JPH10259450A - Case hardening steel excellent in low cycle fatigue strength - Google Patents

Case hardening steel excellent in low cycle fatigue strength

Info

Publication number
JPH10259450A
JPH10259450A JP6682097A JP6682097A JPH10259450A JP H10259450 A JPH10259450 A JP H10259450A JP 6682097 A JP6682097 A JP 6682097A JP 6682097 A JP6682097 A JP 6682097A JP H10259450 A JPH10259450 A JP H10259450A
Authority
JP
Japan
Prior art keywords
less
hvav
case hardening
hardening steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6682097A
Other languages
Japanese (ja)
Inventor
Mikikazu Kobayashi
幹和 小林
Shuji Yamakawa
修司 山川
Shinichi Yasuki
真一 安木
Yoshitake Matsushima
義武 松島
Atsushi Inada
淳 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Mitsubishi Motors Corp
Original Assignee
Kobe Steel Ltd
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Mitsubishi Motors Corp filed Critical Kobe Steel Ltd
Priority to JP6682097A priority Critical patent/JPH10259450A/en
Publication of JPH10259450A publication Critical patent/JPH10259450A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a case hardening steel excellent in low cycle fatigue strength accompanying macroscopic strains by preparing a case hardening steel in which the chemical componental compsn. is specified and the relation among alloy elements is also strictly prescribed by formulae and inequalities to improve the plastic deformation resistance and intergranular strength. SOLUTION: A case hardening steel having a compsn. contg., by mass, 0.15 to 0.30% C, 0.5 to 3.0% Mn, <=0.50% Si, <=0.010% P, <=0.035% S, 0.3 to 2.0% Cr, >0.45 to 1.0% Mo, 0.003 to 1.0% Nb, 0.015 to 0.060% Al and 0.003 to 0.030% N, in which the content of O is regulated to <=20 ppm, and the balance Fe with inevitable impurities is prepd. At this time, the plastic deformation resistance HVav and intergranular strength Iequ1 and Iequ2 prescribed by the formulae, I, II and III satisfy the inequalities IV and V. Furthermore, in the formulae, [C], [Si], [Mn], [P], [S], [Mo], [Nb], and [Cr] respectively denote the mass % of each element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種構造部品に使
用される鋼材のうち、特に耐摩耗性や耐疲労性を改善す
るために表層部に浸炭処理や浸炭・窒化処理等の表面硬
化処理(ガス浸炭、固体浸炭、液体浸炭、塩浴浸炭、プ
ラズマ浸炭、真空浸炭等を含む)を施し、表層部の硬度
を高める必要のある部品、例えば自動車の変速機や差動
機等に用いられる歯車、シャフト等の部品として使用さ
れる肌焼鋼に関するものである。以下では、歯車への適
用例を取り上げて説明するが、本発明の肌焼鋼の適用対
象は歯車に限定されるものではなく、表面硬化処理され
て製造される部品で、特に低サイクル疲労強度が重要視
される全ての機械構造用部品に使用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface hardening treatment such as carburizing treatment, carburizing / nitriding treatment or the like for the surface layer of steel materials used for various structural parts, in particular to improve wear resistance and fatigue resistance. (Including gas carburization, solid carburization, liquid carburization, salt bath carburization, plasma carburization, vacuum carburization, etc.), parts that need to increase the hardness of the surface layer, such as gears used in transmissions and differentials of automobiles And a case hardening steel used as a part such as a shaft. In the following, an example of application to gears will be described. However, the application of the case hardening steel of the present invention is not limited to gears, and it is a part manufactured by surface hardening treatment, particularly low cycle fatigue strength. Is used for all mechanical structural parts that are regarded as important.

【0002】[0002]

【従来の技術】エンジンの高出力化や部品の軽量化の動
きに対応して、自動車の変速機や差動機等で用いられて
いる歯車等の様に、浸炭処理や浸炭・窒化処理等の表面
硬化処理等が施されて製造される部品には疲労強度の向
上が強く求められている。
2. Description of the Related Art In response to the trend toward higher engine output and lighter parts, such as car gears used in transmissions and differentials of automobiles, carburizing, carburizing / nitriding, etc. There is a strong demand for improved fatigue strength of components manufactured by performing a surface hardening treatment or the like.

【0003】歯車を高強度化するに当たり、これまでは
105 回を超える高サイクル領域での曲げ疲労強度(以
下、「高サイクル疲労強度」と呼ぶ)が重要視されてき
た。こうした技術として、これまでにも様々提案されて
おり、例えば特開昭51−90918号には、Si量を
低減することによって浸炭層における粒界酸化層の低減
を図り、これによって高サイクル疲労強度の向上を図っ
た鋼が提案されている。またMo添加量を増大すること
によって、浸炭層の不完全焼入れ層の低減を図り、これ
によって高サイクル疲労強度の向上を図った鋼も提案さ
れている(特開昭61−253346号)。
[0003] The gear Upon increasing the strength of, the past bending fatigue strength at high cycle range exceeding 10 5 times (hereinafter, referred to as "high-cycle fatigue strength") have been emphasized. Various such techniques have been proposed so far. For example, Japanese Patent Application Laid-Open No. 51-90918 discloses a technique of reducing the grain boundary oxide layer in a carburized layer by reducing the amount of Si, thereby achieving high cycle fatigue strength. Steels with improved steel have been proposed. Further, there has been proposed a steel in which the amount of Mo added is increased to reduce the incompletely quenched layer of the carburized layer, thereby improving the high cycle fatigue strength (JP-A-61-253346).

【0004】一方、繰り返し数の如何に拘らず、負荷時
の歪速度が速い衝撃入力による巨視的歪みを伴わない疲
労強度の向上も求められており、こうした技術として、
例えば特開平1−247561号には、P,Sの低減と
Mo,Vの添加によって衝撃特性を向上させた鋼が提案
されている。また特開昭62−1843号には、Moと
Siの添加によって浸炭処理後の心部組織を結晶粒度番
号で9番以上の整細粒の(フェライト+マルテンサイ
ト)二相組織とすると共に、浸炭層の結晶粒度番号も9
番以上とすることによって、衝撃強度を向上させた鋼が
提案されている。
On the other hand, irrespective of the number of repetitions, there is also a demand for an improvement in fatigue strength without macroscopic distortion due to a shock input with a high strain rate under load.
For example, Japanese Patent Application Laid-Open No. 1-247561 proposes a steel in which the impact characteristics are improved by reducing P and S and adding Mo and V. Japanese Patent Application Laid-Open No. 62-1843 discloses that the core structure after carburizing by adding Mo and Si is made into a (ferrite + martensite) two-phase structure of fine grains having a grain size number of 9 or more. The grain size number of the carburized layer is also 9
By increasing the number, steels with improved impact strength have been proposed.

【0005】しかしながら、更なるエンジンの高出力化
や部品の軽量化の要求および製造コストの低減を目的と
して差動機に用いられている歯車の部品数削減の要望が
あり、近年、巨視的歪を伴う低サイクル領域での疲労破
壊を呈する現象の生じているのが実情である。こうした
ことから、巨視的歪を伴う低サイクル領域での疲労強度
(以下、「低サイクル疲労強度」と呼ぶ)の向上が望ま
れているが、これまで低サイクル疲労強度の向上を図る
技術はほとんど提案されていないのが現状である。
[0005] However, there has been a demand for further increasing the output of the engine and reducing the weight of parts and reducing the number of parts of gears used in differential machines for the purpose of reducing manufacturing costs. The fact is that the phenomenon of fatigue fracture in the low cycle region is occurring. For these reasons, improvement in fatigue strength in a low cycle region accompanied by macroscopic strain (hereinafter referred to as “low cycle fatigue strength”) is desired. However, most techniques for improving low cycle fatigue strength have so far. It has not been proposed yet.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、化学
成分組成を適切に調整すると共に、合金元素の関係を厳
密に規定して塑性変形抵抗能と粒界強度の向上を図るこ
とによって、巨視的歪を伴う低サイクル疲労強度の優れ
た肌焼用鋼を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and its object is to appropriately adjust the composition of chemical components and strictly define the relationship between alloying elements. Another object of the present invention is to provide a case hardening steel excellent in low cycle fatigue strength accompanied by macroscopic strain by improving plastic deformation resistance and grain boundary strength.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る肌焼鋼は、 C :0.15〜0.30% Mn:0.5〜3.0% Si:0.50%以下 P :0.010%以下 S :0.035%以下 Cr:0.3〜2.0% Mo:0.45超〜1.0% Nb:0.003〜0.1% Al:0.015〜0.060% N :0.003〜0.030% を夫々含有すると共に、O:20ppm以下に抑制して
なり、残部がFeおよび不可避的不純物からなる鋼であ
り、且つ下記(1)〜(3)式の夫々で規定される塑性
変形抵抗HVav および粒界強度Ieq1,Ieq2が下記
(4)式および(5)式を満足するものである点に要旨
を有するものである。 HVav =[C] +0.08[Si]+0.14[Mn]+1.74[P ]−0.83[S ] +0.16[Cr]+0.22[Mo] …(1) Ieq1=0.20[Mo]+[Nb]−0.10[Si]−[P ]1/2 (但し、Cr≦1.6%のとき) …(2) Ieq2=0.20([Mo]−[Cr])+[Nb]−0.10[Si]−[P ]1/2 (但し、Cr>1.6%のとき) …(3) 但し、[C] ,[Si], [Mn], [P ],[S ],[M
o],[Nb]および[Cr]は、夫々C,Si,Mn,P,
S,Mo,NbおよびCrの含有量(質量%)を示す。 HVav +0.13(Ieq1またはIeq2)−0.63≧0 …(4) HVav <0.80 …(5)
The case hardening steel according to the present invention, which can solve the above-mentioned problems, comprises: C: 0.15 to 0.30% Mn: 0.5 to 3.0% Si: 0. 50% or less P: 0.010% or less S: 0.035% or less Cr: 0.3 to 2.0% Mo: more than 0.45 to 1.0% Nb: 0.003 to 0.1% Al: It is a steel containing 0.015 to 0.060% N: 0.003 to 0.030%, and O: 20 ppm or less, with the balance being Fe and unavoidable impurities, and the following ( The gist lies in that the plastic deformation resistance HVav and the grain boundary strengths Ieq1 and Ieq2 defined by the respective equations (1) to (3) satisfy the following equations (4) and (5). HVav = [C] + 0.08 [Si] + 0.14 [Mn] + 1.74 [P]-0.83 [S] + 0.16 [Cr] + 0.22 [Mo] ... (1) Ieq1 = 0.20 [Mo] + [Nb] −0.10 [Si] − [P] 1/2 (when Cr ≦ 1.6%) (2) Ieq2 = 0.20 ([Mo] − [Cr]) + [Nb] −0.10 [Si]-[P] 1/2 (however, when Cr> 1.6%) (3) where [C], [Si], [Mn], [P], [S], [M]
o], [Nb] and [Cr] are C, Si, Mn, P,
The content (% by mass) of S, Mo, Nb and Cr is shown. HVav + 0.13 (Ieq1 or Ieq2) −0.63 ≧ 0 (4) HVav <0.80 (5)

【0008】上記の本発明の肌焼鋼においては、更に他
の元素として、Ca:0.08%以下、Zr:0.08
%以下およびPb:0.3%以下よりなる群から選択さ
れる1種以上を含有させることも有効である。
In the case hardening steel according to the present invention, as other elements, Ca: 0.08% or less, Zr: 0.08%
% And at least one selected from the group consisting of Pb: 0.3% or less.

【0009】また本発明の肌焼鋼においては、(a)前
記可避的不純物中のAs:0.008%以下(0%を含
む)およびSb:0.008%以下(0%を含む)とな
る様にその含有量を抑制することや、(b)Nb炭窒化
物の平均粒径が1〜50nmであり、且つ100μm2
中のNb炭窒化物の析出数が20個以上であるという要
件を満足すること等も有効であり、これによって肌焼鋼
としての特性を更に改質することができる。
Further, in the case hardening steel of the present invention, (a) As: 0.008% or less (including 0%) and Sb: 0.008% or less (including 0%) in the unavoidable impurities. And (b) the average particle size of Nb carbonitride is 1 to 50 nm and 100 μm 2
It is also effective to satisfy the requirement that the number of Nb carbonitrides precipitated in the steel is 20 or more, whereby the properties of case hardening steel can be further improved.

【0010】[0010]

【発明の実施の形態】本発明者らは、低サイクル疲労強
度を向上させる為の要因について、様々な角度から検討
した。その結果、低サイクル疲労強度を向上させる為に
は、鋼の塑性変形抵抗HVav と粒界強度Ieqの向上を図
れば良いとの知見が得られた。そして、この知見に基づ
き低サイクル疲労強度を向上させる為の具体的手段につ
いて更に検討したところ、上記した構成を採用すれば本
発明の目的が見事に達成されることを見出し、本発明を
完成した。本発明が完成された経緯に沿って本発明の作
用について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have studied various factors for improving the low cycle fatigue strength from various angles. As a result, it was found that in order to improve the low cycle fatigue strength, it is only necessary to improve the plastic deformation resistance HVav and the grain boundary strength Ieq of the steel. Based on this finding, the inventors further studied specific means for improving the low cycle fatigue strength, and found that the object of the present invention could be achieved satisfactorily by adopting the above-described structure, and completed the present invention. . The operation of the present invention will be described along the history of completion of the present invention.

【0011】歯車の場合に、部材の塑性変形抵抗HVav
が低いと、作動中に低応力で巨視的な塑性変形が発生
し、歯面表層部に引張り応力が発生し、表面を起点とし
た粒界破壊により疲労寿命に達する。また部材の塑性抵
抗が高い場合には、低サイクル疲労強度は部材の粒界強
度Ieqに支配される。このように巨視的な塑性歪みに伴
う低サイクル疲労強度は、部材の塑性抵抗HVav と粒界
強度Ieqの兼ね合いによって決定される。
In the case of a gear, the plastic deformation resistance HVav of the member
If it is low, macroscopic plastic deformation occurs at low stress during operation, tensile stress is generated in the surface layer of the tooth surface, and the fatigue life is reached by grain boundary fracture starting from the surface. When the plastic resistance of the member is high, the low cycle fatigue strength is governed by the grain boundary strength Ieq of the member. As described above, the low cycle fatigue strength associated with macroscopic plastic strain is determined by a balance between the plastic resistance HVav of the member and the grain boundary strength Ieq.

【0012】低サイクル疲労強度を高める為の具体的手
段としては、(a)部材の塑性変形抵抗HVav と粒界強
度Ieqの両方を高くする、(b)部材の粒界強度Ieqが
低くても、塑性変形抵抗HVav を高くする、(c)部材
の塑性変形抵抗HVav が低くても、粒界強度Ieqを高く
する、の以上の3点である。尚巨視的な塑性歪みとは、
例えば作動中に歯車の歯厚が約1%以上の塑性変形を伴
うような歪みを意味する。
As concrete means for increasing the low cycle fatigue strength, (a) both the plastic deformation resistance HVav and the grain boundary strength Ieq of the member are increased, and (b) even if the grain boundary strength Ieq of the member is low. And (c) increasing the grain boundary strength Ieq even if the plastic deformation resistance HVav of the member is low. The macroscopic plastic strain is
For example, it means a distortion such that a gear tooth thickness during operation is accompanied by plastic deformation of about 1% or more.

【0013】本発明者らは、塑性変形抵抗HVav と粒界
強度Ieq(前記Ieq1,2)は、合金成分の関数[下記
(1)〜(3)式]として表せることを見出した。また
部材の塑性変形抵抗HVav と粒界強度Ieqとの兼ね合い
により決まる巨視的歪みを伴う低サイクル疲労強度を確
保するためには、下記(4)式を満足する必要があるこ
とを見出した。 HVav =[C] +0.08[Si]+0.14[Mn]+1.74[P ]−0.83[S ] +0.16[Cr]+0.22[Mo] …(1) Ieq1=0.20[Mo]+[Nb]−0.10[Si]−[P ]1/2 (但し、Cr≦1.6%のとき) …(2) Ieq2=0.20([Mo]−[Cr])+[Nb]−0.10[Si]−[P ]1/2 (但し、Cr>1.6%のとき) …(3) 但し、[C] ,[Si], [Mn], [P ],[S ],[M
o],[Nb]および[Cr]は、夫々C,Si,Mn,P,
S,Mo,NbおよびCrの含有量(質量%)を示す。 HVav +0.13(Ieq1またはIeq2)−0.63≧0 …(4)
The present inventors have found that the plastic deformation resistance HVav and the grain boundary strength Ieq (Ieq1, 2) can be expressed as a function of the alloy component [Equations (1) to (3) below]. In addition, they have found that it is necessary to satisfy the following equation (4) in order to secure low cycle fatigue strength accompanied by macroscopic strain determined by the balance between the plastic deformation resistance HVav of the member and the grain boundary strength Ieq. HVav = [C] + 0.08 [Si] + 0.14 [Mn] + 1.74 [P]-0.83 [S] + 0.16 [Cr] + 0.22 [Mo] ... (1) Ieq1 = 0.20 [Mo] + [Nb] −0.10 [Si] − [P] 1/2 (when Cr ≦ 1.6%) (2) Ieq2 = 0.20 ([Mo] − [Cr]) + [Nb] −0.10 [Si]-[P] 1/2 (however, when Cr> 1.6%) (3) where [C], [Si], [Mn], [P], [S], [M]
o], [Nb] and [Cr] are C, Si, Mn, P,
The content (% by mass) of S, Mo, Nb and Cr is shown. HVav + 0.13 (Ieq1 or Ieq2) −0.63 ≧ 0 (4)

【0014】また部材の塑性変形抵抗HVav を高くする
には、C,Si,Mn等の合金元素を多量に添加する必
要がある。しかしながら、これらの元素は部材の硬さを
高くして切削性を大幅に低下させる原因となるので、切
削性を低下させずに鋼の塑性変形抵抗HVav を高くする
には、下記(5)式を満足させる必要がある。 HVav <0.80 …(5)
In order to increase the plastic deformation resistance HVav of the member, it is necessary to add a large amount of alloying elements such as C, Si and Mn. However, since these elements increase the hardness of the member and significantly reduce the machinability, in order to increase the plastic deformation resistance HVav of the steel without lowering the machinability, the following equation (5) is used. Needs to be satisfied. HVav <0.80… (5)

【0015】尚、塑性変形抵抗HVav は、例えばカーボ
ンポテンシャルが0.7〜1.2%の雰囲気で約1〜5
時間浸炭焼入れ処理を施した場合の下記(6)式で表さ
れる平均断面硬さと正の相関関係がある。 平均断面硬さ=(1/πa2 )∫a 0 HV(r)2πrdr …(6) (但し、HV(r):硬さ,a:半径,r:中心からの
距離)
The plastic deformation resistance HVav is, for example, about 1 to 5 in an atmosphere having a carbon potential of 0.7 to 1.2%.
There is a positive correlation with the average sectional hardness expressed by the following equation (6) when the time carburizing and quenching treatment is performed. The average cross-sectional hardness = (1 / πa 2) ∫ a 0 HV (r) 2πrdr ... (6) ( where, HV (r): Hardness, a: radius, r: distance from center)

【0016】一方、粒界強度Ieqを高くするには、粒界
強度Ieqを脆化させる合金元素であるSi,P,Crを
低減すると共に、粒界強度Ieqの脆化を抑制する合金元
素の添加が有効である。こうしたことから、粒界強度I
eqの上限は、本発明の化学成分組成から求まる最も高い
粒界強度の値を示す0.30であり、下限は本発明の化
学成分組成から求まる最も低い粒界強度の値を示す−
0.39である。
On the other hand, in order to increase the grain boundary strength Ieq, it is necessary to reduce the alloying elements Si, P, and Cr that make the grain boundary strength Ieq brittle, and to reduce the embrittlement of the grain boundary strength Ieq. The addition is effective. From these facts, the grain boundary strength I
The upper limit of eq is 0.30 indicating the highest value of the grain boundary strength obtained from the chemical component composition of the present invention, and the lower limit indicates the lowest value of the grain boundary strength obtained from the chemical component composition of the present invention.
0.39.

【0017】以上の結果を総括して図1に示す。即ち、
図1は塑性変形抵抗HVav と粒界強度Ieqが疲労強度等
に与える影響を示したグラフであり、ハッチングで示し
た部分が本発明で規定する範囲である。尚図1中、「●
印」,「○印」および[*印」の意味は、夫々下記に示
す通りである。 ●印:低サイクル疲労強度≧15Ton ○印:低サイクル疲労強度<15Ton *印:機械加工できず
The above results are shown in FIG. That is,
FIG. 1 is a graph showing the influence of the plastic deformation resistance HVav and the grain boundary strength Ieq on the fatigue strength and the like, and the hatched portion is the range defined in the present invention. In FIG. 1, "●
The meanings of "symbol", "o" and "*" are as shown below, respectively. ● mark: Low cycle fatigue strength ≧ 15 Ton ○ mark: Low cycle fatigue strength <15 Ton * mark: Cannot be machined

【0018】また粒界強度Ieqの低下を抑制する為に
は、結晶粒の粗大化を防止する必要がある。結晶粒が粗
大化すると、粒界脆化元素が粒界に濃化して粒界強度I
eqが低下するからである。こうした結晶粒粗大化を抑制
する為には、部材のNb炭窒化物の平均粒径が1〜50
nmで、且つ100μm2 中のNb炭窒化物の析出数が
20個以上であるという要件を満足することが有効であ
る。Nb炭窒化物の平均粒径が1nm未満或は50nm
を超える場合には結晶粒の粗大化が生じ、粒界強度Ieq
が低下することになる。また100μm2 中のNb炭窒
化物の析出数が20個未満である場合も、結晶粒の粗大
化が生じ、粒界強度Ieqが低下することになる。
In order to suppress the decrease in the grain boundary strength Ieq, it is necessary to prevent the crystal grains from becoming coarse. When the crystal grains become coarse, the grain boundary embrittlement element is concentrated at the grain boundaries, and the grain boundary strength I
This is because eq decreases. In order to suppress such crystal grain coarsening, the average particle size of the Nb carbonitride of the member is 1 to 50.
It is effective to satisfy the requirement that the precipitation number of Nb carbonitrides in nm and 100 μm 2 is 20 or more. The average particle size of Nb carbonitride is less than 1 nm or 50 nm
In the case where it exceeds, the crystal grains become coarse and the grain boundary strength Ieq
Will decrease. Also, when the number of precipitated Nb carbonitrides in 100 μm 2 is less than 20, the crystal grains are coarsened and the grain boundary strength Ieq is reduced.

【0019】次に、本発明の肌焼用鋼の化学成分限定理
由について説明する。 C:0.15〜0.30% Cは部材の芯部硬さを増加させるのに有効な元素であ
り、その結果として塑性変形抵抗HVav を向上させる。
こうした効果を発揮させるためには、Cは少なくとも
0.15%以上含有させる必要がある。しかしながら
0.30%を超えて過剰に含有させると、靭性、被削性
および冷間鍛造性が悪くなるので、上限を0.30%と
定めた。尚Cのより好ましい含有量は、0.20〜0.
26%程度である。
Next, the reasons for limiting the chemical components of the case hardening steel of the present invention will be described. C: 0.15 to 0.30% C is an element effective for increasing the core hardness of the member, and as a result, improves the plastic deformation resistance HVav.
In order to exhibit such an effect, it is necessary to contain C at least 0.15% or more. However, if the content exceeds 0.30%, the toughness, machinability and cold forgeability deteriorate, so the upper limit is set to 0.30%. In addition, the more preferable content of C is 0.20-0.
It is about 26%.

【0020】Si:0.50%以下 Siは脱酸元素として、また鋼の焼入れ性を上げて塑性
変形抵抗HVav を向上させるのに有効な元素である。し
かしながら過剰に含有させると、粒界酸化を助長して粒
界強度Ieqの低下を招くことに加え、冷間鍛造性を低下
させるので、その上限を0.50%と定めた。尚粒界強
度Ieqの向上という観点からして、好ましい含有量は、
0.35%以下であり、より好ましくは0.15%以下
にすべきである。
Si: 0.50% or less Si is an element effective as a deoxidizing element and for improving the hardenability of steel to improve the plastic deformation resistance HVav. However, if it is contained excessively, it promotes grain boundary oxidation and lowers the grain boundary strength Ieq, and also lowers the cold forgeability, so the upper limit was set to 0.50%. From the viewpoint of improving the grain boundary strength Ieq, a preferred content is
It should be less than 0.35%, more preferably less than 0.15%.

【0021】Mn:0.5〜3.0% Mnは溶製時に脱酸剤として有効に作用する他、鋼の焼
入れ性を高めて塑性変形抵抗HVav を向上させるのに必
要な元素であり、この効果を発揮させるには0.5%以
上含有する必要がある。しかしながら過剰に含有させる
と、被削性や冷間加工性の低下を招き、またPの粒界へ
の偏析を助長して粒界強度Ieqを低下させ、その結果と
して低サイクル疲労強度を低下させるので、3.0%以
下にする必要がある。尚Mnのより好ましい含有量は、
0.5〜2.0%程度である。
Mn: 0.5-3.0% Mn is an element which is effective for deoxidizing at the time of smelting and is also necessary for improving the quenchability of steel and improving the plastic deformation resistance HVav. In order to exhibit this effect, it is necessary to contain 0.5% or more. However, if it is contained excessively, it causes a decrease in machinability and cold workability, and also promotes segregation of P to the grain boundary, lowering the grain boundary strength Ieq, and consequently lowering low cycle fatigue strength. Therefore, it needs to be 3.0% or less. Note that a more preferable content of Mn is
It is about 0.5 to 2.0%.

【0022】P:0.010%以下 Pは塑性変形抵抗HVav を向上させるのに必要な元素で
ある。しかしながら、Pは粒界に偏析することによって
粒界強度Ieqを低下させるので、0.010%以下とす
べきである。粒界強度の向上という観点からすれば、好
ましくは0.008%以下とすべきである。
P: 0.010% or less P is an element necessary for improving the plastic deformation resistance HVav. However, since P segregates at the grain boundary and lowers the grain boundary strength Ieq, P should be set to 0.010% or less. From the viewpoint of improving the grain boundary strength, the content should preferably be 0.008% or less.

【0023】S:0.035%以下 Sは塑性変形抵抗HVav を低下させ、また冷間鍛造性を
劣化させる元素であるが、Mnと結合してMnSを生成
して被削性を向上するのに有効な元素である。一方、歯
車に適用した場合には、縦目の衝撃強度ばかりでなく横
目の衝撃強度も重要になってくるが、この横目の衝撃強
度を向上させる為には、異方性の低減が必要になる。そ
の為には、Sの含有量を0.035%以下とする必要が
ある。尚S含有量の好ましい範囲は、0.030%以下
であり、より好ましくは0.005〜0.020%程度
にすべきである。
S: 0.035% or less S is an element that lowers the plastic deformation resistance HVav and deteriorates the cold forgeability. However, S combines with Mn to form MnS and improve machinability. It is an effective element. On the other hand, when applied to gears, not only the impact strength in the vertical direction but also the impact intensity in the horizontal direction becomes important, but in order to improve the impact intensity in the horizontal direction, it is necessary to reduce the anisotropy. Become. For that purpose, the S content needs to be 0.035% or less. The preferable range of the S content is 0.030% or less, and more preferably, about 0.005 to 0.020%.

【0024】Cr:0.3〜2.0% Crは鋼の焼入れ性を上げて塑性変形抵抗HVav を向上
させるのに有効な元素である。こうした効果を発揮させ
る為には、0.3%以上含有させる必要がある。しかし
ながら、2.0%を超えて過剰に含有させると、Crが
粒界に偏析し、炭化物を生成して粒界強度Ieqの低下さ
せることにより低サイクル疲労強度を低下させる。
Cr: 0.3 to 2.0% Cr is an element effective for improving the hardenability of steel and improving the plastic deformation resistance HVav. In order to exhibit such effects, it is necessary to contain 0.3% or more. However, if it is excessively contained in excess of 2.0%, Cr segregates at the grain boundaries, and forms carbides to lower the grain boundary strength Ieq, thereby lowering the low cycle fatigue strength.

【0025】Mo:0.45超〜1.0% Moは鋼の焼入れ性を上げて塑性変形抵抗HVav と粒界
強度Ieqを向上させるのに有効な元素である。こうした
効果を発揮させる為には、0.45%を超えて含有させ
る必要がある。しかしながら、1.0%を超えて過剰に
含有させても上記効果が飽和してくるので、その上限を
1.0%と定めた。
Mo: more than 0.45% to 1.0% Mo is an element effective for improving the hardenability of steel to improve the plastic deformation resistance HVav and the grain boundary strength Ieq. In order to exert such effects, it is necessary to contain more than 0.45%. However, even if the content exceeds 1.0%, the above effect is saturated, so the upper limit is set to 1.0%.

【0026】Nb:0.003〜0.1% Nbは鋼中のCおよびNと結合して炭窒化物を生成し、
結晶粒の粗大化を抑制するのに有効な元素である。こう
した効果を発揮させる為には、0.003%以上含有さ
せる必要がある。しかしながら、過剰に含有させると被
削性や冷間加工性を低下させるので、0.1%以下とす
べきである。
Nb: 0.003-0.1% Nb combines with C and N in steel to form carbonitride,
It is an element effective for suppressing the coarsening of crystal grains. In order to exert such effects, it is necessary to contain 0.003% or more. However, if it is contained excessively, machinability and cold workability are reduced, so the content should be 0.1% or less.

【0027】Al:0.015〜0.060% Alは溶製時に脱酸剤として有効に作用し、また鋼中の
Nと結合してAlNを生成して結晶粒の粗大化を防止す
るのにも有効な元素である。こうした効果を発揮させる
ためには、0.015%以上含有させる必要があるが、
その効果は0.060%を超えると飽和するので、その
上限を0.060%以下と定めた。
Al: 0.015 to 0.060% Al effectively acts as a deoxidizing agent at the time of smelting, and combines with N in steel to form AlN to prevent coarsening of crystal grains. It is also an effective element. In order to exert such effects, it is necessary to contain 0.015% or more.
Since the effect saturates when it exceeds 0.060%, the upper limit is set to 0.060% or less.

【0028】N:0.003〜0.030% Nは鋼中でAl,V,Ti,Nb等と結合して窒化物を
生成し、結晶粒の粗大化を抑制する効果を発揮する。こ
の効果を発揮させるためには、0.003%以上含有さ
せる必要があるが、この効果はやがて飽和に達するので
0.030%を上限とした。
N: 0.003 to 0.030% N combines with Al, V, Ti, Nb and the like in steel to form nitrides, and has an effect of suppressing the coarsening of crystal grains. In order to exhibit this effect, it is necessary to contain 0.003% or more, but since this effect eventually reaches saturation, the upper limit is made 0.030%.

【0029】O:20pm以下 OはAlやSiと結合してAl23 やSiO2 等の硬
質の酸化物系介在物を生成する有害な元素であり、O量
が多くなると上記酸化物系介在物の生成によって曲げ疲
労強度や被削性を低下するので、20ppmを上限とし
た。
O: 20 pm or less O is a harmful element that forms hard oxide-based inclusions such as Al 2 O 3 and SiO 2 by combining with Al and Si. Since the bending fatigue strength and machinability are reduced by the formation of inclusions, the upper limit was set to 20 ppm.

【0030】本発明に係る肌焼鋼は上記の成分を基本成
分とし、残部はFeおよび不可避的不純物からなるもの
であり、こうした化学成分組成とすることによって本発
明の目的が達成されるのであるが、更に他の元素とし
て、Ca:0.08%以下、Zr:0.08%以下およ
びPb:0.3%以下よりなる群から選択される1種以
上を含有させることも有効である。
The case hardening steel according to the present invention comprises the above components as basic components, and the balance is composed of Fe and unavoidable impurities. The object of the present invention is achieved by such chemical composition. However, it is also effective to further include at least one element selected from the group consisting of Ca: 0.08% or less, Zr: 0.08% or less, and Pb: 0.3% or less as other elements.

【0031】Ca:0.08%以下、Zr:0.08%
以下およびPb:0.3%以下よりなる群から選択され
る1種以上 これらの元素は、被削性を向上させるのに有効な元素で
あるが、CaとZrについては0.08%を超えて含有
させると、これらの効果が飽和する。またPbについて
は、0.3%を超えて過剰に含有させると、ピッチング
寿命および疲労強度が低下するので、0.3%以下にす
る必要がある。
Ca: 0.08% or less, Zr: 0.08%
And at least one element selected from the group consisting of Pb: 0.3% or less. These elements are effective elements for improving machinability, but Ca and Zr exceed 0.08%. If they are contained, these effects are saturated. In addition, if Pb is excessively contained in excess of 0.3%, the pitting life and the fatigue strength are reduced. Therefore, it is necessary to reduce Pb to 0.3% or less.

【0032】ところで鋼中にはP,S,N,O以外に、
As,Sb等の種々の微量成分が存在し、これらの微量
成分については従来ほとんど無視されていたのである
が、これらの元素は粒界に偏析するので、優れた低サイ
クル疲労強度を得るためには無視できないものである。
即ち、As,Sb等の各元素は、粒界に偏析して低サイ
クル疲労強度を低下させるので、いずれも0.008%
以下に抑制することが好ましい。
Incidentally, in steel, in addition to P, S, N and O,
Various trace components such as As and Sb exist, and these trace components have been almost neglected in the past. However, since these elements are segregated at grain boundaries, it is necessary to obtain excellent low cycle fatigue strength. Is something that cannot be ignored.
That is, each element such as As and Sb segregates at the grain boundary and lowers the low cycle fatigue strength.
It is preferable to suppress the following.

【0033】またNb炭窒化物の平均粒径が1〜50n
mで、且つ100μm2 中のNb炭窒化物の析出数が2
0個以上であるという要件を満足することによって、結
晶粒粗大化を温度を高めることができるので好ましい。
こうした要件を満足する鋼は、焼なまし処理や冷間加工
後に浸炭処理しても結晶粒の粗大化が抑制でき、かくし
て良好な粒界強度Ieqを確保することができる。尚Nb
炭窒化物の平均粒径や析出数は、抽出レプリカによる透
過型電子顕微鏡観察等によって測定することができる。
例えば、透過型電子顕微鏡観察の場合、倍率15000
0、被検面積率0.5μm2 で5視野撮影後、撮影写真
によってNb炭窒化物の個数を数え、その個数を40倍
にすることによって100μm2 中のNb炭窒化物の析
出数を計算することができる。
The average particle size of Nb carbonitride is 1 to 50 n.
m and the precipitation number of Nb carbonitride in 100 μm 2 is 2
Satisfying the requirement of 0 or more is preferable because the temperature of crystal grain coarsening can be increased.
The steel satisfying these requirements can suppress the coarsening of the crystal grains even when carburizing after annealing or cold working, and thus can secure good grain boundary strength Ieq. Note that Nb
The average particle size and the number of precipitated carbonitrides can be measured by transmission electron microscope observation using an extraction replica.
For example, in the case of observation with a transmission electron microscope, the magnification is 15,000.
0, after taking 5 fields of view with a test area ratio of 0.5 μm 2 , counting the number of Nb carbonitrides by the photograph and calculating the number of Nb carbonitrides precipitated in 100 μm 2 by multiplying the number by 40 times. can do.

【0034】以下本発明を実施例によって更に詳細に説
明するが、下記の実施例は本発明を限定する性質のもの
ではなく、前・後記の趣旨に徴して設計変更することは
いずれも本発明の技術的範囲に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples do not limit the present invention, and any design change based on the above and following points is not limited to the present invention. It is included in the technical range of.

【0035】[0035]

【実施例】【Example】

実施例1 下記表1に示す鋼No.1〜16の化学成分組成の鋼材
を用い、150kg真空溶製→直径:20mmの丸棒に
熱間鍛造→焼ならし処理(焼なまし処理)後、有効硬化
層深さと芯部の厚みの率を歯車に揃える為に、直径:1
0mmの試験片を作製した。その後、軸方向に対して平
行に半径:0.5mm、幅1mmの切欠きをつけた。こ
の試験片を、930℃において2.5時間(カーボンポ
テンシャル:0.9%)浸炭した後、衝風冷却処理を施
した。更に、芯部硬さを歯車に揃える為に、外径:20
mm×内径:10mmの半割治具の中に試験片を入れ
て、820℃の再加熱し、油冷処理を施すことによって
疲労試験用試験片とした。その後、この試験片を用い
て、±60Ton油圧サーボ型疲労試験機によって、P
min/Pmax=0の条件で低サイクル疲労試験(圧
縮疲労試験)を行った。
Example 1 Steel No. shown in Table 1 below. Using a steel material with a chemical composition of 1 to 16, 150kg vacuum smelting → hot forging into a round bar with a diameter of 20mm → normalizing treatment (annealing treatment), then the effective hardened layer depth and core thickness Diameter: 1 to match the ratio with the gear
A test piece of 0 mm was prepared. Thereafter, a notch having a radius of 0.5 mm and a width of 1 mm was provided in parallel with the axial direction. The test piece was carburized at 930 ° C. for 2.5 hours (carbon potential: 0.9%), and then subjected to a blast cooling treatment. Further, in order to make the core hardness uniform with the gear, the outer diameter: 20
A test piece was placed in a half jig having a size of 10 mm and an inner diameter of 10 mm, reheated at 820 ° C., and subjected to an oil cooling treatment to obtain a test piece for a fatigue test. After that, using this test piece, P +
A low cycle fatigue test (compression fatigue test) was performed under the condition of min / Pmax = 0.

【0036】低サイクル疲労試験結果の代表例を、図2
に示す。また塑性変形抵抗HVav 、粒界強度Ieqの各
値、および(HVav+0.13Ieq-0.63)の計算値を、圧縮疲労
試験から100回における疲労強度を測定した値と共に
下記表2に示す。
FIG. 2 shows a representative example of the low cycle fatigue test results.
Shown in Table 2 below shows the values of the plastic deformation resistance HVav, the grain boundary strength Ieq, and the calculated value of (HVav + 0.13Ieq-0.63) together with the values obtained by measuring the fatigue strength at 100 times from the compression fatigue test.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】これらの結果から、次の様に考察できる。
まず鋼No.1〜10のものは、本発明で規定する全て
の要件を満足する本発明鋼であり、いずれも疲労強度は
15Ton以上が達成されていることがわかる。
From these results, the following can be considered.
First, steel No. 1 to 10 are steels of the present invention satisfying all the requirements specified in the present invention, and it can be seen that the fatigue strength of each steel is 15 Ton or more.

【0040】これに対し、鋼No.11〜13のもの
は、化学成分組成は本発明で規定する要件を満足するも
のであるが、塑性変形抵抗HVav と粒界強度Ieqの関係
が本発明で規定する要件を満足しない比較鋼であるの
で、疲労強度は15Ton未満である。鋼No.14の
ものは、Pの含有量が本発明で規定する範囲よりも多
く、且つ塑性変形抵抗HVav と粒界強度Ieqの関係が本
発明で規定する要件を満足しない比較鋼であり、疲労強
度は15Ton未満である。鋼No.15のものは、C
の含有量が本発明で規定する範囲よりも多く、その結果
塑性変形抵抗HVav の値が高くなっており、機械加工に
よって試験片を作製することはできなかった。また鋼N
o.16のものは、Mnの含有量が本発明で規定する範
囲よりも多く、その結果塑性変形抵抗HVav の値が高く
なっており、機械加工によって試験片を作製することが
できなかった。
On the other hand, steel No. 11 to 13 are comparative steels whose chemical composition satisfies the requirements specified in the present invention, but whose relationship between the plastic deformation resistance HVav and the grain boundary strength Ieq does not satisfy the requirements specified in the present invention. Therefore, the fatigue strength is less than 15 Ton. Steel No. No. 14 is a comparative steel in which the content of P is larger than the range specified in the present invention, and the relationship between the plastic deformation resistance HVav and the grain boundary strength Ieq does not satisfy the requirements specified in the present invention, and the fatigue strength is It is less than 15 Ton. Steel No. 15 is C
Was higher than the range specified in the present invention, and as a result, the value of the plastic deformation resistance HVav was high, and a test piece could not be produced by machining. Also steel N
o. In the case of No. 16, the Mn content was larger than the range specified in the present invention, and as a result, the value of the plastic deformation resistance HVav was high, and a test piece could not be produced by machining.

【0041】実施例2 前記表1に示した鋼No.4,5,8の化学成分組成の
鋼、および下記表3に示す化学成分組成の鋼(鋼No.
17)を用い、150kg真空溶製→直径:20mmの
丸棒に熱間鍛造→焼ならし処理後、有効硬化層深さと芯
部の厚みの比率を歯車に揃える為に、直径:10mmの
試験片を作製した。その後、軸方向に対して平行に半
径:0.5mm、幅1mmの切欠きをつけた。この試験
片を、930℃において2.5時間(カーボンポテンシ
ャル:0.9%)浸炭した後、衝風冷却処理を施した。
更に、芯部硬さを歯車に揃える為に、外径:20mm×
内径:10mmの半割治具の中に試験片を入れて、82
0℃の再加熱し、油冷処理を施すことによって疲労試験
用試験片とした。
Example 2 Steel No. 1 shown in Table 1 was used. Steels having chemical composition compositions of 4, 5, and 8, and steels having chemical composition compositions shown in Table 3 below (steel No.
17) Using 150kg vacuum melting → hot forging into a round bar with a diameter of 20mm → after normalizing treatment, a test with a diameter of 10mm to make the ratio of the effective hardened layer depth and the core thickness equal to the gear Pieces were made. Thereafter, a notch having a radius of 0.5 mm and a width of 1 mm was provided in parallel with the axial direction. The test piece was carburized at 930 ° C. for 2.5 hours (carbon potential: 0.9%), and then subjected to a blast cooling treatment.
Furthermore, in order to make the core hardness equal to the gear, the outer diameter: 20 mm x
Inner diameter: Put the test piece in a 10 mm half jig,
The specimen was reheated to 0 ° C. and subjected to an oil cooling treatment to obtain a test piece for fatigue test.

【0042】また下記表3に示す鋼No.18の化学成
分組成の鋼を用い、150kg真空溶製→直径:20m
mの丸棒に熱間鍛造→焼ならし処理後、有効硬化層深さ
と芯部の厚みの比率を歯車に揃える為に、直径:10m
mの試験片を作製した。その後、軸方向に対して平行に
半径:0.5mm、幅1mmの切欠きをつけた。引き続
き、この試験片に溶体化処理(1000℃×1時間→A
C)→焼なまし処理(750℃×5時間→FC)を施し
た。この試験片を、930℃において2.5時間(カー
ボンポテンシャル:0.9%)浸炭した後、衝風冷却処
理を施した。更に、芯部硬さを歯車に揃える為に、外
径:20mm×内径:10mmの半割治具の中に試験片
を入れて、820℃の再加熱し、油冷処理を施すことに
よって疲労試験用試験片とした。
The steel No. shown in Table 3 below. Using steel with chemical composition of 18, 150kg vacuum melting → diameter: 20m
After hot forging into a round bar of m → normalizing treatment, the diameter of the effective hardened layer depth and the thickness of the core part are adjusted to 10g in order to make the gear ratio.
m test pieces were prepared. Thereafter, a notch having a radius of 0.5 mm and a width of 1 mm was provided in parallel with the axial direction. Subsequently, the test piece was subjected to a solution treatment (1000 ° C. × 1 hour → A)
C) → annealing treatment (750 ° C. × 5 hours → FC). The test piece was carburized at 930 ° C. for 2.5 hours (carbon potential: 0.9%), and then subjected to a blast cooling treatment. Furthermore, in order to make the core hardness equal to the gear, the test piece was placed in a half jig having an outer diameter of 20 mm and an inner diameter of 10 mm, reheated at 820 ° C., and subjected to oil cooling to cause fatigue. A test specimen was used.

【0043】更に、下記表3に示す鋼No.19の化学
成分組成の鋼を用い、150kg真空溶製→直径:20
mmの丸棒に熱間鍛造→焼ならし処理後、有効硬化層深
さと芯部の厚みの比率を歯車に揃える為に、直径:10
mmの試験片を作製した。その後、軸方向に対して平行
に半径:0.5mm、幅1mmの切欠きをつけた。引き
続き、この試験片に溶体化処理(1000℃×1時間→
AC)→焼なまし処理(750℃×24時間→FC)を
施した。この試験片を、930℃において2.5時間
(カーボンポテンシャル:0.9%)浸炭した後、衝風
冷却処理を施した。更に、芯部硬さを歯車に揃える為
に、外径:20mm×内径:10mmの半割治具の中に
試験片を入れて、820℃の再加熱し、油冷処理を施す
ことによって疲労試験用試験片とした。
Further, the steel No. shown in Table 3 below was used. Using steel with chemical composition of 19, vacuum melting 150 kg → diameter: 20
After hot forging → normalizing to a round bar with a diameter of 10 mm, the diameter of the effective hardened layer and the thickness of the core are adjusted to 10
mm test pieces were prepared. Thereafter, a notch having a radius of 0.5 mm and a width of 1 mm was provided in parallel with the axial direction. Subsequently, the test piece was subjected to a solution treatment (1000 ° C. × 1 hour →
AC) → annealing treatment (750 ° C. × 24 hours → FC). The test piece was carburized at 930 ° C. for 2.5 hours (carbon potential: 0.9%), and then subjected to a blast cooling treatment. Furthermore, in order to make the core hardness equal to the gear, the test piece was placed in a half jig having an outer diameter of 20 mm and an inner diameter of 10 mm, reheated at 820 ° C., and subjected to oil cooling to cause fatigue. A test specimen was used.

【0044】上記で得られた各試験片を用いて、±60
Ton油圧サーボ型疲労試験機によって、Pmin/P
max=0の条件で低サイクル疲労試験(圧縮疲労試
験)を行った。また浸炭処理前のNb炭窒化物の粒径と
析出数を、抽出レプリカによる透過型電子顕微鏡観察に
より測定した。
Using each of the test pieces obtained above, ± 60
Pmin / P by Ton hydraulic servo type fatigue tester
A low cycle fatigue test (compression fatigue test) was performed under the condition of max = 0. The particle size and the number of precipitates of Nb carbonitride before carburizing were measured by transmission electron microscope observation using an extraction replica.

【0045】低サイクル疲労試験結果およびNb炭窒化
物の平均粒径と析出数を、塑性変形抵抗HVav 、粒界強
度Ieqの各値、および(HVav+0.13Ieq-0.63)の計算値、
圧縮疲労試験から100回における疲労強度を測定した
値と共に下記表4に示す。
The results of the low cycle fatigue test and the average grain size and the number of precipitates of Nb carbonitride were calculated by calculating the values of plastic deformation resistance HVav, grain boundary strength Ieq, and (HVav + 0.13Ieq-0.63),
Table 4 below shows the values obtained by measuring the fatigue strength at 100 times from the compression fatigue test.

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】これらの結果から、次の様に考察できる。
まず鋼No.4,5,8のものは、本発明で規定する要
件を満足すると共に、Nb炭窒化物の粒径と数も好まし
い範囲を満足するものであり、いずれも疲労強度は15
Ton以上が達成されていることがわかる。
From these results, the following can be considered.
First, steel No. 4, 5, and 8 satisfy the requirements defined in the present invention, and the particle size and the number of Nb carbonitrides also satisfies a preferable range.
It can be seen that Ton or more is achieved.

【0049】これに対し鋼No.17のものは、塑性変
形抵抗HVav と粒界強度Ieqの関係は本発明で規定する
要件を満足するものであるが、Nbの含有量が本発明で
規定する範囲よりも少なく、Nb炭窒化物の析出数が本
発明で規定する範囲に満たないので、浸炭処理時に結晶
粒の粗大化が生じ、疲労強度は15Ton未満である。
また鋼No.18,19のものは、化学成分組成、およ
び塑性変形抵抗HVavと粒界強度Ieqの関係は本発明で
規定する要件を満足するものであるが、Nb炭窒化物の
析出数が本発明で規定する範囲よりも少なく、浸炭処理
時に結晶粒の粗大化が生じ、疲労強度は15Ton未満
である。
On the other hand, steel No. In No. 17, the relationship between the plastic deformation resistance HVav and the grain boundary strength Ieq satisfies the requirements specified in the present invention, but the Nb content is smaller than the range specified in the present invention, and Nb carbonitride Since the number of precipitates is less than the range specified in the present invention, coarsening of crystal grains occurs during carburizing treatment, and the fatigue strength is less than 15 Ton.
In addition, steel No. 18 and 19, the chemical composition and the relationship between the plastic deformation resistance HVav and the grain boundary strength Ieq satisfy the requirements specified in the present invention, but the number of precipitated Nb carbonitrides is specified in the present invention. The range is smaller than the range, the crystal grains become coarse during the carburizing treatment, and the fatigue strength is less than 15 Ton.

【0050】実施例3 前記表1に示した鋼No.4,5,8,11,13の化
学成分組成の鋼を用い、150kg真空溶製→直径:8
0mmの丸棒に熱間鍛造→焼ならし処理後、熱間鍛造→
機械加工により外径:62mm・歯数10枚のデフピニ
オン、外径:99mm・歯数18枚のデフギヤを作製し
た。その後、前記図3(a),(b)に示した熱処理パ
ターンで浸炭焼入れ・焼戻し処理を施し、油圧モータに
てエネルギーを吸収するデフ強度試験機械によって低サ
イクル疲労試験を行なった。
Example 3 Steel No. 1 shown in Table 1 was used. Using steel with chemical composition of 4, 5, 8, 11, and 13, 150kg vacuum melting → diameter: 8
Hot forging into 0mm round bar → normalizing, then hot forging →
A differential gear having an outer diameter of 62 mm and 10 teeth and a differential gear having an outer diameter of 99 mm and 18 teeth were produced by machining. Thereafter, carburizing quenching and tempering were performed according to the heat treatment patterns shown in FIGS. 3A and 3B, and a low cycle fatigue test was performed using a differential strength test machine that absorbed energy with a hydraulic motor.

【0051】その結果を図4に示すが、鋼No.4,
5,8のものは本発明で規定する要件を満足しているの
で、疲労強度は1500kgf−m以上が達成されてい
る。これに対し鋼No.11,13のものでは、化学成
分組成は本発明で規定する範囲内であるが、塑性変形抵
抗HVav と粒界強度Ieqの関係が本発明で規定する範囲
を外れているので、疲労強度は1500kgf−m未満
である。
The results are shown in FIG. 4,
The specimens Nos. 5 and 8 satisfy the requirements defined in the present invention, and thus have a fatigue strength of 1500 kgf-m or more. On the other hand, steel No. 11 and 13, the chemical composition is within the range specified by the present invention, but since the relationship between the plastic deformation resistance HVav and the grain boundary strength Ieq is out of the range specified by the present invention, the fatigue strength is 1500 kgf. -M.

【0052】[0052]

【発明の効果】本発明は以上の様に構成されており、化
学成分組成を適切に調整すると共に、合金元素の関係を
厳密に規定して塑性変形抵抗能と粒界強度の向上を図る
ことによって、低サイクル疲労強度に優れた肌焼鋼が実
現できた。
The present invention is constituted as described above, and aims to improve the plastic deformation resistance and the grain boundary strength by appropriately adjusting the chemical composition and strictly defining the relationship between alloying elements. As a result, a case hardened steel having excellent low cycle fatigue strength was realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】塑性変形抵抗能Heqと粒界強度Ieqが低サイク
ル疲労強度等に与える影響を示したグラフである。
FIG. 1 is a graph showing the effects of plastic deformation resistance Heq and grain boundary strength Ieq on low cycle fatigue strength and the like.

【図2】実施例1における低サイクル疲労試験結果の代
表例を示すグラフである。
FIG. 2 is a graph showing a typical example of a low cycle fatigue test result in Example 1.

【図3】浸炭焼入れ処理および焼戻し処理のヒートパタ
ーン例を示す図である。
FIG. 3 is a diagram showing an example of a heat pattern of carburizing and quenching and tempering.

【図4】実施例4における低サイクル疲労試験結果の代
表例を示すグラフである。
FIG. 4 is a graph showing a representative example of a low cycle fatigue test result in Example 4.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安木 真一 神戸市灘区灘浜東町2番地 株式会社神戸 製鋼所神戸製鉄所内 (72)発明者 松島 義武 神戸市灘区灘浜東町2番地 株式会社神戸 製鋼所神戸製鉄所内 (72)発明者 稲田 淳 神戸市灘区灘浜東町2番地 株式会社神戸 製鋼所神戸製鉄所内 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Shinichi Yasugi 2 Nadahama-Higashi-cho, Nada-ku, Kobe Kobe Steel Co., Ltd. Inside Kobe Steel Works (72) Inventor Yoshitake Matsushima 2nd Nadahama-Higashi-cho, Nada-ku, Kobe City Kobe Steel, Ltd. Inside Kobe Works (72) Inventor Jun Inada 2nd Nadahama-Higashi-cho, Nada-ku, Kobe Kobe Steel Works Kobe Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C :0.15〜0.30%(質量%の意
味、以下同じ) Mn:0.5〜3.0% Si:0.50%以下 P :0.010%以下 S :0.035%以下 Cr:0.3〜2.0% Mo:0.45超〜1.0% Nb:0.003〜0.1% Al:0.015〜0.060% N :0.003〜0.030% を夫々含有すると共に、O:20ppm以下に抑制して
なり、残部がFeおよび不可避的不純物からなる鋼であ
り、且つ下記(1)〜(3)式の夫々で規定される塑性
変形抵抗HVav および粒界強度Ieq1,Ieq2が下記
(4)式および(5)式を満足するものであることを特
徴とする低サイクル疲労強度の優れた肌焼鋼。 HVav =[C] +0.08[Si]+0.14[Mn]+1.74[P ]−0.83[S ] +0.16[Cr]+0.22[Mo] …(1) Ieq1=0.20[Mo]+[Nb]−0.10[Si]−[P ]1/2 (但し、Cr≦1.6%のとき) …(2) Ieq2=0.20([Mo]- [Cr])+[Nb]−0.10[Si]−[P ]1/2 (但し、Cr>1.6%のとき) …(3) 但し、[C] ,[Si], [Mn], [P ],[S ],[M
o],[Nb]および[Cr]は、夫々C,Si,Mn,P,
S,Mo,NbおよびCrの含有量(質量%)を示す。 HVav +0.13(Ieq1またはIeq2)−0.63≧0 …(4) HVav <0.80 …(5)
1. C: 0.15 to 0.30% (meaning by mass%, the same applies hereinafter) Mn: 0.5 to 3.0% Si: 0.50% or less P: 0.010% or less S: 0.035% or less Cr: 0.3 to 2.0% Mo: More than 0.45 to 1.0% Nb: 0.003 to 0.1% Al: 0.015 to 0.060% N: 0. 003-0.030%, and O: 20 ppm or less, the balance being Fe and unavoidable impurities, and defined by the following formulas (1) to (3). A case hardening steel excellent in low cycle fatigue strength, wherein the plastic deformation resistance HVav and the grain boundary strengths Ieq1 and Ieq2 satisfy the following equations (4) and (5). HVav = [C] + 0.08 [Si] + 0.14 [Mn] + 1.74 [P]-0.83 [S] + 0.16 [Cr] + 0.22 [Mo] ... (1) Ieq1 = 0.20 [Mo] + [Nb] −0.10 [Si] − [P] 1/2 (when Cr ≦ 1.6%) (2) Ieq2 = 0.20 ([Mo] − [Cr]) + [Nb] −0.10 [Si]-[P] 1/2 (however, when Cr> 1.6%) (3) where [C], [Si], [Mn], [P], [S], [M]
o], [Nb] and [Cr] are C, Si, Mn, P,
The content (% by mass) of S, Mo, Nb and Cr is shown. HVav + 0.13 (Ieq1 or Ieq2) −0.63 ≧ 0 (4) HVav <0.80 (5)
【請求項2】 更に他の元素として、Ca:0.08%
以下、Zr:0.08%以下およびPb:0.3%以下
よりなる群から選択される1種以上を含有するものであ
る請求項1に記載の肌焼鋼。
2. As another element, Ca: 0.08%
The case hardening steel according to claim 1, wherein the case hardening steel contains at least one selected from the group consisting of Zr: 0.08% or less and Pb: 0.3% or less.
【請求項3】 不可避的不純物中のAs:0.008%
以下(0%を含む)およびSb:0.008%以下(0
%を含む)となる様にその含有量を抑制したものである
請求項1または2に記載の肌焼鋼。
3. As in inevitable impurities: 0.008%
Or less (including 0%) and Sb: 0.008% or less (0%
%.) The case hardening steel according to claim 1 or 2, wherein the content thereof is suppressed so as to obtain the case hardening steel.
【請求項4】 Nb炭窒化物の平均粒径が1〜50nm
であり、且つ100μm2 中のNb炭窒化物の析出数が
20個以上である請求項1〜3のいずれかに記載の肌焼
鋼。
4. An Nb carbonitride having an average particle size of 1 to 50 nm.
The case hardening steel according to any one of claims 1 to 3, wherein the precipitation number of Nb carbonitride in 100 µm 2 is 20 or more.
JP6682097A 1997-03-19 1997-03-19 Case hardening steel excellent in low cycle fatigue strength Withdrawn JPH10259450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6682097A JPH10259450A (en) 1997-03-19 1997-03-19 Case hardening steel excellent in low cycle fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6682097A JPH10259450A (en) 1997-03-19 1997-03-19 Case hardening steel excellent in low cycle fatigue strength

Publications (1)

Publication Number Publication Date
JPH10259450A true JPH10259450A (en) 1998-09-29

Family

ID=13326881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6682097A Withdrawn JPH10259450A (en) 1997-03-19 1997-03-19 Case hardening steel excellent in low cycle fatigue strength

Country Status (1)

Country Link
JP (1) JPH10259450A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496132A1 (en) * 2002-04-18 2005-01-12 JFE Steel Corporation Steel for case hardening bearing excellent in toughness and rolling fatigue life in quasi-high temperature region
JP2007332438A (en) * 2006-06-16 2007-12-27 Nippon Steel Corp Steel material for carburizing and quenching having excellent low cycle fatigue property and carburized and quenched component
JP2011063886A (en) * 2010-11-05 2011-03-31 Nippon Steel Corp Carburized and quenched steel excellent in low cycle fatigue property, and carburized and quenched component
US9469883B2 (en) 2009-05-13 2016-10-18 Nippon Steel & Sumitomo Metal Corporation Carburized steel part having excellent low cycle bending fatigue strength
KR20170121267A (en) 2015-03-31 2017-11-01 신닛테츠스미킨 카부시키카이샤 Hot rolled bar stock, manufacturing method of parts and hot rolled bar stock
JP2017218608A (en) * 2016-06-03 2017-12-14 新日鐵住金株式会社 Carburization member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496132A1 (en) * 2002-04-18 2005-01-12 JFE Steel Corporation Steel for case hardening bearing excellent in toughness and rolling fatigue life in quasi-high temperature region
EP1496132A4 (en) * 2002-04-18 2009-09-16 Jfe Steel Corp Steel for case hardening bearing excellent in toughness and rolling fatigue life in quasi-high temperature region
JP2007332438A (en) * 2006-06-16 2007-12-27 Nippon Steel Corp Steel material for carburizing and quenching having excellent low cycle fatigue property and carburized and quenched component
JP4728883B2 (en) * 2006-06-16 2011-07-20 新日本製鐵株式会社 Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties
US9469883B2 (en) 2009-05-13 2016-10-18 Nippon Steel & Sumitomo Metal Corporation Carburized steel part having excellent low cycle bending fatigue strength
JP2011063886A (en) * 2010-11-05 2011-03-31 Nippon Steel Corp Carburized and quenched steel excellent in low cycle fatigue property, and carburized and quenched component
KR20170121267A (en) 2015-03-31 2017-11-01 신닛테츠스미킨 카부시키카이샤 Hot rolled bar stock, manufacturing method of parts and hot rolled bar stock
JP2017218608A (en) * 2016-06-03 2017-12-14 新日鐵住金株式会社 Carburization member

Similar Documents

Publication Publication Date Title
JP3524229B2 (en) High toughness case hardened steel machine parts and their manufacturing method
EP3088550A1 (en) Carburized-steel-component production method, and carburized steel component
JP5669339B2 (en) Manufacturing method of high strength carburized parts
JP2007162128A (en) Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
CN112292471B (en) Mechanical component
JP2006213951A (en) Steel for carburized component excellent in cold workability, preventing coarsening of crystal grains in carburizing impact resistance and impact fatigue resistance
JP3094856B2 (en) High strength, high toughness case hardening steel
JP2023002842A (en) Machine component for automobiles made of steel material for carburization excellent in static torsional strength and torsional fatigue strength
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP4962695B2 (en) Steel for soft nitriding and method for producing soft nitriding component
JP4384592B2 (en) Rolled steel for carburizing with excellent high-temperature carburizing characteristics and hot forgeability
JPH0421757A (en) High surface pressure gear
JP4847681B2 (en) Ti-containing case-hardened steel
JP2001303173A (en) Steel for carburizing and carbo-nitriding
JP4504550B2 (en) Steel for gears and gears with excellent root bending fatigue and surface fatigue properties
JP2934485B2 (en) High-strength gear steel and high-strength gear that can be rapidly carburized
JP3932102B2 (en) Case-hardened steel and carburized parts using the same
JPH10259450A (en) Case hardening steel excellent in low cycle fatigue strength
JP6825605B2 (en) Carburizing member
JPH08260039A (en) Production of carburized and case hardened steel
JP3236883B2 (en) Case hardening steel and method for manufacturing steel pipe using the same
JP2016188422A (en) Carburized component
JP3996386B2 (en) Carburizing steel with excellent torsional fatigue properties
JP6939835B2 (en) Carburizing member
JPH05279794A (en) Soft-nitriding steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601