further preferably 0.10% or less.
Ti:0.005〜0.12%;
Tiも本発明において重要な役割を果たす元素である。すなわち、鋼中のTiはNおよびCと結びついて炭化物、窒化物、炭窒化物を形成し、高温浸炭時の結晶粒粗大化を抑制する。また、AlやNbと複合添加することで、Tiを含む単独析出物よりも安定なAl窒化物とTi炭窒化物の複合析出物やNb−Ti複合炭窒化物、あるいは、Al窒化物とNb−Ti複合炭窒化物の複合析出物を形成し、結晶粒粗大化防止特性の向上に寄与する。Ti含量が0.005%未満では、析出するTi炭窒化物や他元素との複合炭窒化物の数が不十分となり、満足のいく結晶粒粗大化防止特性が得られない。しかし反面、Ti含量が0.12%を超えて過度に多くなると、粗大なNb−Ti炭窒化物が生成してオストワルド成長を促進し、結晶粒粗大化防止特性を却って劣化させる。Tiのより好ましい含有量は、0.008以上で、0.10%以下、より好ましくは0.05%以下である。
Ti: 0.005 to 0.12%;
Ti is also an element that plays an important role in the present invention. That is, Ti in steel is combined with N and C to form carbides, nitrides, carbonitrides, and suppresses grain coarsening during high-temperature carburizing. Also, by adding Al and Nb in combination, a more stable Al nitride and Ti carbonitride composite precipitate, Nb-Ti composite carbonitride, or Al nitride and Nb than a single precipitate containing Ti. Forms composite precipitates of -Ti composite carbonitrides and contributes to improvement of crystal grain coarsening prevention characteristics. When the Ti content is less than 0.005%, the number of precipitated Ti carbonitrides and composite carbonitrides with other elements becomes insufficient, and satisfactory crystal grain coarsening prevention characteristics cannot be obtained. On the other hand, if the Ti content exceeds 0.12% and becomes excessively large, coarse Nb—Ti carbonitrides are formed to promote Ostwald growth and deteriorate the crystal grain coarsening prevention characteristics. The more preferable content of Ti is 0.008 or more and 0.10% or less, more preferably 0.05% or less.
本発明で用いる鋼材の必須構成元素は以上の通りであり、残部はFeと不可避不純物である。不可避的に混入してくる元素としては例えばP(リン)やO(酸素)などがあり、その量は不可避不純物量であれば特に制限されないが、含まれることによる障害を極力抑えるには、Pは0.03以下、Oは0.002%以下に抑えるべきである。 The essential constituent elements of the steel material used in the present invention are as described above, and the balance is Fe and inevitable impurities. Elements that are inevitably mixed include, for example, P (phosphorus) and O (oxygen), and the amount thereof is not particularly limited as long as it is an unavoidable impurity amount. Should be suppressed to 0.03 or less and O to 0.002% or less.
ちなみに、Pは結晶粒界に偏析して部品の衝撃特性を低下させるので、極力少なく抑えるべきであり、多くとも0.03%以下、より好ましくは0.015%以下、更に好ましくは0.010%以下に抑えるのがよい。またOは鋼材の強度特性を低下させるので、0.002%以下、より好ましくは0.001%以下の抑えるのがよい。 Incidentally, P segregates at the grain boundaries and lowers the impact characteristics of the part, so it should be suppressed as little as possible, at most 0.03% or less, more preferably 0.015% or less, still more preferably 0.010. It is good to keep it below%. Further, O decreases the strength characteristics of the steel material, so 0.002% or less, more preferably 0.001% or less is preferable.
また本発明で用いる鋼には、上記必須元素に加えて、所望に応じた更なる付加的特性を与えるため、下記の様な選択元素を含有させることも有効であり、必要に応じてそれらの元素を添加したものも本発明の技術的範囲に含まれる。 In addition to the above essential elements, the steel used in the present invention is effective to contain the following selective elements in order to give additional desired characteristics as desired. What added the element is also contained in the technical scope of this invention.
Ni:3.0%以下および/またはCu:1.0%以下;
Ni,Cuは共に鋼の耐食性を向上させる元素であり、必要に応じて各々単独で、或いは2種を添加することができる。またNiは、鋼の耐衝撃性の向上にも寄与するので、適量の添加は有効である。しかしNi,Cuの過度の添加は鋼コストの上昇を招き、しかもCuの過度の添加は熱間加工性の低下おも引き起こすので、Niは3.0%以下、Cuは1.0%以下に抑えるべきである。Niのより好ましい添加量は0.1〜2.0%、更に好ましくは0.3〜1.5%で、Cuのより好ましい添加量は0.1〜0.8%、更に好ましくは0.2〜0.6%である。
Ni: 3.0% or less and / or Cu: 1.0% or less;
Ni and Cu are both elements that improve the corrosion resistance of steel, and can be added alone or in combination of two as required. Moreover, since Ni contributes to the improvement of impact resistance of steel, addition of an appropriate amount is effective. However, excessive addition of Ni and Cu leads to an increase in steel cost, and excessive addition of Cu also causes a decrease in hot workability, so Ni is 3.0% or less and Cu is 1.0% or less. Should be suppressed. A more preferable addition amount of Ni is 0.1 to 2.0%, more preferably 0.3 to 1.5%, and a more preferable addition amount of Cu is 0.1 to 0.8%, and more preferably 0.8. 2 to 0.6%.
Mo:1.0%以下;
Moは、焼戻し処理時の硬さ低下を抑え、浸炭部品の表層硬さを確保するのに有効な元素であり、また、浸炭焼入れ時の焼入性を著しく高めると共に、耐水素脆性を抑えるうえでも有効に作用することが知られている。しかし、過度に添加しても効果が飽和するので鋼材コストの上昇を招き、更には鋼素材が硬質化して被削性を劣化させるので、添加するにしても1.0%以下に抑えるべきである。Moのより好ましい添加量は0.1〜0.8%、更に好ましくは0.15〜0.45%である。
Mo: 1.0% or less;
Mo is an element effective in suppressing the hardness reduction during the tempering process and ensuring the surface hardness of the carburized parts. In addition, it significantly enhances the hardenability during carburizing and quenching and suppresses hydrogen embrittlement resistance. But it is known to work effectively. However, even if added excessively, the effect is saturated, resulting in an increase in the cost of the steel material. Further, since the steel material is hardened and deteriorates the machinability, it should be suppressed to 1.0% or less even if added. is there. A more preferable addition amount of Mo is 0.1 to 0.8%, and more preferably 0.15 to 0.45%.
B:0.0005〜0.0030%;
Bは微量で鋼材の焼入性を大幅に高める作用を有しており、しかも結晶粒界を強化して衝撃強度を高める作用も有している。こうした作用は0.0005%以上添加することで有効に発揮される。しかし、それらの効果は約0.0030%で飽和し、またB量が多過ぎると、B窒化物が生成し易くなって冷間および熱間加工性にも悪影響が現われてくるので、添加する場合は、0.0005〜0.0030%、より好ましくは0.0008〜0.0025%、更に好ましくは0.0010〜0.0020%の範囲内で調整するのがよい。
B: 0.0005 to 0.0030%;
B has the effect of greatly increasing the hardenability of the steel material in a small amount, and also has the effect of enhancing the impact strength by strengthening the grain boundaries. Such an effect is effectively exhibited by adding 0.0005% or more. However, these effects are saturated at about 0.0030%, and if the amount of B is too large, B nitride is easily formed and adversely affects cold and hot workability. In this case, it is preferable to adjust within the range of 0.0005 to 0.0030%, more preferably 0.0008 to 0.0025%, and still more preferably 0.0010 to 0.0020%.
Pb:0.1%以下および/またはBi:0.1%以下;
Pb,Biは鋼の被削性向上に寄与する元素であり、被削性が特に求められる場合はこれらの1種または2種を添加することが有効である。しかし添加量が多過ぎると鋼素材の強度が低下するので、各々0.1%以下、より好ましくはPb+Biで0.1%以下に抑えるべきである。Pb+Biとしてのより好ましい添加量は0.02〜0.08%、更に好ましくは0.03〜0.06%である。
Pb: 0.1% or less and / or Bi: 0.1% or less;
Pb and Bi are elements that contribute to improving the machinability of steel, and it is effective to add one or two of these when machinability is particularly required. However, if the added amount is too large, the strength of the steel material is lowered, so each should be suppressed to 0.1% or less, more preferably Pb + Bi to 0.1% or less. A more preferable addition amount as Pb + Bi is 0.02 to 0.08%, and more preferably 0.03 to 0.06%.
Ca:0.0001〜0.02%、Mg:0.0001〜0.02%、Te:0.0005〜0.02%、REM:0.0005〜0.02%の1種以上;
Ca,Mg,Te,REMは、1種または2種以上添加することで鋼中に存在する硫化物の展伸を抑制し、衝撃特性を高める作用を有している。こうした作用は、Mg,Caの場合、0.0001%未満の添加では有効に発揮されず、0.02%を超えると粗大な酸化物の生成によって鋼強度を逆に低下させる恐れが生じてくる。そのためMg,Caは夫々0.0001〜0.02%、より好ましくは0.001〜0.010%の範囲とするのがよい。
One or more of Ca: 0.0001-0.02%, Mg: 0.0001-0.02%, Te: 0.0005-0.02%, REM: 0.0005-0.02%;
Ca, Mg, Te, and REM have the effect | action which suppresses the expansion | swelling of the sulfide which exists in steel by adding 1 type, or 2 or more types, and improves an impact characteristic. In the case of Mg and Ca, such an effect is not exhibited effectively when the content is less than 0.0001%, and when it exceeds 0.02%, the steel strength may be decreased due to the formation of coarse oxides. . Therefore, Mg and Ca are each preferably 0.0001 to 0.02%, more preferably 0.001 to 0.010%.
Te,REMも、同様に0.0005%未満ではその効果が有効に発揮されず、また0.02%を超えると熱間延性に顕著な悪影響を及ぼし、鋼材の製造および部品への加工が困難になるので、Te,REMを添加する場合は夫々0.0005〜0.02%、より好ましくは0.001〜0.01%、更に好ましくは0.002〜0.005%の範囲から選定するのがよい。 Similarly, if Te and REM are less than 0.0005%, the effect is not exhibited effectively, and if it exceeds 0.02%, hot ductility is significantly adversely affected, making it difficult to manufacture steel and process parts. Therefore, when adding Te and REM, each is selected from the range of 0.0005 to 0.02%, more preferably 0.001 to 0.01%, and still more preferably 0.002 to 0.005%. It is good.
Zr:0.2%以下および/またはV:0.5%以下;
Zr,Vは、前記NbやTiと同様に炭化物や窒化物を形成し、Al,Nb,Tiの炭窒化物と複合析出することで、それら炭窒化物の高温安定性を高める作用を発揮する。しかし多過ぎると、ZrやVを含む粗大析出物が生成して結晶粒粗大化防止特性を該するので、Zrは0.2%以下、Vは0.5%以下に抑えるべきである。それらの利害得失を考慮してより好ましい含有量は、Zrは0.001〜0.1%、Vは0.005〜0.2%である。
Zr: 0.2% or less and / or V: 0.5% or less;
Zr and V form carbides and nitrides in the same manner as Nb and Ti, and exhibit a function of increasing the high-temperature stability of these carbonitrides by complex precipitation with carbonitrides of Al, Nb, and Ti. . However, if the amount is too large, coarse precipitates containing Zr and V are generated and exhibit the crystal grain coarsening preventing property. Therefore, Zr should be suppressed to 0.2% or less and V should be suppressed to 0.5% or less. The more preferable contents in consideration of the advantages and disadvantages thereof are 0.001 to 0.1% for Zr and 0.005 to 0.2% for V.
鋼中のAl,Nb,Tiを含む円相当径100nm以上のAl・Nb・Ti含有析出物の数が1.0×1012個/m2以下;
熱間圧延材中に粗大なAl・Nb・Ti含有析出物(具体的には、Al,Nb,Tiを含む炭化物、窒化物、炭窒化物、それらが付着し、若しくは複合したものなど)が存在すると、高温浸炭時のAl・Nb・Ti含有析出物のオストワルド成長が促進される。オストワルド成長とは、粗大な析出物が系内に存在する微細な析出物を取り込んで成長していく現象をいい、該オストワルド成長が起こると、結晶粒の粗大化抑制に有効な微細析出物が消失してその数が減少するため、結晶粒粗大化防止特性が劣化する。
The number of Al, Nb, Ti-containing precipitates containing Al, Nb, Ti in steel and having an equivalent circle diameter of 100 nm or more is 1.0 × 10 12 pieces / m 2 or less;
Coarse Al, Nb, Ti-containing precipitates (specifically, carbides, nitrides, carbonitrides containing them, or those in which they are attached or combined) in the hot rolled material When present, the Ostwald growth of the Al, Nb, Ti-containing precipitate during high-temperature carburization is promoted. Ostwald growth is a phenomenon in which coarse precipitates take in the fine precipitates existing in the system and grow. Since it disappears and the number thereof decreases, the crystal grain coarsening prevention characteristic deteriorates.
そのため本発明では、粗大なAl・Nb・Ti含有析出物を極力減少させ、浸炭のための高温処理時においても微細析出物を安定に保つことで、高温浸炭時の結晶粒粗大化の抑制を図るものである。 Therefore, in the present invention, coarse Al / Nb / Ti-containing precipitates are reduced as much as possible, and fine precipitates are kept stable even during high temperature treatment for carburizing, thereby suppressing grain coarsening during high temperature carburizing. It is intended.
鋼材を熱間鍛造する際には、鍛造のための加熱時に通常1100℃以上の高温に加熱するため、Al・Nb・Ti含有析出物は固溶するといわれているが、粗大な析出物は、熱間鍛造前に行なわれる程度の加熱時間では十分に溶解しない。そのため、圧延棒鋼中に含まれる粗大なAl・Nb・Ti含有析出物を事前に減少させておくことで、結晶粒粗大化防止特性を改善することができる。即ち、同量のAl,Nb,Ti,Nを含む鋼材中に含まれるAl・Nb・Ti含有析出物の総量は実質的に同じであるから、粗大なAl・Nb・Ti含有析出物の量を少なくすると、結果的に微細なAl・Nb・Ti含有析出物の量は大幅に増大し、該微細なAl・Nb・Ti含有析出物が多量存在することによって結晶粒の粗大化抑制効果は飛躍的に高められることになる。 When hot forging a steel material, it is said that Al-Nb-Ti-containing precipitates are usually dissolved at a high temperature of 1100 ° C. or higher at the time of heating for forging, but coarse precipitates are It does not dissolve sufficiently in the heating time that is performed before hot forging. Therefore, the grain coarsening prevention characteristic can be improved by reducing in advance the coarse Al, Nb, Ti-containing precipitates contained in the rolled steel bar. That is, since the total amount of Al, Nb, Ti-containing precipitates contained in the steel material containing the same amount of Al, Nb, Ti, N is substantially the same, the amount of coarse Al, Nb, Ti-containing precipitates As a result, the amount of fine Al / Nb / Ti-containing precipitates is greatly increased, and the presence of a large amount of the fine Al / Nb / Ti-containing precipitates reduces the effect of suppressing grain coarsening. It will be dramatically improved.
円相当径100nm以上のAl・Nb・Ti含有析出物のより好ましい数は0.8×1012/m2以下、更に好ましくは0.5×1012個/m2以下である。 A more preferable number of Al.Nb.Ti-containing precipitates having an equivalent circle diameter of 100 nm or more is 0.8 × 10 12 / m 2 or less, and more preferably 0.5 × 10 12 / m 2 or less.
また近年、熱処理コストの低減や鍛造精度の向上を期して、鍛造時の加熱温度や鍛造温度をAl,Nb,Tiの固溶が期待できない温度域まで低下させることが求められている。この様な状況下でも、圧延棒鋼中の粗大なAl・Nb・Ti含有析出物を減少させることは、結晶粒粗大化防止特性の改善に極めて有用となる。 In recent years, in order to reduce heat treatment costs and improve forging accuracy, it has been required to lower the heating temperature and forging temperature during forging to a temperature range in which solid solution of Al, Nb, Ti cannot be expected. Even under such circumstances, reducing the coarse Al, Nb, Ti-containing precipitates in the rolled steel bar is extremely useful for improving the crystal grain coarsening prevention characteristics.
また冷間鍛造においても、圧延棒鋼中の粗大なAl・Nb・Ti含有析出物の数を低減しておくことは、同様に結晶粒粗大化防止に有効となる。 In cold forging, reducing the number of coarse Al, Nb, Ti-containing precipitates in the rolled steel bar is also effective for preventing grain coarsening.
なお本発明において、Al・Nb・Ti含有析出物の定量的基準は、圧延棒鋼のD/4(Dは直径)位置から抽出レプリカを作製し、これを日立製作所製の透過型電子顕微鏡(商品名「H−800」)を用いて20,000倍で5視野(約300μm2)を写真撮影し、その写真画像をMicromedia社製のImage Proを用いて画像解析により析出物の面積を測定して円相当径に換算してサイズの定量的基準とした。 In the present invention, the quantitative reference for the Al, Nb, Ti-containing precipitate is that an extracted replica is prepared from the D / 4 (D is the diameter) position of the rolled steel bar, and this is used as a transmission electron microscope (product of Hitachi, Ltd.) The name “H-800”) was used to photograph 5 fields of view (approximately 300 μm 2 ) at 20,000 times, and the area of the precipitate was measured by image analysis using Image Pro made by Micromedia. Thus, it was converted into an equivalent circle diameter and used as a quantitative standard for size.
一方、成分の定量基準としてAl・Nb・Ti含有析出物かどうかの判定は、EDX(エネルギー分散型X線分析装置)で成分の定量分析を行い、Al+Nb+Ti量が50%以上となる析出物をもってAl・Nb・Ti含有析出物とした。 On the other hand, the determination of whether or not the precipitate contains Al, Nb, Ti as the quantitative standard of the component is performed by quantitative analysis of the component with EDX (energy dispersive X-ray analyzer), and with the precipitate having an Al + Nb + Ti amount of 50% or more. Al / Nb / Ti-containing precipitates were used.
なお本発明において、棒鋼中に含まれる析出物の一例と示すと、下記図1〜8の通りである。即ち図1は、供試棒鋼中に観察されるAl窒化物−Nb炭窒化物の複合析出物の電子顕微鏡写真、図2は、図1の写真に付した矢印1,2,3,4の位置の特性X線強度を示すチャート、図3は、同じく供試棒鋼中に観察されるAl窒化物の電子顕微鏡写真、図4は、図3中の矢印5の位置の特性X線強度を示すチャート、図5は、同じく供試棒鋼中に観察されるNb−Ti複合炭窒化物の電子顕微鏡写真、図6は、図5中の矢印6の位置の特性X線強度を示すチャート、図7は、同じく供試棒鋼中に観察されるNb炭窒化物の電子顕微鏡写真と、図8は、図7中の矢印7の位置の特性X線強度を示すチャートである。 In addition, in this invention, when it shows as an example of the precipitate contained in a steel bar, it is as the following FIGS. That is, FIG. 1 is an electron micrograph of an Al nitride-Nb carbonitride composite precipitate observed in the test steel bar, and FIG. 2 is an arrow 1, 2, 3, 4 attached to the photograph of FIG. 3 is a chart showing the characteristic X-ray intensity of the position, FIG. 3 is an electron micrograph of Al nitride similarly observed in the test steel bar, and FIG. 4 shows the characteristic X-ray intensity of the position of the arrow 5 in FIG. FIG. 5 is an electron micrograph of an Nb—Ti composite carbonitride that is also observed in the test steel bar, FIG. 6 is a chart showing the characteristic X-ray intensity at the position of the arrow 6 in FIG. FIG. 8 is an electron micrograph of Nb carbonitride observed in the test bar steel, and FIG. 8 is a chart showing the characteristic X-ray intensity at the position of arrow 7 in FIG.
いずれにしても本発明では、上記の様に成分組成の特定された鋼材において、鋼材中の円相当径100nm以上のAl・Nb・Ti含有析出物の数を1.0×1012個/m2以下に抑えることで、肌焼用鋼として浸炭処理時に例えば1050℃以上、或いは1100℃以上の高温域に曝された場合でも、結晶粒の粗大化を殆ど生じることのない高温安定性に優れた肌焼用鋼を得ることができる。従ってこの肌焼用鋼を使用すれば、より高温、短時間で浸炭処理を行なうことができ、浸炭処理のための熱経済性を高めると共に処理効率を大幅に高めることができ、更には、寸法精度や芯部衝撃特性においても非常に優れた肌焼用鋼を提供できる。 In any case, in the present invention, in the steel material whose component composition is specified as described above, the number of precipitates containing Al, Nb, Ti having an equivalent circle diameter of 100 nm or more in the steel material is 1.0 × 10 12 pieces / m 2 or less. Suppressed to a high temperature stability that hardly causes coarsening of crystal grains even when exposed to a high temperature range of, for example, 1050 ° C. or higher, or 1100 ° C. or higher at the time of carburizing as steel for case hardening. A steel for baking can be obtained. Therefore, if this case-hardening steel is used, the carburizing process can be performed at a higher temperature and in a shorter time, the thermal economy for the carburizing process can be improved and the processing efficiency can be greatly increased. It is possible to provide a case hardening steel that is very excellent in accuracy and core impact characteristics.
上記特性を備えた肌焼用鋼を得るための製造条件は特に制限されず、前述した成分組成の要件を満たす鋼を溶製し、常法に従って鋳造、均熱、熱間圧延し、或いは必要により再加熱処理してから冷間圧延を行って所定寸法の棒鋼とすればよいが、この際、熱間圧延前の均熱処理を1250〜1350℃の温度域で2時間以上行なうことが好ましい。 The production conditions for obtaining the case-hardening steel having the above characteristics are not particularly limited, and steel that satisfies the above-mentioned requirements for the component composition is melted and cast, soaked, hot-rolled, or necessary according to a conventional method. The steel sheet may be re-heated and then cold-rolled to obtain a steel bar having a predetermined size. At this time, it is preferable to perform soaking before hot rolling in a temperature range of 1250 to 1350 ° C. for 2 hours or more.
即ち、前記成分組成の要件を満たす鋼種を1250〜1350℃で2時間以上均熱すると、この均熱工程で鋼中の粗大なAl・Nb・Ti含有析出物を可及的に溶解させることができる。言い換えると、均熱温度が1250℃未満では粗大なAl・Nb・Ti含有析出物を十分に溶解させることができず、その後の熱間圧延以降も粗大なAl・Nb・Ti含有析出物が残存するため、満足のいく結晶粒粗大化抑制効果が得られ難くなる。 That is, when steel grades satisfying the above component composition are soaked at 1250 to 1350 ° C. for 2 hours or more, coarse Al, Nb, Ti-containing precipitates in the steel can be dissolved as much as possible in this soaking step. it can. In other words, if the soaking temperature is less than 1250 ° C., the coarse Al / Nb / Ti-containing precipitates cannot be sufficiently dissolved, and the coarse Al / Nb / Ti-containing precipitates remain after the subsequent hot rolling. Therefore, it becomes difficult to obtain a satisfactory crystal grain coarsening suppression effect.
この均熱温度は、粗大なAl・Nb・Ti含有析出物の溶解という観点から高温である方が好ましいが、その効果は約1350℃で飽和し、それ以上に均熱温度を高めると設備の熱劣化が著しくなり、効果に比してコスト負荷が過大となるので、1350℃以下に抑えるのがよい。均熱のより好ましい温度は1270℃以上、1325℃以下である。 This soaking temperature is preferably high from the viewpoint of dissolution of coarse Al, Nb, Ti-containing precipitates, but the effect is saturated at about 1350 ° C. If the soaking temperature is increased further, the equipment Thermal deterioration becomes significant, and the cost load becomes excessive compared to the effect, so it is preferable to keep the temperature below 1350 ° C. A more preferable temperature for soaking is 1270 ° C. or higher and 1325 ° C. or lower.
また、均熱時間は均熱温度によっても変わってくるが、2時間未満では粗大なAl・Nb・Ti含有析出物の溶解に必要な時間を確保できないためその残存が避けられず、満足のいく結晶粒粗大化抑制効果が得られなくなる。均熱による上記析出物の溶解をより確実に進めるには、均熱時間を2.5時間以上、更に好ましくは3時間以上とするのがよい。均熱時間の上限は特に規定しないが、上記温度域で均熱を行なう場合、その効果は約15時間、より確実には約24時間で飽和するので、熱経済性と処理効率を考えると24時間以内、更に好ましくは15時間程度以下が好ましい。 In addition, the soaking time varies depending on the soaking temperature, but if it is less than 2 hours, the time required for dissolution of coarse Al, Nb, Ti-containing precipitates cannot be secured, and the remaining is unavoidable and satisfactory. The effect of suppressing grain coarsening cannot be obtained. In order to proceed the dissolution of the precipitate by soaking more reliably, the soaking time should be 2.5 hours or longer, more preferably 3 hours or longer. The upper limit of the soaking time is not particularly specified, but when soaking is performed in the above temperature range, the effect is saturated in about 15 hours, more certainly in about 24 hours. Within hours, more preferably about 15 hours or less.
その他の製造条件は特に限定されないが、Al・Nb・Ti含有析出物のサイズを極力小さくしてその溶解を短い均熱時間で済ませるには、溶製後の冷却速度をできるだけ速くすることが望ましい。 Other production conditions are not particularly limited, but in order to reduce the size of the Al, Nb, Ti-containing precipitates as much as possible and finish the dissolution in a short soaking time, it is desirable to increase the cooling rate after melting as much as possible. .
以下、実施例を挙げて本発明の構成および作用効果をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and is suitable as long as it can meet the purpose described above and below. It is also possible to carry out the invention with modifications, and these are all included in the technical scope of the present invention.
実施例1
表1,2に示す化学組成の鋼材を小型溶製炉によって溶製し、鋳造して150kgの鋳塊を得る。この鋳塊を表1,2に示す条件で均熱処理した後、空冷で500℃以下まで冷却する。その後1000℃に再加熱してから仕上げ温度900℃で熱間圧延を行い、直径50mmの棒鋼とした。
Example 1
Steel materials having chemical compositions shown in Tables 1 and 2 are melted in a small melting furnace and cast to obtain a 150 kg ingot. The ingot is soaked under the conditions shown in Tables 1 and 2 and then cooled to 500 ° C. or lower by air cooling. Then, after reheating to 1000 ° C., hot rolling was performed at a finishing temperature of 900 ° C. to obtain a steel bar having a diameter of 50 mm.
得られた各棒鋼について、下記の方法で鋼材中のAl,Nb,Tiを含む円相当径100nm以上のAl・Nb・Ti含有析出物の数密度の測定は、圧延棒鋼のD/4位置から抽出レプリカを作製し、これを日立製作所製の透過型電子顕微鏡(商品名「H−800」)を用いて20,000倍で5視野(約300μm2)を写真撮影し、損写真画像をMicromedia社製のImage Proを用いて画像解析により析出物の面積を測定して円相当径に換算し、円相当径100μm以上の析出物の数密度を測定した。 For each of the obtained steel bars, the number density of the Al / Nb / Ti-containing precipitates having an equivalent circle diameter of 100 nm or more containing Al, Nb, and Ti in the steel material was measured by the following method, and extracted from the D / 4 position of the rolled steel bar. This was taken using a transmission electron microscope (trade name “H-800”) manufactured by Hitachi, Ltd., and photographic images of 5 fields of view (about 300 μm 2 ) were taken at a magnification of 20,000, and loss photo images were made by Micromedia. The area of the precipitate was measured by image analysis using Image Pro and converted to an equivalent circle diameter, and the number density of precipitates having an equivalent circle diameter of 100 μm or more was measured.
一方、成分の定量基準としてAl・Nb・Ti含有析出物かどうかの判定は、EDX(エネルギー分散型X線分析装置)で成分の定量分析を行い、Al+Nb+Ti量が50%以上となる析出物をもってAl・Nb・Ti含有析出物とした。 On the other hand, the determination of whether or not the precipitate contains Al, Nb, Ti as the quantitative standard of the component is performed by quantitative analysis of the component with EDX (energy dispersive X-ray analyzer), and with the precipitate having an Al + Nb + Ti amount of 50% or more. Al / Nb / Ti-containing precipitates were used.
また各供試棒鋼について、切削加工により結晶粒粗大化抑制効果確認用の試験片を作製した。試験片は図9に示す如く直径8mm×高さ12mmの円柱状とした。次に、各試験片を熱間加工シミュレータ(富士電波工機社製の商品名「THERMECMASTER−Z」)を用いて熱間で圧縮した。昇温速度は10℃/min、熱間加熱温度は1250℃、圧縮率は70%とし、冷却速度は1℃/minとした。この試験片を真空焼鈍炉で1100℃×3時間の焼鈍を行ってから水冷した後、試験片断面の結晶粒粗大化状況を調べた。 Moreover, about each test bar steel, the test piece for a crystal grain coarsening inhibitory effect confirmation effect was produced by cutting. As shown in FIG. 9, the test piece was in the form of a cylinder having a diameter of 8 mm and a height of 12 mm. Next, each test piece was hot compressed using a hot working simulator (trade name “THERMECMASTER-Z” manufactured by Fuji Electric Koki Co., Ltd.). The heating rate was 10 ° C./min, the hot heating temperature was 1250 ° C., the compression rate was 70%, and the cooling rate was 1 ° C./min. This test piece was annealed in a vacuum annealing furnace at 1100 ° C. for 3 hours and then cooled with water, and then the state of crystal grain coarsening in the cross section of the test piece was examined.
結晶粒粗大化状況は、光学顕微鏡を用いて100倍の倍率で10視野を観察し、結晶粒のサイズが、JIS規格で定める結晶粒度番号5番に相当する結晶粒サイズよりも大きいものを粗大化している領域(粗粒域)、結晶粒度番号5番に相当する結晶粒サイズ未満である部分を(整粒部)とし、粗粒域が視野面積に占める割合(粗粒率)と、平均結晶粒度番号[={整粒部の結晶粒度番号×整粒部面積率(%)+粗粒部の結晶粒度×粗粒率(%)}/100)]を求めた。 As for the grain coarsening situation, 10 fields of view were observed at a magnification of 100 times using an optical microscope, and the grain size was larger than the grain size corresponding to the grain size number 5 defined in the JIS standard. Area (coarse grain area), the part that is smaller than the crystal grain size corresponding to the crystal grain size number 5 (grain size control part), the ratio of the coarse grain area to the visual field area (coarse grain ratio) and the average The crystal grain size number [= {the crystal grain size number of the sized part × the area ratio (%) of the sized part + the crystal grain size of the coarse part × coarse ratio (%)} / 100)] was determined.
そして、粗粒率については、0%を非常に良好(◎)、0超5%未満を良好(○)、5%以上を粗大化発生(×)、の3段階で評価し、平均結晶粒径については、9番以上を非常に良好(◎)、7〜9番を良好(○)、7番未満を不良(×)とした。それらの結果から、加熱温度1100℃で粗粒率、平均結晶粒径が共に良好または非常に良好であるものを、高温での結晶粒粗大化防止特性が良好であると判断した。 The coarse grain ratio is evaluated in three stages: 0% is very good ()), more than 0 is less than 5% is good (◯), and 5% or more is coarsened (×). Regarding the diameter, No. 9 or more was considered very good ((), Nos. 7 to 9 were good ((), and less than No. 7 were bad (x). From these results, it was judged that a crystal grain coarsening preventing property at a high temperature was good when both the coarse grain ratio and the average crystal grain size were good or very good at a heating temperature of 1100 ° C.
また各供試棒鋼について、試験片加工で直径32mm×48mmの試験片を作製し、1250℃で70%の鍛造を加えた後、浸炭処理を模擬するため1100℃で3時間保持した後、焼入れ温度:930℃で油冷し、その後170℃で焼戻し処理を行なった。この試験片の中心からJIS Z2242に規定する衝撃試験片を切り出して衝撃試験を行い、またJIS Z2244に準拠して芯部硬さを調べた。結果を表3,4に示す。 In addition, for each test bar steel, a test piece having a diameter of 32 mm × 48 mm was prepared by processing the test piece, 70% forging was added at 1250 ° C., and then held at 1100 ° C. for 3 hours to simulate carburizing treatment, and then quenched. Temperature: Oil-cooled at 930 ° C, and then tempered at 170 ° C. The impact test piece prescribed | regulated to JISZ2242 was cut out from the center of this test piece, the impact test was done, and the core part hardness was investigated based on JISZ2244. The results are shown in Tables 3 and 4.
表1〜4より次の様に考えることができる。 From Tables 1 to 4, the following can be considered.
No.1は鋼中のC含量が不足するため芯部硬さが低く、逆にNo.5は鋼中のC含量が多過ぎるため芯部衝撃値が低く、本発明の目的に合致しない。 No. No. 1 has a low core hardness due to insufficient C content in the steel. No. 5 has too low C content in the steel, so the core impact value is low and does not meet the object of the present invention.
No.6,9は、鋼中のSi含量が規定範囲を外れるため、No.10,13は、鋼中のMn含量が規定範囲を外れるため、またNo.15は鋼中のS含量が多過ぎ、No.18は鋼中のCr含量が多過ぎるため、いずれも芯部衝撃値が低い。 No. Nos. 6 and 9 have no Si. Nos. 10 and 13 show that the Mn content in the steel is outside the specified range. No. 15 has too much S content in the steel. Since No. 18 has too much Cr content in steel, the core impact value is low.
No.26〜33は、鋼中のAl,Nb,Ti,Nの含有量が規定範囲を外れるため、結晶粒粗大化防止効果が乏しく、特に、これらの元素量が多過ぎるNo.27,29,31,33では、芯部衝撃値が劣悪である。 No. Nos. 26 to 33 have a content of Al, Nb, Ti, N in the steel that is outside the specified range, so that the effect of preventing grain coarsening is poor. In 27, 29, 31, and 33, the core impact value is poor.
No.44は鋼の成分組成は適正であるが、製造時の均熱温度が低く且つ均熱時間も短いため、またNo.45の鋼成分も適正であるが均熱時間が極端に短いため、何れも粗大析出物の溶解が不十分で円相当径100nm以上のAl・Nb・Ti含有析出物の数密度が規定範囲を外れており、満足のいく結晶粒粗大化抑制効果が得られない。 No. No. 44 has an appropriate steel component composition, but the soaking temperature at the time of production is low and the soaking time is short. 45 steel components are also appropriate, but because the soaking time is extremely short, the coarse precipitates are not sufficiently dissolved, and the number density of Al, Nb, Ti-containing precipitates with an equivalent circle diameter of 100 nm or more is outside the specified range. As a result, a satisfactory crystal grain coarsening suppression effect cannot be obtained.
これらに対し上記以外のものは、本発明の規定要件を満たしているため、優れた結晶粒粗大化防止作用を発揮し、芯部硬さおよび芯部衝撃特性の全てにおいて優れた性能を有している。 On the other hand, those other than the above satisfy the specified requirements of the present invention, so they exhibit excellent crystal grain coarsening prevention action and have excellent performance in all core hardness and core impact characteristics. ing.
なお上記実施例では、熱間鍛造を模擬した方法で結晶粒粗大化防止効果と衝撃特性の試験結果を示したが、本発明はもとより熱間鍛造への適用に限定される訳ではなく、冷間鍛造に適用した場合でも同様の効果を得ることができる。 In the above examples, the test results of the effect of preventing grain coarsening and impact properties were shown by a method simulating hot forging. However, the present invention is not limited to the application to hot forging as well as the present invention. The same effect can be obtained even when applied to inter-forging.
Claims (7)
C :0.05〜0.25%、
Si:0.05〜2.0%、
Mn:0.01〜1.5%、
S :0.005〜0.2%、
Cr:0.4〜1.5%、
N :0.0085〜0.0219%、
Al:0.058〜0.062%、
Nb:0.038〜0.100%、
Ti:0.008〜0.012%、
を含み、残部はFeおよび不可避不純物よりなる鋼からなり、鋼中のAl,Nb,Tiから選ばれる少なくとも1種の元素を含む円相当径100nm以上の全ての炭化物、窒化物および炭窒化物、それらの2種以上が付着し、もしくは複合した析出物の数が0.5×1012個/m2以下であることを特徴とする高温浸炭時の結晶粒粗大化防止特性に優れた肌焼用圧延棒鋼。 % By mass
C: 0.05 to 0.25%,
Si: 0.05-2.0%,
Mn: 0.01 to 1.5%,
S: 0.005 to 0.2%,
Cr: 0.4 to 1.5%,
N: 0.0085 to 0.0219%,
Al: 0.058 to 0.062%,
Nb: 0.038 to 0.100%,
Ti: 0.008 to 0.012%,
And the balance is made of steel consisting of Fe and inevitable impurities, and all carbides, nitrides and carbonitrides having an equivalent circle diameter of 100 nm or more containing at least one element selected from Al, Nb, and Ti in the steel, Two or more of them are attached or the number of combined precipitates is 0.5 × 10 12 pieces / m 2 or less, and it is excellent for preventing grain coarsening during high-temperature carburizing and rolling for skin baking. Steel bar.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004358665A JP4807949B2 (en) | 2004-12-10 | 2004-12-10 | Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004358665A JP4807949B2 (en) | 2004-12-10 | 2004-12-10 | Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006161142A JP2006161142A (en) | 2006-06-22 |
JP4807949B2 true JP4807949B2 (en) | 2011-11-02 |
Family
ID=36663487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004358665A Expired - Fee Related JP4807949B2 (en) | 2004-12-10 | 2004-12-10 | Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4807949B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112921240A (en) * | 2021-01-22 | 2021-06-08 | 江苏永钢集团有限公司 | Hot-rolled round steel for automobile door hinge and production method thereof |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102046829B (en) * | 2008-05-26 | 2013-03-13 | 新日铁住金株式会社 | High-strength hot-rolled steel sheet for line pipe excellent in low-temperature toughness and ductile-fracture-stopping performance and process for producing the same |
JP5385554B2 (en) | 2008-06-19 | 2014-01-08 | 株式会社神戸製鋼所 | Steel for heat treatment |
JP5432105B2 (en) | 2010-09-28 | 2014-03-05 | 株式会社神戸製鋼所 | Case-hardened steel and method for producing the same |
CN102978514B (en) * | 2012-11-07 | 2014-10-08 | 韶关市新世科壳型铸造有限公司 | Method for improving ZG40Cr nitride layer thickness |
JP7200646B2 (en) * | 2018-12-12 | 2023-01-10 | 日本製鉄株式会社 | CARBURIZED PARTS, MATERIALS FOR CARBURIZED PARTS, AND PRODUCTION METHOD THEREOF |
CN111455276B (en) * | 2020-04-24 | 2021-08-03 | 石钢京诚装备技术有限公司 | Large-size hot-rolled round steel with good low-temperature impact toughness and production method thereof |
-
2004
- 2004-12-10 JP JP2004358665A patent/JP4807949B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112921240A (en) * | 2021-01-22 | 2021-06-08 | 江苏永钢集团有限公司 | Hot-rolled round steel for automobile door hinge and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2006161142A (en) | 2006-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4956146B2 (en) | Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts | |
JP4464864B2 (en) | Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing. | |
KR101520208B1 (en) | Case hardening steel, method for producing same, and mechanical structural part using case hardening steel | |
WO2012046779A1 (en) | Case hardened steel and method for producing the same | |
JP5858204B2 (en) | Steel material for hot forging, method for producing the same, and method for producing hot forged raw material using the steel material | |
JP4464862B2 (en) | Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing. | |
JP2011094169A (en) | Case hardening steel having excellent crystal grain coarsening prevention characteristic | |
JP4451808B2 (en) | Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method | |
JP5886119B2 (en) | Case-hardened steel | |
JP4384592B2 (en) | Rolled steel for carburizing with excellent high-temperature carburizing characteristics and hot forgeability | |
JP4688691B2 (en) | Case-hardened steel with excellent low cycle fatigue strength | |
JP4502929B2 (en) | Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics | |
JP5871085B2 (en) | Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening | |
JP3738004B2 (en) | Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method | |
JP4464863B2 (en) | Case hardening steel with excellent grain coarsening resistance and cold workability | |
JP5649887B2 (en) | Case-hardened steel and method for producing the same | |
JP4807949B2 (en) | Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics | |
JP4464861B2 (en) | Case hardening steel with excellent grain coarsening resistance and cold workability | |
JP2006291335A (en) | Steel for case hardening having excellent high temperature carburizing characteristic and workability | |
JP2002212672A (en) | Steel member | |
JP2004238702A (en) | Carburized component excellent in low-cycle impact fatigue resistance | |
JP2006028568A (en) | Steel for high temperature carburizing and its production method | |
JP2021127504A (en) | Steel material for bearing raceway and bearing raceway | |
JP5869919B2 (en) | Case-hardening bar steel with excellent cold workability | |
JP7323791B2 (en) | Carburized gear steel, carburized gear, and method for manufacturing carburized gear |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090213 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090901 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091112 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20091208 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20100108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110706 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110816 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140826 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4807949 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |