JP2007332438A - Steel material for carburizing and quenching having excellent low cycle fatigue property and carburized and quenched component - Google Patents

Steel material for carburizing and quenching having excellent low cycle fatigue property and carburized and quenched component Download PDF

Info

Publication number
JP2007332438A
JP2007332438A JP2006167568A JP2006167568A JP2007332438A JP 2007332438 A JP2007332438 A JP 2007332438A JP 2006167568 A JP2006167568 A JP 2006167568A JP 2006167568 A JP2006167568 A JP 2006167568A JP 2007332438 A JP2007332438 A JP 2007332438A
Authority
JP
Japan
Prior art keywords
less
carburized
cycle fatigue
hardness
low cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006167568A
Other languages
Japanese (ja)
Other versions
JP4728883B2 (en
Inventor
Tatsuro Ochi
達朗 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006167568A priority Critical patent/JP4728883B2/en
Publication of JP2007332438A publication Critical patent/JP2007332438A/en
Application granted granted Critical
Publication of JP4728883B2 publication Critical patent/JP4728883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel material for carburizing and quenching having excellent low cycle fatigue properties. <P>SOLUTION: The steel material is characterized in that: a projected core hardness Hp-core=Hcore/(1-t/r) is ≥390 HV; the hardness at a position of 13 mm from the quenched edge in a Jominy test is ≥60×C<SP>0.5</SP>-5(HRC); and A=(Mo+0.227Ni+190B-0.087Si-17.2P-2.74V-7.18Cs-0.00955Hs+0.0344Nγ) and B=(t×(Hcore)<SP>2</SP>) satisfy the relation of A-0.00000293×B≥14; wherein, Hcore is a core hardness; (t) is an effective hardened layer depth; (r) is the radius of the failure zone or the half of the wall thickness of the failure zone; Cs is the carburization concentration (mass%) in the surface layer; Hs is a surface hardness (HV); and Nγ is the old austenite grain size of a carburized layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、表層部に浸炭処理が行われる部品に用いられる低サイクル疲労特性に優れた浸炭焼入れ鋼材、及び浸炭焼入れ部品に関する。   The present invention relates to a carburized and quenched steel material having excellent low cycle fatigue characteristics and a carburized and quenched part, which is used for a part that is carburized in a surface layer portion.

歯車、軸受部品、転動部品、シャフト、及び等速ジョイント部品は、通常、例えばJIS G 4052、JIS G 4104〜4106等に規定されている中炭素の機械構造用合金鋼を、冷間鍛造(転造を含む)又は熱間鍛造−切削により所定の形状に加工した後、浸炭焼入れを行うことにより形成されている。上記した歯車及び部品は、大きな衝撃が繰り返し加わることにより、繰り返し回数が少ないにもかかわらず疲労破壊することがある。このため、このような疲労破壊に対する耐性(以下、低サイクル疲労特性と記載)が求められている。   Gears, bearing parts, rolling parts, shafts, and constant velocity joint parts are usually made by cold forging (for example, medium-carbon alloy steels for machine structural use defined in JIS G 4052, JIS G 4104 to 4106, etc.) (Including rolling) or hot forging-cutting into a predetermined shape, followed by carburizing and quenching. The gears and parts described above may undergo fatigue failure due to repeated large impacts despite a small number of repetitions. For this reason, resistance to such fatigue fracture (hereinafter referred to as low cycle fatigue characteristics) is required.

低サイクル疲労特性を改善する為の技術としては、例えば特許文献1に記載の技術及び特許文献2に記載の技術がある。
特許文献1に記載の技術は、塑性変形抵抗及び粒界強度の和を一定値以上にすることにより、低サイクル疲労特性を改善するものである。塑性変形抵抗は、鋼材の化学的成分を変数とした式によって算出されるものであり、実質的には芯部硬さが高いほど高くなる。また粒界強度が高い場合は靭性が高くなる。なお、切削性を維持するために、塑性変形抵抗及び粒界強度の和には上限が設けられている。
As a technique for improving the low cycle fatigue characteristics, for example, there are a technique described in Patent Document 1 and a technique described in Patent Document 2.
The technique described in Patent Document 1 improves low cycle fatigue characteristics by setting the sum of plastic deformation resistance and grain boundary strength to a certain value or more. The plastic deformation resistance is calculated by an equation using the chemical component of the steel as a variable, and substantially increases as the core hardness increases. Further, when the grain boundary strength is high, the toughness becomes high. In order to maintain the machinability, an upper limit is set for the sum of the plastic deformation resistance and the grain boundary strength.

特許文献2に記載の技術は、芯部硬さ及び浸炭層の靭性それぞれを基準値以上にすることにより、低サイクル疲労特性を改善するものである。なお、芯部硬さ及び浸炭層の靭性それぞれは、鋼材の化学的成分を変数とした関数により整理されている。
特開平10−259450号公報(第13及び14段落、図1) 特開2004−238702号公報(第25及び26段落)
The technique described in Patent Document 2 improves the low cycle fatigue characteristics by setting the core hardness and the toughness of the carburized layer to be equal to or higher than a reference value. Each of the core hardness and the toughness of the carburized layer is organized by a function with the chemical component of the steel material as a variable.
JP-A-10-259450 (13th and 14th paragraphs, FIG. 1) JP 2004-238702 A (25th and 26th paragraphs)

上記した従来の技術によれば、硬化層の靭性及び芯部硬さそれぞれが高いほど低サイクル疲労特性が向上する。しかし、本発明者が検討した結果、芯部硬さを高くしても、必ずしも低サイクル疲労特性が十分な値を示すとは限らないことが判明した。
本発明は上記のような事情を考慮してなされたものであり、その目的は、低サイクル疲労特性を安定して良くすることができる、低サイクル疲労特性に優れた浸炭焼入れ鋼材及び浸炭焼入れ部品を提供することにある。
According to the above-described conventional technique, the higher the toughness and core hardness of the hardened layer, the lower the low cycle fatigue characteristics. However, as a result of studies by the present inventors, it has been found that even if the core hardness is increased, the low cycle fatigue characteristics do not always exhibit a sufficient value.
The present invention has been made in consideration of the above-mentioned circumstances, and the object thereof is to provide a carburized and quenched steel material and a carburized and hardened component that are capable of stably improving the low cycle fatigue characteristics and excellent in the low cycle fatigue characteristics. Is to provide.

上記課題を解決するための本発明の要旨は以下の通りである。
(a)質量%で、
C:0.1〜0.4%、
Si:0.02〜1.3%、
Mn:0.3〜1.8%、
S:0.001〜0.15%、
Al:0.001〜0.05%、
N:0.003〜0.020%、
P:0.025%以下、
O:0.0025%以下
を含有し、さらに、
Cr:1.8%以下、
Mo:1.5%以下、
Ni:3.5%以下、
B:0.006%以下、
V:0.5%以下、
Nb:0.04%以下、
Ti:0.2%以下、
の1種又は2種以上を含有し、残部が鉄及び不可避的不純物からなり、
下記(1)式で定義される投影芯部硬さHp-coreがHV390以上であることを特徴とする低サイクル疲労特性に優れた浸炭焼入れ鋼材。
Hp-core=Hcore/(1−t/r) …(1)
ただし、Hcore;芯部硬さ、t;有効硬化層深さ、r;破損部位の半径または破損部位の肉厚の半分である。
The gist of the present invention for solving the above problems is as follows.
(A) In mass%,
C: 0.1-0.4%
Si: 0.02-1.3%
Mn: 0.3 to 1.8%
S: 0.001 to 0.15%,
Al: 0.001 to 0.05%,
N: 0.003 to 0.020%,
P: 0.025% or less,
O: 0.0025% or less,
Cr: 1.8% or less,
Mo: 1.5% or less,
Ni: 3.5% or less,
B: 0.006% or less,
V: 0.5% or less,
Nb: 0.04% or less,
Ti: 0.2% or less,
1 type or 2 types or more, and the balance consists of iron and inevitable impurities,
A carburized and hardened steel material excellent in low cycle fatigue characteristics, characterized in that the projected core hardness Hp-core defined by the following formula (1) is HV390 or more.
Hp-core = Hcore / (1-t / r) (1)
Where Hcore: core hardness, t: effective hardened layer depth, r: half of the radius of the damaged part or the thickness of the damaged part.

(b)芯部組織のフェライト+ベイナイト分率が50%以下で残部が実質的にマルテンサイトであり、下記(2)式で定義されるA、及び下記(3)式で定義されるBが、A−0.00000293×B≧−14 の関係を有することを特徴とする、上記(a)に記載の低サイクル疲労特性に優れた浸炭焼入れ鋼材。
A=Mo+0.227Ni+190B-0.087Si-17.2P-2.74V-7.18Cs-0.00955Hs+0.0344Nγ・・・(2)
ただし、Cs;表層の炭素濃度(質量%)、Hs;表面硬さ(HV)、Nγ;浸炭層の旧オーステナイト結晶粒度
B=t×(Hcore)2 ・・・(3)
(B) The ferrite + bainite fraction of the core structure is 50% or less and the balance is substantially martensite, and A defined by the following formula (2) and B defined by the following formula (3) are A-0.000002293 × B ≧ −14. The carburized and quenched steel material having excellent low cycle fatigue characteristics as described in (a) above.
A = Mo + 0.227Ni + 190B-0.087Si-17.2P-2.74V-7.18Cs-0.00955Hs + 0.0344Nγ (2)
Where Cs: carbon concentration (% by mass) of surface layer, Hs: surface hardness (HV), Nγ: former austenite grain size of carburized layer
B = t × (Hcore) 2 (3)

(c)鋼材の焼入性としてジョミニ試験における焼入れ端より13mmの位置での硬さが、60×C(質量%)0.5−5(HRC)以上であり、
下記(2)式で定義されるA及び下記(3)式で定義されるBが、A−0.00000293×B≧−14の関係を有することを特徴とする、上記(a)に記載の低サイクル疲労特性に優れた浸炭焼入れ鋼材。
A=Mo+0.227Ni+190B−0.087Si−17.2P−2.74V−7.18Cs−0.00955Hs+0.0344Nγ …(2)
ただし、Cs;表層の浸炭濃度(質量%)、Hs;表面硬さ(HV)、Nγ;浸炭層の旧オーステナイト結晶粒度である。
B=t×(Hcore) … (3)
(C) The hardness at a position of 13 mm from the quenching end in the Jomini test is 60 × C (mass%) 0.5 −5 (HRC) or more as the hardenability of the steel material,
A defined by the following formula (2) and B defined by the following formula (3) have a relationship of A−0.00000293 × B ≧ −14, as described in the above (a) Carburized and hardened steel with excellent low cycle fatigue characteristics.
A = Mo + 0.227Ni + 190B-0.087Si-17.2P-2.74V-7.18Cs-0.00955Hs + 0.0344Nγ (2)
Where Cs: surface carburization concentration (% by mass), Hs: surface hardness (HV), Nγ: old austenite grain size of the carburized layer.
B = t × (Hcore) 2 (3)

(d)質量%で、
C:0.1〜0.4%、
Si:0.02〜1.3%、
Mn:0.3〜1.8%、
S:0.001〜0.15%、
Al:0.001〜0.05%、
N:0.003〜0.020%、
P:0.025%以下、
O:0.0025%以下
を含有し、さらに、
Cr:1.8%以下、
Mo:1.5%以下、
Ni:3.5%以下、
B:0.006%以下、
V:0.5%以下、
Nb:0.04%以下、
Ti:0.2%以下、
の1種又は2種以上を含有し、残部が鉄及び不可避的不純物からなり、
ジョミニ試験における焼入れ端より13mmの位置での硬さが、60×C0.5−5(HRC)以上であり、
下記(2)式で定義されるA及び下記(3)式で定義されるBが、A−0.00000293×B≧−14の関係を有することを特徴とする低サイクル疲労特性に優れた浸炭焼入れ鋼材。
A=Mo+0.227Ni+190B−0.087Si−17.2P−2.74V−7.18Cs−0.00955Hs+0.0344Nγ …(2)
ただし、Cs;表層の浸炭濃度(質量%)、Hs;表面硬さ(HV)、Nγ;浸炭層の旧オーステナイト結晶粒度。
B=t×(Hcore) … (3)
(D)% by mass,
C: 0.1-0.4%
Si: 0.02-1.3%
Mn: 0.3 to 1.8%
S: 0.001 to 0.15%,
Al: 0.001 to 0.05%,
N: 0.003 to 0.020%,
P: 0.025% or less,
O: 0.0025% or less,
Cr: 1.8% or less,
Mo: 1.5% or less,
Ni: 3.5% or less,
B: 0.006% or less,
V: 0.5% or less,
Nb: 0.04% or less,
Ti: 0.2% or less,
1 type or 2 types or more, and the balance consists of iron and inevitable impurities,
The hardness at a position 13 mm from the quenching end in the Jomini test is 60 × C 0.5 -5 (HRC) or more,
Carburization excellent in low cycle fatigue characteristics, wherein A defined by the following formula (2) and B defined by the following formula (3) have a relationship of A-0.00000293 × B ≧ −14 Hardened steel.
A = Mo + 0.227Ni + 190B-0.087Si-17.2P-2.74V-7.18Cs-0.00955Hs + 0.0344Nγ (2)
However, Cs: Carburizing concentration of surface layer (mass%), Hs: Surface hardness (HV), Nγ: Old austenite grain size of carburized layer.
B = t × (Hcore) 2 (3)

(e)表層の浸炭濃度Csが質量%で0.5〜0.8%であることを特徴とする上記(a)〜(d)のいずれか一つに記載の低サイクル疲労特性に優れた浸炭焼入れ鋼材。
(f)浸炭層の旧オーステナイト結晶粒度Nγが8〜15番であることを特徴とする上記(a)〜(e)のいずれか一つに記載の低サイクル疲労特性に優れた浸炭焼入れ鋼材。
(g)表面の残留応力が−500MPa以下であることを特徴とする上記(a)〜(f)のいずれか一つに記載の低サイクル疲労特性に優れた浸炭焼入れ鋼材。
(E) The carburization concentration Cs of the surface layer is 0.5 to 0.8% by mass%, and excellent in low cycle fatigue characteristics as described in any one of the above (a) to (d) Carburized and hardened steel.
(F) The carburized and quenched steel material having excellent low cycle fatigue characteristics according to any one of the above (a) to (e), wherein the prior austenite grain size Nγ of the carburized layer is No. 8-15.
(G) The carburized and quenched steel material having excellent low cycle fatigue characteristics according to any one of the above (a) to (f), wherein the surface residual stress is −500 MPa or less.

上記(a)〜(g)のいずれか一つに記載の浸炭焼入れ鋼材を用いた浸炭焼入れ部品。浸炭焼入れ部品は、例えば歯車である。   A carburized and quenched part using the carburized and quenched steel material according to any one of the above (a) to (g). The carburized and quenched part is, for example, a gear.

本発明によれば、浸炭焼入れ鋼材及び浸炭焼入れ部品において低サイクル疲労特性を安定してよくすることができる。   According to the present invention, low cycle fatigue characteristics can be stably improved in carburized and quenched steel materials and carburized and quenched parts.

本発明鋼は、歯車、軸受部品、転動部品、シャフト、及び等速ジョイント部品として使用される浸炭焼入れ鋼材である。   The steel of the present invention is a carburized and hardened steel material used as gears, bearing parts, rolling parts, shafts, and constant velocity joint parts.

本発明者は、鋭意検討の結果、浸炭焼入れ鋼材の低サイクル疲労破壊は、次の過程により生じると考えた。
(A)浸炭層と芯部の境界付近に歪みが集中し、微小亀裂が発生する。
(B)微小亀裂が浸炭層に伝搬して、粒界割れを伴って浸炭層が脆性破壊を起こす。
(C)その後、芯部が急速に破壊する。
As a result of intensive studies, the present inventor has considered that low cycle fatigue failure of carburized and quenched steel material is caused by the following process.
(A) Distortion concentrates near the boundary between the carburized layer and the core, and microcracks are generated.
(B) The microcracks propagate to the carburized layer, and the carburized layer causes brittle fracture with intergranular cracking.
(C) Thereafter, the core portion is rapidly broken.

まず、上記(A)の過程を抑制する手段を検討した。浸炭層深さが顕著に浅い場合、又は芯部硬さが極度に低い場合、浸炭層と芯部の境界付近への歪みの集中及び微小亀裂の発生は極めて容易に生じる。このため、浸炭層深さ及び芯部硬さそれぞれを、ある臨界値以上にする必要がある。   First, means for suppressing the process (A) were studied. When the carburized layer depth is remarkably shallow, or when the core hardness is extremely low, strain concentration near the boundary between the carburized layer and the core and generation of microcracks occur very easily. For this reason, it is necessary to make each carburized layer depth and core part hardness more than a certain critical value.

図1は、微小亀裂発生時の破壊メカニズムを説明する為の模式図である。芯部硬さを図中aからbに増加させた場合、破壊起点は変化しないが疲労強度は増加する。一方、有効浸炭層深さを深くした場合、破壊起点はtからtに変化するため疲労強度は増加する。そこで、浸炭層深さ及び芯部硬さの両者を同時に記述できる新しい指標として、下式(1)及び図1で定義される投影芯部硬さHp-coreを定義した。
Hp-core=Hcore/(1−t/r) …(1)
ただし、Hcore;芯部硬さ、t;有効硬化層深さ(JIS G 0557で規定)、r;破損部位の半径または破損部位の肉厚の半分である。破損部位とはいわゆる設計上の危険断面のことであり、歯車部品においては、図2に矢印で示した部分が破損部位の肉厚に相当する。シャフトのような軸状部品では、最小直径部や応力集中が最大となる断面の半径がこれに相当する。
FIG. 1 is a schematic diagram for explaining a fracture mechanism when a microcrack is generated. When the core hardness is increased from a to b in the figure, the fracture starting point does not change, but the fatigue strength increases. On the other hand, when the depth of the effective carburized layer depth, fracture origin fatigue strength to change from t 1 to t 2 is increased. Therefore, the projection core hardness Hp-core defined by the following formula (1) and FIG. 1 was defined as a new index that can describe both the carburized layer depth and the core hardness.
Hp-core = Hcore / (1-t / r) (1)
Where Hcore: core hardness, t: effective hardened layer depth (specified in JIS G 0557), r: half of the radius of the damaged part or the thickness of the damaged part. The damaged part is a so-called design critical section, and in the gear part, the part indicated by the arrow in FIG. 2 corresponds to the thickness of the damaged part. In a shaft-like component such as a shaft, the minimum diameter portion and the radius of the cross section where the stress concentration is maximum correspond to this.

本発明者が検討した結果、後述する成分系においては、投影芯部硬さHp-coreがHV390未満であれば、低サイクル疲労時において浸炭層と芯部の境界付近に微小亀裂が容易に発生するが、HV390以上であれば、この微小亀裂の発生が遅延できることが判明した。   As a result of the study by the inventors, in the component system described later, if the projected core hardness Hp-core is less than HV390, microcracks are easily generated near the boundary between the carburized layer and the core during low cycle fatigue. However, it has been found that the occurrence of this microcrack can be delayed if it is HV390 or higher.

次に、上記(B)の過程を抑制する手段を検討した。浸炭層と芯部の境界付近で発生した微小亀裂が浸炭層に伝搬するか否かは、芯部の靭性、浸炭層の靭性、及び微小亀裂先端の3軸応力度により決まると考えた。   Next, means for suppressing the process (B) were studied. It was considered that whether or not a microcrack generated near the boundary between the carburized layer and the core propagates to the carburized layer is determined by the toughness of the core, the toughness of the carburized layer, and the degree of triaxial stress at the tip of the microcrack.

芯部の靭性は芯部の組織に依存する。焼き入れ性が低い結果として、芯部にフェライトとベイナイトの組織分率が50%を超えて混入すると、靭性は顕著に劣化する。つまり、優れた芯部靭性を確保するためには、芯部組織のフェライト+ベイナイト分率が50%以下で、残部が略(実質的に)マルテンサイトであることが必要である。上記の要件を満足するためには、本発明においては、鋼材の焼入れ性を、ジョミニ試験における焼き入れ端より13mmの位置での硬さが、C量に応じて、60×(C)1/2−5(HRC)以上とすることが必要であることが判明した。上記の評価は、芯部よりジョミニ一端焼き入れ試験片を採取し、JIS G 0561 の規定により行うことができる。 The toughness of the core part depends on the structure of the core part. As a result of low hardenability, the toughness deteriorates significantly when the ferrite and bainite structure fraction exceeds 50% in the core. That is, in order to ensure excellent core toughness, it is necessary that the ferrite + bainite fraction of the core structure is 50% or less and the balance is substantially (substantially) martensite. In order to satisfy the above-described requirements, in the present invention, the hardenability of the steel material is determined according to the hardness at a position 13 mm from the quenching end in the Jomini test, according to the amount of C. 60 × (C) 1 / be 2 -5 (HRC) or higher has been found to be necessary. The above evaluation can be performed according to the provisions of JIS G 0561 by collecting a Jomini end-hardened test piece from the core.

このようにある規定値以上の焼入れ性を確保して芯部をマルテンサイトとすると、微小亀裂が浸炭層に伝搬するか否かは、浸炭層の靭性、及び微小亀裂先端の3軸応力度により決まる。   Thus, when the hardenability more than a specified value is ensured and the core portion is martensite, whether or not the microcracks propagate to the carburized layer depends on the toughness of the carburized layer and the triaxial stress degree at the tip of the microcrack. Determined.

浸炭層の靭性は、表層の炭素濃度(質量%)、表面硬さ(HV)、浸炭層の旧オーステナイト結晶粒度及び芯部の化学的成分で決まるため、下記式(2)で定義される指標Aを導入した。指標Aが大きいほど浸炭層の靭性は向上する。
A=Mo+0.227Ni+190B−0.087Si−17.2P−2.74V−7.18Cs−0.00955Hs+0.0344Nγ …(2)
ただし、Cs;表層の浸炭濃度(質量%)、Hs;表面硬さ(HV)、Nγ;浸炭層の旧オーステナイト結晶粒度である。
Since the toughness of the carburized layer is determined by the carbon concentration (mass%) of the surface layer, surface hardness (HV), the prior austenite crystal grain size of the carburized layer and the chemical component of the core, an index defined by the following formula (2) A was introduced. The larger the index A, the better the toughness of the carburized layer.
A = Mo + 0.227Ni + 190B-0.087Si-17.2P-2.74V-7.18Cs-0.00955Hs + 0.0344Nγ (2)
Where Cs: surface carburization concentration (% by mass), Hs: surface hardness (HV), Nγ: old austenite grain size of the carburized layer.

一方、微小亀裂先端の3軸応力度をあらわす指標として、有効硬化層深さ(t)及び芯部の硬さ(Hcore)の関数である下記式(3)で定義される指標Bを導入した。指標Bが小さいほど微小亀裂先端の3軸応力度は小さくなる。
B=t×(Hcore) … (3)
On the other hand, the index B defined by the following formula (3), which is a function of the effective hardened layer depth (t) and the core hardness (Hcore), was introduced as an index representing the degree of triaxial stress at the tip of the microcrack. . The smaller the index B, the smaller the triaxial stress level at the tip of the microcrack.
B = t × (Hcore) 2 (3)

図3は、指標Bと低サイクル疲労試験における寿命の関係を示す。試験片は、平行部の直径が9mmの円柱形であり、中央に半円弧の切り欠きを有している。切り欠き半径R=1であり、切り欠き底直径は7mmである。試験方法は荷重制御4点曲げ疲労試験であり、最大負荷応力は1060MPa、最大負荷応力と最小負荷応力の応力比は0.1、周波数は5Hzである。
本図から、指標Bが小さいほど浸炭層の脆性破壊が抑制されて低サイクル疲労強度は向上することが分かる。すなわち、指標Bにより、浸炭層の脆性破壊のしやすさを整理することができる。
FIG. 3 shows the relationship between the index B and the life in the low cycle fatigue test. The test piece has a cylindrical shape with a parallel part having a diameter of 9 mm, and has a semicircular arc notch in the center. The notch radius R = 1 and the notch bottom diameter is 7 mm. The test method is a load control four-point bending fatigue test. The maximum load stress is 1060 MPa, the stress ratio between the maximum load stress and the minimum load stress is 0.1, and the frequency is 5 Hz.
From this figure, it is understood that as the index B is smaller, brittle fracture of the carburized layer is suppressed and the low cycle fatigue strength is improved. That is, by the index B, the ease of brittle fracture of the carburized layer can be organized.

そして、指標A及び指標Bが、A−0.00000293×B≧−14の関係を有する場合に、浸炭層が脆性破壊することを抑制できる。より高い低サイクル疲労強度レベルを指向する場合は、A−0.00000293×B≧−13の関係を有するのが望ましい。また特に高い低サイクル疲労強度レベルを指向する場合は、A−0.00000293×B≧−12の関係を有するのが望ましい。   And when the parameter | index A and the parameter | index B have the relationship of A-0.00000293 * B> =-14, it can suppress that a carburized layer carries out a brittle fracture. When aiming at a higher low cycle fatigue strength level, it is desirable to have a relationship of A−0.00000293 × B ≧ −13. Moreover, when aiming at a particularly high low cycle fatigue strength level, it is desirable to have a relationship of A−0.00000293 × B ≧ −12.

次に、本発明鋼の成分を限定した理由について説明する。なお、以下の記載において%とは質量%を示す。   Next, the reason which limited the component of this invention steel is demonstrated. In the following description, “%” means “% by mass”.

Cは鋼に必要な強度を与えるのに有効な元素である。ただし、0.1%未満では必要な引張り強度を確保することができず、0.4%を超えると硬くなって浸炭後の芯部靭性が低下し、また冷間加工性が低下する。このため、Cを0.1〜0.4%の範囲内にする必要がある。   C is an element effective for giving the steel the necessary strength. However, if it is less than 0.1%, the required tensile strength cannot be ensured, and if it exceeds 0.4%, it becomes hard and the core toughness after carburization decreases, and the cold workability also decreases. For this reason, it is necessary to make C into the range of 0.1 to 0.4%.

Siは鋼の脱酸に有効な元素であるとともに、鋼に必要な強度及び焼入性を与え、更に焼戻し軟化抵抗を向上させるのに有効な元素である。ただし、0.02%未満ではその効果は不十分であり、1.3%を超えると硬さの上昇を招いて冷間鍛造性を低下させる。このため、Siを0.02〜1.3%の範囲内にする必要がある。冷間加工を受ける鋼材の好適範囲は0.02〜0.3%であるが、特に冷間鍛造性を重視する場合は0.02〜0.13%の範囲内にするのが好ましい。一方、Siは粒界強度の増加に有効な元素であり、また軸受部品、転動部品においては転動疲労過程での組織変化及び材質変化の抑制による高寿命化に有効な元素である。そのため、高強度化を指向する場合には、0.2〜1.3%の範囲が好適である。特に転動疲労強度を高いレベルで求める場合には、0.4〜1.3%の範囲にするのが好ましい。なお、Si添加による軸受部品及び転動部品の転動疲労過程での組織変化及び材質変化を抑制する効果は、浸炭後の組織中の残留オーステナイト量(残留γ量)が30〜40%のときに特に大きい。残留γ量をこの範囲に制御するには浸炭浸窒処理が有効である。浸炭浸窒処理は、浸炭後の拡散処理において浸窒を行うものである。ここで表面の窒素濃度が0.2〜0.6%の範囲になるように浸窒処理の条件を調節するのが好ましい。   Si is an element effective for deoxidation of steel, and is an element effective for imparting necessary strength and hardenability to the steel and further improving the temper softening resistance. However, if it is less than 0.02%, the effect is insufficient, and if it exceeds 1.3%, the hardness is increased and the cold forgeability is lowered. For this reason, it is necessary to make Si into the range of 0.02-1.3%. The preferable range of the steel material subjected to the cold working is 0.02 to 0.3%, but when the cold forgeability is particularly important, it is preferably within the range of 0.02 to 0.13%. On the other hand, Si is an element effective for increasing the grain boundary strength, and in a bearing part and a rolling part, it is an element effective for extending the life by suppressing the structural change and material change during the rolling fatigue process. Therefore, when aiming at high intensity | strength, the range of 0.2 to 1.3% is suitable. In particular, when the rolling fatigue strength is obtained at a high level, it is preferably in the range of 0.4 to 1.3%. In addition, the effect of suppressing the structural change and material change in the rolling fatigue process of bearing parts and rolling parts due to Si addition is when the retained austenite amount (residual γ amount) in the structure after carburizing is 30 to 40%. Especially great. Carburizing and nitriding treatment is effective for controlling the residual γ amount within this range. The carburizing and nitriding treatment involves nitriding in the diffusion treatment after carburizing. Here, it is preferable to adjust the nitriding conditions so that the surface nitrogen concentration is in the range of 0.2 to 0.6%.

Mnは鋼の脱酸に有効な元素であるとともに、鋼に必要な強度及び焼入れ性を与えるのに有効な元素である。ただし、0.3%未満ではその効果は不十分であり、1.8%を超えるとその効果は飽和するのみならず、硬さの上昇を招いて冷間鍛造性が低下する。このため、Mnを0.3〜1.8%の範囲内にする必要がある。好適な範囲は0.5〜1.2%である。なお、冷間鍛造性を重視する場合には0.5〜0.75%の範囲にするのが好ましい。   Mn is an element effective for deoxidation of steel and is an element effective for imparting the necessary strength and hardenability to the steel. However, if it is less than 0.3%, the effect is insufficient, and if it exceeds 1.8%, the effect is not only saturated, but also the hardness is increased and the cold forgeability is lowered. For this reason, it is necessary to make Mn into the range of 0.3-1.8%. The preferred range is 0.5-1.2%. In addition, when importance is attached to cold forgeability, it is preferable to set it as 0.5 to 0.75% of range.

Sは鋼中でMnSを形成し、これにより被削性の向上をもたらす。ただし、0.001%未満ではその効果は不十分であり、0.15%を超えるとその効果は飽和する一方で粒界偏析を起こして粒界脆化を招く。このため、Sを0.001〜0.15%の範囲内にする必要がある。なお、軸受部品及び転動部品においてはMnSが転動疲労寿命を劣化させるため、Sを極力低減する必要があり、0.001〜0.01%の範囲にするのが望ましい。   S forms MnS in the steel, thereby improving machinability. However, if the content is less than 0.001%, the effect is insufficient. If the content exceeds 0.15%, the effect is saturated while grain boundary segregation occurs, leading to grain boundary embrittlement. For this reason, S needs to be in the range of 0.001 to 0.15%. In addition, since MnS deteriorates the rolling fatigue life in bearing parts and rolling parts, it is necessary to reduce S as much as possible, and it is desirable to make it in the range of 0.001 to 0.01%.

Alは脱酸材として添加する。ただし、0.001%未満ではその効果は不十分であり、0.05%を超えるとAlNが圧延加熱時に溶体化しないで残存し、TiやNbの析出サイトとなり、これらの析出物の微細分散を阻害して浸炭時の結晶粒の粗大化を助長する。このため、Alを0.001〜0.05%の範囲内にする必要がある。   Al is added as a deoxidizing material. However, if it is less than 0.001%, the effect is insufficient, and if it exceeds 0.05%, AlN remains without forming a solution during rolling and heating, and becomes a precipitation site for Ti and Nb. Fine dispersion of these precipitates To promote coarsening of the crystal grains during carburizing. For this reason, it is necessary to make Al into the range of 0.001 to 0.05%.

Nは鋼中でAl、V、Ti、Nb等と結合して窒化物又は炭窒化物を生成し、結晶粒の粗大化を抑制する。ただし、0.003%未満ではその効果は不十分であり、0.020%を超えるとその効果が飽和するとともに冷間加工性が低下する。このため、Nを0.003〜0.020%の範囲にする必要がある。なお、B添加鋼の場合、またはTiC主体で結晶粒の粗大化を防止する場合には、Nを0.003〜0.008%の範囲とするのが好ましい。   N combines with Al, V, Ti, Nb, etc. in the steel to form nitrides or carbonitrides, and suppresses coarsening of crystal grains. However, if it is less than 0.003%, the effect is insufficient, and if it exceeds 0.020%, the effect is saturated and cold workability is lowered. For this reason, it is necessary to make N into the range of 0.003-0.020%. In addition, in the case of B-added steel, or in the case of preventing coarsening of crystal grains mainly composed of TiC, N is preferably set in a range of 0.003 to 0.008%.

Pは冷間鍛造時の変形抵抗を高め、かつ靭性を低下させる元素である。また焼入れ、焼戻し後の結晶粒界を脆化させ、疲労強度を低下させる元素である。このため、Pを0.025%以下、好ましくは0.015%以下にする必要がある。   P is an element that increases deformation resistance during cold forging and decreases toughness. Further, it is an element that embrittles crystal grain boundaries after quenching and tempering and reduces fatigue strength. For this reason, P needs to be 0.025% or less, preferably 0.015% or less.

Oは粒界偏析を起こして粒界脆化を起こしやすくするとともに、鋼中で硬い酸化物系介在物を形成して脆性破壊を起こしやすくする元素である。このため、Oを0.0025%以下にする必要がある。   O is an element that causes grain boundary segregation to easily cause grain boundary embrittlement, and forms hard oxide inclusions in the steel to easily cause brittle fracture. For this reason, O needs to be 0.0025% or less.

また、本発明鋼ではCr、Mo、Ni、B、V、Nb、及びTiの一種又は2種以上を含有する。   Further, the steel of the present invention contains one or more of Cr, Mo, Ni, B, V, Nb, and Ti.

Crは鋼に強度及び焼入性を与えるのに有効な元素であり、かつ軸受部品及び転動部品においては浸炭後の残留γを増大させるとともに、転動疲労過程での組織変化及び材質劣化の抑制による高寿命化に有効な元素である。ただし、1.8%を超えて添加すると硬さの上昇を招いて冷間鍛造性が低下する。このため、Crを添加する場合には1.8%以下にする必要がある。なお、Cr添加による軸受部品及び転動部品の転動疲労過程での組織変化及び材質劣化の抑制効果は、浸炭後の組織中の残留γ量が30〜40%の時に特に大きい。残留γ量をこの範囲に制御するためには、浸炭浸窒処理を行い、表面の窒素濃度が0.2〜0.6%の範囲となるようにすることが有効である。   Cr is an element effective for imparting strength and hardenability to steel, and in bearing parts and rolling parts, increases residual γ after carburizing, and also causes structural changes and material deterioration during rolling fatigue. It is an element that is effective in extending the service life through suppression. However, if added over 1.8%, the hardness increases and cold forgeability decreases. For this reason, when adding Cr, it is necessary to make it 1.8% or less. It should be noted that the effect of suppressing the structural change and material deterioration in the rolling fatigue process of bearing parts and rolling parts due to the addition of Cr is particularly large when the residual γ content in the structure after carburizing is 30 to 40%. In order to control the residual γ amount within this range, it is effective to perform a carburizing and nitriding treatment so that the nitrogen concentration on the surface is in the range of 0.2 to 0.6%.

Moも鋼に強度及び焼入性を与えるとともに、浸炭層の靭性向上に有効な元素である。また、軸受部品及び転動部品においては浸炭後の残留γを増大させるとともに、転動疲労過程での組織変化及び材質劣化の抑制による高寿命化に有効な元素である。ただし、1.5%を超えて添加すると硬さの上昇を招いて冷間鍛造性が低下する。このため、Moを添加する場合には1.5%以下にする必要がある。特に0.02〜0.5%の範囲が好適である。なお、Mo添加による軸受部品及び転動部品の転動疲労過程での組織変化及び材質劣化の抑制効果も、浸炭後の組織中の残留γ量が30〜40%の時に特に大きいため、Crの時と同様に浸炭浸窒処理を行い、表面の窒素濃度が0.2〜0.6%の範囲となるようにすることが有効である。   Mo is also an element effective for improving the toughness of the carburized layer while giving strength and hardenability to the steel. Further, in bearing parts and rolling parts, it is an element effective in increasing the residual γ after carburizing and extending the life by suppressing the structural change and material deterioration in the rolling fatigue process. However, if added over 1.5%, the hardness is increased and the cold forgeability is lowered. For this reason, when adding Mo, it is necessary to make it 1.5% or less. A range of 0.02 to 0.5% is particularly suitable. It should be noted that the effect of suppressing the structural change and material deterioration in the rolling fatigue process of bearing parts and rolling parts due to the addition of Mo is particularly large when the amount of residual γ in the structure after carburizing is 30 to 40%. It is effective to perform the carburizing and nitriding treatment in the same manner as at the time so that the surface nitrogen concentration is in the range of 0.2 to 0.6%.

Niも鋼に強度及び焼入性を与えるとともに、浸炭層の靭性向上に有効な元素であるが、3.5%を超えて添加すると硬さの上昇を招いて冷間鍛造性が低下する。このため、Niを添加する場合には3.5%以下にする必要がある。特に0.1〜3.5%、更には0.4〜2.0%の範囲が好適である。なお、Ni含有量の下限は、0.1%以上にするのが好ましいが、これに限定されるものではない。   Ni is also an element that gives strength and hardenability to the steel and is effective in improving the toughness of the carburized layer, but if added over 3.5%, the hardness is increased and cold forgeability is reduced. For this reason, when adding Ni, it is necessary to make it 3.5% or less. A range of 0.1 to 3.5%, more preferably 0.4 to 2.0% is preferable. The lower limit of the Ni content is preferably 0.1% or more, but is not limited to this.

Vも鋼に強度、焼入性、及び焼戻し軟化抵抗を与えるのに有効な元素であるが、0.5%を超えて添加すると硬さの上昇を招いて冷間鍛造性が低下する。このため、Vを添加する場合には0.5%以下にする必要がある。特に0.03〜0.5%、更には0.07〜0.2%の範囲が好適である。
Bも鋼に強度及び焼入性を与えるのに有効な元素であり、かつ浸炭材の粒界強度を向上させることにより浸炭部品としての疲労強度及び衝撃強度を向上させる効果も有している。ただし、0.006%を超えるとその効果は飽和し、かつ衝撃強度劣化等の悪影響も生じうる。このため、Bを添加する場合には0.006%以下にする必要がある。特に0.0005〜0.003%の範囲が好適である。
V is also an element effective for imparting strength, hardenability and temper softening resistance to the steel, but if added over 0.5%, the hardness is increased and cold forgeability is lowered. For this reason, when adding V, it is necessary to make it 0.5% or less. In particular, a range of 0.03 to 0.5%, more preferably 0.07 to 0.2% is preferable.
B is also an element effective for imparting strength and hardenability to the steel, and has an effect of improving fatigue strength and impact strength as a carburized component by improving the grain boundary strength of the carburized material. However, if it exceeds 0.006%, the effect is saturated, and adverse effects such as impact strength deterioration may occur. For this reason, when adding B, it is necessary to make it 0.006% or less. The range of 0.0005 to 0.003% is particularly suitable.

Nbは浸炭加熱の際に鋼中のC、Nと結合してNb(CN)を形成し、結晶粒の粗大化を抑制するのに有効な元素であるが、0.04%を超えて添加すると硬さの上昇を招いて冷間鍛造性が低下する。このため、Nbを添加する場合には0.04%以下にする必要がある。特に0.03%以下が好適である。また、加工性に加えて浸炭性を重視する場合の好適範囲は0.02%以下である。さらに、特別に浸炭性を重視する場合の好適範囲は0.01%以下である。なお、Nbの含有量は0.001%以上であるのが好ましいが、特にこれに限定されるものではない。   Nb combines with C and N in steel during carburizing heating to form Nb (CN), and is an effective element for suppressing the coarsening of crystal grains, but added over 0.04% As a result, the hardness is increased and the cold forgeability is lowered. For this reason, when adding Nb, it is necessary to make it 0.04% or less. Especially 0.03% or less is suitable. Moreover, the preferable range in the case where carburization is emphasized in addition to workability is 0.02% or less. Furthermore, the preferable range when carburizing property is particularly important is 0.01% or less. In addition, although it is preferable that content of Nb is 0.001% or more, it is not specifically limited to this.

Tiは鋼中で微細なTiC、TiCSを生成させ、これにより浸炭時のγ粒の微細化を図ることができる。また、B添加鋼においては、Tiは、鋼中でNと結合してTiNを生成することによるBN析出防止、つまり固溶Bの確保を目的として添加する。ただし、0.2%を超えると、TiCの析出による鋼の硬化が顕著になって冷間加工性が顕著に低下し、かつTiN主体の析出物が多くなって転動疲労特性が低下する。このため、Tiの添加量を0.2%以下にする必要がある。好適範囲は0.1%以下である。なお、本発明鋼を熱間鍛造部材に適用した場合、浸炭加熱に進入してくる炭素及び窒素と固溶Tiが反応して、浸炭層に微小なTi(CN)が多量に析出する。このため、軸受部品及び転動部品においては転動疲労寿命が向上する。特に高いレベルの転動疲労寿命を指向する場合には、浸炭時の炭素ポテンシャルを0.9〜1.3%の範囲で高めに設定すること、又は浸炭浸窒処理を行うことが有効である。   Ti produces fine TiC and TiCS in the steel, thereby making it possible to refine γ grains during carburization. Further, in the B-added steel, Ti is added for the purpose of preventing BN precipitation by forming TiN by combining with N in the steel, that is, ensuring solid solution B. However, if it exceeds 0.2%, the hardening of the steel due to the precipitation of TiC becomes remarkable and the cold workability is remarkably reduced, and the precipitates mainly composed of TiN increase and the rolling fatigue characteristics deteriorate. For this reason, it is necessary to make the addition amount of Ti 0.2% or less. The preferred range is 0.1% or less. In addition, when this invention steel is applied to a hot forging member, carbon and nitrogen which enter carburizing heating, and solid solution Ti react, and a lot of fine Ti (CN) precipitates in a carburized layer. For this reason, the rolling fatigue life is improved in bearing parts and rolling parts. In particular, when aiming at a high level of rolling fatigue life, it is effective to set the carbon potential at the time of carburizing to a high value in the range of 0.9 to 1.3% or to perform carburizing and nitriding treatment. .

またTiの添加量はNbの添加量に応じて調節するのが好ましい。例えばTi+Nbの好適範囲は0.04%以上0.17%未満である。特に高温浸炭や冷鍛部品において、望ましい範囲は0.091超から0.17%未満である。   Moreover, it is preferable to adjust the addition amount of Ti according to the addition amount of Nb. For example, the preferable range of Ti + Nb is 0.04% or more and less than 0.17%. Particularly in high temperature carburizing and cold forging parts, the desirable range is from more than 0.091 to less than 0.17%.

次に、本発明鋼の製造方法について説明する。製鋼工程において溶鋼の成分調整を行った後、溶鋼を鋳造する(例えば連続鋳造)ことにより鋳片を製造する。次いで、この鋳片を圧延し、更には必要に応じて鍛造、熱処理と機械加工を行うことにより、所定の浸炭部品の形状に加工する。その後、浸炭焼入れを行う。更に必要に応じて焼戻しを行う。   Next, a method for producing the steel of the present invention will be described. After adjusting the components of the molten steel in the steel making process, the molten steel is cast (for example, continuous casting) to produce a slab. Next, this slab is rolled, and further processed into a predetermined carburized part shape by performing forging, heat treatment and machining as necessary. Then, carburizing and quenching is performed. Further, tempering is performed as necessary.

なお、必要に応じて浸炭焼入れ後又は焼戻し後にピーニング処理を行い、靭性を改善してもよい。この場合、表面の残有応力が−500MPa以下となるようにピーニング処理を行うのが好ましい。また、浸炭層の旧オーステナイト結晶粒度Nγが8〜15番であるのが好ましい。   If necessary, peening may be performed after carburizing and tempering to improve toughness. In this case, it is preferable to perform the peening treatment so that the residual stress on the surface is −500 MPa or less. Further, the prior austenite grain size Nγ of the carburized layer is preferably No. 8-15.

本発明に規定する各条件を満たすように複数種類の浸炭鋼材を形成し、その低サイクル疲労強度を測定した。また、比較例として、JISに規定されているSCM420を用いて浸炭鋼材を形成し、その低サイクル疲労強度を測定した。試験片は、平行部の直径が9mmの円柱形であり、中央に半円弧の切り欠きを有している。切り欠き半径R=1であり、切り欠き底直径は7mmである。試験方法は荷重制御4点曲げ疲労試験であり、最大負荷応力は1060MPa、最大負荷応力と最小負荷応力の応力比は0.1、周波数は5Hzである。   A plurality of types of carburized steel materials were formed so as to satisfy the conditions defined in the present invention, and the low cycle fatigue strength was measured. As a comparative example, a carburized steel material was formed using SCM420 defined in JIS, and the low cycle fatigue strength was measured. The test piece has a cylindrical shape with a parallel part having a diameter of 9 mm, and has a semicircular arc notch in the center. The notch radius R = 1 and the notch bottom diameter is 7 mm. The test method is a load control four-point bending fatigue test. The maximum load stress is 1060 MPa, the stress ratio between the maximum load stress and the minimum load stress is 0.1, and the frequency is 5 Hz.

結果を図4に示す。図4は、X軸及びY軸それぞれを、3軸応力度指標B及び浸炭層の靭性指標Aとしたグラフに、本発明の実施例及び比較例をプロットしたものである。各点の横の数値(低サイクル疲労強度)は、負荷の回数が5000回で破断する場合の曲げ応力(MPa:実験結果から算出)を示している。   The results are shown in FIG. FIG. 4 is a graph in which an example and a comparative example of the present invention are plotted on a graph in which the X axis and the Y axis are the triaxial stress index B and the toughness index A of the carburized layer. The numerical value (low cycle fatigue strength) next to each point indicates the bending stress (MPa: calculated from the experimental result) when the load is broken at 5000 times.

比較例は、A−0.00000293×B<−14となっている。この場合、低サイクル疲労強度は910〜970MPaであり、十分な強度を示していない。
一方、A−0.00000293×B≧−14を満たす実施例では、浸炭鋼材の低サイクル疲労強度が1000MPa以上になることが示された。また、A−0.00000293×B≧−13を満たす場合に浸炭鋼材の低サイクル疲労強度が1100MPa以上になること、及びA−0.00000293×B≧−12を満たす場合に浸炭鋼材の低サイクル疲労強度が1200MPa以上になることも示された。
The comparative example is A−0.00000293 × B <−14. In this case, the low cycle fatigue strength is 910 to 970 MPa, which does not indicate sufficient strength.
On the other hand, in the example satisfying A-0.00000293 × B ≧ −14, it was shown that the low cycle fatigue strength of the carburized steel material is 1000 MPa or more. Further, when A-0.00000293 × B ≧ −13 is satisfied, the low cycle fatigue strength of the carburized steel is 1100 MPa or more, and when A-0.00000293 × B ≧ −12 is satisfied, the low cycle of the carburized steel is satisfied. It was also shown that the fatigue strength was 1200 MPa or more.

以上から、A−0.00000293×B≧−14を満たすことにより、浸炭鋼材の低サイクル疲労強度が十分に高くなることが示された。   From the above, it was shown that the low cycle fatigue strength of the carburized steel material is sufficiently increased by satisfying A−0.00000293 × B ≧ −14.

次に、表1の組成を有する鋼材を溶製し、熱間鍛造で40mmφの棒鋼に鍛造した後、焼準処理を行った。上記棒鋼より、平行部の直径が9mmで、中央部に切り欠き半径R=1の半円弧の切り欠き(切り欠き底直径は7mm)を有する試験片を作製し、種々の条件で浸炭焼入れ焼戻し処理を行った後に低サイクル疲労特性を評価した。試験方法は荷重制御4点曲げ疲労試験であり、最大負荷応力と最小負荷応力の応力比は0.1、周波数は5Hzである。
結果を表2に示す。
Next, a steel material having the composition shown in Table 1 was melted and forged into a 40 mmφ bar steel by hot forging, and then subjected to a normalizing treatment. A test piece having a semicircular notch (notch bottom diameter: 7 mm) with a notch radius R = 1 at the center and a carburizing and tempering under various conditions is prepared from the above steel bar. The low cycle fatigue properties were evaluated after the treatment. The test method is a load control 4-point bending fatigue test, in which the stress ratio between the maximum load stress and the minimum load stress is 0.1, and the frequency is 5 Hz.
The results are shown in Table 2.

本発明例では負荷の回数が5000回の低サイクル疲労強度が1000MPa以上と良好な特性を示すことが明らかである。一方、比較例18〜21は、鋼材の焼入れ性(ジョミニ値)が本願規定の範囲を下回り、かつ芯部のフェライト+ベイナイト分率が本願規定の範囲を上回っているため、5000回の低サイクル疲労強度が1000MPa未満である。比較例22、23は、C含有量が本願規定の範囲外であるため、5000回の低サイクル疲労強度が1000MPa未満である。比較例24は、P含有量が本願規定の範囲を上回っているため、5000回の低サイクル疲労強度が1000MPa未満である。比較例26,30は投影芯部硬さが本願発明の範囲を下回っているため、5000回の低サイクル疲労強度が1000MPa未満である。比較例25,28、31はA−0.00000293Bの指標が本願発明の範囲を下回っているため、5000回の低サイクル疲労強度が1000MPa未満である。比較例27は浸炭層のγ粒度Nγが8〜15番の範囲を下回っているため、5000回の低サイクル疲労強度が1000MPaをやや超えるレベルである。比較例25,27,29は表層の浸炭濃度Csが質量%で0.5〜0.8%の規定の範囲を上回っているため、5000回の低サイクル疲労強度が1000MPa未満および1000MPaをやや超えるレベルである。   In the present invention example, it is clear that the low cycle fatigue strength with a load of 5000 times shows a good characteristic of 1000 MPa or more. On the other hand, in Comparative Examples 18 to 21, the hardenability (jomini value) of the steel material is below the range specified in the present application, and the ferrite + bainite fraction of the core is higher than the range specified in the present application. The fatigue strength is less than 1000 MPa. In Comparative Examples 22 and 23, the C content is outside the range specified in the present application, so the low cycle fatigue strength of 5000 times is less than 1000 MPa. In Comparative Example 24, since the P content exceeds the range specified in the present application, the low cycle fatigue strength of 5000 times is less than 1000 MPa. In Comparative Examples 26 and 30, the projection core hardness is below the range of the present invention, so the 5000 low cycle fatigue strength is less than 1000 MPa. In Comparative Examples 25, 28 and 31, since the index of A-0.000002293B is below the range of the present invention, the low cycle fatigue strength of 5000 times is less than 1000 MPa. In Comparative Example 27, the γ particle size Nγ of the carburized layer is below the range of No. 8 to 15, so the low cycle fatigue strength of 5000 times is slightly higher than 1000 MPa. In Comparative Examples 25, 27, and 29, the carburization concentration Cs of the surface layer exceeds the specified range of 0.5 to 0.8% by mass%, so that the low cycle fatigue strength of 5000 times is less than 1000 MPa and slightly over 1000 MPa. Is a level.

次に、一部の試験片については、アークハイト0.5mmAの条件でジョットピーニング処理を行った。結果を表3に示す。ショットピーニング付与により、表面の残留応力を−500MPa以下にすることにより、さらに優れた低サイクル疲労強度が得られることが明らかである。   Next, about some test pieces, the Giotto peening process was performed on the conditions of arc height 0.5mmA. The results are shown in Table 3. It is clear that by providing shot peening, a further excellent low cycle fatigue strength can be obtained by setting the surface residual stress to −500 MPa or less.

微小亀裂発生時の破壊メカニズムを説明する為の模式図。The schematic diagram for demonstrating the fracture mechanism at the time of microcrack generation | occurrence | production. 破損部位を説明する為の概略図。Schematic for demonstrating a damage site | part. 指標Bと低サイクル疲労試験における寿命の関係を示すグラフ。The graph which shows the relationship between the parameter | index B and the lifetime in a low cycle fatigue test. X軸及びY軸それぞれを、3軸応力度指標B及び浸炭層の靭性指標Aとした上で、本発明の実施例及び比較例をプロットしたグラフ。The graph which plotted the Example and comparative example of this invention, after making each X-axis and Y-axis into the triaxial stress index B and the toughness index A of a carburized layer.

Claims (9)

質量%で、
C:0.1〜0.4%、
Si:0.02〜1.3%、
Mn:0.3〜1.8%、
S:0.001〜0.15%、
Al:0.001〜0.05%、
N:0.003〜0.020%、
P:0.025%以下、
O:0.0025%以下
を含有し、さらに、
Cr:1.8%以下、
Mo:1.5%以下、
Ni:3.5%以下、
B:0.006%以下、
V:0.5%以下、
Nb:0.04%以下、
Ti:0.2%以下、
の1種又は2種以上を含有し、残部が鉄及び不可避的不純物からなり、
下記(1)式で定義される投影芯部硬さHp-coreがHV390以上であることを特徴とする低サイクル疲労特性に優れた浸炭焼入れ鋼材。
Hp-core=Hcore/(1−t/r) …(1)
ただし、Hcore;芯部硬さ、t;有効硬化層深さ、r;破損部位の半径または破損部位の肉厚の半分である。
% By mass
C: 0.1-0.4%
Si: 0.02-1.3%
Mn: 0.3 to 1.8%
S: 0.001 to 0.15%,
Al: 0.001 to 0.05%,
N: 0.003 to 0.020%,
P: 0.025% or less,
O: 0.0025% or less,
Cr: 1.8% or less,
Mo: 1.5% or less,
Ni: 3.5% or less,
B: 0.006% or less,
V: 0.5% or less,
Nb: 0.04% or less,
Ti: 0.2% or less,
1 type or 2 types or more, and the balance consists of iron and inevitable impurities,
A carburized and hardened steel material excellent in low cycle fatigue characteristics, characterized in that the projected core hardness Hp-core defined by the following formula (1) is HV390 or more.
Hp-core = Hcore / (1-t / r) (1)
Where Hcore: core hardness, t: effective hardened layer depth, r: half of the radius of the damaged part or the thickness of the damaged part.
芯部組織のフェライト+ベイナイトの分率が50%以下で残部が略マルテンサイトであり、下記(2)式で定義されるA、及び下記(3)式で定義されるBが、A−0.00000293×B≧−14 の関係を有することを特徴とする、請求項1に記載の低サイクル疲労特性に優れた浸炭焼入れ鋼材。
A=Mo+0.227Ni+190B-0.087Si-17.2P-2.74V-7.18Cs-0.00955Hs+0.0344Nγ・・・(2)
ただし、Cs;表層の炭素濃度(質量%)、Hs;表面硬さ(HV)、Nγ;浸炭層の旧オーステナイト結晶粒度。
B=t×(Hcore)2 ・・・(3)
The fraction of ferrite + bainite in the core structure is 50% or less and the balance is substantially martensite, and A defined by the following formula (2) and B defined by the following formula (3) are A-0. The carburized and quenched steel material having excellent low cycle fatigue characteristics according to claim 1, wherein the carburized and quenched steel material has a relationship of 0.0000003 × B ≧ −14.
A = Mo + 0.227Ni + 190B-0.087Si-17.2P-2.74V-7.18Cs-0.00955Hs + 0.0344Nγ (2)
However, Cs: Carbon concentration (mass%) of surface layer, Hs: Surface hardness (HV), Nγ: Old austenite grain size of carburized layer.
B = t × (Hcore) 2 (3)
鋼材の焼入性としてジョミニ試験における焼入れ端より13mmの位置での硬さが、60×C0.5−5(HRC)以上であり、
下記(2)式で定義されるA及び下記(3)式で定義されるBが、A−0.00000293×B≧−14の関係を有することを特徴とする、請求項1に記載の低サイクル疲労特性に優れた浸炭焼入れ鋼材。
A=Mo+0.227Ni+190B−0.087Si−17.2P−2.74V−7.18Cs−0.00955Hs+0.0344Nγ …(2)
ただし、Cs;表層の浸炭濃度(質量%)、Hs;表面硬さ(HV)、Nγ;浸炭層の旧オーステナイト結晶粒度。
B=t×(Hcore) … (3)
As the hardenability of the steel material, the hardness at a position of 13 mm from the quenching end in the Jomini test is 60 × C 0.5 -5 (HRC) or more,
2. The low defined in claim 1, wherein A defined by the following formula (2) and B defined by the following formula (3) have a relationship of A−0.00000293 × B ≧ −14. Carburized and hardened steel with excellent cycle fatigue characteristics.
A = Mo + 0.227Ni + 190B-0.087Si-17.2P-2.74V-7.18Cs-0.00955Hs + 0.0344Nγ (2)
However, Cs: Carburizing concentration of surface layer (mass%), Hs: Surface hardness (HV), Nγ: Old austenite grain size of carburized layer.
B = t × (Hcore) 2 (3)
質量%で、
C:0.1〜0.4%、
Si:0.02〜1.3%、
Mn:0.3〜1.8%、
S:0.001〜0.15%、
Al:0.001〜0.05%、
N:0.003〜0.020%、
P:0.025%以下、
O:0.0025%以下
を含有し、さらに、
Cr:1.8%以下、
Mo:1.5%以下、
Ni:3.5%以下、
B:0.006%以下、
V:0.5%以下、
Nb:0.04%以下、
Ti:0.2%以下、
の1種又は2種以上を含有し、残部が鉄及び不可避的不純物からなり、
ジョミニ試験における焼入れ端より13mmの位置での硬さが、60×C0.5−5(HRC)以上であり、
下記(2)式で定義されるA及び下記(3)式で定義されるBが、A−0.00000293×B≧−14の関係を有することを特徴とする低サイクル疲労特性に優れた浸炭焼入れ鋼材。
A=Mo+0.227Ni+190B−0.087Si−17.2P−2.74V−7.18Cs−0.00955Hs+0.0344Nγ …(2)
ただし、Cs;表層の浸炭濃度(質量%)、Hs;表面硬さ(HV)、Nγ;浸炭層の旧オーステナイト結晶粒度。
B=t×(Hcore) … (3)
ただし、Hcore;芯部硬さ、t;有効硬化層深さ。
% By mass
C: 0.1-0.4%
Si: 0.02-1.3%
Mn: 0.3 to 1.8%
S: 0.001 to 0.15%,
Al: 0.001 to 0.05%,
N: 0.003 to 0.020%,
P: 0.025% or less,
O: 0.0025% or less,
Cr: 1.8% or less,
Mo: 1.5% or less,
Ni: 3.5% or less,
B: 0.006% or less,
V: 0.5% or less,
Nb: 0.04% or less,
Ti: 0.2% or less,
1 type or 2 types or more, and the balance consists of iron and inevitable impurities,
The hardness at a position 13 mm from the quenching end in the Jomini test is 60 × C 0.5 -5 (HRC) or more,
Carburization excellent in low cycle fatigue characteristics, wherein A defined by the following formula (2) and B defined by the following formula (3) have a relationship of A-0.00000293 × B ≧ −14 Hardened steel.
A = Mo + 0.227Ni + 190B-0.087Si-17.2P-2.74V-7.18Cs-0.00955Hs + 0.0344Nγ (2)
However, Cs: Carburizing concentration of surface layer (mass%), Hs: Surface hardness (HV), Nγ: Old austenite grain size of carburized layer.
B = t × (Hcore) 2 (3)
Where Hcore: core hardness, t: effective hardened layer depth.
表層の浸炭濃度Csが質量%で0.5〜0.8%であることを特徴とする請求項1〜4のいずれか一項に記載の低サイクル疲労特性に優れた浸炭焼入れ鋼材。   The carburized and quenched steel material having excellent low cycle fatigue characteristics according to any one of claims 1 to 4, wherein the carburization concentration Cs of the surface layer is 0.5 to 0.8% by mass. 浸炭層の旧オーステナイト結晶粒度Nγが8〜15番であることを特徴とする請求項1〜5のいずれか一項に記載の低サイクル疲労特性に優れた浸炭焼入れ鋼材。   The carburized and quenched steel material having excellent low cycle fatigue characteristics according to any one of claims 1 to 5, wherein the prior austenite grain size Nγ of the carburized layer is No. 8-15. 表面の残留応力が−500MPa以下であることを特徴とする請求項1〜6のいずれか一項に記載の低サイクル疲労特性に優れた浸炭焼入れ鋼材。   The residual stress on the surface is -500 MPa or less, the carburized and quenched steel material excellent in low cycle fatigue characteristics according to any one of claims 1 to 6. 請求項1〜7のいずれか一項に記載の浸炭焼入れ鋼材を用いた浸炭焼入れ部品。   A carburized and hardened part using the carburized and hardened steel according to any one of claims 1 to 7. 前記浸炭焼入れ部品は歯車であることを特徴とする請求項8に記載の浸炭焼入れ部品。
The carburized and hardened part according to claim 8, wherein the carburized and hardened part is a gear.
JP2006167568A 2006-06-16 2006-06-16 Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties Active JP4728883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167568A JP4728883B2 (en) 2006-06-16 2006-06-16 Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167568A JP4728883B2 (en) 2006-06-16 2006-06-16 Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010248674A Division JP5505263B2 (en) 2010-11-05 2010-11-05 Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties

Publications (2)

Publication Number Publication Date
JP2007332438A true JP2007332438A (en) 2007-12-27
JP4728883B2 JP4728883B2 (en) 2011-07-20

Family

ID=38932189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167568A Active JP4728883B2 (en) 2006-06-16 2006-06-16 Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties

Country Status (1)

Country Link
JP (1) JP4728883B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150566A (en) * 2008-12-24 2010-07-08 Sumitomo Metal Ind Ltd Steel for vacuum carburizing or vacuum carbo-nitriding
JP2010285689A (en) * 2009-05-13 2010-12-24 Nippon Steel Corp Carburized steel component excellent in low-cycle bending fatigue strength
JP2011102425A (en) * 2009-11-12 2011-05-26 Sumitomo Metal Ind Ltd Steel for surface-hardening treatment
WO2011111269A1 (en) * 2010-03-10 2011-09-15 新日本製鐵株式会社 Carburized steel component having excellent low-cycle bending fatigue strength
JP2011184768A (en) * 2010-03-10 2011-09-22 Kobe Steel Ltd High strength case hardening steel component and method for producing the same
JP2012197471A (en) * 2011-03-18 2012-10-18 Sanyo Special Steel Co Ltd Steel stock for machine structure with small heat treatment deformation
US8801873B2 (en) 2009-03-30 2014-08-12 Nippon Steel & Sumitomo Metal Corporation Carburized steel part
CN104109816A (en) * 2014-06-26 2014-10-22 南车戚墅堰机车车辆工艺研究所有限公司 Carburizing alloy steel, and preparation method and application thereof
JP2016188421A (en) * 2015-03-30 2016-11-04 株式会社神戸製鋼所 Carburized component
JP2017218608A (en) * 2016-06-03 2017-12-14 新日鐵住金株式会社 Carburization member
WO2018047955A1 (en) * 2016-09-09 2018-03-15 Jfeスチール株式会社 Case-hardened steel, method for producing same, and method for manufacturing gear part
JP2019183211A (en) * 2018-04-05 2019-10-24 日本製鉄株式会社 Carburization component
JP2022520835A (en) * 2019-12-18 2022-04-01 ポスコ High-strength hot-rolled steel sheet with excellent punching property and material uniformity and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104971A (en) * 1994-10-03 1996-04-23 Daido Steel Co Ltd Production of bearing part
JPH08120438A (en) * 1994-10-19 1996-05-14 Kobe Steel Ltd Production of parts for machine structure
JPH0953148A (en) * 1995-08-11 1997-02-25 Kobe Steel Ltd Machine parts made of high toughness case hardening steel and their production
JPH10259450A (en) * 1997-03-19 1998-09-29 Mitsubishi Motors Corp Case hardening steel excellent in low cycle fatigue strength
JP2004238702A (en) * 2003-02-07 2004-08-26 Sumitomo Metal Ind Ltd Carburized component excellent in low-cycle impact fatigue resistance
JP2005036257A (en) * 2003-07-16 2005-02-10 Daido Steel Co Ltd Carburized gear with excellent impact fatigue strength, and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104971A (en) * 1994-10-03 1996-04-23 Daido Steel Co Ltd Production of bearing part
JPH08120438A (en) * 1994-10-19 1996-05-14 Kobe Steel Ltd Production of parts for machine structure
JPH0953148A (en) * 1995-08-11 1997-02-25 Kobe Steel Ltd Machine parts made of high toughness case hardening steel and their production
JPH10259450A (en) * 1997-03-19 1998-09-29 Mitsubishi Motors Corp Case hardening steel excellent in low cycle fatigue strength
JP2004238702A (en) * 2003-02-07 2004-08-26 Sumitomo Metal Ind Ltd Carburized component excellent in low-cycle impact fatigue resistance
JP2005036257A (en) * 2003-07-16 2005-02-10 Daido Steel Co Ltd Carburized gear with excellent impact fatigue strength, and its manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150566A (en) * 2008-12-24 2010-07-08 Sumitomo Metal Ind Ltd Steel for vacuum carburizing or vacuum carbo-nitriding
US8801873B2 (en) 2009-03-30 2014-08-12 Nippon Steel & Sumitomo Metal Corporation Carburized steel part
JP2010285689A (en) * 2009-05-13 2010-12-24 Nippon Steel Corp Carburized steel component excellent in low-cycle bending fatigue strength
US9469883B2 (en) 2009-05-13 2016-10-18 Nippon Steel & Sumitomo Metal Corporation Carburized steel part having excellent low cycle bending fatigue strength
JP2011102425A (en) * 2009-11-12 2011-05-26 Sumitomo Metal Ind Ltd Steel for surface-hardening treatment
CN102471842A (en) * 2010-03-10 2012-05-23 新日本制铁株式会社 Carburized steel component excellent in low-cycle bending fatigue strength
CN103382538A (en) * 2010-03-10 2013-11-06 新日铁住金株式会社 Carburized steel component excellent in low-cycle bending fatigue strength
JP2011184768A (en) * 2010-03-10 2011-09-22 Kobe Steel Ltd High strength case hardening steel component and method for producing the same
WO2011111269A1 (en) * 2010-03-10 2011-09-15 新日本製鐵株式会社 Carburized steel component having excellent low-cycle bending fatigue strength
JP2012197471A (en) * 2011-03-18 2012-10-18 Sanyo Special Steel Co Ltd Steel stock for machine structure with small heat treatment deformation
CN104109816A (en) * 2014-06-26 2014-10-22 南车戚墅堰机车车辆工艺研究所有限公司 Carburizing alloy steel, and preparation method and application thereof
JP2016188421A (en) * 2015-03-30 2016-11-04 株式会社神戸製鋼所 Carburized component
JP2017218608A (en) * 2016-06-03 2017-12-14 新日鐵住金株式会社 Carburization member
WO2018047955A1 (en) * 2016-09-09 2018-03-15 Jfeスチール株式会社 Case-hardened steel, method for producing same, and method for manufacturing gear part
JPWO2018047955A1 (en) * 2016-09-09 2018-12-06 Jfeスチール株式会社 Case-hardened steel, method for producing the same, and method for producing gear parts
JP2019052376A (en) * 2016-09-09 2019-04-04 Jfeスチール株式会社 Gear component and manufacturing method therefor
US11332799B2 (en) 2016-09-09 2022-05-17 Jfe Steel Corporation Case hardening steel, method of producing the same, and method of producing gear parts
JP2019183211A (en) * 2018-04-05 2019-10-24 日本製鉄株式会社 Carburization component
JP7063070B2 (en) 2018-04-05 2022-05-09 日本製鉄株式会社 Carburized parts
JP2022520835A (en) * 2019-12-18 2022-04-01 ポスコ High-strength hot-rolled steel sheet with excellent punching property and material uniformity and its manufacturing method
JP7373576B2 (en) 2019-12-18 2023-11-02 ポスコ カンパニー リミテッド High-strength hot-rolled steel sheet with excellent punchability and material uniformity and its manufacturing method

Also Published As

Publication number Publication date
JP4728883B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4728883B2 (en) Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties
JP5505263B2 (en) Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties
JP5862802B2 (en) Carburizing steel
JP5099276B1 (en) Gas carburized steel parts having excellent surface fatigue strength, steel for gas carburizing, and method for producing gas carburized steel parts
US9890446B2 (en) Steel for induction hardening roughly shaped material for induction hardening
JP4688727B2 (en) Carburized parts and manufacturing method thereof
JP4385019B2 (en) Manufacturing method for steel nitrocarburized machine parts
KR20120012837A (en) Carburized steel component having excellent low-cycle bending fatigue strength
WO2019244503A1 (en) Mechanical component
JP3094856B2 (en) High strength, high toughness case hardening steel
JPWO2019198415A1 (en) Steel for parts to be carburized
JP2009127095A (en) Case-hardening steel for power transmission component
JP4728884B2 (en) Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics
JP2006037177A (en) Age-hardening steel
JP6433341B2 (en) Age-hardening bainite non-tempered steel
JP4847681B2 (en) Ti-containing case-hardened steel
WO2017056896A1 (en) Preform for crankshaft, nitride crankshaft, and manufacturing method for same
JP4828321B2 (en) Induction hardened steel and induction hardened parts with excellent low cycle fatigue properties
JP5505264B2 (en) Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics
JP2009191322A (en) Case-hardened steel superior in grain-coarsening resistance for use in carburized parts
JP2007107046A (en) Steel material to be induction-hardened
JP6680406B1 (en) Machine parts and method of manufacturing machine parts
JPH08260039A (en) Production of carburized and case hardened steel
JP2007113063A (en) Hot-forged parts
JP4778626B2 (en) Manufacturing method of steel parts with low heat treatment strain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R151 Written notification of patent or utility model registration

Ref document number: 4728883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350