WO2017056896A1 - Preform for crankshaft, nitride crankshaft, and manufacturing method for same - Google Patents

Preform for crankshaft, nitride crankshaft, and manufacturing method for same Download PDF

Info

Publication number
WO2017056896A1
WO2017056896A1 PCT/JP2016/076345 JP2016076345W WO2017056896A1 WO 2017056896 A1 WO2017056896 A1 WO 2017056896A1 JP 2016076345 W JP2016076345 W JP 2016076345W WO 2017056896 A1 WO2017056896 A1 WO 2017056896A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankshaft
nitriding
content
steel
rough profile
Prior art date
Application number
PCT/JP2016/076345
Other languages
French (fr)
Japanese (ja)
Inventor
将人 祐谷
裕章 多比良
基成 西原
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2017543064A priority Critical patent/JP6477904B2/en
Publication of WO2017056896A1 publication Critical patent/WO2017056896A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention includes a crankshaft rough shape material that has been subjected to quenching and tempering treatment after forming a steel material into a rough shape of a crankshaft hot, and a nitrided crankshaft that has been subjected to nitriding treatment by machining the rough shape material. And a manufacturing method thereof.
  • the nitrided crankshaft according to the present invention has excellent fatigue strength and bending straightness, and is suitable for use as a machine part such as an automobile, an industrial machine, and a construction machine.
  • ⁇ Fatigue strength is an important mechanical property for crankshafts.
  • the crankshaft may be hot-forged into a desired shape for machine structural steel, subjected to hot forging or heat treatment, then machined and subjected to nitriding to further improve fatigue strength. is there.
  • the nitriding treatment is performed, the fatigue strength of the crankshaft is improved, but the crankshaft is slightly warped. The generated warpage must be eliminated by applying bending stress. Therefore, bend straightening, which is easy to correct warping, is one of the important characteristics for nitrided parts together with fatigue strength.
  • a problem in the manufacture of a nitrided crankshaft is that the harder the surface layer after nitriding, the better the fatigue strength and the worse the bend straightening properties.
  • As a technique for achieving both fatigue strength and bend straightening for example, there is one disclosed in Japanese Patent Application Laid-Open No. 2004-162161.
  • JP 2004-162161 A the steel composition is optimized, the hardness distribution of the nitrided layer after nitriding, and the hardness of the core that is not affected by nitriding are controlled, so that fatigue strength and bend straightening are improved.
  • a technique for achieving both is disclosed.
  • the bend straightening and fatigue strength after nitriding are improved.
  • the bending straightness and fatigue strength are improved as compared with the case where the nitriding treatment is performed on the steel as hot forged.
  • Japanese Unexamined Patent Application Publication Nos. 2009-167505 and 2011-42846 disclose techniques for achieving both fatigue strength after nitriding and bending straightening by performing quenching and tempering before nitriding.
  • Japanese Patent Application Laid-Open No. 2009-167505 discloses a nitrocarburized rough product which is soft nitrided after quenching and tempering a steel containing V and further containing Cr and Al, and a crankshaft.
  • the pinning action of V carbonitrides refines the austenite grain size at the time of quenching and improves the bending straightness. Furthermore, by making the steel structure a pearlite-based structure, excellent fatigue strength can be achieved.
  • Japanese Patent Application Laid-Open No. 2011-42846 uses steel with optimized components to control the hardness in the vicinity of the surface layer after nitriding and to reduce the compound layer depth to achieve high fatigue strength and bending straightening. A nitrocarburized part that can be obtained is disclosed.
  • A One method for increasing the residual stress is to increase the content of nitride-forming elements and increase the amount of alloy nitride after nitriding.
  • the greater the content of the nitride-forming element the higher the surface hardness after nitriding, and at the same time the bending straightness deteriorates.
  • the magnitude of the residual stress resulting from the precipitation of alloy nitride is determined by the total amount regardless of the size of the alloy nitride. That is, when a predetermined amount of hardening is obtained, the residual stress introduced is larger when steel is strengthened using a large amount of coarse alloy nitride than when a small amount of fine alloy nitride is used.
  • the structure of the nitride layer is preferably as homogeneous as possible. Mixing proeutectoid ferrite is not preferred. If a part of the structure is pro-eutectoid ferrite, the hardness of the steel becomes non-uniform and the fatigue characteristics deteriorate. On the other hand, when the structure before nitriding is tempered martensite or tempered bainite obtained by quenching and tempering, the fatigue characteristics are improved.
  • the structure of the crankshaft rough profile before nitriding should not be mainly composed of as-quenched martensite or bainite.
  • the amount of inherent strain increases due to supersaturated carbon and high dislocation density. Therefore, in these structures, alloy nitrides tend to precipitate finely.
  • tempering is performed after quenching to reduce the amount of inherent strain, the alloy nitride can be easily coarsened appropriately.
  • the structure of the crankshaft rough profile before nitriding should not contain residual austenite. Residual austenite may expand due to transformation during nitriding. Since the retained austenite becomes more difficult to be stably transformed as the nitrogen concentration increases, the amount of expansion due to transformation of the retained austenite during nitriding is small in the nitrided layer and large in the core portion that is not affected by nitriding. This reduces the compressive residual stress of the nitride layer.
  • the present invention has been completed based on the above findings, and the gist of the present invention resides in a crankshaft rough profile, a nitrided crankshaft, and a nitrided crankshaft manufacturing method shown in the following (1) to (6). .
  • the chemical composition contains one or two selected from the group consisting of Ti: 0.005 to 0.05% and Nb: 0.005 to 0.05% by mass%.
  • the chemical composition is, in mass%, Mo: 0.03-0.50%, Cu: 0.05-0.50%, and Ni: 0.05-0.50%.
  • crankshaft rough profile according to any one of (1) to (3), wherein the chemical composition contains Ca: 0.0001 to 0.005% by mass.
  • the dough has a chemical composition of mass%, C: 0.35 to 0.70%, Si: 0.01 to 0.45%, Mn: 1.3 to 3.0%, P: 0.00. 05% or less, S: 0.005 to 0.100%, Cr: 0.05 to 0.90%, Al: 0.001 to 0.080%, N: 0.003 to 0.025%, Ti: 0 to 0.05%, Nb: 0 to 0.05%, Mo: 0 to 0.50%, Cu: 0 to 0.50%, Ni: 0 to 0.50%, Ca: 0 to 0.005 %, Balance: Fe and impurities, the structure 10 mm deep from the surface is volume%, the total of tempered martensite and tempered bainite is 50% or more, proeutectoid ferrite is 10% or less, and pearlite is 40% or less.
  • the surface layer has a cured layer whose Vickers hardness is 50HV or more higher than the Vickers hardness of the fabric, and the thickness of the cured layer Is 200
  • crankshaft rough shape material having excellent fatigue characteristics and bending straightening
  • a nitrided crankshaft and a method for manufacturing the same.
  • Machines other than the nitrided crankshaft such as automobiles, industrial machines, and construction machines It can also be applied when manufacturing parts.
  • FIG. 1 is a front view of an Ono rotary bending fatigue test piece.
  • FIG. 2 is a front view of a four-point bending test piece.
  • FIG. 3 is a diagram for explaining the four-point bending test.
  • crankshaft rough profile and the nitrided crankshaft according to an embodiment of the present invention will be described in detail.
  • “%” Of the content of each element means “mass%”.
  • crankshaft rough profile contains the following elements.
  • C 0.35 to 0.70% Carbon (C) increases the hardness and fatigue strength of the steel material. Furthermore, C is present in the steel as cementite and has the effect of increasing the amount of nitrogen introduced during nitriding and increasing the residual stress. If the C content is too low, the above effect cannot be obtained. On the other hand, if the C content is too high, the volume fraction of cementite in the steel material becomes too high, and the machinability decreases. Therefore, the C content is 0.35 to 0.70%. The minimum with preferable C content is 0.40%, More preferably, it is 0.45%. The upper limit with preferable C content is 0.65%, More preferably, it is 0.60%, More preferably, it is 0.58%.
  • Si 0.01 to 0.45% Silicon (Si) dissolves and strengthens the steel (solid solution strengthening). If the Si content is too low, the above effect cannot be obtained. On the other hand, if the Si content is too high, the hardness of the surface layer becomes excessively high during nitriding. Therefore, the bend straightening property of the steel material is lowered. Furthermore, the diffusion of nitrogen during nitriding is hindered. Therefore, the Si content is 0.01 to 0.45%.
  • the minimum with preferable Si content is 0.05%, More preferably, it is 0.10%, More preferably, it is 0.15%.
  • the upper limit with preferable Si content is 0.40%, More preferably, it is 0.35%, More preferably, it is 0.30%.
  • Mn 1.3 to 3.0%
  • Manganese (Mn) is the most important alloying element in the present invention. Mn combines with N introduced into the steel material by nitriding treatment to form a nitride, and introduces a large compressive residual stress while appropriately increasing the hardness of the surface layer. Further, Mn forms MnS in the steel material to enhance the machinability of the steel material. If the Mn content is too low, the above effect cannot be obtained. On the other hand, if the Mn content is too high, the variation in hardness increases due to segregation. Therefore, the Mn content is 1.3 to 3.0%.
  • the minimum with preferable Mn content is 1.4%, More preferably, it is 1.5%, More preferably, it is 1.6%.
  • the upper limit with preferable Mn content is 2.5%, More preferably, it is 2.2%, More preferably, it is 2.0%.
  • P 0.05% or less Phosphorus (P) is an impurity. P segregates at the grain boundaries and causes grain boundary embrittlement cracking. Therefore, the P content is preferably as low as possible.
  • the upper limit of the P content is 0.05%. A preferable upper limit of the P content is 0.02%.
  • S 0.005 to 0.100% Sulfur (S) combines with Mn in the steel material to form MnS and enhances the machinability of the steel material. If the S content is too low, the above effect cannot be obtained. On the other hand, if S content is too high, coarse MnS will be formed and the fatigue strength of steel materials will fall. Therefore, the S content is 0.005 to 0.100%.
  • the minimum with preferable S content is 0.010%, More preferably, it is 0.020%, More preferably, it is 0.030%.
  • the upper limit with preferable S content is 0.080%, More preferably, it is 0.070%, More preferably, it is 0.060%.
  • Chromium (Cr) combines with N introduced into the steel material by nitriding treatment to form CrN in the nitrided layer, strengthens the nitrided layer, and introduces compressive residual stress. If the Cr content is too low, the above effect cannot be obtained. On the other hand, if the Cr content is too high, the nitride layer is excessively cured, and the bending straightness deteriorates. Therefore, the Cr content is 0.05 to 0.90%.
  • the minimum with preferable Cr content is 0.08%, More preferably, it is 0.12%, More preferably, it is 0.15%.
  • the upper limit with preferable Cr content is 0.70%, More preferably, it is 0.50%, More preferably, it is 0.40%.
  • N 0.003 to 0.025% Nitrogen (N) is dissolved in the steel material to increase the strength of the steel material. If the N content is too low, the above effect cannot be obtained. On the other hand, if the N content is too high, bubbles are generated in the steel material. Since bubbles become defects, it is preferable to suppress the generation of bubbles. Therefore, the N content is 0.003 to 0.025%. A preferable lower limit of the N content is 0.005%. The upper limit with preferable N content is 0.020%, More preferably, it is 0.018%.
  • Al 0.001 to 0.080%
  • Aluminum (Al) is an element that deoxidizes steel. On the other hand, if the Al content is too high, fine nitrides are formed, the steel is excessively hardened, and the bending straightness is deteriorated. Therefore, the Al content is 0.001 to 0.080%.
  • the minimum with preferable Al content is 0.005%, More preferably, it is 0.010%.
  • the upper limit with preferable Al content is 0.060%, More preferably, it is 0.050%, More preferably, it is 0.040%.
  • the balance of the chemical composition of the crankshaft rough profile according to the present embodiment is Fe and impurities.
  • the impurities are mixed from ore as a raw material, scrap, or production environment when industrially producing steel materials, and have an adverse effect on the crankshaft rough profile according to the present embodiment. It means what is allowed in the range.
  • the group consisting of Ti and Nb has an effect of preventing coarsening of austenite crystal grains, and may contain one or two kinds.
  • Ti 0 to 0.05% Titanium (Ti) forms nitrides and carbonitrides, and suppresses coarsening of crystal grains during hot forging and quenching. However, if the Ti content is too high, TiC is generated and the hardness of the steel material varies greatly. Therefore, the Ti content is 0 to 0.05%.
  • the preferable lower limit of the Ti content when Ti is contained is 0.005%, more preferably 0.010%.
  • the upper limit with preferable Ti content is 0.04%, More preferably, it is 0.03%.
  • Niobium (Nb) forms nitrides and carbonitrides, and suppresses coarsening of crystal grains during hot forging and quenching. Nb further delays recrystallization during hot forging and quenching and tempering, and suppresses coarsening of crystal grains.
  • the Nb content is 0 to 0.05%.
  • the preferable lower limit is 0.005%, more preferably 0.010%.
  • the upper limit with preferable Nb content is 0.04%, More preferably, it is 0.03%.
  • the group consisting of Mo, Cu and Ni has an effect of increasing the strength of the crankshaft rough profile, and may contain one or more kinds.
  • Mo 0 to 0.50%
  • Mo molybdenum
  • Cu 0 to 0.50%
  • Cu copper
  • the minimum with preferable Cu content is 0.05%, More preferably, it is 0.10%.
  • the upper limit with preferable Cu content is 0.30%, More preferably, it is 0.20%.
  • Ni 0 to 0.50%
  • Ni nickel
  • Ni 0.05%
  • the upper limit with preferable Ni content is 0.30%, More preferably, it is 0.20%.
  • the chemical composition of the crankshaft rough profile according to the present embodiment may further contain Ca as an optional element.
  • Ca 0 to 0.005%
  • Ca calcium
  • the minimum with preferable Ca content for acquiring the said effect stably is 0.0001%, More preferably, it is 0.0003%.
  • the upper limit with preferable Ca content is 0.003%, More preferably, it is 0.002%.
  • crankshaft shaft rough profile is a steel material roughly formed into a crankshaft by hot forging.
  • the rough shape of the crankshaft according to the present embodiment makes the hardness in the nitrided layer uniform after nitriding, and the surface layer portion affected by nitriding in order to appropriately coarsen the alloy nitride generated in the nitrided layer. It is necessary to make this structure into a structure mainly composed of tempered martensite and tempered bainite. More specifically, the total volume fraction of tempered martensite and tempered bainite in a structure 10 mm deep from the surface needs to be 50% or more.
  • a preferred lower limit of the total volume fraction of tempered martensite and tempered bainite is 60%, more preferably 70%, and even more preferably 80%.
  • Proeutectoid ferrite is the cause of variation in the hardness of the nitride layer, so less is better.
  • the crankshaft rough profile according to this embodiment needs to have a volume fraction of pro-eutectoid ferrite of 10% or less in a structure having a depth of 10 mm from the surface.
  • a preferable upper limit of the volume fraction of pro-eutectoid ferrite is 8%, more preferably 6%.
  • Perlite which is a mixed structure of ferrite and cementite, is a preferable structure for coarsening the alloy nitride, but the lower structural unit called a block constituting pearlite has the crystal orientation of ferrite aligned in a certain direction. For this reason, the fatigue characteristics may be deteriorated because they are easily coarsened as compared with blocks in tempered martensite and tempered bainite. Therefore, it is preferable that the crankshaft rough profile according to the present embodiment has a small pearlite volume fraction in a structure 10 mm deep from the surface.
  • a preferable upper limit of the pearlite volume fraction is 40%, more preferably 30%, and further preferably 20%.
  • the crankshaft rough profile according to the present embodiment is a steel material that has been quenched and tempered, there may be unavoidable residual austenite, but residual austenite is not preferable because it deforms parts during nitriding. Therefore, the volume fraction of retained austenite in the structure 10 mm deep from the surface contained in the steel is preferably 5% or less, more preferably 0%.
  • the nitrided crankshaft according to the present embodiment is obtained by nitriding after machining the above-described crankshaft rough profile.
  • the nitrided crankshaft has a hardened layer formed by nitriding as a surface layer using the steel material having the above-described chemical composition and microstructure as a base material.
  • the dough is a portion of the nitriding crankshaft that is not affected by nitrogen introduced from the surface by nitriding, that is, a portion having a constant nitrogen concentration.
  • the nitrided crankshaft has a hardened layer with a Vickers hardness of 50 HV or more higher than the hardness of the dough on the surface, and the thickness of the hardened layer is 200 ⁇ m or more.
  • the nitriding treatment is performed at 540 to 620 ° C. In this temperature range, the steel structure is not affected. Therefore, the nitrided crankshaft has substantially the same structure as that of the crankshaft rough profile except for the surface layer portion where nitrogen is diffused at a high concentration.
  • the method for manufacturing a nitrided crankshaft according to the present embodiment includes a steel material preparation process, a crankshaft forming process, a quenching and tempering process, a machining process, and a nitriding process. Hereinafter, each process is demonstrated.
  • Step material preparation process A molten steel that satisfies the chemical composition described above is manufactured.
  • the produced molten steel is used to make a slab (slab, bloom) by a general continuous casting method.
  • the molten steel is used to make an ingot by the ingot-making method.
  • a billet is manufactured by hot working a slab or an ingot. The hot working may be hot rolling or hot forging. Further, the billet is heated, rolled, and cooled under general conditions to produce a steel bar, which is used as the material for the crankshaft.
  • crankshaft molding process The manufactured steel bar is formed into a crankshaft rough shape by hot forging to produce an intermediate crankshaft profile. If the heating temperature for hot forging is too low, an excessive load is applied to the forging device. On the other hand, if the heating temperature is too high, the scale loss is large. Therefore, the preferred heating temperature is 1000 to 1300 ° C.
  • the preferred finishing temperature for hot forging is 900 ° C. or higher. This is because if the finishing temperature is too low, the burden on the mold increases. On the other hand, the preferable upper limit of the finishing temperature is 1250 ° C.
  • the intermediate product after hot forging is quenched and tempered to produce a crankshaft rough profile.
  • the quenching temperature is at least 10 ° C. lower than the A 3 point represented by the formula (1), that is, (A 3 ⁇ 10) ° C. or more.
  • the tempering temperature is 550 ° C. or higher, and (2) is not more than A 1 point of the formula.
  • the tempering time is preferably 30 minutes or longer.
  • a 3 910-203C + 44.7Si-30Mn-11Cr (1)
  • a 1 723-10.7Mn + 29.1Si-16.9Ni + 16.9Cr (2)
  • the quenching temperature In order to make the pro-eutectoid ferrite 10% or less, the quenching temperature needs to be (A 3 -10) ° C. or more. In order to make the structure immediately before quenching an austenite single phase, it is preferable that the quenching temperature be A 3 point or higher.
  • the quenching temperature is preferably 1000 ° C. or less.
  • the quenching temperature is more preferably 950 ° C. or lower, and further preferably 900 ° C. or lower.
  • the structure of the crankshaft rough profile is mainly composed of martensite and bainite. Martensite and bainite are in a carbon supersaturated state.
  • temper In order to precipitate the supersaturated carbon of martensite and bainite by tempering treatment, and to coarsen the alloy nitride appropriately in the subsequent nitriding treatment, it is preferable to temper at a temperature of 550 ° C. or higher.
  • the tempering temperature is more preferably 600 ° C. or higher, and further preferably 620 ° C. or higher.
  • the tempering temperature needs to be A 1 point or less.
  • crankshaft rough profile is machined into a predetermined crankshaft shape.
  • Nitriding is performed on the machined crankshaft rough profile.
  • a well-known nitriding process is employed.
  • the nitriding treatment is, for example, gas nitriding, salt bath nitriding, ion nitriding or the like.
  • the gas introduced into the furnace during nitriding may be NH 3 alone or an air-fuel mixture containing NH 3 and N 2 and / or H 2 .
  • a carburizing gas may be contained in these gases to perform soft nitriding. Therefore, “nitriding” in this specification includes “soft nitriding”.
  • the soaking temperature is set to 540 to 620 ° C. and the soaking is performed for 30 to 360 minutes. do it.
  • the nitrided crankshaft manufactured by the above manufacturing process has excellent fatigue strength and excellent bending straightness.
  • a 150 kg ingot of steels A and I having the chemical composition shown in Table 1 was manufactured using a vacuum melting furnace. Also, 50 kg ingots of steels B to H and J to R were manufactured using a vacuum melting furnace. “-” In the table indicates that the element is not added.
  • Each ingot was heated to 1250 ° C.
  • the heated ingot was hot forged to produce a steel bar having a diameter of 55 mm.
  • heating at 1200 ° C. and air cooling were performed to simulate the hot forging process of the crankshaft rough profile.
  • the round bar that was allowed to cool was subjected to heat treatment under the conditions described in the first heat treatment column in Table 2, and after cooling to near room temperature, the heat treatment was performed under the conditions described in the second heat treatment column. .
  • the material after hot forging was not subjected to heat treatment, and a test piece was processed from the raw material as it was and subjected to nitriding treatment.
  • the structure having a depth of 13.75 mm from the surface is a shallower position when the total of tempered martensite and tempered bainite is 50% or more, pro-eutectoid ferrite is 10% or less, and pearlite is 40% or less.
  • the structure having a depth of 10 mm was determined that the total of tempered martensite and tempered bainite was 50% or more, pro-eutectoid ferrite was 10% or less, and pearlite was 40% or less.
  • Ono type rotating bending fatigue test piece and 4-point bending test piece A plurality of Ono-type rotary bending fatigue test pieces shown in FIG. 1 were collected from the R / 2 position of the round bar of each test number along the longitudinal direction of the round bar.
  • the length L1 in the figure was 80 mm, and the diameter D1 was 12 mm.
  • the radius of curvature R1 of the notch at the center of the test piece was 3 mm, and the diameter of the cross section of the test piece at the notch bottom was 8 mm.
  • a 4-point bending test piece shown in FIG. 2 was collected along the longitudinal direction of the round bar.
  • the length L2 of the 4-point bending test piece was 180 mm, and the diameter D2 was 15 mm.
  • the radius of curvature R2 of the notch at the center of the test piece was 4 mm, and the diameter of the cross section of the test piece at the notch bottom was 12 mm.
  • the nitriding treatment was performed on the collected Ono-type rotating bending fatigue test piece and the four-point bending test piece under the conditions (heat treatment temperature and soaking time) shown in Table 2. Specifically, the test pieces are inserted into a heat treatment furnace, and the flow rate of ammonia gas and RX gas is 1: 1 while the temperature inside the furnace is raised to the heat treatment temperature (° C.) in the column “Nitriding conditions” in Table 2. In this way, it was introduced into the furnace. Thenitriding was performed at the heat treatment temperature (° C.) and the holding time (h) shown in the “nitriding conditions” column of Table 2. After the holding time had elapsed, the test piece was taken out of the heat treatment furnace and quenched with 100 ° C. oil.
  • the Vickers hardness at the center is defined as the hardness of the fabric, and the region from the surface that is 50 HV or higher than the hardness at the center is defined as the cured layer, and the cured layer depth of each test number was calculated.
  • the hardness distribution between each measurement depth position approximated with the straight line which connected the measured value of both sides, and calculated the hardened layer depth.
  • Ono type rotating bending fatigue test Using the Ono rotary bending fatigue test piece subjected to the above nitriding treatment, an Ono rotary bending fatigue test was performed. A rotating bending fatigue test in accordance with JIS Z2274 (1978) was performed in an air atmosphere at room temperature (25 ° C.). The test was carried out under a double swing condition with a rotational speed of 3000 rpm. Of the test pieces that did not break until the number of repetitions of 1.0 ⁇ 10 7 times, the highest stress was defined as the fatigue strength (MPa) of that test number. When the fatigue strength was 570 MPa or more, it was judged that the fatigue strength was excellent.
  • MPa fatigue strength
  • [4-point bending test] A four-point bending test was performed in the atmosphere at room temperature using the above-mentioned nitriding-treated four-point bending test piece.
  • the arrangement of the 4-point bending test is schematically shown in FIG.
  • the distances d1 to d5 in FIG. 3 are 21.5 mm, 51.0 mm, 17.5 mm, 90 mm, and 180 mm, respectively.
  • the fulcrum during the test was set at a position of 21.5 mm from each end of the test piece in the axial direction, and at a position of 72.5 mm.
  • a strain gauge was attached to the center of the notch bottom in parallel with the axial direction of the test piece.
  • Table 2 shows the test results.
  • Structure fraction in Table 2 means the fraction (volume%) of each structure constituting the steel.
  • Tempored structure means the sum of the fraction of tempered martensite and the fraction of tempered bainite.
  • Fatigue strength means the fatigue strength (MPa) obtained in the Ono rotary bending test.
  • test numbers 1 to 15 the chemical composition and steel microstructure are within the scope of the present invention. Those having these test numbers have a fatigue strength of 570 MPa or more and a strain amount of 13659 ⁇ or more, indicating that both the fatigue strength and the bending straightness are compatible. On the other hand, in the case of test numbers 16 to 24 that are out of the definition of the present invention, the target performance is not obtained.
  • the steel microstructure was outside the scope of the present invention. Therefore, the fatigue strength is as low as 535 MPa or less.
  • test number 21 was within the scope of the present invention, the C content was lower than the scope of the present invention, so the fatigue strength was lower than the target of 560 MPa, the correctable strain amount was 10182 ⁇ , and the bending straightness was poor. .
  • the steel structure of the test number 22 was within the scope of the present invention, the amount of C is higher than the scope of the present invention, so the hardness before nitriding is as high as 302 Hv and the machinability is poor.
  • the fatigue strength was as low as 515 MPa because the amount of Mn was lower than the scope of the present invention.
  • test number 24 was within the range of the present invention, the amount of Cr was higher than the range of the present invention, so the strain amount was as low as 7512 ⁇ and the bending straightness was poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Provided is a preform for a crankshaft which has excellent fatigue strength and straightening capabilities. The preform for a crankshaft has the following chemical composition, in mass%: 0.35-0.70% of C; 0.01-0.45% of Si; 1.3-3.0% of Mn; not more than 0.05% of P; 0.005-0.100% of S; 0.05-0.90% of Cr; 0.001-0.080% of Al; 0.003-0.025% of N; 0-0.05% of Ti; 0-0.05% of Nb; 0-0.50% of Mo; 0-0.50% of Cu; 0-0.50% of Ni; and 0-0.005% of Ca with the remainder Fe and impurities. A structure at a depth of 10 mm from the surface comprises, in volume%, not less than 50% in total of tempered martensite and tempered bainite, not more than 10% of proeutectoid ferrite, and not more than 40% of pearlite.

Description

クランク軸粗形材、窒化クランク軸及びその製造方法Crankshaft rough profile, nitrided crankshaft, and method of manufacturing the same
 本発明は、鋼素材を熱間でクランク軸の粗形状に成形した後、焼入れ・焼戻し処理を施したクランク軸粗形材、同粗形材を機械加工仕上げして窒化処理した窒化クランク軸、及びその製造方法に関する。本発明の窒化クランク軸は、優れた疲労強度と曲げ矯正性を備え、自動車、産業機械、及び建設機械などの機械部品として用いるのに好適である。 The present invention includes a crankshaft rough shape material that has been subjected to quenching and tempering treatment after forming a steel material into a rough shape of a crankshaft hot, and a nitrided crankshaft that has been subjected to nitriding treatment by machining the rough shape material. And a manufacturing method thereof. The nitrided crankshaft according to the present invention has excellent fatigue strength and bending straightness, and is suitable for use as a machine part such as an automobile, an industrial machine, and a construction machine.
 クランク軸にとって疲労強度は重要な機械的特性である。クランク軸は、機械構造用鋼を所望の形状に熱間鍛造し、熱間鍛造ままの状態又は熱処理を施した後に、機械加工仕上げし、さらに疲労強度を向上させるための窒化処理を施すことがある。窒化処理を施すと、クランク軸の疲労強度は向上するが、クランク軸には若干の反りが生じる。発生した反りは曲げ応力をかけて解消しなければならない。そのため、反りの矯正のし易さである曲げ矯正性は、疲労強度とともに窒化部品にとって重要な特性の一つである。窒化クランク軸の製造における問題は、窒化後の表層が硬くなるほど、疲労強度は向上し、曲げ矯正性は劣化するという特性である。疲労強度と曲げ矯正性を両立させるための技術としては、例えば、特開2004-162161号公報に開示されているものがある。 ¡Fatigue strength is an important mechanical property for crankshafts. The crankshaft may be hot-forged into a desired shape for machine structural steel, subjected to hot forging or heat treatment, then machined and subjected to nitriding to further improve fatigue strength. is there. When the nitriding treatment is performed, the fatigue strength of the crankshaft is improved, but the crankshaft is slightly warped. The generated warpage must be eliminated by applying bending stress. Therefore, bend straightening, which is easy to correct warping, is one of the important characteristics for nitrided parts together with fatigue strength. A problem in the manufacture of a nitrided crankshaft is that the harder the surface layer after nitriding, the better the fatigue strength and the worse the bend straightening properties. As a technique for achieving both fatigue strength and bend straightening, for example, there is one disclosed in Japanese Patent Application Laid-Open No. 2004-162161.
 特開2004-162161号公報には、鋼成分を最適化し、窒化後の窒化層の硬さ分布と、窒化の影響の及ばない芯部の硬さを制御することで、疲労強度と曲げ矯正性の両立を図った技術が開示されている。 In JP 2004-162161 A, the steel composition is optimized, the hardness distribution of the nitrided layer after nitriding, and the hardness of the core that is not affected by nitriding are controlled, so that fatigue strength and bend straightening are improved. A technique for achieving both is disclosed.
 一般的に、窒化処理の前に鋼に焼入れ焼戻しや焼ならしといった前熱処理を施すことで、窒化後の曲げ矯正性、疲労強度は向上する。特に、窒化前に焼入れ焼戻し処理を施してから窒化処理を施すと、熱間鍛造ままの鋼に窒化処理を施した場合と比較して、曲げ矯正性と疲労強度が向上する。 Generally, by performing pre-heat treatment such as quenching and tempering or normalizing on steel before nitriding, the bend straightening and fatigue strength after nitriding are improved. In particular, when the nitriding treatment is performed after quenching and tempering treatment before nitriding, the bending straightness and fatigue strength are improved as compared with the case where the nitriding treatment is performed on the steel as hot forged.
 窒化前に焼入れ焼戻し処理を施すことで、窒化後の疲労強度と曲げ矯正性を両立させる技術が、特開2009-167505号公報、及び特開2011-42846号公報に開示されている。特開2009-167505号公報では、Vを含有し、さらにCrとAlの含有量を制限した鋼を焼入れ焼戻しした後に軟窒化する軟窒化用粗形品、及びクランク軸が開示されている。この技術では、V炭窒化物のピンニング作用により、焼入れ時のオーステナイト粒径が微細化し、曲げ矯正性が向上する。さらに、鋼の組織をパーライト主体の組織とすることで、優れた疲労強度を具備させることが出来ている。 Japanese Unexamined Patent Application Publication Nos. 2009-167505 and 2011-42846 disclose techniques for achieving both fatigue strength after nitriding and bending straightening by performing quenching and tempering before nitriding. Japanese Patent Application Laid-Open No. 2009-167505 discloses a nitrocarburized rough product which is soft nitrided after quenching and tempering a steel containing V and further containing Cr and Al, and a crankshaft. In this technique, the pinning action of V carbonitrides refines the austenite grain size at the time of quenching and improves the bending straightness. Furthermore, by making the steel structure a pearlite-based structure, excellent fatigue strength can be achieved.
 特開2011-42846号公報には、成分を最適化した鋼を用いて、窒化後の表層近傍の硬さを制御し、かつ化合物層深さを薄くすることで高い疲労強度と曲げ矯正性を得ることが可能な軟窒化部品が開示されている。 Japanese Patent Application Laid-Open No. 2011-42846 uses steel with optimized components to control the hardness in the vicinity of the surface layer after nitriding and to reduce the compound layer depth to achieve high fatigue strength and bending straightening. A nitrocarburized part that can be obtained is disclosed.
 前述の特開2004-162161号公報記載の技術は、鋼成分を最適化することで、窒化後の窒化層の硬さ分布と、窒化の影響の及ばない芯部の硬さを制御しているが、鋼組織の最適化がなされていないため、十分に高いレベルで疲労強度と曲げ矯正性を両立できているとは言い難い。 The technique described in the aforementioned Japanese Patent Application Laid-Open No. 2004-162161 controls the hardness distribution of the nitrided layer after nitriding and the hardness of the core that is not affected by nitriding by optimizing the steel components. However, since the steel structure has not been optimized, it is difficult to say that both fatigue strength and bend straightening can be achieved at a sufficiently high level.
 特開2009-167505号公報で示される技術では、V炭窒化物のピンニング効果を活用し、焼入れ時のオーステナイト粒径を微細化させることで疲労強度と曲げ矯正性の両立を図っている。ところが、焼入れ焼戻し処理における一般的な加熱温度は、V炭窒化物の固溶温度に近いことから、焼入れ時の加熱温度が変化すると機械的特性にばらつきが生じる。 In the technique disclosed in Japanese Patent Application Laid-Open No. 2009-167505, the pinning effect of V carbonitride is utilized, and the austenite grain size at the time of quenching is refined to achieve both fatigue strength and bend correction. However, since the general heating temperature in the quenching and tempering treatment is close to the solid solution temperature of V carbonitride, the mechanical characteristics vary when the heating temperature during quenching changes.
 特開2011-42846号公報記載の技術は、化合物層を薄くするために、特殊な装置を用いて窒化時のガス組成の制御を行い、特殊な条件で窒化処理を実施する必要がある。また、窒化後に化合物層を除くための加工を施すためにコストが高くなる。 In the technique described in Japanese Patent Application Laid-Open No. 2011-42846, in order to make the compound layer thin, it is necessary to control the gas composition during nitriding using a special apparatus and to perform nitriding under special conditions. In addition, the cost increases because the processing for removing the compound layer is performed after nitriding.
 十分に優れた曲げ矯正性を鋼に具備させるためには、窒化後の表層硬さが高くなり過ぎないようにする必要がある。本発明者らは、表層硬さを過度に高くせずに疲労強度を高めるためには、窒化時に導入される圧縮残留応力を大きくすればよいと考え、圧縮残留応力を大きくする手法について検討を行った。その結果、下記(a)~(g)の知見を得た。 In order to provide steel with sufficiently excellent bend straightening properties, it is necessary that the surface hardness after nitriding does not become too high. In order to increase the fatigue strength without excessively increasing the surface hardness, the present inventors consider that it is only necessary to increase the compressive residual stress introduced during nitriding, and have studied a method for increasing the compressive residual stress. went. As a result, the following findings (a) to (g) were obtained.
(a)残留応力を高めるための方法の一つは、窒化物形成元素の含有量を多くして、窒化後の合金窒化物の生成量を増やすことである。一方、窒化物形成元素の含有量が多い程、窒化後の表層硬さは高くなり、同時に曲げ矯正性が劣化する。 (A) One method for increasing the residual stress is to increase the content of nitride-forming elements and increase the amount of alloy nitride after nitriding. On the other hand, the greater the content of the nitride-forming element, the higher the surface hardness after nitriding, and at the same time the bending straightness deteriorates.
(b)合金窒化物は微細であればあるほど、鋼に対する強化能が大きくなる。一方、合金窒化物の析出に起因する残留応力の大きさは、合金窒化物のサイズによらず、総量によって決まる。すなわち、所定の硬化量を得る場合、少量の微細な合金窒化物を活用するよりも、多量の粗大な合金窒化物を活用して鋼を強化した方が、導入される残留応力は大きくなる。 (B) The finer the alloy nitride, the greater the strengthening ability for steel. On the other hand, the magnitude of the residual stress resulting from the precipitation of alloy nitride is determined by the total amount regardless of the size of the alloy nitride. That is, when a predetermined amount of hardening is obtained, the residual stress introduced is larger when steel is strengthened using a large amount of coarse alloy nitride than when a small amount of fine alloy nitride is used.
(c)残留応力を高めるための方法のもう一つは、鋼中にセメンタイトを分散させることである。セメンタイトを分散させた鋼を窒化すると、導入される窒素量が増大し、大きな残留応力を導入できる。 (C) Another method for increasing the residual stress is to disperse cementite in the steel. When nitriding steel in which cementite is dispersed, the amount of nitrogen introduced increases and a large residual stress can be introduced.
(d)鋼中で合金窒化物を形成しうる合金元素の内、窒素との相互作用が比較的弱い元素であるMnは、適度に粗大化した合金窒化物を形成しやすい。一方、窒素との相互作用が比較的強い元素であるCr、Al、V等の含有量が多くなりすぎると、微細な合金窒化物が生成しやすい。 (D) Among alloy elements that can form alloy nitrides in steel, Mn, which is an element having relatively weak interaction with nitrogen, tends to form moderately coarse alloy nitrides. On the other hand, if the content of Cr, Al, V or the like, which is an element having a relatively strong interaction with nitrogen, is excessive, fine alloy nitrides are likely to be generated.
 次に発明者らは、合金窒化物を適度に粗大化させ、曲げ矯正性を確保したまま疲労強度を向上させるのに適した母材組織について検討した。その結果、下記(e)~(g)の知見を得た。 Next, the inventors examined a base material structure suitable for increasing the fatigue strength while appropriately bending the alloy nitride and securing the bending straightness. As a result, the following findings (e) to (g) were obtained.
(e)曲げ矯正性を確保したまま疲労強度を向上させるためには、窒化層の組織はできるだけ均質な組織であることが好ましい。初析フェライトの混在は好ましくない。組織の一部が初析フェライトであれば、鋼の硬さが不均一になり、疲労特性が劣化するためである。一方、窒化前の組織を、焼入れ焼戻しによって得られる焼戻しマルテンサイトあるいは焼戻しベイナイトとすると、疲労特性は向上する。 (E) In order to improve the fatigue strength while ensuring the bending straightness, the structure of the nitride layer is preferably as homogeneous as possible. Mixing proeutectoid ferrite is not preferred. If a part of the structure is pro-eutectoid ferrite, the hardness of the steel becomes non-uniform and the fatigue characteristics deteriorate. On the other hand, when the structure before nitriding is tempered martensite or tempered bainite obtained by quenching and tempering, the fatigue characteristics are improved.
(f)窒化前のクランク軸粗形材の組織は、焼入れままのマルテンサイトやベイナイトが主体であってはならない。これらの組織は過飽和な炭素と高い転位密度によって、内在するひずみ量が大きくなる。そのため、これらの組織中では、合金窒化物が微細に析出しやすい。一方、焼入れ後に焼戻しして、内在するひずみ量を低減すれば、合金窒化物を適度に粗大化させやすい。 (F) The structure of the crankshaft rough profile before nitriding should not be mainly composed of as-quenched martensite or bainite. In these structures, the amount of inherent strain increases due to supersaturated carbon and high dislocation density. Therefore, in these structures, alloy nitrides tend to precipitate finely. On the other hand, if tempering is performed after quenching to reduce the amount of inherent strain, the alloy nitride can be easily coarsened appropriately.
(g)窒化前のクランク軸粗形材の組織に残留オーステナイトは含まれない方がよい。残留オーステナイトは窒化中に変態することで膨張を生じることがある。残留オーステナイトは窒素濃度が高くなるほど安定して変態しにくくなるため、窒化時の残留オーステナイトの変態による膨張量は、窒化層では少なく、窒化の影響のない芯部では大きくなる。そのため、窒化層の圧縮の残留応力を減少させてしまう。 (G) The structure of the crankshaft rough profile before nitriding should not contain residual austenite. Residual austenite may expand due to transformation during nitriding. Since the retained austenite becomes more difficult to be stably transformed as the nitrogen concentration increases, the amount of expansion due to transformation of the retained austenite during nitriding is small in the nitrided layer and large in the core portion that is not affected by nitriding. This reduces the compressive residual stress of the nitride layer.
 本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)~(6)に示すクランク軸粗形材、窒化クランク軸、及び窒化クランク軸の製造方法にある。 The present invention has been completed based on the above findings, and the gist of the present invention resides in a crankshaft rough profile, a nitrided crankshaft, and a nitrided crankshaft manufacturing method shown in the following (1) to (6). .
(1)化学組成が、質量%で、C:0.35~0.70%、Si:0.01~0.45%、Mn:1.3~3.0%、P:0.05%以下、S:0.005~0.100%、Cr:0.05~0.90%、Al:0.001~0.080%、N:0.003~0.025%、Ti:0~0.05%、Nb:0~0.05%、Mo:0~0.50%、Cu:0~0.50%、Ni:0~0.50%、Ca:0~0.005%、残部:Fe及び不純物であり、表面から10mm深さの組織が、体積%で、焼戻しマルテンサイトと焼戻しベイナイトの合計が50%以上、初析フェライトが10%以下、パーライトが40%以下である、クランク軸粗形材。 (1) Chemical composition in mass%, C: 0.35 to 0.70%, Si: 0.01 to 0.45%, Mn: 1.3 to 3.0%, P: 0.05% Hereinafter, S: 0.005 to 0.100%, Cr: 0.05 to 0.90%, Al: 0.001 to 0.080%, N: 0.003 to 0.025%, Ti: 0 to 0.05%, Nb: 0 to 0.05%, Mo: 0 to 0.50%, Cu: 0 to 0.50%, Ni: 0 to 0.50%, Ca: 0 to 0.005%, The rest: Fe and impurities, the structure of 10 mm depth from the surface is volume%, the total of tempered martensite and tempered bainite is 50% or more, pro-eutectoid ferrite is 10% or less, pearlite is 40% or less, Crankshaft rough profile.
(2)前記化学組成が、質量%で、Ti:0.005~0.05%、及びNb:0.005~0.05%、からなる群から選択される1種又は2種を含有する、上記(1)に記載のクランク軸粗形材。 (2) The chemical composition contains one or two selected from the group consisting of Ti: 0.005 to 0.05% and Nb: 0.005 to 0.05% by mass%. The crankshaft rough profile according to (1) above.
(3)前記化学組成が、質量%で、Mo:0.03~0.50%、Cu:0.05~0.50%、及びNi:0.05~0.50%、からなる群から選択される1種又は2種以上を含有する、上記(1)又は(2)に記載のクランク軸粗形材。 (3) The chemical composition is, in mass%, Mo: 0.03-0.50%, Cu: 0.05-0.50%, and Ni: 0.05-0.50%. The crankshaft rough profile according to (1) or (2) above, containing one or more selected.
(4)前記化学組成が、質量%で、Ca:0.0001~0.005%、を含有する、(1)~(3)のいずれかに記載のクランク軸粗形材。 (4) The crankshaft rough profile according to any one of (1) to (3), wherein the chemical composition contains Ca: 0.0001 to 0.005% by mass.
(5)生地の化学組成が、質量%で、C:0.35~0.70%、Si:0.01~0.45%、Mn:1.3~3.0%、P:0.05%以下、S:0.005~0.100%、Cr:0.05~0.90%、Al:0.001~0.080%、N:0.003~0.025%、Ti:0~0.05%、Nb:0~0.05%、Mo:0~0.50%、Cu:0~0.50%、Ni:0~0.50%、Ca:0~0.005%、残部:Fe及び不純物であり、表面から10mm深さの組織が、体積%で、焼戻しマルテンサイトと焼戻しベイナイトの合計が50%以上、初析フェライトが10%以下、パーライトが40%以下であり、ビッカース硬さが、生地のビッカース硬さよりも50HV以上高い硬化層を表層に有し、前記硬化層の厚さが200μm以上である、窒化クランク軸。 (5) The dough has a chemical composition of mass%, C: 0.35 to 0.70%, Si: 0.01 to 0.45%, Mn: 1.3 to 3.0%, P: 0.00. 05% or less, S: 0.005 to 0.100%, Cr: 0.05 to 0.90%, Al: 0.001 to 0.080%, N: 0.003 to 0.025%, Ti: 0 to 0.05%, Nb: 0 to 0.05%, Mo: 0 to 0.50%, Cu: 0 to 0.50%, Ni: 0 to 0.50%, Ca: 0 to 0.005 %, Balance: Fe and impurities, the structure 10 mm deep from the surface is volume%, the total of tempered martensite and tempered bainite is 50% or more, proeutectoid ferrite is 10% or less, and pearlite is 40% or less. Yes, the surface layer has a cured layer whose Vickers hardness is 50HV or more higher than the Vickers hardness of the fabric, and the thickness of the cured layer Is 200μm or more, nitrided crankshaft.
(6)上記(1)~(4)のいずれかに記載のクランク軸粗形材を準備する工程と、前記粗形材を機械加工する工程と、前記機械加工された粗形材を窒化雰囲気で540~620℃で30~360分保持する窒化処理工程とを備える、窒化クランク軸の製造方法。 (6) A step of preparing the crankshaft rough profile according to any one of (1) to (4), a step of machining the coarse profile, and a nitriding atmosphere for the machined coarse profile And a nitriding treatment step of holding at 540 to 620 ° C. for 30 to 360 minutes.
 本発明によれば、優れた疲労特性と曲げ矯正性を備えたクランク軸粗形材、窒化クランク軸及びその製造方法が提供され、窒化クランク軸以外の、自動車、産業機械及び建設機械などの機械部品を製造する場合にも応用することができる。 According to the present invention, there are provided a crankshaft rough shape material having excellent fatigue characteristics and bending straightening, a nitrided crankshaft, and a method for manufacturing the same. Machines other than the nitrided crankshaft, such as automobiles, industrial machines, and construction machines It can also be applied when manufacturing parts.
図1は、小野式回転曲げ疲労試験片の正面図である。FIG. 1 is a front view of an Ono rotary bending fatigue test piece. 図2は、4点曲げ試験片の正面図である。FIG. 2 is a front view of a four-point bending test piece. 図3は、4点曲げ試験を説明するための図である。FIG. 3 is a diagram for explaining the four-point bending test.
 以下、本発明の一実施形態によるクランク軸粗形材及び窒化クランク軸について詳しく説明する。各元素の含有量の「%」は「質量%」を意味する。 Hereinafter, the crankshaft rough profile and the nitrided crankshaft according to an embodiment of the present invention will be described in detail. “%” Of the content of each element means “mass%”.
 [化学組成]
 本実施形態によるクランク軸粗形材の化学組成は、次の元素を含有する。
[Chemical composition]
The chemical composition of the crankshaft rough profile according to this embodiment contains the following elements.
 C:0.35~0.70%
 炭素(C)は、鋼材の硬さ及び疲労強度を高める。さらに、Cは、セメンタイトとして鋼中に存在し、窒化時に導入される窒素量を増大させ、残留応力を大きくする効果がある。C含有量が低すぎれば、上記効果が得られない。一方、C含有量が高すぎれば、鋼材中のセメンタイトの体積率が高くなりすぎ、被削性が低下する。したがって、C含有量は0.35~0.70%である。C含有量の好ましい下限は0.40%であり、さらに好ましくは0.45%である。C含有量の好ましい上限は0.65%であり、さらに好ましくは0.60%であり、さらに好ましくは0.58%である。
C: 0.35 to 0.70%
Carbon (C) increases the hardness and fatigue strength of the steel material. Furthermore, C is present in the steel as cementite and has the effect of increasing the amount of nitrogen introduced during nitriding and increasing the residual stress. If the C content is too low, the above effect cannot be obtained. On the other hand, if the C content is too high, the volume fraction of cementite in the steel material becomes too high, and the machinability decreases. Therefore, the C content is 0.35 to 0.70%. The minimum with preferable C content is 0.40%, More preferably, it is 0.45%. The upper limit with preferable C content is 0.65%, More preferably, it is 0.60%, More preferably, it is 0.58%.
 Si:0.01~0.45%
 シリコン(Si)は、固溶して鋼材を強化する(固溶強化)。Si含有量が低すぎれば、上記効果が得られない。一方、Si含有量が高すぎれば、窒化処理時において表層の硬さが過剰に高くなる。そのため、鋼材の曲げ矯正性が低下する。さらに、窒化処理時における窒素の拡散が阻害される。したがって、Si含有量は0.01~0.45%である。Si含有量の好ましい下限は、0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.15%である。Si含有量の好ましい上限は0.40%であり、さらに好ましくは0.35%であり、さらに好ましくは0.30%である。
Si: 0.01 to 0.45%
Silicon (Si) dissolves and strengthens the steel (solid solution strengthening). If the Si content is too low, the above effect cannot be obtained. On the other hand, if the Si content is too high, the hardness of the surface layer becomes excessively high during nitriding. Therefore, the bend straightening property of the steel material is lowered. Furthermore, the diffusion of nitrogen during nitriding is hindered. Therefore, the Si content is 0.01 to 0.45%. The minimum with preferable Si content is 0.05%, More preferably, it is 0.10%, More preferably, it is 0.15%. The upper limit with preferable Si content is 0.40%, More preferably, it is 0.35%, More preferably, it is 0.30%.
 Mn:1.3~3.0%
 マンガン(Mn)は、本発明において最も重要な合金元素である。Mnは窒化処理により鋼材内に導入されたNと結合して窒化物を形成し、表層の硬さを適度に高めながら、大きな圧縮の残留応力を導入する。Mnはさらに、鋼材中でMnSを形成して鋼材の被削性を高める。Mn含有量が低すぎれば、上記効果が得られない。一方、Mn含有量が高すぎれば、偏析によって硬さのばらつきが大きくなる。したがって、Mn含有量は1.3~3.0%である。Mn含有量の好ましい下限は1.4%であり、さらに好ましくは1.5%であり、さらに好ましくは1.6%である。Mn含有量の好ましい上限は2.5%であり、さらに好ましくは2.2%であり、さらに好ましくは2.0%である。
Mn: 1.3 to 3.0%
Manganese (Mn) is the most important alloying element in the present invention. Mn combines with N introduced into the steel material by nitriding treatment to form a nitride, and introduces a large compressive residual stress while appropriately increasing the hardness of the surface layer. Further, Mn forms MnS in the steel material to enhance the machinability of the steel material. If the Mn content is too low, the above effect cannot be obtained. On the other hand, if the Mn content is too high, the variation in hardness increases due to segregation. Therefore, the Mn content is 1.3 to 3.0%. The minimum with preferable Mn content is 1.4%, More preferably, it is 1.5%, More preferably, it is 1.6%. The upper limit with preferable Mn content is 2.5%, More preferably, it is 2.2%, More preferably, it is 2.0%.
 P:0.05%以下
 燐(P)は、不純物である。Pは結晶粒界に偏析し、粒界脆化割れを引き起こす。したがって、P含有量はなるべく低い方が好ましい。P含有量の上限は0.05%である。好ましいP含有量の上限は0.02%である。
P: 0.05% or less Phosphorus (P) is an impurity. P segregates at the grain boundaries and causes grain boundary embrittlement cracking. Therefore, the P content is preferably as low as possible. The upper limit of the P content is 0.05%. A preferable upper limit of the P content is 0.02%.
 S:0.005~0.100%
 硫黄(S)は、鋼材中でMnと結合してMnSを形成し、鋼材の被削性を高める。S含有量が低すぎれば上記効果が得られない。一方、S含有量が高すぎれば、粗大なMnSが形成され、鋼材の疲労強度が低下する。したがって、S含有量は0.005~0.100%である。S含有量の好ましい下限は0.010%であり、さらに好ましくは0.020%であり、さらに好ましくは0.030%である。S含有量の好ましい上限は0.080%であり、さらに好ましくは0.070%であり、さらに好ましくは0.060%である。
S: 0.005 to 0.100%
Sulfur (S) combines with Mn in the steel material to form MnS and enhances the machinability of the steel material. If the S content is too low, the above effect cannot be obtained. On the other hand, if S content is too high, coarse MnS will be formed and the fatigue strength of steel materials will fall. Therefore, the S content is 0.005 to 0.100%. The minimum with preferable S content is 0.010%, More preferably, it is 0.020%, More preferably, it is 0.030%. The upper limit with preferable S content is 0.080%, More preferably, it is 0.070%, More preferably, it is 0.060%.
 Cr:0.05~0.90%
 クロム(Cr)は、窒化処理により鋼材内に導入されたNと結合して窒化層中にCrNを形成し、窒化層を強化し、かつ圧縮の残留応力を導入する。Cr含有量が低すぎれば、上記効果が得られない。一方、Cr含有量が高すぎれば、窒化層が過度に硬化し、曲げ矯正性が劣化する。したがって、Cr含有量は0.05~0.90%である。Cr含有量の好ましい下限は0.08%であり、さらに好ましくは0.12%であり、さらに好ましくは0.15%である。Cr含有量の好ましい上限は0.70%であり、さらに好ましくは0.50%であり、さらに好ましくは0.40%である。
Cr: 0.05-0.90%
Chromium (Cr) combines with N introduced into the steel material by nitriding treatment to form CrN in the nitrided layer, strengthens the nitrided layer, and introduces compressive residual stress. If the Cr content is too low, the above effect cannot be obtained. On the other hand, if the Cr content is too high, the nitride layer is excessively cured, and the bending straightness deteriorates. Therefore, the Cr content is 0.05 to 0.90%. The minimum with preferable Cr content is 0.08%, More preferably, it is 0.12%, More preferably, it is 0.15%. The upper limit with preferable Cr content is 0.70%, More preferably, it is 0.50%, More preferably, it is 0.40%.
 N:0.003~0.025%
 窒素(N)は、鋼材に固溶して鋼材の強度を高める。N含有量が低すぎれば、上記効果が得られない。一方、N含有量が高すぎれば、鋼材中に気泡が生成される。気泡が欠陥となるため気泡の発生は抑制される方が好ましい。したがって、N含有量は0.003~0.025%である。N含有量の好ましい下限は0.005%である。N含有量の好ましい上限は0.020%であり、さらに好ましくは0.018%である。
N: 0.003 to 0.025%
Nitrogen (N) is dissolved in the steel material to increase the strength of the steel material. If the N content is too low, the above effect cannot be obtained. On the other hand, if the N content is too high, bubbles are generated in the steel material. Since bubbles become defects, it is preferable to suppress the generation of bubbles. Therefore, the N content is 0.003 to 0.025%. A preferable lower limit of the N content is 0.005%. The upper limit with preferable N content is 0.020%, More preferably, it is 0.018%.
 Al:0.001~0.080%
 アルミニウム(Al)は鋼を脱酸する元素である。一方、Al含有量が高すぎれば、微細な窒化物が形成され、鋼を過度に硬化し、曲げ矯正性を劣化させる。したがって、Al含有量は0.001~0.080%である。Al含有量の好ましい下限は0.005%であり、さらに好ましくは0.010%である。Al含有量の好ましい上限は0.060%であり、さらに好ましくは0.050%であり、さらに好ましくは0.040%である。
Al: 0.001 to 0.080%
Aluminum (Al) is an element that deoxidizes steel. On the other hand, if the Al content is too high, fine nitrides are formed, the steel is excessively hardened, and the bending straightness is deteriorated. Therefore, the Al content is 0.001 to 0.080%. The minimum with preferable Al content is 0.005%, More preferably, it is 0.010%. The upper limit with preferable Al content is 0.060%, More preferably, it is 0.050%, More preferably, it is 0.040%.
 本実施形態によるクランク軸粗形材の化学組成の残部は、Fe及び不純物である。ここで、不純物とは、鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、本実施形態によるクランク軸粗形材に悪影響を与えない範囲で許容されるものを意味する。 The balance of the chemical composition of the crankshaft rough profile according to the present embodiment is Fe and impurities. Here, the impurities are mixed from ore as a raw material, scrap, or production environment when industrially producing steel materials, and have an adverse effect on the crankshaft rough profile according to the present embodiment. It means what is allowed in the range.
 [任意元素について]
 本実施形態における任意元素のうち、Ti及びNbからなる群は、オーステナイト結晶粒の粗大化防止作用があり、1種又は2種を含有してもよい。
[Arbitrary elements]
Among the arbitrary elements in the present embodiment, the group consisting of Ti and Nb has an effect of preventing coarsening of austenite crystal grains, and may contain one or two kinds.
 Ti:0~0.05%
 チタン(Ti)は、窒化物や炭窒化物を形成し、熱間鍛造時、焼入れ時の結晶粒の粗大化を抑制する。しかしながらTi含有量が高すぎれば、TiCが生成して鋼材の硬さのばらつきが大きくなる。したがって、Ti含有量は0~0.05%である。Tiを含有させる場合のTi含有量の好ましい下限は0.005%であり、さらに好ましくは0.010%である。Ti含有量の好ましい上限は0.04%であり、さらに好ましくは0.03%である。
Ti: 0 to 0.05%
Titanium (Ti) forms nitrides and carbonitrides, and suppresses coarsening of crystal grains during hot forging and quenching. However, if the Ti content is too high, TiC is generated and the hardness of the steel material varies greatly. Therefore, the Ti content is 0 to 0.05%. The preferable lower limit of the Ti content when Ti is contained is 0.005%, more preferably 0.010%. The upper limit with preferable Ti content is 0.04%, More preferably, it is 0.03%.
 Nb:0~0.05%
 ニオブ(Nb)は、窒化物や炭窒化物を形成し、熱間鍛造時、焼入れ時の結晶粒の粗大化を抑制する。Nbはさらに、熱間鍛造時、焼入れ焼戻し時の再結晶を遅らせ、結晶粒の粗大化を抑制する。しかしながらNb含有量が高すぎれば、炭化物が生成して鋼材の硬さのばらつきが大きくなる。したがって、Nb含有量は0~0.05%である。Nbを含有する場合、好ましい下限は0.005%であり、さらに好ましくは0.010%である。Nb含有量の好ましい上限は0.04%であり、さらに好ましくは0.03%である。
Nb: 0 to 0.05%
Niobium (Nb) forms nitrides and carbonitrides, and suppresses coarsening of crystal grains during hot forging and quenching. Nb further delays recrystallization during hot forging and quenching and tempering, and suppresses coarsening of crystal grains. However, if the Nb content is too high, carbides are generated and the hardness of the steel material varies greatly. Therefore, the Nb content is 0 to 0.05%. When Nb is contained, the preferable lower limit is 0.005%, more preferably 0.010%. The upper limit with preferable Nb content is 0.04%, More preferably, it is 0.03%.
 本実施形態における任意元素のうち、Mo、Cu及びNiからなる群は、クランク軸粗形材の強度を高める作用があり、1種又は2種以上を含有してもよい。 Among the optional elements in this embodiment, the group consisting of Mo, Cu and Ni has an effect of increasing the strength of the crankshaft rough profile, and may contain one or more kinds.
 Mo:0~0.50%
 モリブデン(Mo)は、含有される場合、鋼の焼入れ性を高めることで鋼材の強度を高める。その結果、鋼材の疲労強度が高くなる。しかしながら、Mo含有量が過度に多くなれば、その効果が飽和する上に鋼材のコストが高くなる。したがって、Mo含有量は0~0.50%である。Mo含有量の好ましい下限は0.03%であり、さらに好ましくは0.05%である。Mo含有量の好ましい上限は0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.20%である。
Mo: 0 to 0.50%
When molybdenum (Mo) is contained, it increases the strength of the steel material by increasing the hardenability of the steel. As a result, the fatigue strength of the steel material is increased. However, if the Mo content is excessively increased, the effect is saturated and the cost of the steel material is increased. Therefore, the Mo content is 0 to 0.50%. The minimum with preferable Mo content is 0.03%, More preferably, it is 0.05%. The upper limit with preferable Mo content is 0.40%, More preferably, it is 0.30%, More preferably, it is 0.20%.
 Cu:0~0.50%
 銅(Cu)は、含有される場合、固溶して鋼材の強度を高める。そのため、鋼材の疲労強度が高まる。しかしながら、Cu含有量が過度に多くなると、熱間鍛造時に鋼の粒界に偏析して熱間割れを誘起する。したがって、Cu含有量は0~0.50%である。Cu含有量の好ましい下限は0.05%であり、さらに好ましくは0.10%である。Cu含有量の好ましい上限は0.30%であり、さらに好ましくは0.20%である。
Cu: 0 to 0.50%
When copper (Cu) is contained, it dissolves to increase the strength of the steel material. Therefore, the fatigue strength of the steel material is increased. However, if the Cu content increases excessively, it segregates at the grain boundaries of the steel during hot forging and induces hot cracking. Therefore, the Cu content is 0 to 0.50%. The minimum with preferable Cu content is 0.05%, More preferably, it is 0.10%. The upper limit with preferable Cu content is 0.30%, More preferably, it is 0.20%.
 Ni:0~0.50%
 ニッケル(Ni)は、含有される場合、固溶して鋼材の強度を高める。そのため、鋼材の疲労強度が高まる。Niはさらに、鋼材がCuを含有する場合に、Cuに起因する熱間割れを抑制する。しかしながら、Ni含有量が多すぎれば、その効果が飽和し、製造コストが高くなる。したがって、Ni含有量は0~0.50%である。Ni含有量の好ましい下限は0.05%であり、さらに好ましくは0.10%である。Ni含有量の好ましい上限は0.30%であり、さらに好ましくは0.20%である。
Ni: 0 to 0.50%
When nickel (Ni) is contained, it dissolves to increase the strength of the steel material. Therefore, the fatigue strength of the steel material is increased. Ni further suppresses hot cracking caused by Cu when the steel material contains Cu. However, if there is too much Ni content, the effect will be saturated and manufacturing cost will become high. Therefore, the Ni content is 0 to 0.50%. The minimum with preferable Ni content is 0.05%, More preferably, it is 0.10%. The upper limit with preferable Ni content is 0.30%, More preferably, it is 0.20%.
 本実施形態によるクランク軸粗形材の化学組成はさらに、任意元素としてCaを含有してもよい。 The chemical composition of the crankshaft rough profile according to the present embodiment may further contain Ca as an optional element.
 Ca:0~0.005%
 カルシウム(Ca)は、含有される場合、鋼材の被削性を高める。しかしながら、Ca含有量が高すぎれば、粗大なCa酸化物が生成し、鋼材の疲労強度が低下する。したがって、Ca含有量は0~0.005%である。上記効果を安定して得るためのCa含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%である。Ca含有量の好ましい上限は0.003%であり、さらに好ましくは0.002%である。
Ca: 0 to 0.005%
When calcium (Ca) is contained, it enhances the machinability of the steel material. However, if the Ca content is too high, coarse Ca oxide is generated, and the fatigue strength of the steel material is reduced. Therefore, the Ca content is 0 to 0.005%. The minimum with preferable Ca content for acquiring the said effect stably is 0.0001%, More preferably, it is 0.0003%. The upper limit with preferable Ca content is 0.003%, More preferably, it is 0.002%.
 [クランク軸粗形材の微細組織(Microstructure)]
 クランク軸軸粗形材は、鋼素材を熱間鍛造でクランク軸に粗成形したものである。本実施形態によるクランク軸粗形材は、窒化処理後に窒化層中の硬さを均一にするとともに、窒化層に生成する合金窒化物を適度に粗大化させるために、窒化の影響が及ぶ表層部の組織を焼戻しマルテンサイト及び焼戻しベイナイトを主体とする組織にすることが必要である。より具体的には、表面から10mm深さの組織における焼戻しマルテンサイトと焼戻しベイナイトの合計の体積分率が50%以上である必要がある。焼戻しマルテンサイトと焼戻しベイナイトの合計の体積分率の好ましい下限は60%であり、さらに好ましくは70%であり、さらに好ましくは80%である。
[Microstructure of crankshaft rough profile]
The crankshaft shaft rough profile is a steel material roughly formed into a crankshaft by hot forging. The rough shape of the crankshaft according to the present embodiment makes the hardness in the nitrided layer uniform after nitriding, and the surface layer portion affected by nitriding in order to appropriately coarsen the alloy nitride generated in the nitrided layer. It is necessary to make this structure into a structure mainly composed of tempered martensite and tempered bainite. More specifically, the total volume fraction of tempered martensite and tempered bainite in a structure 10 mm deep from the surface needs to be 50% or more. A preferred lower limit of the total volume fraction of tempered martensite and tempered bainite is 60%, more preferably 70%, and even more preferably 80%.
 初析フェライトは窒化層の硬さのばらつきの原因となるため、少ない方がよい。本実施形態によるクランク軸粗形材は、表面から10mm深さの組織における初析フェライトの体積分率を10%以下とする必要がある。初析フェライトの体積分率の好ましい上限は8%であり、さらに好ましくは6%である。 Proeutectoid ferrite is the cause of variation in the hardness of the nitride layer, so less is better. The crankshaft rough profile according to this embodiment needs to have a volume fraction of pro-eutectoid ferrite of 10% or less in a structure having a depth of 10 mm from the surface. A preferable upper limit of the volume fraction of pro-eutectoid ferrite is 8%, more preferably 6%.
 フェライトとセメンタイトの混合組織であるパーライトは、合金窒化物を粗大化させるためには好ましい組織であるが、パーライトを構成するブロックと呼ばれる下部組織単位は、フェライトの結晶方位が一定方向に揃っているためと、焼戻しマルテンサイト及び焼戻しベイナイト中のブロックと比べて粗大化しやすいために、疲労特性が劣化することがある。そのため、本実施形態によるクランク軸粗形材は、表面から10mm深さの組織におけるパーライトの体積分率は少ない方が好ましい。パーライト体積分率の好ましい上限は40%であり、さらに好ましくは30%であり、さらに好ましくは20%である。 Perlite, which is a mixed structure of ferrite and cementite, is a preferable structure for coarsening the alloy nitride, but the lower structural unit called a block constituting pearlite has the crystal orientation of ferrite aligned in a certain direction. For this reason, the fatigue characteristics may be deteriorated because they are easily coarsened as compared with blocks in tempered martensite and tempered bainite. Therefore, it is preferable that the crankshaft rough profile according to the present embodiment has a small pearlite volume fraction in a structure 10 mm deep from the surface. A preferable upper limit of the pearlite volume fraction is 40%, more preferably 30%, and further preferably 20%.
 本実施形態によるクランク軸粗形材は、焼入れと焼戻しを施した鋼材であるため、不可避的に残留オーステナイトが存在する場合があるが、残留オーステナイトは、窒化時に部品を変形させるため好ましくない。そのため、鋼に含まれる表面から10mm深さの組織における残留オーステナイトの体積分率は、5%以下が好ましく、さらに好ましくは0%である。 Since the crankshaft rough profile according to the present embodiment is a steel material that has been quenched and tempered, there may be unavoidable residual austenite, but residual austenite is not preferable because it deforms parts during nitriding. Therefore, the volume fraction of retained austenite in the structure 10 mm deep from the surface contained in the steel is preferably 5% or less, more preferably 0%.
 [窒化クランク軸の微細組織(Microstructure)]
 本実施形態による窒化クランク軸は、上述したクランク軸粗形材を機械加工した後に窒化処理を施したものである。窒化クランク軸は、上述した化学組成と微細組織を有する鋼材を生地として、窒化処理によって形成される硬化層を表層に有する。生地とは、窒化クランク軸において、窒化処理によって表面から導入される窒素の影響がない部位、すなわち窒素濃度が一定の部位のことである。窒化クランク軸は、具体的には、ビッカース硬さが、生地の硬さよりも50HV以上高い硬化層を表層に有し、この硬化層の厚さが、200μm以上である。
[Microstructure of nitrided crankshaft]
The nitrided crankshaft according to the present embodiment is obtained by nitriding after machining the above-described crankshaft rough profile. The nitrided crankshaft has a hardened layer formed by nitriding as a surface layer using the steel material having the above-described chemical composition and microstructure as a base material. The dough is a portion of the nitriding crankshaft that is not affected by nitrogen introduced from the surface by nitriding, that is, a portion having a constant nitrogen concentration. Specifically, the nitrided crankshaft has a hardened layer with a Vickers hardness of 50 HV or more higher than the hardness of the dough on the surface, and the thickness of the hardened layer is 200 μm or more.
 後述するように、窒化処理は540~620℃で行われる。この温度域では、鋼の組織は影響を受けない。そのため、窒化クランク軸は、窒素が高濃度に拡散した表層部を除き、クランク軸粗形材の組織とほぼ同じ組織を有する。 As will be described later, the nitriding treatment is performed at 540 to 620 ° C. In this temperature range, the steel structure is not affected. Therefore, the nitrided crankshaft has substantially the same structure as that of the crankshaft rough profile except for the surface layer portion where nitrogen is diffused at a high concentration.
 [製造方法]
 本実施形態によるクランク軸粗形材、窒化クランク軸、及び窒化クランク軸の製造方法の一例を説明する。
[Production method]
An example of a method for manufacturing a crankshaft rough profile, a nitrided crankshaft, and a nitrided crankshaft according to the present embodiment will be described.
 本実施形態による窒化クランク軸の製造方法は、鋼素材準備工程と、クランク軸成型工程と、焼入れ焼戻し工程と、機械加工工程と、窒化処理工程とを含む。以下、それぞれの工程を説明する。 The method for manufacturing a nitrided crankshaft according to the present embodiment includes a steel material preparation process, a crankshaft forming process, a quenching and tempering process, a machining process, and a nitriding process. Hereinafter, each process is demonstrated.
 [鋼素材準備工程]
 上述した化学組成を満たす溶鋼を製造する。製造された溶鋼を用いて、一般的な連続鋳造法により鋳片(スラブ、ブルーム)にする。又は、溶鋼を用いて、造塊法によりインゴットにする。鋳片又はインゴットを熱間加工して、ビレットを製造する。熱間加工は、熱間圧延でもよいし、熱間鍛造でもよい。さらに、ビレットを一般的な条件で加熱、圧延、冷却して棒鋼を製造し、これをクランク軸の素材とする。
[Steel material preparation process]
A molten steel that satisfies the chemical composition described above is manufactured. The produced molten steel is used to make a slab (slab, bloom) by a general continuous casting method. Alternatively, the molten steel is used to make an ingot by the ingot-making method. A billet is manufactured by hot working a slab or an ingot. The hot working may be hot rolling or hot forging. Further, the billet is heated, rolled, and cooled under general conditions to produce a steel bar, which is used as the material for the crankshaft.
 [クランク軸成型工程]
 製造された上記棒鋼を熱間鍛造でクランク軸の粗形状に成型してクランク軸粗形材の中間品を製造する。熱間鍛造の加熱温度が低すぎれば、鍛造装置に過度の負荷が掛かる。一方、加熱温度が高すぎれば、スケールロスが大きい。したがって、好ましい加熱温度は1000~1300℃である。
[Crankshaft molding process]
The manufactured steel bar is formed into a crankshaft rough shape by hot forging to produce an intermediate crankshaft profile. If the heating temperature for hot forging is too low, an excessive load is applied to the forging device. On the other hand, if the heating temperature is too high, the scale loss is large. Therefore, the preferred heating temperature is 1000 to 1300 ° C.
 熱間鍛造の好ましい仕上げ温度は900℃以上である。仕上げ温度が低すぎれば、金型への負担が大きくなるためである。一方、仕上げ温度の好ましい上限は、1250℃である。 The preferred finishing temperature for hot forging is 900 ° C. or higher. This is because if the finishing temperature is too low, the burden on the mold increases. On the other hand, the preferable upper limit of the finishing temperature is 1250 ° C.
 [焼入れ焼戻し処理]
 熱間鍛造後の中間品に対して、焼入れ焼戻し処理を実施してクランク軸粗形材を製造する。このとき、焼入れ温度は、(1)式で表されるA3点よりも10℃低い温度以上、すなわち(A-10)℃以上である。また、焼戻し温度は、550℃以上で、かつ(2)式で表されるA1点以下である。焼戻し時間は30分以上であることが好ましい。
 A3=910-203C+44.7Si-30Mn-11Cr (1)
 A1=723-10.7Mn+29.1Si-16.9Ni+16.9Cr (2)
[Quenching and tempering]
The intermediate product after hot forging is quenched and tempered to produce a crankshaft rough profile. At this time, the quenching temperature is at least 10 ° C. lower than the A 3 point represented by the formula (1), that is, (A 3 −10) ° C. or more. Further, the tempering temperature is 550 ° C. or higher, and (2) is not more than A 1 point of the formula. The tempering time is preferably 30 minutes or longer.
A 3 = 910-203C + 44.7Si-30Mn-11Cr (1)
A 1 = 723-10.7Mn + 29.1Si-16.9Ni + 16.9Cr (2)
 初析フェライトを10%以下にするためには、焼入れ温度は(A-10)℃以上とする必要がある。焼入れ直前の組織をオーステナイト単相とするため、焼入れ温度はA3点以上とすることが好ましい。焼入れ温度は1000℃以下が好ましい。焼入れ温度は950℃以下がさらに好ましく、900℃以下がさらに好ましい。 In order to make the pro-eutectoid ferrite 10% or less, the quenching temperature needs to be (A 3 -10) ° C. or more. In order to make the structure immediately before quenching an austenite single phase, it is preferable that the quenching temperature be A 3 point or higher. The quenching temperature is preferably 1000 ° C. or less. The quenching temperature is more preferably 950 ° C. or lower, and further preferably 900 ° C. or lower.
 焼入れによってクランク軸粗形材の組織はマルテンサイトやベイナイトを主体としたものとなる。マルテンサイトやベイナイトは炭素過飽和な状態となる。焼戻し処理によって、マルテンサイトとベイナイトの過飽和炭素を析出させ、続く窒化処理において合金窒化物を適度に粗大化させるためには、550℃以上の温度で焼戻しすることが好ましい。焼戻し温度は600℃以上がさらに好ましく、620℃以上がさらに好ましい。一方、焼戻し時の逆変態を抑制するために、焼戻し温度はA1点以下とする必要がある。 By quenching, the structure of the crankshaft rough profile is mainly composed of martensite and bainite. Martensite and bainite are in a carbon supersaturated state. In order to precipitate the supersaturated carbon of martensite and bainite by tempering treatment, and to coarsen the alloy nitride appropriately in the subsequent nitriding treatment, it is preferable to temper at a temperature of 550 ° C. or higher. The tempering temperature is more preferably 600 ° C. or higher, and further preferably 620 ° C. or higher. On the other hand, in order to suppress reverse transformation during tempering, the tempering temperature needs to be A 1 point or less.
 [機械加工]
 上述のクランク軸粗形材に対して機械加工を実施して所定のクランク軸形状にする。
[Machining]
The aforementioned crankshaft rough profile is machined into a predetermined crankshaft shape.
 [窒化処理]
 機械加工されたクランク軸粗形材に対して、窒化処理を実施する。本実施形態では、周知の窒化処理が採用される。窒化処理は例えば、ガス窒化、塩浴窒化、イオン窒化等である。窒化中に炉内に導入するガスは、NH3のみであってもよいし、NH3と、N2及び/又はH2とを含有する混合気であってもよい。また、これらのガスに、浸炭性のガスを含有して、軟窒化処理を実施してもよい。したがって、本明細書にいう「窒化」とは「軟窒化」も含む。
[Nitriding treatment]
Nitriding is performed on the machined crankshaft rough profile. In this embodiment, a well-known nitriding process is employed. The nitriding treatment is, for example, gas nitriding, salt bath nitriding, ion nitriding or the like. The gas introduced into the furnace during nitriding may be NH 3 alone or an air-fuel mixture containing NH 3 and N 2 and / or H 2 . In addition, a carburizing gas may be contained in these gases to perform soft nitriding. Therefore, “nitriding” in this specification includes “soft nitriding”.
 ガス軟窒化処理を実施する場合、例えば、吸熱型変成ガス(RXガス)とアンモニアガスとを1:1に混合した雰囲気中で、均熱温度を540~620℃にして30~360分間均熱すればよい。 When performing the gas soft nitriding treatment, for example, in an atmosphere in which endothermic modified gas (RX gas) and ammonia gas are mixed in a 1: 1 ratio, the soaking temperature is set to 540 to 620 ° C. and the soaking is performed for 30 to 360 minutes. do it.
 以上の製造工程により製造された窒化クランク軸は、優れた疲労強度と、優れた曲げ矯正性とを有する。 The nitrided crankshaft manufactured by the above manufacturing process has excellent fatigue strength and excellent bending straightness.
 真空溶解炉を用いて表1に示す化学組成を有する鋼A、Iの150kgのインゴットを製造した。また、真空溶解炉を用いて鋼B~H、J~Rの50kgのインゴットを製造した。表中の「-」は、当該元素を添加していないことを示す。 A 150 kg ingot of steels A and I having the chemical composition shown in Table 1 was manufactured using a vacuum melting furnace. Also, 50 kg ingots of steels B to H and J to R were manufactured using a vacuum melting furnace. “-” In the table indicates that the element is not added.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中の「A1」、「A3」欄には、それぞれ、式(2)で定義されるA1点(℃)、式(1)で定義されるA3点(℃)が記載されている。 In the “A1” and “A3” columns in Table 1, A 1 point (° C.) defined by Formula (2) and A 3 point (° C.) defined by Formula (1) are described, respectively. Yes.
 各インゴットを1250℃に加熱した。加熱されたインゴットを熱間鍛造して、55mmの直径を有する棒鋼を製造した。棒鋼を素材として、クランク軸粗形材の熱間鍛造工程を模擬する1200℃加熱、空冷を施した。放冷された丸棒に対して、表2中の一段目の熱処理欄に記載の条件で熱処理を行い、室温付近まで冷却した後に、二段目の熱処理欄に記載の条件で熱処理を行った。一段目の熱処理欄が熱間鍛造ままとなっているものは、熱間鍛造後の素材に熱処理を施さず、そのままの状態の素材から試験片を加工して窒化処理を行った。 Each ingot was heated to 1250 ° C. The heated ingot was hot forged to produce a steel bar having a diameter of 55 mm. Using bar steel as a raw material, heating at 1200 ° C. and air cooling were performed to simulate the hot forging process of the crankshaft rough profile. The round bar that was allowed to cool was subjected to heat treatment under the conditions described in the first heat treatment column in Table 2, and after cooling to near room temperature, the heat treatment was performed under the conditions described in the second heat treatment column. . In the case where the first stage heat treatment column is still hot forged, the material after hot forging was not subjected to heat treatment, and a test piece was processed from the raw material as it was and subjected to nitriding treatment.
 [評価試験]
 各試験番号の丸棒を用いて、次の試験を実施した。
[Evaluation test]
The following test was implemented using the round bar of each test number.
 [硬さ測定及び組織体積率測定]
 試験番号1~18、21~24の二段階の熱処理後の丸棒のR/2位置から、横断面を被検面とするサンプルを採取した。また、試験番号19、20の熱間鍛造後の丸棒のR/2位置から、横断面を被検面とするサンプルを採取した。R/2の位置は、直径55mmの丸棒の表面から13.75mm深さである。採取されたサンプルの任意の7点でJIS Z 2244に基づくビッカース硬さ(HV)を測定した。試験力は9.8Nであった。得られた7つのビッカース硬さの平均値を、各試験番号の窒化前硬さと定義した。硬さが300HV以下である場合、被削性に優れると判断した。
[Hardness measurement and tissue volume ratio measurement]
From the R / 2 position of the round bar after the two-stage heat treatment of Test Nos. 1 to 18 and 21 to 24, samples having a cross section as the test surface were collected. Further, samples having a cross section as a test surface were taken from the R / 2 position of the round bars after hot forging of test numbers 19 and 20. The position of R / 2 is 13.75 mm deep from the surface of a round bar having a diameter of 55 mm. Vickers hardness (HV) based on JIS Z 2244 was measured at an arbitrary 7 points of the collected samples. The test force was 9.8N. The average value of the obtained seven Vickers hardnesses was defined as the hardness before nitriding of each test number. When the hardness was 300 HV or less, it was judged that the machinability was excellent.
 硬さ測定後のサンプルは、ナイタルで腐食し組織を現出させた。その後、倍率1000倍の光学顕微鏡写真を撮影し、画像解析から各組織の分率を求めた。表面から13.75mm深さの組織が、焼戻しマルテンサイトと焼戻しベイナイトの合計が50%以上、初析フェライトが10%以下、パーライトが40%以下である場合、それより浅い位置である、表面から10mm深さの組織は、焼戻しマルテンサイトと焼戻しベイナイトの合計が50%以上、初析フェライトが10%以下、パーライトが40%以下であると判断した。 The sample after the hardness measurement was corroded with the nital to reveal the structure. Thereafter, an optical micrograph at a magnification of 1000 was taken, and the fraction of each tissue was determined from image analysis. The structure having a depth of 13.75 mm from the surface is a shallower position when the total of tempered martensite and tempered bainite is 50% or more, pro-eutectoid ferrite is 10% or less, and pearlite is 40% or less. The structure having a depth of 10 mm was determined that the total of tempered martensite and tempered bainite was 50% or more, pro-eutectoid ferrite was 10% or less, and pearlite was 40% or less.
 [小野式回転曲げ疲労試験片及び4点曲げ試験の試験片の作成]
 各試験番号の丸棒のR/2位置から、丸棒の長手方向に沿って、図1に示す小野式回転曲げ疲労試験片を複数採取した。図中の長さL1は80mmであり、直径D1は12mmであった。試験片中央部の切り欠き部の曲率半径R1は3mmであり、切り欠き底での試験片横断面の直径は8mmであった。
[Preparation of Ono type rotating bending fatigue test piece and 4-point bending test piece]
A plurality of Ono-type rotary bending fatigue test pieces shown in FIG. 1 were collected from the R / 2 position of the round bar of each test number along the longitudinal direction of the round bar. The length L1 in the figure was 80 mm, and the diameter D1 was 12 mm. The radius of curvature R1 of the notch at the center of the test piece was 3 mm, and the diameter of the cross section of the test piece at the notch bottom was 8 mm.
 さらに、各試験番号の丸棒のR/2位置から、丸棒の長手方向に沿って図2に示す4点曲げ試験片を採取した。4点曲げ試験片の長さL2は180mmであり、直径D2は15mmであった。試験片中央部の切り欠き部の曲率半径R2は4mmであり、切り欠き底での試験片横断面の直径は12mmであった。 Furthermore, from the R / 2 position of the round bar of each test number, a 4-point bending test piece shown in FIG. 2 was collected along the longitudinal direction of the round bar. The length L2 of the 4-point bending test piece was 180 mm, and the diameter D2 was 15 mm. The radius of curvature R2 of the notch at the center of the test piece was 4 mm, and the diameter of the cross section of the test piece at the notch bottom was 12 mm.
 採取された小野式回転曲げ疲労試験片及び4点曲げ試験片に対して、表2に示す条件(熱処理温度及び均熱時間)で窒化処理を実施した。具体的には、試験片を熱処理炉に挿入し、炉内を表2の「窒化条件」欄の熱処理温度(℃)まで昇温しながら、アンモニアガスとRXガスを流量が1:1になるようにして炉内に導入した。そして、表2の「窒化条件」欄に示す熱処理温度(℃)及び保持時間(h)で窒化処理を実施した。保持時間が経過した後、試験片を熱処理炉から取り出し、100℃の油で急冷した。 The nitriding treatment was performed on the collected Ono-type rotating bending fatigue test piece and the four-point bending test piece under the conditions (heat treatment temperature and soaking time) shown in Table 2. Specifically, the test pieces are inserted into a heat treatment furnace, and the flow rate of ammonia gas and RX gas is 1: 1 while the temperature inside the furnace is raised to the heat treatment temperature (° C.) in the column “Nitriding conditions” in Table 2. In this way, it was introduced into the furnace. Then, nitriding was performed at the heat treatment temperature (° C.) and the holding time (h) shown in the “nitriding conditions” column of Table 2. After the holding time had elapsed, the test piece was taken out of the heat treatment furnace and quenched with 100 ° C. oil.
 [硬化層深さ測定]
 上述の窒化処理がされた4点曲げ試験片の平行部から、横断面を被検面とするサンプルを採取した。採取されたサンプルの中心部のビッカース硬さを測定数7点、試験力9.8Nで測定した。サンプルの窒化層のビッカース硬さ分布を測定した。測定範囲は、最表面から深さ1.20mmまでとして、50μmピッチで測定を行った。各深さ位置での測定は測定数3点、試験力は2.9Nで行った。測定した結果、表面からの深さが1.20mmのビッカース硬さと、中心部のビッカース硬さは変わらなかった。そこで、中心部のビッカース硬さを生地の硬さとし、中心部の硬さよりも50HV以上高い表面からの領域を硬化層と定義し、各試験番号の硬化層深さを算出した。なお、各測定深さ位置の間の硬さ分布は、両側の測定値を結ぶ直線で近似して、硬化層深さを算出した。
[Hardened layer depth measurement]
A sample having a cross section as a test surface was taken from the parallel part of the four-point bending test piece subjected to the above nitriding treatment. The Vickers hardness at the center of the collected sample was measured with a measurement number of 7 and a test force of 9.8 N. The Vickers hardness distribution of the sample nitride layer was measured. The measurement range was from the outermost surface to a depth of 1.20 mm, and measurement was performed at a pitch of 50 μm. The measurement at each depth position was performed at 3 measurement points and the test force was 2.9N. As a result of measurement, the Vickers hardness with a depth of 1.20 mm from the surface and the Vickers hardness at the center were not changed. Therefore, the Vickers hardness at the center is defined as the hardness of the fabric, and the region from the surface that is 50 HV or higher than the hardness at the center is defined as the cured layer, and the cured layer depth of each test number was calculated. In addition, the hardness distribution between each measurement depth position approximated with the straight line which connected the measured value of both sides, and calculated the hardened layer depth.
 [小野式回転曲げ疲労試験]
 上述の窒化処理がされた小野式回転曲げ疲労試験片を用いて、小野式回転曲げ疲労試験を実施した。JIS Z2274(1978)に準拠した回転曲げ疲労試験を室温(25℃)の大気雰囲気中において実施した。試験は、回転数3000rpmの両振り条件で実施した。繰り返し数1.0×107回まで破断しなかった試験片のうち、最も高い応力を、その試験番号の疲労強度(MPa)と定義した。疲労強度が570MPa以上である場合、疲労強度に優れると判断した。
[Ono type rotating bending fatigue test]
Using the Ono rotary bending fatigue test piece subjected to the above nitriding treatment, an Ono rotary bending fatigue test was performed. A rotating bending fatigue test in accordance with JIS Z2274 (1978) was performed in an air atmosphere at room temperature (25 ° C.). The test was carried out under a double swing condition with a rotational speed of 3000 rpm. Of the test pieces that did not break until the number of repetitions of 1.0 × 10 7 times, the highest stress was defined as the fatigue strength (MPa) of that test number. When the fatigue strength was 570 MPa or more, it was judged that the fatigue strength was excellent.
 [4点曲げ試験]
 上述の窒化処理がされた4点曲げ試験片を用いて、4点曲げ試験を室温、大気中で実施した。4点曲げ試験の配置を図3に模式的に示す。図3中の距離d1~d5はそれぞれ、21.5mm、51.0mm、17.5mm、90mm、及び180mmである。試験時の支点は、試験片軸方向の両端部から各21.5mmの位置、及び各72.5mm位置とした。試験片の切り欠き底のひずみ量を測定するため、切り欠き底の中央に試験片の軸方向と平行にひずみゲージを貼付した。軸方向中心に近い2箇所の支点に対して、押し込み速度0.5mm/分の押し込みストロークを与えた。押し込みストロークが増えるにしたがって切り欠き底のひずみ量は増加し、やがて切り欠き底に有害なき裂が発生すると、押し込みストロークの増分に対するひずみの増分が急激に大きくなる。そこで、上記押し込み速度で押し込みストロークを増加し、押し込みストロークが0.01mm増えた際のひずみゲージの値の増分が2400με以上となった時に試験片にき裂が発生したとして、その直前のひずみ量を、矯正可能ひずみ量(με)と定義した。矯正可能ひずみ量が12500με以上である場合、曲げ矯正性に優れると評価した。
[4-point bending test]
A four-point bending test was performed in the atmosphere at room temperature using the above-mentioned nitriding-treated four-point bending test piece. The arrangement of the 4-point bending test is schematically shown in FIG. The distances d1 to d5 in FIG. 3 are 21.5 mm, 51.0 mm, 17.5 mm, 90 mm, and 180 mm, respectively. The fulcrum during the test was set at a position of 21.5 mm from each end of the test piece in the axial direction, and at a position of 72.5 mm. In order to measure the amount of strain at the notch bottom of the test piece, a strain gauge was attached to the center of the notch bottom in parallel with the axial direction of the test piece. For two fulcrums near the center in the axial direction, a pushing stroke of a pushing speed of 0.5 mm / min was given. As the indentation stroke increases, the amount of strain at the notch bottom increases, and when a harmful crack occurs in the notch bottom, the increment of strain with respect to the indentation stroke increases abruptly. Therefore, if the indentation stroke is increased at the above indentation speed and the increment of the strain gauge value when the indentation stroke increases by 0.01 mm becomes 2400 με or more, it is assumed that a crack has occurred in the test piece. Was defined as the correctable strain (με). When the correctable strain amount was 12,500 με or more, it was evaluated that the bending straightness was excellent.
 [試験結果]
 表2に試験結果を示す。表2中の「組織分率」は鋼を構成する各組織の分率(体積%)を意味する。「調質組織」は、焼戻しマルテンサイトの分率と焼戻しベイナイトの分率との和を意味する。「疲労強度」は小野式回転曲げ試験で得られた疲労強度(MPa)を意味する。
[Test results]
Table 2 shows the test results. “Structure fraction” in Table 2 means the fraction (volume%) of each structure constituting the steel. “Tempered structure” means the sum of the fraction of tempered martensite and the fraction of tempered bainite. “Fatigue strength” means the fatigue strength (MPa) obtained in the Ono rotary bending test.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2を参照して、試験番号1~15では、化学組成と鋼の微細組織が本発明の範囲内である。これらの試験番号のものは、疲労強度が570MPa以上であり、ひずみ量が13659με以上であり、疲労強度と曲げ矯正性が両立できていることが分かる。これに対して、本発明の規定から外れた試験番号16~24の場合には、目標とする性能が得られていない。 Referring to Table 2, in test numbers 1 to 15, the chemical composition and steel microstructure are within the scope of the present invention. Those having these test numbers have a fatigue strength of 570 MPa or more and a strain amount of 13659 με or more, indicating that both the fatigue strength and the bending straightness are compatible. On the other hand, in the case of test numbers 16 to 24 that are out of the definition of the present invention, the target performance is not obtained.
 試験番号16~18の化学組成は本発明の範囲内であったものの、鋼の微細組織が本発明の範囲外であった。そのため、疲労強度が535MPa以下と低い。 Although the chemical compositions of Test Nos. 16 to 18 were within the scope of the present invention, the steel microstructure was outside the scope of the present invention. Therefore, the fatigue strength is as low as 535 MPa or less.
 試験番号19及び20の化学組成は本発明の範囲内であったものの、熱間鍛造したままで、熱処理を実施しなかったため、鋼の微細組織が本発明の範囲外であった。そのため、矯正可能ひずみ量が9001με以下であり、曲げ矯正性が劣る。 Although the chemical compositions of Test Nos. 19 and 20 were within the scope of the present invention, the steel microstructure was out of the scope of the present invention because it was hot forged and no heat treatment was performed. Therefore, the correctable strain amount is 9001 με or less, and the bending straightness is inferior.
 試験番号21の鋼組織は本発明の範囲内であったものの、C量が本発明の範囲より低いため、疲労強度が560MPaと目標よりも低く、矯正可能ひずみ量が10182μεと曲げ矯正性が劣る。 Although the steel structure of test number 21 was within the scope of the present invention, the C content was lower than the scope of the present invention, so the fatigue strength was lower than the target of 560 MPa, the correctable strain amount was 10182 με, and the bending straightness was poor. .
 試験番号22の鋼組織は本発明の範囲内であったものの、C量が本発明の範囲より高いため、窒化前の硬さが302Hvと高く被削性が劣る。 Although the steel structure of the test number 22 was within the scope of the present invention, the amount of C is higher than the scope of the present invention, so the hardness before nitriding is as high as 302 Hv and the machinability is poor.
 試験番号23の鋼組織は本発明の範囲内であったものの、Mn量が本発明の範囲より低いため、疲労強度が515MPaと低い。 Although the steel structure of the test number 23 was within the scope of the present invention, the fatigue strength was as low as 515 MPa because the amount of Mn was lower than the scope of the present invention.
 試験番号24の鋼組織は本発明の範囲内であったものの、Cr量が本発明の範囲より高いため、ひずみ量が7512μεと低く、曲げ矯正性が劣る。 Although the steel structure of test number 24 was within the range of the present invention, the amount of Cr was higher than the range of the present invention, so the strain amount was as low as 7512 με and the bending straightness was poor.
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。 The embodiment of the present invention has been described above. However, the above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately changing the above-described embodiment without departing from the spirit thereof.

Claims (6)

  1.  窒化クランク軸用のクランク軸粗形材であって、化学組成が、質量%で、
     C :0.35~0.70%、
     Si:0.01~0.45%、
     Mn:1.3~3.0%、
     P :0.05%以下、
     S :0.005~0.100%、
     Cr:0.05~0.90%、
     Al:0.001~0.080%、
     N :0.003~0.025%、
     Ti:0~0.05%、
     Nb:0~0.05%、
     Mo:0~0.50%、
     Cu:0~0.50%、
     Ni:0~0.50%、
     Ca:0~0.005%、
     残部:Fe及び不純物であり、
     表面から10mm深さの組織が、体積%で、焼戻しマルテンサイトと焼戻しベイナイトの合計が50%以上、初析フェライトが10%以下、パーライトが40%以下である、クランク軸粗形材。
    A crankshaft rough profile for a nitriding crankshaft, the chemical composition of which is mass%,
    C: 0.35 to 0.70%,
    Si: 0.01 to 0.45%,
    Mn: 1.3 to 3.0%,
    P: 0.05% or less,
    S: 0.005 to 0.100%,
    Cr: 0.05-0.90%
    Al: 0.001 to 0.080%,
    N: 0.003 to 0.025%,
    Ti: 0 to 0.05%,
    Nb: 0 to 0.05%,
    Mo: 0 to 0.50%,
    Cu: 0 to 0.50%,
    Ni: 0 to 0.50%,
    Ca: 0 to 0.005%,
    Balance: Fe and impurities,
    A crankshaft rough profile in which the structure 10 mm deep from the surface is volume%, the total of tempered martensite and tempered bainite is 50% or more, pro-eutectoid ferrite is 10% or less, and pearlite is 40% or less.
  2.  前記化学組成が、質量%で、
     Ti:0.005~0.05%、及び
     Nb:0.005~0.05%、
     からなる群から選択される1種又は2種を含有する、請求項1に記載のクランク軸粗形材。
    The chemical composition is mass%,
    Ti: 0.005 to 0.05%, and Nb: 0.005 to 0.05%,
    The crankshaft rough profile according to claim 1, comprising one or two selected from the group consisting of:
  3.  前記化学組成が、質量%で、
     Mo:0.03~0.50%、
     Cu:0.05~0.50%、及び
     Ni:0.05~0.50%、
     からなる群から選択される1種又は2種以上を含有する、請求項1又は2に記載のクランク軸粗形材。
    The chemical composition is mass%,
    Mo: 0.03-0.50%,
    Cu: 0.05 to 0.50%, and Ni: 0.05 to 0.50%,
    The crankshaft rough profile according to claim 1 or 2, comprising one or more selected from the group consisting of:
  4.  前記化学組成が、質量%で、
     Ca:0.0001~0.005%、
     を含有する、請求項1~3のいずれか一項に記載のクランク軸粗形材。
    The chemical composition is mass%,
    Ca: 0.0001 to 0.005%,
    The crankshaft rough profile according to any one of claims 1 to 3, comprising:
  5.  生地の化学組成が、質量%で、
     C :0.35~0.70%、
     Si:0.01~0.45%、
     Mn:1.3~3.0%、
     P :0.05%以下、
     S :0.005~0.100%、
     Cr:0.05~0.90%、
     Al:0.001~0.080%、
     N :0.003~0.025%、
     Ti:0~0.05%、
     Nb:0~0.05%、
     Mo:0~0.50%、
     Cu:0~0.50%、
     Ni:0~0.50%、
     Ca:0~0.005%、
     残部:Fe及び不純物であり、
     表面から10mm深さの組織が、体積%で、焼戻しマルテンサイトと焼戻しベイナイトの合計が50%以上、初析フェライトが10%以下、パーライトが40%以下であり、
     ビッカース硬さが、生地のビッカース硬さよりも50HV以上高い硬化層を表層に有し、
     前記硬化層の厚さが200μm以上である、窒化クランク軸。
    The chemical composition of the dough is
    C: 0.35 to 0.70%,
    Si: 0.01 to 0.45%,
    Mn: 1.3 to 3.0%,
    P: 0.05% or less,
    S: 0.005 to 0.100%,
    Cr: 0.05-0.90%
    Al: 0.001 to 0.080%,
    N: 0.003 to 0.025%,
    Ti: 0 to 0.05%,
    Nb: 0 to 0.05%,
    Mo: 0 to 0.50%,
    Cu: 0 to 0.50%,
    Ni: 0 to 0.50%,
    Ca: 0 to 0.005%,
    Balance: Fe and impurities,
    The structure of 10 mm depth from the surface is volume%, the total of tempered martensite and tempered bainite is 50% or more, pro-eutectoid ferrite is 10% or less, pearlite is 40% or less
    The surface layer has a cured layer whose Vickers hardness is 50HV or more higher than the Vickers hardness of the fabric,
    A nitrided crankshaft, wherein the thickness of the hardened layer is 200 μm or more.
  6.  請求項1~4のいずれか一項に記載のクランク軸粗形材を準備する工程と、
     前記粗形材を機械加工する工程と、
     前記機械加工された粗形材を窒化雰囲気で540~620℃で30~360分保持する窒化処理工程とを備える、窒化クランク軸の製造方法。
    Preparing the crankshaft rough profile according to any one of claims 1 to 4,
    Machining the rough profile;
    And a nitriding treatment step of holding the machined rough profile at 540 to 620 ° C. for 30 to 360 minutes in a nitriding atmosphere.
PCT/JP2016/076345 2015-10-01 2016-09-07 Preform for crankshaft, nitride crankshaft, and manufacturing method for same WO2017056896A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017543064A JP6477904B2 (en) 2015-10-01 2016-09-07 Crankshaft rough profile, nitrided crankshaft, and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015195797 2015-10-01
JP2015-195797 2015-10-01

Publications (1)

Publication Number Publication Date
WO2017056896A1 true WO2017056896A1 (en) 2017-04-06

Family

ID=58423271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076345 WO2017056896A1 (en) 2015-10-01 2016-09-07 Preform for crankshaft, nitride crankshaft, and manufacturing method for same

Country Status (2)

Country Link
JP (1) JP6477904B2 (en)
WO (1) WO2017056896A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108977720A (en) * 2018-07-18 2018-12-11 泰州市吉强不锈钢制品有限公司 A kind of stainless steel bar material production method
WO2020090816A1 (en) * 2018-10-29 2020-05-07 日本製鉄株式会社 Raw blank for nitrided component, and nitrided component
CN115927955A (en) * 2022-11-04 2023-04-07 马鞍山钢铁股份有限公司 Steel for high-homogenization high-power wind power yaw bearing ring, bearing ring and production process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002366A (en) * 2003-06-09 2005-01-06 Sanyo Special Steel Co Ltd High hardness steel for induction hardening having excellent cold work properties
JP2007039704A (en) * 2005-06-29 2007-02-15 Jfe Steel Kk Hot-forged products excellent in fatigue strength, process for production thereof, and machine structural part
JP2007238965A (en) * 2006-03-03 2007-09-20 Sumitomo Metal Ind Ltd Crankshaft
JP2008144200A (en) * 2006-12-07 2008-06-26 Isuzu Motors Ltd Method for producing soft-nitrided steel product
JP2013028840A (en) * 2011-07-28 2013-02-07 Nippon Steel & Sumitomo Metal Corp High-frequency quenching steel and crank shaft manufactured by using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5123335B2 (en) * 2010-01-28 2013-01-23 本田技研工業株式会社 Crankshaft and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002366A (en) * 2003-06-09 2005-01-06 Sanyo Special Steel Co Ltd High hardness steel for induction hardening having excellent cold work properties
JP2007039704A (en) * 2005-06-29 2007-02-15 Jfe Steel Kk Hot-forged products excellent in fatigue strength, process for production thereof, and machine structural part
JP2007238965A (en) * 2006-03-03 2007-09-20 Sumitomo Metal Ind Ltd Crankshaft
JP2008144200A (en) * 2006-12-07 2008-06-26 Isuzu Motors Ltd Method for producing soft-nitrided steel product
JP2013028840A (en) * 2011-07-28 2013-02-07 Nippon Steel & Sumitomo Metal Corp High-frequency quenching steel and crank shaft manufactured by using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108977720A (en) * 2018-07-18 2018-12-11 泰州市吉强不锈钢制品有限公司 A kind of stainless steel bar material production method
WO2020090816A1 (en) * 2018-10-29 2020-05-07 日本製鉄株式会社 Raw blank for nitrided component, and nitrided component
CN112888796A (en) * 2018-10-29 2021-06-01 日本制铁株式会社 Nitrided component rough material and nitrided component
JPWO2020090816A1 (en) * 2018-10-29 2021-09-16 日本製鉄株式会社 Nitrided parts Rough material and nitrided parts
US20220010416A1 (en) * 2018-10-29 2022-01-13 Nippon Steel Corporation Roughly-shaped steel material for nitrided part, and nitrided part
JP7273324B2 (en) 2018-10-29 2023-05-15 日本製鉄株式会社 Nitrided part blanks and nitrided parts
US11827963B2 (en) 2018-10-29 2023-11-28 Nippon Steel Corporation Roughly-shaped steel material for nitrided part, and nitrided part
CN115927955A (en) * 2022-11-04 2023-04-07 马鞍山钢铁股份有限公司 Steel for high-homogenization high-power wind power yaw bearing ring, bearing ring and production process

Also Published As

Publication number Publication date
JP6477904B2 (en) 2019-03-06
JPWO2017056896A1 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP5123335B2 (en) Crankshaft and manufacturing method thereof
JP4385019B2 (en) Manufacturing method for steel nitrocarburized machine parts
KR101726251B1 (en) Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component
JPWO2016098143A1 (en) Nitriding component manufacturing method and nitriding steel
JP4609585B2 (en) Soft nitriding steel, soft nitriding steel and crankshaft
JP5258458B2 (en) Gears with excellent surface pressure resistance
JP6477904B2 (en) Crankshaft rough profile, nitrided crankshaft, and method of manufacturing the same
JP2010189697A (en) Crankshaft and method for producing the same
JP5153221B2 (en) Soft nitriding non-tempered machine parts
JP2019183215A (en) Carburization machine component and manufacturing method therefor
JP4728884B2 (en) Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
JP7013833B2 (en) Carburized parts
JP5365477B2 (en) Steel for surface hardening treatment
JP2002121645A (en) Steel for gear having excellent dedendum bending fatigue characteristic and facial pressure fatigue characteristic and gear
JP5505264B2 (en) Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics
JP7436826B2 (en) Nitrided parts and manufacturing method of nitrided parts
JP6477614B2 (en) Steel for soft nitriding and parts and method for manufacturing them
JP5131770B2 (en) Non-tempered steel for soft nitriding
JP5151662B2 (en) Method of manufacturing steel for soft nitriding
JP3409275B2 (en) Case hardened steel with little heat treatment distortion
JP7273324B2 (en) Nitrided part blanks and nitrided parts
JP2019183211A (en) Carburization component
JP2018199838A (en) Carburized part
JP7196707B2 (en) Forged member for nitriding and its manufacturing method, and surface hardened forged member and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851070

Country of ref document: EP

Kind code of ref document: A1