WO2011111269A1 - Carburized steel component having excellent low-cycle bending fatigue strength - Google Patents

Carburized steel component having excellent low-cycle bending fatigue strength Download PDF

Info

Publication number
WO2011111269A1
WO2011111269A1 PCT/JP2010/070516 JP2010070516W WO2011111269A1 WO 2011111269 A1 WO2011111269 A1 WO 2011111269A1 JP 2010070516 W JP2010070516 W JP 2010070516W WO 2011111269 A1 WO2011111269 A1 WO 2011111269A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatigue strength
bending fatigue
low cycle
cycle bending
less
Prior art date
Application number
PCT/JP2010/070516
Other languages
French (fr)
Japanese (ja)
Inventor
修司 小澤
学 久保田
修 加田
元裕 西川
高志 田中
典正 常陰
Original Assignee
新日本製鐵株式会社
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010053555A external-priority patent/JP5530763B2/en
Application filed by 新日本製鐵株式会社, 山陽特殊製鋼株式会社 filed Critical 新日本製鐵株式会社
Priority to KR1020117030663A priority Critical patent/KR20120012837A/en
Priority to US13/139,000 priority patent/US20120060979A1/en
Priority to CN2010800294541A priority patent/CN102471842A/en
Publication of WO2011111269A1 publication Critical patent/WO2011111269A1/en
Priority to US14/014,983 priority patent/US9469883B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties

Definitions

  • the present invention relates to a carburized steel part excellent in low cycle bending fatigue strength.
  • Gears such as mechanical structural parts, differential gears, transmission gears, and carburized shafts with gears have low cycle fatigue (fatigue in the range of several hundred to several thousand cycles) due to the sudden start and stop of the vehicle. ) May be damaged.
  • improvement of low cycle fatigue strength is further desired for differential gears and transmission gears.
  • the steel parts are made of case-hardened steel with C: around 0.2% such as JIS SCr420, SCM420, etc. as steel materials, thereby ensuring the toughness of the core, carburizing and quenching, and low temperature around 150 ° C.
  • the surface has a tempered martensite structure with C: around 0.8%, and the high cycle bending fatigue strength and wear resistance are enhanced.
  • Patent Document 1 contains C: 0.1 to 0.3%, B: 0.005% or less, Si: 0.3% or less, P : Carburized parts limited to 0.03% or less and core hardness: HV350 or more are disclosed.
  • Patent Document 2 the sum of plastic deformation resistance and grain boundary strength calculated from the component composition is limited to C: 0.15 to 0.3%, Si: 0.5% or less, and P: 0.01% or less. The case hardening steel which raised low cycle fatigue strength by making more than a fixed value is disclosed.
  • Patent Document 3 C: 0.1 to 0.3%, B: 0.001 to 0.005%, Si: 0.5% or less, P: 0.03% or less,
  • the hardness of the core part A carburized gear excellent in low cycle fatigue strength of HV300 or more is disclosed.
  • C is 0.15 to 0.3%, B is 0.0003 to 0.005%, Si is 0.03 to 0.25%, and P is limited to 0.02% or less.
  • the carburized component which improved the low cycle impact fatigue characteristic by making the value relevant to the core hardness calculated from the component composition more than a fixed value is disclosed.
  • Patent Document 5 C: 0.1 to 0.4%, Si: 1.0% or less, Mn: more than 1.5 to 3%, P: 0.03% or less, S: 0.03% or less Cr: 0.3 to 2.5%, Al: 0.005 to 0.050%, Ti: 0.003% or less, O: 0.0015% or less, N: 0.025% or less, balance is inevitable
  • a carbonitrided bearing steel comprising impurities and Fe, having a surface hardness of 58 HRC or more after carbonitriding or subsequent secondary quenching and tempering, and a surface retained austenite amount of 20 to 50% is disclosed. .
  • Patent Document 6 C: 0.1 to 0.4%, Si: 0.02 to 1.3%, Mn: 0.3 to 1.8%, S: 0.001 to 0.15%, Al: 0.001 to 0.05%, N: 0.003 to 0.020%, P: 0.025% or less, O: 0.0025% or less, and Cr: 1.8% or less Mo: 1.5% or less, Ni: 3.5% or less, B: 0.006% or less, V: 0.5% or less, Nb: 0.04% or less, Ti: 0.2% or less
  • Patent Document 7 C: 0.1 to 0.4%, Si: 0.5% or less, Mn: 1.5% or less, P: 0.03% or less, S: 0.03% or less, Cr : 0.3-2.5%, Mo: 0.1-2.0%, V: 0.1-2.0%, Al: 0.050% or less, O: 0.0015% or less, N: 0.025% or less, V + Mo: 0.4 to 3.0%, balance Fe and inevitable impurities, steel subjected to carburizing quenching and tempering treatment, and surface layer C concentration after tempering treatment is 0.6 to Hydrogen embrittlement with 1.2%, surface hardness of HRC 58 or more and less than 64, and the proportion of fine V-type carbides having a particle size of less than 100 nm among the V-type carbides dispersed and precipitated on the surface layer is 80% or more
  • a case-hardened steel excellent in mold surface fatigue strength is disclosed.
  • the low cycle bending fatigue strength does not reach the level of low cycle
  • JP-A-8-92690 Japanese Patent Laid-Open No. 10-259450 International Publication WO02 / 44435 JP 2004-238702 A Japanese Patent Laying-Open No. 2005-042188 JP 2007-332438 A JP 2008-280583 A
  • Patent Documents 1 to 7 cannot answer the improvement in low cycle bending fatigue strength that is required today. Then, this invention makes it a subject to provide the carburized-steel components which the low cycle bending fatigue strength improved notably compared with the conventional low cycle bending fatigue strength.
  • the steel material further comprises B: 0.0002 to 0.005% by mass%, and is excellent in low cycle bending fatigue strength as described in (1) or (2) above Carburized steel parts.
  • the steel material is further in mass%, Mo: less than 0.1%, Cu: less than 0.1%, and Ni: less than 0.1% as one or more kinds as unavoidable components.
  • the steel material is one type of Mo: 0.1 to 1.5%, Cu: 0.1 to 2.0%, and Ni: 0.1 to 5.0% in mass%.
  • the steel material further contains one or two kinds of Nb: 0.01 to 0.2% and V: 0.03 to 0.2% by mass%.
  • the steel material is one type of Ca: 0.0002 to 0.005%, Zr: 0.0003 to 0.005%, and Mg: 0.0003 to 0.005% by mass%.
  • gears such as differential gears for automobiles can be greatly reduced in size and weight, and as a result, the fuel efficiency of the automobile is improved, and , CO 2 emission can be reduced.
  • FIG. 1 is a diagram showing a low cycle bending fatigue test piece and a low cycle bending fatigue test method.
  • FIG. 2 is a diagram showing the effect of compressive residual stress (MPa) on 500 cycle bending fatigue strength (kN).
  • FIG. 3 is a diagram showing the influence of the grain boundary oxide layer depth ( ⁇ m) on the 500 cycle bending fatigue strength (kN).
  • FIG. 4 is a diagram showing the influence of surface hardness (HV) on 500 cycle bending fatigue strength (kN).
  • FIG. 5 is a diagram showing the influence of core hardness (HV) on 500 cycle bending fatigue strength (kN).
  • C 0.1 to 0.6%
  • the core structure is a hardened structure mainly composed of martensite, and the hardened martensite becomes harder as the amount of C increases.
  • C is made 0.1 to 0.6%.
  • C is preferably 0.2% or more, and more preferably more than 0.3%.
  • C is preferably 0.4% or less.
  • it is effective to apply compressive residual stress.
  • the core of C around 0.2% first expands in the martensitic transformation, and then the carburized layer of C: around 0.8% expands in the martensitic transformation. Compressive stress remains near the surface of the steel part.
  • Si is an element that enhances hardenability, increases the core hardness of the steel part after carburizing and quenching, and contributes to the improvement of low cycle bending fatigue strength. If it is less than 0.01%, the effect of addition is insufficient. On the other hand, if it exceeds 1.5%, the carburizing property is inhibited, so Si is made 0.01 to 1.5%.
  • Si increases the activity of C in the steel material in the range of 0.5 to 1.5%. Therefore, it is an element effective for further improving the low cycle bending fatigue strength because it acts to suppress the surface hardness. Therefore, Si is preferably 0.5 to 1.5%.
  • Mn 0.3 to 2.0%
  • Mn is an element effective for deoxidation of steel materials, and is an element that improves the hardenability of steel materials, increases the core hardness of steel parts after carburizing and quenching, and contributes to the improvement of low cycle bending fatigue strength. . If it is less than 0.3%, the effect of addition is insufficient. On the other hand, if it exceeds 2.0%, the effect of addition is saturated, so Mn is set to 0.3 to 2.0%. Preferably, it is 0.8 to 1.5%.
  • P 0.02% or less P is an impurity, and segregates at austenite grain boundaries during carburizing, causing grain boundary fracture and reducing low cycle bending fatigue strength. Therefore, P is limited to 0.02% or less.
  • S 0.001 to 0.15%
  • S is an element that forms MnS in the steel and contributes to improvement of machinability. If it is less than 0.001%, the effect of addition is insufficient. On the other hand, if it exceeds 0.15%, the effect of addition is saturated and segregates at the grain boundary to cause grain boundary embrittlement.
  • 0.001 to 0.15% Preferably it is 0.01 to 0.1%.
  • N 0.001 to 0.03%
  • N is an element that forms a nitride or carbonitride that binds to Al, Ti, Nb, V, and the like in the steel material and has an effect of suppressing coarsening of crystal grains.
  • Al is an element added for the purpose of deoxidation of steel materials. If it is less than 0.001%, the effect of addition is insufficient. On the other hand, if it exceeds 0.06%, the effect of addition is saturated, so Al is made 0.001 to 0.06%. Preferably, the content is 0.01 to 0.04%.
  • O 0.005% or less
  • O is inevitably contained, and segregates at the grain boundaries to easily cause grain boundary embrittlement, and forms hard oxide inclusions that cause brittle fracture in the steel material. It is an element that is easy to do.
  • O is made 0.005% or less. Preferably it is 0.002% or less.
  • the steel material of the present invention contains B for further improving the low cycle bending fatigue strength (20 kN or more).
  • B 0.0002 to 0.005%
  • B is an element that suppresses the grain boundary segregation of P and increases the grain boundary strength, intragranular strength, and hardenability, and contributes to the improvement of low cycle bending fatigue strength (20 kN or more).
  • the steel material of the present invention further contains Cr in order to improve hardenability and further improve low cycle bending fatigue strength.
  • Cr 1.20 to 3.0% Cr is an element that improves the hardenability of the steel material, increases the core hardness of the steel part after carburizing and quenching, and contributes to the improvement of low cycle bending fatigue strength. If it is less than 1.20%, the effect of addition is insufficient.
  • the steel according to the present invention contains Ti in order to prevent the crystal grains from becoming coarse and the low cycle fatigue strength from deteriorating during high temperature carburizing.
  • Ti 0.005 to 0.2%
  • Ti is an element that generates fine TiC and / or TiS in a steel material. Due to the presence of TiC and / or TiS, austenite grains can be stably refined in high-temperature carburization at a carburizing temperature of 980 ° C. or higher, or for a long time of carburizing for 10 hours or longer. Deterioration of fatigue strength can be prevented.
  • Ti is an element that combines with N in the steel material to generate TiN, prevents precipitation of BN, and contributes to securing solid solution B. If the content is less than 0.005%, the effect of addition is insufficient. On the other hand, if the content exceeds 0.2%, a large amount of TiN-based precipitates are precipitated and the rolling fatigue characteristics are deteriorated. 005 to 0.2%. Preferably it is 0.01 to 0.1%. In the steel material of the present invention, Mo, Cu, and Ni inevitably mixed are limited to less than 0.1%. Preferably, it is limited to 0.05% or less, more preferably 0.01% or less.
  • Mo, Cu, and Ni are elements that have the effect of increasing the hardenability and increasing the low cycle bending fatigue strength, and contain one or more of the required amounts of Mo, Cu, and Ni. May be.
  • Mo: 0.1 to 1.5% Mo is an element that improves the hardenability of the steel material, increases the core hardness of the steel part after carburizing and quenching, and contributes to the improvement of low cycle bending fatigue strength. If it is less than 0.1%, there is no effect. On the other hand, if it exceeds 1.5%, the effect of addition is saturated, so Mo is made 0.1 to 1.5%. Preferably it is 0.3 to 1.2%.
  • Cu 0.1 to 2.0%
  • Cu is an element that improves the hardenability of the steel material, increases the core hardness of the steel part after carburizing and quenching, and contributes to the improvement of low cycle bending fatigue strength. If it is less than 0.1%, the effect of addition is insufficient. On the other hand, if it exceeds 2.0%, the effect of addition is saturated, so Cu is made 0.1 to 2.0%. Preferably it is 0.3 to 1.5%.
  • Ni 0.1-5.0%
  • Ni is an element that improves the hardenability of the steel material, increases the core hardness of the steel part after carburizing and quenching, and contributes to the improvement of low cycle bending fatigue strength. If it is less than 0.1%, there is no effect.
  • the steel according to the present invention may further contain one or two of Nb and V in order to prevent crystal grains from becoming coarse during low temperature carburization and deterioration of low cycle fatigue strength.
  • Nb 0.01 to 0.2%
  • Nb is an element that generates Nb carbonitride in steel. Because of the presence of Nb carbonitrides, austenite grains can be stably refined in high-temperature carburization with a carburizing temperature of 980 ° C. or higher and long-term carburizing with a carburizing time of 10 hours or longer. Strength deterioration can be prevented.
  • V 0.03-0.2%
  • V is an element that generates V carbonitride in the steel material. Because of the presence of V carbonitride, austenite grains can be stably refined in high-temperature carburization at a carburizing temperature of 980 ° C. or higher, or in long-term carburizing for a carburizing time of 10 hours or longer, so low cycle fatigue Strength deterioration can be prevented. If it is less than 0.03%, the effect of addition is insufficient.
  • the steel material of the present invention may contain a required amount of one or more of Ca, Zr, and Mg for improving machinability.
  • Ca 0.0002 to 0.005%
  • Ca is an element that lowers the melting point of oxides in steel materials. The low melting point oxide is softened by the temperature rise in the cutting environment, and improves the machinability of the steel material. If it is less than 0.0002%, there is no effect of addition. On the other hand, if it exceeds 0.005%, a large amount of CaS is generated and the machinability of the steel material is lowered. %.
  • Zr 0.0003 to 0.005%
  • Zr is an element that deoxidizes a steel material to generate an oxide, and also generates a sulfide. Sulfide contributes to the improvement of machinability in cooperation with MnS. Since Zr-based oxides serve as nuclei for MnS crystallization / precipitation, Zr is also an effective element for controlling the dispersion of MnS. Zr is added in an amount exceeding 0.003% for spheroidizing MnS. Conversely, in order to finely disperse MnS, 0.003 to 0.005% is added.
  • Mg is an element that deoxidizes a steel material to generate an oxide, and also generates a sulfide. Sulfide contributes to the improvement of machinability in cooperation with MnS. Mg-based oxides serve as nuclei for crystallization / precipitation of MnS, and sulfides become composite sulfides of Mn and Mg, thereby suppressing deformation of composite sulfides and making them spheroidized.
  • the surface hardness is set to HV550 to HV800 (see “ ⁇ ⁇ ” in the figure).
  • HV600 to HV750 is preferable, and HV620 to HV720 is more preferable.
  • the surface hardness exceeds HV800, the toughness of the surface is remarkably lowered, the propagation speed of cracks is increased, and the low cycle bending fatigue strength is lowered. Since the surface hardness is the hardness of the carburized structure forming the carburized layer, the surface hardness can be adjusted by adjusting the carbon potential during carburizing and the tempering temperature after carburizing and quenching.
  • a steel part is carburized and quenched at a carbon potential of 0.8, then tempered at 150 ° C., and then a low cycle bending fatigue test is performed. If the low cycle bending fatigue strength is lower than the required value, The carbon potential is lowered to 0.7, or the tempering temperature is raised to 180 ° C. to reduce the surface hardness, thereby improving the low cycle bending fatigue strength.
  • Core hardness: HV400 to HV500 The inventors investigated the influence of the core hardness (HV) on the 500 cycle bending fatigue strength (kN) in the range of the core hardness HV270 to HV650. The result is shown in FIG. From FIG.
  • the core hardness is in the range of HV400 to HV500, and the higher the core hardness is, the more the low cycle bending fatigue strength is improved.
  • the core hardness is low, the core (hardened structure) directly under the carburized layer yields, and the carburized layer cannot receive stress more than the stress when yielded. It has been found that the stress on the surface of the steel part increases.
  • the core hardness is required to be HV400 or more, so the core hardness is HV400 to HV500.
  • a core part is a location where C which penetrates from the surface of a steel part reaches by carburizing treatment. For example, it is a portion from a location where the material C increases by 10% (0.22% when the material C is 0.20%) to the material C.
  • the core can be identified by EPMA-C line analysis or the like.
  • the carburizing method does not need to use a special method, and the effects of the present invention are exhibited even when a gas carburizing method, a vacuum carburizing method, a gas carbonitriding method, or the like, which is a general carburizing method, is used.
  • a gas carburizing method a vacuum carburizing method, a gas carbonitriding method, or the like, which is a general carburizing method, is used.
  • the carburized structure is responsible for the surface hardness
  • the hardened structure is responsible for the core hardness, so the component composition is adjusted to give the steel the required carburizability and hardenability.
  • the core hardness can be adjusted separately. This point is also a feature of the present invention.
  • the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Steel materials having the composition shown in Tables 1 and 2 were forged and then subjected to soaking and normalization to produce a roughing test piece for a low cycle bending fatigue test and a roughing test piece for a wear test. .
  • Test No. 1 to 21 (invention example), test no. 23 to 25 (comparative examples) and test no.
  • the rough-processed test pieces 28 to 44 were subjected to carburizing treatment at 930 ° C. for 5 hours in a modified gas carburizing furnace, and then subjected to oil quenching at 130 ° C.
  • Specimen No. About the rough processing test piece of 26 (comparative example) carburizing treatment of 930 ° C. ⁇ 5 hours was performed in a modified gas carburizing furnace, and then oil quenching at 220 ° C.
  • the carbon potential during the carburizing treatment was adjusted in the range of 0.5 to 0.8, and the tempering temperature was adjusted in the range of 150 to 300 ° C. to adjust the surface hardness and core hardness.
  • the low cycle bending fatigue test is a four-point bending that applies a load 2 with a stress ratio of 0.1 to a 13 mm square low cycle bending fatigue test piece 1 having a notch X with a sine wave at a frequency of 1 Hz.
  • a fatigue test was performed.
  • the frequency of 1 Hz (about 0.01 s ⁇ 1 in terms of strain rate) is smaller than the strain rate actually applied to the automobile gear.
  • the repetition rate affects the fatigue test value when the strain rate is 10 s ⁇ 1 or more. This is a region, and 10 s ⁇ 1 is much larger than the strain rate actually applied to the automobile gear, so there is no problem in the evaluation with the frequency of 1 Hz.
  • the stress ratio of an actual automobile gear is 0, but the reason for setting the stress ratio to 0.1 in this test is to prevent the test piece from slipping during unloading during the test.
  • the low cycle bending fatigue strength is low. This is because the component composition of the steel is within the scope of the present invention, but the core hardness exceeds HV550.
  • the reason why the core hardness exceeds HV550 is that the amount of C is relatively high at 0.6% and the temperature of the quenching oil is as low as 20 ° C.
  • gears such as a differential gear for automobiles can be significantly reduced in size and weight. It becomes possible to improve fuel consumption and reduce CO 2 emission. Therefore, the effect of the present invention is extremely remarkable, and the present invention has great industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Disclosed is a carburized steel component having excellent low-cycle bending fatigue strength, which is obtained by carburizing a steel material, which contains 0.1-0.6% by mass of C, 0.01-1.5% by mass of Si, 0.3-2.0% by mass of Mn, 0.02% by mass or less of P, 0.001-0.15% by mass of S, 0.001-0.03% by mass of N, 0.001-0.06% by mass of Al and 0.005% by mass or less of O, with the balance substantially made up of iron and unavoidable impurities, and then tempering the steel material. The carburized steel component is characterized by having a surface hardness from HV 550 to HV 800 and a core hardness from HV 400 to HV 500.

Description

低サイクル曲げ疲労強度に優れた浸炭鋼部品Carburized steel parts with excellent low cycle bending fatigue strength
 本発明は、低サイクル曲げ疲労強度に優れた浸炭鋼部品に関するものである。 The present invention relates to a carburized steel part excellent in low cycle bending fatigue strength.
 機械構造用部品、差動歯車、トランスミッション歯車、歯車付き浸炭シャフトなどの歯車は、車両の急発進、急停車の際の負荷により、歯元が、低サイクル疲労(数百から数千サイクル域の疲労)で破損することがある。特に、差動歯車や、トランスミッション歯車には、低サイクル疲労強度の向上が、より一層、望まれている。
 従来、上記鋼部品には、鋼材として、JIS SCr420、SCM420等のC:0.2%前後の肌焼鋼を用いることで、芯部の靭性を確保し、浸炭焼入れと、150℃前後の低温焼戻しで、表面を、C:0.8%前後の焼戻しマルテンサイト組織とし、高サイクル曲げ疲労強度や、耐摩耗性を高めている。
 低サイクル曲げ疲労強度を高くした鋼部品として、特許文献1には、C:0.1~0.3%、B:0.005%以下を含有し、Si:0.3%以下に、P:0.03%以下に制限し、芯部硬さ:HV350以上の浸炭部品が開示されている。
 特許文献2には、C:0.15~0.3%、Si:0.5%以下、P:0.01%以下に制限し、成分組成から計算した塑性変形抵抗及び粒界強度の和を一定値以上にすることで、低サイクル疲労強度を高めた肌焼鋼が開示されている。
 特許文献3には、C:0.1~0.3%、B:0.001~0.005%、Si:0.5%以下、P:0.03%以下に制限し、歯元部の芯部硬さ:HV300以上の低サイクル疲労強度に優れた浸炭歯車が開示されている。
 特許文献4には、C:0.15~0.3%で、B:0.0003~0.005%で、Si:0.03~0.25%、P:0.02%以下に制限し、成分組成から計算した芯部硬さに関連する値を一定値以上にすることで、低サイクル衝撃疲労特性を高めた浸炭部品が開示されている。
 特許文献5には、C:0.1~0.4%、Si:1.0%以下、Mn:1.5超~3%、P:0.03%以下、S:0.03%以下、Cr:0.3~2.5%、Al:0.005~0.050%、Ti:0.003%以下、O:0.0015%以下、N:0.025%以下、残部不可避的不純物及びFeからなり、浸炭窒化処理、又は、その後の2次焼入れ焼戻し処理後の表面硬さが58HRC以上で、かつ、表面残留オーステナイト量が20~50%の浸炭窒化軸受鋼が開示されている。
 特許文献6には、C:0.1~0.4%、Si:0.02~1.3%、Mn:0.3~1.8%、S:0.001~0.15%、Al:0.001~0.05%、N:0.003~0.020%、P:0.025%以下、O:0.0025%以下を含有し、さらに、Cr:1.8%以下、Mo:1.5%以下、Ni:3.5%以下、B:0.006%以下、V:0.5%以下、Nb:0.04%以下、Ti:0.2%以下の1種又は2種以上を含有し、残部が鉄及び不可避的不純物からなる鋼材において、下記(1)式で定義される投影芯部硬さHp−core(=Hcore/(1−t/r)[Hcore;芯部硬さ、t;有効硬化層深さ、r;破損部位の半径又は破損部位の肉厚の半分])がHV390以上である低サイクル疲労特性に優れた浸炭焼入れ鋼材開示されている。
 特許文献7には、C:0.1~0.4%、Si:0.5%以下、Mn:1.5%以下、P:0.03%以下、S:0.03%以下、Cr:0.3~2.5%、Mo:0.1~2.0%、V:0.1~2.0%、Al:0.050%以下、O:0.0015%以下、N:0.025%以下、V+Mo:0.4~3.0%、残部Fe及び不可避的不純物からなり、浸炭焼入れ焼戻し処理を施した鋼であって、焼戻し処理後の表層C濃度が0.6~1.2%で、表面硬さがHRC58以上64未満であり、かつ、表層に分散析出するV系炭化物のうち粒径100nm未満の微細なV系炭化物の個数割合が80%以上である水素脆性型の面疲労強度に優れた肌焼鋼が開示されている。
 しかし、いずれの浸炭鋼部品においても、低サイクル曲げ疲労強度は、今日求められている低サイクル曲げ疲労強度の水準に達していない。
Gears such as mechanical structural parts, differential gears, transmission gears, and carburized shafts with gears have low cycle fatigue (fatigue in the range of several hundred to several thousand cycles) due to the sudden start and stop of the vehicle. ) May be damaged. In particular, improvement of low cycle fatigue strength is further desired for differential gears and transmission gears.
Conventionally, the steel parts are made of case-hardened steel with C: around 0.2% such as JIS SCr420, SCM420, etc. as steel materials, thereby ensuring the toughness of the core, carburizing and quenching, and low temperature around 150 ° C. By tempering, the surface has a tempered martensite structure with C: around 0.8%, and the high cycle bending fatigue strength and wear resistance are enhanced.
As a steel part having low cycle bending fatigue strength, Patent Document 1 contains C: 0.1 to 0.3%, B: 0.005% or less, Si: 0.3% or less, P : Carburized parts limited to 0.03% or less and core hardness: HV350 or more are disclosed.
In Patent Document 2, the sum of plastic deformation resistance and grain boundary strength calculated from the component composition is limited to C: 0.15 to 0.3%, Si: 0.5% or less, and P: 0.01% or less. The case hardening steel which raised low cycle fatigue strength by making more than a fixed value is disclosed.
In Patent Document 3, C: 0.1 to 0.3%, B: 0.001 to 0.005%, Si: 0.5% or less, P: 0.03% or less, The hardness of the core part: A carburized gear excellent in low cycle fatigue strength of HV300 or more is disclosed.
In Patent Document 4, C is 0.15 to 0.3%, B is 0.0003 to 0.005%, Si is 0.03 to 0.25%, and P is limited to 0.02% or less. And the carburized component which improved the low cycle impact fatigue characteristic by making the value relevant to the core hardness calculated from the component composition more than a fixed value is disclosed.
In Patent Document 5, C: 0.1 to 0.4%, Si: 1.0% or less, Mn: more than 1.5 to 3%, P: 0.03% or less, S: 0.03% or less Cr: 0.3 to 2.5%, Al: 0.005 to 0.050%, Ti: 0.003% or less, O: 0.0015% or less, N: 0.025% or less, balance is inevitable A carbonitrided bearing steel comprising impurities and Fe, having a surface hardness of 58 HRC or more after carbonitriding or subsequent secondary quenching and tempering, and a surface retained austenite amount of 20 to 50% is disclosed. .
In Patent Document 6, C: 0.1 to 0.4%, Si: 0.02 to 1.3%, Mn: 0.3 to 1.8%, S: 0.001 to 0.15%, Al: 0.001 to 0.05%, N: 0.003 to 0.020%, P: 0.025% or less, O: 0.0025% or less, and Cr: 1.8% or less Mo: 1.5% or less, Ni: 3.5% or less, B: 0.006% or less, V: 0.5% or less, Nb: 0.04% or less, Ti: 0.2% or less In a steel material containing seeds or two or more kinds, the balance being iron and inevitable impurities, the projection core hardness Hp-core (= Hcore / (1-t / r) [ Hcore: core hardness, t: effective hardened layer depth, r: radius of the damaged part or half of the thickness of the damaged part]) is HV390 or higher and has excellent low cycle fatigue characteristics. It has been hardened steel disclosure.
In Patent Document 7, C: 0.1 to 0.4%, Si: 0.5% or less, Mn: 1.5% or less, P: 0.03% or less, S: 0.03% or less, Cr : 0.3-2.5%, Mo: 0.1-2.0%, V: 0.1-2.0%, Al: 0.050% or less, O: 0.0015% or less, N: 0.025% or less, V + Mo: 0.4 to 3.0%, balance Fe and inevitable impurities, steel subjected to carburizing quenching and tempering treatment, and surface layer C concentration after tempering treatment is 0.6 to Hydrogen embrittlement with 1.2%, surface hardness of HRC 58 or more and less than 64, and the proportion of fine V-type carbides having a particle size of less than 100 nm among the V-type carbides dispersed and precipitated on the surface layer is 80% or more A case-hardened steel excellent in mold surface fatigue strength is disclosed.
However, in any of the carburized steel parts, the low cycle bending fatigue strength does not reach the level of low cycle bending fatigue strength required today.
特開平8−92690号公報JP-A-8-92690 特開平10−259450号公報Japanese Patent Laid-Open No. 10-259450 国際公開WO02/44435号公報International Publication WO02 / 44435 特開2004−238702号公報JP 2004-238702 A 特開2005−042188号公報Japanese Patent Laying-Open No. 2005-042188 特開2007−332438号公報JP 2007-332438 A 特開2008−280583号公報JP 2008-280583 A
 特許文献1~7に開示の技術は、今日求められている低サイクル曲げ疲労強度の向上に答えることができていない。そこで、本発明は、従来の低サイクル曲げ疲労強度に比べ、低サイクル曲げ疲労強度が顕著に向上した浸炭鋼部品を提供することを課題とする。 The technologies disclosed in Patent Documents 1 to 7 cannot answer the improvement in low cycle bending fatigue strength that is required today. Then, this invention makes it a subject to provide the carburized-steel components which the low cycle bending fatigue strength improved notably compared with the conventional low cycle bending fatigue strength.
 本発明者らは、上記課題を解決するため、鋼材の成分組成及び浸炭特性を、広範囲にかつ系統的に変えて、低サイクル曲げ疲労試験を鋭意実施した。その結果、次の(a)~(d)の知見を得るに至った。
 (a)低サイクル曲げ疲労強度を高くするには、表面硬さをHV550~HV800とするのが最適であり、その範囲内では、表面硬さを低くすることが有効である。
 (b)(b1)低サイクル曲げ疲労強度を高くするには、芯部硬さをHV400~HV500とするのが最適であり、その範囲内では、芯部硬さを高くすることが有効であり、また、(b2)C:0.6%以下では、芯部硬さを高くするほど好ましい。
 従来、Cが0.3%を超えると、靭性が低下し、低サイクル曲げ疲労強度が低下すると言われているが、本発明者らは、(b3)靭性が低下するのは、C量によるのではなく、芯部硬さがHV500を超えたときであり、芯部硬さがHV500を超える0.6%が、Cの上限であることを見いだした。
 (c)(c1)低サイクル曲げ疲労強度を高くするには、Siを、0.01~1.5%の範囲内で増加することが有効である。
 従来、Siは、浸炭時、粒界酸化層を形成し、強度の低下を招くという理由で、0.5%以下が推奨されてきた。
 しかし、本発明者らは、(c2)低サイクル曲げ疲労強度に及ぼす粒界酸化層の影響は、あったとしても、極めて小さく、Siの増加が、表面硬さの低下、及び/又は、芯部硬さの上昇に有効であることを見いだした。
 (d)Pを極力低減し、かつ、Bを添加すると、上記(a)~(c)の効果がさらに向上する。
 本発明は、上記知見に基づいてなされたもので、その要旨は、以下の通りである。
 (1)質量%で、
C:0.1~0.6%、
Si:0.01~1.5%、
Mn:0.3~2.0%、
P:0.02%以下、
S:0.001~0.15%、
N:0.001~0.03%、
Al:0.001~0.06%、及び、
O:0.005%以下を含有し、
残部が実質的に鉄及び不可避的不純物からなる鋼材に、浸炭焼入れ、次いで、焼戻しを施した鋼部品であって、
 表面硬さがHV550~HV800であり、芯部硬さがHV400~HV500である
ことを特徴とする低サイクル曲げ疲労強度に優れた浸炭鋼部品。
 (2)前記低サイクル曲げ疲労強度が20kN以上であることを特徴とする前記(1)に記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。
 (3)前記鋼材が、さらに、質量%で、B:0.0002~0.005%を含有することを特徴とする前記(1)又は(2)に記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。
 (4)前記鋼が、さらに、質量%で、Cr:1.20~3.0%を含有することを特徴とする前記(1)~(3)のいずれかに記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。
 (5)前記鋼材が、さらに、質量%で、Ti:0.01~0.2%を含有することを特徴とする前記(1)~(4)のいずれかに記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。
 (6)前記鋼材が、さらに、質量%で、Mo:0.1%未満、Cu:0.1%未満、及び、Ni:0.1%未満の1種又は2種以上を、不可避成分として含有することを特徴とする前記(1)~(5)のいずれかに記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。
 (7)前記鋼材が、さらに、質量%で、Mo:0.1~1.5%、Cu:0.1~2.0%、及び、Ni:0.1~5.0%の1種又は2種以上を含有することを特徴とする前記(1)~(5)のいずれかに記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。
 (8)前記鋼材が、さらに、質量%で、Nb:0.01~0.2%、及び、V:0.03~0.2%の1種又は2種を含有することを特徴とする前記(1)~(7)のいずれかに記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。
 (9)前記鋼材が、さらに、質量%で、Ca:0.0002~0.005%、Zr:0.0003~0.005%、及び、Mg:0.0003~0.005%の1種又は2種以上を含有することを特徴とする前記(1)~(8)のいずれかに記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。
 (10)前記浸炭鋼部品が、差動歯車又はトランスミッション歯車であることを特徴とする前記(1)~(9)のいずれかに記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。
In order to solve the above-mentioned problems, the present inventors diligently conducted a low cycle bending fatigue test by changing the component composition and carburizing characteristics of steel materials in a wide range and systematically. As a result, the following findings (a) to (d) were obtained.
(A) In order to increase the low cycle bending fatigue strength, it is optimal to set the surface hardness to HV550 to HV800. Within that range, it is effective to reduce the surface hardness.
(B) (b1) In order to increase the low cycle bending fatigue strength, it is optimal to set the core hardness to HV400 to HV500. Within that range, it is effective to increase the core hardness. Moreover, (b2) C: 0.6% or less is preferable as the core hardness is increased.
Conventionally, it is said that when C exceeds 0.3%, the toughness is lowered and the low cycle bending fatigue strength is lowered, but the present inventors (b3) that the toughness is lowered depends on the amount of C. Instead, it was found that the core hardness exceeded HV500, and 0.6% where the core hardness exceeded HV500 was the upper limit of C.
(C) (c1) In order to increase the low cycle bending fatigue strength, it is effective to increase Si within a range of 0.01 to 1.5%.
Conventionally, Si has been recommended to be 0.5% or less because it forms a grain boundary oxide layer at the time of carburizing and causes a decrease in strength.
However, the present inventors have (c2) the effect of the grain boundary oxide layer on the low cycle bending fatigue strength, if any, which is extremely small, an increase in Si, a decrease in surface hardness, and / or a core. It has been found that it is effective in increasing the club hardness.
(D) When P is reduced as much as possible and B is added, the effects (a) to (c) are further improved.
This invention was made | formed based on the said knowledge, The summary is as follows.
(1) In mass%,
C: 0.1 to 0.6%
Si: 0.01 to 1.5%,
Mn: 0.3 to 2.0%,
P: 0.02% or less,
S: 0.001 to 0.15%,
N: 0.001 to 0.03%,
Al: 0.001 to 0.06%, and
O: contains 0.005% or less,
A steel part in which the balance is substantially iron and inevitable impurities, carburized and then tempered,
A carburized steel part excellent in low cycle bending fatigue strength, characterized by having a surface hardness of HV550 to HV800 and a core hardness of HV400 to HV500.
(2) The carburized steel part having excellent low cycle bending fatigue strength according to (1), wherein the low cycle bending fatigue strength is 20 kN or more.
(3) The steel material further comprises B: 0.0002 to 0.005% by mass%, and is excellent in low cycle bending fatigue strength as described in (1) or (2) above Carburized steel parts.
(4) The low cycle bending fatigue strength according to any one of (1) to (3), wherein the steel further contains Cr: 1.20 to 3.0% by mass. Excellent carburized steel parts.
(5) The low cycle bending fatigue strength according to any one of (1) to (4), wherein the steel material further contains Ti: 0.01 to 0.2% by mass%. Excellent carburized steel parts.
(6) The steel material is further in mass%, Mo: less than 0.1%, Cu: less than 0.1%, and Ni: less than 0.1% as one or more kinds as unavoidable components. The carburized steel part having excellent low cycle bending fatigue strength according to any one of (1) to (5), wherein the carburized steel part is contained.
(7) The steel material is one type of Mo: 0.1 to 1.5%, Cu: 0.1 to 2.0%, and Ni: 0.1 to 5.0% in mass%. Alternatively, the carburized steel part having excellent low cycle bending fatigue strength according to any one of the above (1) to (5), comprising two or more kinds.
(8) The steel material further contains one or two kinds of Nb: 0.01 to 0.2% and V: 0.03 to 0.2% by mass%. The carburized steel part having excellent low cycle bending fatigue strength according to any one of (1) to (7).
(9) The steel material is one type of Ca: 0.0002 to 0.005%, Zr: 0.0003 to 0.005%, and Mg: 0.0003 to 0.005% by mass%. Alternatively, the carburized steel part having excellent low cycle bending fatigue strength according to any one of the above (1) to (8), comprising two or more kinds.
(10) The carburized steel part having excellent low cycle bending fatigue strength according to any one of (1) to (9), wherein the carburized steel part is a differential gear or a transmission gear.
 本発明の低サイクル曲げ疲労強度に優れた浸炭鋼部品を用いれば、自動車用の差動ギアなどの歯車を大幅に小型化、軽量化することができ、その結果、自動車の燃費を高め、かつ、CO排出量を削減することが可能となる。 By using the carburized steel parts excellent in low cycle bending fatigue strength of the present invention, gears such as differential gears for automobiles can be greatly reduced in size and weight, and as a result, the fuel efficiency of the automobile is improved, and , CO 2 emission can be reduced.
 図1は、低サイクル曲げ疲労試験片と低サイクル曲げ疲労試験方法を示す図である。
 図2は、500サイクル曲げ疲労強度(kN)に及ぼす圧縮残留応力(MPa)の影響を示す図である。
 図3は、500サイクル曲げ疲労強度(kN)に及ぼす粒界酸化層深さ(μm)の影響を示す図である。
 図4は、500サイクル曲げ疲労強度(kN)に及ぼす表面硬さ(HV)の影響を示す図である。
 図5は、500サイクル曲げ疲労強度(kN)に及ぼす芯部硬さ(HV)の影響を示す図である。
FIG. 1 is a diagram showing a low cycle bending fatigue test piece and a low cycle bending fatigue test method.
FIG. 2 is a diagram showing the effect of compressive residual stress (MPa) on 500 cycle bending fatigue strength (kN).
FIG. 3 is a diagram showing the influence of the grain boundary oxide layer depth (μm) on the 500 cycle bending fatigue strength (kN).
FIG. 4 is a diagram showing the influence of surface hardness (HV) on 500 cycle bending fatigue strength (kN).
FIG. 5 is a diagram showing the influence of core hardness (HV) on 500 cycle bending fatigue strength (kN).
 以下、本発明の低サイクル曲げ疲労強度に優れた浸炭鋼部品について詳細に説明する。
 まず、本発明で用いる鋼材(本発明鋼材)の成分組成を限定する理由について説明する。以下、成分組成に係る%は質量%を意味する。
 C:0.1~0.6%
 Cは、浸炭焼入れを施した鋼部品の芯部に硬さを与え、低サイクル曲げ疲労強度を高める元素である。芯部の組織はマルテンサイトが主体の焼入れ組織であり、焼入れ後のマルテンサイトは、C量が多いほど硬くなる。
 また、芯部硬さが同じ場合、C量が多いと、微細炭化物の分散強化で降伏比が上昇する。添加効果を得るため、Cは、0.1~0.6%とする。
 低サイクル曲げ疲労強度を高めるべく、芯部硬さをHV450以上とするために、Cは0.2%以上が好ましく、さらに0.3%超がより好ましい。なお、被削性の観点から、Cは0.4%以下が好ましい。
 肌焼鋼の疲労強度を高めるには、圧縮残留応力の付与が有効である。肌焼鋼の浸炭焼入れでは、C:0.2%前後の芯部が、先に、マルテンサイト変態で膨張し、その後、C:0.8%前後の浸炭層が、マルテンサイト変態で膨張し、鋼部品の表面近傍に、圧縮応力が残留する。
 通常、肌焼鋼において、本発明のようにC量を多くすると、芯部と浸炭層のC量の差が減少して、マルテンサイト変態の膨張差が小さくなり、残留する圧縮応力が減少し、その結果、鋼部品の疲労強度が低下すると推測されている。
 そこで、本発明者らは、500サイクル曲げ疲労強度(kN)に及ぼす圧縮残留応力(MPa)の影響を調査した。その結果を図2に示す。図2に示すように、500サイクル曲げ疲労強度に及ぼす圧縮残留応力の影響はあるといえないことが判明した。
 Si:0.01~1.5%
 Siは、鋼材の脱酸に有効な元素であり、また、焼戻し軟化抵抗を高めるのに有効な元素である。さらに、Siは、焼入れ性を高めて、浸炭焼入れ後の鋼部品の芯部硬さを高め、低サイクル曲げ疲労強度の向上に寄与する元素である。
 0.01%未満では、添加効果が不十分であり、一方、1.5%を超えると、浸炭性を阻害するので、Siは、0.01~1.5%とする。
 浸炭処理に、一般的な、カーボンポテンシャル0.7~1.0のガス浸炭法を採用した場合、Siは、0.5~1.5%の範囲で、鋼材中のCの活量を増大させて、表面硬さを抑制する作用をなすので、低サイクル曲げ疲労強度の更なる向上に有効な元素である。それ故、Siは、0.5~1.5%が好ましい。
 従来、Siは、浸炭時、粒界酸化層を形成して、強度低下を引き起こすので、0.5%以下に制限することが推奨されてきた。これは、Si量を制限すれば、粒界酸化層深さを小さくすることができ、高サイクル域での曲げ疲労強度を高めることができるとの従来知見に基づく類推である。
 そこで、本発明者らは、500サイクル曲げ疲労強度(kN)に及ぼす粒界酸化層深さ(μm)の影響を調査した。その結果を図3に示す。図3に示すように、粒界酸化層深さの大小は、500サイクル曲げ疲労強度に影響を及ぼさないことが判明した。
 Mn:0.3~2.0%
 Mnは、鋼材の脱酸に有効な元素であるとともに、鋼材の焼入れ性を高めて、浸炭焼入れ後の鋼部品の芯部硬さを高め、低サイクル曲げ疲労強度の向上に寄与する元素である。
 0.3%未満では、添加効果が不十分であり、一方、2.0%を超えると、添加効果が飽和するので、Mnは、0.3~2.0%とする。好ましくは0.8~1.5%である。
 P:0.02%以下
 Pは、不純物であり、浸炭時、オーステナイト粒界に偏析し、粒界破壊の原因となって、低サイクル曲げ疲労強度を低下させる。それ故、Pは、0.02%以下に制限する。好ましくは0.01%以下である。
 S:0.001~0.15%
 Sは、鋼材中でMnSを形成し、被削性の向上に寄与する元素である。0.001%未満では、添加効果が不十分であり、一方、0.15%を超えると、添加効果が飽和し、また、粒界に偏析して粒界脆化を引き起こすので、Sは、0.001~0.15%とする。好ましくは0.01~0.1%である。
 N:0.001~0.03%
 Nは、鋼材中で、Al、Ti、Nb、V等と結合し、結晶粒の粗大化を抑制する作用をなす窒化物又は炭窒化物を形成する元素である。
 0.001%未満では、添加効果が不十分であり、一方、0.03%を超えると、添加効果が飽和するので、Nは、0.001~0.03%とする。好ましくは0.003~0.008%である。
 Al:0.001~0.06%
 Alは、鋼材の脱酸を目的として添加する元素である。0.001%未満では、添加効果が不十分であり、一方、0.06%を超えると、添加効果が飽和するので、Alは、0.001~0.06%とする。好ましくは0.01~0.04%である。
 O:0.005%以下
 Oは、不可避的に含有され、粒界に偏析して粒界脆化を起こし易くするとともに、鋼材中で、脆性破壊の原因となる硬い酸化物系介在物を形成し易い元素である。粒界脆化や、脆性破壊を防止するため、Oは、0.005%以下とする。好ましくは0.002%以下である。
 本発明鋼材は、低サイクル曲げ疲労強度のより向上(20kN以上)のために、Bを含有する。
 B:0.0002~0.005%
 Bは、Pの粒界偏析を抑制するとともに、粒界強度と粒内強度、及び、焼入れ性を高めて、低サイクル曲げ疲労強度の向上(20kN以上)に寄与する元素である。
 0.0002%未満では、添加効果が不十分であり、一方、0.005%を超えると、添加効果が飽和するので、Bは、0.0002~0.005%とする。好ましくは0.0005~0.003%である。
 本発明鋼材は、さらに、焼入れ性を高めて、低サイクル曲げ疲労強度をより向上させるため、Crを含有する。
 Cr:1.20~3.0%
 Crは、鋼材の焼入れ性を高めて、浸炭焼入れ後の鋼部品の芯部硬さを高め、低サイクル曲げ疲労強度の向上に寄与する元素である。1.20%未満では、添加効果が不十分であり、一方、3.0%を超えると、添加効果が飽和するので、Crは、1.20~3.0%とする。好ましくは1.50~2.5%である。
 本発明鋼材は、高温浸炭時、結晶粒が粗大化して、低サイクル疲労強度が劣化するのを防止するため、Tiを含有する。
 Ti:0.005~0.2%
 Tiは、鋼材中で微細なTiC及び/又はTiSを生成する元素である。
 TiC及び/又はTiSの存在により、浸炭温度が980℃以上の高温浸炭や、浸炭時間が10時間以上の長時間浸炭において、オーステナイト粒の細粒化を安定的に行うことができるので、低サイクル疲労強度の劣化を防止することができる。
 また、Tiは、鋼材中でNと結合してTiNを生成して、BNの析出を防止し、固溶Bの確保に寄与する元素である。
 0.005%未満では、添加効果が不十分であり、一方、0.2%を超えると、TiN主体の析出物が多く析出して、転動疲労特性が低下するので、Tiは、0.005~0.2%とする。好ましくは0.01~0.1%である。
 本発明鋼材において、不可避的に混入するMo、Cu、及び、Niは、0.1%未満に制限する。好ましくは、0.05%以下に、より好ましくは0.01%以下に制限する。
 Mo、Cu、及び、Niは、焼入れ性を高めて、低サイクル曲げ疲労強度を高める作用をなす元素でもあるで、所要量のMo、Cu、及び、Niの1種又は2種以上を含有してもよい。
 Mo:0.1~1.5%
 Moは、鋼材の焼入れ性を高めて、浸炭焼入れ後の鋼部品の芯部硬さを高くし、低サイクル曲げ疲労強度の向上に寄与する元素である。0.1%未満では効果がなく、一方、1.5%を超えると、添加効果が飽和するので、Moは、0.1~1.5%とする。好ましくは0.3~1.2%である。
 Cu:0.1~2.0%
 Cuは、鋼材の焼入れ性を高めて、浸炭焼入れ後の鋼部品の芯部硬さを高くし、低サイクル曲げ疲労強度の向上に寄与する元素である。0.1%未満では、添加効果が不十分であり、一方、2.0%を超えると、添加効果が飽和するので、Cuは、0.1~2.0%とする。好ましくは0.3~1.5%である。
 Ni:0.1~5.0%
 Niは、鋼材の焼入れ性を高めて、浸炭焼入れ後の鋼部品の芯部硬さを高くし、低サイクル曲げ疲労強度の向上に寄与する元素である。0.1%未満では効果がなく、一方、5.0%を超えると、添加効果が飽和するので、Niは、0.1~5.0%とする。好ましくは0.5~3.5%である。
 本発明鋼材は、高温浸炭時、結晶粒が粗大化して、低サイクル疲労強度が劣化するのを防止するため、さらに、Nb、及び、Vの1種又は2種を含有してもよい。
 Nb:0.01~0.2%
 Nbは、鋼材中でNb炭窒化物を生成する元素である。Nb炭窒化物の存在により、浸炭温度が980℃以上の高温浸炭や、浸炭時間が10時間以上の長時間浸炭において、オーステナイト粒の細粒化を安定的に行うことができるので、低サイクル疲労強度の劣化を防止することができる。
 0.01%未満では、添加効果が不十分であり、一方、0.2%を超えると、被削性が劣化するのでTiは、0.01~0.2%とする。好ましくは0.02~0.1%である。
 V:0.03~0.2%
 Vは、鋼材中でV炭窒化物を生成する元素である。V炭窒化物の存在により、浸炭温度が980℃以上の高温浸炭や、浸炭時間が10時間以上の長時間浸炭において、オーステナイト粒の細粒化を安定的に行うことができるので、低サイクル疲労強度の劣化を防止することができる。
 0.03%未満では、添加効果が不十分であり、一方、0.2%を超えると、被削性が劣化するので、Vは、0.03~0.2%とする。好ましくは0.05~0.1%である。
 本発明鋼材は、被削性の改善のため、所要量のCa、Zr、及び、Mgの1種又は2種以上を含有してもよい。
 Ca:0.0002~0.005%
 Caは、鋼材中の酸化物を低融点化する元素である。低融点酸化物は、切削加工環境下の温度上昇で軟質化して、鋼材の被削性を改善する。
 0.0002%未満では、添加効果がなく、一方、0.005%を超えると、CaSが多量に生成して、鋼材の被削性が低下するので、Caは、0.0002~0.005%とする。好ましくは0.0008~0.003%である。
 Zr:0.0003~0.005%
 Zrは、鋼材を脱酸し、酸化物を生成する元素であり、また、硫化物も生成する元素である。硫化物は、MnSと協働して、被削性の改善に寄与する。Zr系酸化物は、MnSの晶出/析出の核になるので、Zrは、MnSの分散制御に有効な元素でもある。
 Zrは、MnSの球状化のために、0.003%を超えて添加するが、逆に、MnSを微細分散させるためには、0.0003~0.005%添加する。
 製造上、品質の安定性(成分歩留まり等)の観点から、MnSを微細分散させる0.0003~0.005%のZr添加が、現実的には好ましい。なお、0.0003%未満では、Zrの添加効果は、ほとんどない。
 Mg:0.0003~0.005%
 Mgは、鋼材を脱酸し、酸化物を生成する元素であり、また、硫化物も生成する元素である。硫化物は、MnSと協働して、被削性の改善に寄与する。
 Mg系酸化物は、MnSの晶出/析出の核になり、また、硫化物は、MnとMgの複合硫化物となることで、複合硫化物の変形を抑制し、球状化するので、Mgは、MnSの分散制御に有効な元素である。
 0.0003%未満では、添加効果がなく、一方、0.005%を超えると、MgSが大量に生成して、鋼材の被削性が低下するので、Mgは、0.0003~0.005%とする。好ましくは0.0008~0.003%である。
 次に、本発明鋼材に、浸炭焼入れ、次いで、焼戻しを施した鋼部品において、表面硬さと芯部硬さを、それぞれ規定する理由について説明する。
 表面硬さ:HV550~HV800
 本発明者らは、表面硬さHV500~HV800の範囲で、500サイクル曲げ疲労強度(kN)に及ぼす表面硬さ(HV)の影響を調査した。その結果を図4に示す。
 図4から、表面硬さHV500~HV800の範囲で、表面硬さが低いほど、低サイクル曲げ疲労強度が向上することが解る。
 破損品の破面を検証した結果、(i)表面硬さが高いと、表面から脆性破面の亀裂が発生して、急速に伝播するが、(ii)表面硬さが低いと、亀裂が表面から発生しても、脆性破面の発生率が低いので、亀裂の伝播速度は遅く、その結果、(iii)低サイクル曲げ疲労強度が向上することが判明した。
 しかし、表面硬さがHV550未満であると、耐摩耗性が損なわれるので、表面硬さは、HV550~HV800とする(図中「←→」参照)。好ましくはHV600~HV750、より好ましくはHV620~HV720である。
 なお、表面硬さがHV800を超えると、表面の靭性が著しく低下して、亀裂の伝播速度が速くなり、低サイクル曲げ疲労強度が低下する。
 表面硬さは、浸炭層を形成する浸炭組織の硬さであるので、浸炭時のカーボンポテンシャルや、浸炭焼入れ後の焼戻し温度を調整して、表面硬さを調整することができる。
 例えば、鋼部品をカーボンポテンシャル0.8で浸炭焼入れし、次いで、150℃で焼戻しを行ない、その後、低サイクル曲げ疲労試験を実施し、低サイクル曲げ疲労強度が、所要の値より低い場合は、カーボンポテンシャルを0.7に下げるか、又は、焼戻し温度を180℃に上げて、表面硬さを低下させて、低サイクル曲げ疲労強度の向上を図る。
 芯部硬さ:HV400~HV500
 本発明者らは、芯部硬さHV270~HV650の範囲で、500サイクル曲げ疲労強度(kN)に及ぼす芯部硬さ(HV)の影響を調査した。その結果を図5に示す。
 図5から、芯部硬さがHV400~HV500の範囲で、芯部硬さが高いほど、低サイクル曲げ疲労強度が向上することが解る。
 破損品の破面を検証した結果、芯部硬さが低いと、浸炭層直下の芯部(焼入れ組織)が降伏して、降伏したときの応力以上の応力を受け持てず、浸炭層である鋼部品の表面にかかる応力が高まることが判明した。
 低サイクル曲げ疲労強度を、従来のJIS SCr420、SCM420等の低サイクル曲げ疲労強度よりも顕著に高くするため、芯部硬さはHV400以上必要であるので、芯部硬さはHV400~HV500とする(図中「←→」参照)。好ましくはHV430~HV500、さらに好ましくはHV450~HV500である。
 なお、芯部硬さがHV500を超えると、芯部の靭性が著しく低下して、芯部の亀裂伝播速度が速くなり、低サイクル曲げ疲労強度が低下する。
 芯部とは、浸炭処理で、鋼部品の表面から浸入するCが到達する箇所である。例えばり、素材のCの10%増(素材のCが0.20%の場合は0.22%)の箇所から、素材のCとなるまでの箇所である。芯部は、EPMA−C線分析などで識別することが可能である。
 なお、浸炭方法は、特別な方法を用いる必要はなく、一般的な浸炭方法であるガス浸炭法、真空浸炭法、ガス浸炭窒化法などを用いても、本発明の効果は発現する。
 浸炭後に、オーステナイト域まで加熱(850℃前後)して焼入れる(二次焼入れ)と、結晶粒が細粒化して、低サイクル曲げ疲労強度は、さらに向上する。
 本発明においては、表面硬さは浸炭組織が担い、芯部硬さは焼入れ組織が担うので、成分組成を調整して、鋼材に、所要の浸炭性及び焼入れ性を付与して、表面硬さと芯部硬さを、別々に調整することができる。この点も、本発明の特徴である。
Hereinafter, the carburized steel part excellent in the low cycle bending fatigue strength of the present invention will be described in detail.
First, the reason for limiting the component composition of the steel material used in the present invention (the present steel material) will be described. Hereinafter,% related to the component composition means mass%.
C: 0.1 to 0.6%
C is an element that imparts hardness to the core portion of the steel part subjected to carburizing and quenching and increases the low cycle bending fatigue strength. The core structure is a hardened structure mainly composed of martensite, and the hardened martensite becomes harder as the amount of C increases.
When the core hardness is the same, if the amount of C is large, the yield ratio increases due to dispersion strengthening of fine carbides. In order to obtain the effect of addition, C is made 0.1 to 0.6%.
In order to increase the core hardness to HV450 or more in order to increase the low cycle bending fatigue strength, C is preferably 0.2% or more, and more preferably more than 0.3%. In addition, from the viewpoint of machinability, C is preferably 0.4% or less.
In order to increase the fatigue strength of case-hardened steel, it is effective to apply compressive residual stress. In carburizing and quenching of case-hardened steel, the core of C: around 0.2% first expands in the martensitic transformation, and then the carburized layer of C: around 0.8% expands in the martensitic transformation. Compressive stress remains near the surface of the steel part.
Usually, in case-hardened steel, if the amount of C is increased as in the present invention, the difference in the amount of C between the core and the carburized layer decreases, the difference in expansion of the martensitic transformation decreases, and the residual compressive stress decreases. As a result, it is presumed that the fatigue strength of steel parts is reduced.
Therefore, the present inventors investigated the effect of compressive residual stress (MPa) on 500 cycle bending fatigue strength (kN). The result is shown in FIG. As shown in FIG. 2, it has been found that there is no influence of compressive residual stress on 500 cycle bending fatigue strength.
Si: 0.01 to 1.5%
Si is an element effective for deoxidation of steel materials, and is an element effective for increasing temper softening resistance. Furthermore, Si is an element that enhances hardenability, increases the core hardness of the steel part after carburizing and quenching, and contributes to the improvement of low cycle bending fatigue strength.
If it is less than 0.01%, the effect of addition is insufficient. On the other hand, if it exceeds 1.5%, the carburizing property is inhibited, so Si is made 0.01 to 1.5%.
When a general gas carburizing method with a carbon potential of 0.7 to 1.0 is adopted for the carburizing treatment, Si increases the activity of C in the steel material in the range of 0.5 to 1.5%. Therefore, it is an element effective for further improving the low cycle bending fatigue strength because it acts to suppress the surface hardness. Therefore, Si is preferably 0.5 to 1.5%.
Conventionally, when Si is carburized, it forms a grain boundary oxide layer and causes a decrease in strength, so it has been recommended to limit it to 0.5% or less. This is an analogy based on the conventional knowledge that if the amount of Si is limited, the depth of the grain boundary oxide layer can be reduced and the bending fatigue strength in the high cycle region can be increased.
Therefore, the present inventors investigated the influence of the grain boundary oxide layer depth (μm) on the 500 cycle bending fatigue strength (kN). The result is shown in FIG. As shown in FIG. 3, it has been found that the depth of the grain boundary oxide layer does not affect the 500 cycle bending fatigue strength.
Mn: 0.3 to 2.0%
Mn is an element effective for deoxidation of steel materials, and is an element that improves the hardenability of steel materials, increases the core hardness of steel parts after carburizing and quenching, and contributes to the improvement of low cycle bending fatigue strength. .
If it is less than 0.3%, the effect of addition is insufficient. On the other hand, if it exceeds 2.0%, the effect of addition is saturated, so Mn is set to 0.3 to 2.0%. Preferably, it is 0.8 to 1.5%.
P: 0.02% or less P is an impurity, and segregates at austenite grain boundaries during carburizing, causing grain boundary fracture and reducing low cycle bending fatigue strength. Therefore, P is limited to 0.02% or less. Preferably it is 0.01% or less.
S: 0.001 to 0.15%
S is an element that forms MnS in the steel and contributes to improvement of machinability. If it is less than 0.001%, the effect of addition is insufficient. On the other hand, if it exceeds 0.15%, the effect of addition is saturated and segregates at the grain boundary to cause grain boundary embrittlement. 0.001 to 0.15%. Preferably it is 0.01 to 0.1%.
N: 0.001 to 0.03%
N is an element that forms a nitride or carbonitride that binds to Al, Ti, Nb, V, and the like in the steel material and has an effect of suppressing coarsening of crystal grains.
If it is less than 0.001%, the effect of addition is insufficient. On the other hand, if it exceeds 0.03%, the effect of addition is saturated, so N is made 0.001 to 0.03%. Preferably it is 0.003 to 0.008%.
Al: 0.001 to 0.06%
Al is an element added for the purpose of deoxidation of steel materials. If it is less than 0.001%, the effect of addition is insufficient. On the other hand, if it exceeds 0.06%, the effect of addition is saturated, so Al is made 0.001 to 0.06%. Preferably, the content is 0.01 to 0.04%.
O: 0.005% or less O is inevitably contained, and segregates at the grain boundaries to easily cause grain boundary embrittlement, and forms hard oxide inclusions that cause brittle fracture in the steel material. It is an element that is easy to do. In order to prevent grain boundary embrittlement and brittle fracture, O is made 0.005% or less. Preferably it is 0.002% or less.
The steel material of the present invention contains B for further improving the low cycle bending fatigue strength (20 kN or more).
B: 0.0002 to 0.005%
B is an element that suppresses the grain boundary segregation of P and increases the grain boundary strength, intragranular strength, and hardenability, and contributes to the improvement of low cycle bending fatigue strength (20 kN or more).
If it is less than 0.0002%, the effect of addition is insufficient. On the other hand, if it exceeds 0.005%, the effect of addition is saturated, so B is set to 0.0002 to 0.005%. Preferably it is 0.0005 to 0.003%.
The steel material of the present invention further contains Cr in order to improve hardenability and further improve low cycle bending fatigue strength.
Cr: 1.20 to 3.0%
Cr is an element that improves the hardenability of the steel material, increases the core hardness of the steel part after carburizing and quenching, and contributes to the improvement of low cycle bending fatigue strength. If it is less than 1.20%, the effect of addition is insufficient. On the other hand, if it exceeds 3.0%, the effect of addition is saturated, so Cr is set to 1.20 to 3.0%. Preferably it is 1.50 to 2.5%.
The steel according to the present invention contains Ti in order to prevent the crystal grains from becoming coarse and the low cycle fatigue strength from deteriorating during high temperature carburizing.
Ti: 0.005 to 0.2%
Ti is an element that generates fine TiC and / or TiS in a steel material.
Due to the presence of TiC and / or TiS, austenite grains can be stably refined in high-temperature carburization at a carburizing temperature of 980 ° C. or higher, or for a long time of carburizing for 10 hours or longer. Deterioration of fatigue strength can be prevented.
Ti is an element that combines with N in the steel material to generate TiN, prevents precipitation of BN, and contributes to securing solid solution B.
If the content is less than 0.005%, the effect of addition is insufficient. On the other hand, if the content exceeds 0.2%, a large amount of TiN-based precipitates are precipitated and the rolling fatigue characteristics are deteriorated. 005 to 0.2%. Preferably it is 0.01 to 0.1%.
In the steel material of the present invention, Mo, Cu, and Ni inevitably mixed are limited to less than 0.1%. Preferably, it is limited to 0.05% or less, more preferably 0.01% or less.
Mo, Cu, and Ni are elements that have the effect of increasing the hardenability and increasing the low cycle bending fatigue strength, and contain one or more of the required amounts of Mo, Cu, and Ni. May be.
Mo: 0.1 to 1.5%
Mo is an element that improves the hardenability of the steel material, increases the core hardness of the steel part after carburizing and quenching, and contributes to the improvement of low cycle bending fatigue strength. If it is less than 0.1%, there is no effect. On the other hand, if it exceeds 1.5%, the effect of addition is saturated, so Mo is made 0.1 to 1.5%. Preferably it is 0.3 to 1.2%.
Cu: 0.1 to 2.0%
Cu is an element that improves the hardenability of the steel material, increases the core hardness of the steel part after carburizing and quenching, and contributes to the improvement of low cycle bending fatigue strength. If it is less than 0.1%, the effect of addition is insufficient. On the other hand, if it exceeds 2.0%, the effect of addition is saturated, so Cu is made 0.1 to 2.0%. Preferably it is 0.3 to 1.5%.
Ni: 0.1-5.0%
Ni is an element that improves the hardenability of the steel material, increases the core hardness of the steel part after carburizing and quenching, and contributes to the improvement of low cycle bending fatigue strength. If it is less than 0.1%, there is no effect. On the other hand, if it exceeds 5.0%, the effect of addition is saturated. Preferably, it is 0.5 to 3.5%.
The steel according to the present invention may further contain one or two of Nb and V in order to prevent crystal grains from becoming coarse during low temperature carburization and deterioration of low cycle fatigue strength.
Nb: 0.01 to 0.2%
Nb is an element that generates Nb carbonitride in steel. Because of the presence of Nb carbonitrides, austenite grains can be stably refined in high-temperature carburization with a carburizing temperature of 980 ° C. or higher and long-term carburizing with a carburizing time of 10 hours or longer. Strength deterioration can be prevented.
If it is less than 0.01%, the effect of addition is insufficient. On the other hand, if it exceeds 0.2%, the machinability deteriorates, so Ti is made 0.01 to 0.2%. Preferably it is 0.02 to 0.1%.
V: 0.03-0.2%
V is an element that generates V carbonitride in the steel material. Because of the presence of V carbonitride, austenite grains can be stably refined in high-temperature carburization at a carburizing temperature of 980 ° C. or higher, or in long-term carburizing for a carburizing time of 10 hours or longer, so low cycle fatigue Strength deterioration can be prevented.
If it is less than 0.03%, the effect of addition is insufficient. On the other hand, if it exceeds 0.2%, the machinability deteriorates, so V is set to 0.03 to 0.2%. Preferably it is 0.05 to 0.1%.
The steel material of the present invention may contain a required amount of one or more of Ca, Zr, and Mg for improving machinability.
Ca: 0.0002 to 0.005%
Ca is an element that lowers the melting point of oxides in steel materials. The low melting point oxide is softened by the temperature rise in the cutting environment, and improves the machinability of the steel material.
If it is less than 0.0002%, there is no effect of addition. On the other hand, if it exceeds 0.005%, a large amount of CaS is generated and the machinability of the steel material is lowered. %. Preferably it is 0.0008 to 0.003%.
Zr: 0.0003 to 0.005%
Zr is an element that deoxidizes a steel material to generate an oxide, and also generates a sulfide. Sulfide contributes to the improvement of machinability in cooperation with MnS. Since Zr-based oxides serve as nuclei for MnS crystallization / precipitation, Zr is also an effective element for controlling the dispersion of MnS.
Zr is added in an amount exceeding 0.003% for spheroidizing MnS. Conversely, in order to finely disperse MnS, 0.003 to 0.005% is added.
From the viewpoint of production quality stability (component yield, etc.), it is practically preferable to add 0.0003 to 0.005% Zr for finely dispersing MnS. If it is less than 0.0003%, there is almost no effect of adding Zr.
Mg: 0.0003 to 0.005%
Mg is an element that deoxidizes a steel material to generate an oxide, and also generates a sulfide. Sulfide contributes to the improvement of machinability in cooperation with MnS.
Mg-based oxides serve as nuclei for crystallization / precipitation of MnS, and sulfides become composite sulfides of Mn and Mg, thereby suppressing deformation of composite sulfides and making them spheroidized. Is an element effective for controlling the dispersion of MnS.
If it is less than 0.0003%, there is no effect of addition. On the other hand, if it exceeds 0.005%, a large amount of MgS is generated and the machinability of the steel material is lowered. %. Preferably it is 0.0008 to 0.003%.
Next, the reason for specifying the surface hardness and the core hardness in steel parts obtained by carburizing and quenching the steel of the present invention and then tempering will be described.
Surface hardness: HV550 to HV800
The present inventors investigated the influence of surface hardness (HV) on 500 cycle bending fatigue strength (kN) in the range of surface hardness HV500 to HV800. The result is shown in FIG.
From FIG. 4, it can be seen that the lower the surface hardness in the range of surface hardness HV500 to HV800, the lower the low cycle bending fatigue strength.
As a result of verifying the fracture surface of the damaged product, (i) if the surface hardness is high, a crack of the brittle fracture surface occurs from the surface and propagates rapidly, but (ii) if the surface hardness is low, the crack is Even if it occurs from the surface, it has been found that since the incidence of brittle fracture surfaces is low, the propagation speed of cracks is slow, and as a result, (iii) low cycle bending fatigue strength is improved.
However, if the surface hardness is less than HV550, the wear resistance is impaired, so the surface hardness is set to HV550 to HV800 (see “← →” in the figure). HV600 to HV750 is preferable, and HV620 to HV720 is more preferable.
When the surface hardness exceeds HV800, the toughness of the surface is remarkably lowered, the propagation speed of cracks is increased, and the low cycle bending fatigue strength is lowered.
Since the surface hardness is the hardness of the carburized structure forming the carburized layer, the surface hardness can be adjusted by adjusting the carbon potential during carburizing and the tempering temperature after carburizing and quenching.
For example, a steel part is carburized and quenched at a carbon potential of 0.8, then tempered at 150 ° C., and then a low cycle bending fatigue test is performed. If the low cycle bending fatigue strength is lower than the required value, The carbon potential is lowered to 0.7, or the tempering temperature is raised to 180 ° C. to reduce the surface hardness, thereby improving the low cycle bending fatigue strength.
Core hardness: HV400 to HV500
The inventors investigated the influence of the core hardness (HV) on the 500 cycle bending fatigue strength (kN) in the range of the core hardness HV270 to HV650. The result is shown in FIG.
From FIG. 5, it can be seen that the core hardness is in the range of HV400 to HV500, and the higher the core hardness is, the more the low cycle bending fatigue strength is improved.
As a result of verifying the fracture surface of the damaged product, if the core hardness is low, the core (hardened structure) directly under the carburized layer yields, and the carburized layer cannot receive stress more than the stress when yielded. It has been found that the stress on the surface of the steel part increases.
In order to make the low cycle bending fatigue strength significantly higher than the low cycle bending fatigue strength of conventional JIS SCr420, SCM420, etc., the core hardness is required to be HV400 or more, so the core hardness is HV400 to HV500. (See “← →” in the figure). HV430 to HV500 is preferable, and HV450 to HV500 is more preferable.
If the core hardness exceeds HV500, the toughness of the core portion is significantly reduced, the crack propagation speed of the core portion is increased, and the low cycle bending fatigue strength is reduced.
A core part is a location where C which penetrates from the surface of a steel part reaches by carburizing treatment. For example, it is a portion from a location where the material C increases by 10% (0.22% when the material C is 0.20%) to the material C. The core can be identified by EPMA-C line analysis or the like.
The carburizing method does not need to use a special method, and the effects of the present invention are exhibited even when a gas carburizing method, a vacuum carburizing method, a gas carbonitriding method, or the like, which is a general carburizing method, is used.
After carburizing, when heating to the austenite region (around 850 ° C.) and quenching (secondary quenching), the crystal grains become finer and the low cycle bending fatigue strength is further improved.
In the present invention, the carburized structure is responsible for the surface hardness, and the hardened structure is responsible for the core hardness, so the component composition is adjusted to give the steel the required carburizability and hardenability. The core hardness can be adjusted separately. This point is also a feature of the present invention.
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。
 本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 (実施例)
 表1及び表2に示す成分組成の鋼材を鍛伸し、次いで、均熱処理と焼準を施し、低サイクル曲げ疲労試験用の粗加工試験片と、摩耗試験用の粗加工試験片を作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 試験No.1~21(発明例)、試験No.23~25(比較例)、及び、試験No.28~44(発明例)の粗加工試験片については、変成式ガス浸炭炉で、930℃×5時間の浸炭処理を施し、次いで、130℃の油焼入れを施した。
 試験No.22(発明例)の粗加工試験片については、変成式ガス浸炭炉で、930℃×5時間の浸炭処理を施し、次いで、130℃の油焼入れを施し、引続き、850℃×0.5時間の加熱を施し、次いで、130℃の油焼入れを施した。
 試験片No.26(比較例)の粗加工試験片については、変成式ガス浸炭炉で、930℃×5時間の浸炭処理を施し、次いで、220℃の油焼入れを施した。
 試験No.27(比較例)の粗加工試験片については、変成式ガス浸炭炉で、930℃×5時間の浸炭処理を施し、次いで、20℃の油焼入れを施し、引続き、1.5時間の焼戻しを施した。
 なお、浸炭処理時のカーボンポテンシャルは0.5~0.8の範囲で調整し、焼戻し温度は150~300℃の範囲で調整して、表面硬さと芯部硬さを調整した。
 熱処理の後、低サイクル曲げ疲労試験用の粗加工試験片については、側面の浸炭層のみを機械加工にて除去し、図1に示す13mm角のノッチ付き試験片1(低サイクル曲げ疲労試験片)を作製した。
 摩耗試験用の粗加工試験片については、つかみ部のみを機械加工にて除去し、直径26mm、幅28mmの円筒部を有する試験片(摩耗試験片)を作製した。
 低サイクル曲げ疲労試験片の表面硬さ(HV)と芯部硬さ(HV)を測定した。その結果を表3に示す。なお、摩耗試験片の表面硬さは、低サイクル曲げ疲労試験片の表面硬さと同等であった。
 低サイクル曲げ疲労試験は、図1に示すように、切欠Xを有する13mm角の低サイクル曲げ疲労試験片1に、周波数1Hzの正弦波で、応力比0.1の荷重2を与える4点曲げ疲労試験で行った。
 周波数1Hz(歪み速度で0.01s−1程度)は、実際に自動車用歯車にかかる歪み速度より小さいが、一般に、繰返し速度が疲労試験値に影響するのは、歪み速度が10s−1以上の領域であり、かつ、10s−1は、実際に自動車用歯車にかかる歪み速度より遥かに大きいので、周波数1Hzによる評価に支障はない。
 なお、周波数1Hzでの試験時に、試験片が発熱しないことは、別途、試験片の温度を実測して確認した。
 実際の自動車用歯車の応力比は0であるが、本試験において応力比を0.1とした理由は、試験中の除荷時に、試験片が横滑りしないようにするためである。
 本試験は、10~10サイクルで、試験片が破断する荷重で実施し、試験結果を内挿して求まる500サイクル曲げ疲労強度(kN)を、低サイクル曲げ疲労強度とした。低サイクル曲げ疲労強度を表3に併せて示す。
Figure JPOXMLDOC01-appb-T000003
 摩耗試験は、直径130mm、幅18mmで、外周に、R=150mmのクラウニングを有する軸受鋼製(SUJ2)のローラーを、摩耗試験片に、面圧で、ヘルツ応力1500MPaにて押し付けて、接触部での両ローラーの周速方向を同一とし、滑り率を−100%(摩耗試験片よりもローラーの方が接触部の周速が100%大きい)として回転させて、回転数が100万回に達した後の摩耗試験片の摩耗深さを測定した。摩耗深さを表3に併せて示す。
 表3に示すように、発明例の試験No.1~22、28~44においては、低サイクル曲げ疲労強度が20kN以上と優れており、また、摩耗深さも20μm以下と優れている。
 これに対し、比較例の試験No.23においては、低サイクル曲げ疲労強度が低い。これは、鋼材のCが0.6%を超えていることに起因して、芯部硬さが高くなったためである。
 比較例の試験No.24においては、摩耗深さが大きい。これは、鋼材のSiが1.5%を超えていることに起因して、浸炭性が阻害され、表面硬さが低くなったためである。
 比較例の試験No.25においては、低サイクル曲げ疲労強度が低い。これは、鋼材のPが0.02%を超えていることに起因して、Pが粒界に偏析して粒界破壊が生じたためである。
 比較例の試験No.26においては、低サイクル曲げ疲労強度が低い。これは、鋼材の成分組成は本発明の範囲内にあるが、芯部硬さがHV400を下回ったことによる。
 芯部硬さがHV400を下回った理由は、焼入れ油の温度が220℃と高くて、焼入れ不足になったためである。
 比較例の試験No.27においては、低サイクル曲げ疲労強度が低い。これは、鋼材の成分組成は、本発明の範囲内にあるが、芯部硬さがHV550を上回ったことによる。
 芯部硬さがHV550を上回った理由は、C量が0.6%と比較的高いことに加え、焼入れ油の温度が20℃と低いからである。
Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
(Example)
Steel materials having the composition shown in Tables 1 and 2 were forged and then subjected to soaking and normalization to produce a roughing test piece for a low cycle bending fatigue test and a roughing test piece for a wear test. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Test No. 1 to 21 (invention example), test no. 23 to 25 (comparative examples) and test no. The rough-processed test pieces 28 to 44 (invention examples) were subjected to carburizing treatment at 930 ° C. for 5 hours in a modified gas carburizing furnace, and then subjected to oil quenching at 130 ° C.
Test No. About the rough processing test piece of 22 (invention example), carburizing treatment at 930 ° C. for 5 hours was performed in a modified gas carburizing furnace, followed by oil quenching at 130 ° C. Then, oil quenching at 130 ° C. was performed.
Specimen No. About the rough processing test piece of 26 (comparative example), carburizing treatment of 930 ° C. × 5 hours was performed in a modified gas carburizing furnace, and then oil quenching at 220 ° C. was performed.
Test No. About the rough-processed test piece of 27 (Comparative Example), it was subjected to carburizing treatment at 930 ° C. for 5 hours in a modified gas carburizing furnace, followed by oil quenching at 20 ° C., followed by tempering for 1.5 hours. gave.
The carbon potential during the carburizing treatment was adjusted in the range of 0.5 to 0.8, and the tempering temperature was adjusted in the range of 150 to 300 ° C. to adjust the surface hardness and core hardness.
After the heat treatment, only the carburized layer on the side surface was removed by machining for the rough machining test piece for the low cycle bending fatigue test, and the 13 mm square notched test piece 1 (low cycle bending fatigue test piece shown in FIG. ) Was produced.
About the rough-processed test piece for an abrasion test, only the grip part was removed by machining to produce a test piece (wear test piece) having a cylindrical part with a diameter of 26 mm and a width of 28 mm.
The surface hardness (HV) and core hardness (HV) of the low cycle bending fatigue test piece were measured. The results are shown in Table 3. The surface hardness of the wear test piece was equivalent to the surface hardness of the low cycle bending fatigue test piece.
As shown in FIG. 1, the low cycle bending fatigue test is a four-point bending that applies a load 2 with a stress ratio of 0.1 to a 13 mm square low cycle bending fatigue test piece 1 having a notch X with a sine wave at a frequency of 1 Hz. A fatigue test was performed.
The frequency of 1 Hz (about 0.01 s −1 in terms of strain rate) is smaller than the strain rate actually applied to the automobile gear. In general, the repetition rate affects the fatigue test value when the strain rate is 10 s −1 or more. This is a region, and 10 s −1 is much larger than the strain rate actually applied to the automobile gear, so there is no problem in the evaluation with the frequency of 1 Hz.
In addition, it was confirmed by actually measuring the temperature of the test piece that the test piece did not generate heat during the test at a frequency of 1 Hz.
The stress ratio of an actual automobile gear is 0, but the reason for setting the stress ratio to 0.1 in this test is to prevent the test piece from slipping during unloading during the test.
This test was carried out in 10 2 to 10 4 cycles with a load at which the test piece broke, and the 500 cycle bending fatigue strength (kN) obtained by interpolating the test results was taken as the low cycle bending fatigue strength. The low cycle bending fatigue strength is also shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
In the wear test, a roller made of bearing steel (SUJ2) having a diameter of 130 mm, a width of 18 mm, and a crowning of R = 150 mm on the outer periphery was pressed against the wear test piece with a surface pressure at a Hertzian stress of 1500 MPa. Rotate with the same peripheral speed direction of both rollers at -100% (slip rate is -100% (the peripheral speed of the contact part is 100% higher than the wear test piece)) After reaching, the wear depth of the wear specimen was measured. The wear depth is also shown in Table 3.
As shown in Table 3, the test No. of the invention example. In 1 to 22 and 28 to 44, the low cycle bending fatigue strength is excellent at 20 kN or more, and the wear depth is also excellent at 20 μm or less.
In contrast, Test No. of the comparative example. In No. 23, the low cycle bending fatigue strength is low. This is because the core hardness increased due to the C of the steel material exceeding 0.6%.
Test No. of the comparative example. In 24, the wear depth is large. This is because the carburizability is hindered and the surface hardness is lowered due to the fact that Si in the steel material exceeds 1.5%.
Test No. of the comparative example. In 25, the low cycle bending fatigue strength is low. This is because P is segregated at the grain boundaries and grain boundary fracture has occurred due to the fact that P of the steel material exceeds 0.02%.
Test No. of the comparative example. In No. 26, the low cycle bending fatigue strength is low. This is because the steel component composition is within the range of the present invention, but the core hardness is lower than HV400.
The reason why the core hardness is lower than HV400 is that the temperature of the quenching oil is as high as 220 ° C. and the quenching is insufficient.
Test No. of the comparative example. In No. 27, the low cycle bending fatigue strength is low. This is because the component composition of the steel is within the scope of the present invention, but the core hardness exceeds HV550.
The reason why the core hardness exceeds HV550 is that the amount of C is relatively high at 0.6% and the temperature of the quenching oil is as low as 20 ° C.
 前述したように、本発明の低サイクル曲げ疲労強度に優れた浸炭鋼部品を用いれば、自動車用の差動ギアなどの歯車を大幅に小型化、軽量化することができ、その結果、自動車の燃費を高め、かつ、CO排出量を削減することが可能となる。よって、本発明の効果は極めて顕著であり、本発明は、産業上の利用可能性が大きいものである。 As described above, by using the carburized steel part having excellent low cycle bending fatigue strength according to the present invention, gears such as a differential gear for automobiles can be significantly reduced in size and weight. It becomes possible to improve fuel consumption and reduce CO 2 emission. Therefore, the effect of the present invention is extremely remarkable, and the present invention has great industrial applicability.
 1 試験片
 2 荷重
 X 切欠
1 Test piece 2 Load X Notch

Claims (10)

  1.  質量%で、
    C:0.1~0.6%、
    Si:0.01~1.5%、
    Mn:0.3~2.0%、
    P:0.02%以下、
    S:0.001~0.15%、
    N:0.001~0.03%、
    Al:0.001~0.06%、及び、
    O:0.005%以下を含有し、
    残部が実質的に鉄及び不可避的不純物からなる鋼材に、浸炭焼入れ、次いで、焼戻しを施した鋼部品であって、
     表面硬さがHV550~HV800であり、芯部硬さがHV400~HV500である
    ことを特徴とする低サイクル曲げ疲労強度に優れた浸炭鋼部品。
    % By mass
    C: 0.1 to 0.6%
    Si: 0.01 to 1.5%,
    Mn: 0.3 to 2.0%,
    P: 0.02% or less,
    S: 0.001 to 0.15%,
    N: 0.001 to 0.03%,
    Al: 0.001 to 0.06%, and
    O: contains 0.005% or less,
    A steel part in which the balance is substantially iron and inevitable impurities, carburized and then tempered,
    A carburized steel part excellent in low cycle bending fatigue strength, characterized by having a surface hardness of HV550 to HV800 and a core hardness of HV400 to HV500.
  2.  前記低サイクル曲げ疲労強度が20kN以上であることを特徴とする請求項1に記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。 The carburized steel part having excellent low cycle bending fatigue strength according to claim 1, wherein the low cycle bending fatigue strength is 20 kN or more.
  3.  前記鋼材が、さらに、質量%で、B:0.0002~0.005%を含有することを特徴とする請求項1又は2に記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。 The carburized steel part having excellent low cycle bending fatigue strength according to claim 1 or 2, wherein the steel material further contains B: 0.0002 to 0.005% by mass%.
  4.  前記鋼が、さらに、質量%で、Cr:1.20~3.0%を含有することを特徴とする請求項1~3のいずれか1項に記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。 The carburization excellent in low cycle bending fatigue strength according to any one of claims 1 to 3, wherein the steel further contains Cr: 1.20 to 3.0% by mass. Steel parts.
  5.  前記鋼材が、さらに、質量%で、Ti:0.01~0.2%を含有することを特徴とする請求項1~4のいずれか1項に記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。 The carburization excellent in low cycle bending fatigue strength according to any one of claims 1 to 4, wherein the steel material further contains Ti: 0.01 to 0.2% by mass%. Steel parts.
  6.  前記鋼材が、さらに、質量%で、Mo:0.1%未満、Cu:0.1%未満、及び、Ni:0.1%未満の1種又は2種以上を、不可避成分として含有することを特徴とする請求項1~5のいずれか1項に記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。 The steel material further contains, as an inevitable component, one or more of Mo: less than 0.1%, Cu: less than 0.1%, and Ni: less than 0.1% by mass% The carburized steel part excellent in low cycle bending fatigue strength according to any one of claims 1 to 5.
  7.  前記鋼材が、さらに、質量%で、Mo:0.1~1.5%、Cu:0.1~2.0%、及び、Ni:0.1~5.0%の1種又は2種以上を含有することを特徴とする請求項1~5のいずれか1項に記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。 The steel material is further one or two kinds by mass% of Mo: 0.1 to 1.5%, Cu: 0.1 to 2.0%, and Ni: 0.1 to 5.0%. The carburized steel part excellent in low cycle bending fatigue strength according to any one of claims 1 to 5, characterized by containing the above.
  8.  前記鋼材が、さらに、質量%で、Nb:0.01~0.2%、及び、V:0.03~0.2%の1種又は2種を含有することを特徴とする請求項1~7のいずれか1項に記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。 The steel material further contains one or two of Nb: 0.01 to 0.2% and V: 0.03 to 0.2% by mass%. The carburized steel part excellent in low cycle bending fatigue strength of any one of ~ 7.
  9.  前記鋼材が、さらに、質量%で、Ca:0.0002~0.005%、Zr:0.0003~0.005%、及び、Mg:0.0003~0.005%の1種又は2種以上を含有することを特徴とする請求項1~8のいずれか1項に記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。 Further, the steel material is one or two of mass%, Ca: 0.0002 to 0.005%, Zr: 0.0003 to 0.005%, and Mg: 0.0003 to 0.005%. The carburized steel part excellent in low cycle bending fatigue strength according to any one of claims 1 to 8, characterized by containing the above.
  10.  前記浸炭鋼部品が、差動歯車又はトランスミッション歯車であることを特徴とする請求項1~9のいずれか1項に記載の低サイクル曲げ疲労強度に優れた浸炭鋼部品。 The carburized steel part excellent in low cycle bending fatigue strength according to any one of claims 1 to 9, wherein the carburized steel part is a differential gear or a transmission gear.
PCT/JP2010/070516 2009-05-13 2010-11-11 Carburized steel component having excellent low-cycle bending fatigue strength WO2011111269A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117030663A KR20120012837A (en) 2010-03-10 2010-11-11 Carburized steel component having excellent low-cycle bending fatigue strength
US13/139,000 US20120060979A1 (en) 2009-05-13 2010-11-11 Carburized steel part having excellent low cycle bending fatigue strength
CN2010800294541A CN102471842A (en) 2010-03-10 2010-11-11 Carburized steel component excellent in low-cycle bending fatigue strength
US14/014,983 US9469883B2 (en) 2009-05-13 2013-08-30 Carburized steel part having excellent low cycle bending fatigue strength

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-053555 2010-03-10
JP2010053555A JP5530763B2 (en) 2009-05-13 2010-03-10 Carburized steel parts with excellent low cycle bending fatigue strength

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/139,000 A-371-Of-International US20120060979A1 (en) 2009-05-13 2010-11-11 Carburized steel part having excellent low cycle bending fatigue strength
US14/014,983 Continuation US9469883B2 (en) 2009-05-13 2013-08-30 Carburized steel part having excellent low cycle bending fatigue strength

Publications (1)

Publication Number Publication Date
WO2011111269A1 true WO2011111269A1 (en) 2011-09-15

Family

ID=44572404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070516 WO2011111269A1 (en) 2009-05-13 2010-11-11 Carburized steel component having excellent low-cycle bending fatigue strength

Country Status (3)

Country Link
KR (1) KR20120012837A (en)
CN (2) CN103382538A (en)
WO (1) WO2011111269A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133278A1 (en) * 2014-03-04 2015-09-11 Ntn株式会社 In-wheel motor drive device
WO2015137085A1 (en) * 2014-03-13 2015-09-17 Ntn株式会社 In-wheel motor drive device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5783101B2 (en) * 2012-03-22 2015-09-24 新日鐵住金株式会社 Steel for nitriding
CN103361559B (en) * 2013-07-18 2016-06-29 首钢总公司 A kind of Nb, Ti combined microalloying high-temperature carburizing pinion steel
CN103643117B (en) * 2013-12-11 2016-05-25 江苏大学 A kind of ultralow aluminum steel and smelting process thereof
JP6301694B2 (en) * 2014-03-24 2018-03-28 株式会社神戸製鋼所 Steel material for vacuum carburizing and manufacturing method thereof
CN104294178A (en) * 2014-09-30 2015-01-21 合肥恒泰钢结构有限公司 Carburizing manganese steel
CN105671434A (en) * 2016-03-19 2016-06-15 上海大学 Magnesium, calcium and sulfur containing 20MnCr free-cutting gear steel and preparation method thereof
CN106834960B (en) * 2017-01-24 2018-06-01 中天钢铁集团有限公司 A kind of automobile using boracic top grade gear steel and its production technology
CN109402498B (en) * 2018-08-29 2020-08-28 宝钢特钢韶关有限公司 High-temperature carburized gear steel and manufacturing method thereof
CN111334722B (en) * 2018-12-18 2022-01-25 南京工程学院 Carburized gear with uniform structure and refined grains and manufacturing method thereof
JP7175182B2 (en) * 2018-12-20 2022-11-18 山陽特殊製鋼株式会社 Automobile mechanical parts made of carburizing steel with excellent static torsional strength and torsional fatigue strength
CN113631746B (en) * 2019-03-29 2022-07-15 日本制铁株式会社 Carburized component and method for manufacturing same
CN110373607B (en) * 2019-07-25 2021-04-02 广东韶钢松山股份有限公司 High-temperature carburized steel, high-temperature carburized steel component and preparation method thereof
CN111850412A (en) * 2020-08-03 2020-10-30 苏州亚太金属有限公司 Steel material for carburized gear and preparation method thereof
CN111979494B (en) * 2020-08-28 2021-11-12 东风商用车有限公司 Ti-containing carburizing steel for thin-wall annular gear, manufacturing method thereof and thin-wall annular gear forming method
CN113106341B (en) * 2021-03-31 2022-04-12 武汉科技大学 High-strength and high-toughness weldable corrosion-resistant wear-resistant steel plate and preparation method thereof
CN115522121B (en) * 2022-08-31 2023-06-23 马鞍山钢铁股份有限公司 Low-silicon Nb-V composite microalloyed gear steel and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770646A (en) * 1993-08-31 1995-03-14 Toa Steel Co Ltd Production of gear
JP2005036269A (en) * 2003-07-18 2005-02-10 Daido Steel Co Ltd Case hardening steel capable of carburizing in shortened time, and carburized component
JP2007332438A (en) * 2006-06-16 2007-12-27 Nippon Steel Corp Steel material for carburizing and quenching having excellent low cycle fatigue property and carburized and quenched component
JP2008248284A (en) * 2007-03-29 2008-10-16 Kobe Steel Ltd Gear excellent in low cycle fatigue strength
WO2010116670A1 (en) * 2009-03-30 2010-10-14 新日本製鐵株式会社 Carburized steel part

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3094856B2 (en) * 1995-08-11 2000-10-03 株式会社神戸製鋼所 High strength, high toughness case hardening steel
KR100619841B1 (en) * 2004-11-24 2006-09-08 송치복 High elasticity and high strength steel in the composition of high silicon with low alloy for the purpose of impact resistance and abrasion resistance and manufacturing method of the same steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770646A (en) * 1993-08-31 1995-03-14 Toa Steel Co Ltd Production of gear
JP2005036269A (en) * 2003-07-18 2005-02-10 Daido Steel Co Ltd Case hardening steel capable of carburizing in shortened time, and carburized component
JP2007332438A (en) * 2006-06-16 2007-12-27 Nippon Steel Corp Steel material for carburizing and quenching having excellent low cycle fatigue property and carburized and quenched component
JP2008248284A (en) * 2007-03-29 2008-10-16 Kobe Steel Ltd Gear excellent in low cycle fatigue strength
WO2010116670A1 (en) * 2009-03-30 2010-10-14 新日本製鐵株式会社 Carburized steel part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133278A1 (en) * 2014-03-04 2015-09-11 Ntn株式会社 In-wheel motor drive device
WO2015137085A1 (en) * 2014-03-13 2015-09-17 Ntn株式会社 In-wheel motor drive device

Also Published As

Publication number Publication date
KR20120012837A (en) 2012-02-10
CN103382538A (en) 2013-11-06
CN102471842A (en) 2012-05-23

Similar Documents

Publication Publication Date Title
WO2011111269A1 (en) Carburized steel component having excellent low-cycle bending fatigue strength
JP5530763B2 (en) Carburized steel parts with excellent low cycle bending fatigue strength
JP4677057B2 (en) Carburized steel parts
JP5862802B2 (en) Carburizing steel
WO2015098106A1 (en) Carburized-steel-component production method, and carburized steel component
EP2436795A1 (en) Carburized component and manufacturing method therefor
JP5099276B1 (en) Gas carburized steel parts having excellent surface fatigue strength, steel for gas carburizing, and method for producing gas carburized steel parts
KR101464712B1 (en) Steel component having excellent temper softening resistance
WO2011114775A1 (en) Steel for nitrocarburization, nitrocarburized components, and production method for same
JP5872863B2 (en) Gear having excellent pitting resistance and method for producing the same
CN112292471B (en) Mechanical component
JP5558887B2 (en) Manufacturing method of high strength parts using Ti and B added steels with excellent low cycle fatigue strength
JP5206271B2 (en) Carbonitriding parts made of steel
JP5541048B2 (en) Carbonitrided steel parts with excellent pitting resistance
JP5178104B2 (en) Hardened steel with excellent surface fatigue strength, impact strength and bending fatigue strength
JP4970811B2 (en) High surface pressure parts and manufacturing method thereof
JP2005325398A (en) High-strength gear and manufacturing method therefor
JP2010070831A (en) Carbonitrided component made of steel
JP4821582B2 (en) Steel for vacuum carburized gear
JP2016102253A (en) Steel component
JP2006265663A (en) Steel for continuously variable transmission, stock material steel sheet, and belt for continuously variable transmission
JP2023163969A (en) Bar steel and carburized component
JP2023163967A (en) Bar steel and carburized component
JP2020105603A (en) Steel material for carburized steel component
KR20080070615A (en) Ultra high strength carburizing steel with high fatigue resistance

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029454.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847496

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13139000

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117030663

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847496

Country of ref document: EP

Kind code of ref document: A1