JP2004238702A - Carburized component excellent in low-cycle impact fatigue resistance - Google Patents

Carburized component excellent in low-cycle impact fatigue resistance Download PDF

Info

Publication number
JP2004238702A
JP2004238702A JP2003030638A JP2003030638A JP2004238702A JP 2004238702 A JP2004238702 A JP 2004238702A JP 2003030638 A JP2003030638 A JP 2003030638A JP 2003030638 A JP2003030638 A JP 2003030638A JP 2004238702 A JP2004238702 A JP 2004238702A
Authority
JP
Japan
Prior art keywords
carburized
less
mns
steel
square root
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003030638A
Other languages
Japanese (ja)
Other versions
JP3915710B2 (en
Inventor
Masayuki Horimoto
雅之 堀本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003030638A priority Critical patent/JP3915710B2/en
Publication of JP2004238702A publication Critical patent/JP2004238702A/en
Application granted granted Critical
Publication of JP3915710B2 publication Critical patent/JP3915710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gears, Cams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carburized component having an excellent durability against failure caused by low-cycle impact fatigue. <P>SOLUTION: The carburized component is made of steel material comprising specific amounts of C, Si, Mn, P, S, Cr, Al, Ti, B, N, Nb and V and the balance being Fe and impurities, wherein Mo+Cr+(Ni/2)-(Si/5)-P<SP>0.5</SP>+äB/(Ti-3.4N)} is >1.2 and C<SP>0.8</SP>+(Mn/20)<SP>1.25</SP>+(Cr/6)<SP>0.85</SP>+(Mo/5)<SP>0.74</SP>+B<SP>0.21</SP>is ≥0.8. The square root RS of a maximum area of MnS is ≤40 μm when cumulative distribution function, predicted by applying extreme value statistics to the square root of the area of a plane of MnS formed by cutting the component in a manner parallel to rolling direction or forging axis of its material, is 99%. The C concentration at the surface of a carburized layer is ≤0.85 mass%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、耐低サイクル衝撃疲労特性に優れた浸炭部品に関し、より詳しくは、浸炭部品のうちでも特に低サイクル衝撃疲労強度が重視されるデファレンシャルピニオンギアやサイドギアに関するものである。
【0002】
【従来の技術】
近年、エンジンの高出力化や部品の軽量化の目的から、自動車用部品に対して高強度化の要求が大きくなっている。特に、表面硬化のために浸炭処理が施される自動車の差動歯車装置に用いられるデファレンシャルピニオンギアやサイドギアにおいては、エンジンの高トルク化や自動車の急発進、急停止などによるトルク伝達時の急激で衝撃的な負荷の増加を背景として、浸炭焼入れ後に大きな耐疲労特性、なかでも数10〜数100回という非常に低い繰り返し回数での衝撃的な疲労破壊に対する抵抗性(以下、耐低サイクル衝撃疲労特性という)を有することが要求されている。
【0003】
従来、上記のデファレンシャルピニオンギアやサイドギアの多くは、例えばJIS規格鋼であるSCr420やSCM420などを機械加工で所定の形状にした後、浸炭焼入れ処理を施して製造されてきた。しかし、従来鋼を母材とした浸炭焼入れ後のデファレンシャルピニオンギアやサイドギアは、深い硬化層を有するにもかかわらず浸炭最表層部に不完全焼入れ層を伴った粒界酸化層が形成される場合があるため、最近の部品の小型化に際して、耐疲労特性、特に耐低サイクル衝撃疲労特性を保つことが難しい状況となってきており、低サイクル衝撃疲労強度を向上させることが求められている。
【0004】
耐疲労特性を高める技術として、特許文献1に介在物の形態を制御した「疲労特性および被削性に優れた肌焼鋼」が開示されている。しかし、この公報で提案された技術は10 回程度の高サイクル曲げ疲労強度を対象とするものであり、低サイクルでの衝撃疲労に対しての配慮がなされたものではない。このため、充分な耐低サイクル衝撃疲労特性が得られるというものではなかった。
【0005】
特許文献2には、良好な歯切り性と耐衝撃性を、疲労強度を低下させることなく付与することができる「歯切り性に優れた浸炭歯車用鋼」が開示されている。しかし、この公報で提案された浸炭歯車用鋼を母材としてもなお、低サイクル衝撃疲労の様な繰り返し荷重下での衝撃疲労強度を大幅に改善することは困難であった。
【0006】
特許文献3には、Si、Mn及びCrの含有量を低減することによってオーステナイト粒界の酸化を防止して粒界を強化した素材鋼を使用し、高周波誘導加熱による加工熱処理プロセスを用いる「衝撃疲労寿命に優れた歯車の製造方法」が開示されている。しかし、この公報で提案された技術は、Cr含有量の低い鋼を素材とするものであるため歯車の芯部硬さが低く、現状のエンジンの高出力化には必ずしも対応できなくなってきた。更に、浸炭処理後に特定の条件で高周波誘導加熱処理を行い、その後直ちに歯車に鍛造する技術であるため、従来の所定形状に加工した後、浸炭焼入れ処理を施す製造プロセスとは異なるので、新しい製造ラインを設ける必要があり、したがって、設備コスト面での問題もあった。
【0007】
【特許文献1】
特開平9−176784号公報
【特許文献2】
特開平9−67644号公報
【特許文献3】
特開平6−172867号公報
【0008】
【発明が解決しようとする課題】
本発明は、上記現状に鑑みてなされたもので、その目的は、浸炭焼入れ後の耐衝撃疲労特性に優れた浸炭部品、とりわけ低サイクル衝撃疲労による破損に対して、後述の実施例で示す落錘型衝撃疲労試験を用いた低サイクル衝撃疲労試験における100回疲労強度が3300MPa以上に対応する優れた耐久性を有するデファレンシャルピニオンギアやサイドギアを提供することである。
【0009】
【課題を解決するための手段】
本発明の要旨は、下記(1)及び(2)に示す耐低サイクル衝撃疲労特性に優れた浸炭部品にある。
【0010】
(1)質量%で、C:0.15〜0.30%、Si:0.03〜0.25%、Mn:0.5〜1.0%、P:0.02%以下、S:0.02%以下、Cr:0.9%を超えて2.0%まで、Al:0.015〜0.05%、Ti:0.015〜0.150%、B:0.0003〜0.005%及びN:0.002〜0.02%、並びに、Nb:0.001〜0.05%及びV:0.01〜0.3%のうちの1種以上を含み、残部はFe及び不純物からなり、下記▲1▼式で表されるScaseの値が1.2を超えるとともに、下記▲2▼式で表されるScoreの値が0.8以上である鋼材を素材とする浸炭部品であって、その部品を素材の圧延方向又は鍛錬軸に平行に切断した面におけるMnSの面積の平方根を極値統計処理し、予測される累積分布関数が99%の時のMnSの最大面積の平方根RSが40μm以下で、且つ、浸炭層の表面のC濃度が質量%で、0.85%以下である耐低サイクル衝撃疲労特性に優れた浸炭部品。
【0011】
Scase=Mo+Cr+(Ni/2)−(Si/5)−P0.5 +{B/(Ti−3.4N)} ・・・▲1▼、
Score=C0.8 +(Mn/20)1.25+(Cr/6)0.85+(Mo/5)0.74+B0.21 ・・・▲2▼、
但し、▲1▼式及び▲2▼式における元素記号は、その元素の質量%での鋼中含有量を表す。
【0012】
(2)質量%で、C:0.15〜0.30%、Si:0.03〜0.25%、Mn:0.5〜1.0%、P:0.02%以下、S:0.02%以下、Cr:0.9%を超えて2.0%まで、Al:0.015〜0.05%、Ti:0.015〜0.150%、B:0.0003〜0.005%及びN:0.002〜0.02%、並びに、Nb:0.001〜0.05%及びV:0.01〜0.3%のうちの1種以上を含むとともに、Mo:1.5%以下及びNi:3.0%以下の1種以上を含有し、残部はFe及び不純物からなり、前記▲1▼式で表されるScaseの値が1.2を超えるとともに、前記▲2▼式で表されるScoreの値が0.8以上である鋼材を素材とする浸炭部品であって、その部品を素材の圧延方向又は鍛錬軸に平行に切断した面におけるMnSの面積の平方根を極値統計処理し、予測される累積分布関数が99%の時のMnSの最大面積の平方根RSが40μm以下で、且つ、浸炭層の表面のC濃度が質量%で、0.85%以下である耐低サイクル衝撃疲労特性に優れた浸炭部品。
【0013】
なお、上述の部品を素材の圧延方向又は鍛錬軸に平行に切断した面におけるMnSの面積の平方根を極値統計処理し、予測される累積分布関数が99%の時のMnSの最大面積の平方根RS(以下、「極値統計処理によって予測される累積分布関数が99%の時のMnSの最大面積の平方根RS」という)は次のようにして求めたものを指す。
【0014】
(イ)部品を素材の圧延方向又は鍛錬軸に平行に切断した面を鏡面研磨した後、その研磨面を被検面とする。その際一つの観察面を100mm とし、EPMAで観察面中の最大のMnSの像を撮影する。次いで、その像を画像解析して面積を算出し、その平方根を当該観察面における代表値とする。この操作を100観察面以上で実施する。なお、切断面の総面積が10000mm に満たない場合は、測定後の観察面を更に50μm鏡面研磨し、その研磨面を被検面として上記の観察を実施する。
【0015】
(ロ)上記(イ)で求めた100のMnSの面積の平方根の値を小さいものから順に並べ直してそれぞれRS (ここで、j=1〜100)とし、それぞれのjについて累積分布関数F =100(j/101)(%)を計算する。
【0016】
(ハ)基準化変数y =−log (−log (j/101) )を縦軸に、横軸にRS を取ったグラフを書き、最小自乗法によって近似直線を求める。
【0017】
(ニ)上記(ハ)で求めた直線から、累積分布関数F が99%となる時(すなわち、基準化変数y ≒4.6となる時)のRS の値を読みとり、これをMnSの最大面積の平方根RSとする。
【0018】
以下、上記(1)及び(2)の耐低サイクル衝撃疲労特性に優れた浸炭部品に係る発明を(1)及び(2)の発明という。
【0019】
【発明の実施の形態】
本発明者らは、前記した目的を達成するために、浸炭部品の低サイクル衝撃疲労強度に及ぼす要因について様々な角度から検討した。その結果、下記(a)〜(i)の知見を得た。
【0020】
(a)浸炭部品の低サイクル衝撃疲労破壊は浸炭層の粒界を起点とする破壊である。
【0021】
(b)上記の低サイクル衝撃疲労破壊には、疲労の過程で生じるラチェット型の歪が大きく関与している。
【0022】
(c)浸炭部品の芯部(つまり、浸炭処理を施しても浸炭されていない部分)は浸炭層よりも硬さが低く降伏点も低い。このため、急激で衝撃的な負荷が加わると、先ず最初に芯部で塑性変形が生じる。この時、応力分布の再配分が生じるため、芯部硬さが低い部品ほど表面に発生する局所的な歪であるラチェット型の歪の量が大きくなり、結果として浸炭層に亀裂が発生しやすくなる。
【0023】
(d)浸炭部品の耐低サイクル衝撃疲労特性を大きく高めるためには、 (1)上記の局所的に発生するラチェット型の歪の量を低減すること、に加えて (2)破壊の起点となる浸炭層を強靱化すること、及び (3)粒界三重点に見出される粗大なMnSを低減すること、が有効である。
【0024】
(e)上記の(1)〜(3)を達成するには、浸炭部品の素材となる鋼の化学組成を適正化して芯部硬さを高めるとともに浸炭層を強靱化し、更に浸炭層の表面C濃度を適正化することが重要である。
【0025】
(f)浸炭層の強靱性は前記▲1▼式で表されるScaseで整理できる。上記のScaseは生じたラチェット型の歪に対する亀裂発生抵抗の指標であり、SiとPの含有量が高い場合その値は小さくなって、浸炭層の強靱性が極めて低下してしまう。
【0026】
(g)浸炭部品の芯部硬さは前記▲2▼式で表されるScoreで整理でき、同じ大きさの衝撃的な負荷がかかる時、Scoreの値が高い場合ほど前記の局所的に発生するラチェット型の歪の量は小さくなる。
【0027】
(h)浸炭層の強靱性にはMnSの形態も影響を及ぼし、極値統計処理によって予測される累積分布関数が99%の時のMnSの最大面積の平方根RSが40μm以下であれば、浸炭層の粒界三重点にMnSが存在して応力集中源として作用することがなく、したがって浸炭層に大きな強度を付与できる。
【0028】
(i)浸炭層の表面C濃度が大きくなれば粒界にセメンタイトが発生して浸炭層の強度は低下してしまう。
【0029】
前記の(1)及び(2)の本発明は、上記の知見に基づいて完成されたものである。
【0030】
以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
(A)素材の化学組成
C:
Cは、鋼の焼入れ性を高めて芯部硬さを向上させる元素である。しかし、その含有量が0.15%未満では添加効果に乏しく、一方、0.30%を超えて含有させると被削性及び冷間鍛造性の低下を招く。したがって、Cの含有量を0.15〜0.30%とした。なお、より好ましいCの含有量は0.15〜0.23%である。
【0031】
Si:
Siは、脱酸作用を有する元素であるが過剰に添加すると加工性の低下をきたすほか、浸炭部品の表面部に粒界酸化層を生成させて疲労強度の低下を招く。特に、その含有量が0.25%を超えると浸炭層の強度低下が著しくなって耐低サイクル衝撃疲労特性が著しくなる。一方、Siの含有量を0.03%未満とするには、精錬に時間がかかり溶製コストが嵩んで経済的でない。したがって、Siの含有量を0.03〜0.25%とした。
【0032】
Mn:
Mnも浸炭部品の芯部硬さを高めるのに有効な元素である。そのためには、Mnは少なくとも0.5%以上含有させる必要がある。一方、Mnは浸炭時の表面C濃度を高めるので過剰に添加すると粒界強度が低下し、特にその含有量が1.0%を超えると浸炭層の粒界強度の低下が著しくなる。したがって、Mnの含有量を0.5〜1.0%とした。なお、より好ましいMnの含有量は0.6〜0.9%である。
【0033】
P:
Pは浸炭時にオ−ステナイト粒界に偏析し、浸炭層のオ−ステナイト粒界強度を著しく低下させる好ましくない不純物元素である。そこで、Pの粒界偏析による粒界脆化を少なくし、良好な耐低サイクル衝撃疲労特性を確保するためPの含有量は0.02%を上限とした。
【0034】
S:
Sは、結晶粒界に残存して粒界強度を著しく低下させ耐衝撃疲労特性の劣化をもたらすし、多すぎると粒界三重点に粗大なMnSを形成して、低サイクル衝撃疲労強度を著しく低下させてしまう好ましくない不純物元素である。このため、Sの含有量の上限を0.02%とした。なお、より好ましいS含有量の上限値は0.015%である。
【0035】
Cr:
Crは、鋼の焼入れ性を向上させる元素であり、芯部硬さを高めるのに有効である。しかし、その含有量が0.9%以下ではこの効果が得難い。一方、過剰に添加すると粒界にCr炭化物が析出して粒界強度が低下するため浸炭層が脆化する。したがって、Crの含有量を0.9%を超えて2.0%までとした。なお、より好ましいCrの含有量は0.9〜1.7%である。
【0036】
Al:
Alは溶製時に脱酸剤として作用し、更に、鋼中のNと結合してAlNを形成して結晶粒の粗大化を防止するのにも有効な元素である。こうした効果を発揮させるためには、Alは0.015%以上含有させる必要があるが、その効果は0.05%で飽和する。したがって、Alの含有量を0.015〜0.05%とした。
【0037】
Ti:
本発明に係る浸炭部品の素材はB添加鋼であり、後述するように固溶Bを確保することが重要である。すなわち、フリーのNが過剰に存在するとBと結合してBNを形成し、Bの効果がなくなるので、Tiを添加して少なくともフリーのNの一部をTiNとして固定し、固溶Bを確保する。このとき、Tiの含有量が0.015%未満では添加効果に乏しく、一方、0.150%を超えて含有させると靱性の劣化を招くこととなる。したがって、Tiの含有量を0.015〜0.150%とした。Tiの含有量は0.015〜0.050%とすることが好ましい。なお、フリーのNをTiNとして十分に固定するには、Ti(%)−3.4N(%)の値を0.015%以上とするのがよい。
【0038】
B:
Bは、浸炭層の強靱化作用及び焼入れ性を高めて芯部硬さを高める作用を有する。前記作用はBが固溶Bとして鋼中に存在するときに発揮される。しかし、Bの含有量が0.0003%未満では添加効果に乏しく、0.005%を超えて含有させても前記の効果は飽和し、コストが嵩むばかりである。したがって、Bの含有量を0.0003〜0.005%とした。なお、Bの含有量は0.0003〜0.004%とすることが一層好ましい。
【0039】
N:
Nは鋼中でTi、Al、VやNbと結合して窒化物を形成し、結晶粒の粗大化を抑制する作用を有する。又、炭窒化物を形成して、結晶粒の粗大化を抑制する作用もある。これらの効果を発揮させるには、Nの含有量は0.002%以上とする必要がある。しかし、Nを0.020%を超えて含有させても前記の効果が飽和するばかりか、冷間加工性が劣化するようになるし介在物も増加する。このため、Nの含有量を0.002〜0.02%とした。なお、N含有量のより好ましい上限値は0.010%である。
【0040】
Nb、V:
Nb及びVは鋼中のC及びNと結合して炭窒化物や窒化物を生成し、結晶粒の粗大化を抑制するのでこれらの合金元素を1種以上添加する。但し、NbとVはそれぞれ0.001%未満の含有量では上記効果が得難い。Nbを過剰に含有させても前記効果が飽和するばかりか被削性や冷間加工性の低下をきたし、特にNbの含有量が0.05%を超えると被削性や冷間加工性の低下が著しくなる。又、Vの場合には過剰に含有させると熱間加工性の低下をきたし、特にVの含有量が0.3%を超えると熱間加工性の低下が著しくなる。したがって、0.001〜0.05%のNbと0.001〜0.3%のVの1種以上を含有させることとした。なお、より好ましいNbの含有量は0.001〜0.04%である。
【0041】
前記(1)の発明に係る耐低サイクル衝撃疲労特性に優れた浸炭部品の素材は、上記のCからNまで、並びに、Nb及びVの1種以上の元素と、残部がFe及び不純物の化学組成を有する鋼である。
【0042】
前記(2)の発明に係る耐低サイクル衝撃疲労特性に優れた浸炭部品の素材は、浸炭層の靱性を高めることを目的として、上記(1)の発明の素材のFeの一部に代えて、Mo:1.5%以下及びNi:3.0%以下の1種以上を含有させた化学組成を有する鋼である。
【0043】
上記のMoとNiはいずれも浸炭層の靱性を高める作用を有するので、MoとNiは、以下に述べる範囲内でそれぞれを単独で含有させてもよいし、複合して含有させてもよい。
【0044】
Mo:
Moは、浸炭層の靱性を高める作用を有する。Moには、鋼の焼入れ性を高めて芯部硬さを上昇させる作用もある。こうした効果を確実に得るには、Moは0.10%以上の含有量とすることが望ましい。しかし、1.5%を超えて含有させても前記の効果が飽和して、コスト的に不利になるばかりである。したがって、Moを添加する場合には、その含有量を1.5%以下とするのがよい。なお、Moの含有量は1.0%以下とするのが一層よい。
【0045】
Ni:
Niは、組織を微細化して浸炭層の靱性を高める作用がある。この効果を確実に得るには、Niは0.5%以上含有させることが望ましい。しかし、Niを多量に添加すると、変態せずに残存するオーステナイト(いわゆる「残留オーステナイト」)の量が増加し、特に、その含有量が3.0%を超えると残留オーステナイトの量が極めて多くなる。したがって、Niを添加する場合には、その含有量を3.0%以下とするのがよい。なお、より加工性を向上させたい場合には、Ni含有量は2.0%以下とするのがよい。
【0046】
Scase:
浸炭層の強靱性は前記▲1▼式で表されるScaseで整理できこのScaseは生じたラチェット型の歪に対する亀裂発生抵抗の指標であり、Scaseの値が1.2を超える場合に、後述の実施例で示す落錘型衝撃疲労試験を用いた低サイクル衝撃疲労試験における100回疲労強度で3300MPa以上に対応する所望の優れた耐久性が確保できる。したがって、▲1▼式で表されるScaseの値が1.2を超えるように規定した。このScaseの値の上限は被削性を確保するために、2.5程度とするのがよい。
【0047】
Score:
浸炭部品の芯部硬さは前記▲2▼式で表されるScoreで整理でき、同じ大きさの衝撃的な負荷がかかる時、Scoreの値が高い場合ほど前記の局所的に発生するラチェット型の歪の量は小さくなり、特に、Scoreの値が0.8以上の場合に前記した落錘型衝撃疲労試験を用いた低サイクル衝撃疲労試験における100回疲労強度で3300MPa以上に対応する所望の優れた耐久性が確保できる。したがって、▲2▼式で表されるScoreの値を0.8以上と規定した。なお、被削性を重視する場合にはScoreの値は1.2以下とするのがよい。
(B)MnS
浸炭部品に優れた耐低サイクル衝撃疲労特性、特に、後述の実施例で示す落錘型衝撃疲労試験を用いた低サイクル衝撃疲労試験における100回疲労強度で3300MPa以上に対応する優れた耐久性を付与するためには、前記(A)項に記載した化学成分に加えて、MnSのサイズを制御することも重要である。
【0048】
すなわち、浸炭層の強靱性に対してはMnSの形態も影響を及ぼし、前記した極値統計処理によって予測される累積分布関数が99%の時のMnSの最大面積の平方根RSが40μmを超えると、浸炭層の粒界三重点にMnSが存在して応力集中源として作用するため、浸炭層の強度が低下してしまう。
【0049】
したがって、極値統計処理によって予測される累積分布関数が99%の時のMnSの最大面積の平方根RS(つまり、部品を素材の圧延方向又は鍛錬軸に平行に切断した面におけるMnSの面積の平方根を極値統計処理し、予測される累積分布関数が99%の時のMnSの最大面積の平方根RS)を40μm以下と規定した。
(C)浸炭層の表面C濃度
浸炭層の表面C濃度が大きくなれば粒界にセメンタイトが発生して浸炭層の強度は低下してしまう。特に、浸炭層の表面C濃度が0.85%を超えると浸炭層の強度が低下し、前記した落錘型衝撃疲労試験を用いた低サイクル衝撃疲労試験における100回疲労強度が3300MPa以上という所望の優れた耐久性が確保できなくなる。したがって、浸炭層の表面C濃度を0.85%以下とした。なお、浸炭層の表面C濃度の下限値は0.75%程度であればよい。
【0050】
上記(A)〜(C)で述べた規定を満たす浸炭部品は、例えば、次のようにして製造すればよい。
【0051】
(1) 鋼を溶製した後、鋳込み時の冷却速度を0.05〜0.1℃/秒として鋼塊を製造する。ここで「鋼塊」にはJIS G 0203に記載されているように「鋳片」を含む。
【0052】
(2) 鋼塊の横断面の周長をm単位でLとしたとき、1250℃以上で3L時間以上保持してから、寸法に圧延又は鍛造する。
【0053】
(3) 次いで、必要に応じて熱処理と機械加工を施し、所定の浸炭部品の形状に加工する。
【0054】
(4) 粒界にセメンタイトを析出させないために浸炭時の炭素ポテンシャルをなるべく低くし、拡散時間はなるべく長くとるようにして浸炭焼入れする。
【0055】
(5) 低温で焼戻しを行うと表面硬度及び芯部硬度の大きな低下を伴わずに靱性を改善できるので、浸炭焼入れ後に必要に応じて焼戻しを行っても良い。焼戻しは、通常の方法によれば良いが、硬度確保のためその温度は150〜200℃であることが望ましい。
【0056】
【実施例】
表1〜3に示す化学組成を有する鋼を180kgの真空溶解炉を用いて溶製した。表1〜3において、鋼6、鋼7及び鋼9〜31は化学組成が本発明で規定する範囲内の本発明例の鋼、鋼1〜5及び鋼8は化学組成が本発明で規定する含有量の範囲から外れた比較例の鋼である。なお、鋼1〜3はそれぞれJIS規格鋼のSCM415、SCM420及びSCM822に相当する鋼である。
【0057】
上記の鋼のうち鋼1〜6、鋼8,鋼9及び鋼11〜31は、鋳込み時の冷却速度を0.05〜0.1℃/秒とした。一方、鋼7及び鋼10は、鋳込み時の冷却速度を0.01℃/秒とした。
【0058】
【表1】

Figure 2004238702
【0059】
【表2】
Figure 2004238702
【0060】
【表3】
Figure 2004238702
【0061】
次いで、上記の各鋼塊を1250℃で2時間保持してから熱間鍛造し、直径45mmの丸棒を得た。
【0062】
このようにして得た直径45mmの丸棒を、925℃で60分間焼ならしした後、常温まで空冷した。
【0063】
こうして得られた焼ならし後の各丸棒から、実歯車の歯元R部を模擬した図1に示す試験片を冷間鍛造によって作製し、この試験片に図2に示すヒートパターンでの浸炭焼入れと焼戻しを施した。
【0064】
すなわち、鋼2、鋼6及び鋼9を素材とするものを除いて、940℃で、雰囲気の炭素ポテンシャル(図ではCPと表示)を1.0%にして60分浸炭後、雰囲気の炭素ポテンシャルを0.8%として45分間拡散処理し、その後850℃から130℃の油中に焼入れし、次いで、180℃で120分間焼戻しを施した。
【0065】
鋼2、鋼6及び鋼9を素材とするものは、930℃で、雰囲気の炭素ポテンシャルを1.2%にして70分浸炭後、雰囲気の炭素ポテンシャルを1.0%として35分間拡散処理し、その後850℃から130℃の油中に焼入れし、次いで、180℃で120分間焼戻しを施した。
【0066】
上記の処理を施した各試験片に、落錘型衝撃疲労試験機を用いて種々のレベルの衝撃負荷をかけた低サイクル衝撃疲労試験を行い、100回疲労強度すなわち100回で破断が生じる応力を求めた。なお、部品の小型化に対処する目的から、100回疲労強度で3300MPa以上が確保されておれば、耐低サイクル衝撃疲労特性は良好であるとした。
【0067】
試験片の浸炭層の表面C濃度測定はEPMAを用いて行った。
【0068】
又、焼ならし後の各丸棒から冷間鍛造して作製した図1に示す試験片について、素材の鍛錬軸に平行に切断した面におけるMnSの面積の平方根を極値統計処理し、予測される累積分布関数が99%の時のMnSの最大面積の平方根RSを既に述べた方法によって求めた。
【0069】
すなわち、(イ)素材の鍛錬軸に平行に切断した面を鏡面研磨した後、その研磨面を被検面として観察する際に、一つの観察面を100mm としてEPMAで観察面中の最大のMnSの像を撮影し、次いで、その像を画像解析して面積を算出し、その平方根を当該観察面における代表値として、この操作を100観察面で実施した。なお、この測定は、切断面の総面積が10000mm に達するまで測定後の観察面を更に50μm鏡面研磨して行った。次に、(ロ)上記(イ)で求めた100のMnSの面積の平方根の値を小さいものから順に並べ直してそれぞれRS (ここで、j=1〜100)とし、それぞれのjについて累積分布関数F =100(j/101)(%)を計算した。更に、(ハ)基準化変数y =−log (−log (j/101) )を縦軸に、横軸にRS を取ったグラフを書き、最小自乗法によって近似直線を求め、最後に、(ニ)上記(ハ)で求めた直線から、累積分布関数F が99%となる時(すなわち、基準化変数y ≒4.6となる時)のRS の値を読みとり、これをMnSの最大面積の平方根RSとした。
【0070】
表4に、各種の調査結果をまとめて示す。
【0071】
【表4】
Figure 2004238702
【0072】
表4から、素材の化学組成、極値統計処理によって予測される累積分布関数が99%の時のMnSの最大面積の平方根RS及び浸炭層の表面のC濃度が本発明で規定する条件を満たす本発明例の試験番号11〜31の場合、100回疲労強度は大きく、目標の3300MPaを超えている。
【0073】
これに対して、化学組成が本発明で規定する含有量の範囲から外れた比較例の鋼である鋼1〜5及び鋼8を素材とする試験番号1〜5及び試験番号8の場合には、100回疲労強度は目標とする3300MPaに達していない。
【0074】
一方、素材はその化学組成が本発明で規定する範囲内にある鋼6、鋼7、鋼9及び鋼10であるものの、極値統計処理によって予測される累積分布関数が99%の時のMnSの最大面積の平方根RS、又は浸炭層の表面のC濃度のいずれかが本発明で規定する条件から外れた試験番号6、試験番号7、試験番号9及び試験番号10の場合も、100回疲労強度は目標とする3300MPaに達していない。
【0075】
【発明の効果】
本発明の浸炭部品は、浸炭焼入れ後の耐低サイクル衝撃疲労特性に優れので、自動車のデファレンシャルピニオンギアやサイドギアとして利用することができる。
【図面の簡単な説明】
【図1】実施例の落錘型衝撃疲労試験機による低サイクル衝撃疲労試験で用いた試験片を示す図である。
【図2】実施例において低サイクル衝撃疲労試験で用いた試験片に施した浸炭焼入れ、焼戻しのヒートパターンを示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carburized component having excellent low cycle impact fatigue resistance, and more particularly to a differential pinion gear and a side gear in which low cycle impact fatigue strength is particularly important among carburized components.
[0002]
[Prior art]
2. Description of the Related Art In recent years, there has been an increasing demand for higher strength of automotive parts for the purpose of increasing the output of an engine and reducing the weight of parts. In particular, in differential pinion gears and side gears used for differential gearing of automobiles that are carburized for surface hardening, rapid torque transmission due to high engine torque, sudden start and sudden stop of the automobile, etc. Against the background of the increase in shock load, large fatigue resistance after carburizing and quenching, especially resistance to shock fatigue fracture at extremely low repetition times of several tens to several hundreds (hereinafter referred to as low cycle impact resistance) (Referred to as fatigue properties).
[0003]
Conventionally, many of the above-mentioned differential pinion gears and side gears have been manufactured by, for example, machining a JIS standard steel such as SCr420 or SCM420 into a predetermined shape by machining and then carburizing and quenching. However, when the differential pinion gear or side gear after carburizing and quenching using conventional steel as a base material has a deep hardened layer, a grain boundary oxide layer with an incompletely quenched layer is formed on the outermost layer of the carburized case. For this reason, it has become difficult to maintain fatigue resistance, especially low cycle impact fatigue resistance, when components are recently downsized, and it is required to improve low cycle impact fatigue strength.
[0004]
As a technique for improving the fatigue resistance, Patent Document 1 discloses “case hardening steel excellent in fatigue characteristics and machinability” in which the form of inclusions is controlled. However, the technology proposed in this publication is 10 7 It is intended for high cycle bending fatigue strength of about one cycle, and does not take into account impact fatigue at low cycles. For this reason, sufficient low cycle impact fatigue resistance has not been obtained.
[0005]
Patent Literature 2 discloses “steel for carburized gears excellent in gear cutting performance” that can provide good gear cutting performance and impact resistance without lowering fatigue strength. However, even with the carburized gear steel proposed in this publication as a base material, it has been difficult to greatly improve the impact fatigue strength under repeated loads such as low cycle impact fatigue.
[0006]
Patent Document 3 discloses a method of using a material steel in which the austenite grain boundaries are prevented from being oxidized by reducing the contents of Si, Mn, and Cr to strengthen the grain boundaries, and using a thermomechanical heat treatment process using high-frequency induction heating. Manufacturing method of gear having excellent fatigue life "is disclosed. However, since the technology proposed in this publication uses steel having a low Cr content as a material, the core hardness of the gear is low, and it is not always possible to cope with the current high output of the engine. Furthermore, since this technology involves high-frequency induction heating under specific conditions after carburizing and then immediately forging into gears, it is different from the conventional manufacturing process of processing into a predetermined shape and then carburizing and quenching. It was necessary to provide a line, and there was also a problem in equipment cost.
[0007]
[Patent Document 1]
JP-A-9-176784
[Patent Document 2]
JP-A-9-67644
[Patent Document 3]
JP-A-6-172867
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a carburized component having excellent impact fatigue resistance after carburizing and quenching, in particular, for damage caused by low cycle impact fatigue, which will be described later in Examples. An object of the present invention is to provide a differential pinion gear or a side gear having excellent durability corresponding to a 100-times fatigue strength of 3300 MPa or more in a low cycle impact fatigue test using a weight impact fatigue test.
[0009]
[Means for Solving the Problems]
The gist of the present invention is a carburized part excellent in low cycle impact fatigue resistance shown in the following (1) and (2).
[0010]
(1) In mass%, C: 0.15 to 0.30%, Si: 0.03 to 0.25%, Mn: 0.5 to 1.0%, P: 0.02% or less, S: 0.02% or less, Cr: more than 0.9% to 2.0%, Al: 0.015 to 0.05%, Ti: 0.015 to 0.150%, B: 0.0003 to 0 0.005% and N: 0.002 to 0.02%, and Nb: 0.001 to 0.05% and V: 0.01 to 0.3%, the balance being Fe Carburization using a steel material having a value of Case represented by the following formula (1) exceeding 1.2 and a value of Score represented by the following formula (2) of 0.8 or more: For a part, the extreme root statistical processing of the square root of the area of MnS in a plane obtained by cutting the part in parallel with the rolling direction of the material or the forging axis is predicted and predicted. Excellent low cycle impact fatigue resistance in which the square root RS of the maximum area of MnS when the cumulative distribution function is 99% is 40 μm or less and the C concentration on the surface of the carburized layer is 0.85% or less by mass%. Carburized parts.
[0011]
Case = Mo + Cr + (Ni / 2)-(Si / 5) -P 0.5 + {B / (Ti-3.4N)}...
Score = C 0.8 + (Mn / 20) 1.25 + (Cr / 6) 0.85 + (Mo / 5) 0.74 + B 0.21 ・ ・ ・ ▲ 2 ▼ 、
However, the symbol of the element in the formulas (1) and (2) indicates the content of the element in the steel in mass%.
[0012]
(2) In mass%, C: 0.15 to 0.30%, Si: 0.03 to 0.25%, Mn: 0.5 to 1.0%, P: 0.02% or less, S: 0.02% or less, Cr: more than 0.9% to 2.0%, Al: 0.015 to 0.05%, Ti: 0.015 to 0.150%, B: 0.0003 to 0 0.005% and N: 0.002 to 0.02%, and Nb: 0.001 to 0.05% and V: 0.01 to 0.3%, and Mo: 1.5% or less and Ni: one or more of 3.0% or less, the balance being Fe and impurities, the value of the case represented by the above formula (1) exceeds 1.2, A carburized part made of a steel material having a Score value of 0.8 or more expressed by the formula (2), and the part is flattened in the rolling direction or the forging axis of the material. Extremum statistical processing of the square root of the area of MnS on the cut surface, and when the predicted cumulative distribution function is 99%, the square root RS of the maximum area of MnS is 40 μm or less, and the C concentration on the surface of the carburized layer Is 0.85% by mass or less and has excellent low cycle impact fatigue resistance.
[0013]
The square root of the area of MnS in a plane obtained by cutting the above-mentioned part in parallel with the rolling direction or the forging axis of the material is subjected to an extreme value statistical processing, and the square root of the maximum area of MnS when the predicted cumulative distribution function is 99%. RS (hereinafter referred to as “the square root RS of the maximum area of MnS when the cumulative distribution function predicted by the extreme value statistical processing is 99%”) is obtained as follows.
[0014]
(A) A surface obtained by cutting a part in parallel with the rolling direction of the material or the wrought axis is mirror-polished, and the polished surface is used as a test surface. At that time, one observation surface is 100 mm 2 Then, an image of the maximum MnS in the observation surface is photographed by EPMA. Next, the image is image-analyzed to calculate the area, and the square root is used as a representative value on the observation surface. This operation is performed on 100 or more observation planes. The total area of the cut surface is 10,000 mm 2 If less than the above, the observation surface after measurement is further mirror-polished by 50 μm, and the above observation is performed using the polished surface as a test surface.
[0015]
(B) The values of the square root of the area of 100 MnS obtained in (a) above are rearranged in ascending order, and RS j (Where j = 1 to 100), and for each j, the cumulative distribution function F j = 100 (j / 101) (%) is calculated.
[0016]
(C) Normalized variable y j = -Log e (-Log e (J / 101)) on the vertical axis and RS on the horizontal axis j Is drawn, and an approximate straight line is obtained by the least squares method.
[0017]
(D) From the straight line obtained in (c), the cumulative distribution function F j Is 99% (ie, the scaling variable y j RS when $ 4.6) j And read this value as the square root RS of the maximum area of MnS.
[0018]
Hereinafter, the inventions (1) and (2) relating to the carburized parts having excellent low cycle impact fatigue resistance are referred to as the inventions (1) and (2).
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have studied from various angles the factors that affect the low cycle impact fatigue strength of carburized parts in order to achieve the above object. As a result, the following findings (a) to (i) were obtained.
[0020]
(A) Low cycle impact fatigue fracture of a carburized component is a fracture originating from a grain boundary of a carburized layer.
[0021]
(B) Ratchet type strain generated in the process of fatigue is greatly involved in the low cycle impact fatigue fracture.
[0022]
(C) The core part of the carburized part (that is, the part that has not been carburized even after carburizing) has a lower hardness and a lower yield point than the carburized layer. For this reason, when a sudden and shocking load is applied, first, plastic deformation occurs in the core portion. At this time, since the stress distribution is redistributed, the lower the core hardness, the greater the amount of ratchet-type strain, which is local strain generated on the surface, and as a result, the carburized layer tends to crack. Become.
[0023]
(D) In order to greatly enhance the low cycle impact fatigue resistance of carburized parts, in addition to (1) reducing the amount of locally generated ratchet-type strain, (2) the starting point of fracture It is effective to toughen the carburized layer and (3) to reduce coarse MnS found at the grain boundary triple point.
[0024]
(E) In order to achieve the above (1) to (3), the chemical composition of the steel used as the material for the carburized part is optimized to increase the core hardness and toughen the carburized layer, and furthermore, the surface of the carburized layer It is important to optimize the C concentration.
[0025]
(F) The toughness of the carburized layer can be arranged by the case represented by the above formula (1). The above-mentioned case is an index of the crack initiation resistance to the generated ratchet type strain. When the content of Si and P is high, the value becomes small, and the toughness of the carburized layer is extremely reduced.
[0026]
(G) The core hardness of the carburized part can be arranged by the score expressed by the above equation (2). When the same magnitude of impact load is applied, the higher the value of the score, the more the local hardness is generated. The amount of ratchet-type distortion is reduced.
[0027]
(H) The form of MnS also affects the toughness of the carburized layer. If the cumulative root function predicted by the extreme value statistical processing is 99% and the square root RS of the maximum area of MnS is 40 μm or less, carburization is performed. MnS does not exist at the grain boundary triple point of the layer and acts as a stress concentration source, and therefore, a large strength can be given to the carburized layer.
[0028]
(I) If the surface C concentration of the carburized layer increases, cementite is generated at the grain boundary, and the strength of the carburized layer decreases.
[0029]
The present invention of the above (1) and (2) has been completed based on the above findings.
[0030]
Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" of the content of each element means "% by mass".
(A) Chemical composition of material
C:
C is an element that enhances the hardenability of steel and improves the hardness of the core. However, if the content is less than 0.15%, the effect of addition is poor, while if it exceeds 0.30%, machinability and cold forgeability are reduced. Therefore, the content of C is set to 0.15 to 0.30%. In addition, a more preferable C content is 0.15 to 0.23%.
[0031]
Si:
Si is an element having a deoxidizing action, but if added in excess, causes a decrease in workability and also causes the formation of a grain boundary oxide layer on the surface of the carburized component, resulting in a decrease in fatigue strength. In particular, when the content exceeds 0.25%, the strength of the carburized layer is remarkably reduced, and the low cycle impact fatigue resistance becomes remarkable. On the other hand, if the content of Si is less than 0.03%, refining takes a long time and smelting costs increase, which is not economical. Therefore, the content of Si is set to 0.03 to 0.25%.
[0032]
Mn:
Mn is also an element effective in increasing the core hardness of the carburized part. For that purpose, Mn must be contained at least 0.5% or more. On the other hand, Mn increases the surface C concentration during carburization, so that excessive addition lowers the grain boundary strength, and particularly when the content exceeds 1.0%, the reduction of the grain boundary strength of the carburized layer becomes remarkable. Therefore, the content of Mn is set to 0.5 to 1.0%. Note that a more preferable Mn content is 0.6 to 0.9%.
[0033]
P:
P is an undesired impurity element that segregates at the austenite grain boundary during carburization and significantly reduces the austenite grain boundary strength of the carburized layer. Therefore, in order to reduce grain boundary embrittlement due to grain boundary segregation of P and secure good low cycle impact fatigue resistance, the upper limit of the P content is 0.02%.
[0034]
S:
S remains at the crystal grain boundaries and significantly lowers the grain boundary strength, resulting in deterioration of impact fatigue resistance. If too large, S forms coarse MnS at the grain boundary triple point and significantly lowers low cycle impact fatigue strength. It is an undesired impurity element that lowers. For this reason, the upper limit of the S content is set to 0.02%. Note that a more preferable upper limit of the S content is 0.015%.
[0035]
Cr:
Cr is an element that improves the hardenability of steel and is effective in increasing the core hardness. However, if the content is 0.9% or less, it is difficult to obtain this effect. On the other hand, if added excessively, Cr carbides precipitate at the grain boundaries and the grain boundary strength is reduced, so that the carburized layer is embrittled. Therefore, the content of Cr is set to more than 0.9% to 2.0%. Note that a more preferable Cr content is 0.9 to 1.7%.
[0036]
Al:
Al is an element that acts as a deoxidizing agent during smelting and is also effective in combining with N in steel to form AlN and prevent coarsening of crystal grains. In order to exert such an effect, Al must be contained at 0.015% or more, but the effect is saturated at 0.05%. Therefore, the content of Al is set to 0.015 to 0.05%.
[0037]
Ti:
The material of the carburized part according to the present invention is B-added steel, and it is important to secure solid solution B as described later. In other words, if free N is present in excess, it bonds with B to form BN, and the effect of B is lost. Therefore, Ti is added to fix at least a part of the free N as TiN to secure solid solution B. I do. At this time, if the content of Ti is less than 0.015%, the effect of addition is poor. On the other hand, if the content exceeds 0.150%, toughness is deteriorated. Therefore, the content of Ti is set to 0.015 to 0.150%. The content of Ti is preferably 0.015 to 0.050%. In order to sufficiently fix free N as TiN, the value of Ti (%)-3.4N (%) is preferably set to 0.015% or more.
[0038]
B:
B has the effect of increasing the toughness and hardenability of the carburized layer to increase the core hardness. The above action is exhibited when B is present in the steel as solid solution B. However, if the content of B is less than 0.0003%, the effect of addition is poor, and if the content of B exceeds 0.005%, the above effect is saturated and the cost increases. Therefore, the content of B is set to 0.0003 to 0.005%. In addition, the content of B is more preferably set to 0.0003 to 0.004%.
[0039]
N:
N combines with Ti, Al, V, and Nb in steel to form a nitride, and has an effect of suppressing the coarsening of crystal grains. It also has the effect of forming carbonitrides and suppressing the coarsening of crystal grains. In order to exhibit these effects, the N content needs to be 0.002% or more. However, even if N is contained in an amount exceeding 0.020%, not only the above effect is saturated, but also the cold workability deteriorates and the number of inclusions increases. Therefore, the content of N is set to 0.002 to 0.02%. Note that a more preferable upper limit of the N content is 0.010%.
[0040]
Nb, V:
Nb and V combine with C and N in steel to form carbonitrides and nitrides and suppress the coarsening of crystal grains, so one or more of these alloying elements are added. However, if the content of each of Nb and V is less than 0.001%, the above effect is difficult to obtain. Even if Nb is excessively contained, not only the above effects are saturated, but also the machinability and the cold workability are reduced. In particular, when the Nb content exceeds 0.05%, the machinability and the cold workability are reduced. The drop is significant. Further, in the case of V, excessive addition of V causes a reduction in hot workability, and particularly when the content of V exceeds 0.3%, the reduction in hot workability becomes remarkable. Therefore, one or more of 0.001 to 0.05% Nb and 0.001 to 0.3% V are contained. Note that a more preferable Nb content is 0.001 to 0.04%.
[0041]
The material of the carburized part having excellent low cycle impact fatigue resistance according to the invention of the above (1) is a chemical composition of the above-mentioned C to N, one or more elements of Nb and V, and the balance of Fe and impurities. Steel having a composition.
[0042]
The material of the carburized part having excellent low cycle impact fatigue resistance according to the invention (2) is used in place of a part of the Fe of the material of the invention (1) for the purpose of increasing the toughness of the carburized layer. , Mo: 1.5% or less and Ni: 3.0% or less.
[0043]
Since both Mo and Ni have the effect of increasing the toughness of the carburized layer, Mo and Ni may be contained alone or in a combination within the ranges described below.
[0044]
Mo:
Mo has an effect of increasing the toughness of the carburized layer. Mo also has the effect of increasing the hardenability of steel and increasing the core hardness. In order to surely obtain such an effect, it is desirable that the content of Mo is 0.10% or more. However, even if the content exceeds 1.5%, the above-mentioned effect is saturated and the cost becomes disadvantageous. Therefore, when Mo is added, its content is preferably 1.5% or less. The content of Mo is more preferably set to 1.0% or less.
[0045]
Ni:
Ni has the effect of refining the structure and increasing the toughness of the carburized layer. To ensure this effect, it is desirable that Ni be contained at 0.5% or more. However, when a large amount of Ni is added, the amount of austenite that remains without being transformed (so-called “retained austenite”) increases. In particular, when the content exceeds 3.0%, the amount of retained austenite becomes extremely large. . Therefore, when adding Ni, the content is preferably set to 3.0% or less. In order to further improve workability, the Ni content is preferably set to 2.0% or less.
[0046]
Case:
The toughness of the carburized layer can be arranged by the case represented by the above formula (1), and this case is an index of the crack initiation resistance to the generated ratchet type strain. When the value of the case exceeds 1.2, it will be described later. In the low cycle impact fatigue test using the falling weight impact fatigue test shown in the examples of the above, the desired excellent durability corresponding to 3300 MPa or more at 100 times fatigue strength can be secured. Therefore, the value of the case represented by the formula (1) is defined to exceed 1.2. The upper limit of the value of the case is preferably about 2.5 in order to secure machinability.
[0047]
Score:
The core hardness of the carburized part can be arranged by the score expressed by the above equation (2). When a shocking load of the same size is applied, the higher the value of the score, the higher the value of the ratchet type locally generated. In particular, when the Score value is 0.8 or more, the desired strain corresponding to 3300 MPa or more at 100 times fatigue strength in the low cycle impact fatigue test using the falling weight impact fatigue test described above when the value of Score is 0.8 or more is obtained. Excellent durability can be secured. Therefore, the value of Score represented by the formula (2) is specified to be 0.8 or more. When emphasizing machinability, the value of Score is preferably set to 1.2 or less.
(B) MnS
Excellent low-cycle impact fatigue properties for carburized parts, especially excellent durability corresponding to 3300 MPa or more at 100 times fatigue strength in a low-cycle impact fatigue test using a falling weight type impact fatigue test shown in Examples described later. In order to provide, it is also important to control the size of MnS in addition to the chemical components described in the above section (A).
[0048]
That is, the form of MnS also has an effect on the toughness of the carburized layer. When the cumulative distribution function predicted by the above-described extreme value statistical processing is 99%, the square root RS of the maximum area of MnS exceeds 40 μm. Since MnS exists at the grain boundary triple point of the carburized layer and acts as a stress concentration source, the strength of the carburized layer is reduced.
[0049]
Therefore, the square root RS of the maximum area of MnS when the cumulative distribution function predicted by the extreme value statistical processing is 99% (that is, the square root of the area of MnS in a plane where the part is cut parallel to the rolling direction or the forging axis of the material) Was subjected to extreme value statistical processing, and the square root (RS) of the maximum area of MnS when the predicted cumulative distribution function was 99% was defined as 40 μm or less.
(C) Surface C concentration of carburized layer
If the surface C concentration of the carburized layer increases, cementite is generated at the grain boundaries, and the strength of the carburized layer decreases. In particular, when the surface C concentration of the carburized layer exceeds 0.85%, the strength of the carburized layer is reduced, and the 100-time fatigue strength in the low cycle impact fatigue test using the falling weight impact fatigue test described above is desired to be 3300 MPa or more. Cannot ensure excellent durability. Therefore, the surface C concentration of the carburized layer was set to 0.85% or less. Note that the lower limit of the surface C concentration of the carburized layer may be about 0.75%.
[0050]
The carburized part satisfying the above-mentioned requirements (A) to (C) may be manufactured, for example, as follows.
[0051]
(1) After ingoting steel, a steel ingot is manufactured at a cooling rate of 0.05 to 0.1 ° C./sec during casting. Here, the “steel ingot” includes a “slab” as described in JIS G0203.
[0052]
(2) Assuming that the circumferential length of the cross section of the steel ingot is L in m units, the steel is held at 1250 ° C. or more for 3 L or more, and then rolled or forged to dimensions.
[0053]
(3) Next, heat treatment and machining are performed as necessary, and processed into a predetermined carburized part shape.
[0054]
(4) Carburizing and quenching are performed so that the carbon potential during carburization is made as low as possible so that cementite does not precipitate at the grain boundaries, and the diffusion time is made as long as possible.
[0055]
(5) Tempering at a low temperature can improve toughness without a significant decrease in surface hardness and core hardness, so that tempering may be performed as necessary after carburizing and quenching. The tempering may be performed by a usual method, but the temperature is desirably 150 to 200 ° C. to secure the hardness.
[0056]
【Example】
Steels having the chemical compositions shown in Tables 1 to 3 were melted using a 180 kg vacuum melting furnace. In Tables 1 to 3, steel 6, steel 7, and steel 9 to 31 are steels of the present invention examples whose chemical compositions are within the range defined by the present invention, and steels 1 to 5 and steel 8 are defined by the present invention. It is the steel of the comparative example which deviated from the range of content. Steels 1 to 3 correspond to JIS standard steels SCM415, SCM420 and SCM822, respectively.
[0057]
Among the above steels, steels 1 to 6, steel 8, steel 9 and steels 11 to 31 had a cooling rate at the time of casting of 0.05 to 0.1 ° C./sec. On the other hand, for steel 7 and steel 10, the cooling rate during casting was 0.01 ° C./sec.
[0058]
[Table 1]
Figure 2004238702
[0059]
[Table 2]
Figure 2004238702
[0060]
[Table 3]
Figure 2004238702
[0061]
Next, each of the above steel ingots was held at 1250 ° C. for 2 hours and then hot forged to obtain a round bar having a diameter of 45 mm.
[0062]
The thus obtained round bar having a diameter of 45 mm was normalized at 925 ° C. for 60 minutes and then air-cooled to room temperature.
[0063]
From each round bar after normalization thus obtained, a test piece shown in FIG. 1 simulating the root portion of a real gear was prepared by cold forging, and this test piece was subjected to a heat pattern shown in FIG. Carburizing and tempering were performed.
[0064]
That is, except for those using steel 2, steel 6 and steel 9 as materials, at 940 ° C., the carbon potential of the atmosphere (indicated as CP in the figure) was set to 1.0%, and after carburizing for 60 minutes, the carbon potential of the atmosphere was reduced. , And then quenched in oil at 850 ° C. to 130 ° C., and then tempered at 180 ° C. for 120 minutes.
[0065]
Steels made of steel 2, steel 6 and steel 9 were carburized at 930 ° C. for 70 minutes at an atmosphere carbon potential of 1.2%, and then subjected to a diffusion treatment for 35 minutes at an atmosphere carbon potential of 1.0%. Then, it was quenched in oil at 850 ° C. to 130 ° C., and then tempered at 180 ° C. for 120 minutes.
[0066]
Each of the test pieces subjected to the above treatment was subjected to a low-cycle impact fatigue test in which various levels of impact loads were applied using a falling weight impact fatigue testing machine, and a fatigue strength of 100 times, that is, a stress at which fracture occurred at 100 times. I asked. In addition, in order to cope with the miniaturization of components, it was determined that the low cycle impact fatigue resistance was good if a fatigue strength of 3300 MPa or more was secured at 100 times of fatigue strength.
[0067]
The surface C concentration of the carburized layer of the test piece was measured using EPMA.
[0068]
For the test piece shown in FIG. 1 prepared by cold forging from each round bar after normalization, the square root of the area of MnS in a plane cut in parallel with the forging axis of the material was subjected to extreme value statistical processing, and predicted. The square root RS of the maximum area of MnS when the cumulative distribution function to be obtained is 99% was determined by the method described above.
[0069]
That is, (a) after polished the surface cut parallel to the forging axis of the material, and then observe the polished surface as a surface to be inspected, one observation surface must be 100 mm. 2 The image of the largest MnS in the observation surface was photographed by EPMA, and then the image was image-analyzed to calculate the area, and the square root was used as a representative value in the observation surface, and this operation was performed on 100 observation surfaces. . In this measurement, the total area of the cut surface was 10,000 mm. 2 The observation surface after the measurement was further mirror-polished by 50 μm until the measurement reached. Next, (b) the values of the square root of the area of 100 MnS obtained in (a) are rearranged in ascending order, and RS j (Where j = 1 to 100), and for each j, the cumulative distribution function F j = 100 (j / 101) (%) was calculated. Further, (c) the standardized variable y j = -Log e (-Log e (J / 101)) on the vertical axis and RS on the horizontal axis j , An approximate straight line is obtained by the least square method, and (d) the cumulative distribution function F is calculated from the straight line obtained in (c). j Is 99% (ie, the scaling variable y j RS when $ 4.6) j Was read, and this was defined as the square root RS of the maximum area of MnS.
[0070]
Table 4 summarizes the results of various surveys.
[0071]
[Table 4]
Figure 2004238702
[0072]
From Table 4, the chemical composition of the material, the square root RS of the maximum area of MnS when the cumulative distribution function predicted by the extreme value statistical processing is 99%, and the C concentration of the surface of the carburized layer satisfy the conditions specified in the present invention. In the case of Test Nos. 11 to 31 of the examples of the present invention, the fatigue strength at 100 times is large, exceeding the target of 3300 MPa.
[0073]
On the other hand, in the case of Test Nos. 1 to 5 and Test No. 8 using steels 1 to 5 and Steel 8 as the steels of Comparative Examples whose chemical compositions are out of the range of the content specified in the present invention, , 100 times fatigue strength did not reach the target of 3300 MPa.
[0074]
On the other hand, the material is steel 6, steel 7, steel 9 and steel 10 whose chemical composition is within the range specified by the present invention, but MnS when the cumulative distribution function predicted by the extreme value statistical processing is 99%. In the case of Test No. 6, Test No. 7, Test No. 9 and Test No. 10 in which either the square root RS of the maximum area of C or the C concentration on the surface of the carburized layer deviated from the conditions specified in the present invention, the fatigue was 100 times. The strength has not reached the target of 3300 MPa.
[0075]
【The invention's effect】
INDUSTRIAL APPLICABILITY The carburized part of the present invention has excellent low cycle impact fatigue resistance after carburizing and quenching, and can be used as a differential pinion gear or a side gear of an automobile.
[Brief description of the drawings]
FIG. 1 is a view showing a test piece used in a low cycle impact fatigue test using a falling weight impact fatigue tester of an example.
FIG. 2 is a view showing a heat pattern of carburizing, quenching and tempering applied to a test piece used in a low cycle impact fatigue test in Examples.

Claims (2)

質量%で、C:0.15〜0.30%、Si:0.03〜0.25%、Mn:0.5〜1.0%、P:0.02%以下、S:0.02%以下、Cr:0.9%を超えて2.0%まで、Al:0.015〜0.05%、Ti:0.015〜0.150%、B:0.0003〜0.005%及びN:0.002〜0.02%、並びに、Nb:0.001〜0.05%及びV:0.01〜0.3%のうちの1種以上を含み、残部はFe及び不純物からなり、下記▲1▼式で表されるScaseの値が1.2を超えるとともに、下記▲2▼式で表されるScoreの値が0.8以上である鋼材を素材とする浸炭部品であって、その部品を素材の圧延方向又は鍛錬軸に平行に切断した面におけるMnSの面積の平方根を極値統計処理し、予測される累積分布関数が99%の時のMnSの最大面積の平方根RSが40μm以下で、且つ、浸炭層の表面のC濃度が質量%で、0.85%以下である耐低サイクル衝撃疲労特性に優れた浸炭部品。
Scase=Mo+Cr+(Ni/2)−(Si/5)−P0.5 +{B/(Ti−3.4N)} ・・・▲1▼
Score=C0.8 +(Mn/20)1.25+(Cr/6)0.85+(Mo/5)0.74+B0.21 ・・・▲2▼
但し、▲1▼式及び▲2▼式における元素記号は、その元素の質量%での鋼中含有量を表す。
In mass%, C: 0.15 to 0.30%, Si: 0.03 to 0.25%, Mn: 0.5 to 1.0%, P: 0.02% or less, S: 0.02 % Or less, Cr: more than 0.9% to 2.0%, Al: 0.015 to 0.05%, Ti: 0.015 to 0.150%, B: 0.0003 to 0.005% And N: 0.002 to 0.02%, and Nb: 0.001 to 0.05% and V: 0.01 to 0.3%, and the balance is from Fe and impurities. A carburized part made of a steel material having a value of Case represented by the following formula (1) exceeding 1.2 and a value of Score represented by the following formula (2) of 0.8 or more: The extremum statistical processing is performed on the square root of the area of MnS in a plane obtained by cutting the part in parallel with the rolling direction of the material or the forging axis, and the predicted cumulative When the cloth function is 99%, the square root RS of the maximum area of MnS is 40 μm or less, and the C concentration on the surface of the carburized layer is 0.85% or less in terms of mass%. Carburized parts.
Scase = Mo + Cr + (Ni / 2) - (Si / 5) -P 0.5 + {B / (Ti-3.4N)} ··· ▲ 1 ▼
Score = C 0.8 + (Mn / 20) 1.25 + (Cr / 6) 0.85 + (Mo / 5) 0.74 + B 0.21 ... (2)
However, the symbol of the element in the formulas (1) and (2) indicates the content of the element in the steel in mass%.
質量%で、C:0.15〜0.30%、Si:0.03〜0.25%、Mn:0.5〜1.0%、P:0.02%以下、S:0.02%以下、Cr:0.9%を超えて2.0%まで、Al:0.015〜0.05%、Ti:0.015〜0.150%、B:0.0003〜0.005%及びN:0.002〜0.02%、並びに、Nb:0.001〜0.05%及びV:0.01〜0.3%のうちの1種以上を含むとともに、Mo:1.5%以下及びNi:3.0%以下の1種以上を含有し、残部はFe及び不純物からなり、下記▲1▼式で表されるScaseの値が1.2を超えるとともに、下記▲2▼式で表されるScoreの値が0.8以上である鋼材を素材とする浸炭部品であって、その部品を素材の圧延方向又は鍛錬軸に平行に切断した面におけるMnSの面積の平方根を極値統計処理し、予測される累積分布関数が99%の時のMnSの最大面積の平方根RSが40μm以下で、且つ、浸炭層の表面のC濃度が質量%で、0.85%以下である耐低サイクル衝撃疲労特性に優れた浸炭部品。
Scase=Mo+Cr+(Ni/2)−(Si/5)−P0.5 +{B/(Ti−3.4N)} ・・・▲1▼
Score=C0.8 +(Mn/20)1.25+(Cr/6)0.85+(Mo/5)0.74+B0.21 ・・・▲2▼
但し、▲1▼式及び▲2▼式における元素記号は、その元素の質量%での鋼中含有量を表す。
In mass%, C: 0.15 to 0.30%, Si: 0.03 to 0.25%, Mn: 0.5 to 1.0%, P: 0.02% or less, S: 0.02 % Or less, Cr: more than 0.9% to 2.0%, Al: 0.015 to 0.05%, Ti: 0.015 to 0.150%, B: 0.0003 to 0.005% And N: 0.002 to 0.02%, and Nb: 0.001 to 0.05% and V: 0.01 to 0.3%, and Mo: 1.5 % And one or more of Ni: 3.0% or less, and the balance is composed of Fe and impurities. The value of the case represented by the following formula (1) exceeds 1.2 and the following (2) A carburized part made of a steel material having a Score value of 0.8 or more, and the part is cut parallel to the rolling direction of the material or the forging axis. Extremum statistical processing of the square root of the area of MnS on the surface subjected to the calculation, the square root RS of the maximum area of MnS when the predicted cumulative distribution function is 99% is 40 μm or less, and the C concentration on the surface of the carburized layer is mass %, Less than 0.85%, with excellent low cycle impact fatigue resistance.
Scase = Mo + Cr + (Ni / 2) - (Si / 5) -P 0.5 + {B / (Ti-3.4N)} ··· ▲ 1 ▼
Score = C 0.8 + (Mn / 20) 1.25 + (Cr / 6) 0.85 + (Mo / 5) 0.74 + B 0.21 ... (2)
However, the symbol of the element in the formulas (1) and (2) indicates the content of the element in the steel in mass%.
JP2003030638A 2003-02-07 2003-02-07 Carburized differential gear with excellent low cycle impact fatigue resistance Expired - Fee Related JP3915710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030638A JP3915710B2 (en) 2003-02-07 2003-02-07 Carburized differential gear with excellent low cycle impact fatigue resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030638A JP3915710B2 (en) 2003-02-07 2003-02-07 Carburized differential gear with excellent low cycle impact fatigue resistance

Publications (2)

Publication Number Publication Date
JP2004238702A true JP2004238702A (en) 2004-08-26
JP3915710B2 JP3915710B2 (en) 2007-05-16

Family

ID=32957467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030638A Expired - Fee Related JP3915710B2 (en) 2003-02-07 2003-02-07 Carburized differential gear with excellent low cycle impact fatigue resistance

Country Status (1)

Country Link
JP (1) JP3915710B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332438A (en) * 2006-06-16 2007-12-27 Nippon Steel Corp Steel material for carburizing and quenching having excellent low cycle fatigue property and carburized and quenched component
JP2009191325A (en) * 2008-02-15 2009-08-27 Jfe Steel Corp High strength steel and metal bolt having excellent corrosion resistance and cold forgeability and allowing scarce penetration of hydrogen from environment
JP2011063886A (en) * 2010-11-05 2011-03-31 Nippon Steel Corp Carburized and quenched steel excellent in low cycle fatigue property, and carburized and quenched component
JP2011102425A (en) * 2009-11-12 2011-05-26 Sumitomo Metal Ind Ltd Steel for surface-hardening treatment
JP2011137214A (en) * 2010-01-04 2011-07-14 Sumitomo Metal Ind Ltd Differential gear and method of manufacturing the same
WO2013150844A1 (en) * 2012-04-02 2013-10-10 新日鐵住金株式会社 Steel for cold forging/nitriding, steel material for cold forging/nitriding, and cold forged/nitrided member
JP2014194060A (en) * 2013-03-29 2014-10-09 Sanyo Special Steel Co Ltd Method for manufacturing machine component for automobiles excellent in fatigue strength and machine component for automobiles using the same
US9469883B2 (en) 2009-05-13 2016-10-18 Nippon Steel & Sumitomo Metal Corporation Carburized steel part having excellent low cycle bending fatigue strength
JP2017020065A (en) * 2015-07-09 2017-01-26 Jfeスチール株式会社 Gear component and manufacturing method of gear component
JP6658981B1 (en) * 2019-03-29 2020-03-04 日本製鉄株式会社 Carburized parts and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110373607B (en) * 2019-07-25 2021-04-02 广东韶钢松山股份有限公司 High-temperature carburized steel, high-temperature carburized steel component and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811764A (en) * 1981-07-15 1983-01-22 Sumitomo Metal Ind Ltd Case hardening boron steel or small heat treatment strain
JPH02147148A (en) * 1988-11-28 1990-06-06 Daido Steel Co Ltd Production of case hardening steel product
JPH04371522A (en) * 1991-06-21 1992-12-24 Daido Steel Co Ltd Production of steel products for carburization
JPH07310118A (en) * 1994-05-16 1995-11-28 Daido Steel Co Ltd Production of case hardening steel suitable for cold-working
JPH0892690A (en) * 1994-09-27 1996-04-09 Sumitomo Metal Ind Ltd Carburized parts excellent in fatigue resistance and its production
JPH09324848A (en) * 1996-06-04 1997-12-16 Daido Steel Co Ltd Carbon sintered gear component
JP2002194484A (en) * 2000-10-02 2002-07-10 Sumitomo Metals (Kokura) Ltd Steel for machine structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811764A (en) * 1981-07-15 1983-01-22 Sumitomo Metal Ind Ltd Case hardening boron steel or small heat treatment strain
JPH02147148A (en) * 1988-11-28 1990-06-06 Daido Steel Co Ltd Production of case hardening steel product
JPH04371522A (en) * 1991-06-21 1992-12-24 Daido Steel Co Ltd Production of steel products for carburization
JPH07310118A (en) * 1994-05-16 1995-11-28 Daido Steel Co Ltd Production of case hardening steel suitable for cold-working
JPH0892690A (en) * 1994-09-27 1996-04-09 Sumitomo Metal Ind Ltd Carburized parts excellent in fatigue resistance and its production
JPH09324848A (en) * 1996-06-04 1997-12-16 Daido Steel Co Ltd Carbon sintered gear component
JP2002194484A (en) * 2000-10-02 2002-07-10 Sumitomo Metals (Kokura) Ltd Steel for machine structure

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332438A (en) * 2006-06-16 2007-12-27 Nippon Steel Corp Steel material for carburizing and quenching having excellent low cycle fatigue property and carburized and quenched component
JP4728883B2 (en) * 2006-06-16 2011-07-20 新日本製鐵株式会社 Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties
JP2009191325A (en) * 2008-02-15 2009-08-27 Jfe Steel Corp High strength steel and metal bolt having excellent corrosion resistance and cold forgeability and allowing scarce penetration of hydrogen from environment
US9469883B2 (en) 2009-05-13 2016-10-18 Nippon Steel & Sumitomo Metal Corporation Carburized steel part having excellent low cycle bending fatigue strength
JP2011102425A (en) * 2009-11-12 2011-05-26 Sumitomo Metal Ind Ltd Steel for surface-hardening treatment
JP2011137214A (en) * 2010-01-04 2011-07-14 Sumitomo Metal Ind Ltd Differential gear and method of manufacturing the same
JP2011063886A (en) * 2010-11-05 2011-03-31 Nippon Steel Corp Carburized and quenched steel excellent in low cycle fatigue property, and carburized and quenched component
CN104254628A (en) * 2012-04-02 2014-12-31 新日铁住金株式会社 Steel for cold forging/nitriding, steel material for cold forging/nitriding, and cold forged/nitrided member
WO2013150844A1 (en) * 2012-04-02 2013-10-10 新日鐵住金株式会社 Steel for cold forging/nitriding, steel material for cold forging/nitriding, and cold forged/nitrided member
US9574256B2 (en) 2012-04-02 2017-02-21 Nippon Steel & Sumitomo Metal Corporation Steel for cold forging/nitriding, steel material for cold forging/nitriding, and cold-forged/nitrided component
JP2014194060A (en) * 2013-03-29 2014-10-09 Sanyo Special Steel Co Ltd Method for manufacturing machine component for automobiles excellent in fatigue strength and machine component for automobiles using the same
JP2017020065A (en) * 2015-07-09 2017-01-26 Jfeスチール株式会社 Gear component and manufacturing method of gear component
JP6658981B1 (en) * 2019-03-29 2020-03-04 日本製鉄株式会社 Carburized parts and method of manufacturing the same
WO2020202406A1 (en) * 2019-03-29 2020-10-08 日本製鉄株式会社 Carburized part and method for manufacturing same
CN113631746A (en) * 2019-03-29 2021-11-09 日本制铁株式会社 Carburized component and method for manufacturing same
CN113631746B (en) * 2019-03-29 2022-07-15 日本制铁株式会社 Carburized component and method for manufacturing same

Also Published As

Publication number Publication date
JP3915710B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
JP5332646B2 (en) Manufacturing method of carburizing steel with excellent cold forgeability
JP5927868B2 (en) Carburizing steel excellent in cold forgeability and method for producing the same
KR101671133B1 (en) Case-hardened steel and carburized material
JP5669339B2 (en) Manufacturing method of high strength carburized parts
CN112292471B (en) Mechanical component
JP4688691B2 (en) Case-hardened steel with excellent low cycle fatigue strength
JPWO2020145325A1 (en) Steel material
JP2009263763A (en) Method for manufacturing steel material to be carburized
JP3915710B2 (en) Carburized differential gear with excellent low cycle impact fatigue resistance
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
JP2008179849A (en) Steel for gear having superior impact fatigue resistance, and gear using the same
JP2002212672A (en) Steel member
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP5630978B2 (en) Mechanical structural steel with excellent toughness
JP3932102B2 (en) Case-hardened steel and carburized parts using the same
JP4488228B2 (en) Induction hardening steel
JP5445345B2 (en) Steel bar for steering rack bar and manufacturing method thereof
JP4807949B2 (en) Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics
JP5672740B2 (en) Manufacturing method of high fatigue strength case hardening steel
JP4213855B2 (en) Case-hardening steel and case-hardening parts with excellent torsional fatigue properties
JP6825605B2 (en) Carburizing member
JP3623313B2 (en) Carburized gear parts
JPH08260039A (en) Production of carburized and case hardened steel
JP5131770B2 (en) Non-tempered steel for soft nitriding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

R150 Certificate of patent or registration of utility model

Ref document number: 3915710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees